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Abstract

Motivation. The increasing number and volume of genomic and metagenomic data necessitates
scalable and robust computational models for precise analysis. Sketching techniques utilizing k-
mers from a biological sample have proven to be useful for large-scale analyses. In recent years,
FracMinHash has emerged as a popular sketching technique and has been used in several useful
applications. Recent studies on FracMinHash proved unbiased estimators for the containment and
Jaccard indices. However, theoretical investigations for other metrics, such as the cosine similarity,
are still lacking.

Theoretical contributions. In this paper, we present a theoretical framework for estimating
cosine similarity from FracMinHash sketches. We establish conditions under which this estimation
is sound, and recommend a minimum scale factor s for accurate results. Experimental evidence
supports our theoretical findings.

Practical contributions. We also present frac-kmc, a fast and efficient FracMinHash sketch
generator program. frac-kmc is the fastest known FracMinHash sketch generator, delivering
accurate and precise results for cosine similarity estimation on real data. We show that by computing
FracMinHash sketches using frac-kmc, we can estimate pairwise cosine similarity speedily and
accurately on real data. frac-kmc is freely available here: https://github.com/KoslickiLab/
frac-kmc/.
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1 Introduction

With the growing number of reference genomes and the exponential increase in genomic and
metagenomic data production, there is a critical need for the development of computational
models that are both scalable and robust, as well as ensure precision in analysis. k-mer-based
algorithms, particularly those utilizing sketching methods, are becoming increasingly popular
for large-scale sequence analysis and metagenomic applications. A k-mer is a sequence of
k consecutive nucleotides extracted from a longer sequence. Algorithms designed to work
with k-mers decompose a long sequence into small k-mers and analyze based on the number
of shared or dissimilar k-mers among multiple samples. Given the potentially vast number
of distinct k-mers in a sequencing sample, sketching methods create a fingerprint of the
k-mers (called a sketch) to work with these smaller sets, thereby reducing computational
resource consumption. The most widely used sketching method for many years has been
MinHash [3], originally introduced for document comparisons. Mash [19] was developed
to apply MinHash to genomic data and has been extensively utilized. However, studies
have revealed that MinHash sketches perform relatively poorly when comparing sets of very
dissimilar sizes [3, 15, 14]. Researchers have proposed various adjustments to MinHash to
address this issue [2, 12, 14, 18]. One such example is the recently introduced FracMinHash
sketch, which uses a variable sketch size instead of MinHash’s fixed-size scheme. FracMinHash
was first introduced and used in the software sourmash [4, 21]. In simple words, a FracMinHash
sketch retains s (0 ≤ s ≤ 1) fraction of the input set of k-mers. The scale factor s is a tunable
parameter of the FracMinHash sketching technique, controlling the size of the generated
sketch.

The first theoretical analysis of FracMinHash was introduced in [10], which showed how
to obtain an unbiased estimator of the containment and the Jaccard indices computed using
FracMinHash sketches. This work laid the theoretical foundation for calculating average
nucleotide identity (ANI) via FracMinHash sketches and led to useful applications, such as
ANI estimation in metagenomes [24], obtaining taxonomy off of metagenome samples [11],
obtaining a functional profile from metagenomes [9], etc. Besides the Jaccard and the
containment indices, there are other metrics used in the literature when comparing two
samples, such as cosine similarity, Bray-Curtis dissimilarity, KL divergence, Whittaker
distance etc. Among these metrics, cosine similarity (and cosine dissimilarity) is a widely
used metric, and has been used in finding similarities between chromosomes, genes, cell
structures and functions, and in many other applications [5, 6, 22, 25]. Although these
metrics are useful, and often used by researchers, a theoretical analysis of these metrics in the
context of FracMinHash sketching is still missing – both in whether and when we can estimate
the distance from FracMinHash sketches. In this paper, we present this theoretical analysis
for the cosine similarity. We first explore the conditions when estimating cosine similarity
from FracMinHash sketches is theoretically sound. We next show how these conditions can be
used to recommend a minimum scale factor s that is theoretically safe to use when estimating
cosine similarity from FracMinHash sketches. We supplement our theoretical findings with
experimental evidence that show that these theoretical analyses are sound.

Apart from these theoretical results, our other contribution presented in this paper
is implementing a fast and efficient FracMinHash sketch generator program, frac-kmc.
Although FracMinHash sketches can readily be generated using the software sourmash, we
found the program sourmash sketch to be slow for very large samples. Therefore, we
developed frac-kmc by modifying a k-mer-counter tool KMC [7, 8, 13]. To the best of our
knowledge, frac-kmc is the fastest FracMinHash sketch generator program when considering
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wall-clock time. We used frac-kmc to compute FracMinHash sketches and used the sketches
to estimate cosine similarity values on real data, and found accurate and precise results.
frac-kmc is freely available here: https://github.com/KoslickiLab/frac-kmc/. The
analyses presented in this paper can be reproduced using the code here: https://github.
com/KoslickiLab/fmh_cosine_reproducibles/.

2 Preliminaries

We present the following preliminaries in their full generality, using generic notation such as
Ω, a universal set. All theorems presented in Section 3 also hold for any universal set. In
the case of sequence comparisons, the sets of interest, A and B are sets of k-mers, in the
universe Ω = {A, C, G, T}k.

