
A Sound Type System for Secure Currency Flow
Luca Aceto #

Reykjavík University, Iceland

Daniele Gorla #

Sapienza, Università di Roma, Italy

Stian Lybech #

Reykjavík University, Iceland

Abstract
In this paper we focus on TinySol, a minimal calculus for Solidity smart contracts, introduced
by Bartoletti et al. We start by rephrasing its syntax (to emphasise its object-oriented flavour)
and give a new big-step operational semantics. We then use it to define two security properties,
namely call integrity and noninterference. These two properties have some similarities in their
definition, in that they both require that some part of a program is not influenced by the other part.
However, we show that the two properties are actually incomparable. Nevertheless, we provide a
type system for noninterference and show that well-typed programs satisfy call integrity as well;
hence, programs that are accepted by our type system satisfy both properties. We finally discuss
the practical usability of the type system and its limitations by means of some simple examples.

2012 ACM Subject Classification Theory of computation → Program analysis; Theory of computa-
tion → Type structures

Keywords and phrases smart contracts, call integrity, noninterference, type system

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.1

Related Version Full Version: https://arxiv.org/abs/2405.12976 [1]

Funding Luca Aceto: Supported by the Icelandic Research Fund Grant No. 218202-05(1-3).
Stian Lybech: Supported by the Icelandic Research Fund Grant No. 218202-05(1-3).

Acknowledgements We thank the anonymous reviewers for their constructive attitude and for
the fruitful comments that helped us improve our paper. Luca Aceto and Stian Lybech thank
Mohammad Hamdaqa for sharing his expertise with them during extensive discussions on safety
properties for smart contracts, which helped shape the research agenda for the work reported in this
paper.

1 Introduction

The classic notion of noninterference [12] is a well-known concept that has been applied in a
variety of settings to characterise both integrity and secrecy in programming. In particular,
this property has been defined by Volpano et al. [28] in terms of a lattice model of security
levels (e.g. “High” and “Low”, or “Trusted” and “Untrusted”); the key point being that
information must not flow from a higher to a lower level. Thus, the lower levels are unaffected
by the higher ones, and, conversely, the higher levels are “noninterfering” with the lower
ones.

Ensuring noninterference seems particularly relevant in a setting where not only informa-
tion, but also currency, flows between programs. This is a core feature of smart contracts,
which are programs that run atop a blockchain and are used to manage financial assets
of users, codify transactions, and implement custom tokens; see e.g. [24] for an overview
of the architecture. The code of a smart contract resides on the blockchain itself, and is
therefore both immutable and publicly visible. This is one of the important ways in which the
“smart-contract programming paradigm” differs from conventional programming languages.

© Luca Aceto, Daniele Gorla, and Stian Lybech;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 1; pp. 1:1–1:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca@ru.is
https://orcid.org/0000-0002-2197-3018
mailto:gorla@di.uniroma1.it
https://orcid.org/0000-0001-8859-9844
mailto:stian21@ru.is
https://orcid.org/0000-0001-8219-2285
https://doi.org/10.4230/LIPIcs.ECOOP.2024.1
https://arxiv.org/abs/2405.12976
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 A Sound Type System for Secure Currency Flow

1 contract X { contract Y {
2
3 field called := F; deposit (x) {
4 transfer (z) { x. transfer (this):0
5 if ¬called ∧ this . balance ≥ 1 }
6 then z. deposit (this):1; }
7 this . called := T;
8 else skip
9 }

10 }

Figure 1 Illustration of reentrancy written in the language TinySol.

Public visibility means that vulnerabilities in the code can be found and exploited by a
malicious user. Moreover, if a vulnerability is discovered, immutability prevents the contract
creator from correcting the error. Thus, it is obviously desirable to ensure that a smart
contract is safe and correct before it is deployed onto the blockchain.

The combination of immutability and visibility has led to huge financial losses in the
past (see, e.g., [2, 8, 19, 20, 26]). A particularly spectacular example was the infamous
DAO-attack on the Ethereum platform in 2016, which led to a loss of 60 million dollars [8].
This was made possible because a certain contract (the DAO contract, storing assets of users)
was reentrant, that is, it allowed itself to be called back by the recipient of a transfer before
recording that the transfer had been completed.

Reentrancy is a pattern based on mutual recursion, where one method f calls another
method g whilst also transferring an amount of currency along with the call. If g then
immediately calls f back, it may yield a recursion where f will keep transferring funds to
g. We can illustrate the problem as in Figure 1, using a simple, imperative and class-based
model language called TinySol [3]. This model language, which we shall formally describe
in Section 2, captures some of the core features of the smart-contract language Solidity [10],
which is the standard high-level language used to write smart contracts for the Ethereum
platform. A key feature of this language is that contracts have an associated balance,
representing the amount of currency stored in each contract, which cannot be modified
except through method calls to other contracts. Each method call has an extra parameter,
representing the amount of currency to be transferred along with the call, and a method call
thus represents a (potential) outgoing currency flow.

In Figure 1, X.transfer(z) first does a sanity check to ensure that it has not already
been called and that the contract contains sufficient funds, which are stored in the balance
field. Then it calls z.deposit(this) and transfers 1 unit of currency along with the call,
where z is the address received as parameter. However, suppose the address received is Y.
Then Y.deposit(x) immediately calls X.transfer(z) back, with this as actual parameter;
this yields a mutual recursion, because the field called will never be set to T. A transaction
that invokes X.transfer(Y) with any number of currency units will trigger the recursion.

The problem is that currency cannot be transferred without also transferring control
to the recipient, and the execution of X.transfer(z) comes to depend on unknown and
untrusted code in the contract residing at the address received as the actual parameter.
Simply switching the order of lines 6 and 7 in X solves the problem in this particular case,
but it might not always be possible to move external calls to the last position in a sequence
of statements. Furthermore, the execution of a function f can also depend on external fields,
and not only on external calls. Thus, reentrancy is not just a purely syntactic property.

L. Aceto, D. Gorla, and S. Lybech 1:3

The property of reentrancy in Ethereum smart contracts has been formally characterised
by Grishchenko et al. in [13]. Specifically, they define another property, named call integrity,
which implies the absence of reentrancy (see [13, Theorem 1]) and has been identified in the
literature as one of the safety properties that smart contracts should have. Informally, this
property requires any call to a method in a “trusted” contract (say, X) to yield the exact
same sequence of currency flows (i.e. method calls) even if some of the other “untrusted”
contracts (or their stored values) are changed. In a sense, the code and values of the other
contracts, which could be controlled by an attacker, must not be able to affect the currency
flow from X.

A disadvantage of the definition of call integrity given in [13] is that it relies on a universal
quantification over all possible execution contexts, which makes it hard to be checked in
practice. However, call integrity seems intuitively to be related to noninterference, in the
sense that both stipulate that changes in one part of a program should not have an effect upon
another part. Even though we discover that the two properties are incomparable, one might
hope to be able to apply techniques for ensuring noninterference to also capture call integrity.
Specifically, Volpano et al. [28] show that noninterference can be soundly approximated using
a type system. In the present paper, we shall therefore create an adaptation of this type
system for secure-flow analysis to the setting of smart contracts and show that the resulting
type system also captures call integrity.

To recap, our main contributions in this paper are: (1) a thorough study of the connections
between call integrity and noninterference for smart contracts written in the language
TinySol, and (2) a sound type system guaranteeing (noninterference and) call integrity
for programs written in that language. We choose TinySol because it provides a minimal
calculus for Solidity contracts and thus allows us to focus on the gist of our main contributions
in a simple setting. In doing this, we also provide a simpler operational semantics for this
language; this can be considered a third contribution of our work.

The paper is organised as follows: In Section 2, we describe a revised version of the
smart-contract language TinySol [3]. In Section 3, we adapt the definition of call integrity
from [13] and of noninterference from [25] to this language; we then show that these two
desirable properties are actually incomparable. Nevertheless, there is an overlap between
them. In Section 4, we create a type system for ensuring noninterference in TinySol, along
the lines of Volpano et al. [28], and prove a type soundness result (Theorems 12–15). Our
main result is Theorem 19, which shows that well-typedness provides a sound approximation
to both noninterference and call integrity. This is used on a few examples in Section 5, where
we also discuss the limitations of the type system. We survey some related work in Section 6
and conclude the paper with some directions for future research in Section 7. All proofs and
some technical details are omitted from this paper for space reasons; they can be found in [1].

2 The TinySol language

In [3], Bartoletti et al. present the TinySol language, a standard imperative language (similar
to Dijkstra’s While language [18]), extended with classes (contracts) and two constructs:
(1) a throw command, representing a fatal error, and (2) a procedure call, with an extra
parameter n, denoting an amount of some digital asset, which is transferred along with the
call from the caller to the callee. TinySol captures (some of) the core features of Solidity,
and, in particular, it is sufficient to represent reentrancy phenomena. In this section, we
present a version of TinySol which has been adapted to facilitate our later developments of
the type system. Compared to the presentation in [3], we have, in particular, added explicit
declarations of variables (local to the scope of a method) and fields (corresponding to the
keys in the original presentation) to have a place for type annotations in the syntax.

ECOOP 2024

1:4 A Sound Type System for Secure Currency Flow

DF ∈ DecF ::= ϵ
∣∣ field p := v;DF

DM ∈ DecM ::= ϵ
∣∣ f(x̃) { S } DM

DC ∈ DecC ::= ϵ
∣∣ contract X {

field balance := n; DF

send() { skip } DM

} DC

m ∈ MVar ::= this
∣∣ sender

∣∣ value
L ∈ LVal ::= x

∣∣ this.p

e ∈ Exp ::= v
∣∣ x

∣∣ m | e.balance
∣∣ e.p

∣∣ op(ẽ)
S ∈ Stm ::= skip

∣∣ throw
∣∣ var x := e in S

∣∣ L := e
∣∣ S1;S2∣∣ if e then ST else SF

∣∣ while e do S
∣∣ e1.f(ẽ):e2

v ∈ Val ::= N ∪ B ∪ ANames

where x, y ∈ VNames (variable names), p, q ∈ FNames (field names),
X, Y ∈ ANames (address names), f, g ∈ MNames (method names)

Figure 2 The syntax of TinySol.

2.1 Syntax

The syntax of TinySol is given in Figure 2, where we use the notation ·̃ to denote (possibly
empty) sequences of items. The set of values, ranged over by v, is formed by the sets of
integers N, ranged over by n, booleans B = { T, F }, ranged over by b, and address names
ANames, ranged over by X, Y .

We introduce explicit declarations for fields DF , methods DM , and contracts DC. The
latter also encompasses declarations of accounts: an account is a contract that contains only
the declarations of a special field balance and of a single special method send(), which does
nothing and is used only for transferring funds to the account. By contrast, a contract usually
contains other declarations of fields and methods. For the sake of simplicity, we make no
syntactic distinction between an account and a contract but, for the purpose of distinguishing,
we can assume that the set ANames is split into contract addresses and account addresses.

