
Regrading Policies for Flexible Information Flow
Control in Session-Typed Concurrency
Farzaneh Derakhshan #

Illinois Institute of Technology, Chicago, IL, USA

Stephanie Balzer #

Carnegie Mellon University, Pittsburgh, PA, USA

Yue Yao #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Noninterference guarantees that an attacker cannot infer secrets by interacting with a program.
Information flow control (IFC) type systems assert noninterference by tracking the level of information
learned (pc) and disallowing communication to entities of lesser or unrelated level than the pc. Control
flow constructs such as loops are at odds with this pattern because they necessitate downgrading the
pc upon recursion to be practical. In a concurrent setting, however, downgrading is not generally
safe. This paper utilizes session types to track the flow of information and contributes an IFC type
system for message-passing concurrent processes that allows downgrading the pc upon recursion. To
make downgrading safe, the paper introduces regrading policies. Regrading policies are expressed in
terms of integrity labels, which are also key to safe composition of entities with different regrading
policies. The paper develops the type system and proves progress-sensitive noninterference for
well-typed processes, ruling out timing attacks that exploit the relative order of messages. The type
system has been implemented in a type checker, which supports security-polymorphic processes.

2012 ACM Subject Classification Theory of computation → Linear logic; Security and privacy →
Logic and verification; Theory of computation → Process calculi

Keywords and phrases Regrading policies, session types, progress-sensitive noninterference

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.11

Related Version Technical Report: https://doi.org/10.48550/arXiv.2407.20410

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.4

Funding Stephanie Balzer : Supported in part by the Air Force Office of Scientific Research under
award number FA9550-21-1-0385 (Tristan Nguyen, program manager). Any opinions, findings and
conclusions or recommendations expressed here are those of the author(s) and do not necessarily
reflect the views of the U.S. Department of Defense.

1 Introduction

With the emergence of new applications, such as Internet of Things and cloud computing,
today’s software landscape has become increasingly concurrent. A dominant computation
model adopted by such applications is message passing, where several concurrently running
processes connected by channels exchange messages. A further common aspect is the need
for security, ensuring that confidential information is not leaked to a (malevolent) observer.

Information flow control (IFC) type systems [36, 39, 42] rule out information leakage
by type checking. These systems statically track the level of information learned by an
entity and disallow propagation to parties of lesser or unrelated levels, given a security
lattice. The ultimate property to be asserted by an IFC type system is noninterference,
a program equivalence statement up to the confidentiality level of an observer. The gold
standard is progress-sensitive noninterference (PSNI) [24], which treats divergence as an

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Farzaneh Derakhshan, Stephanie Balzer, and Yue Yao;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 11; pp. 11:1–11:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fderakhshan@iit.edu
https://orcid.org/0000-0002-2156-2606
mailto:balzers@cs.cmu.edu
https://orcid.org/0000-0002-8347-3529
mailto:yueyao@cs.cmu.edu
https://orcid.org/0000-0001-8523-5156
https://doi.org/10.4230/LIPIcs.ECOOP.2024.11
https://doi.org/10.48550/arXiv.2407.20410
https://doi.org/10.4230/DARTS.10.2.4
https://doi.org/10.4230/DARTS.10.2.4
https://doi.org/10.4230/DARTS.10.2.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Regrading Policies for Flexible IFC in Session-Typed Concurrency

observable outcome. PSNI thus only equates a divergent program with another diverging one,
whereas progress-insensitive noninterference (PINI) regards divergence to be equal to any
outcome. Especially in a concurrent setting, PSNI is a sine qua non because the termination
channel [36] can be scaled to many parallel computations, each leaking “just” one bit [4, 40].

Guaranteeing PSNI, or even PINI for that matter, can become both a blessing and a
curse in a concurrent setting. To ensure such a strong property, IFC type systems have to
be very restrictive. The troublemakers, in particular, are control flow constructs, such as
loops and if statements. Whereas IFC type systems for sequential languages allow the pc
label1 to be lowered to its previous level for the continuation of a control flow construct,
even if the construct itself runs at high, this treatment is no longer safe in a concurrent
setting [39]. To uphold noninterference, IFC type systems for concurrent languages typically
forbid high-security loop guards and may even put restrictions on if statements, depending
on thread scheduling and attacker model [35,37,39].

The use of linearity provides some relief [7, 20, 46–48], allowing high-security loop guards.
Linearity also facilitates race freedom, key to guaranteeing observational determinism and,
thus, the absence of certain timing attacks [7, 20, 48]. A family of concurrent languages that
employ linearity are session types [9,26,27,30,43]. Session types are used for message-passing
concurrency, typically in the context of process calculi, where concurrently running processes
communicate along channels. A distinguishing characteristic of session types is their ability
to assert protocol adherence. A session-typed channel prescribes not only the types of values
that can be transported over the channel but also their relative sequencing.

