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Abstract
Despite the long history of genome assembly research, there remains a large gap between the
theoretical and practical work. There is practical software with little theoretical underpinning of
accuracy on one hand and theoretical algorithms which have not been adopted in practice on the
other. In this paper we attempt to bridge the gap between theory and practice by showing how
the theoretical safe-and-complete framework can be integrated into existing assemblers in order to
improve contiguity. The optimal algorithm in this framework, called the omnitig algorithm, has
not been used in practice due to its complexity and its lack of robustness to real data. Instead, we
pursue a simplified notion of omnitigs (simple omnitigs), giving an efficient algorithm to compute
them and demonstrating their safety under certain conditions. We modify two assemblers (wtdbg2
and Flye) by replacing their unitig algorithm with the simple omnitig algorithm. We test our
modifications using real HiFi data from the D. melanogaster and the C. elegans genomes. Our
modified algorithms lead to a substantial improvement in alignment-based contiguity, with negligible
additional computational costs and either no or a small increase in the number of misassemblies.
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1 Introduction

Background. Genome assembly is a classical problem in bioinformatics that has received
a lot of both theoretical and practical attention. On the practical side, many successful
assemblers have been developed and have led to numerous biological discoveries (e.g. [23, 28]).
On the theoretical side, there have been many attempts at modelling the problem and coming
up with algorithms whose contiguity (and accuracy) is optimal with respect to these models
(e.g. [37, 25, 5, 6, 3, 4]). Unfortunately, there remains a large gap between the theoretical and
practical work, resulting in practical software with little theoretical underpinning of accuracy
on the one hand and theoretical algorithms which have not been adopted in practice on the
other [18].

The first group of theoretical approaches formulated assembly as the problem of finding
a complete reconstruction of the genome (i.e. one string per genome). Initially, the proposed
algorithm was to find an Eulerian cycle in a genome graph [26]. Later work described more
sophisticated algorithms that maximised the probability of successfully finding the complete
reconstruction, if one exists [2]. However, these formulations did not capture the fact that
the conditions under which a complete reconstruction is feasible are extremely rare [2, 20].
Therefore, the second group of theoretical approaches formulated assembly as the problem of
finding a set of sequences (called omnitigs) that were as long as possible and were guaranteed
to be substrings of the genome (i.e. safe) [37]. It was possible to formally characterise how
omnitigs looked like in the genome graph and how to efficiently find all possible omnitigs
(i.e. a complete algorithm) in an idealised setting [5, 6, 3]. However, the omnitig algorithm
requires complex data structures [6, 11] and omnitigs themselves are not safe in the presence
of sequencing errors, missing coverage, or linear chromosomes [37]; as a result, omnitigs have
not been applied in practice. Instead, most assembly software use the much simpler and
more accurate notion of unitigs, i.e., paths whose inner nodes have in- and out- degree one.

Motivation. In this paper we attempt to bridge the gap between theory and practice by
showing how the safe-and-complete framework can be integrated into existing assemblers
in order to improve contiguity. To do so, we focus on a subclass of omnitigs, called simple
omnitigs. Simple omnitigs are walks having a non-branching core, such that all nodes to the
right of the core, except the last one, have out-degree one (i.e., a unique right extension),
and all nodes to the left of the core, except the first one, have in-degree one (i.e., a unique
left extension). See Figure 1 for an illustration, and Definition 1 for a formal definition.
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Figure 1 Example of a simple omnitig (w1, . . . , w10). It has the unitig (w4, w5, w6) as core (in
red), all nodes to the right of the core, except the last one, (i.e. w6, w7, w8, w9) have exactly one
out-going arc, and all nodes to the left of the core, except the first one, (i.e. w2, w3, w4) have exactly
one in-coming arc.
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(a) Example of two occurrences of a repeat R, with simple omnitigs providing more context
to R, namely AR and RC, and even capturing the full substring from the first to the second
occurrence of R, namely RBR.
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(b) Example where a substring ABC also appears as the variant ADC (with B replaced by D),
which at the graph level induces a bubble. Simple omnitigs provide context around the variants
B and D, in this case by recovering the full strings ABC and ADC.
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(c) Example with the same genome as in (a), but the colored lines now indicate omnitigs,
rather than simple omnitigs. Omnitigs allow to safely extend the repeat R both forwards and
backwards within a single walk (ARBR and RBRC).

Figure 2 Examples of simple omnitigs providing more context to repeats and bubbles. On the left
we show the repeat structure at genome level, where we assume each labelled substring corresponds
to a unitig; on the right, we show the repeat structure at assembly graph level, where each unitig is
an arc. (Simple) omnitigs are shown as coloured lines.

The idea behind simple omnitigs was in fact known in the literature also before the safety
framework (e.g. [19, 13, 14]), and also called Y-to-V transformation [37], though there are
minor differences in edge-cases [5]. Though simple omnitigs are known to be not complete,
they are nevertheless safe for a single circular chromosome [37]. On perfect data, they were
shown to significantly improve length and contiguity over unitigs, while almost reaching that
of omnitigs [37]. We therefore consider simple omnitigs as the “compromise candidate” for
adopting the safe-and-complete framework to be used in practice.