We have four “magic” keywords in our syntax:
balance (type int), a special field recording the current balance of the contract (or
account). It can be read from, but not directly assigned to, except through method
calls. This ensures that the total amount of currency “on-chain” remains constant during
execution.
value (type int), a special variable that is bound to the currency amount transferred
with a method call.
sender (type address), a special variable that is always bound to the address of the
caller of a method.
this (type address), a special variable that is always bound to the address of the contract
containing the currently executing method.

The last three of these are local variables, and we collectively refer to them as “magic variables”
m ∈ MVar. The declaration of variables and fields are very alike: the main difference is that
variable bindings will be created at runtime (and with scoped visibility), hence we can let the
initial assignment be an expression e; whilst the initial assignment to fields must be values v.

L. Aceto, D. Gorla, and S. Lybech 1:5

The core part of the language is the declaration of expressions e and statements S, that are
almost the same as in [3]. The main differences are: (1) we introduce fields p in expressions,
instead of keys; (2) we explicitly distinguish between (global) fields and (local) variables,
where the latter are declared with a scope limited to a statement S; and (3) we introduce
explicit lvalues L, to restrict what can appear on the left-hand side of an assignment (in
particular, this ensures that the special field balance can never be assigned to directly).

As in the original presentation of TinySol, we can also use our new formulation of the
language to describe transactions and blockchains. A transaction is simply a call, where the
caller is an account A, rather than a contract. We denote this by writing A->X.f(ṽ):n,
which expresses that the account A calls the method f on the contract (residing at address)
X, with actual parameters ṽ, and transferring n amount of currency with the call. We can
then model blockchains as follows:

▶ Definition 1 (Syntax of blockchains). A blockchain B ∈ B is a list of initial contract
declarations DC, followed by a sequence of transactions T ∈ Tr:

B ::= DC T T ::= ϵ
∣∣ A->X.f(ṽ):n,T

Notationally, a blockchain with an empty DC will be simply written as the sequence of
transactions.

2.2 Big-step semantics
To define the semantics, we need some environments to record the bindings of variables
(including the three magic variable names this, sender and value), fields, methods, and
contracts. We define them as sets of partial functions as follows:

▶ Definition 2 (Binding model). We define the following sets of partial functions:

envV ∈ EnvV : VNames ∪ MVar ⇀ Val envS ∈ EnvS : ANames ⇀ EnvF

envF ∈ EnvF : FNames ∪ { balance } ⇀ Val envT ∈ EnvT : ANames ⇀ EnvM

envM ∈ EnvM : MNames ⇀ VNames∗ × Stm

We regard each environment envX , for any X ∈ { V, F, M, S, T }, as a list of pairs (d, c)
where d ∈ dom (envX) and c ∈ codom (envX). The notation envX[d 7→ c] denotes the update
of envX mapping d to c. We write env∅

X for the empty environment. To simplify the notation,
when two or more environments appear together, we shall use the convention of writing the
subscripts together (e.g. envMF instead of envM , envF).

Our binding model consists of two environments: a method table envT , which maps
addresses to method environments, and a state envS , which maps addresses to lists of fields
and their values. Thus, for each contract, we have the list of methods it declares and its
current state; of course, the method table is constant, once all declarations are performed,
whereas the state will change during the evaluation of a program.

2.2.1 Declarations
The semantics of declarations builds the field and method environments, envF and envM ,
and the state and method table envS and envT . We give the semantics in a classic big-step
style; thus, transitions are of the form ⟨DX, envX⟩ →DX env′

X for X ∈ { F, M, C, S, T }, and
their defining rules are given in Figure 3. Notationally, here and in what follows, we denote

ECOOP 2024

1:6 A Sound Type System for Secure Currency Flow

[Dec-F1] ⟨ϵ, envF ⟩ →DF envF

[Dec-M1] ⟨ϵ, envM ⟩ →DM envM

[Dec-C1] ⟨ϵ, envST ⟩ →DC envST

[Dec-C2]
〈
DF, env∅

F

〉
→DF envF

〈
DM, env∅

M

〉
→DM envM ⟨DC, envST ⟩ →DC env′

ST

⟨contract X { DF DM } DC, envST ⟩ →DC (X, envF) : env′
S , (X, envM) : env′

T

[Dec-F2] ⟨DF, envF ⟩ →DF env′
F

⟨field p := v;DF , envF ⟩ →DF (p, v) : env′
F

[Dec-M2] ⟨DM, envM ⟩ →DM env′
M

⟨f(x̃) { S } DM, envM ⟩ →DM (f, (x̃, S)) : env′
M

Figure 3 Semantics of declarations.

[Exp-Var]k ∈ dom (envV) envV (k) = v

envSV ⊢ k →e v

[Exp-Val]envSV ⊢ v →e v

[Exp-Op]envSV ⊢ ẽ →e ṽ op(ṽ) →op v

envSV ⊢ op(ẽ) →e v

[Exp-Field]envSV ⊢ e →e X q ∈ dom (envS(X)) envS(X)(q) = v

envSV ⊢ e.q →e v

Figure 4 Semantics of expressions.

with e : l the list that results from prepending an element e to the list l. We assume that
field and method names are distinct within each contract; therefore, the rules in Figure 3
define partial, finite functions.

2.2.2 Expressions
Figure 4 gives the semantics of expressions e. Expressions have no side effects, so they cannot
contain method calls, but they can access both local variables and fields of any contract.
Thus expression evaluations are of the form envSV ⊢ e →e v, i.e. they are relative to the
state and variable environments. We use k to range over this, sender, value and variables
x (i.e. k ∈ dom (envV)), and q to range over balance and fields p (i.e. q ∈ dom (envF)).

We do not give explicit rules for the boolean and integer operators subsumed under
op, but simply assume that they can be evaluated to a unique value by some semantics
op(ṽ) →op v.1 It follows that each expression evaluates to a unique value relative to some
given state and variable environments. Note that we assume that no operation is defined
for addresses X, so we disallow any form of pointer arithmetic.

2.2.3 Statements
The semantics of statements describes the actual execution steps of a program. In Figure 5
we give the semantics in big-step style, where a step describes the execution of a statement
in its entirety. Statements can read from the method table and they can modify the state
(i.e., the variable and field bindings). The result of executing a statement is a new state, so
transitions must here be of the form envT ⊢ ⟨S, envSV ⟩ →S env′

SV (recall that env′
SV stands

for env′
S , env′

V), since both the field values in envS and the values of the local variables in
envV may have been modified by the execution of S.

1 To simplify the definitions, we assume that all operations are total. If this was not the case, we would
have needed some exception handling for partial operations (e.g., division by zero).

L. Aceto, D. Gorla, and S. Lybech 1:7

[BS-Skip]envT ⊢ ⟨skip, envSV ⟩ →S envSV

[BS-Seq]envT ⊢ ⟨S1, envSV ⟩ →S env′′
SV envT ⊢ ⟨S2, env′′

SV ⟩ →S env′
SV

envT ⊢ ⟨S1;S2, envSV ⟩ →S env′
SV

[BS-If] envSV ⊢ e →e b envT ⊢ ⟨Sb, envSV ⟩ →S env′
SV

envT ⊢ ⟨if e then ST else SF , envSV ⟩ →S env′
SV

(b ∈ { T, F })

[BS-LoopT]

envSV ⊢ e →e T envT ⊢ ⟨S, envSV ⟩ →S env′′
SV

envT ⊢ ⟨while e do S, env′′
SV ⟩ →S env′

SV

envT ⊢ ⟨while e do S, envSV ⟩ →S env′
SV

[BS-LoopF] envSV ⊢ e →e F
envT ⊢ ⟨while e do S, envSV ⟩ →S envSV

[BS-DecV]

x /∈ dom (envV) envSV ⊢ e →e v

envT ⊢ ⟨S, envS , (x, v) : envV ⟩ →S env′
S , (x, v′) : env′

V

envT ⊢ ⟨var x := e in S, envSV ⟩ →S env′
SV

[BS-AssV] x ∈ dom (envV) envSV ⊢ e →e v

envT ⊢ ⟨x := e, envSV ⟩ →S envS , envV [x 7→ v]

[BS-AssF]envV (this) = X envS(X) = envF p ∈ dom (envF) envSV ⊢ e →e v

envT ⊢ ⟨this.p := e, envSV ⟩ →S envS[X 7→ envF [p 7→ v]] , envV

[BS-Call]

envSV ⊢ e1 →e Y envS(Y) = envY
F (envT (Y))(f) = (x̃, S)

|x̃| = |ẽ| = k envSV ⊢ ẽ →e ṽ envSV ⊢ e2 →e n

envV (this) = X envS(X) = envX
F n ≤ envX

F (balance)
env′′

S = envS

[
X 7→ envX

F [balance -= n]
][

Y 7→ envY
F [balance += n]

]
env′′

V = (this, Y) : (sender, X) : (value, n) : (x1, v1) : . . . : (xk, vk) : env∅
V

envT ⊢ ⟨S, env′′
SV ⟩ →S env′

SV

envT ⊢ ⟨e1.f(ẽ):e2, envSV ⟩ →S env′
S , envV

Figure 5 Big-step semantics of statements in TinySol.

Most of the rules are straightforward. The rule [BS-DecV] is used when we declare a
new variable x, with scope limited to the statement S; we implicitly assume alpha-conversion
to handle shadowing of an existing name. In the premise, we evaluate the expression e to a
value v, and then execute the statement S with a variable environment (x, v) : envV , where
we have added the pair (x, v). During the execution of S, this variable environment may of
course be updated (by applications of the rule [BS-AssV]), which may alter any value in the
environment, including v. However, outside of the scope of the declaration, x is not visible
and so the pair (x, v′) is removed from the environment once S finishes. By contrast, any
other change made to env′

V (as well as any change made to the global state envS) is retained.
The [BS-Call] rule is the most complicated, because we need to perform a number of

actions. Some of them are obvious (e.g., evaluate the address and the parameters e1, ẽ and
e2, relatively to the current execution environment envSV ; use the obtained address Y of
the callee to retrieve the field environment envY

F for this contract and, through the method
table, to extract the list of formal parameters x̃ and the body of the method S; and check
that the number of actual parameters is the same as the number of formal parameters).
Then, we also have to check that the balance of the caller is at least n, and, in that case,

ECOOP 2024

1:8 A Sound Type System for Secure Currency Flow

[Genesis]
〈
DC, env∅

ST

〉
→DC envST〈

DC T , env∅
ST

〉
→B ⟨T, envST ⟩

[Trans]
envT ⊢

〈
X.f(ṽ):n, envS , (this, A) : env∅

V

〉
→S env′

S , envV

⟨A->X.f(ṽ):n,T , envST ⟩ →B ⟨T, env′
S , envT ⟩

[Revelation] ⟨ϵ, envST ⟩ →B envST

Figure 6 Semantics of blockchains.

update the state environment by subtracting n from the balance of X and adding n to the
balance of Y , in their respective field environments; this yields a new state env′′

S , where we
write envF [balance -= n] and env′

F [balance += n] for these two operations. Finally, we
create the new execution environment by creating new bindings for the special variables
this, sender and value, and by binding the formal parameters x̃ to the values of the actual
parameters ṽ in env′′

V . Then we execute the statement S in this new environment. This
yields the new state env′

S , and also an updated variable environment env′
V , since S may

have modified the bindings in env′′
V . However, these bindings are local to the method, and

therefore we throw them away once the call finishes. So, the result of this transition is the
updated state env′

S and the original variable environment of the caller envV .
It should be noted that a local method call, i.e. a call to a method within the same

(calling) contract, is merely a special case of the rule [BS-Call]. Such a call would have the
form this.f(ẽ):0, since transferring any amount of currency will not alter the balance of
the contract. Thus, we could introduce some syntactic sugar, omitting both the address and
the value, and instead simply write f(ẽ).