In this paper, we develop a flow-sensitive IFC session type system that not only supports
recursive processes with arbitrary recursion guards, including high-security ones, but also
identifies synchronization patterns that make it safe for the process body to downgrade to the
initial pc level upon recursion. We refer to this adjustment of confidentiality level as regrading.
To enforce the safety of regrading, we complement confidentiality with integrity [8]. Integrity
allows prescribing a process a regrading policy, ensuring that any confidential information
learned during the high-security parts of the loop cannot be rolled forward to the next
iteration. Processes are polymorphic in the confidentiality and integrity labels, ensuring
maximal flexibility of the IFC type system.

We contribute a type checker for our IFC type system, yielding the language SINTEGRITY.
The type checker supports security-polymorphic processes using local security theories. Well-
typed processes in SINTEGRITY enjoy PSNI. To prove this result, we develop a logical relation
for integrity, showing that well-typed processes are self-related (fundamental theorem, Thm. 1).
We then prove that the logical relation is closed under parallel composition and that related
processes are bisimilar (adequacy theorem, Thm. 3).

Regrading is related to robust declassification [6,15,33,44,45,49], as both allow down-
grading the pc using integrity. In contrast to declassification, which deliberately releases
information and thus intentionally weakens noninterference, regrading preserves noninterfer-
ence. The distinction also manifests in how integrity is used. Whereas integrity is used in
robust declassification to convey how trustworthy the information is on which a regrading
decision is based, integrity in our work is used to impose extra synchronization policies on
regrading processes to prevent leakage by downgrading the pc upon recursion. As such,
regrading constitutes a more permissive IFC mechanism.

1 The pc (program counter) label approximates the level of confidential information learned up to the
current execution point.

F. Derakhshan, S. Balzer, and Y. Yao 11:3

Contributions

The notion of a regrading policy to downgrade a process’ confidentiality, retaining PSNI.
The language SINTEGRITY, a flow-sensitive IFC session type system for asynchronous
message-passing with confidentiality and integrity to support regrading policies.
A logical relation for integrity to prove that SINTEGRITY processes satisfy PSNI.
A type checker for SINTEGRITY, available as an artifact.

The complete formalization with proofs is available as a technical report (TR) [21].

2 Motivating example and background

This section provides an introduction to session-typed programming and IFC control based
on a running example. Our language SINTEGRITY is an intuitionistic linear session type
language [9, 41]; thus, our presentation is specific to that family of session types.

We use a simple bank survey as an example. The survey is carried out by an analyzer at
a bank to decide whether to buy or sell a share of stock. The analyzer’s decision depends on
the opinion of two groups of participants, queried by two surveyors, and a strategy provided
by a tactician. For simplicity, we assume that each group of participants only consists of one
participant, and the surveyors simply pass the opinion of their participant to the analyzer.

Figure 1 Bank survey: (a) process configuration, (b)/(c) red/green tactic, (d) session types.

A runtime configuration of processes for this example is shown in Fig. 1(a): the analyzer
process A, the tactician process T, the surveyor processes S1 and S2, along with their
participant processes P1 and P2, resp. The processes are connected by the channels u1, u2,
w1, w2, x, and z. The figure shows the communications between the analyzer, surveyors, and
participants along these channels, with arrows indicating the message being exchanged. The
analyzer sends the message ask to surveyor S1 to request a poll (1). Surveyor S1 then sends
the message ask to participant P1 to get their opinion about buying a share (2). Once the
surveyor receives P1’s vote (i.e., either yes or no) (3), it relays the vote back to the analyzer
(4). The analogous communication pattern is repeated between the analyzer and surveyor S2

and participant P2 (1’–4’). The final decision whether to buy or sell (5) of the analyzer is
based on the tactic provided by the tactician. For simplicity, we assume that the tactician
chooses either a green or red tactic (0). In the green tactic, the analyzer decides to buy the
share if at least one of the surveyors votes yes. In the red tactic, the analyzer buys the stock
if the first surveyor votes to buy, regardless of the opinion of the second one (see Fig. 1(b-c)).

ECOOP 2024

11:4 Regrading Policies for Flexible IFC in Session-Typed Concurrency

Table 1 SINTEGRITY constructs. Upper half: types and terms (before and after exchange),
operational meaning, and polarity. Lower half: spawn and forward terms and operational meaning.

Session type (b/a) Process term (b/a) Description

x:⊕ {ℓ:Aℓ}ℓ∈L x:Ak x.k;P P provider sends label k along x, continues with P

casex(ℓ⇒Qℓ)ℓ∈L Qk client receives label k along x, continues with Qk

x:&{ℓ:Aℓ}ℓ∈L x:Ak casex(ℓ⇒Pℓ)ℓ∈L Pk provider receives label k along x, continues with Pk

x.k;Q Q client sends label k along x, continues with Q

x:A⊗B x:B send y x;P P provider sends channel y:A along x, continues with P

z←recvx;Qz Qy client receives channel y:A along x, continues with Qy

x:A⊸ B x:B z←recvx;Pz Py provider receives channel y:A along x, continues with Py

send y x;Q Q client sends channel y:A along x, continues with Q

x:1 - closex - provider sends “close” along x and terminates
waitx;Q Q client receives “close” along x, continues with Q

x : Y x : A - - recursive type definition Y = A (Y occurs in A)