Simple omnitigs are longer than unitigs and thus provide more context in the final
assembly. They are effective for example in repeats or bubbles, as the contigs do not need to
stop at the start or end of the structure, but can continue through the flanks as well. See
Figures 2a and 2b for an example, and also Figure 2c for a comparison to omnitigs. Besides
these examples, simple omnitigs also increase contig length in tangled regions of the graph
that contain more complex structures than bubbles and repeats: whenever there is a node
with indegree 1 but larger outdegree (or vice-versa), simple omnitigs can connect the unitigs
starting or ending in such a node to produce longer contigs.

Contributions. In this paper, give the following contributions:
1. We prove that simple omnitigs remain safe even when there are multiple linear chro-

mosomes, as long as no chromosome starts or ends inside them, in Section 2.2. This
correctness guarantee closely mimics the recent correctness guarantee of classical unit-
igs [27], and shows that, in idealised conditions, simple omnitigs do not lose correctness
compared to unitigs.

WABI 2024
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2. We give an algorithm for finding all maximal simple omnitigs (a maximal simple omnitig
is one that is not a subwalk of another simple omnitig), that runs in time linear in the
length of its output, namely in the total length of all maximal simple omnitigs (linear
output-sensitive time), in Section 2.3. This matches the complexity of computing unitigs,
but since unitigs do not overlap, their total length is linear also in the size of the input
graph.

3. While it was already known that all maximal omnitigs can be computed in linear output-
sensitive time [6], such an algorithm required complex data structures that are hard to
implement. Our algorithm finding all maximal simple omnitigs is based on the notion of
core of a walk (see Section 2.1), which leads to a simple and efficient procedure that can
be easily applied to any graph-based assembler. To illustrate this, we integrate it into
two widely-known graph-based genome assemblers, Flye [15] and wtdbg2 [29], which we
discuss in Section 2.4 and in Appendix A.

4. We experimentally show on two real HiFi datasets that simple omnitigs substantially
improve the assembly contiguity of our two modified assemblers, with negligible additional
computational cost, in Section 3. For example, on D. melanogaster data, such assemblies
have the same level of correctness, while having substantially higher alignment-based
contiguity metrics than the original assemblers. In particular, our extension of wtdbg2
improved contiguity to be higher than that of the previously best assembler, hifiasm [7],
while being more than 50 times faster than it. On C. elegans data, we improve the
alignment-based contiguity of the best performing assembler Flye, albeit with a small
increase in misassembly errors. We also improve the contiguity of wtdbg2, this time
without any additional errors.

2 Methods

2.1 Definitions
A graph G = (V, E) is defined to be directed with n nodes in V and m arcs in E. The
tail of an arc e = (u, v) is tail(e) = u and its head is head(e) = v. A w1-wℓ walk
W = (w1, . . . , wℓ) (ℓ ≥ 1) is a sequence of adjacent nodes. Its tail is tail(W ) = w1 and its
head is head(W ) = wℓ. A graph is strongly connected if each pair of nodes is connected by a
walk. The concatenation of two walks W = (w1, . . . , wℓ) and X = (x1, . . . , xℓ) where wℓ = x1
is a walk WX = (w1, . . . , wℓ, x2, . . . , xℓ). A split is a node with at least two outgoing arcs
and a join is a node with at least two incoming arcs. Let W = (w1, . . . , wℓ) be a walk such
that ℓ ≥ 2 holds. The inner nodes of W are the set of all nodes of W between w1 and wℓ.
The walk W is a unitig if its inner nodes have in- and out-degree one.2 Let wi be the first
inner join of W , or wℓ if W has no inner join. Let wj be the last inner split of W , or w1 if
W has no inner split. The core of W is its subwalk from wj to wi if j < i; otherwise, i.e. if
j ≥ i, we say that W has no core.

Note that cores of walks are unitigs. Indeed, if W is a walk having as core some wj-wi

subwalk W ′, then W ′ is a unitig: since wj is the last inner split of W , then all inner nodes
of the wj-wi walk W ′ are not splits; likewise, if wi is the first inner join of W , then all inner
nodes of the wj-wi walk W ′ are not joins. Thus, all inner nodes of W ′ are neither joins, nor
splits, and thus W ′ is a unitig.

2 This is the definition that is consistently used throughout the safe-and-complete literature (e.g. [3]), but
we note that it is slightly different from one used in graph compaction literature (e.g. [8, 9]).
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We now have all the notions needed to define simple omnitigs:

▶ Definition 1 (Simple omnitig). We say that a walk W = (w1, . . . , wℓ) is a simple omnitig
if it has a core. Equivalently, let wi be the first inner join of W , or wℓ if W has no inner
join. Let wj be the last inner split of W , or w1 if W has no inner split. Then we say that
W is a simple omnitig if j < i.

The univocal extension of a walk W is the maximal walk constructed by iteratively adding
the unique out-neighbour of tail(W ) to the end of W and iteratively adding the unique
in-neighbour of head(W ) to the beginning of W .