FracMinHash sketching

Given a perfect hash function h : Ω → [0, H] for some H ∈ R and a scale factor s where
0 ≤ s ≤ 1, a FracMinHash sketch of a set A, where A ⊆ Ω, is defined as follows:

FRACs(A) = { h(a) | a ∈ A and h(a) ≤ Hs} . (1)

The scale factor s is a tuneable parameter that can modify the size of the sketch. For a
fixed s, if the set A grows larger, the sketch FRACs(A) grows proportionally.

Vector form of a set

Let Ω = { ei }N
i=1 be a universal set, and let A ⊆ Ω. Then, the vector form of A is defined

as follows: u = ⟨ ui | ui = 1 if ei ∈ A, ui = 0 if ei /∈ A ⟩. In words, u is an N -dimensional
vector, every entry representing the presence/absence of an element.

Cosine similarity of two sets

Let A and B be two sets in Ω, and let the vector forms of A and B be u and v, respectively.
Then, the cosine similarity of the sets A and B is defined as the cosine similarity of the
vectors u and v as follows:

cos θ = u · v
||u||2 ||v||2

,

where u · v is the dot product of u and v. By using the triangle rule for cosine, we know the
following:

cos θ =
||u||2

2 + ||v||2
2 − ||u − v||2

2

2 ||u||2 ||v||2
.

Throughout the paper, we have used the terms “cosine”, “cosine similarity”, and “simil-
arity” analogously to mean the cosine similarity of two sets, unless stated otherwise.

Chernoff bound for sum of Bernoulli random variables

Recall the classic Chernoff bounds: Let Xi, i = 1, 2, ..., n be n independent Bernoulli random
variables. If X =

∑n
i=1 Xi and E[X] = µ, then the following holds [17]:

Pr
[∣∣∣X − µ

∣∣∣ ≥ ϵ µ

]
≤ 2 exp

{
− ϵ2µ/3

}
.
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3 Theoretical Results

In this section, we present our theoretical findings. Ideally, if the cosine similarity of two sets
A and B is cos θ, and the cosine similarity of FRACs(A) and FRACs(B) is cos θ′, then we
want the following to hold in all cases with high probability:∣∣∣ cos θ′ − cos θ

∣∣∣ ≤ ϵ cos θ (2)

for any arbitrarily small ϵ. In other words, the cosine similarity between two FracMinHash
sketches approximates the cosine similarity between the original sets. In this ideal case, we
would be able to compare two biological sequences and estimate the cosine similarity of the
set of k-mers (extracted from the two sequences) by computing the cosine similarity of the
FracMinHash sketches. Unfortunately, this does not hold in all cases. In this section, we
present theoretical conditions where Equation (2) holds (and where it breaks down). For the
sake of continuity, all proofs of the theorems are included in Section 5.

▶ Theorem 1. Let Ω = { ei }N
i=1 be a given set (universe), and let A ⊆ Ω. If u = ⟨ ui | ui =

1 if ei ∈ A, ui = 0 if ei /∈ A ⟩ and if u′ = ⟨ u′
i | u′

i = 1 if ei ∈ FRACs(A), u′
i = 0 if ei /∈

FRACs(A) ⟩, then the following holds:

E
[
||u′||2

2
]

= s ||u||2
2
. (3)

Proof. See Section 5.3. ◀

Theorem 1 quantifies the expected squared length of u′. We next show that the square
of the length of u′ is well concentrated around this expected value.

▶ Theorem 2. Let Ω = { ei }N
i=1 be a given set (universe), and let A ⊆ Ω. If u = ⟨ ui | ui =

1 if ei ∈ A, ui = 0 if ei /∈ A ⟩ and if u′ = ⟨ u′
i | u′

i = 1 if ei ∈ FRACs(A), u′
i = 0 if ei /∈

FRACs(A) ⟩, then the following holds for 0 < ϵ < 1:

Pr
[∣∣∣ ||u′||2

2 − s||u||2
2

∣∣∣ ≥ ϵ s||u||2
2

]
≤ 2 exp

(
− s|A|ϵ2/3

)
. (4)

Proof. See Section 5.3. ◀

Using this strong concentration of ||u′||2
2 and ||v′||2

2 around their respective mean values,
we can quantify how well cos θ′ estimates the true cosine cos θ.

▶ Theorem 3. Let Ω = { ei }N
i=1 be a given set (universe), and let A, B ⊆ Ω be two sets

in the universe. Let the cosine similarity of the sets A and B be cos θ, and that of the sets
FRACs(A) and FRACs(B) be cos θ′. Then, there exists a small ϵ where 0 < ϵ < 1, such
that the following holds∣∣∣ cos θ′ − cos θ

∣∣∣ ≤ ϵ
(

1 + ξ
)

cos θ (5)

with a probability of at least 1 − 6 exp
{

− s min(m, n) ϵ2/ 3
}

. Here |A| = m, |B| = n,

|A ∩ B| = q, and ξ = 3(m + n − 2q)/q.

Proof. See Section 5.3. ◀
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Theorem 3 indicates that the cosine similarity between two sketched sets approximates the
cosine similarity of the original sets with approximation error being bounded by the relative
similarity of the original sets. The other conditions describe when the error is properly
bounded.