2.2.4 Transactions and blockchains
The semantics for blockchains is given as a transition system defined by the rules given in
Figure 6. Here, the rule [Genesis] describes the “genesis event” where contracts are declared,
whilst [Trans] describes a single transaction. This is thus a small-step semantics, invoking
the big-step semantics for declarations and statements for its premises. We remark that the
rules of the operational semantics for blockchains (as well as those for statements presented
above) define a deterministic transition relation.

Note that, unlike in the original formulation of TinySol, we do not include a rule like
[Tx2] in [3] for rolling back a transaction in case it is non-terminating or it aborts via a
throw command. Such a rule would require a premise that cannot be checked effectively for
a Turing-complete language like TinySol and therefore we omit it, since it is immaterial
for the main contributions we give in this paper.2 In practice, termination of Ethereum
smart contracts is ensured via a “gas mechanism” and is assumed by techniques for the
formal analysis of smart contracts. However, as observed in, for instance, [11], proof of
termination for smart contracts is non-trivial even in the presence of a “gas mechanism.” In
the aforementioned paper, the authors present the first mechanised proof of termination of
contracts written in EVM bytecode using minimal assumptions on the gas cost of operations
(see the study [29] for an empirical analysis of the effectiveness of the “gas mechanism” in
estimating the computational cost of executing real-life transactions). We leave for future
work the addition of a “gas mechanism” to TinySol and the adaption of the results we
present in this paper to that setting.

2 For instance, rule [Tx2] in [3] has an undecidable premise that checks whether the execution of the
body of a contract does not yield a final state. It is debatable whether such rules should appear in an
operational semantics.

L. Aceto, D. Gorla, and S. Lybech 1:9

3 Call integrity and noninterference in TinySol

Grishchenko et al. [13] formulate the property of call integrity for smart contracts written in
the language EVM, which is the “low-level” bytecode of the Ethereum platform, and the
target language to which e.g. Solidity compiles. They then prove [13, Theorem 1] that this
property suffices for ruling out reentrancy phenomena, as those described in the example in
Figure 1. We first formulate a similar property for TinySol; this requires a few preliminary
definitions.

▶ Definition 3 (Trace semantics). A trace of method invocations is given by

π ::= ϵ
∣∣ X->Y .f(ṽ):n, π

where X is the address of the calling contract, Y is the address of the called contract, f is
the method name, and ṽ and n are the actual parameters.

We annotate the big-step semantics with a trace containing information on the invoked
methods to yield labeled transitions of the form π−→S. To do this, we modify the rules in
Table 5 as follows:

in rules [BS-Skip], [BS-LoopF], [BS-AssV] and [BS-AssF], every occurrence of →S

becomes ϵ−→S ;
in rules [BS-If] and [BS-DecV], every occurrence of →S becomes π−→S ;
rules [BS-Seq], [BS-LoopT] and [BS-Call] respectively become:

envT ⊢ ⟨S1, envSV ⟩ π1−→S env′′
SV

envT ⊢ ⟨S2, env′′
SV ⟩ π2−→S env′

SV

envT ⊢ ⟨S1;S2, envSV ⟩ π1,π2−−−→S env′
SV

envSV ⊢ e →e T
envT ⊢ ⟨S, envSV ⟩ π1−→S env′′

SV

envT ⊢ ⟨while e do S, env′′
SV ⟩ π2−→S env′

SV

envT ⊢ ⟨while e do S, envSV ⟩ π1,π2−−−→S env′
SV

. . . envT ⊢ ⟨S, env′′
SV ⟩ π−→S env′

SV

envT ⊢ ⟨e1.f(ẽ):e2, envSV ⟩ X->Y .f(ṽ):n,π−−−−−−−−−−→S env′
S , envV

The full definition is given in [1]. We extend this annotation to the semantics for blockchains
and write π−→B for this annotated relation.

▶ Definition 4 (Projection). The projection of a trace to a specific contract X, written π ↓X ,
is the trace of calls with X as the calling address. Formally:

ϵ ↓X = ϵ (Z->Y .f(ṽ):n, π) ↓X =
{

X->Y .f(ṽ):n, (π ↓X) if Z = X

π ↓X otherwise

Notationally, given a (partial) function f , we write f |X for denoting the restriction of f

to the subset X of its domain.

▶ Definition 5 (Call integrity). Let A denote the set of all contracts (addresses), X ⊆ A
denote a set of trusted contracts, Y ∆= A \ X denote all other contracts, and envX

ST have
domain X . A contract C ∈ X has call integrity for Y if, for every transaction T and
environments env1

ST and env2
ST such that env1

ST (X)|X = env2
ST (X)|X = envX

ST , it holds that〈
T, env1

ST

〉 π1−→B env1′

ST ∧
〈
T, env2

ST

〉 π2−→B env2′

ST =⇒ π1 ↓C = π2 ↓C

The definition is quite complicated and contains a number of elements:
C is the contract of interest.

ECOOP 2024

1:10 A Sound Type System for Secure Currency Flow

X is a set of trusted contracts, which we assume are allowed to influence the behaviour of
C. This set must obviously contain C, since C at least must be assumed to be trusted.
Thus, a contract C can have call integrity for all contracts, if X = { C }.
Conversely, the set Y = A \ X is the set of addresses of all contracts that are untrusted.3

env1
ST and env2

ST are any two pairs of method/field environments that coincide (both in
the code and in the values) for all the trusted contracts.4 The point is that the contracts
in X are assumed to be known, and hence invariant, whereas any contract in Y is assumed
to be unknown and may be controlled by an attacker. Thus, we are actually quantifying
over all possible contexts where the contracts in X can be run.
T is any transaction; it may be issued from any account and to any contract. Thus we
also quantify over all possible transactions, since an attacker may request an arbitrary
transaction, that is thus part of the execution context as well.

Then, the call integrity property intuitively requires that, if we run the trusted part of
the code in any execution context, the behavior of C remains the same, i.e. C must make
exactly the same method calls (and in exactly the same order). Thus, to disprove that C

has call integrity, it suffices to find two environments and a transaction that will induce a
difference in the call trace of C.

The idea in the property of call integrity is that the behaviour of C should not depend on
any untrusted code (i.e. contracts in Y), even if control is transferred to a contract in Y . The
latter could for example happen if C calls a method on B ∈ X , and B then calls a method
on a contract in Y. This also means that C cannot directly call any contract in Y, since
that can only happen if C calls a method on a contract, where the address is received as a
parameter, or if it calls a method on a “hard-coded” contract address. In both cases, we can
easily pick up two environments able to induce different behaviors, for example by choosing a
non-existing address for one context (in the first case), or by ensuring that no contract exists
on the hard-coded address in one context (in the second case). The latter possibility can
seem somewhat contrived, especially if we assume that all contracts are created at the genesis
event, and it might therefore be reasonable to require also that dom

(
env1

ST

)
= dom

(
env2

ST

)
,

such that we at least assume that contracts exist on the same addresses. However, on an
actual blockchain, new contracts can be deployed (and in some cases also deleted) at any
time, and if such a degree of realism is desired, this extra constraint should not be imposed.

The main problem with the definition of call integrity is that it relies on a universal
quantification over all possible executions contexts. This makes it hard to be checked in
practice. However, our previous discussion indicates that call integrity may intuitively be
viewed as a form of noninterference between the trusted and the untrusted contracts. We
now see to what extent this intuition is true and formally compare the two notions.

First of all, we consider a basic lattice of security levels, made up by just two levels,
namely H (for high) and L (for low), with L < H. We tag every contract to be high or
low through a contracts-to-levels mapping λ : A → {L, H}; this induces a bipartition of the
contract names A into the following sets:

L = { X ∈ A | λ(X) = L } H = { X ∈ A | λ(X) = H }

3 Note that this is formulated inversely by Grishchenko et al., who instead formulate the property for a
set of untrusted contracts AC , corresponding to Y in the present formulation. However, using the set of
trusted addresses X seems more straightforward.

4 This too is inversely formulated by Grishchenko et al.

L. Aceto, D. Gorla, and S. Lybech 1:11

In this way, we create a bipartition of the state into low and high, corresponding to the
fields of the low and of the high contracts, respectively. Then, we define low-equivalence =L

to be the equivalence on states such that env1
S =L env2

S if and only if env1
S(X) = env2

S(X),
for every X ∈ L.

We can now adapt the notion of noninterference for multi-threaded programs by Smith
and Volpano [25] to the setting of TinySol.

▶ Definition 6 (Noninterference). Given a contracts-to-levels mapping λ : A → {L, H} and a
contract environment envT , the contracts satisfy noninterference if, for every env1

S and env2
S

and for every transaction T such that

env1
S =L env2

S

〈
T, env1

S , envT

〉
→B env1′

S , envT

〈
T, env2

S , envT

〉
→B env2′

S , envT

it holds that env1′

S =L env2′

S .

▶ Remark 7 (Incomparability). Call integrity and noninterference seem strongly related, in
the sense that the first requires that the behaviour of a contract is not influenced by the
(bad) execution context, whereas the second one requires that a part of the computation
(the “low” one) is not influenced by the remainder context (the “high” one). So, one may try
to prove a statement like: “C ∈ X has call integrity for Y ∆= A \ X if and only if it satisfies
noninterference w.r.t. λ such that L = X and H = Y.” However, both directions are false.

For the direction from right to left, consider:

1 contract X { contract Y {
2 field balance = 0 field balance = v
3 go() { } go() { X.go(): this . balance }
4 } }

where X is trusted and Y untrusted. Since X cannot invoke any method, this example
satisfies call integrity. However, it does not satisfy noninterference. To see this, consider
two environments, one assigning 1 to Y’s balance and the other one assigning 0, and the
transaction Y->Y.go():0.