The k-spectrum Sk of a set of strings S is its set of substrings of length k. The (arc-centric)
de Bruijn graph of a k-spectrum Sk is defined by vertex set Sk−1 and for each x ∈ Sk, an arc
from the k − 1 prefix of x to the k − 1 suffix of x. In a de Bruijn graph, each walk spells a
string by spelling out its first node, and then appending the last character of each subsequent
node in order.

2.2 Safety of simple omnitigs
Informally, a walk in a genome graph is safe if it is guaranteed to be in any genome that
could have generated the genome graph. Here we will focus on the arc-centric de Bruijn
graph of the reads as the genome graph. We cannot hope to generate only safe contigs if
sequencing errors remain in the graph. However, given low sequencing error rates and high
quality error correction algorithms, we assume an error-free setting (as done also in previous
work on the safety framework see e.g. [37]). A recent work also showed that if there are gaps
in coverage (i.e., genome areas from which no reads have been sequenced), then even the
unitig algorithm is not safe [27]. Therefore, we assume in our theoretical model that we have
error-free reads with perfect coverage, and so our genome graph is the de Bruijn graph built
on the k-spectrum of the genome.

In this setting, it is already known that simple omnitigs are guaranteed to be substrings
of a single-chromosome circular genome [3]. However, linear multi-chromosome genomes pose
a challenge; for example, no safe and complete algorithm is known in this setting. However,
as the following theorem shows, the conditions for a simple omnitig to not be substring in
this setting are very narrow.

▶ Theorem 2. Let k ∈ N and let Sk be the error-free k-spectrum of a linear genome with
multiple chromosomes. Let G = (V, E) be the arc-centric de Bruijn graph of Sk. Let L be
the set of k − 1-mers that are the first or last k − 1-mer of some chromosome. If none of
the inner nodes of a simple omnitig are in L, then its spelled string is a substring of some
chromosome of the genome.

Proof. Let W ′ = (w1, . . . , wj , . . . , wi, . . . wℓ) be a simple omnitig, where W = (wj , . . . , wi) is
its core with j < i by definition. By definition, all nodes w2, . . . , wi−1 have a single incoming
arc, and all nodes wj+1, . . . , wℓ−1 have a single outgoing arc. Hence, for a walk that does
not start or end with any inner node of W ′ to contain the arc (wj , wj+1), it needs to contain
W ′ as subwalk.

Since each arc in E represents a k-mer of the genome, (wj , wj+1) is part of the genome, so
it is contained in some chromosome. Each chromosome is an s-t walk C in G where s, t ∈ L,
so there is some C that contains (wj , wj+1). By the argument above, this means that it
contains W ′ as subwalk, so since G is error-free, W ′ is substring of the original genome. ◀

WABI 2024
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Thus, simple omnitigs are safe in the case of multiple linear chromosomes, as long as
they do not contain the start or end k-mer of a chromosome. Note that these conditions are
not complete, since it is known [3] that there are also simple omnitigs containing ends of
chromosomes that are safe, based on more complex conditions about the topology of the
graph.

In practice, missing coverage and errors in the reads may still cause simple omnitigs
to contain more misassemblies than unitigs, even though both are safe in theory. Missing
coverage or errors may cause branching nodes to miss some branches, allowing simple omnitigs
to extend over a branching node where a unitig would stop. For example, if a node has two
incoming arcs and one outgoing arc, then a unitig would stop there, while a simple omnitig
may extend over the node. However, if the node is actually missing a second outgoing arc
due to missing coverage or errors, then the simple omnitig would not be safe in the error-free
graph that includes the missing branch. Hence it possibly has a misassembly at the branching
node.

2.3 Computing simple omnitigs
In this section we give an algorithm to compute maximal simple omnitigs in any graph in
linear output-sensitive time. Note that we cannot simply output all univocal extensions of
maximal unitigs, because that would generate simple omnitigs that are non-maximal (i.e. a
simple omnitig may have more than one unitig as a subwalk). Instead, our algorithm iterates
over all maximal unitigs and checks that 1) if the first node has exactly one outgoing arc
then it has no incoming arcs, and that 2) if the last node has exactly one incoming arc, then
it has no outgoing arc. As we prove below, these two conditions hold if and only if the unitig
is a core of some maximal simple omnitig. For those unitigs where these conditions hold,
the algorithm outputs their univocal extension as a simple omnitig. The correctness of the
algorithm follows from the following theorem:

▶ Theorem 3. The core of a maximal simple omnitig is a walk W = (w1, . . . , wℓ) (ℓ ≥ 1)
such that
(a) the core of W is W , and
(b) if w1 has exactly one outgoing arc, then it has no incoming arcs, and
(c) if wℓ has exactly one incoming arc, then it has no outgoing arcs.

Proof. Note that the cores of maximal simple omnitigs are unitigs by definition.
(⇒) Let W ′ be the univocal extension of W , and a maximal simple omnitig. Then by

definition, W is its core. Further, by definition, the core of a core W is W itself, so (a) holds.
Next, if w1 has exactly one outgoing arc, then, since W ′ is maximal, w1 cannot have exactly
one incoming arc. If it had more than one incoming arc, then W ′ would start at w1 and the
univocal extension of any incoming arc would contain W , and hence the whole W ′. Since it
is a univocal extension, it is a simple omnitig, so W ′ would not be maximal. Hence, if w1
has exactly one outgoing arc, then it has no incoming arcs, so (b) holds. Symmetrically, if
wℓ has exactly one incoming arc, then it has no outgoing arcs, so (c) holds.