Before presenting the experimental results, we briefly discuss what q and ξ signify in
Theorem 3. We first note that when q < (m + n)/(2 + c/3) for some positive constant c,
then the right-hand side of Equation (5) becomes unbounded because ξ > c. In such a case,
there is no theoretical guarantee that the error in estimating cosine using FracMinHash to be
small. Indeed, as q approaches 0, we note that cos θ gets close to 0 as well, and intuitively,
FracMinHash sketches FRACs(A) and FRACs(B) cannot likely retain the few common
items in A and B. In such a case, Equation (2) does not hold for small ϵ. We do note
that in this case, FRACs(A) ∩ FRACs(B) will have nearly zero elements, and as a result,
cos θ′ → 0. The only limitation of Theorem 3 is that it does not guarantee that two near-zero
quantities will be proportionally close. Nevertheless, estimating cosine using FracMinHash
sketches will still work, since the cosine similarity of the sketched sets will also be near-zero.

On the other hand, ξ can be bounded by a positive constant c when q ≥ (m+n)/(2+c/3),
i.e. when there are enough common elements between A and B. In practical scenarios, this
is the case as we compare a pair of biological sequences, and Theorem 3 gives guarantees
that estimating cosine similarity using FracMinHash sketches is theoretically sound.

Suggesting a minimum scale factor s

We conclude our theoretical results section by suggesting a minimum scale factor that is
theoretically safe to use. The probability guarantee in Theorem 3 allows us to recommend
a scale factor s for a desired error rate δ and a desired level of confidence α, 0 ≤ α < 1.
We define the desired confidence level α as the minimum guarantee we wish to have on the
tolerable error rate δ.

If we want to have a guarantee of at least α, 0 ≤ α < 1, that the estimated cosine cos θ′

will be in a 1 ± δ factor of the true cosine cos θ where 0 ≤ δ < 1, then we require a scale
factor s, such that

s ≥
3 ln

[
6/(1 − α)

]
ϵ2 min(m, n) =

3(1 + c)2 ln
[
6/(1 − α)

]
δ2 min(m, n) , (6)

where ξ in Theorem 3 is bounded by a constant c, c > 0. If we want a higher level of
confidence, or if we want a smaller window of error, we require a larger scale factor. The
given sets A and B dictate the other terms – if there is a large number of elements in A ∩ B,
then ξ is bounded by a smaller c, and a smaller scale factor s suffices. And finally, the larger
the sets A and B are, the smaller scale factor s can be.

4 Experimental Results

In this section, we present our experimental results. We first show results supporting the
theory we presented in Section 3. Then, we discuss a fast and efficient program to compute
FracMinHash sketches from nucleotide sequences. We named this program frac-kmc. Finally,
we present the performance of frac-kmc on real biological sequences.

WABI 2024



6:6 Cosine Similarity Using FracMinHash

Table 1 Suggested scale factors for various levels of desired confidence and various tolerable rates
of error, when min(m, n) = 10000. For only 10K elements, if the tolerable error is up to 5%, we
cannot but use all elements to get the desired accuracy.

Desired level of confidence, α

Tolerable
Error, δ

0.91 0.93 0.95 0.97 0.99

0.01 1.0000 1.0000 1.0000 1.0000 1.0000
0.03 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 1.0000 1.0000 1.0000 1.0000 1.0000
0.07 0.5785 0.6132 0.6595 0.7299 0.8812
0.09 0.3500 0.3709 0.3990 0.4415 0.5331
0.1 0.2835 0.2835 0.3232 0.3576 0.4318

Table 2 Suggested scale factors for various levels of desired confidence and various tolerable rates
of error, when min(m, n) = 10000000. For 10M elements, we can use a small fraction of the
elements to get the desired accuracy when estimating the cosine similarity.

Desired level of confidence, α

Tolerable
Error, δ

0.91 0.93 0.95 0.97 0.99

0.01 0.0283 0.0300 0.0323 0.0358 0.0432
0.03 0.0031 0.0033 0.0036 0.0040 0.0048
0.05 0.0011 0.0012 0.0013 0.0014 0.0017
0.07 0.0006 0.0006 0.0007 0.0007 0.0009
0.09 0.0003 0.0004 0.0004 0.0004 0.0005
0.1 0.0003 0.0003 0.0003 0.0004 0.0004

4.1 Our suggested scale factors are safer to estimate cosine

We start by presenting what the scale factors suggested by Equation (6) look like for various
α and δ. Table 1 shows various suggested scale factors when min(m, n) = 10K, and Table 2
shows suggested scale factors when min(m, n) = 10M. We notice that the theory accounts
for a larger number of elements in the sets that are being compared against each other. With
only 10K elements, if we want the estimated cosine to be within ± 5% of the original cosine,
then the theory suggests that we have to use a scale factor of 1. In other words, there is no
scope for sub-sampling at this desired resolution. It is only at δ ≥ 0.06 that we can get away
with sub-sampling, although the recommended scale factor is not very small to be drastically
helpful in reducing computational resources.

