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Abstract
Cancer phylogenies are key to understanding tumor evolution. There exist many important down-
stream analyses that take as input a single or a small number of trees. However, due to uncertainty,
one typically infers many, equally-plausible phylogenies from bulk DNA sequencing data of tumors.
We introduce Sapling, a heuristic method to solve the Backbone Tree Inference from Reads
problem, which seeks a small set of backbone trees on a smaller subset of mutations that collectively
summarize the entire solution space. Sapling also includes a greedy algorithm to solve the Backbone
Tree Expansion from Reads problem, which aims to expand an inferred backbone tree into a full
tree. We prove that both problems are NP-hard. On simulated and real data, we demonstrate that
Sapling is capable of inferring high-quality backbone trees that adequately summarize the solution
space and that can be expanded into full trees.
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1 Introduction

Cancer results from an evolutionary process during which somatic mutations accumulate in
a population of cells [23]. This process results in intra-tumor heterogeneity, i.e. the presence
of multiple clones with distinct sets of mutations, with important implications on cancer
treatment [20]. Researchers model cancer evolution with a phylogeny, which is a rooted tree
whose nodes correspond to clones. These trees are used in several downstream analyses [26].
These downstream analyses typically require a single or a small number of phylogenies per
patient. However, deconvolution of bulk DNA measurements may lead one to infer a large
solution space of equally-plausible phylogenies [25].

There are three classes of methods that attempt to overcome this mismatch between
the existence of large solution spaces and downstream analysis requirements. First, several
approaches attempt to sample a small number of high-likelihood trees [5, 18, 19, 29]. Second,
there exist several methods that attempt to summarize a given solution space of trees with
one or more consensus trees [1, 6, 9–12,16]. Another approach that also belongs to this class
is SubMARine, which, rather than inferring a complete tree, returns a directed acyclic graph
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Figure 1 Overview of Sapling. (a) Bulk DNA sequencing, alignment and SNV calling results
in matrices A and D of variant and total read counts of n SNVs in m samples. (b) Sapling is
a heuristic for the Backbone Tree Inference from Reads problem, returning a small set of
backbone trees for a given number ℓ of mutations. Here, with ℓ = 3 mutations, the solution space T
of 5 mutation trees can be summarized with two backbone trees T [S3].

indicating ancestral relationships in the solution space [27]. Third, there exist approaches
that use repeated evolutionary trajectories inferred from patient cohorts to reduce the number
of solutions per patient [2, 4, 13,14,17].

These three classes of methods come with their own limitations. The sampling methods,
which are typically MCMC-based, exhibit great bias to certain solutions [25], and thus may
not infer a representative set of solutions. The consensus methods, including methods that
utilize repeated evolutionary trajectories, require an exhaustive enumeration of all plausible
trees, which is impractical to obtain when the set of possible trees is large.

To overcome these limitations, we introduce Sapling, a method that given read count
data infers a small set of backbone trees on a smaller subset of mutations that collectively
summarize the solution space (Fig. 1). We note that backbone trees are similar to the
concept of a maximum-agreement subtree (MAST) in species phylogenetics [28], with a key
distinction being that tumor phylogenies are node-labeled trees whereas species phylogenies
are leaf-labeled trees. Using simulations, we show that the backbone trees returned by
Sapling provide a good summary of the possible trees and can be expanded into full trees
that are of higher quality than current state-of-the-art tree inference methods [18, 19, 29].
Finally, we demonstrate how Sapling can be applied to comprehensively summarize non-small
lung cancer solution spaces with a small number of backbone trees [15].

2 Problem Statement

Due to uncertainty, cancer phylogeny inference algorithms typically infer a set T of mutation
trees from bulk sequencing data rather than a single tree. In this work, we consider trees
inferred under the infinite sites assumption (ISA), meaning that each mutation is gained
exactly once and never subsequently lost. We note that while this assumption does not
generally hold particularly due to copy-number loss, tumor phylogeny pipelines include
mutation clustering correcting for such events, yielding clusters of mutations that adhere to
the ISA. Under the ISA, the solution space T consists of rooted trees T whose nodes V (T )
are labeled by mutations [n] = {1, . . . , n} – in practice, we will view mutation clusters as
individual mutations. As such, we refer to nodes and mutations interchangeably. We write
u ⪯T v if node or mutation u occurs on the unique path from the root r(T ) to node v – note
that ⪯T is reflexive, i.e., it holds that u ⪯T u for mutations u. We denote the set of children
of a node v of tree T by δT (v). We denote the parent of a node v ̸= r(T ) by πT (v). Our
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goal is to identify common features or backbone trees on a smaller set S ⊆ [n] of mutations
that best characterize the diversity of the solution space T . To that end, we define backbone
trees as follows.

▶ Definition 1. A rooted tree T [S] is a backbone tree of a tree T on mutations S ⊆ V (T )
provided u ⪯T v if and only if u ⪯T [S] v for all mutations u, v ∈ S.