(⇐) Assume that W is not the core of a maximal simple omnitig. Then either (a) does
not hold, or W is the core of a non-maximal simple omnitig, in which case its univocal
extension W ′ is the subwalk of a maximal simple omnitig X ′ with a core X ̸= W . Also, W

is inside the univocal extension of X, and they share at most one node, which is the first of
one and the last of the other. If W is right of X in X ′, then w1 has exactly one outgoing
arc, but at least one incoming arc, so (b) does not hold. If W is left of X in X ′, then wℓ has
exactly one incoming arc, but at least one outgoing arc, so (c) does not hold. ◀
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Since all cores are unitigs (as discussed above), to identify all maximal simple omnitigs,
we first compute all maximal unitigs, then check which are also cores of maximal simple
omnitigs, using Theorem 3, and then perform the maximal univocal extensions of these cores.
Hence, we obtain the following theorem.
▶ Theorem 4. Let G = (V, E) be an arc-centric de Bruijn graph, with |E| = m. We can
compute all maximal simple omnitigs of G in time O(m + out), where out is the total length
of the maximal simple omnitigs in G.
Proof. All maximal unitigs can be identified in time O(m) by a simple graph traversal, see
e.g. [17, 37] among many. The idea of such an algorithm is to start at every node v that can
be start of a maximal unitig, namely v has in-degree different from 1, or v has out-degree
different from 1, and construct a maximal unitig by extending each out-going arc as long as
the nodes traversed have in-degree and out-degree equal to 1.

Next, we apply Theorem 3 in order to check which of the maximal unitigs of G (which
are at most O(m) many) are also cores of maximal simple omnitigs, by checking conditions
(a)–(c). Condition (a) trivially holds, because the core of a unitig is the unitig itself. The
checks (b) and (c) require only checking the in- and out-degrees of the end-points of the
maximal unitig, which take constant time.

Finally, computing and outputting the maximal univocal extension of all such cores
satisfying Theorem 3 takes time linear in the length of the univocal extensions, namely the
total length of all maximal simple omnitigs.

Thus, detecting all cores of maximal simple omnitigs takes time O(m), and extending all
such cores into maximal simple omnitigs takes time O(out). Thus, the bound in the theorem
statement holds. ◀

2.4 Injecting simple omnitigs into existing assemblers
In order for an assembler to be modifiable to output simple omnitigs instead of unitigs,
it needs to work by building some kind of assembly graph and outputting unitigs from it.
Furthermore, if the assembler does additional processing of the unitigs, then this processing
needs to be either disabled or modified so that it becomes compatible with simple omnitigs.
We identified two assemblers that lent themselves to the integration of simple omnitigs.
We describe here the high-level changes we made to integrate simple omnitigs into these
assemblers, with full details provided in Appendices A.1 and A.2.

The first assembler is wtdbg2 [29], which builds a “fuzzy de Bruijn graph” and then uses
unitigs from this graph to build a “fragment graph.” It then performs further error corrections
on the fragment graph before finally outputting the consensus sequences of its unitigs as
contigs. We made two modifications, as follows. First, we changed the fuzzy de Bruin graph
construction so that it takes advantage of homopolymer compressed space (i.e. replacing all
consecutive occurrences of a base with only one occurrence of such base). This was needed
to improve the underlying quality of the graph, which is especially important for simple
omnitigs. Second, we changed the final output to be the consensus of simple omnitigs (rather
than of unitigs) on the error-corrected fragment graph.

The second assembler is Flye [15], which constructs a “repeat graph” followed by a
repeat resolving and polishing step prior to outputting unitigs. We modified Flye by 1)
disabling the post construction step of repeat resolving and polishing, and 2) outputting
simple omnitigs instead of unitigs. We disabled the resolving and polishing steps because
they were incompatible with injecting simple omnitigs. To make sure that this did not
hamper Flye, we also ran Flye with unitigs and without the resolving and polishing step (i.e.
with modification (1) but not (2)) and confirmed that the contiguity of the assembly did not
substantially change.

WABI 2024
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Table 1 Properties of the reference genomes and the HiFi reads we use.

Reference Reads
N. chr Raw len1 Length1 N501 N751 Num N501 Cov.2 SRA

D. melanogaster 7 138 mil 97 mil 18 mil 17 mil 1.1 mil 18k 94x SRR10238607

C. elegans 6 100 mil 67 mil 12 mil 10 mil 130k 10k 19x SRR22137522

1Shown in homopolymer compressed space
2With respect to the diploid genome length

3 Results

3.1 Experimental setup

To evaluate the performance of our modified assemblers, we use two real datasets of Pacbio
HiFi reads, one from D. melanogaster and the other from C. elegans. We use all chromosomes
from each dataset for evaluation. We list the properties of these reference genomes and the
corresponding reads in Table 1 and give full details in Appendix B. We measure accuracy
and contiguity using a modified QUAST-LG [21] tool and the reference genome of the
same D. melanogaster individual (GCF_000001215.4) and a different C. elegans individual
(GCA_000002985.3). Following the observations of [1], we modified QUAST-LG to work in
homopolymer compressed space. Otherwise, as [1] observed, QUAST-LG falsely reports
misassemblies on genomic regions with long homopolymer runs.