On the other hand, as documented in Table 2, we can use a scale factor of roughly
0.0003 ∼ 0.0004 to allow a 10% window for error when we have at least 10M elements. If we
want to be very accurate and only allow 1% error, we need to obtain FracMinHash sketches
with a scale factor of roughly 0.03 ∼ 0.04. From Table 2, we also notice that with a higher
level of desired confidence α, we need to employ larger scale factors; although the effect a
larger α has on the suggested scale factor is less prominent than the effect of a smaller δ.

In all these cases, we used c = 0.5, which was arbitrarily assumed that ξ is bounded by
0.5. We experimented with other values of c and noticed similar patterns. On simulated
data, the scale factors suggested for c = 0.5 give satisfactory results, as presented below.
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Table 3 Fraction of times the estimated cosine falls within ±5% of the true cosine of A and B,
for different sizes of A and B. The similarities were estimated using a scale factor of 1/1000,
which is the default in sourmash. In a large fraction of times, the estimated cosine is not within
±5% of the true cosine.

Num. elements in A
Num.

elements
in B

100K 200K 300K 400K 500K

100K 0.09 0.20 0.25 0.32 0.38
200K 0.17 0.29 0.55 0.47 0.51
300K 0.28 0.40 0.54 0.58 0.57
400K 0.32 0.45 0.61 0.71 0.74
500K 0.45 0.42 0.73 0.66 0.83

Table 4 Suggested scale factors for various min(|A|, |B|), as calculated by Equation (6). α = 0.95,
δ = 0.05, and c = 0.5 was used.

min(|A|, |B|) 100K 200K 300K 400K 500K
Suggested
scale factor 0.1293 0.0646 0.0431 0.0323 0.0259

We next show the usefulness of using these recommended scale factors, in contrast to a
preset value. The state-of-the-art program to compute and analyze FracMinHash sketches is
sourmash [4, 21], which uses a default scale factor of 1/1000. As a result, many studies that
use sourmash use this default value, even though the tool can work with other non-default
scale factors. We show that a preset scale factor may result in an error higher than expected.
In this set of experiments, we simulated a universe of 1M elements. We then randomly
selected two sets A and B from this universe. We varied the number of elements in these
sets from 100K to 500K. The actual elements were selected randomly. We then calculated
the true cosine of A and B using all elements. After that, we used the preset scale factor
of 1/1000 to compute FracMinHash sketches of A and B, and estimated the cosine using
these sketches. We also set the tolerable error rate (δ) at 5%, and desired level of confidence
(α) at 95%. We then computed FracMinHash sketches of A and B using the scale factor
suggested by Equation (6), and used these sketches to estimate the cosine. We then recorded
if these estimated cosine values fall in the range cos θ (1 ± 0.05). We repeated the experiment
1000 times for all sizes of A and B. Table 3 shows the fraction of times the similarities
estimated using a fixed scale factor of 1/1000 fall within ±5% of the true cosine. Table 5
shows the fraction of times the similarities estimated using the scale factor recommended by
Equation (6) fall within ±5% of the true cosine. The list of suggested scale factors in these
scenarios is shown in Table 4.

These results clearly show the usefulness of the recommended scale factors over a preset
value. Almost 100% of times, the recommended scale factor can estimate a cosine within
the tolerable error range, whereas using a preset scale factor can result in a larger error.
We computed the recommended scale factor using c = 0.5. This is equivalent to |A ∩
B| ≥ approximately 46% of |A| + |B|. Despite this being a non-realistic assumption for
distantly related samples, the suggested scale factors still perform well because of the many
pessimistic steps in Theorem 3, which states conditions that are more stringent than necessary.
Nonetheless, it is clear that using the default scale factor of 1/1000 may not be well-suited
where a higher resolution around the true value is required.

WABI 2024
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Table 5 Fraction of times the estimated cosine falls within ±5% of the true cosine of A and B,
for different sizes of A and B. The similarities were estimated using the scale factor suggested
by Equation (6). In almost all instances, the recommended scale factor can estimate the similarity
so that the estimated value is within ±5% of the true similarity.

Num. elements in A
Num.

elements
in B

100K 200K 300K 400K 500K

100K 0.94 1.0 1.0 1.0 1.0
200K 0.99 1.0 1.0 1.0 1.0
300K 1.0 1.0 1.0 1.0 1.0
400K 1.0 1.0 1.0 1.0 1.0
500K 1.0 1.0 1.0 1.0 1.0

4.2 frac-kmc computes FracMinHash sketches faster
After establishing the conditions when FracMinHash sketches can be safely used to estimate
the cosine similarity, we next wanted to use FracMinHash sketches on real biological sequences.
Ideally, we wanted to show that by using FracMinHash sketches, we can compute the pairwise
similarity matrix for a number of sequences faster than tools that use all k-mers. The
fastest tool that can compute pairwise similarity/distance matrix from a list of sequences is
currently Simka [1], whereas the state-of-the-art tool to compute FracMinHash sketches is
sourmash [4, 21]. Naturally, we tried to use sourmash to first compute FracMinHash sketches,
and later compare the sketches to obtain a pairwise similarity matrix. Unfortunately, we
found that the command that computes FracMinHash sketches (called sourmash sketch) is
many times slower than Simka. We noted that this is because sourmash treats input sequence
files in a serialized manner, where there is scope for parallelism over multiple threads to
make the processing faster.