Mathematically, T is a subdivision or expansion of T [S] such that the backbone tree
T [S] is obtained from T by contracting nodes V (T ) \ S. Rather than considering a single
backbone tree on a subset S of mutations, we wish to identify a backbone tree set T [S] that
collectively forms backbone trees of all trees T on the full mutation set [n].

▶ Definition 2. Given a set T of trees on n mutations, the corresponding backbone tree set
T [S] for a subset S ⊆ [n] of mutations consists of all backbone trees T [S] of all trees T ∈ T .

Importantly, |T [S]| ≤ |T | for all S ⊆ [n]. The key question is which subset S ⊆ [n] of
mutations provides an accurate summary of T ? Ideally, we wish to simultaneously include
as many mutations as possible in S, i.e. maximize |S|, while also minimizing the number
of backbone trees |T [S]|. However, there is a tradeoff between both criteria. One can set
S = [n], thus maximizing |S|, but this would lead to as many backbone trees as there are
input trees, i.e. T [S] = T , which does not provide a summary of T . On the other hand,
setting S to contain no mutations or just a single mutation would lead to a backbone tree set
consisting of a single backbone tree composed of at most one mutation; thus while minimizing
|T [S]| = 1, this does not provide any useful information that is particular to T . To model
this tradeoff, we formulate the following two problem statements, constraining either the
number |S| of mutations is constrained or the number |T [S]| of backbone trees.

▶ Problem 1 (Minimum Cardinality Backbone Trees). Given a set T of trees on n

mutations and parameter ℓ ∈ [n], find a subset S ⊆ [n] of ℓ mutations and corresponding
backbone tree set T [S] such that T [S] has minimum cardinality among all backbone tree sets
induced by ℓ mutations.

▶ Problem 2 (Maximum Mutation Backbone Trees). Given a set T of trees on n

mutations and parameter τ ∈ N, find a maximum-cardinality subset S ⊆ [n] of mutations
and corresponding backbone tree set T [S] such that |T [S]| ≤ τ .

A special version of this problem arises when τ = 1. In that case, we are seeking a
maximum-cardinality set S of mutations and a single corresponding backbone tree T [S] on
which all trees in T agree. In our final problem, we seek to expand a given backbone tree
into a full tree.

▶ Problem 3 (Backbone Tree Expansion). Given trees T on n mutations and a tree
T [S] on a subset S ⊆ [n] of mutations, find a tree T ∈ T such that T [S] is a backbone tree
of T .

Backbone Tree Inference and Expansion from Reads
In practice, we are not given the set T of phylogenetic trees. While there exist many methods
for inferring such a set via sampling [5, 18, 19, 29] or enumeration [8, 21], obtaining the
complete set T of trees might be infeasible due to its sheer size [25]. Therefore, we propose
to infer backbone trees directly from read count data obtained from bulk DNA sequencing
of m samples (regional or temporal) from the same tumor. More specifically, we are given
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two matrices A, D ∈ Nm×n where A = [ap,i] indicates the number of reads supporting the
variant allele and D = [dp,i] indicates the total number of reads at each mutation locus in
each sample.

To pose the problem, we are interested in computing the probability Pr(T | A, D) of a
tree T given the data A, D. To compute this probability, we note that the number ap,i of
variant read counts at mutation locus i in sample p depends on the total number dp,i of
reads, i.e. 0 ≤ ap,i ≤ dp,i, and the (latent) frequency fp,i ∈ [0, 1] of mutation i in sample p.
Due to bulk DNA sequencing, each sample p is a mixture of different tumor clones such that
each clone either contains or does not contain mutation i; therefore the frequency fp,i ranges
between 0 and 1 rather than being either 0 or 1. Typically, one models variant read counts
A = [ap,i] as binomial distributions, i.e. ap,i ∼ binom(dp,i, fp,i). Letting F = [fp,i] be the
m×n frequency matrix, and using the independence of mutations and samples, we thus have

Pr(A | D, F ) =
m∏

p=1

n∏
i=1

(
dp,i

ap,i

)
(fp,i)ap,i(1− fp,i)dp,i−ap,i . (1)

As discussed in [7], frequencies F depend on a tree T . That is, a tree T under the ISA
constrains frequencies F = [fp,i] as

fp,i ≥
∑

j∈δT (i)

fp,j ∀p ∈ [m], i ∈ [n]. (SC)

This is also known as the sum condition (SC). To compute the desired probability Pr(T |
A, D), we apply Bayes’ rule, yielding Pr(T | A, D) = [Pr(A, D | T ) Pr(T )]/ Pr(A, D). Since
we observe A, D, we have that Pr(A, D) is constant. Moreover, using a flat prior on Pr(T ),
we obtain Pr(T | A, D) ∝ Pr(A, D | T ). We now have

Pr(A, D | T ) =
∫

F

Pr(A | D, F ) Pr(F | T ) dF (2)

∝
∫

F

Pr(A | D, F ) · 1{F, T satisfy (SC)} dF (3)

≥ max
F

Pr(A | D, F ) · 1{F, T satisfy (SC)}. (4)

In other words, we approximate the probability Pr(A, D | T ) of read counts A, D given a
tree T by seeking a frequency matrix F such that F and T satisfy (SC) and Pr(A | D, F ) is
maximum. This is equivalent to solving the following optimization problem.