Unlike unitigs, simple omnitigs can overlap, resulting in the same reference sequence being
potentially present in more than one simple omnitig. This makes some QUAST-LG metrics
misleading or inappropriate. In particular, we did not use the NGA50/NGA75 contiguity
metrics that QUAST-LG reports by default. Instead, we implemented and used the EA50max
and EA75max metrics, which are similar but robust against overlapping contigs. These
work by aligning the contigs against the reference, identifying for each reference position the
longest alignment (i.e. to a contig or part of a contig, if the contig is misassembled), and then
reporting the 50th and 75th percentiles of the distribution of these lengths. For example, an
EA50max value of ℓ means that 50% of the genomic positions are covered by a contig (or
part of a contig, if misassembled) of length at least ℓ. The choice for the longest alignment
was made because otherwise assemblers would be penalised for overlaps between longer and
shorter contigs, even though the existence of the shorter contig does not reduce the quality
of the longer contig. Furthermore, we modified QUAST-LG to only report at most one
misassembly per reference position. Otherwise, a single misassembly in a unitig will count
multiple times if there are numerous simple omnitigs containing that unitig. Appendix A.3
describes these modifications, as well as their justifications, in more detail.

In order to establish a baseline of the state-of-the-art assembly performance on our
datasets, we ran also hifiasm [7], LJA [1] and HiCanu [24]. All were run with default
parameters (using the predefined mode for HiFi reads in HiCanu).

3.2 D. melanogaster

Figure 3a shows that simple omnitigs lead to a substantial improvement in assembly contiguity.
For wtdbg2, this especially happens for the shorter contigs. For example, the EA75max
is increased by 147%, to 9.9 mil, when incorporating simple omnitigs. This is consistent
with previous observations on error-free data [37] and due to the fact that simple omnitigs
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(a) D. melanogaster.
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(b) C. elegans.

Figure 3 Assembly contiguity of wtdbg2 (denoted by “W”) and Flye (denoted by “F”) and their
simple omnitig versions (denoted with a “-so” suffix). The y-axis shows the EAxmax metric, for
0 ≤ x ≤ 100 on the x-axis (recall that EAxmax is computed after breaking contigs at misassemblies).
Differences between the curves on smaller x pertain changes in longer contigs, and for larger x they
pertain changes in shorter contigs (same as with the well-known NGAx metric family). Results are
in homopolymer compressed space.

typically extend contigs through parts of the graph that are more tangled and hence contain
shorter unitigs. For Flye, EAxmax is increased across the board, however the quality of the
Flye assembly pipeline is low on this dataset, with or without modifications.

Table 2 Assembly accuracy and time and memory usage on D. melanogaster.

wtdbg2 Flye Others
W W-int1 W-so F F-int2 F-so hifiasm LJA HiCanu

EA50max (×106) 13.7 12.2 14.5 0.7† 0.7 1.0 14.1 6.0 13.4
EA75max (×106) 4.0 3.8 9.9 0.3 0.3 0.5 4.8 1.7 13.0
N. misassemblies 1 1 4 3 3 5 1 1 0
N. contigs 405 369 363 856 951 576 1,871 925 1,110
Genome fraction (%) 90.1 89.2 89.1 94.9 94.9 94.7 95.7 95.5 95.3
Duplication ratio 1.02 1.01 1.55 1.68 1.68 1.98 1.99 1.74 1.81
Wall-clock time (s) 942 - 1,521 24,465 - 20,261 75,936 63,307 39,118
Peak memory (GiB) 17 - 15 119 - 119 105 68 19

All statistics are shown in homopolymer compressed space. We highlight in bold the best values of the
EA50max and EA75max metrics.
1Wtdbg2 with the homopolymer modification but without simple omnitigs.
2Flye with the post-construction steps disabled but without simple omnitigs. †Note that this number is
much worse than the NGA50 reported for D. melanogaster on https://github.com/fenderglass/Flye.
This is likely due using here the highly heterozygous cross of the A4 and ISO1 strains of D. melanogaster,
while the variant assembled on the Flye website is plain ISO1.