For the direction from left to right, consider the following:

1 contract X { contract Y {
2 go() { field balance = v;
3 if Y. balance = 0 }
4 then Z.a():0
5 else Z.b():0 contract Z {
6 } a() { }
7 } b() { }
8 }

Assuming that both X and Z are low, the example satisfies noninterference: there is no way
for Y to influence the low memory. By contrast, the code does not satisfy call integrity.
Indeed, let v be 0 in one environment and 1 in the other, and consider T to be X->X.go():0:
in the first environment, it generates X->Z.a():0, whereas in the second one it generates
X->Z.b():0.

4 A type system for noninterference and call integrity

As demonstrated in Remark 7, call integrity and noninterference are incomparable properties.
This is so because noninterference is a 2-property on the pair of stores (env1′

S , env2′

S) resulting
from two different executions, whereas call integrity is a 2-property on the pair of call traces

ECOOP 2024

1:12 A Sound Type System for Secure Currency Flow

(π1, π2) generated during two executions. However, the two properties have an interesting
overlap, because an outgoing currency flow (i.e. a method call) may also result, at least
potentially, in a change of the stored values of the balance fields of the sender and recipient.
Every method call is therefore also an information flow between the two, even when no
amount of currency is transferred. In [28], Volpano et al. devise a type system for checking
information flows, which, as they show, yields a sound approximation to noninterference. In
the following, we create an adaptation of this type system to TinySol and show that it may
also be used to soundly approximate call integrity.

4.1 Type syntax
We begin by assuming a finite lattice (S, ⊑) consisting of a set of security levels S, ranged
over by s, and equipped with a partial order ⊑. We write s⊥, and s⊤ for the least and largest
elements in S.

In the simplest setting, we can let S ∆= { L, H } (for “low” and “high”) and define L ⊑ L,
L ⊑ H, and H ⊑ H. This is sufficient for ensuring bi-partite noninterference, but the type
system can also handle more fine-grained security control. With this, we can define the types:

▶ Definition 8. We use the following language of types, where I ∈ TNames is a type name
(or “interface name”):

B ∈ B ::= s | Is T ∈ T ::= B | var(B) | cmd(s) | proc(B̃):s

Γ ∈ G ::= N ⇀ T ∪ G N ::= ANames ∪ FNames ∪ VNames ∪ MNames ∪ TNames

We write T̃ for a tuple of types (T1, . . . , Tn).

Note that for the purpose of the type system, unless otherwise noted, we shall assume
that the four “magic names” MVar are contained in the respective sets of field and variable
names; i.e. balance ∈ FNames and this, sender, value ∈ VNames.

The meaning of the types is as follows:
B is a set of base types, which can either be a security level s, or an interface name I,
annotated with a security level, Is. Security levels are assigned to plain data, i.e. values
of type int or bool, as well as expressions yielding values of these types. The annotated
interface type is assigned to addresses, as well as expressions yielding addresses. In either
case, the meaning of the type s (resp. Is), when given to an expression e, is that all
variables read from within e, are of level s or lower.
Note that for the purpose of the present type system, we do not distinguish between
values of type int and bool, in the sense that we do not check whether these type
constraints are preserved. Instead, we shall just assume that all programs are well-typed
w.r.t. these simple type constraints, such that e.g. expressions in the guards of if and
while constructs indeed yield boolean values. The present type system can easily be
extended to incorporate such a simple type check by extending the set of base types with
annotated value types ints and bools, similar to the annotated interface types.
var(B) is a box type given to value containers, i.e. variables and fields. It denotes that
the container can store data of type B. In the case of var(s), it denotes that the box can
store data of level s or lower, whereas in the case of var(Is) it additionally denotes that
the address stored in the variable must be of type I.
cmd(s) is a phrase type given to code, i.e. commands S. It denotes that all assignments
in the code are made to variables whose security level is s or higher.

L. Aceto, D. Gorla, and S. Lybech 1:13

proc(B̃):s is a procedure type given to methods f(x̃) { S }. It denotes that the body
S can be typed as cmd(s), under the assumption that the formal parameters x̃ have types
var(B̃). We shall discuss the types assigned to the “magic variables” this, sender and
value below.
Note that every method declaration contains an implicit write to the balance field of the
containing contract: hence, given the meaning of cmd(s), this also means that the security
level of balance must always be s or higher than the level of any method declared in an
interface.

Finally, Γ is a type environment, which is a partial function from names to types or type
environments. The latter possibility is included because we shall represent each contract
declaration as its own type environment, containing box types and procedure types for the
fields and methods of the contract, and pointed to by the corresponding interface name.
Thus, if a contract has address X, then Γ(X) = Is for some interface name I and security
level s, and Γ(I) = ΓI , where ΓI is a type environment containing the signatures of the
methods and fields of the contract. We shall use the following simple interface declaration
language for the interfaces of contracts:

IC ::= ϵ
∣∣ interface I { IF IM } IC

IF ::= ϵ
∣∣ field p : var(B); IF

IM ::= ϵ
∣∣ method f : proc(B):s; IM

mirroring the syntax of contract declarations.
We require that all interface declarations be well-formed in the sense that they must at

least contain a declaration for the mandatory members, i.e. the balance field and the send()
method. This ensures that we can define a minimal interface declaration called I⊤, such
that every well-formed interface declaration is a specialisation of I⊤. This minimal interface
contains just the signatures of the mandatory balance field and of the send() method; i.e.

1 interface I⊤ {
2 field balance : var(s⊤);
3 method send : proc():s⊥;
4 }

in the aforementioned interface declaration syntax.
Intuitively, this definition ensures that, for any valid interface definition I (containing

at least balance and send) and any security level annotation s, it must hold that Is is a
subtype of I⊤

s⊤
, thus always allowing us to type Is up to I⊤

s⊤
. In the following section, we

shall give a definition of a subtyping relation that will ensure that this indeed is the case.
The inclusion of a contract “supertype” I⊤

s⊤
is similar to what is done in the type system

developed for Featherweight Solidity by Crafa et al. in [7]. This is necessary to enable us
to give a type to the “magic variable” sender, which is available within the body of every
method, since this variable can be bound to the address of any contract or account. We shall
assume that I⊤ ∈ dom (Γ) for any Γ we shall consider.

We shall also use a typed syntax of TinySol, where local variables are now declared as

var(B) x := e

where B is the type of the value of the expression e. Likewise, we add annotated type names
Is to contract declarations thus:

contract X : Is { DF; DM }

where I is a declared type name. Note that the security level is given on the contract,
rather than on the interface. This is intentional, since multiple contracts may implement the

ECOOP 2024

1:14 A Sound Type System for Secure Currency Flow

[subs-name]Γ ⊢ Γ(I1) <: Γ(I2)
Γ ⊢ I1

s1 <: I2
s2

(s1 ⊑ s2)

[subs-sec]Γ ⊢ s1 <: s2
(s1 ⊑ s2)

[subs-var] Γ ⊢ B1 <: B2

Γ ⊢ var(B1) <: var(B2)

[subs-env]

∀n ∈ dom (Γ2) .

Γ1(n) <: Γ2(n)
Γ ⊢ Γ1 <: Γ2

(dom (Γ2) ⊆ dom (Γ1))

[subs-cmd]Γ ⊢ cmd(s1) <: cmd(s2) (s2 ⊑ s1)

[subs-proc] Γ ⊢ B̃1 <: B̃2

Γ ⊢ proc(B̃1):s1 <: proc(B̃2):s2
(s2 ⊑ s1)

Figure 7 Subtyping rules.

same interface but nevertheless be categorised into different security levels. For the sake of
simplicity, we shall omit the explicit definition of interfaces in the code and merely assume
that an interface declaration ΓI with an associated name I is provided for each contract.

4.2 Subtyping
We shall introduce a parametrised subtyping relation Γ ⊢ · <: · on types. For each choice of
Γ, we define it as the least preorder satisfying the rules given in Figure 7. The parameter
Γ is needed to handle subtyping for interface names I in rule [subs-name]. Note that by
this rule we have, for each well-formed interface Is (with security level s and interface name
I) declared in Γ, that Γ ⊢ Is <: I⊤

s⊤
as expected. Also note that we write Γ ⊢ B̃1 <: B̃2 to

mean Γ ⊢ Bi
1 <: Bi

2 for each i (1 ≤ i ≤ n, where |B̃1| = n = |B̃2|).
By rule [subs-sec], subtyping is covariant in the types of data, i.e. the security level

s, and likewise, the box type constructor var(B) is covariant by rule [subs-var]. On the
other hand, the type constructor for commands, cmd(s), is contravariant by rule [subs-cmd].
Lastly, the type constructor for methods, proc(B̃):s, is covariant in the input parameters B̃

by rule [subs-proc], but contravariant in the “return” type s, which indicates the level of
the underlying command type. These variances are consistent with the intended meaning of
the types:

A box of type var(B) can store something of B or lower (where B is either s or Is).
Hence, if Γ ⊢ B1 <: B2, then a box type var(B2) can safely be used wherever a box type
var(B1) is needed.
A command of type cmd(s) will assign to variables whose level is s or higher. Hence, if
s1 ⊑ s2, then a command type cmd(s1) can safely be used wherever a command type
cmd(s2) is needed.
A method of type proc(B̃):s expects parameters of types B̃ and promises that the method
body will only assign to variables that are level s or higher. Hence, if Γ ⊢ B̃1 <: B̃2
and s2 ⊑ s1, a command type proc(B̃2):s2 can safely be used wherever a command type
proc(B̃1):s1 is needed. This is consistent with the type for the body S since, if S can be
typed to level cmd(s1), then it can also safely be typed to level cmd(s2).

4.3 Type judgments
We can now give the rules for concluding type judgments, starting with the type rules for
declarations given in Figure 8.

Type judgments for contract declarations are of the form Γ ⊢ DC, stating that the
declarations DC are well-typed w.r.t. the environment Γ. This holds if the declarations are
consistent with the type information recorded in Γ, i.e. every field and method must have a

L. Aceto, D. Gorla, and S. Lybech 1:15

[t-dec-c]Γ(X) = Is Γ1 = Γ, this : var(Is) Γ ⊢ DC Γ1 ⊢ DF Γ1 ⊢ DM

Γ ⊢ contract X : Is { DF DM } DC

[t-dec-f]Γ(this) = var(Is) p ∈ dom (Γ(I)) Γ ⊢ DF

Γ ⊢ field p := v; DF

[t-dec-m]

Γ(this) = var(Is1) Γ(I)(f) = proc(B̃):s

Γ1 = Γ, x̃ : var(B̃), value : var(s), sender : var(I⊤
s⊤)

Γ ⊢ this.balance : var(s) Γ1 ⊢ S : cmd(s) Γ ⊢ DM

Γ ⊢ f(x̃) { S } DM

Figure 8 Type rules for declarations.