1 2 3 4 5
Filesize (GB)

0

100

200

300

400

500

Ti
m

e 
(s

)

mash sketch
sourmash sketch
frac-kmc sketch

Figure 1 Wall-clock time required by the commands mash sketch, sourmash sketch and
frac-kmc-sketch to compute a sketch. The input files are fastq.gz files containing metagen-
ome samples taken from the human gut. MinHash sketches of 1000 was computed, and FracMinHash
sketch with scale factors s = 0.001 was computed. frac-kmc finishes ∼ 10 times faster than sourmash,
and ∼ 6.7 times faster than Mash.
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Therefore, for practical purposes, we decided to write a new FracMinHash sketch generator
program by modifying the source code of a fast and efficient k-mer-counter KMC [13]. Details
of frac-kmc are included in Section 5.1. Figure 1 shows a running time comparison for the
commands sourmash sketch and frac-kmc sketch on files of different sizes. The files are
fastq.gz files. These files were randomly selected from the Human Microbiome Project [20].
We verified that sketches produced by the two programs are identical by running sourmash
compare. The comparison shows that frac-kmc consistently runs ∼10 times faster than
sourmash to sketch input files. For this set of analyses, we used the latest version of sourmash:
4.8.8, as of 1 May 2024. We used 128 threads to run frac-kmc. Both sourmash and frac-kmc
were run to not keep track of abundances. We ran the programs to compute sketches for
k = 21 and scale factor s = 1/1000. We tested with other values of k and s and saw similar
results.

Figure 1 also shows the average running time to compute MinHash sketches (sketch
size = 1000 hashes) from the same files using Mash (version 2.0). Both Mash and sourmash
run slower than frac-kmc mainly because of processing input files in a serialized manner.
When working on many input files, both Mash and sourmash can parallelize the workload by
processing one file on every core. Nevertheless, using frac-kmc can still be helpful to end
users, especially for processing very large files, when the difference in running time is starkly
observed.

4.3 frac-kmc estimates cosine similarity accurately
We next show that by using FracMinHash sketches computed by frac-kmc, we can estimate
cosine similarity faster than Simka [1] (which uses all k-mers to operate), and more accurately
than Mash [19] (which uses fixed size MinHash sketches). For this set of experiments, we
used two datasets: the Ecoli dataset contains 3682 E.coli genome assemblies, and the HMP
dataset contains 300 metagenome samples collected from the human gut, taken from the
Human Microbiome Project [20]. We ran Simka, Mash, and frac-kmc on these datasets to
produce the pairwise cosine similarity matrix. Details of the datasets, and how the programs
were run are included in Section 5.2.

Total wall-clock time and CPU time to compute pairwise cosine for all three tools are
shown in Figure 2. For both the Ecoli and the HMP dataset, we randomly selected a
number of samples and ran the tools. We found that as the number of samples gets to
roughly 125, Simka does not exit even after letting it run for more than 48 hours. Other
than these extremes, the running time of Simka grows linearly with the number of samples
(top-left and mid-left plots of Figure 2), and the tool naturally requires more resources to
keep track of all k-mers. We found that Simka operates by creating many SimkaCount and
SimkaMerge processes, which are not spawned as descendants of the mother Simka process.
Therefore, we found no good way to measure the CPU time consumed by Simka, and are
not including the CPU time comparisons for the smaller number of samples.

To explain the running time of Mash and frac-kmc, we note that there are two main
stages to running these tools: computing sketches from input files, and using sketches to
estimate cosine values. As presented in Figure 1, frac-kmc is faster than Mash in wall-clock
time for the first stage: computing sketches, although frac-kmc requires more CPU time
since it runs on multiple cores. The code that executes the second stage is identical for
the two tools. The time required in this stage is therefore determined by the sketch sizes.
Therefore, in this stage, using frac-kmc requires more wall-clock time as well as CPU time.
Indeed, as we push the number of samples to higher values, we observe that using Mash uses
less CPU time, as shown in the top-right and mid-right plots in Figure 2 (roughly 8.9-10.1x
less CPU time than frac-kmc in the Ecoli dataset, and roughly 1.37x-1.76x less CPU time
in the HMP dataset).

WABI 2024
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Figure 2 Running time and accuracy of the tools on Ecoli and HMP datasets. Top row shows
total wall-clock time and CPU time to run the tools on the Ecoli dataset. The top-left plot shows
wall-clock time for all three tools when running on 25-125 randomly selected samples from the
dataset. An X indicates that Simka did not exit after > 48 hours. The top-center and the top-right
plots show total wall-clock time and total CPU time, respectively, for frac-kmc and Mash on the
Ecoli dataset for a larger number of samples (to which, Simka does not scale). The middle row
shows the same plots for the HMP dataset. The bottom row shows the accuracy of FracMinHash
and MinHash sketches in estimating cosine similarities. The bottom-left plot shows the distributions
of error percentages. The bottom-center and bottom-right plots show estimated vs. true cosine
values for the Ecoli (3682 samples) and the HMP (100 samples) dataset, respectively.