Table 2 shows the full statistics for D. melanogaster assemblies, including for other
assemblers. Overall, compared to the results of three other assemblers on this data, our
modified wtdbg2 pipeline achieves the highest contiguity on longer contigs (i.e. an EA50max
of 14.5 mil, improved by 0.8 mil), at the cost of three more misassemblies. We note that the
contiguity metrics EAxmax take the misassemblies into account, i.e. the length statistics are
calculated after breaking contigs apart at the misassemblies. The choice of best assembler for
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Table 3 Assembly accuracy and time and memory usage on C. elegans.

wtdbg2 Flye Others
W W-int W-so F F-int F-so hifiasm LJA HiCanu

EA50max (×103) 412 425 512 620 620 628 596 591 342
EA75max (×103) 68 66 67 64 63 63 43 - -
N. contigs 389 394 392 280 276 274 346 239 475
N. misassemblies 4 2 4 2 2 5 6 1 0
Genome fraction (%) 80.8 80.8 81.2 79.8 79.8 79.8 77.4 72.4 74.8
Duplication ratio 1.00 1.00 1.02 1.00 1.00 1.05 1.01 1.01 1.01
Wall-clock time (s) 208 - 226 1,269 - 830 858 695 769
Peak memory (GiB) 4.5 - 5.7 17 - 17 18 6.6 5.2

The data format is the same as in Table 2. Some of the assemblers achieve less than 75% genome fraction,
hence their EA75max is undefined.

this dataset represents a trade-off; however, we stress that our goal is to show that simple
omnitigs improve each assembler with respect to its unitig version, rather than with respect
to other assemblers.

We also confirmed that these improvements are due to simple omnitigs and not to the
other modifications we made. Table 2 shows the EA50max and EA75max numbers for
the intermediate versions of these assemblers which contain all the non-simple omnitig
modifications. Their contiguity does not improve relative to the original assemblers.

Table 2 also shows other assembly statistics. Notably, there is a small increase in the
number of misassemblies, after our modifications. We believe that this stems from errors
of the sequences stored at the graph’s branching nodes (i.e. with an in- or out- degree of
more than one). In particular, such nodes always lie at the ends of unitigs (by definition
of unitig). An artefact of QUAST-LG is that errors in the last ≈1kbp of a contig are not
counted as a misassembly, hence errors in most branching nodes do not affect the number
of misassembled unitigs. However, branching nodes are often absorbed into the middle of
simple omnitigs, causing QUAST-LG to report a misassembly error. Our conjecture is also
backed by the fact that wtdbg2 does not output any branching nodes, but trims them from
the ends of the unitigs, without reporting in their publication why this is done.

Another effect of using simple omnitigs is that there is no longer a unique contig for
each region of the genome. Table 2 shows the duplication ratio, which is higher for simple
omnitigs than for unitigs. This is expected and in fact desired, since a region can flank and
provide context for multiple bubbles at the same time. Note that most assemblers report a
duplication ratio higher than one, since D. melanogaster is diploid, but the reference contains
only one copy of each chromosome.

Finally, our modifications also have a slight effect on the genome fraction, but, since
these are minor, we did not investigate these further. The major differences in genome
fraction between the different baseline assemblers is due to inherent differences between those
assemblers, rather than any effect of our modifications.
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3.3 C. elegans
Figure 3b shows that simple omnitigs improve both wtdbg2 and Flye in contiguity for longer
contigs (i.e. small values of x). In Table 3 we see that simple omnitigs increase the EA50max
of wtdbg2 by 24% over default wtdbg2, with the same number of misassemblies as default
wtdbg2. Flye achieves the best EA50max among the baseline assemblers, and the simple
omnitig variant improves this even further, at the cost of three more misassemblies.

Table 3 also shows the genome fraction and duplication ratio metrics. As with D. melano-
gaster, our modifications have a negligible effect on the genome fraction, while increasing
the duplication ratio. The increase is expected, since a single reference position can now be
covered by more than one contig. We note that the genome fraction of all assemblers is only
≤ 81% and the duplication ratio is only ∼ 1, even though the genome is diploid. We suspect
that these numbers may be due to the relatively low coverage of this dataset. In any case,
the genome fraction and duplication ratios are a property of the dataset and the baseline
assemblers, rather than our modifications; hence, we do not investigate them further.

3.4 Time and memory usage
Tables 2 and 3 also show the time and memory usage. Our modifications did not affect
the memory usage for Flye and only slightly for wtdbg2. Adding simple omnitigs to Flye
decreased its run-time, since we disabled a post processing step. For wtdbg2, the running
time increased by 9-61%, though it remained very fast (e.g. is is 3 − 25 times faster than the
next fastest assembler). Since the focus of our study was contiguity and accuracy, we did not
optimise our code for speed: it is likely that the time increase could be mostly avoided by
removing superfluous disk I/O.

In comparison to other assemblers, we highlight that for D. melanogaster, our simple
omnitigs modifications of wtdbg2 increases EA50max so that it surpasses the previously best
assembler under this metric, namely hifiasm, while being almost 50 times faster than hifiasm.
For C. elegans, our simple omnitigs modification of Flye further improves EA50max, while
making it faster than next best performing under this metric, hifiasm.

4 Discussion and Conclusions

Despite much work on both the theoretical and practical aspects of genome assembly, it has
remained challenging to apply novel theoretical ideas to the practical setting. Omnitigs are
a powerful construct within the safe-and-complete theoretical framework, however, due to
their complexity, they have not been applied in practice. Instead, we have taken a simpler
construct, called simple omnitigs, and shown that it both has provable theoretical guarantees
and is amenable to being plugged into existing assemblers. By combining co-located unitigs,
simple omnitigs can provide correct flanking context around repeats and variations.