[t-env-t]Γ, this : Γ(X) ⊢ envM Γ ⊢ envT

Γ ⊢ envT , (X, envM)

[t-env-m]

Γ(this) = var(Is1) Γ(I)(f) = proc(B̃):s

Γ1 = Γ, x̃ : var(B̃), value : var(s), sender : var(I⊤
s⊤)

Γ ⊢ envM Γ ⊢ this.balance : var(s) Γ1 ⊢ S : cmd(s)
Γ ⊢ envM , (f, (x̃, S))

[t-env-s]Γ, this : Γ(X) ⊢ envF Γ ⊢ envS

Γ ⊢ envS , (X, envF)

[t-env-f]Γ(this) = var(Is) p ∈ dom (Γ(I)) Γ ⊢ envF

Γ ⊢ envF , (p, v)

[t-env-v] Γ ⊢ envV

Γ ⊢ envV , (x, v) (x ∈ dom (Γ))

Figure 9 Type rules for environment agreement.

type, and the body of each method must be typable according to the assumptions of the
type. Note that the check here only ensures that every declared contract member has a type;
the converse check (i.e. that every declared type in an interface also has an implementation)
should also be performed. However, we shall omit this in the present treatment.

After the initial reduction step, all declarations are stored in the two environments envST ,
and further reductions also use the variable environment envV for local variable declarations.
Hence, we also need to be able to conclude agreement between these environments and Γ.
These rules are given in Figure 9, closely mirroring those of Figure 8. We omit the type
rules for empty environments (since an empty environment is always well-typed). As with
declarations above, we also omit the rules for ensuring that all declared types in an interface
also have an implementation in any contract claiming to implement that interface.

Next, we consider the type rules for statements appearing in the body of method
declarations; they are given in Figure 10. Here, judgments are of the form Γ ⊢ S : cmd(s),
indicating that s is the lowest level of any variable written to within S. This is derived from
the types of the variables occurring in S, i.e. the types var(B). However, as B can be either
s or Is, we need a way to extract just the security level and drop the interface name. For
this, we write B ⇝ s, defined in the obvious way:

s⇝ s Is ⇝ s

ECOOP 2024

1:16 A Sound Type System for Secure Currency Flow

[t-skip]Γ ⊢ skip : cmd(s⊤)

[t-throw]Γ ⊢ throw : cmd(s⊤)

[t-ass-v]

Γ ⊢ x : var(B)
Γ ⊢ e : B

Γ ⊢ x := e : cmd(s) (B ⇝ s)

[t-seq]

Γ ⊢ S1 : cmd(s)
Γ ⊢ S2 : cmd(s)

Γ ⊢ S1; S2 : cmd(s)

[t-loop] Γ ⊢ e : s Γ ⊢ S : cmd(s)
Γ ⊢ while e do S : cmd(s)

[t-subs-s]Γ ⊢ S : cmd(s1) Γ ⊢ cmd(s1) <: cmd(s2)
Γ ⊢ S : cmd(s2)

[t-decvar]Γ ⊢ e : B Γ, x : var(B) ⊢ S : cmd(s)
Γ ⊢ var(B) x := e in S : cmd(s)

[t-ass-f]

Γ ⊢ e1.p : var(B)
Γ ⊢ e2 : B

Γ ⊢ e1.p := e2 : cmd(s) (B ⇝ s)

[t-call]

Γ ⊢ e1.f : proc(B̃):s

Γ ⊢ this.balance : var(s)
Γ ⊢ ẽ : B̃

Γ ⊢ e2 : s

Γ ⊢ e1.f(ẽ):e2 : cmd(s)

[t-if]Γ ⊢ e : s Γ ⊢ ST : cmd(s) Γ ⊢ SF : cmd(s)
Γ ⊢ if e then ST else SF : cmd(s)

Figure 10 Type rules for statements.

[t-var]Γ ⊢ x : var(B)
Γ ⊢ x : B

[t-field]Γ ⊢ e.p : var(B)
Γ ⊢ e.p : B

[t-subs-e]Γ ⊢ e : B1 Γ ⊢ B1 <: B2

Γ ⊢ e : B2

[t-val]Γ ⊢ v : B

(
B =

{
Γ(v) if v ∈ ANames
s otherwise

)

[t-op]Γ ⊢ e1 : B1 . . . Γ ⊢ en : Bn

Γ ⊢ op(e1, . . . , en) : s

 B1 ⇝ s
...
Bn ⇝ s

Figure 11 Type rules for expressions.

This is used in the rules for assignments (rules [t-ass-v] and [t-ass-f]). Note that in the
rules [t-if] and [t-loop], we know (by our assumption that all contracts are well-typed w.r.t.
simple type preservation) that e will evaluate to a boolean value, which therefore necessarily
will have a type s. Thus, we do not need the extra step of B ⇝ s here.

All rules are straightforward, except for [t-call]. According to the semantics for call
(cf. rule [BS-Call]), every call includes an implicit read and write of the balance field of
the calling contract, since the call will only be performed if the value of e2 is less than, or
equal to, the value of balance (to ensure that the subtraction will not yield a negative
number). There is thus an implicit flow from this.balance to the body S of the method
call, similar to the case for the guard expression e in an if-statement. Furthermore, there is
an implicit write to the balance field of the callee, and thus a flow of information from one
field to the other. This might initially seem like it would require both caller and callee to
have the same security level for their balance field. However, the levels can differ, since by
subtyping we can coerce one up to match the level of the other. For this reason, we have
Γ ⊢ this.balance in the premise, to be explicitly concluded, rather than as a simple lookup.
This enables calls from a lower security level into a higher security level, but not the other
way around.

Next, we consider the type rules for expressions e, given in Figure 11. Here, judgments
are of the form Γ ⊢ e : B. There are a few things to note:

In rule [t-val], the type of a value v can be chosen freely, if v is a value type, i.e. of type
int or bool. This rule is a consequence of the fact that there is no simple relationship
between the datatype of a value and its security level. The actual security level will then
be determined by the type of the variable (resp. field) to which it is assigned.

L. Aceto, D. Gorla, and S. Lybech 1:17

[t-box-x]Γ ⊢ x : var(B) (Γ(x) = var(B))

[t-m-sub]

Γ ⊢ e.f : proc(B̃1):s1

Γ ⊢ proc(B̃1):s1 <: proc(B̃2):s2

Γ ⊢ e.f : proc(B̃2):s2

[t-box-f] Γ ⊢ e : Is

Γ ⊢ e.p : var(B)

(
Γ(I)(p) = var(B)
B ⇝ s

)

[t-meth] Γ ⊢ e : Is

Γ ⊢ e.f : proc(B̃):s

(
Γ(I)(f) = proc(B̃):s

)
Figure 12 Type rules for method, variable and field lookup.

The rules [t-var] and [t-field] simply unwrap the type of the contained value from
the box type of the container. Note that here we assume that x also covers the “magic
variable” names this, sender and value, and that p also covers the field name balance.
Finally, in rule [t-op], we require that all arguments and the return value must be typable
to the same security level s. Note in particular that we assume that no operation is
defined with an address return type; i.e. we do not allow any form of pointer arithmetic.
Operations may be defined on addresses for their arguments, e.g. equality testing, but
the return type must be one of the other value types, which can be given a security level.
Thus, in the rule [t-op], we also need to extract the security level s from the types of the
argument expressions.

Finally, we have the look-up rules for methods, variables and fields, given in Figure 12.
In rule [t-box-x] we assume that x also covers the magic variable names this, sender
and value.
In rule [t-box-f] we assume that p also covers the special field name balance. Fur-
thermore, we require e in e.p to resolve to an interface name rather than variable; i.e.
the expression must yield an address. This is again warranted by our assumption that
expressions are well-typed w.r.t. simple type preservation.
The same is the case in rule [t-meth] for method lookup e.f , which is used in the premise
of the rule [t-call].

In the lookup rules, the expression e is an object path, which must resolve to an address.
As we disallow operations op to return addresses, the object paths form a proper subset of
the set of expressions, since they can only consist of variable lookups, field reads or addresses
given as pure values. Note that, in the rules [t-box-f] and [t-meth], we require that the
object path e must be typable as an interface with the same security level s as the value
(resp. method) that is being looked up. This is necessary to ensure that values residing in a
higher-level part of the memory cannot affect values at lower levels, in this case by altering
the path to the object being resolved.

4.4 Safety and soundness
As is the case for the type system proposed in [28], our type system does not have a now-safety
predicate in the usual sense, since (invariant) safety in simple type systems is a 1-property,
whereas noninterference is a hyper-property (specifically, a 2-property). Instead, the meaning
of “safety” is expressed directly in the meaning of the types. Specifically:

If an expression e has type B such that B ⇝ s, then it denotes that all variables read
from in the evaluation of e are of level s or lower, i.e. no read-up.
If a statement S has type cmd(s), then it denotes that all variables written to in the
execution of S are of level s or higher, i.e. no write-down.

ECOOP 2024

1:18 A Sound Type System for Secure Currency Flow

[eq-env-empty]
Γ ⊢ env∅

X =s env∅
X

(X ∈ { V, S, F, T, M })

[eq-envV] Γ ⊢ env1
V =s env2

V

Γ ⊢ env1
V , (x, v1) =s env2

V , (x, v2)

(
Γ(x) = var(s′)
s′ ⊑ s =⇒ v1 = v2

)

[eq-envS]Γ ⊢ env1
S =s env2

S Γ(Γ(X)) ⊢ env1
F =s env2

F

Γ ⊢ env1
S , (X, env1

F) =s env2
S , (X, env2

F)

[eq-envF] Γ ⊢ env1
F =s env2

F

Γ ⊢ env1
F , (p, v1) =s env2

F , (p, v2)

(
Γ(p) = var(s′)
s′ ⊑ s =⇒ v1 = v2

)

[eq-envT] Γ ⊢ env1
T =s env2

T

Γ ⊢ env1
T , (X, env1

M) =s env2
T , (X, env2

M)

(
Γ(X) = Is′

s′ ⊑ s =⇒ env1
M = env2

M

)

[eq-envSV]Γ ⊢ env1
S =s env2

S Γ ⊢ env1
V =s env2

V

Γ ⊢ env1
SV =s env2

SV

[eq-envST]Γ ⊢ env1
S =s env2

S Γ ⊢ env1
T =s env2

T

Γ ⊢ env1
ST =s env2

ST

Figure 13 Rules for the s-parameterised equivalence relation.

Intuitively, the meaning of these two types together imply that information from higher-
level variables cannot flow into lower-level variables. For a statement such as x := e to be
well-typed, it must therefore be the case that, if Γ ⊢ x : var(s1) and Γ ⊢ e : s2, then s2 ⊑ s1.
Since s2 can be coerced up to s1 through subtyping to match the level of the variable, the
statement itself can then be typed as cmd(s1). We shall prove that our type system indeed
ensures these properties in Theorems 12-14 below.