Judgmental rules

(x⟨c,e⟩ ← X[γ]← ∆)@⟨c0, e0⟩;Qx spawn X along x⟨c,e⟩ with arguments ∆, substitution γ,
and running security ⟨c0, e0⟩, then continue with Qx

x← y forward x:A to y:A

The protocols for these communications can be specified by the session types shown in
Fig. 1(d), using the connectives of Table 1. The connectives are drawn from intuitionistic
linear logic and obey the following grammar:

A,B ::= ⊕{ℓ : Aℓ}ℓ∈L | &{ℓ : Aℓ}ℓ∈L | A⊗B | A⊸ B | 1 | Y,
where L ranges over finite sets of labels denoted by ℓ and k, amounting to primitive values
in our system. Type variable Y is a fixed point whose definition Y = A is given in a global
signature Σ. The latter is used to define general recursive types. Recursive types must be
contractive [23], demanding a message exchange before recurring, and equi-recursive [19],
avoiding explicit (un)fold messages and relating types up to their unfolding. All three types
vote, result, and tactic are recursive.

Table 1 provides an overview of SINTEGRITY types and terms. A crucial characteristic
of session-typed processes is that a process changes its type along with the messages it
exchanges. A process’ type therefore always reflects the current protocol state. Table 1
lists state transitions caused by a message exchange in columns 1 and 2 with corresponding
process terms in columns 3 and 4. Column 5 describes the computational behavior of a type.

Linearity ensures that every channel connects exactly two processes, thus imposing a
tree structure on a configuration of processes, as witnessed by Fig. 1(a). We adopt a form
of session types corresponding with intuitionistic linear logic, which moreover introduces a
distinction between the two processes connected by a channel, identifying one as the parent
and the other as the child, turning the configuration into a rooted tree. The parent and child
processes have mutually dual perspectives on the protocol of their connecting channel: The
child has the perspective of the provider and the parent that of a client. Column 5 of Table 1
describes the perspective of the client and provider for each type. We assign a polarity to
each session type which determines whether the type has a sending semantics or a receiving
semantics. For positive types, the provider sends, and the client receives; for negative types,
the provider receives, and the client sends. The types with positive polarity are ⊕{ℓ:Aℓ}ℓ∈L,
A⊗B, and 1, and the types with negative polarity are &{ℓ:Aℓ}ℓ∈L and A⊸ B.

F. Derakhshan, S. Balzer, and Y. Yao 11:5

w1:vote⟨bank,guest⟩, w2:vote⟨bank,guest⟩, x:tactic⟨bank,guest⟩ ⊢ A :: z:result⟨bank,bank⟩
z ← A← w1, w2, x =
casex (green ⇒ w1.ask; casew1 (yes ⇒ w2.ask; casew2 (yes ⇒ z.buy; (z ← A← w1, w2, x)

| no ⇒ z.buy; (z ← A← w1, w2, x))
| no ⇒w2.ask; casew2 (yes ⇒ z.buy; (z ← A← w1, w2, x)

| no ⇒ z.sell; (z ← A← w1, w2, x)))
| red ⇒ w1.ask; casew1 (yes ⇒w2.ask; casew2 (yes ⇒ z.buy; (z ← A← w1, w2, x)

| no ⇒ z.buy; (z ← A← w1, w2, x))
| no ⇒w2.ask; casew2 (yes ⇒ z.sell; (z ← A← w1, w2, x)

| no ⇒ z.sell; (z ← A← w1, w2, x)))
@⟨guest,guest⟩

u:vote⟨guest,guest⟩ ⊢ S :: w:vote⟨bank,guest⟩
w ← S← u = casew (ask ⇒ (w ← S′ ← u))@⟨guest,guest⟩
u:vote⟨guest,guest⟩ ⊢ S′ :: w:⊕ {yes : vote,no : vote}⟨bank,guest⟩
w ← S′ ← u = u.ask; caseu(yes ⇒ w.yes; (w ← S′ ← u) | no ⇒ w.no; (w ← S′ ← u))@⟨guest,guest⟩

Figure 2 Secure process implementations of analyzer and surveyor (see Fig. 1), accepted by
SINTEGRITY, but rejected by existing IFC session type systems.

Each process in a configuration is uniquely identified by the channel that connects it to its
parent, which we also refer to as its offering (or providing) channel. We consider the session
type of a process to be the protocol of its offering channel. For example, the participant
process P1 in Fig. 1 has type vote, which is also the type of the process’ offering channel u1

that connects P1 to its client S1. We say that the client S1 uses the channel u1.
The connectives ⊗ and ⊸, not used in the example, allow sending channels along channels.

Such higher-order channels change the connectivity structure of a configuration: from the
perspective of the provider, ⊗ turns a child into a sibling and ⊸ a sibling into a child. The
former is achieved by sending a subtree to the parent and the latter by receiving a subtree
from the parent. § 5.4 showcases an example that uses higher-order channels.

