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Abstract
The C-Orientation problem asks whether it is possible to orient an undirected graph to a directed
phylogenetic network of a desired class C, and to find such an orientation if one exists. The problem
can arise when visualising evolutionary data, for example, because popular phylogenetic network
reconstruction methods such as Neighbor-Net are distance-based and thus inevitably produce
undirected graphs. The complexity of C-Orientation remains open for many classes C, including
binary tree-child networks, and practical methods are still lacking. In this paper, we propose an
exponential but practically efficient FPT algorithm for C-Orientation, which is parameterised by
the reticulation number and the maximum size of minimal basic cycles used in the computation.
We also present a very fast heuristic for Tree-Child Orientation. To evaluate the empirical
performance of the proposed methods, we compared their accuracy and execution time for Tree-
Child Orientation with those of an exponential time C-orientation algorithm from the literature.
Our experiments show that the proposed exact algorithm is significantly faster than the state-of-the-
art exponential time algorithm. The proposed heuristic runs even faster but the accuracy decreases
as the reticulation number increases.
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1 Introduction

Phylogenetic networks are a powerful tool for representing complex evolutionary relationships
between species that cannot be adequately modelled by trees. These networks are particularly
useful in the presence of reticulate events, such as hybridisation, horizontal gene transfer
(HGT) and recombination. Hybridisation refers to the interbreeding of individuals from
different species, which can lead to the formation of a new hybrid species that shares genetic
material from both parent species. HGT is the transmission of copied genetic material to
another organism without being its offspring, a process particularly common in bacteria
and archaea. Recombination is the exchange of genetic material between different genomes
and is a common occurrence not only in viruses but also in bacteria, eukaryotes, and other
organisms. While phylogenetic trees depict the hierarchical branching of evolutionary lineages,
networks can represent both the hierarchical and non-hierarchical connections resulting from
reticulate events, providing a more nuanced view of evolutionary history.

However, constructing directed phylogenetic networks from biological data remains a
challenging task. Distance-based methods, such as Neighbor-Net, are widely used because
they are scalable and helpful in visualising the data. However, the resulting networks are
inevitably undirected, often making it difficult to interpret the evolutionary history. To
provide a more informative representation of the data, it is meaningful to develop a method
for transforming undirected graphs into directed phylogenetic networks in a way that ensures
the resulting network has a desired property.

Recently, Huber et al. [12] introduced two different orientation problems, each considering
orientation under a different constraint. The Constrained Orientation problem asks
whether a given undirected phylogenetic network can be oriented to a directed network under
the constraint of a given root edge and desired in-degrees of all vertices, and asks to find
a feasible orientation under that constraint if one exists. In [12], it was shown that such
a feasible orientation is unique if one exists, and a linear time algorithm for solving this
problem was provided. However, when an undirected network has been created from data, it
is not usually the case that there is complete knowledge of where to insert the root and which
vertices are reticulations. The C-Orientation problem does not constrain the position of
the root or the in-degree of the vertices. Instead, it asks whether a given binary network can
be oriented to a directed phylogenetic network belonging to a desired class C.

The complexity of C-Orientation is not fully understood for many classes C, and no
study has discussed practically useful methods. In [12], Tree-Based Orientation was
shown to be NP-hard. Maeda et al. [13] conjectured that Tree-Child Orientation is
NP-hard. Bulteau et al. [3] studied a similar problem and showed that for a graph with
maximum degree five, determining whether the graph can be oriented to a tree-child network
with a designated root vertex is NP-hard (Corollary 5 in [3]). Without the assumption
of maximum degree five, the complexity of this problem is still unclear. Indeed, [3] was
concluded by noting that even for graphs of maximum degree three (i.e. binary networks),
finding an orientation to a desired class, such as tree-child, tree-based or reticulation-visible
networks, may not be easy. Although [12] provided FPT algorithms for a special case of
C-Orientation where C satisfies several conditions, which are theoretically applicable to
various classes including tree-child networks but are not easy to implement, there is no
FPT algorithm to solve C-Orientation in its general form. Also, no studies have pursued
practically useful heuristics.

In this paper, we provide a practically efficient exponential time algorithm for C-
Orientation (Algorithm 1), which is FPT in both the reticulation number and the maximum
size of minimal basic cycles selected by the algorithm. We also present a heuristic method
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for Tree-Child Orientation (Algorithm 2) which, although still exponential, runs very
fast in practice because it only considers reticulation placements to maximise the sum of
their pairwise distances. Using artificially generated networks, we compare the accuracy
and execution time of the proposed methods for solving Tree-Child Orientation with
those of the existing exponential time algorithm for C-Orientation (Algorithm 2 in [12]).
Our theoretical and empirical results demonstrate the usefulness of Algorithm 1, especially
for relatively large input graphs with 5 or more reticulations, where the exponential time
method in [12] becomes computationally infeasible. Our Algorithm 2, while much faster than
Algorithm 1, tends to decrease in accuracy as the reticulation number increases.

The rest of the paper is structured as follows. Section 2 provides the necessary mathem-
atical definitions and notation, including the definition of phylogenetic networks. Section
3 briefly reviews relevant results from [12] and formally states the problems of interest.
Section 4 gives the theoretical background of our proposed methods, including the concept of
“cycle basis” and a theorem that allows us to reduce the search space (Theorem 3). Section 5
describes the proposed exact method (Algorithm 1) and a heuristic method (Algorithm 2).
Theorem 6 ensures that the heuristic is correct when r ≤ 2. We analyse the time complexity
of Algorithm 1. Section 6 explains the experimental setup, including the method used to
create undirected graphs (details can be found in the appendix), and presents the results
of three experiments. Section 7 discusses the limitations of the heuristic method. Finally,
Section 8 concludes the paper and outlines future research directions.