Before proceeding, we need to define a way to express that two states, i.e. two collections
of variable and field environments envSV , are equal up to a certain security level s. This
relation, written Γ ⊢ env1

SV =s env2
SV , is given by the rules in Figure 13. Note in particular

that the definition implies that env1
SV and env2

SV must have the same domain, and this
carries over to the inner environments envF inside envS . The above definition gives us the
following obvious result, which can be shown by induction on the rules of =s:

▶ Lemma 9 (Restriction). If Γ ⊢ env1
SV =s env2

SV and s′ ⊑ s, then Γ ⊢ env1
SV =s′ env2

SV .

Given our annotation of security levels on interfaces as well, we also extend the =s relation
to method tables envT , and finally to the combined representation of state and code, i.e.
envST .

Next, we need the standard lemmas for strengthening and weakening of the variable
environment:

▶ Lemma 10 (Strengthening). If Γ, x : var(B) ⊢ (x, v1) : env1
V =s (x, v2) : env2

V then also
Γ ⊢ env1

V =s env2
V .

▶ Lemma 11 (Weakening). If Γ ⊢ env1
V =s env2

V and x /∈ dom
(
env1

V

)
and x /∈ dom

(
env2

V

)
,

then also Γ, x : var(B) ⊢ (x, v1) : env1
V =s (x, v2) : env2

V for any B, v, x.

Both results can be shown by induction on the rules of =s. Furthermore, both of the
lemmas can then be directly extended to Γ ⊢ env1

SV =s env2
SV . With this, we can now state

the first of our main theorems:

L. Aceto, D. Gorla, and S. Lybech 1:19

▶ Theorem 12 (Preservation). Assume that Γ ⊢ S : cmd(s), Γ ⊢ envT , Γ ⊢ envSV , and
envT ⊢ ⟨S, envSV ⟩ → env′

SV . Then, Γ ⊢ envSV =s′ env′
SV for any s′ such that s ̸⊑ s′.

The Preservation theorem assures us that the promise made by the type cmd(s) is actually
fulfilled. If Γ ⊢ S : cmd(s), then every variable or field written to in S will be of level s or
higher ; hence every variable or field of a level that is strictly lower than, or incomparable to,
s will be unaffected. Thus, the pre- and post-transition states will be equal on all values
stored in variables or fields of level s′ or lower, since they cannot have been changed during
the execution of S. In other words, what is shown to be “preserved” in this theorem is the
values at levels lower than, or incomparable to, s.

Note that the theorem does not show preservation of well-typedness for the environments
(as is otherwise usually required in preservation proofs for type systems). Indeed, a result
saying that also Γ ⊢ env′

SV would be pointless. As can be seen in Figure 9, the type judgment
Γ ⊢ envSV only ensures that every field and variable in envSV has any type in Γ. The number
of declared fields and variables cannot change between the pre- and post-states of a transition
(this is ensured by the rule [BS-DecV]); only the stored values can change, but there is no
inherent relationship between a value and its assigned security level.

Our next theorem assures us that the type of an expression is also in accordance with
the intended meaning, namely: if Γ ⊢ e : s, then every variable (or field) read from in e will
be of level s or lower (i.e. no read-down of values from a higher level). We express this by
considering two different states, env1

SV and env2
SV , which must agree on all values of level s

and lower. Evaluating e w.r.t. either of these states should then yield the same result.

▶ Theorem 13 (Safety for expressions). Assume that Γ ⊢ e : B where B ⇝ s, Γ ⊢ env1
SV ,

Γ ⊢ env2
SV , and Γ ⊢ env1

SV =s env2
SV . Then, env1

SV ⊢ e → v and env2
SV ⊢ e → v.

Finally, we can use the preceding two theorems to show soundness for the type system.
The soundness theorem expresses that, if a statement S is well-typed to any level s1 and
we execute S with any two states env1

SV and env2
SV that agree up to any level s2, then the

resulting states env1′

SV and env2′

SV will still agree on all values up to level s2. This ensures
noninterference, since any difference in values of a higher level than s2 cannot induce a
difference in the computation of values at any lower levels.

▶ Theorem 14 (Soundness). Assume that Γ ⊢ S : cmd(s1), Γ ⊢ envT , Γ ⊢ env1
SV , Γ ⊢ env2

SV ,
Γ ⊢ env1

SV =s2 env2
SV , envT ⊢

〈
S, env1

SV

〉
→ env1′

SV , and envT ⊢
〈
S, env2

SV

〉
→ env2′

SV . Then,
Γ ⊢ env1′

SV =s2 env2′

SV .

Theorem 14 corresponds to the soundness theorem proved by Volpano, Smith and Irvine [28]
for their While-like language. However, given the object-oriented nature of TinySol, we
can actually take this one step further and allow even parts of the code to vary. Specifically,
given two “method table” environments, env1

T and env2
T , we just require that these two

environments agree up to the same level s2 to ensure agreement of the resulting two states
env1′

SV and env2′

SV . We state this in the following theorem:

▶ Theorem 15 (Extended soundness). Assume that Γ ⊢ S : cmd(s1), Γ ⊢ env1
T , Γ ⊢ env2

T ,
Γ ⊢ env1

T =s2 env2
T , Γ ⊢ env1

SV , Γ ⊢ env2
SV , Γ ⊢ env1

SV =s2 env2
SV , env1

T ⊢
〈
S, env1

SV

〉
→

env1′

SV , and env2
T ⊢

〈
S, env2

SV

〉
→ env2′

SV . Then, Γ ⊢ env1′

SV =s2 env2′

SV .

4.5 Extending the type system to transactions
A transaction is nothing but a method call with real-valued parameters and sender set to an
account address, which corresponds to a minimal implementation of I⊤. Thus, the theorems
from the preceding section can easily be extended to transactions and blockchains.

ECOOP 2024

1:20 A Sound Type System for Secure Currency Flow

A blockchain consists of a set of contract declarations DC, followed by a list of transactions
T̃ . Hence, we can conclude Γ ⊢ DC T̃ : cmd(s), if it holds that Γ ⊢ DC and Γ ⊢ T̃ : cmd(s).
The latter can be simply concluded by the following rules:

[t-empty]Γ ⊢ ϵ : cmd(s) [t-trans]Γ ⊢ X.f(ṽ):n : cmd(s) Γ ⊢ T̃ : cmd(s)
Γ ⊢ A->X.f(ṽ):n,T̃ : cmd(s)

This gives us the following two results:

▶ Lemma 16. If Γ ⊢ DC and
〈
DC, env∅

ST

〉
→ envST , then Γ ⊢ envST .

▶ Lemma 17. If Γ ⊢ A->X.f(ṽ):n,T̃ : cmd(s) and Γ ⊢ envST and〈
A->X.f(ṽ):n,T̃ , envST

〉
→
〈

T̃ , env′
S , envT

〉
then also Γ ⊢ env′

S , envT and Γ ⊢ T̃ .

As the initial step (the “genesis event”) does nothing except transforming the declaration
DC into the environment representation envST , the first result is obvious, and as the rule
[Trans] just unwraps a transaction step into a call to the corresponding method, the second
result follows directly from the Preservation theorem. This can then be generalised in an
obvious way to the whole transaction list. Likewise, the Safety and Soundness theorems can
be extended to transactions in the same manner.

4.6 Noninterference and call integrity
As immediately evident from Definition 6 and Theorem 14, well-typedness ensures noninter-
ference:

▶ Corollary 18 (Noninterference). Assume a set of security levels S ∆= { L, H }, with L ⊑ L,
L ⊑ H and H ⊑ H, and furthermore that Γ ⊢ T̃ : cmd(s), Γ ⊢ env1

ST , Γ ⊢ env2
ST ,

Γ ⊢ env1
ST =L env2

ST ,
〈

T̃ , env1
ST

〉
→∗ env1′

ST , and
〈

T̃ , env2
ST

〉
→∗ env2′

ST . Then, Γ ⊢
env1′

ST =L env2′

ST ,

From Corollary 18, we then obviously also have that Γ ⊢ env1′

S =L env2′

S , regardless of whether
s is L or H. In particular, we can assign security levels to entire contracts, as well as all
their members. Thus, our type system can be used to ensure noninterference according to
Definition 6.

As we previously argued in Remark 7, noninterference and call integrity are incomparable
properties. However, as our next theorem shows, well-typedness actually also ensures call
integrity. This is surprising, so before stating the theorem, we should give some hints as to
why this is the case.

The definition of call integrity (Definition 5) requires the execution of any code in a
contract C to be unaffected by all contracts in an “untrusted set” Y, regardless of whether
parts of the code in Y execute before, meanwhile or after the code in C. This is expressed by
a quantification over all possible traces resulting from a change in Y, i.e. either in the code
or in the values of the fields. Regardless of any such change, it must hold that the sequence
of method calls originating from C be the same.

Noninterference, on the other hand, says nothing about execution traces, but only speaks
of the correspondence between values residing in the memory before and after the execution
step. The two counter-examples used in Remark 7 made use of this fact:

L. Aceto, D. Gorla, and S. Lybech 1:21

The first counter-example had C be unable to perform any method calls at all, thus
obviously satisfying call integrity, but allowed different balance values to be transferred
into it from a “high” context by means of a method call, thereby violating noninterference.
However, this situation is ruled out by well-typedness, because well-typedness disallows
any method calls from a “high” to a “low” context, precisely because every method call
may transfer the value parameter along with each call.
The second counter-example had an if statement in C (the “low” context) depend on a
field value in a “high” context. The two branches then perform two different method calls,
thus enabling a change of the “high” context to induce two different execution traces for
C. Thus, the example satisfies noninterference, because no value stored in memory is
changed, but it obviously does not satisfy call integrity. However, this situation is also
ruled out by well-typedness, because the rule [t-if] does not allow the boolean guard
expression e in a “low” context to depend on a value from a “high” context.

Thus, both of the two counter-examples would be rejected by the type system. With a
setting of L for the “trusted” segment and H for the “untrusted”,5 no values or computations
performed in the untrusted segment can affect the values in the trusted segment, nor the
value of any expression in this segment, nor can it even perform a call into the trusted
segment. On the other hand, the trusted segment can call out into the untrusted part, but
such a call cannot then reenter the trusted segment: it must return before any further calls
from the trusted segment can happen.

▶ Theorem 19 (Well-typedness implies call integrity). Let S ∆= { L, H } with L ⊑ L, L ⊑ H

and H ⊑ H. Fix the two sets of addresses X and Y as in Definition 5, such that A = X ∪ Y
and A = dom (envT). Fix a type assignment Γ such that

∀X ∈ X . Γ(X) = IL for some I where
∀p ∈ Γ(I) . Γ(I)(p) = var(B) where B ⇝ L, and
∀f ∈ Γ(I) . Γ(I)(f) = proc(B̃):L for any B̃

and with the level H given to all other interfaces, fields and methods.