▶ Definition 3. The log-likelihood L(A, D | T ) of a rooted tree T and read
counts A, D equals maxF L(A, D | F ) s.t. (SC) where L(A, D | F ) is defined as∑m

p=1
∑n

i=1 [ap,i log fp,i + (dp,i − ap,i) log (1− fp,i)] .

Computing L(A, D | T ), or equivalently −L(A, D | T ), requires solving a convex optimiza-
tion problem subject to linear constraints, which can be solved in polynomial time (for a fixed
error tolerance) using interior point methods [22]. To allow one to obtain near-maximum
likelihood solutions, the user may specify the parameter ρ ∈ [0, 1] yielding the solution space
T (ρ) of trees that are most a factor of ρ removed from maximum likelihood, formally defined
as follows.

▶ Definition 4. Given ρ ∈ [0, 1] and read counts A, D ∈ Nm×n, the set T (ρ) includes all
trees T such that Pr(A, D | T ) ≥ ρ Pr(A, D | T ∗) where T ∗ is a tree on n mutations that
maximizes Pr(A, D | T ∗).
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Thus, we have T (ρ1) ⊆ T (ρ2) for all 0 ≤ ρ1 ≤ ρ2 ≤ 1. Specifically, for ρ = 0 the set T (0)

contains all nn−1 rooted trees on n mutations [3]. This leads to the following updated
problem statements.

▶ Problem 4 (Minimum Cardinality Backbone Trees from Reads). Given variant
and total read counts A, D ∈ Nm×n for n mutations in m samples and parameters ℓ ∈ [n] and
ρ ∈ [0, 1], find a subset S of ℓ mutations and corresponding backbone tree set T (ρ)[S] such
that T (ρ)[S] has minimum cardinality among all backbone tree sets induced by ℓ mutations
on trees T (ρ).

▶ Problem 5 (Maximum Mutation Backbone Trees from Reads). Given variant and
total read counts A, D ∈ Nm×n for n mutations in m samples and parameters τ ∈ N and
ρ ∈ [0, 1], find a maximum-cardinality subset S ⊆ [n] of mutations and backbone tree set
T (ρ)[S] such that |T (ρ)[S]| ≤ τ .

▶ Problem 6 (Backbone Tree Expansion from Reads). Given variant and total read
counts A, D ∈ Nm×n for n mutations in m samples and a tree T [S] on a subset S ⊆ [n]
of mutations, find a tree T ∗ such that (i) T ∗ is a tree on n mutations that maximizes
Pr(A, D | T ∗) and (ii) T [S] is a backbone tree of T ∗.

3 Methods

In this section, we introduce the two algorithms that make up Sapling. First, we introduce
a heuristic to solve the two Backbone Trees from Reads problems subject to either
a constraint on the number of mutations or the number of backbone trees. Second, we
introduce a heuristic to solve the Backbone Tree Expansion from Reads problem.

3.1 Enumerating backbone trees
Given A = [ap,i] and D = [dp,i] it is clear that F̂ = [f̂p,i] where f̂p,i = ap,i/dp,i is the
frequency matrix that maximizes L(A, D | T ) when ignoring the sum condition (SC). The
question whether there exists a tree T satisfying (SC) for a given frequency matrix was
shown to be NP-complete when F contains m ≥ 2 samples [8]. This means that the two
Backbone Trees from Reads problem are NP-hard when m ≥ 2. To see why, we can
set ρ = 1 and solve the two problems with either ℓ = n or τ = nn−1. This will return one
or more trees on all n mutations. If the likelihood L(A, D | T ) of any such tree T equals
the likelihood L(A, D | F̂ ) then there exists a tree that satisfies the sum condition with F̂ ,
leading to the following hardness result.

▶ Theorem 5. The two Backbone Trees from Reads problems are NP-hard even when
m = 2.