2 Definitions and Notation

2.1 Graph theory
An undirected graph is an ordered pair (V, E) consisting of a set V of vertices and a set E of
edges between vertices without any orientation. Given an undirected graph G, its vertex set
and edge set are denoted by V (G) and E(G), respectively. An edge of an undirected graph
between vertices u and v is denoted by {u, v} or {v, u}. An undirected graph is simple if
it contains neither a loop nor multiple edges, namely, any edge {u, v} satisfies u ≠ v, and
any edges {u, v} ≠ {u′, v′} satisfy at least one of u ̸= u′ and v ̸= v′. For a vertex v of an
undirected graph G, the degree of v in G, denoted by degG(v), is the number of edges of G

that joins v with another vertex of G.
An (undirected) path is an undirected graph P with a vertex set {v1, v2, . . . , vℓ} and an

edge set {{v1, v2}, {v2, v3}, . . . , {vℓ−1, vℓ}}. The number of edges of a path P is called the
length of P . An (undirected) cycle is an undirected graph C with a vertex set {v1, v2, . . . , vℓ}
and an edge set E = {{v1, v2}, {v2, v3}, . . . , {vℓ−1, vℓ}, {vℓ, v1}}. The number of edges of a
cycle C is called the length of C. A subgraph of an undirected graph G = (V, E) is a graph
G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. In this case, G contains G′. If an undirected
graph G contains a cycle C as a subgraph, C is a cycle of G. An undirected graph G is
connected if for any u, v ∈ V (G), G contains a path between u and v. The distance dG(u, v)
between u and v in G is defined by the length of the shortest path connecting u and v in G.

A directed graph is an ordered pair (V, A) consisting of a set V of vertices and a set A of
oriented edges called arcs. An arc that goes from vertex u to vertex v is denoted by (u, v).
Given an arc (u, v), u is a parent of v and v is a child of u. A directed graph is simple if it
contains neither a loop nor multiple arcs. For a vertex v of a directed graph D, the in-degree
of v in D, denoted by indegD(v), is the number of arcs of D that arrive at v. Likewise, the
out-degree of v in D, denoted by outdegD(v), is the number of arcs of D that start from v.
A directed cycle is a directed graph with a vertex set V = {v1, v2, . . . , vℓ} and an arc set
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A = {(v1, v2), (v2, v3), . . . , (vℓ−1, vℓ), (vℓ, v1)}. A subgraph of a directed graph is defined in
the same way as before. A directed acyclic graph (DAG) is a directed graph that contains no
cycle as its subgraph. Given a directed graph D, the undirected graph obtained by ignoring
the direction of all its arcs is called the underlying graph of D and denoted by U(D).

2.2 Phylogenetic networks
Throughout this paper, X is a finite set with |X| ≥ 2, representing a set of the present-
day species of interest. All graphs considered here are simple and finite, meaning the
numbers of vertices and edges are finite. An undirected binary phylogenetic network on X

is a simple, connected, undirected graph N such that its vertex set V is partitioned into
VI := {v ∈ V | degN (v) = 3} and VL := {v ∈ V | degN (v) = 1}, and VL can be identified
with X. Each vertex in VI and in VL is called an internal vertex and a leaf of N , respectively.

A directed binary phylogenetic network on X is a simple, acyclic directed graph D such
that the underlying graph of D is connected, the vertex set V of D contains a unique vertex
ρ with (indegD(ρ), outdegD(ρ)) = (0, 2) and the set V \ {ρ} is partitioned into VT := {v ∈
V | (indegD(v), outdegD(v)) = (1, 2)} and VR := {v ∈ V | (indegD(v), outdegD(v)) = (2, 1)},
and VL := {v ∈ V | (indegD(v), outdegD(v)) = (1, 0)} that can be identified with X. The
vertex ρ is called the root of D, and each vertex in VT , in VR and in VL is called a tree vertex,
a reticulation and a leaf of D, respectively.

A directed binary phylogenetic network D on X is a tree-child network if every non-leaf
vertex of D has at least one tree vertex as a child [5]. Tree-child networks are characterised
by the absence of the two forbidden subgraphs [16] that are illustrated in Figure 1. Namely,
tree-child networks contain neither a vertex with two reticulation children nor a reticulation
with a reticulation child.

Figure 1 The forbidden subgraphs for tree-child networks. Left: a vertex with two reticulation
children. Right: a reticulation with a reticulation child. The black vertices represent reticulations
and the white circle indicates a tree vertex.

3 Problems and known results

For an undirected phylogenetic network N on X, orienting N is a procedure that inserts
the root ρ into a unique edge eρ = {u, v} of N by replacing the edge {u, v} with the arcs
(ρ, u), (ρ, v) and then orienting the other edges so that the resulting graph N⃗ is a directed
phylogenetic network on X. In other words, a directed phylogenetic network N⃗ on X is an
orientation of N if the underlying graph U(N⃗) becomes isomorphic to N after suppressing
the root ρ of U(N⃗) (i.e. replacing the undirected path u − ρ − v with the edge {u, v}).

Determining the orientability of undirected graphs to directed graphs with desired
properties is a classic topic in graph theory and its application (e.g. [15]), but orientability
problems for phylogenetic networks have only recently been studied [12, 3]. Huber et al. [12]
discussed two types of problems, Constrained Orientation and C-Orientation.
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3.1 Orientation constrained by the root position and in-degrees
▶ Problem 1 (Constrained Orientation).
INPUT: An undirected (not necessarily binary) phylogenetic network N = (V, E) on X, an

edge eρ ∈ E into which a unique root ρ is inserted, and the desired in-degree δ−
N (v) of

each v ∈ V .
OUTPUT: An orientation N⃗ of N that satisfies the constraint (eρ, δ−

N ) if it exists, and “NO”
otherwise.

We note that when N is binary, the constraint δ−
N in Problem 1 specifies which internal

vertices of N are to become reticulations or tree vertices in N⃗ . Below we restate the relevant
result from [12].