On the theoretical side, we have shown that given a multi-chromosomal linear genome,
error-free reads, and perfect coverage, simple omnitigs are safe except for some corner cases;
in other words, they are guaranteed to be substrings of the original genome. Note that
the latter two requirements are necessary to prove correctness even in the simpler case of
unitigs [27].

On the practical side, we have injected simple omnitigs into two popular assemblers
(wtdbg2 and Flye) and tested them on two HiFi datasets. On D. melanogaster, this
gave substantial improvements in alignment-based assembly contiguity. In particular, our
modifications to wtdbg2 improved the EA50max metrics to the point where they were higher
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than those of the previously best assembler, hifiasm, while being more than 50 times faster.
On C. elegans, we saw similar contiguity improvements, with simple omnitigs improving
the EAxmax metrics of both wtdbg2 and Flye; compared with other tested assemblers, our
modified Flye had the highest EA50max.

The above improvements come at the cost of a small increase in the number of mis-
assemblies. To completely prevent simple omnitigs from introducing misassemblies, the
assemblers seem to require additional modifications before integrating simple omnitigs. As-
sembler developers usually test the accuracy of the genome graph relying on unitigs and
QUAST-LG metrics. However, by outputting simple omnitigs, we are uncovering other errors
in the graph not captured by QUAST-LG metrics, including in the topology that connects
between unitigs. Fixing those requires deeper understanding the internals of the assemblers
and, perhaps, introducing simple omnitigs at an earlier stage of the development process.

Though more work is needed to incorporate simple omnitigs into “production-ready”
assemblers, our work overcomes many of the barriers that have held back omnitigs from
being used in practice. First, omnitigs require complicated data structures and algorithms,
while our algorithm to compute simple omnitigs is simple to implement and understand.
Second, the theory of omnitig safety does not extend to the linear multi-chromosome setting,
while we showed that, except for corner cases, simple omnitigs remain safe. Third, the
omnitig algorithm is too slow to complete in a multi-chromosome setting, while the simple
omnitig algorithm is fast. In conclusion, we hope this work helps to bridge the gap between
theory and practice of genome assembly by adapting a complicated theoretical construct (i.e.
omnitigs) to work in a practical setting.
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A Omitted Implementation Details

Our algorithm reporting simple omnitigs is implemented in Rust in [33]. The code
is in the subfolder implementation and can be run with cargo run –release –
compute-trivial-omnitigs –non-scc (plus arguments specifying input and output files
and formats). Note that since the assemblers use bidirected graphs, we first convert the
bidirected graphs to doubled graphs as in [27].

A.1 Modifying wtdbg2
The assembler wtdbg2 [29] comes with two binaries, the first wtdbg2 which computes contigs
as an overlapping sequence of reads, and the second wtpoa-cns which computes a consensus
sequence for each of these contigs. All our modifications happen in and around the first binary.
The wtdbg2 binary first builds a fuzzy de Bruijn graph and from which it computes unitigs
after some error corrections, and then builds a fragment graph from these unitigs. In the
fragment graph the assembler does another round of error corrections before it reports unitigs
from this fragment graph and outputs their overlapping sequences of reads. We modified
wtdbg2 to output simple omnitigs instead of unitigs from the error corrected fragment graph.
For this we run wtdbg2 once and output the fragment graph using its builtin output functions.
Then we compute simple omnitigs on this graph and run wtdbg2 again, this time loading
the simple omnitigs from disk and outputting their sequences of overlapping reads instead of
the unitigs in the end. We can run wtdbg2 two times this way and get consistent node/edge
identifiers since these are deterministic, even when running wtdbg2 in parallel.

In our experiments, we also realised that since HiFi reads have mostly base duplications
and deletions as errors, we can homopolymer-compress the reads to get a more accurate
assembly. It turned out that when reporting simple omnitigs, we get a lot more misassemblies,
but when using homopolymer compression as well, the misassemblies are not a problem, at
least for D. melanogaster. To still get an assembly in uncompressed space, we decompress
the contigs before calling wtpoa-cns. This is simple since the overlapping sequences of
reads that form the contigs of wtdbg2 carry the ids of the original reads, so we can directly
replace the subsequence of characters (adjusting the start and end index according to the
compression). Note that, even though we evaluate in homopolymer compressed space in the
end, this decompression is still important as it makes the consensus stage run in homopolymer
decompressed space, thus producing an assembly in decompressed space. This allows for a
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fairer comparison of the modified wtdbg2 to the other assemblers, which all output contigs in
uncompressed space. We call the variant of wtdbg2 that just uses homopolymer compression
“W-int” and the variant that uses both homopolymer compression and simple omnitigs
“W-so”. The modified wtdbg2 is available at [36]. Homopolymer compression is done
with [32] and decompression is done with [35]. Hompolymer compression and decompression
is implemented in Rust and run with cargo run –release – –compute-threads 28 (plus
arguments specifying input and output files and formats). The modified wtdbg2 is run
with the parameters proposed for HiFi reads: -x ccs -g <REFERENCE_LENGTH> -t 28 (plus
arguments specifying input and output files and formats).