Proof. We show hardness by a polynomial-time reduction from the Perfect Phylogeny
Mixture Deconvolution (PPMD) problem [7,8,25] of deciding whether there exists a
tree T satisfying (SC) for a given frequency matrix F ∈ [0, 1]m×n. This decision problem was
shown to NP-complete when F contains m ≥ 2 samples [8]. Without loss of generality, we
may assume that F is rational (the reduction from Subset Sum presented in [8] works for
rational values). Thus, we have fp,i = ap,i/dp,i where ap,i, dp,i ∈ N and ap,i ≤ dp,i for each
sample p ∈ [m] and mutation i ∈ [n]. These entries correspond to variant read count matrix
A = [ap,i] and total read count matrix D = [dp,i]. This reduction takes polynomial time.
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We claim that Problem 4 with read counts A, D obtained from F is NP-hard when m ≥ 2,
ρ = 1 and ℓ = n. Moreover, we claim that Problem 5 with read counts A, D obtained from
F is NP-hard when m ≥ 2, ρ = 1 and τ = nn−1. Solving either problem will return a set
T of trees. Let T ∈ T be one such solution tree. Clearly, T is a tree on n mutations due
to the constraint ℓ = n and τ = nn−1. Since F is the maximum likelihood estimator of the
binomial proportions of A, D, we have that L(A, D | T ) ≤ L(A, D | F ). Furthermore, the
likelihood L(A, D | T ) equals the likelihood L(A, D | F ) if and only if T satisfies (SC). That
is, we can verify whether this bound is tight by simply checking whether F, T satisfy (SC),
which takes polynomial time. ◀

We note that the Maximum Mutation Backbone Trees from Reads problem, where
we are given an upper bound τ of backbone trees, can be solved by repeatedly solving the
(Minimum Cardinality Backbone Trees from Reads) problem, where the number
ℓ of mutations is fixed. That is, starting with ℓ = 1, we obtain the backbone tree set Tℓ

and increment ℓ until the resulting number |Tℓ| of trees is greater than τ . We then return
|T(ℓ−1)|. Since the two Backbone Trees from Reads problems are hard, we introduce
the following heuristic.

3.1.1 A naive approach
In our first approach, we propose to build the backbone trees iteratively. We initialize the set
T1 with a single tree T containing a single mutation (can be any mutation). Then at each
iteration k ≥ 1, given the current set Tk on the same subset Sk of mutations, we extend each
tree T ∈ Tk by adding a new mutation i ∈ [n] \ V (T ) at each possible location. Specifically,
we may either extend T by adding the edge (i, r(T )), or for an existing node j ∈ V (T ) we
insert the new edge (j, i) and distribute the original children δT (j) among nodes i and j.
This results in a new set Tk+1 of trees on mutations Sk ∪ {i}.

In order to assess whether an expanded tree T ′ ∈ Tk+1 is a good backbone tree on the
mutation set Sk+1 = Sk ∪ {i}, we evaluate the likelihood L(A[Sk+1], D[Sk+1] | T ′). That
is, we take the submatrices A[Sk+1] of A and D[Sk+1] of D with columns corresponding to
mutations Sk+1. Computing this likelihood requires solving a convex optimization problem
and, as mentioned before, this can be solved efficiently in polynomial time with a constant
error tolerance. We calculate L(A[Sk+1], D[Sk+1] | T ′) for all trees T ′ in Tk+1, retaining only
those trees that have a likelihood of at least ρ · Pr(A[Sk+1], D[Sk+1] | T ∗), where T ∗ is the
maximum likelihood tree among Tk+1. We terminate after iteration ℓ− 1, returning the set
Sℓ of mutations and backbone tree set Tℓ.

However, this algorithm does not work well in practice for two key reasons. First, the
order in which mutations are considered does affect the number of resulting backbone trees.
One might overcome this limitation by exploring different permutations of mutations, but
this becomes quickly intractable as there are n! permutations. Ideally, one would be able
to determine a good permutation of mutations ahead of time, and only consider this single
permutation when enumerating. Second, note there are 2|δT (j)| = O(2n) possible expanded
trees T ′ when expanding a single mutation j of a partial tree T . This would make it impossible
to explore the entire set of possible backbone trees at each iteration. Therefore, we need
additional criteria to prune the search space.

3.1.2 Adding mutations ordered by F̂

While we do not know the true latent frequencies of the mutations, F̂ = [f̂p,i] where
f̂p,i = ap,i/dp,i can serve as a good estimator of the latent frequencies. As such, we propose
to sort the n mutations in descending order based on

∑m
p=1 f̂p,i and consider the mutations
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according to this order when enumerating backbone trees. Intuitively, this order will start
by adding mutations that are closest to the root and leave the mutations that are farthest
away as the last mutations to be added. We note that Orchard uses this same ordering when
sampling complete trees from the solution space [19].

3.1.3 Pruning the search space
To avoid considering O(2n) possible trees when expanding a partial tree T , we propose to
place a new mutation i either (i) as the new root of T , or (ii) as a new leaf of T , or (iii) split an
existing edge (πT (j), j) of T inserting edges (πT (j), i) and (i, j). Importantly, there are only
O(n) such possible expansions of a given tree T . There is a theoretical justification for case
(ii) of this pruning step when the n mutations are sorted such that

∑m
p=1 f̂p,i ≥

∑m
p=1 f̂p,j for

any 1 ≤ i < j ≤ n. If the sequencing depth is large enough, F̂ accurately reflects the latent
frequencies of the mutations – i.e. F̂ = [f̂p,i] is an unbiased maximum likelihood estimator if
the variants read count are indeed binomially distributed. In this case, for any ρ > 0, each
tree T ∈ T (ρ) must adhere to (SC) with respect to F̂ . As such, we have that a new mutation
j > i cannot be a parent of a previous mutation i.