▶ Theorem 1 (Part of Theorems 1 and 2 in [12]). In Problem 1, if there exists an orientation
N⃗ of N that satisfies the constraint (eρ, δ−

N ), then N⃗ is unique for (eρ, δ−
N ). Algorithm 1 in

[12] can determine whether or not N⃗ exists and find N⃗ if it does, both in O(|E|) time.

Although Theorem 1 is sufficient for our purpose, a necessary and sufficient condition for
when N⃗ exists under the constraint (eρ, δ−

N ) was provided in [12] using the notion of “degree
cut”. The interested reader is referred to [12].

3.2 Orientation to a desired class C of networks
The next problem is about orientation under a different constraint. It asks whether a
given graph can be oriented to be a directed phylogenetic network in a desired class C,
where the position of the root edge and the in-degree of each vertex are unknown. In [12],
C-Orientation was defined under the assumption that the input N is binary, unlike
Problem 1.

▶ Problem 2 (C-Orientation).
INPUT: An undirected binary phylogenetic network N on X.
OUTPUT: An orientation N⃗ of N such that N⃗ belongs to the class C of directed binary

phylogenetic networks on X if it exists, and “NO” otherwise.

Huber et al. [12] described a simple exponential time algorithm for solving Problem 2
(Algorithm 2 in [12]), which uses the above-mentioned O(|E|) time algorithm for Problem 1.
It repeatedly solves Problem 1 for all possible combinations of the root edge eρ ∈ E and a
set {v1, . . . , vr} = VR ⊆ V of reticulations (i.e. vertices of desired in-degree 2) until it finds
an orientation N⃗ of N that satisfies (eρ, δ−

N ) and belongs to class C.
The complexity of C-Orientation depends on C but is still unknown for most of the

popular classes of phylogenetic networks. For example, when C is the class of trees, Problem
2 is obviously solvable in polynomial time, and when C is the class of tree-based networks,
it was shown in [12] that the problem is NP-hard. An important remark is that if C′ is a
subclass of C, it does not necessarily imply that C′-Orientation is easier or harder than
C-Orientation. In fact, the complexity of the following problem is still open [4].

▶ Problem 3 (Tree-Child Orientation).
INPUT: An undirected binary phylogenetic network N on X.
OUTPUT: An orientation N⃗ of N that is a tree-child network on X if it exists, and “NO”

otherwise.

WABI 2024



9:6 Orientability of Undirected Phylogenetic Networks to a Desired Class

While FPT algorithms for a special case of C-Orientation were provided in [12], it
remains challenging to develop a practical method for this type of orientation problems. This
motivates us to explore a heuristic approach for solving Problem 3.

In what follows, when there exists such an orientation N⃗ of N as described in Problem 3,
we say that N is tree-child orientable and call N⃗ a tree-child orientation of N .

4 Theoretical aspects of the proposed methods

Before discussing Problem 3, we consider a general setting where we want to orient any
undirected phylogenetic network N = (V, E) on X to a rooted directed phylogenetic network
N⃗ on X. Then N⃗ must contain r = |E| − |V | + 1 reticulation vertices (which can be easily
verified by induction, and can also be derived from the equations in Lemma 2.1 in [14]),
and so we need to decide which r vertices among |V | − |X| internal vertices of N will have
in-degree 2 in N⃗ . The number of possible ways to select r vertices from non-leaf vertices of
N is

(|V |−|X|
r

)
, which is exponential. We will now consider how we can reduce the number of

candidates to examine.

▶ Lemma 2. Let N = (V, A) be any directed acyclic graph and let U(N) = (V, E) be the
underlying graph of N . Then, any cycle C of U(N) has a vertex whose in-degree in N is at
least 2.

Proof. To obtain a contradiction, suppose U(N) contains a cycle C = (v0, v1, . . . , vn) such
that indegN (vi) ≤ 1 for every vi ∈ V (C). Let C⃗ be the subgraph of N that corresponds
to C. If C⃗ contains vi with indegN (vi) = 0, then C⃗ must contain another vertex vj with
indegN (vj) ≥ 2. Then, for each vi ∈ V (C), indegN (vi) = 1 holds. Let {vi−1, vi} and {vi, vi+1}
be two consecutive undirected edges of C. We may assume that C⃗ has the arc (vi−1, vi),
instead of (vi, vi−1). Since indegN (vi) = 1, C⃗ contains (vi, vi+1), not (vi+1, vi). The same
argument applies to all arcs of C⃗. It follows that C⃗ is a directed cycle, a contradiction. ◀

Lemma 2 allows us to exclude some of the inappropriate reticulation placements (specific-
ally, cases where there is a cycle having no reticulation) that make orientation impossible.
However, checking all cycles in a graph is computationally inefficient. To reduce the search
space, we will now introduce some relevant concepts.

For a connected undirected graph N = (V, E), the cycle rank of N is defined to be the
number r := |E| − |V | + 1 (e.g. p.24 in [10]), which is also known as circuit rank, cyclomatic
number and the (first-order) Betti number of N . Note that r is zero if N is a tree and that
r is the number of desired reticulation vertices if N is a binary phylogenetic network that is
an instance of Problem 1. The cycle rank r of N can also be interpreted as the rank of a
vector space called the “cycle space”, where each of the r basis vectors, called a basic cycle,
corresponds to the edge-set of a simple cycle in N . If we define the summation of cycles C

and C ′ as the cycle induced by the symmetric difference of their edge-sets, then the cycle
space of N can be identified with the set of even-degree subgraphs of N , so any cycle in N

can be expressed as a sum of basic cycles in a cycle basis S (for details, see Section 1.9 of [8],
Section 4.3 of [2] and Section 6.4.2 of [10]).