Next, we turn to explain the wall-clock times in running Mash and frac-kmc. Note that
the input metagenome files in the HMP dataset are much larger than the genome files in
the Ecoli dataset. Therefore, the FracMinHash sketches computed for the HMP samples
are also much larger. Consequently, in the HMP dataset, the calculation of pairwise metrics
dominates the overall running time, and hence frac-kmc takes longer to run in the HMP
dataset, as evident in the mid-center plot of Figure 2. On the other hand, the FracMinHash
sketches are closer to the MinHash sketches in size for the Ecoli dataset. Therefore, the
wall-clock time of frac-kmc in the Ecoli dataset is much closer to Mash, as seen in the
top-middle plot of Figure 2.

We also present the accuracy of Mash and frac-kmc outputs with respect to the true
cosine values (calculated using all k-mers), in the bottom row of Figure 2. Here, the results
are shown for all 3682 samples in the Ecoli dataset, and only 100 samples in the HMP
dataset. We calculated the true cosine values for all pairs in the Ecoli dataset by manually
counting all the k-mers. For the HMP dataset, doing so was not feasible, and therefore,
we did this analysis for only 100 samples (the largest number of samples to which Simka
scales). In the bottom-left plot of Figure 2, we show the distribution of percentage of errors
when we use frac-kmc and Mash to estimate pairwise cosine values. The plot shows that
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while the percentage of error for both Mash and frac-kmc are close to zero in expectation
for the Ecoli dataset, we get a higher variability in error by using Mash. In the HMP
dataset, the samples are just too large for Mash to even give an expected error of 0. On
the other hand, with larger sketches, FracMinHash gives an almost perfect estimation. The
bottom-center and bottom-right plots show estimated vs. true cosine values for two datasets.
The bottom-center plot shows that using frac-kmc gives a better estimate across the entire
range of 0 to 1. Although the HMP dataset does not have true cosine values covering the
entire range, using frac-kmc gives a better estimate, as evident in the bottom-right plot.

5 Methods

5.1 Implementation of frac-kmc

The core motivation behind implementing frac-kmc was that sourmash sketch dna was
very slow for larger files. Therefore, we decided to use a fast and efficient k-mer-counting
program. There are many k-mer-counters available in the literature, namely jellyfish [16],
DSK [23], KMC [13] etc. We decided to use KMC since its source code was easy to understand
and navigate. Instead of running KMC and iterating through all k-mers in KMC’s output, we
decided to modify the source code so that only the k-mers in the sketch were retained in
the output. This made the entire program many times faster since typical scale factors
used to compute FracMinHash sketches are very small. Therefore, we implemented the
64-bit MurMurHash function in C++ within the source code of KMC, and made the necessary
changes so that instead of keeping track of all the k-mers, the program now kept track of
only the k-mers whose hash value fell below the cut-off threshold. As a result, the succinct
k-mer-database constructed by this modified KMC now contained only the relevant k-mers.
Finally, we modified the program kmc dump so that instead of writing all the k-mers in an
output file, it now wrote the 64-bit MurMurHash values for the kmers in a sorted list –
which is the output format of sourmash sketch. We named this program frac-kmc. After
generating sketches from the same file using frac-kmc and sourmash, we used sourmash
compare to confirm that the sketches are identical.

5.2 Generating results in Figure 2

5.2.1 Datasets

The datasets we used are:
1. Ecoli: We collected all 3682 E. coli genome assemblies in NCBI.
2. HMP: We collected whole genome shotgun sequences from the Human Microbiome

Project [20]. We randomly selected 300 gzipped fastq files corresponding to samples
collected from the human gut.

The metagenome samples in the HMP dataset have an average file size of 1.88 GB and
a median file size of 1.72 GB. The smallest file size is 58 MB, and the largest file size is 5.5
GB. This dataset works as a stress test for all the tools, where the input files are very large,
reflecting real-life metagenome data; although the number of total samples is manageable.
On the other hand, the Ecoli dataset challenges all the tools because the number of samples
is very large (there are roughly 67 million pairs), although every individual file is quite small
and easy to process.

WABI 2024
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5.2.2 Running Simka, Mash, and frac-kmc

We ran Simka, Mash, and frac-kmc on the Ecoli and the HMP dataset, to produce the
pairwise cosine similarity matrix. Simka readily produces several similarity and dissimilarity
metrics when invoked on a list of input files. However, it does not produce cosine similarity.
Therefore, we took the Chord distances generated by Simka and converted them to cosine
similarities.

We used Mash and frac-kmc to compute MinHash and FracMinHash sketches of the input
files, respectively. We then used a parallelized program to read all the sketches and compute
the cosine similarity using the sketches. We ran Mash to generate MinHash sketches of size
1000, the default value. We also experimented with larger MinHash sketch sizes but found
that although using larger sketches consumes more resources, it does not improve accuracy.
The minimum number of k-mers in all files we used was roughly 4.8 million. In such a case, the
minimum scale factor suggested by Equation (6) is 0.0006 (using c = 0.5, δ = 10%, α = 0.95).
Therefore, we simply used the sourmash default value, 1/1000 to generate the FracMinHash
sketches when running frac-kmc. All three tools were run on 128 cores of the same machine,
including the multi-threaded code segment that reads MinHash and FracMinHash sketches,
computes pairwise cosine similarity values, and writes them into an output file.