▶ Theorem 6. Let 0 < ρ ≤ 1 and let T (ρ) be the set of corresponding trees on n mutations.
As dp,i →∞ for all p and i, then if

∑m
p=1 f̂p,i >

∑m
p=1 f̂p,j, it holds that j ̸≺T i for all trees

T ∈ T (ρ).

Proof. We prove this by contradiction, assuming there exists a tree T ∈ T (ρ) with mutations
i, j such that mutation j is ancestral to mutation i while

∑m
p=1 f̂p,i >

∑m
p=1 f̂p,j . Note that

as dp,i →∞ for all p and i, the probability distribution of ap,i is concentrated at f̂p,i · dp,i.
In other words, as [dp,i] → ∞, we have Pr(F̂ | A, D) = 1, and Pr(F | A, D) = 0 if F ̸= F̂ .
Therefore, if T does not adhere to (SC) w.r.t. F̂ then there must exists another matrix
F ̸= F̂ such that T adheres to (SC) w.r.t. F ̸= F̂ . However, for this F ≠ F̂ we would have
Pr(F | A, D) = 0. This in turn would imply that T is not in T (ρ) for any ρ > 0, proving the
lemma. ◀

In practice, entries D = [dp,i] do not go to infinity. Therefore, we consider additional
inclusion criteria beyond adding mutation i as a new leaf of T . Specifically, we allow a
new mutation i to be a parent of an existing mutation j (cases (i) and (iii)). Since we do
not expect the real F to deviate too much from F̂ , it is unlikely that mutation i will be
assigned more than one child of mutation j in tree T , allowing us to avoid enumerating
all possible redistributions of the original children of j among i and j. This in turn limits
the number of maximum likelihood calculations. The pseudocode of the updated procedure
FastBackboneEnumeration is given in Algorithm 1, where AddMutationFast(T, i)
corresponds to the faster method of adding mutation i to tree T discussed above.

3.2 Expanding a backbone tree into a full tree
Note that solving Backbone Tree Expansion from Reads given an empty tree is
equivalent to finding a maximum likelihood tree given reads A, D, which is NP-hard as
discussed. In the following, we propose a greedy algorithm to solve this problem heuristically.
We employ similar ideas of growing the tree as in the FastBackboneEnumeration
algorithm, considering the remaining mutations [n] \ V (T ) in descending order according to
F̂ . However, rather than keeping a large set of trees that have a high likelihood, we only
retain a single tree with the highest likelihood at each iteration. The pseudo-code of this
method called GreedyExpansion is given in Algorithm 2.
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7:8 Tumor Backbone Trees Using Sapling

Algorithm 1 FastBackoneEnumeration(A,D,ℓ,ρ).

1: (u1, . . . , un)← mutations [n] in descending order of
∑m

p=1 f̂p,u

2: T1 ← {T} ▷ T is a tree with single node u1
3: S1 ← {u1}
4: for k ← 1 to ℓ− 1 do
5: i← uk+1
6: Sk+1 ← Sk ∪ {i}
7: Tk+1 ←

⋃
T ∈Tk

AddMutationFast(T ,i)
8: Lmax ← maxT ∈Tk+1 L(A[Sk+1], D[Sk+1] | T )
9: Tk+1 ← {T ∈ Tk+1 | L(A[Sk+1], D[Sk+1] | T ) ≥ Lmax + log(ρ)}

10: end for
11: return (Sℓ, Tℓ)

Algorithm 2 GreedyExpansion(A,D,T ).

1: (u1, . . . , un)← mutations [n] in descending order of
∑m

p=1 f̂p,u

2: S = {u1, . . . , uℓ}
3: for k ← ℓ to n− 1 do
4: S ← S ∪ {ui}
5: T ← AddMutationFast(T ,uk+1)
6: T ← arg maxT ∈T L(A[S], D[S] | T )
7: end for
8: return T

3.3 Implementation details

Sapling provides a Python implementation of the FastBackboneEnumeration and Gree-
dyExpansion algorithms. As mentioned above, computing −L(A, D | T ) is equivalent to
solving a convex optimization problem with a convex objective function subject to linear
constraints. Therefore, Sapling use the Python package cvxopt to optimize −L(A, D | T )
efficiently. In line 8 of FastBackoneEnumeration (Algorithm 1), Sapling uses an error
tolerance to account for floating point errors and the possibility of underestimating the
likelihood. If clusters of mutations are provided rather than individual mutations, Sapling
takes the median depth of all mutations in the cluster as the depth of the cluster and the
median depth times the average frequency F̂ as the variant reads (rounded to the nearest
integer) for the cluster and treat the cluster as a single mutation. Sapling is available at
https://github.com/elkebir-group/Sapling.git under the 3-Clause BSD open source
license.