A cycle basis S of N is called minimal if
∑

C∈S |E(C)| is not greater than that of any
other cycle basis of N . The problem of computing a minimal cycle basis has been extensively
studied (e.g. [18, 7, 11]; see Chapter 7 of [6] for a brief literature review) and polynomial
time algorithms exist (e.g. [6, 1, 11]).
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▶ Theorem 3. Let (N, eρ, δ−
N ) be an instance of Problem 1 where N is binary and let VR

denote the set of reticulations specified by δ−
N (v). If there exists an orientation N⃗ of N

satisfying the constraint (eρ, δ−
N ), then for any cycle basis S of N , there exists a bijection

ϕ : S → VR with the property that ϕ(C) ∈ V (C) holds for each C ∈ S.

Proof. Let BN be the bipartite graph defined by V (BN ) := S ⊔ VR and E(BN ) := {{C, v} ∈
S × VR | v ∈ V (C)}. Since N is binary, we have |S| = |VR| (note that if N is allowed to
have a reticulation with a large in-degree, then |VR| < S is possible). No vertex of BN is
isolated for the following reasons: for each v ∈ VR, v is in some cycle of N , so there exists a
basic cycle C ∈ S with v ∈ V (C); in addition, since N⃗ is a directed acyclic graph, Lemma
2 implies that for each C ∈ S, there exists v ∈ VR with v ∈ V (C). Our claim is that there
exists a perfect matching in BN . To prove this, without loss of generality, we may assume
that BN is connected. The proof is by induction in the reticulation number r := |VR| of N .
The case of r ≤ 2 is verified easily using Theorem 3 in [12].

Suppose the claim holds for any orientable instance (N, eρ, δ−
N ) with r ≤ k. One can

obtain an orientable instance (M, eρ, δ−
M ) with r = k + 1 by adding exactly one path P

between two edges of N and selecting exactly one reticulation vertex in a new cycle made
by the addition of P . Any orientable instance with r = k + 1 can be constructed from
some orientable instance with r = k in this manner. When SM is a minimal cycle basis
of M with SM = S ∪ {Ck+1}, the bipartite graph BM specified by (M, eρ, δ−

M ) and SM is
a subgraph of BM . By the hypothesis, there is a perfect matching in BN (for any choice
of S = {C1, . . . , Ck}). By the orientability of (M, eρ, δ−

M ), there is a matching between the
remaining vertices vk+1 and Ck+1, so there is a perfect matching in BM for this minimal
cycle basis SM = S ∪ {Ck+1}. One can generate any other minimal cycle basis of M by
taking symmetric difference of Ck+1 and any other cycle(s) Ci ∈ S such that Ci and Ck+1
have share a reticulation. Using Lemma 2 and the induction hypothesis, we can see that BM

has a perfect matching for any minimal cycle basis SM of M . ◀

Theorem 3 provides a necessary condition for the feasibility of a reticulation placement
VR in Problem 1 (binary version), where feasibility means (N, eρ, VR) admits an orientation
for some eρ. In other words, regardless of the class C we are interested in, we need not
consider all

(
n
r

)
reticulation placements. Instead, we may use an arbitrary cycle basis S of N

(a minimal one, for example) and choose exactly one vertex from each of the r basic cycles,
thereby reducing the search space.

Next, we now turn our attention to Problem 3. By the forbidden structures of tree-child
networks (Figure 1), Lemma 4 is obvious, and then Theorem 5 follows.

▶ Lemma 4. A directed phylogenetic network N is tree-child if every two reticulations of N

are distant at least 3 in the underlying graph of N .

▶ Theorem 5. If (N, eρ, δ−
N ) is an instance of Problem 1 such that dN (u, v) ≥ 3 for any

distinct u, v ∈ {v ∈ V (N) | δ−
N (v) = 2} and if there exists an orientation N⃗ of N that satisfies

the constraint (eρ, δ−
N ), then N⃗ is a tree-child network.

We note that Theorem 5 provides a sufficient condition for tree-child orientability, not a
necessary condition. In fact, a tree-child network can contain a pair of reticulations whose
distance is less than 3 (see Figure 2).
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Figure 2 Left: An instance (N, eρ, δ−
N ) of Problem 1 containing a pair of prescribed reticulations

(i.e. vertices of desired in-degree 2) at distance 2. The squares and circles are the leaves and internal
vertices, respectively. The root edge eρ is highlighted in bold. The number next to each vertex
v indicates its desired in-degree δ−

N (v), and the black vertices are the prescribed reticulations (i.e.
those with desired in-degree 2). Right: The orientation N⃗ for this instance (N, eρ, δ−

N ), which is a
tree-child network. The root ρ inserted into eρ is shown as a unique star vertex.

5 Proposed methods

Theorem 3 allows us to describe a simple exact method for C-Orientation (Problem 2) as
follows. It first computes a cycle basis S = {C1, . . . , Cr} of a given network N , where we
may assume that S is minimal. By using an algorithm given in [1], a minimal cycle basis
of N = (V, E) can be computed in O(|V ||E|2/ log |V |). It then repeatedly picks exactly one
reticulation vertex vi from each basic cycle Ci to specify a set VR of r reticulations, and then
repeatedly solves Problem 1 for all (eρ, VR) until it finds a C-orientation of N . While this
algorithm requires exponential time, the search space is reduced compared to the exponential
time algorithm in [12].

It is also interesting to explore another approach to Problem 3. To obtain a tree-child
orientation, any pair of reticulations must not be adjacent to each other. Furthermore, from
Theorem 5 it seems to make sense to place r reticulations as far apart as possible. This
leads to a heuristic method for Tree-Child Orientation as described in Algorithm 2.
Note that this algorithm should be faster than Algorithm 1 because it computes sets of
reticulations to maximise the sum of the distances between reticulations, and thus avoiding
any exhaustive search. However, the correctness of Algorithm 2 is not guaranteed in general,
so its output “NO” should be interpreted as “Probably NO”. Nevertheless, Theorem 6 ensures
that Algorithm 2 works correctly when r is very small.