It is now time to explore how to implement the processes of our bank survey example.
Fig. 2 gives the process definitions of the analyzer and surveyor. A process definition consists
of the process signature (first two lines) and body (after =). The first line indicates the typing
of channel variables used by the process (left of ⊢) and the type of the providing channel
variable (right of ⊢). The former are going to be child nodes of the process. The second
line binds the channel variables. In SINTEGRITY, ← generally denotes variable bindings.
The channels and the process definitions are annotated with confidentiality and integrity
levels (e.g., ⟨bank,guest⟩ and @⟨guest,guest⟩). We will later describe the meaning of these
annotations; the reader can safely ignore them for now.

The analyzer first waits to receive a tactic from the tactician along channel x. In either
branch (i.e., green or red), the analyzer proceeds by requesting a vote from surveyors S1 and
S2, after which it communicates its decision along its offering channel z before recurring. We
remark that the notation z ← A← w1, w2, x used for a tail call does not precisely match up
with Table 1 because we are deferring a discussion of security annotations and substitutions
for security-polymorphic processes to § 5.1. Moreover, a tail call is syntactic sugar for a
spawn combined with a forward; i.e., z ← A← w1, w2, x desugars to z′ ← A← w1, w2, x; z ← z′.

We implement a surveyor by two processes S and S′ to take advantage of SINTEGRITY’s
support for regrading, as we will detail in § 3.1. The surveyor starts out as process S and
calls process S′ right after having received the request from its parent, the analyzer.

Suppose that the tactic is a secret that a participant shall not deduce. The implementations
in Fig. 2 respect this security condition: the analyzer interacts with the participants via
the surveyors the same regardless of the tactic it received. Existing IFC session type
systems [7, 20], however, reject these implementations, because they view the analyzer as

ECOOP 2024

11:6 Regrading Policies for Flexible IFC in Session-Typed Concurrency

tainted as soon as it learns the secret tactic, and disallow further communication with the
participants via the surveyor. This paper relaxes this restriction – while preserving PSNI –
and allows the tainted surveyor to interact with the participants while putting safeguards in
place (synchronization patterns, § 3.2–§ 3.3 and § 5.2) that prevent the surveyor from leaking
the tactic.

3 Key ideas

This section develops the main ideas underlying our flexible IFC session type system; the
type system and dynamics is given in §5. The latter is asynchronous, i.e., non-blocking sends
and blocking receives (see § 4.2 and § 5.3). An asynchronous semantics allows for a more
permissive noninterference statement since message receipt is not observable.

It may be helpful to foreshadow our attacker model (detailed in § 6.1). We assume that
an attacker knows the implementation of all processes and can observe messages sent over
channels with lower or equal confidentiality level than the attacker. The attacker cannot
measure time but can observe the relative order in which messages are sent along different
observable channels. As we aim for PSNI, we need to ensure that an attacker is unable to
deduce any information from non-reactiveness either.

3.1 Regrading confidentiality

It is now time to consider the red annotations ⟨c, e⟩ on channels and the green annotations
@⟨c0, e0⟩ on process terms in Fig. 2, where c, d, c0, and e0 range over levels in the security
lattice guest ⊑ alice ⊑ bank and guest ⊑ bob ⊑ bank. We focus on the first components c
and c0 for now, which denote confidentiality labels. They are adopted from existing IFC
session type systems [7, 20], which are based solely on confidentiality.

The first component c of the pair ⟨c, e⟩ indicates the maximal confidentiality of a process,
i.e., the maximal level of secret information the process may ever obtain. As to be expected,
the analyzer (A), the tactician (T), and both surveyors (S1 and S2) have maximal confidentiality
bank, as they are affiliated with the bank and have the clearance of knowing the secret tactic.
The processes associated with the participants have the lowest maximal confidentiality guest,
as they must not gain any information about the bank’s secrets.

The first component c0 of the pair @⟨c0, e0⟩ denotes a process’ running confidentiality.
It denotes the highest level of secret information a process has obtained so far and thus is
analogous to the pc label in imperative languages, making the type system flow-sensitive.
The running confidentiality is capped by the maximal confidentiality, i.e., c0 ⊑ c. When
defining a process, a programmer must indicate the process’ maximal confidentiality as well
as the initial running confidentiality at which the process starts out when spawned.

An IFC type system increases the running confidentiality accordingly, whenever informa-
tion of higher confidentiality is received, and disallow sends from senders with a higher or
incomparable running confidentiality than the recipient. For example, the analyzer starts
with the running confidentiality guest. When it receives the secret from the tactician, its
running confidentiality increases to bank. After the receive, the analyzer can still send the
message ask to a surveyor as the maximal confidentiality of the surveyor is bank. However,
as soon as the surveyor receives this message from the analyzer, its running confidentiality
increases to bank, which prevents it from sending messages to participants, whose maximal
confidentiality is guest, because bank ̸⊑ guest.

F. Derakhshan, S. Balzer, and Y. Yao 11:7

To address this limitation of existing IFC session type systems, we develop regrading
policies. A regrading policy is polymorphic in a level f of the security lattice and certifies that,
when regrading the running confidentiality to f , any secrets of confidentiality ds ̸⊑ f learned
so far will not affect future communications of confidentiality at most f after regrading.