A.2 Modifying Flye

The assembler Flye [15] runs in multiple stages. We have disabled resolving repeats and
polishing, which does not seem to make any difference in our experiments. Instead, we
directly report the unitigs of the repeat graph as computed by Flye. This variant is called
“F-int”. When using simple omnitigs, we report simple omnitigs from the repeat graph instead
of unitigs by calling our tool from within Flye (and we keep resolving repeats and polishing
disabled). This variant is called “F-so”. The modified version of Flye is available at [31].
We run it with parameters -g <REFERENCE_LENGTH> -t 28 –pacbio-hifi (plus arguments
specifying input and output files and formats). To disable resolving of repeats and polishing,
we add –stop-after contigger.

A.3 Modifying QUAST-LG

We evaluate the assembly using QUAST-LG 5.0.2 [21]. Since QUAST uses minimap2 [16]
for alignment which was reported in [1] to work better on homopolymer-compressed data,
we run QUAST in homopolymer-compressed space by passing it a homopolymer-compressed
reference and homopolymer-compressed contigs. When using simple omnitigs, contigs may
overlap even when reported from a perfectly correct genome graph. Hence, none of the
metrics that QUAST uses by default is able to accurately capture the contiguity of the
assembly. Even the most advanced metric built into QUAST, the NGAx group of metrics
(e.g. NGA50 or NGA75), produce higher numbers than they should if an assembler e.g.
outputs the same contigs twice or outputs overlapping contigs.

We instead implement the EAxmax group of metrics within QUAST. It is inspired by
the E-size [30] which gives the expected value of the average length of a contig aligned to a
uniformly randomly chosen base in the reference. The E-size has some weaknesses though.
First, it is not robust against misassemblies. This is easily fixed in the same way as it is
done for NGAx, by aligning the contigs to the reference and using continuous (enough)
alignments to compute the metric. Second, the E-size uses averaging for each base, resulting
in unwanted effects such as a reduced E-size for assemblers that report many short contigs
that potentially overlap with others. This might not actually have been intended by the
designers of the E-size, which wanted it to answer the question: “How many genes will be
completely contained within assembled contigs or scaffolds, rather than split into multiple
pieces?” [30]. A gene that is completely contained inside a long contig is not affected by
also being contained partially within a short contig. So we choose to compute the maximum
alignment to each reference base, instead of the average. Lastly, most works in genome
assembly [29, 15, 1, 7, 24] use percentile-based metrics like N50, NG50 or NGA50 and do
not compute the expected value over a uniform distribution of the reference bases. To stick
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with existing literature, we therefore compute the EAxmax metrics percentile-based as well.
We define the EAxmax metric on the alignments as follows:

a) For each reference base, store the length of the maximum alignment to the reference base.
b) Sort the reference bases by length of maximum alignment descending, and report the

value at index x/100 ∗ G, where G is the length of the reference.

We additionally modified QUAST to output misassemblies that occur at the same position
on the reference just once. Otherwise, since a single unitig could be output multiple times as
part of different simple omnitigs, we would count the same misassembly on the same unitig
multiple times. But a misassembly within a unitig is not introduced by reporting simple
omnitigs, but instead an error produced by the assembler itself, so we only want to count it
once. To compute the unique misassemblies, we first sort all misassemblies by their position
on the reference, and then merge those that are less than X bp apart, however keeping
the maximum length of a unique misassembly below X (instead of transitively merging
misassemblies into one big unique one much longer than X). X is given by the extensive
misassembly threshold in QUAST, which is 3000 by default for large genomes.

The modified version of QUAST is available at [34]. We run it with the follow-
ing parameters: –large -t 28 –min-alignment 20000 –extensive-mis-size 500000
–min-identity 90 (plus arguments specifying input and output files and formats). In-
creasing the minimum size of extensive misassemblies to 500000 is inspired by [24], which
employ the same parameters to evaluate HiCanu on the same D. melanogaster data to
avoid falsely reported misassemblies due to heterozygosity. We use the same parameters
for C. elegans, to avoid misassemblies for the same reason, and additionally because our
C. elegans individuum does not exactly match the reference.

B Data Availability and Reproducibility

Our experiments are implemented with snakemake [22] and available here [33]. The repository
contains a conda environment.yml file at the root, and in this conda environment the
experiments can be reproduced by running snakemake –cores 28 report_all. We have
run our experiments on a cluster running slurm [38].

For D. melanogaster, we use the same data as in [24], using the reference with the
accession GCF_000001215.4 and HiFi reads from the sequence read archive with the accession
SRR10238607 with a median and mean read length of 24.4kbp. We filtered the reference to
include only assigned sequences (keep only Chr 2L, Chr 2R, Chr 3L, Chr 3R, Chr 4, Chr M,
Chr X and Chr Y).

For C. elegans, we use the official reference of the C. elegans Sequencing Consortium [10],
available with accession GCA_000002985.3. We use HiFi reads submitted by the Korea
Research Institute of Bioscience and Biotechnology with accession SRR22137522. The
reference includes all autosomes I to V and one sex chromosome X.
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