▶ Theorem 6. If the input N = (V, E) satisfies r := |E| − |V | + 1 ≤ 2, then Algorithm 2
returns a correct solution to Tree-Child Orientation (Problem 3).

Proof. We may focus on the case of r = 2 as the statement is obvious when r ≤ 1. Then, N

contains exactly two cycles C1 and C2, each of which has at least 3 edges.
When C1 and C2 do not share an edge, N is a level-1 network. This implies that N

is planar and tree-child orientable (see Figure 3). Algorithm 2 computes a minimal cycle
basis {C1, C2} of N , which is unique in this case. Then, Algorithm 2 selects a most distant
pair s∗ = (v∗

1 , v∗
2) in V (C1) × V (C2). Since N is binary, dN (v∗

1 , v∗
2) ≥ 3. We can see that

(N, eρ, δ−
N ) has an orientation N⃗ for the root edge eρ shown in Figure 3. By Theorem 5, N⃗ is

tree-child. Hence, Algorithm 2 can correctly find a tree-child orientation N⃗ of N .
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Algorithm 1 Exact FPT Algorithm for C-Orientation.

Input: An undirected binary phylogenetic network N = (V, E) on X

Output: A tree-child orientation N⃗ of N if one exists, else “NO”
1: Compute the number r := |E| − |V | + 1 of reticulations N⃗ must have
2: Compute a minimal cycle basis S = {C1, . . . , Cr} of N

3: Compute S := {(v1, . . . , vr) ∈ V (C1) × · · · × V (Cr)}
4: for each s = (v1, . . . , vr) ∈ S do
5: for each vertex v ∈ V do
6: Define the desired in-degree δ−

N (v) as δ−
N (v) := 2 if v ∈ {v1, . . . , vr} and δ−

N (v) := 1
otherwise

7: end for
8: repeat
9: Pick any e ∈ E, set eρ := e

10: Run the linear time algorithm for Problem 1 in [12] for the instance (N, eρ, δ−
N )

11: if the algorithm finds the feasible orientation Ñ for (N, eρ, δ−
N ) and Ñ is in C

then
12: return Ñ as a C-orientation N⃗ of N

13: end if
14: until no more edges are left in E

15: end for
16: return “NO”

Algorithm 2 Heuristic Algorithm for Tree-Child Orientation.

Input: An undirected binary phylogenetic network N = (V, E) on X.
Output: A tree-child orientation N⃗ of N if found, else “NO”.

1: Compute the number r := |E| − |V | + 1 of reticulations N⃗ must have
2: Compute a minimal cycle basis S = {C1, . . . , Cr} of N

3: Compute S := {(v1, . . . , vr) ∈ V (C1) × · · · × V (Cr) | dN (vi, vj) ≥ 2}
4: Compute S∗ := {s∗ ∈ S | s∗ = arg maxs∈S f(s) :=

∑
1≤i<j≤r dN (vi, vj)}

5: for each s∗ = (v∗
1 , . . . , v∗

r ) ∈ S∗ do
6: Define the desired in-degree δ−

N (v) of all v ∈ V as δ−
N (v) := 2 if v ∈ {v∗

1 , . . . , v∗
r } and

otherwise δ−
N (v) := 1

7: repeat
8: Pick any e ∈ E, set eρ := e

9: Run the linear time algorithm for Problem 1 in [12] for the instance (N, eρ, δ−
N )

10: if the algorithm finds the feasible orientation Ñ for (N, eρ, δ−
N ) and no vertex of

Ñ has only reticulations as its children then
11: return Ñ as a tree-child orientation N⃗ of N

12: end if
13: until no more edges are left in E

14: end for
15: return “NO”
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When C1 and C2 share an edge, they share exactly one edge because r ≥ 3 otherwise.
Then, as Figure 4 indicates, N has a tree-child orientation N⃗ if and only if at least one of
C1 and C2 has 4 or more edges. When each of C1 and C2 has exactly 3 edges as in Figure
4(a), Algorithm 2 correctly returns “NO”. When |E(C1)| = 3 and |E(C2)| = 4, the algorithm
selects a most distant pair s∗ = (v∗

1 , v∗
2) in V (C1) × V (C2) as in Figure 4(b). Although

dN (v∗
1 , v∗

2) = 2 holds, the algorithm can insert the root ρ into an appropriate edge eρ ∈ E,
making their distance from 2 into 3. When |E(C1)| ≥ 4 and |E(C2)| ≥ 4 as in Figure 4(c),
dN (v∗

1 , v∗
2) ≥ 3. Hence, when a tree-child orientation N⃗ of N exists, Algorithm 2 correctly

outputs it. ◀

𝐶! 𝐶" 𝐶! 𝐶"

Figure 3 Proof of Theorem 6 (the case when two cycles are edge-disjoint). The star is the root ρ.
The black vertices are a pair of reticulations, v∗

1 and v∗
2 , that maximises the sum of their distances.

𝐶!

𝐶"

(a) (b) (c)
No 

tree-child
orientation
exists.

𝐶!

𝐶"

𝐶!

𝐶"

𝐶!

𝐶"

𝐶!

𝐶"

Figure 4 Proof of Theorem 6 (when two cycles are not edge-disjoint). The star is the root ρ.
The black vertices are a pair of reticulations, v∗

1 and v∗
2 , that maximises the sum of their distances

in each case. a) when both C1 and C2 are 3-cycles, N must be a NO instance; b) c) YES instance.

Theorem 7 states that Algorithm 1 is FPT both in the reticulation number r and the
size c of longest basic cycles in S used in the computation.

▶ Theorem 7. Algorithm 1 solves Tree-Child Orientation (Problem 3) in
O(cr · |V ||E|) = O(cr · |V |2) time, where r is the reticulation number of N = (V, E)
and c is the size of largest cycles in a minimal cycle basis S chosen at Line 2.