Also assume that Γ ⊢ T : cmd(s), Γ ⊢ env1
ST , Γ ⊢ env2

ST , Γ ⊢ env1
ST =L env2

ST ,
〈
T, env1

ST

〉 π1−→
env1′

ST , and
〈
T, env2

ST

〉 π2−→ env2′

ST . Then, π1 ↓X= π2 ↓X , for any X ∈ X .

Theorem 19 tells us that every contract X in the trusted segment X has call integrity w.r.t.
the untrusted segment Y. This is thus a stronger condition than that of Definition 5, which
only defines call integrity for a single contract C ∈ X , rather than for the whole set. This
means that our type system will reject cases where e.g. C calls another contract Z ∈ X and
Z calls send() methods of different contracts, depending on a “high” value. As send() is
always ensured to do nothing, such calls could never lead to C being reentered, so this would
actually still be safe, even though Z itself would not satisfy call integrity. Thus, this is an
example of what resides in the “slack” of our type system.

However, this situation seems rather contrived, since it depends specifically on the send()
method, which is always ensured to do nothing except returning. For practical purposes, it
would be strange to imagine a contract C ∈ X having call integrity w.r.t. Y , but without the
other contracts in X also satisfying call integrity w.r.t. Y. Thus, our type system seems to
yield a reasonable approximation to the property of call integrity.

5 This counter-intuitive naming can perhaps best be thought of as indicating our level of distrust in a
contract.

ECOOP 2024

1:22 A Sound Type System for Secure Currency Flow

5 Examples and limitations

Let us see a few examples of the application of the type system. To begin with, consider
the first counter-example in Remark 7, which should be ill-typed by the type system. In the
counter-example we say that X is Low and Y is High, so we let them both implement the
interface I<s> defined as follows:

1 interface I<s> { contract X : I<L> { ... }
2 field balance : var(s)
3 method go : proc():s contract Y : I<H> { ... }
4 }

where I<L> (resp. I<H>) is a shorthand for IL (resp. IH) with all occurrences of s within the
interface definition replaced by L (resp. H). A part of the failing typing derivation for the
body of the method Y.go() in the declaration of contract Y is:

Γ(this) = I<H>
Γ ⊢ this : I<H>

Γ(I<H>)(balance)
= var(H)

Γ ⊢ this.balance : var(H)

Γ(X) = I<L>
Γ ̸⊢ X : I<H>

Γ(I<L>)(go)
̸= proc():H

Γ ̸⊢ X.go : proc():H

Γ ̸⊢ X.go():this.balance : cmd(H) (1)

We have that Γ ⊢ this.balance : var(H) in contract Y, so in order for the method
declaration go() { X.go():this.balance } in Y to be well-typed, the body of the method
must be typable as proc():H by rule [t-dec-m]. However, as the derivation in (1) illustrates,
this constraint cannot be satisfied, because the lookup Γ(I<L>)(go) yields proc():L, but
proc():H is needed, and this cannot be obtained through subtyping, because the proc(B̃):s

type constructor is contravariant in s.
The above example is simple, since the name X is “hard-coded” directly in the body of

Y.go(), and therefore the type check fails already while checking the contract definition.
However, suppose X were instead received as a parameter. Then the signature of the method
Y.go would have to be method go : proc(I<H>):H instead, and the type check would then
fail at the call-site, if a Low address were passed. The following shows a part of the failing
typing derivation for the call Y.go(X):this.balance, where the parameter X is assumed to
implement the interface I<L> as before:

Γ(X) = I<L>
Γ ⊢ X : I<L>

L ⊑ H

L ⊑ H

Γ ⊢ L <: H
Γ ⊢ var(L) <: var(H)

H ̸⊑ L

Γ ̸⊢ proc():L <: proc():H

Γ ̸⊢ I<L> <: I<H>
Γ ̸⊢ X : I<H>

Γ ̸⊢ Y.go(X):this.balance : cmd(H) (2)

Here Γ ⊢ Y.go : proc(I<H>):H (not shown). The method call expects a parameter
of type I<H>, but I<L> cannot be coerced up to I<H> through subtyping, because its
definition of the method go() has type proc():L, as given in the code listing above, and
Γ ̸⊢ proc():L <: proc():H due again to contravariance of the type constructor. Thus we
see that the type system indeed prevents calls from High to Low, regardless of whether
the Low address is “hard-coded” or passed as a parameter to a High method. However,
the aforementioned examples also illustrate a limitation of our type system approach to
ensuring call integrity: the entire blockchain must be checked, i.e. both the contracts and
the transactions. This is necessary since the type check can fail at the call-site of a method,
as in the example shown in (2), and the call-site of any method can be a transaction.

L. Aceto, D. Gorla, and S. Lybech 1:23

1 contract X : IBankL { contract Y : IBankH {
2 field owner = A; field credit = 0;
3 transfer (recipient , amount) { deposit (owner) {
4 if this . sender = this .owner then this . credit = this .value ;
5 recipient this .owner = owner
6 . deposit (this . sender): amount }
7 else skip ...
8 } }
9 ...

10 }

Figure 14 A two-bank setup.

Next, we shall briefly consider two examples, reported by Grishchenko et al. in [13], of
Solidity contracts that are misclassified w.r.t. reentrancy by the static analyser Oyente [16];
a false positive and a false negative example.

The false negative example relies on a misplaced update of a field value, just as in the
example in Figure 1 (page 2).6 In this example, suppose X were assigned the level L and Y
the level H. With a transaction A->X.transfer(Y):n (for any address A and any amount
of currency n), the type system would then correctly reject this blockchain because of the
inherent flow from High to Low that is implicit in the call X.transfer(this) issued by Y.
The typing derivation would fail in a similar manner as the situation depicted in (2).

The false positive example of Grishchenko et al. from [13] is also similar to the example in
Figure 1, but this time just with the assignment to the guard variable correctly placed before
the method call (i.e. with lines 6 and 7 switched in Figure 1). This too would be rejected by
our type system, since it does not take the ordering of statements in sequential composition
into account (i.e. rule [t-seq]). Thus, this example constitutes a false positive for our type
system as well, which is hardly surprising.

Finally, let us consider a true positive example. Figure 14 illustrates a part of the code
for two banks, which would allow users to store some of their assets and also to transfer
assets between them.7 We assume both banks implement the same interface IBank, but with
different security settings: X is L and Y is H, meaning the latter is untrusted. There is no
callback from Y, so in this setup a blockchain with a transaction A->X.transfer(Y,1):0
would actually be accepted by the type system, because the Low values from X can safely be
coerced up (via subtyping) to match the setting of High on Y.

6 Related work

In light of the visibility and immutability of smart contracts, which makes it hard to correct
errors once they are deployed in the wild, it is not surprising that there has been a substantial
research effort within the formal methods community on developing formal techniques to

6 It also involves the presence of a “default function”, which is a special feature of Solidity. It is a
parameterless function that is implicitly invoked by send(), thus allowing the recipient to execute code
upon reception of a currency transfer. This feature is not present in TinySol, yet we can achieve a
similar effect by simply allowing the mandatory send() method to have an arbitrary method body,
rather than just skip. This has no effect on the type system and associated proofs, since the send()
method is treated as any other method therein. Hence, this situation is in principle the same as if the
sender had invoked some other method than send(), similarly to the example in Figure 1.

7 TinySol does not have a “mapping” type such as in Solidity, so the setup here is limited to a single
user.

ECOOP 2024

1:24 A Sound Type System for Secure Currency Flow

prove safety properties of those programs – see, for instance, [26] for a survey. The literature
on this topic is already huge and the whole gamut of techniques from the field of verification
and validation has been adapted to the smart-contract setting. For example, this includes
contributions employing frameworks based on finite-state machines to design and synthesise
Ethereum smart contracts [17], a variety of static analysis techniques and accompanying
tools, such as those presented in [9, 15, 23, 27], and deductive verification [5, 6, 21], amongst
others. The Dafny-based approach reported in [6] is able to model arbitrary reentrancy in a
setting with the “gas mechanism”, whereas [4] presents a way to analyse safety properties of
smart contracts exhibiting reentrancy in a gas-free setting.

The study in [14] is close in spirit to ours in that it uses a sound type system to guarantee
the absence of information flows that violate integrity policies in Solidity smart contracts.
That work also presents a type verifier and its prototype implementation within the K-
framework [22], which is then applied to analyse more than one hundred smart contracts.
However, their technique has not been related to call integrity, which, by contrast, is the focus
of our work. Thus, our contribution in the present paper complements this work and serves
to further highlight the utility and applicability of secure-flow types in the smart-contract
setting. However, there are also clear differences between this aforementioned work and the
present one. Most notably, our type system uses a more refined subtyping relation, which
also handles subtyping of method and address types, whereas subtyping is not defined for the
former in [14], and the latter is not given a type altogether. This gives us a more fine-grained
control over the information flow, since it allows us to assign different security levels to a
contract and its members. For example, a High contract might have certain Low methods,
which hence would not be callable from another High contract, whereas High methods would.
This is in line with standard object-oriented principles, e.g. Java-style visibility modifiers.

Another approach to using a type system to ensure smart-contract safety in a Solidity-like
language is presented by Crafa et al. in [7]. This work is indeed related to ours in that
both are based on well-known typing principles from object-oriented languages, especially
subtyping for contract/address types and the inclusion of a “default” supertype for all
contracts, similar to our I⊤. However, the aim of [7] is rather different from ours, in that the
type system offered in that paper seeks to prevent runtime errors that do not stem from a
negative account balance, e.g. those resulting from attempts to access nonexistent members
of a contract. Incidentally, such runtime errors would also be prevented by our type system
(rules [t-call] and [t-field] in particular), due to our use of “interfaces” as address types,
if the converse check (ensuring every declared type in an interface has an implementation)
were also performed. However, our focus has been on checking the currency flow, rather than
preventing runtime errors of this kind.

The aforementioned paper [7] introduced Featherweight Solidity (FS). Like TinySol, FS
is a calculus that formalises the core features of Solidity and, as mentioned above, it supports
the static analysis of safety properties of smart contracts via type systems. Therefore, the
developments in the present paper might conceivably have been carried out in FS instead
of TinySol. Our rationale for using TinySol is that it provided a very simple language
that was sufficient to express the property of call integrity, thus allowing us to focus on
the core of this property. Of course, “simplicity” is a subjective criterion and the choice of
one language instead of another is often a matter of preference and convenience. To our
mind, TinySol is slightly simpler than FS, which includes functionalities such as callback
functions and revert labels. Moreover, the big-step semantics of TinySol provided was more
convenient for the development of our type system than the small-step semantics given for FS.
Furthermore, unlike FS, TinySol also formalises the semantics of blockchains. Having said
so, TinySol and FS are quite similar and it would be interesting to study their similarities

L. Aceto, D. Gorla, and S. Lybech 1:25

in more detail. To this end, in future work, we intend to carry out a formal comparison of
these two core languages and to see which adaptations to our type system are needed when
formulated for FS. In particular, we note that FS handles the possibility of an explicit type
conversion (type cast) of address to address payable by augmenting the address type
with type information about the contract to which it refers. This distinction is not present in
our version of TinySol, as we require all contracts and accounts to have a default send()
function, so all addresses are in this sense “payable”. However, our type system does not
depend on the presence of a send() function, so this difference is not important here.