4 Results

In this section, we evaluate Sapling on (i) a set of small simulation instances with known
optimal solutions, (ii) a set of larger simulation instances and (iii) real data. Specifically, we
compare Sapling’s backbone trees (obtained via FastBackboneEnumeration) to the op-
timal backbone tree sets and to alternative summarization obtained by the MCT algorithm [1].
Moreover, we compare Sapling’s expanded trees (obtained via GreedyExpansion) to trees
sampled by Pairtree [18,29] and Orchard [19].

cvxopt
https://github.com/elkebir-group/Sapling.git
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4.1 Simulation setup

To generate a simulation instance with a number n of mutations and number m of samples,
we start by randomly generating an unrooted, node-labeled tree T with n nodes/mutations
using Prüfer sequences [24]. Next, we root the tree T uniformly at random, followed by
drawing m samples of fractions of the n clones corresponding to the nodes in the tree from a
Dirichlet distribution, ultimately yielding frequency matrix F = [fp,i]. For each frequency
fp,i, the total number dp,i of reads is drawn from a Poisson distribution with mean λ = 100,
simulating an average sequencing depth of 100×. Finally, the variant reads A = [ap,i] are
each drawn from a binomial distribution with dp,i trials and success probability fp,i.

4.2 Sapling identifies near-optimal backbone trees

We generated a simulation dataset of 20 instances with n = 8 mutations and m = 2 samples.
The small number n = 8 of mutations allowed us to exhaustively enumerate the T (0.9) of
complete trees with a likelihood that is at most a fraction of ρ = 0.9 away from maximum
likelihood. To accomplish this, we generated all nn−1 = 87 = 2,097,152 trees T and computed
their likelihoods L(A, D | T ). We ran Sapling’s FastBackboneEnumeration algorithm
with parameters ℓ ∈ {1, . . . , 8} as well as τ ∈ {1, 2, 5, 10, 20, 50}.

We show the number |T (0.9)| of trees in Fig. 2a, ranging from 3 to 672 with a median
of 65 trees. Next, we enumerated all 28 = 256 subsets S′ ⊆ [n] of mutations, and identified
the number |T (0.9)[S′]| of backbone trees for each subset S′ of mutations. This allowed us
to compare the number |T (0.9)[S]| of backbone trees returned by Sapling for varying values
of ℓ to the optimal number |T (0.9)[S∗]| of backbone trees such that |S∗| = ℓ by computing
the approximation ratio defined as |T (0.9)[S]|/|T (0.9)[S∗]|. Thus, an approximation ratio of 1
indicates that Sapling identified an optimal (minimum) set of backbone trees. We find the
median approximation ratio is 1 with a maximum ratio of 7 with |T (0.9)[S]| = 14 inferred
backbone trees by Sapling versus |T (0.9)[S∗]| = 2 optimal backbone trees for ℓ = 5 mutations
(Fig. 2b). In Fig. 2c, we show an instance where Sapling returned optimal solutions for all ℓ,
whereas Fig. 2d shows an instance where Sapling did not return optimal solutions for all ℓ.
Specifically, for ℓ = 3 Sapling returned two backbone trees for mutations S = {0, 1, 3} shown
in Fig. 2e whereas there exists a different set S∗ = {0, 3, 4} with just a single backbone tree
shown in Fig. 2f.

Similarly, we evaluate the approximation ratio when running Sapling with a specified
upper bound τ of backbone trees. Specifically, let |S| be the number of mutations returned by
Sapling and |S∗| be the maximum number of mutations such that |T (0.9)[S]|, |T (0.9)[S∗]| ≤ τ .
The approximation ratio equals |S|/|S∗|, where a value of 1 indicates that Sapling returned the
optimal (maximum) number of mutations and a value smaller than 1 indicates that Sapling
underestimated the number of mutations. Again, we find that the median approximation
ratio is 1, with a minimum ratio of 0.25 for which Sapling identified |S| = 1 mutations versus
a maximum number |S∗| = 4 of mutations for τ = 1 (Fig. 2c). In particular, for smaller τ

the approximation ratio may be smaller than 1.
Thus, in general, we find that the heuristic employed by Sapling in the majority of cases

finds an optimal solution for these small simulation instances. Moreover, the backbone trees
returned by Sapling have perfect recall compared to the backbone tree set obtained from the
ground-truth complete trees using the same set of mutations (data not shown).
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(a) (b) (c)

(d) (e) (f) (g)

Figure 2 Simulations on n = 8 mutations and m = 2 samples. (a) Set T (0.9) of trees
that have a likelihood that is at most a factor of ρ = 0.9 away from maximum likelihood. (b)
Approximation ratio achieved by Sapling for varying ℓ. (c) A simulation instance that Sapling
(blue) solves to optimality for all ℓ, with gray entries indicating subsets of mutations not considered
by Sapling. (d) A simulation instance that Sapling did not solve to optimality for ℓ ∈ {3, 5, 6}.
(e) The two backbone trees returned by Sapling for the instance shown in (d) at ℓ = 3. (f) The
optimal backbone tree of the instance in (e) determined by exhaustive enumeration at ℓ = 3. (g)
Approximation ratio achieved by Sapling for varying τ .