Proof. Recalling a minimal cycle basis S of N can be computed in O(|V ||E|2/ log |V |) time
by the algorithm in [1], we know that Line 2 takes O(|V ||E|2/ log |V |) time. Line 5–7 takes
O(|V |) time for each s ∈ S. Also, since one can check in O(|V |) time whether or not Ñ is in
the class C of tree-child networks, Line 8–14 takes O(|E| × (|V | + |V |)) = O(|V ||E|) time for
each s ∈ S. Line 5–14 needs to be repeated |S| = O(|V (C1)| × · · · × |V (Cr)|) = O(cr) times.
Therefore, Line 4–15 can be done in O(cr · |V ||E|) time. Since N is binary, O(|V |) = O(|E|)
holds. Thus, Algorithm 1 runs in O(cr · |V |2) time. ◀

Theorem 7 implies that the unparameterised worst-case complexity of Algorithm 1 is
O(|V |r+2). This complexity is equivalent to that of the exponential time method (Algorithm 2
in [12]) that performs O(|V ||E|) time calculations for all

(|V |
r

)
= O(|V |r) reticulation

placements. Although two FPT algorithms for a special case of C-Orientation were
proposed in [12], Algorithm 1 differs in its parameterisation from them. Specifically, our
Algorithm 1 is parameterised by r and c, while the FPT algorithms in [12] are parameterised
by r and by the level of N , respectively.
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Theorem 7 also shows that the size of search space depends on the choice of S at Line 2
of Algorithm 1 although c never exceeds the size of longest cycles in N (the same applies to
Line 2 of Algorithm 2). To illustrate this, consider two minimal cycle bases S = {C1, C2, C3}
with |V (C1)| = |V (C2)| = |V (C3)| = 4 and S ′ = {C ′

1, C ′
2, C ′

3} where |V (C ′
1)| = 3, |V (C ′

2)| = 4
and |V (C ′

3)| = 5 (note that they have the same total length 4 + 4 + 4 = 3 + 4 + 5). When
the former S is selected, the number of elements of S at Line 3 of either algorithm is
|V (C1)| × |V (C2)| × |V (C3)| = 43, whereas |S| = |V (C ′

1)| × |V (C ′
2)| × |V (C ′

3)| = 3 × 4 × 5
for the latter S ′.

6 Experiments

We implemented our two proposed methods (Algorithms 1 and 2) and the existing exponential
time algorithm described by Huber et al. (Algorithm 2 in [12]) using Python 3.11.6. In
the implementation of Algorithms 1 and 2, we used the minimum_cycle_basis function
from the Python package networkx to compute a minimal cycle basis. We note that the
algorithm implemented in networkx is not the O(|V ||E|2/ log |V |) algorithm given in [1]
but the O(|E|3 + |E||V |2 log |V |) algorithm given in Section 7.2 of [6]. Undirected binary
phylogenetic networks were generated as test data using a method described in Appendix.
The source code, test data, and the program used to generate the data are available at
https://github.com/hayamizu-lab/tree-child-orienter. The full details of the results
can be found at https://github.com/hayamizu-lab/tree-child-orienter/tree/main/
results.

6.1 Experiment 1: Execution time

In Experiment 1, we compared the execution times of the following methods: the existing
exponential time algorithm (Algorithm 2 in [12]), Algorithm 1, and Algorithm 2 on 20
hand-picked tree-child orientable networks with 10 leaves. The 20 networks consisted of
five samples each for reticulation numbers r = 2, 3, 4 and 5. Due to the time-consuming
nature of the existing method, conducting experiments with a larger number of samples
was infeasible. The experiment was performed on a MacBook Air (CPU: Intel Core i5,
1.6GHz, 8GB memory). We note that the hardware specification in Experiment 1 differs
from Experiments 2 and 3, but this does not undermine the validity of this study as we do
not compare results across experiments.

The results are summarised in Figure 5. Although both Algorithm 2 in [12] and Algorithm 1
require exponential time in general, Algorithm 1 is expected to be faster in practice due
to its smaller search space. Indeed, Algorithm 1 was significantly faster than the existing
exponential time method. We also confirmed that Algorithm 2 was faster than Algorithm 1.

6.2 Experiment 2: Accuracy for small graphs

In Experiment 2, we evaluated the accuracy and execution time of Algorithms 1 and 2
on the 289 networks with 10 leaves and 1 to 5 reticulations in Table 4. The experiment
was performed on a MacBook Pro (CPU: Apple M2 Pro, clock speed 3.49GHz, memory
16GB). The tree-child orientability of the sample graphs was determined using the existing
exponential time algorithm (Algorithm 2 in [12]). Out of 289 instances, 268 were tree-child
orientable (YES instances) and 21 were not (NO instances).
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Figure 5 Results of Experiment 1. Comparison of the execution time of the three methods for
tree-child orientable networks with 10 leaves. Our exponential time algorithm (Algorithm 1) has
been shown to be significantly faster than the existing exponential time algorithm described in [12].

The accuracy and execution time of the two methods are summarised in Table 1. The
correctness of Algorithm 1 was empirically confirmed, while being much faster than the
existing method in [12]. In accordance with Theorem 6, Algorithm 2 returned a correct
solution whenever r ≤ 2, but in practice, it still worked correctly for most cases with
r ≤ 4, with a much shorter running time than Algorithm 1 for both YES and NO instances.
Algorithm 2 often failed to find a tree-child orientation for YES instances with r = 5.

6.3 Experiment 3: Accuracy for large graphs
In Experiment 3, we evaluated the performance of Algorithms 1 and 2 on the 471 larger
sample networks with 20 leaves and 1 to 9 reticulations in Table 4. The experiment was
performed on the same MacBook Pro used in Experiment 2. Since Algorithm 2 in [12]
became infeasible for most cases with r ≥ 6, we compared Algorithms 1 and 2 based on the
number of tree-child orientations found and the time taken to find one.