5.3 Proofs of theorems
▶ Theorem 1. Let Ω = { ei }N

i=1 be a given set (universe), and let A ⊆ Ω. If u = ⟨ ui | ui =
1 if ei ∈ A, ui = 0 if ei /∈ A ⟩ and if u′ = ⟨ u′

i | u′
i = 1 if ei ∈ FRACs(A), u′

i = 0 if ei /∈
FRACs(A) ⟩, then the following holds:

E
[
||u′||2

2
]

= s ||u||2
2
.

Proof. Let Ii be an indicator variable as follows:

Ii =
{

1 if ei ∈ FRACs(A)
0 otherwise

for all i such that ei ∈ A. We note that E[Ii] = Pr[Ii = 1] = s. We also observe that if
Ii = 1, then u′

i = ui = 1.
Using these facts, we have the following:

E[ ||u′||2
2 ] = E

[ N∑
i=1

u′
i
2

]
=

∑
i:ei∈A

E[Ii ui
2] =

∑
i:ei∈A

E[Ii] =
∑

i:ei∈A

s = s |A|.

Of course, u being a binary vector, ||u||2
2 = |A|, which completes the proof. ◀

▶ Theorem 2. Let Ω = { ei }N
i=1 be a given set (universe), and let A ⊆ Ω. If u = ⟨ ui | ui =

1 if ei ∈ A, ui = 0 if ei /∈ A ⟩ and if u′ = ⟨ u′
i | u′

i = 1 if ei ∈ FRACs(A), u′
i = 0 if ei /∈

FRACs(A) ⟩, then the following holds for 0 < ϵ < 1:

Pr
[∣∣∣ ||u′||2

2 − s||u||2
2

∣∣∣ ≥ ϵ s||u||2
2

]
≤ 2 exp

(
− s|A|ϵ2/3

)
.

Proof. Using the same indicator Ii used in the proof of Theorem 1, we note the following:

||u′||2
2 =

∑
i:ei∈A

Ii .
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Therefore, ||u′||2
2 is simply a sum of Bernoulli random variables. This allows for the use

of the Chernoff concentration inequality (introduced in Section 2) for
∑

i:ei∈A Ii. Using the
fact that |A| = ||u||2

2 completes the proof. ◀

▶ Theorem 3. Let Ω = { ei }N
i=1 be a given set (universe), and let A, B ⊆ Ω be two sets

in the universe. Let the cosine similarity of the sets A and B be cos θ, and that of the sets
FRACs(A) and FRACs(B) be cos θ′. Then, there exists a small ϵ where 0 < ϵ < 1, such
that the following holds:∣∣∣ cos θ′ − cos θ

∣∣∣ ≤ ϵ
(

1 + ξ
)

cos θ

with a probability of at least 1 − 6 exp
{

− s min(m, n) ϵ2/ 3
}

. Here |A| = m, |B| = n,

|A ∩ B| = q, and ξ = 3(m + n − 2q)/q.

Proof. Let us define u and u′ as follows: u = ⟨ ui | ui = 1 if ei ∈ A, ui = 0 if ei /∈ A ⟩, and
u′ = ⟨ u′

i | u′
i = 1 if ei ∈ FRACs(A), u′

i = 0 if ei /∈ FRACs(A) ⟩. Let us also define v and
v′ for the sets B and FRACs(B) in an analogous manner, respectively.

We prove Theorem 3 by proving the following claims.

▷ Claim 4. With high probability, the following holds for a small ϵ where 0 < ϵ < 1:∣∣∣∣∣ ||u′||2
||v′||2

−
||u||2
||v||2

∣∣∣∣∣ ≤ ϵ
||u||2
||v||2

.

Proof. From Theorem 2, we know that the following holds:

(1 − ϵ) s ||u||2
2 ≤ ||u′||2

2 ≤ (1 + ϵ) s ||u||2
2 (7)

with a probability of at least 1 − 2 exp{−s m ϵ2/3}, for 0 < ϵ < 1.
Similarly, we also know the following holds:

(1 − ϵ) s ||v||2
2 ≤ ||v′||2

2 ≤ (1 + ϵ) s ||v||2
2 (8)

with a probability of at least 1 − 2 exp{−s n ϵ2/3}, for 0 < ϵ < 1.
Using these facts, and by taking square root and ratio, the following holds:√

1 − ϵ

1 + ϵ

||u||2
||v||2

≤
||u′||2
||v′||2

≤
√

1 + ϵ

1 − ϵ

||u||2
||v||2

(9)

with a probability of at least 1−4 exp{−s min(m, n) ϵ2/3}, where 0 < ϵ < 1. The probability
was calculated using a union bound of the probabilities of Equation (7) and Equation (8).
We conclude the proof by using the fact that

√
1+ϵ
1−ϵ is simply 1 + ϵ + O(ϵ2), where for small

ϵ, O(ϵ2) is dominated by ϵ. A similar argument for
√

1−ϵ
1+ϵ allows us to write the following:

(1 − ϵ)
||u||2
||v||2

≤
||u′||2
||v′||2

≤ (1 + ϵ)
||u||2
||v||2

, (10)

which completes the proof. ◁

▷ Claim 5. There exists a small ϵ, 0 < ϵ < 1 such that the following holds with high
probability.∣∣∣∣∣ ||u′ − v′||2

2

||u′||2 ||v′||2
−

||u − v||2
2

||u||2 ||v||2

∣∣∣∣∣ ≤ 2ϵ
||u − v||2

2

||u||2 ||v||2
.
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Proof. From Theorem 2, by plugging in u − v at the place of u, we know the following holds
with high probability, where 0 < ϵ < 1.