To convey the regrading policy that a process must obey, we introduce integrity annota-
tions, amounting to the second components in the pairs @⟨c0, e0⟩ and ⟨c, e⟩. We refer to e0

as the running integrity of the process and to e as the minimal integrity of the process. The
running integrity specifies what level a process is allowed to regrade to and is capped by the
minimal integrity, i.e., e0 ⊑ e. For example, the surveyor process S runs at @⟨bank,guest⟩
after having received the request from the analyzer, where the running integrity guest licenses
it to drop its running confidentiality as low as guest upon tail-calling, but forces it to obey
that policy too. The minimal integrity e of a process is naturally capped by its maximal
confidentiality c, i.e., e ⊑ c, because a process cannot learn (and thus drop) more secrets than
it is licensed to. As a result, a process with maximal confidentiality and minimal integrity
⟨c, c⟩ effectively amounts to a non-regrading process.

We draw both integrity and confidentiality levels from the same security lattice, but
interpret integrity levels dually, as usual: the lower a level in the lattice, the higher its
integrity2. For regrading this means that the lower the level a process regrades to, the stricter
the process’ policy becomes. The SINTEGRITY type system thus increases the running
integrity of a process upon receiving from a process with a higher minimal integrity and
disallows sends from a process of a higher or incomparable running integrity than the minimal
integrity of the recipient (see § 5).

The process definitions in Fig. 2 only use concrete levels from the security lattice for
confidentiality and integrity annotations. To increase code reusability, SINTEGRITY supports
security-polymorphic process definitions. Such definitions range over security variables
for confidentiality and integrity levels and may state constraints on these variables. The
constraints must be satisfied upon spawning, which is checked by the SINTEGRITY type
checker using a security theory. § 5 expands on security-polymorphic process definitions.

3.2 The need for regrading policies
While a regrading policy licenses regrading, it also imposes restrictions on a process’ commu-
nication patterns to guarantee noninterference. To distill these restrictions, we next explore
insecure implementations of the analyzer-surveyor example from § 2 that do not satisfy PSNI.

3.2.1 Hasty analyzer – optimization may introduce a timing attack
In the red tactic, the decision of the analyzer does not depend on the result provided by the
second surveyor. Hence, one may be tempted to optimize the analyzer implementation by
refraining from asking the opinion of the second surveyor in the branch corresponding to the
red tactic (see AH in Fig. 3). As appealing as this optimization seems, it leads to a leak. An at-
tacker of confidentiality level guest can simultaneously observe the sequence of messages trans-
mitted along channels u1 and u2 of confidentiality guest, which connect the participants to the
surveyors, and thus, can deduce which secret tactic was chosen: in case of the green tactic, the
sequence of messages along u1 and u2 has the recurrence u1.ask;u1.(yes/no);u2.ask;u2.(yes/no),

2 We adopt the following convention to avoid any confusion: we use “running integrity”, “minimal
integrity”, and “integrity level” for elements in the security lattice, and otherwise just “integrity”. Thus,
when the integrity level in the lattice increases, the integrity decreases.

ECOOP 2024

11:8 Regrading Policies for Flexible IFC in Session-Typed Concurrency

w1:vote⟨bank,guest⟩, w2:vote⟨bank,guest⟩, x:tactic⟨bank,guest⟩ ⊢ AH :: z:result⟨bank,bank⟩
z ← AH ← w1, w2, x =
casex (green ⇒ w1.ask; casew1 (yes ⇒w2.ask; casew2 (yes ⇒ z.buy; (z ← AH ← w1, w2, x)

| no ⇒ z.buy; (z ← AH ← w1, w2, x))
| no ⇒w2.ask; casew2 (yes ⇒ z.buy; (z ← AH ← w1, w2, x)

| no ⇒ z.sell; (z ← AH ← w1, w2, x)))
| red ⇒ w1.ask; casew1 (yes ⇒z.buy; (z ← AH ← w1, w2:, x)

| no ⇒ z.sell; (z ← AH ← w1, w2, x))) @⟨guest,guest⟩
w1:vote⟨bank,guest⟩, w2:vote⟨bank,guest⟩, x:tactic⟨bank,guest⟩ ⊢ AR :: z:result⟨bank,bank⟩
z ← AR ← w1, w2, x =
casex (green ⇒ w1.ask; casew1 (yes ⇒w2.ask; casew2 (yes ⇒ z.buy; (z ← AR ← w1, w2, x)

| no ⇒ z.buy; (z ← AR ← w1, w2, x))
| no ⇒w2.ask; casew2 (yes ⇒ z.buy; (z ← AR ← w1, w2, x)

| no ⇒ z.sell; (z ← AR ← w1, w2, x)))
| red ⇒ w1.ask;w2.ask; casew1 (yes ⇒casew2 (yes ⇒ z.buy; (z ← AR ← w1, w2, x)

| no ⇒ z.buy; (z ← AR ← w1, w2, x))
| no ⇒ casew2 (yes ⇒ z.sell; (z ← AR ← w1, w2, x)

| no ⇒ z.sell; (z ← AR ← w1, w2, x))))
@⟨guest,guest⟩

Figure 3 Insecure hasty analyzer AH and reckless analyzer AR, rejected by SINTEGRITY.

whereas it has the recurrence u1.ask;u1.(yes/no) for the red tactic. Observing, for example,
the sequence u1.ask;u1.(yes/no);u2.ask;u2.(yes/no);u1.ask;u1.(yes/no), the attacker can deduce
that the first tactic used was green and the second one was red. These leaks constitute timing
attacks because the attacker cannot deduce the secret by only looking at a single channel,
but needs to observe the relative timing of messages passed along two or more channels.