The results are summarised in Table 2. As reticulation number r increased, the ability of
Algorithm 2 to find tree-child orientations decreased monotonically. By contrast, Algorithm 1
was still able to find a tree-child orientation for many instances with large r. It generally
takes a long time, but sometimes it can find a tree-child orientation in a practical time.

7 Discussion of the limitations of Algorithm 2

Algorithm 2 is very fast for both YES and NO instances, but interestingly, it becomes
inaccurate as the reticulation number r increases. It would be useful to analyse the possible
causes of such failures.

The first remark is that the algorithm does not necessarily find a reticulation placement
that maximises the sum of the pairwise distances, because it searches for an optimal placement
for a fixed minimal cycle basis S. More precisely, the choice of S can affect the maximum
value f(s∗) of the objective function. For example, when the algorithm selects the minimal
cycle basis S = {C1, . . . , C8} as shown on the left of Figure 6, an optimal reticulation
placement s∗ attains f(s∗) = 130. On the other hand, when the cycle C8 is replaced as shown
on the right, then f(s∗) = 129. This observation suggests that if our goal is to maximise the
sum of the distances between reticulations, then we need to carefully select a minimal cycle
basis S.
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Table 1 Results of Experiment 2. The input networks have 10 leaves. #YES (resp. #NO) is
the number of tree-child orientable (resp. non-tree-child orientable) instances among the generated
networks with each reticulation number r. #YES and #NO have been verified using the existing
exponential time algorithm in [12]. The execution time here is the time taken to find a tree-child
orientation or to output “NO”.

Algorithm 1 Algorithm 2

r
#YES Accuracy Execution Time (sec) Accuracy Execution Time (sec)
#NO Mean Min Max Mean Min Max

1 170 170/170
(100%) 0.002 0.001 0.004 170/170

(100%) 0.002 0.001 0.004

0 N/A N/A N/A N/A N/A N/A N/A N/A

2 52 52/52
(100%) 0.011 0.002 0.063 52/52

(100%) 0.004 0.002 0.018

5 5/5
(100%) 0.062 0.061 0.064 5/5

(100%) 0.013 0.007 0.036

3 24 24/24
(100%) 0.081 0.004 0.497 24/24

(100%) 0.007 0.005 0.012

7 7/7
(100%) 0.539 0.232 1.173 7/7

(100%) 0.021 0.011 0.047

4 17 17/17
(100%) 0.741 0.008 3.735 16/17

(94%) 0.026 0.013 0.056

6 6/6
(100%) 3.918 2.428 7.650 6/6

(100%) 0.048 0.020 0.112

5 4 4/4
(100%) 14.382 1.481 48.980 1/4

(25%) 0.153 0.133 0.173

4 4/4
(100%) 23.340 13.892 39.959 4/4

(100%) 0.115 0.088 0.156

Table 2 Results of Experiment 3. The input networks have 20 leaves. #Graph is the number of
generated networks with each reticulation number r. #YES is the number of YES instances among
those networks, which is equal to the number of tree-child orientations found by Algorithm 1. #TC
is the number of tree-child orientations found by Algorithm 2. The execution time here is the time
taken to find a tree-child orientation.

Algorithm 1 Algorithm 2

r #Graph #YES Execution time (sec) #TC Execution Time (sec)
Mean Min Max Mean Min Max

1 163 163 0.005 0.004 0.025 163 0.005 0.003 0.025
2 108 107 0.032 0.006 0.152 107 0.009 0.006 0.064
3 77 75 0.323 0.010 2.312 74 0.019 0.010 0.081
4 49 44 2.352 0.014 13.404 40 0.067 0.031 0.122
5 23 18 11.485 0.031 52.339 15 0.414 0.125 1.452
6 20 13 226.701 0.026 966.848 5 3.360 1.607 5.327
7 16 12 2732.563 1.190 23761.347 4 31.745 11.619 61.007
8 10 7 23155.714 1115.183 67313.690 1 942.973 942.973 942.973
9 5 3 229788.111 20176.763 623017.346 0 N/A N/A N/A
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Figure 6 Discussion of the objective function f of Algorithm 2. This network N has multiple
minimal cycle bases S with different values of f(s∗). Different basic cycles are highlighted in different
colours, and the black vertices indicate an optimal reticulation placement for each minimal cycle basis.
The reticulation set in the left figure achieves f(s∗) = 130. On the other hand, the placement in the
right figure, where C8 is replaced and the remaining cycles are the same, only attains f(s∗) = 129.

However, more importantly, we note that maximising the sum of the pairwise distances of
the reticulations is not always advantageous for finding a tree-child orientation. For example,
the graph on the left of Figure 7 has a tree-child orientation if the four reticulations are
placed as shown on the right. However, by maximising the sum of the distances of the
reticulations, Algorithm 2 has to select the reticulation placement with f(s∗) = 20 as on the
left of Figure 7. Then, the algorithm will end up with returning “NO” because there is no
tree-child orientation for this reticulation placement, regardless of the choice of root edge
eρ. The placement on the right has f(s) = 19, which is not maximum but does allow for a
tree-child orientation.
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Figure 7 An example of N that has a tree-child orientation but for which Algorithm 2 fails. For
any s∗ ∈ S∗ maximising f with f(s∗) = 20, (N, eρ, δ−

N ) is not tree-child orientable, regardless of the
choice of root edge eρ. However, choosing s ∈ S \ S∗ as shown on the right, with f(s) = 19, yields a
tree-child orientable (N, eρ, δ−

N ).