(1 − ϵ) s ||u − v||2
2 ≤ ||u′ − v′||2

2 ≤ (1 + ϵ) s ||u − v||2
2
. (11)

We next divide Equation (11) by the square root of Equation (7) and Equation (8). This
gives us the following for 0 < ϵ < 1:

1 − ϵ

1 + ϵ

||u − v||2
2

||u||2 ||v||2
≤

||u′ − v′||2
2

||u′||2 ||v′||2
≤ 1 + ϵ

1 − ϵ

||u − v||2
2

||u||2 ||v||2
. (12)

By union bound, this holds with a probability of at least 1 − 6 exp{−s min(m, n) ϵ2/3},
where 0 < ϵ < 1.

Finally, we note that 1+ϵ
1−ϵ = 1 + 2ϵ + O(ϵ2) when 0 < ϵ < 1. For small ϵ, O(ϵ2) is

dominated by 2ϵ. A similar argument for 1−ϵ
1+ϵ concludes the proof. ◁

With the facts established in Claim 4 and Claim 5, we now calculate the following:

| cos θ′ − cos θ| =

∣∣∣∣∣ ||u′||2
2 + ||v′||2

2 − ||u′ − v′||2
2

2||u′||2 ||v′||2
−

||u||2
2 + ||v||2

2 − ||u − v||2
2

2||u||2 ||v||2

∣∣∣∣∣
≤

∣∣∣∣∣ ||u′||2
||v′||2

−
||u||2
||v||2

∣∣∣∣∣ +

∣∣∣∣∣ ||v′||2
||u′||2

−
||v||2
||u||2

∣∣∣∣∣ +

∣∣∣∣∣ ||u′ − v′||2
2

||u′||2 ||v′||2
−

||u − v||2
2

||u||2 ||v||2

∣∣∣∣∣
≤ ϵ

||u||2
||v||2

+ ϵ
||v||2
||u||2

+ 2ϵ
||u − v||2

2

||u||2 ||v||2

= ϵ cos θ + 3 ϵ
||u − v||2

2

||u||2 ||v||2

= ϵ cos θ + 6 ϵ
||u||2

2 + ||v||2
2 − ||u − v||2

2

2||u||2 ||v||2
||u − v||2

2

||u||2
2 + ||v||2

2 − ||u − v||2
2

= ϵ cos θ + 6 ϵ cos θ
m + n − 2q

m + n − (m + n − 2q)
= ϵ (1 + ξ) cos θ

where ξ = 3(m + n − 2q)/q. In the derivation above, we have used the cosine triangle
rule (elaborated in Section 2) in the first step, |a + b| ≤ |a| + |b| in the second step,
and the cardinality of the sets A, B, and (A ∪ B) \ (A ∩ B) in the second to last step.
More specifically, we used the facts that ||u||2

2 = | A | = m, ||v||2
2 = | B | = n, and

||u − v||2
2 = | (A\B)∪ (B \A) | = | (A∪B)\ (A∩B) | = m+n−2q. Finally, the probability

with which the above holds is the same as Claim 5 – which concludes the proof. ◀

6 Discussions

6.1 Conclusions
Sketching-based methods allow practitioners to lower computational resource usages many-
fold while keeping the accuracy reasonably well. In this paper, we analyzed such a sketching
technique, FracMinHash, in estimating the cosine similarity via the sketches. We analyzed
the conditions when it is theoretically sound to use FracMinHash and estimate cosine, and
suggested a minimum scale factor that is safe to use. We also presented a fast FracMinHash
sketch generator tool frac-kmc and benchmarked its running time against Simka and Mash.
We found that when a huge number of small samples are compared, using frac-kmc is nearly
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as fast as Mash in wall-clock time. When a number of larger samples are compared, using
frac-kmc requires more time, although the results produced by frac-kmc are more accurate
and precise. Our analyses show that when very large sequence files need to be sketched using
FracMinHash, using frac-kmc can be especially useful.

6.2 Further improvements
From a theoretical point of view, the proof technique we used in our theoretical analyses may
be applied to other distance/similarity metrics when proving the unbiased expectation proves
to be mathematically intractable, and the quantity of interest involves ratios of L2-norms of
vectors (such as Bray-Curtis, Chord, Whittaker etc.) From an implementation perspective:
the programs we used may be improved and extended in several ways: the code we used to
read in MinHash and FracMinHash sketches (generated by Mash and frac-kmc) is written
completely in Python, with not a particular focus on optimization. A well-written C++
implementation may improve things further. The implementation of MurMurHash64 in
frac-kmc makes use of C++ optimizations, although we did not explore if they can be
improved further. frac-kmc currently does not support protein k-mers (which sourmash
does). And finally, instead of using an exact k-mer-counter, other approximation-based
inexact k-mer-counter program may be explored.
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