3.2.2 Reckless analyzer – be careful with synchronization
The previous example shows that a send along a channel, present in one branch, but omitted
from another, may lead to a leak. One may naively suspect that these leaks only involve
sends. The analyzer version AR in Fig. 3 showcases the opposite: mismatched receives are
at least as dangerous as mismatched sends. In the original implementation (Fig. 2), the
analyzer synchronizes the communications of surveyors and participants across branches,
ensuring, in particular, that the second participant always casts their vote after the first. The
reckless analyzer AR breaks this synchronization in the red branch by swapping the order of
casew1 and w2.ask. This minimal change allows the two surveyors to run concurrently when
the tactic is red and produce the sequence of messages u2.ask;u2.(yes/no);u1.ask;u1.(yes/no)
along channels u1 and u2, a sequence that is impossible to produce in the green tactic (recall
that receives are blocking, but sends are not). Both AH and AR leak the secret with a timing
attack, i.e., the simultaneous observation of the relative order of sends along several channels.

There is a subtle connection between timing attacks and leaks due to the non-reactivity of
a process. For instance, let us assume that the second participant loops internally and never
casts its vote. The attacker can then deduce the secret tactic in the hasty implementation
of the analyzer by only observing the communications of the first participant along u1:
the sequence u1.ask;u1.(yes/no);u1.ask;u1.(yes/no) indicates that the prior tactic was red. A
similar scenario holds for the reckless analyzer when the first participant is non-reactive.

3.3 Regrading policies in a nutshell
Our model allows the running confidentiality of a process to be dropped as low as its running
integrity. Performing such a venturous act, needs a corresponding safety net in place: a
regrading policy that is polymorphic in the running integrity to preserve noninterference.
The examples in § 3.2 suggest that a regrading policy must enforce the following properties:

F. Derakhshan, S. Balzer, and Y. Yao 11:9

1. The continuation of a process after regrading must not depend on any secret higher than
or incomparable to its running integrity. That is, when branching on a secret ds, the
same process must be spawned for the recursive call in every branch, if that process
regrades to a level e0 such that ds ̸⊏ e0.

2. Whether a process reaches its regrading point or not must not depend on any secret
higher than or incomparable to its running integrity.

The latter property is violated in both analyzer implementations of Fig. 3, amounting to a
leak. In the hasty implementation AH, the second surveyor only gets to the regrading point
if the secret tactic is green. In the reckless implementation AR, if the secret tactic is green,
the second surveyor gets to the regrading point only if the first participant casts their vote,
whereas if the secret is red, there is no such chaining.

The above properties capture semantically what conditions secure processes that employ
regrading must meet to observe PSNI. In § 5.2 we develop static checks that, when satisfied
by a process, ensure that the process also meets these semantic conditions. We refer to those
checks as synchronization pattern checks, and they are enforced by the SINTEGRITY type
checker. The pattern checks are of the form Ψ ⊨ P ∼⟨d,f⟩ Q and synchronize P and Q in terms
of their communication actions: if P outputs along channel x, so must Q, and if P inputs
along channel x, so must Q, and vice versa. The pattern checks are invoked pairwise for every
two branches, Pi and Pj , in a case statement, requiring that Ψ ⊨ Pi ∼⟨d,f⟩ Pj . The check is
conditioned on the running confidentiality d and running integrity f at the branching point.

An important feature of our regrading policies is that they are compositional. We
take advantage of the fact that intuitionism imposes a rooted tree structure on process
configurations and require that a configuration aligns with the security lattice: for every
child process and parent process with maximal confidentiality and minimal integrity ⟨c, e⟩
and ⟨c′, e′⟩, resp., it must hold that ⟨c, e⟩ ⊑ ⟨c′, e′⟩, ensuring that a child process can learn
at most as much as its parent and has at least an as stringent regrading policy as its parent.
We design our type system to preserve this property as an invariant.

4 Blueprint for Formal Development

Before delving into the formal development, we review the statics and dynamics of a vanilla
intuitionistic session type system and give a roadmap for the upcoming technical sections.
We use the intuitionistic session type system introduced by Toninho et al. [9, 41] as our
vanilla intuitionistic session type system. SINTEGRITY enhances such a vanilla session
type system with confidentiality and integrity annotations to establish PSNI. SINTEGRITY
adopts the former from existing intuitionistic IFC session type systems [7, 20]. The integrity
annotations as well as the synchronization patterns are contributions unique to SINTEGRITY.
The addition requires us to define the relationships between all these levels, expressed as
invariants, and the development of synchronization patterns. Similar to the system in [7] our
language supports general recursion and allows processes to be polymorphic in confidentiality
levels. SINTEGRITY extends label polymorphism to also accommodate integrity levels.