8 Conclusion and future work

The C-Orientation problem, which asks whether a given undirected binary phylogenetic
network can be oriented to a directed phylogenetic network of a desired class C, is an
important computational problem in phylogenetics. The complexity of this problem remains
unknown for many network classes C, including the class of binary tree-child networks. A
simple exponential time algorithm for C-Orientation was provided in [12]. FPT algorithms
for a special case of the problem were also proposed in [12], but their practical application is
limited due to the intricate nature of the procedures and the challenges in implementation,
despite the constraints imposed on C. Additionally, no study has explored heuristic approaches
to solve C-Orientation in practice, even for a particular class C such as tree-child networks.
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In this paper, we have proposed a simple, easy to implement, practical exact FPT
algorithm (Algorithm 1) for C-Orientation and a heuristic algorithm for Tree-Child
Orientation (Algorithm 2) based on Theorem 3. They improve the search space of the
existing simple exponential time algorithm by using a cycle basis to reduce the number of
possible reticulation placements. Our experiments showed that Algorithm 1 is significantly
faster in practice than a state-of-the-art exponential time algorithm in [12]. Algorithm 2
is even faster, with a trade-off between the accuracy and the reticulation number. Further
research using larger and more diverse datasets could provide more insight into the strengths
and limitations of the proposed methods. Their usefulness and effectiveness should also be
tested in real-world data analysis.

Although we have used Tree-Child Orientation as a case study for performance
evaluation, Algorithm 1 is applicable to orientation problems for classes C other than tree-child
networks. For example, orientation for stack-free networks [17] or tree-based networks [9] is
expected to be a good application, because one can quickly decide whether a given network
belongs to such a class. There are several possible ways to improve the speed of Algorithm 1.
For example, making reticulation pairs non-adjacent, as in Algorithm 2, is one of the quick
improvements specifically for Tree-Child Orientation. Further speeding up Algorithm 1
and extending it to non-binary networks are topics for future research.

Improving the accuracy of Algorithm 2 is also an interesting direction for future research.
As discussed in Section 7, there is clearly room for improvement in the current objective
function. Introducing a more suitable objective function may lead to the development of fast
and accurate tree-child orientation heuristics.
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A Algorithm for generating undirected binary phylogenetic networks

To create undirected binary phylogenetic networks on X for the experiments, we used a simple
method explained below (see Table 3 and Figure 8 for illustrations). The code can be found at
https://github.com/hayamizu-lab/tree-child-orienter/tree/main/Appendix. This
method uses the idea of the coalescent model which is a popular approach for simulating
phylogenetic trees.

Given a set X of n present-day species, we trace back n lineages from the present to the
past. At each step, lineages can either split with probability Pr or coalesce with probability
(1 − Pr). If two lineages coalesce, a tree vertex is created, and the set of extant taxa is
updated. If a lineage splits, a reticulation is created, and the set of extant taxa is updated.
This process continues until all lineages coalesce into a single vertex, the root. The resulting
graph becomes a rooted directed binary phylogenetic network on X after the vertices of
in-degree and out-degree 1 are suppressed and the necessary vertex and arc are added to
resolve the nonbinary vertices. It can then be converted to an undirected phylogenetic
network on X after suppressing the root and by ignoring all arc orientations and non-leaf
vertex labels.

By adjusting the value of Pr, we can generate phylogenetic networks with various
reticulation numbers. When Pr = 0, no reticulations occur, and the generated networks
are guaranteed to be phylogenetic trees. If Pr has been set a larger value, the algorithm
tends to produce graphs having more reticulations, as shown in Table 4. Thus, we generated
undirected binary phylogenetic networks on X with varying levels of complexity, and selected
suitable ones in each computational experiment.

For Experiments 2 and 3, we generated 1200 various undirected binary phylogenetic
networks on X. The method requires the number |X| of leaves and reticulation probability
parameter Pr to be specified. Table 4 summarises the breakdown of the generated graphs.

https://archive.softwareheritage.org/swh:1:dir:666a10c01c14741702fddd5f8704b30bc90299e5;origin=https://github.com/hayamizu-lab/tree-child-orienter;visit=swh:1:snp:67f2d9e6d66bf28b5e9be8d995481869303a720e;anchor=swh:1:rev:cf8b8fb2aa30aaeaae9c3f98c50b29ff98078a46
https://github.com/hayamizu-lab/tree-child-orienter
https://github.com/hayamizu-lab/tree-child-orienter/tree/main/Appendix
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Table 3 An illustration of the graph generation method used in this study (see also Figure 8).

Step Taxon set Selected lineage(s) Event New taxa New arcs

1 {1, 2, 3, 4} 3,4 Coalesce 5 (5, 3), (5, 4)
2 {1, 2, 5} 2 Split 6,7 (6, 2), (7, 2)
3 {1, 5, 6, 7} 1,6 Coalesce 8 (8, 1), (8, 6)
4 {5, 7, 8} 7,8 Coalesce 9 (9, 7), (9, 8)
5 {5, 9} 5 Split 10,11 (10, 5), (11, 5)
6 {9, 10, 11} 9,10 Coalesce 12 (12, 9), (12, 10)
7 {11, 12} 11,12 Coalesce 13 (13, 11), (13, 12)
8 {13} - - - -
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Figure 8 An illustration of how the process in Table 3 yields a directed binary phylogenetic
network on X = {x1, x2, x3, x4} and how it is converted to an undirected one.

Table 4 Summary of the undirected binary phylogenetic networks on X generated before the
experiments.

Number r of reticulations
(|X|, Pr) 0 1 2 3 4 5 6 7 8 9 10 ≤ Total

(10, 0.05) 143 48 8 1 0 0 0 0 0 0 0 200
(10, 0.1) 99 67 20 9 3 2 0 0 0 0 0 200
(10, 0.15) 66 55 29 21 20 6 1 0 1 0 1 200
(20, 0.05) 73 82 31 10 3 0 0 0 1 0 0 200
(20, 0.1) 37 62 40 29 16 5 2 6 2 1 0 200
(20, 0.15) 14 19 37 38 30 18 18 10 7 4 5 200

Total 432 333 165 108 72 31 21 16 11 5 6 1200
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