4.3 Sapling infers high-quality backbone and full trees

In this section, we demonstrate Sapling is also capable of handling larger input instances.
To that end, we generated 60 additional simulation instances with m = 10 samples and
n ∈ {20, 50, 100} mutations (with 20 instances for each value of n). We ran Sapling on
a laptop with 16 GB RAM and an Apple M1 Pro CPU. We show the running time of
Sapling’s backbone tree enumeration mode in Fig. 3a, showing an exponential increase in
running time with increasing number n of mutations and increasing values of the parameter
τ ∈ {1, 5, 10, 20, 50}.

We additionally ran Sapling’s backbone tree expansion algorithm to expand each identified
backbone tree into a full tree for all twenty n = 50 simulation instances. We find that the
running time ranged from a minimum of 47 seconds when provided a τ = 50 backbone tree
(containing 47 mutations) vs. 335 seconds when provided a τ = 1 backbone tree (containing
12 mutations) – see Fig. 3b.

To compare Sapling’s complete trees, we also ran Pairtree and Orchard and retained their
τ highest likelihood unique trees (we ran these algorithms with default parameters using 4
MCMC chains with 2500 samples each and a burn-in of 1250 samples for Pairtree; and a
beam width of k = 10, a branching factor of f = 100 and 8 parallel instances for Orchard).
The comparison of the log-likelihood of one n = 50 simulation instance is shown in Fig. 3c
and the remaining simulation instances are shown in Fig. S1, Fig. S2 and Fig. S3. We find
that Sapling’s trees achieved higher likelihoods (median: −6627.12 for τ = 50) than those
identified by Pairtree (median: −6647.23 for τ = 50) and Orchard (median: −6639.16 for
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(a) (b) (c)

Figure 3 Simulations on n ∈ {20, 50, 100} mutations and m = 10 samples. (a) Running
time of Sapling’s backbone tree enumeration algorithm for varying values of τ . (b) Running time of
Sapling’s backbone tree expansion algorithm when given an initial backbone tree obtained using
the specified τ parameter for simulation instances with n = 50 mutations. (c) Likelihood values of
complete trees identified by Sapling, Orchard and Pairtree for a single n = 50 simulation instance
out of 20 simulations.

τ = 50). It is important to note, however, that Pairtree and Orchard (79 × 4 and 59 × 8
seconds, respectively) ran much faster than Sapling (2 hours and 30 minutes for backbone
enumeration and 31 minutes for backbone expansion for τ = 50).

In summary, Sapling can be used to obtain a diverse set of high-likelihood trees by
expanding initial backbone trees.

4.4 Sapling summarizes the solution space of real data
Finally, we ran Sapling on the TRACERx cohort of 100 non-small-cell lung cancer patients [15]
using the mutation clusters reported by the authors, whose number n of clusters ranged from
2 to 15 and number m of sequencing samples ranged from 1 to 7. For each patient, we ran
Sapling with parameters ρ ∈ {0.4, 0.9} and ℓ ∈ {1, . . . , n}. Sapling’s running time ranged
from less than 1 second to 90 seconds (Apple M1 Pro CPU with 16 GB RAM, data not
shown).

Setting ℓ = n results in Sapling enumerating the complete solution space T (ρ) for
the specified value of ρ, indicating the allowed deviation from maximum-likelihood. The
distribution of T (ρ) is shown in Fig. 4a, showing that the number of trees increased with
decreasing τ as expected. Specifically, there are 26 and 14 patients with at least two trees in
T (ρ) for ρ = 0.4 and ρ = 0.9, respectively.