4.1 Vanilla intuitionistic session types – statics
Process terms and session types are built by the grammar in § 2 and Table 1. The process
typing judgment is of the form ∆ ⊢Σ P :: x:A, to be read as: “Process P provides a session of
type A along channel x, given the typing of sessions offered along channels in ∆. ∆ is a linear
typing context consisting of the channels connecting P to its children, and x connects P to
its parent. The global signature Σ includes recursive type definitions and process definitions.

ECOOP 2024

11:10 Regrading Policies for Flexible IFC in Session-Typed Concurrency

4.1.1 Process term typing
Fig. 4 lists the process term typing rules. The parts in red are specific to SINTEGRITY and
can be ignored for now; we discuss them in §5. As is usual in intuitionistic linear session type
languages, the rules are given in a sequent calculus. When read from bottom to top, the rules
closely follow the behavior described in Table 1: right rules describe a type from the point of
view of a provider, and left rules from the point of view of a client. For example, rule ⊕R1

describes the behavior of the process that provides a channel with the protocol ⊕{ℓ:Aℓ}ℓ∈L:
it chooses a label k∈L and sends it to the client along channel x, and then continues by
checking process P providing Ak in the premise. Note that the typing rules ⊕R1 and ⊕R2

are identical, ignoring the security annotations. Rule Fwd ensures that the type of the two
channels involved in forwarding is the same. Rule Spawn spawns a new child process X along
the fresh channel x; it first checks that X is defined in the signature (first premise) and thus
is well-typed and then continues with type-checking the continuation Q (last premise).

4.1.2 Signature checking
To support general recursive types, we employ a global signature Σ comprised of all process
definitions. Each process definition is typed individually, assuming that the other processes in
the signature are well-typed. The signature also comprises recursive type definitions. When
typing a process with a recursive protocol, the signature is consulted to unfold the definition.

For example, the signature for the bank survey example in § 2 consists of the definitions
for processes A, S, and S′ as shown in Fig. 1 and the definition of recursive types as shown
in Fig. 1(d). In our formal development, we use a more concise syntax for process definitions
than what is shown in Fig. 1. In particular, we write them in the form of ∆ ⊢ X = P ::(z:A).
For instance, the concise version of the process definition for process S in Fig. 1, ignoring its
security annotations, is u:vote ⊢ S = casew (ask ⇒ (w ← S′ ← u))::w:vote.

Type checking starts with typing the signature by the rules listed in Fig. 5; again, ignore
the parts in red for now, as they will be discussed later in § 5. The rules are in a sequent
calculus and should be read from bottom to top. Rule Σ3 ensures that each process definition
in the signature is well-typed. It invokes the process term typing judgment for a process
definition relative to the entire global signature Σ (fifth premise) and continues with checking
the rest of the signature (sixth premise). Rule Σ2 ensures that all recursive types in the
signature are well-formed via its first premise, the judgment ⊩Σ A wfmd. This judgment
denotes a well-formed session type definition, which, if recursive, must be equi-recursive [19]
and contractive. Equi-recursiveness ensures that types are related up to their unfolding
without requiring explicit (un)fold messages (see rules TVarR and TVarL). Contractiveness
demands an exchange before recurring.

4.2 Vanilla intuitionistic session types – dynamics
At runtime, process definitions result in a configuration of processes structured as a forest of
rooted trees. The nodes in the forest represent runtime processes and messages, denoted as
proc(yα;P) and msg(M), resp. We use metavariables C and D to refer to a configuration and
formally define it as a set of runtime processes and messages (the nodes in the tree). The
connection between the nodes will be inferred through configuration typing. In proc(yα, P),
the metavariable yα represents the process’ offering channel, and P represents the process’
source code (where free variables have been substituted by channels). Runtime messages
msg(M) are a special form of processes created to model asynchronous communication: we

F. Derakhshan, S. Balzer, and Y. Yao 11:11

implement asynchronous sends by spawning off the message msg(M) that carries the sent
message M . A sent message M can be of the form x.k, send y x, or closex, corresponding to
label output, channel output, and a termination message, resp.

Runtime channels yα are annotated with a generation subscript α, which distinguishes
them from channel variables y used in the statics. Using generation subscripts, we can
ensure that both the sender and receiver agree on a new name for the continuation channel
without explicitly passing the name in a message. We will see an example of using generation
subscripts in the next paragraph.

4.2.1 Asynchronous dynamics
We chose an asynchronous semantics for SINTEGRITY because it weakens the attacker model,
allowing a more permissive IFC enforcement, and is also a sensible model for practical
purposes. The dynamics is given in Fig. 8 in terms of multiset rewriting rules [14] (again, for
now the parts in red can be ignored). Multiset rewriting rules express the dynamics as state
transitions between configurations and are local in that they only mention the parts of a
configuration they rewrite.