7 Conclusion and future work

In this paper we studied two security properties, namely call integrity and noninterference,
in the setting of TinySol, a minimal calculus for Solidity smart contracts. To this end,
we rephrased the syntax of TinySol to emphasise its object-oriented flavour, gave a new
big-step operational semantics for that language and used it to define call integrity and
noninterference. Those two properties have some similarities in their definition, in that they
both require that some part of a program is not influenced by the other part. However, we
showed that the two properties are actually incomparable. Nevertheless, we provided a type
system for noninterference and showed that well-typed programs also satisfy call integrity.
Hence, programs that are accepted by our type systems lie at the intersection between call
integrity and noninterference.

A challenging development of our work would be to prove whether the type system exactly
characterises the intersection of these two properties, or to find another characterisation of
this set of programs. Orthogonally, it would be important to devise type inference algorithms
for the present type system, to be used in practical situations where the typing environment
is hard to guess. It would also be interesting to compare our typing-based proof method
with those proposed, e.g., in [13, 16, 23]. Finally, we also aim at applying our static analysis
methodology to many concrete case studies, to better understand the benefits of using a
completely static proof technique for call integrity. To do so, it would be useful to extend
TinySol with a “gas mechanism” allowing one to prove the termination of transactions and
to compute their computational cost.

A potential limitation of the approach presented in this paper is that the entire blockchain
must be checked to show call integrity of a contract. Indeed, since a typing derivation can
fail at the call-site and the call-site of a method can be a transaction, transactions must be
well-typed too. In passing, we note that this kind of problem is also present in [25, 28] (and,
in general, in many works on type systems for security), where the whole code needs to be
typed in order to obtain the desired guarantees. We think that an important avenue for
future work, and one we intend to pursue, is to explore whether, and to what extent, other
typing disciplines can be employed to mitigate this problem. As mentioned earlier, we also
plan to extend the language (and the type system) to enable checking of real-life Solidity
contracts; this will also allow us to better assess how (un)feasible it would be to check the
whole blockchain.

References
1 Luca Aceto, Daniele Gorla, and Stian Lybech. A sound type system for secure currency flow.

CoRR, abs/2405.12976, 2024. doi:10.48550/arXiv.2405.12976.
2 Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on ethereum smart

contracts (sok). In Proc. of POST, volume 10204 of LNCS, pages 164–186. Springer, 2017.
doi:10.1007/978-3-662-54455-6_8.

ECOOP 2024

https://doi.org/10.48550/arXiv.2405.12976
https://doi.org/10.1007/978-3-662-54455-6_8

1:26 A Sound Type System for Secure Currency Flow

3 Massimo Bartoletti, Letterio Galletta, and Maurizio Murgia. A minimal core calculus for
solidity contracts. In Cristina Pérez-Solà, Guillermo Navarro-Arribas, Alex Biryukov, and
Joaquin Garcia-Alfaro, editors, Data Privacy Management, Cryptocurrencies and Blockchain
Technology, pages 233–243, Cham, 2019. Springer International Publishing. doi:10.1007/
978-3-030-31500-9_15.

4 Christian Bräm, Marco Eilers, Peter Müller, Robin Sierra, and Alexander J. Summers.
Rich specifications for Ethereum smart contract verification. Proc. ACM Program. Lang.,
5(OOPSLA):1–30, 2021. doi:10.1145/3485523.

5 Franck Cassez, Joanne Fuller, and Aditya Asgaonkar. Formal verification of the Ethereum 2.0
Beacon Chain. In 28th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 13243 of LNCS, pages 167–182. Springer, 2022. doi:10.
1007/978-3-030-99524-9_9.

6 Franck Cassez, Joanne Fuller, and Horacio Mijail Anton Quiles. Deductive verification
of smart contracts with Dafny. In 27th International Conference on Formal Methods for
Industrial Critical Systems, volume 13487 of LNCS, pages 50–66. Springer, 2022. doi:10.
1007/978-3-031-15008-1_5.

7 Silvia Crafa, Matteo Di Pirro, and Elena Zucca. Is solidity solid enough? In Financial
Cryptography Workshops, 2019.

8 The dao smart contract. http://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72
d3bb8c189413#code, 2016.

9 Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis framework for
smart contracts. In Proceedings of the 2nd International Workshop on Emerging Trends in
Software Engineering for Blockchain, pages 8–15. IEEE / ACM, 2019. doi:10.1109/WETSEB.
2019.00008.

10 Ethereum Foundation. Solidity documentation. https://docs.soliditylang.org/, 2022.
Accessed: 2024-01-15.

11 Thomas Genet, Thomas P. Jensen, and Justine Sauvage. Termination of Ethereum’s smart con-
tracts. In Proc. of the 17th International Joint Conference on e-Business and Telecommunica-
tions - Volume 2: SECRYPT, pages 39–51. ScitePress, 2020. doi:10.5220/0009564100390051.

12 J. A. Goguen and J. Meseguer. Security policies and security models. In 1982 IEEE Symposium
on Security and Privacy, pages 11–11, 1982. doi:10.1109/SP.1982.10014.

13 Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic framework for the
security analysis of ethereum smart contracts. In Lujo Bauer and Ralf Küsters, editors,
Principles of Security and Trust, pages 243–269, Cham, 2018. Springer International Publishing.

14 Xinwen Hu, Yi Zhuang, Shangwei Lin, Fuyuan Zhang, Shuanglong Kan, and Zining Cao. A
security type verifier for smart contracts. Comput. Secur., 108:102343, 2021. doi:10.1016/j.
cose.2021.102343.

15 Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS: analyzing safety
of smart contracts. In 25th Annual Network and Distributed System Security Symposium.
The Internet Society, 2018. URL: https://www.ndss-symposium.org/wp-content/uploads/
2018/02/ndss2018_09-1_Kalra_paper.pdf.

16 Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart
contracts smarter. In Proc. SIGSAC Conf. on Computer and Communications Security, pages
254–269. ACM, 2016. doi:10.1145/2976749.2978309.

17 Anastasia Mavridou and Aron Laszka. Designing secure Ethereum smart contracts: A finite
state machine based approach. In 22nd Conference on Financial Cryptography and Data Secur-
ity, volume 10957 of LNCS, pages 523–540. Springer, 2018. doi:10.1007/978-3-662-58387-6_
28.

18 Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An Appetizer.
Springer-Verlag London, 2007. doi:10.1007/978-1-84628-692-6.

19 The parity wallet breach. https://www.coindesk.com/30-million-ether-reported-
stolen-parity-wallet-breach/, 2017.

https://doi.org/10.1007/978-3-030-31500-9_15
https://doi.org/10.1007/978-3-030-31500-9_15
https://doi.org/10.1145/3485523
https://doi.org/10.1007/978-3-030-99524-9_9
https://doi.org/10.1007/978-3-030-99524-9_9
https://doi.org/10.1007/978-3-031-15008-1_5
https://doi.org/10.1007/978-3-031-15008-1_5
http://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
http://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://docs.soliditylang.org/
https://doi.org/10.5220/0009564100390051
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1016/j.cose.2021.102343
https://doi.org/10.1016/j.cose.2021.102343
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_09-1_Kalra_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_09-1_Kalra_paper.pdf
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-1-84628-692-6
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/

L. Aceto, D. Gorla, and S. Lybech 1:27

20 The parity wallet vulnerability. https://paritytech.io/blog/security-alert.html, 2017.
21 Daejun Park, Yi Zhang, and Grigore Rosu. End-to-end formal verification of Ethereum 2.0

Deposit Smart Contract. In Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided
Verification - 32nd International Conference, CAV Proceedings, Part I, volume 12224 of Lecture
Notes in Computer Science, pages 151–164. Springer, 2020. doi:10.1007/978-3-030-53288-8_
8.

22 Grigore Rosu and Traian-Florin Serbanuta. An overview of the K semantic framework. J. Log.
Algebraic Methods Program., 79(6):397–434, 2010. doi:10.1016/j.jlap.2010.03.012.

23 Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei. ethor: Practical
and provably sound static analysis of ethereum smart contracts. In Proc. of SIGSAC Conf. on
Computer and Communications Security, pages 621–640. ACM, 2020. doi:10.1145/3372297.
3417250.

24 Pablo Lamela Seijas, Simon J. Thompson, and Darryl McAdams. Scripting smart contracts
for distributed ledger technology. IACR Cryptol. ePrint Arch., 2016:1156, 2016.

25 Geoffrey Smith and Dennis M. Volpano. Secure information flow in a multi-threaded imperative
language. In Proc. of 25th POPL, pages 355–364. ACM, 1998.

26 Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. A survey of smart contract
formal specification and verification. ACM Computing Surveys (CSUR), 54(7):148:1–148:38,
2020. doi:10.1145/3464421.

27 Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli,
and Martin T. Vechev. Securify: Practical security analysis of smart contracts. In Proc. of
SIGSAC Conference on Computer and Communications Security, pages 67–82. ACM, 2018.
doi:10.1145/3243734.3243780.

28 Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4, August 2000. doi:10.3233/JCS-1996-42-304.

29 Renlord Yang, Toby Murray, Paul Rimba, and Udaya Parampalli. Empirically analyzing
Ethereum’s gas mechanism. In Proc. of IEEE European Symposium on Security and Privacy
Workshops, pages 310–319. IEEE, 2019. doi:10.1109/EuroSPW.2019.00041.

ECOOP 2024

https://paritytech.io/blog/security-alert.html
https://doi.org/10.1007/978-3-030-53288-8_8
https://doi.org/10.1007/978-3-030-53288-8_8
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3464421
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1109/EuroSPW.2019.00041

	1 Introduction
	2 The TinySol language
	2.1 Syntax
	2.2 Big-step semantics
	2.2.1 Declarations
	2.2.2 Expressions
	2.2.3 Statements
	2.2.4 Transactions and blockchains

	3 Call integrity and noninterference in TinySol
	4 A type system for noninterference and call integrity
	4.1 Type syntax
	4.2 Subtyping
	4.3 Type judgments
	4.4 Safety and soundness
	4.5 Extending the type system to transactions
	4.6 Noninterference and call integrity

	5 Examples and limitations
	6 Related work
	7 Conclusion and future work