On the other hand, when setting τ = 1, Sapling seeks to identify a single backbone tree
with a maximum number of mutations. In Fig. 4b, we show the fraction of mutations that are
included in each individual backbone tree per patient, finding that a median fraction of 0.75
and 0.81 of mutations is included for ρ = 0.4 and ρ = 0.9, respectively. We show the τ = 1
backbone tree identified by Sapling with ρ = 0.4 for patient CRUK0013 with n = 9 mutation
clusters. This backbone tree spans 7 out of 9 mutation clusters, and is a proper subtree of
the single consensus tree for CRUK0013 reported by the MCT algorithm [1]. For patient
CRUK0037 with n = 10 mutation clusters, restricting the number of backbone trees to
τ = 1 results in only 5 and 6 covered mutation clusters for ρ = 0.4 and ρ = 0.9, respectively
(Fig. 4d). With τ = 2 backbone trees, Sapling covers an additional mutation cluster for
both values of ρ. We show the two backbone trees for ρ = 0.4 in Fig. 4e, which, again, form
proper subtrees of the two consensus trees reported by the MCT algorithm for this patient [1].
The backbone trees of these two patients identified by sweeping ℓ ∈ {1, . . . , n} are shown in
Fig. S4 and Fig. S5.
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(a) (b)
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(e) CRUK0037

Figure 4 Sapling performance on TRACERx data. (a) The number |T (ρ)| of complete
trees identified by Sapling for ρ ∈ {0.4, 0.9}. (b) The fraction of mutation clusters in the backbone
tree for τ = 1 (only showing patients where |T (ρ)| > 1). (c) The single backbone tree identified by
Sapling with τ = 1, ρ = 0.4 for patient CRUK0013 (see Fig. S4, iteration ℓ = 7). (d) The number
of backbone trees identified by Sapling for varying number ℓ of mutations for patient CRUK0037.
(e) The two backbone trees identified by Sapling with τ = 2, ρ = 0.4 for patient CRUK0037 (see
Fig. S5, iteration ℓ = 6).

In summary, on real data, we find that Sapling is able to quickly enumerate the complete
solution space of trees and comprehensively summarize it with a small number of backbone
trees that span a large fraction of mutations.

5 Discussion

In this work, we introduced the Minimum Cardinality Backbone Trees from Reads
and Maximum Mutation Backbone Trees from Reads problems, which seek to identify
a set of backbone trees given read count data. These are new problem statements, extending
the concept of maximum-agreement subtree (MAST) for leaf-labeled trees [28] to node-labeled
trees while allowing for multiple distinct subtrees. In addition, we introduced Backbone
Tree Expansion from Reads problem, which seeks to a expand a single backbone tree
into a full tree given read count data. We showed that the problems are NP-hard, and
introduced a heuristic algorithm, Sapling. Using simulations, we showed that Sapling provides
a good approximate solution to both Backbone Trees from Reads problems. We also
demonstrated that Sapling returns more plausible trees with higher data likelihoods than
the current state-of-the-art methods, Pairtree [18,29] and Orchard [19]. On real data, we ran
Sapling on the TRACERx cohort of 100 lung cancer patients [15], showing that Sapling’s
backbone trees adequately summarize the solution space of trees.
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There are several future directions. First, we could relax the infinite sites assumption
and support mutation loss. Second, for τ = 1, where we seek a single backbone tree with
maximum number of mutations, we noted a decrease in performance. Therefore, we plan on
developing a specialized algorithm for this important case, which has not been studied yet in
the literature. Third, we plan to sample from backbone trees rather than expanding these
greedily.
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A Supplementary Results

Sapling Orchard Pairtree

(a) (b)

(c) (d)

(e) (f)

Figure S1 Likelihood values of complete trees identified by Sapling for n = 50 simulation instances
(with random number generator seeds 1 − 6).
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Sapling Orchard Pairtree

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure S2 Likelihood values of complete trees identified by Sapling for n = 50 simulation instances
(with random number generator seeds 7 − 14).
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Sapling Orchard Pairtree

(a) (b)

(c) (d)

(e) (f)

Figure S3 Likelihood values of complete trees identified by Sapling for n = 50 simulation instances
(with random number generator seeds 15 − 20).
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Figure S4 Results of Sapling on TRACERx patient CRUK0013. Sapling was run
iteratively starting with ℓ = 1 and ending with ℓ = n = 9 mutation clusters and ρ = 0.4. Iterations
ℓ ∈ {1, . . . , 7} each resulted in a single backbone tree. Note that iteration ℓ = 7 corresponds to the
single backbone tree identified in Fig 4c. Iteration ℓ = 8 resulted in two backbone trees and the
final iteration ℓ = 9 resulted in seven complete trees. Note that the mutation cluster added in each
iteration is indicated in red.
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Figure S5 Results of Sapling on TRACERx patient CRUK0037. Sapling was run
iteratively starting with ℓ = 1 and ending with ℓ = n = 10 mutation clusters and ρ = 0.4. Iterations
ℓ ∈ {1, . . . , 5} each resulted in a single backbone tree. Iteration ℓ = 6 resulted in two backbone trees
(also shown in Fig. 4e), ℓ = 7 resulted in 4 backbone trees, and ℓ = 8 resulted in 8 backbone trees.
Due to space constraints, backbone trees identified in iterations ℓ ∈ {9, 10} are not shown. Rather,
we list the number of full trees summarized by each backbone tree with ℓ = 8 mutation clusters
(box). Note that the mutation cluster added in each iteration is indicated in red.
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