For example, in case of ⊗snd, the provider proc(yα, sendxβ yα;P) spawns off the message
process msg(sendxβ yα), indicating that the channel xβ is sent over channel yα. Since sends
are non-blocking, the provider steps to its continuation proc(yα+1, ([yα+1/yα]P)), allocating
a new generation α+1 of the carrier channel yα. In ⊗recv, upon receipt of the message, the
receiving client process proc(yα, w ← recv yα;P) will increment the generation of the carrier
channel in its continuation. The scenario is similar for ⊕snd and ⊕rcv, but the sent message is
a label in this case, and similar for ⊸snd,⊸rcv and &snd, &rcv, except that in these cases the
sender is the client and the receiver the provider. In the rules for the termination protocol,
i.e., 1snd and 1rcv, there is no continuation channel. Rule Spawn creates a process offering
along a fresh runtime channel x0 by looking up the definition of the spawnee in the signature.

The dynamics for the forwarding process proc(yα, yα ← xβ) is often described as fusing
the two channels, yα and xβ . We, however, represent forward as syntactic sugar by including
forwarder processes defined by structural induction on the type of the channels involved in
the forward, amounting to an identity expansion. The reader may see the TR for the details.

4.2.2 Configuration typing
The configuration typing judgment is of the form ∆ ⊩Σ C :: ∆′ indicating that the configuration
C provides sessions along the channels in ∆′, using sessions provided along channels in ∆.
∆ and ∆′ are both linear contexts, consisting of actual runtime channels of the form yα:B.
We often use the term open configurations to emphasize that our configurations may have
external free channels in both ∆ and ∆′ to communicate with the environment. This is in
contrast to restricting ∆ to be an empty context, which means the configuration only has
external free channels to communicate with a client.

Fig. 7 shows the typing rules, enforcing that the configuration is structured as a forest and
the source code of each node is well-typed. For brevity, Fig. 7 omits a channel’s generation
as well as Σ, which is fixed. The emp rule types an empty forest. The comp rule types each
tree in the forest. The proc rule and the msg rule check the well-typedness of the root node
of a tree when it is a process or message, resp., using the last premises. Well-typedness of the
remaining forest is checked by the eighth and fourth premise of the latter two rules, resp. The
last premise of the msg rule calls message typing rules, which we provide in TR-Sect. 3.3.

The typing rules ensure progress and preservation, i.e., the dynamics can always step an
open configuration ∆ ⊩ C :: ∆′ to ∆ ⊩ C′ :: ∆′.

ECOOP 2024

11:12 Regrading Policies for Flexible IFC in Session-Typed Concurrency

4.3 Roadmap for SINTEGRITY

To develop the ideas discussed in § 3 and establish PSNI, we supplement the vanilla type
system with a security layer. Here, we provide a roadmap to the key parts of our development.

4.3.1 Regrading policy type system

The first step in our formal development is to enrich the process term typing judgment with
security levels as Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:A⟨c, e⟩. Here, Ψ denotes a security theory which
includes the security lattice and polymorphic confidentiality and integrity variables. The pair
⟨c0, e0⟩ denotes the running confidentiality and integrity of the process, aka its taint level.
The pair ⟨c, e⟩ denotes the max confidentiality and min integrity of the process. Similarly,
each channel in ∆ is annotated with a pair of confidentiality and integrity levels denoting its
provider’s max confidentiality and min integrity.

Similarly, we use security labels to annotate configurations and configuration typ-
ing judgments. In particular, runtime processes in configuration C now have the form
proc(yα⟨c, e⟩, P@⟨c′, e′⟩), where ⟨c, e⟩ is the pair of max confidentiality and min integrity of
the process, and ⟨c′, e′⟩ is the pair of its running confidentiality and integrity.

The typing rules include security constraints highlighted in red – the ones we have been
ignoring in § 4.1. The purpose of these security annotations is to (i) ensure that the taint
levels are propagated correctly, (ii) prevent a tainted process from sending information to
a process with a lower max confidentiality/higher min integrity, (iii) ensure that a process
regrades its running confidentiality only as low as its running integrity, and (iv) verify that
the process indeed adheres to the policy enforced by its running integrity. The first three
conditions are enforced by imposing the security constraints on the process term typing rules
in Fig. 4. The last check is enforced by the synchronization pattern checks in Fig. 6.

4.3.2 PSNI via a logical relation

Our ultimate goal is to prove that well-typed SINTEGRITY processes enjoy PSNI. We prove
PSNI as an equivalence up to an attacker’s confidentiality level ξ using a logical relation,
which then delivers a process bisimulation.

To define PSNI for an open configuration in the shape of a tree Ψ0; ∆ ⊩ D :: uα:T ⟨c, e⟩,
given a global security lattice Ψ0 fixed for an application, we consider the external free
channels yβ :B⟨c′, e′⟩ ∈ ∆, uα:T ⟨c, e⟩ with max confidentiality c′ ⊑ ξ. We call the set of these
channels that connect a configuration to its environment and that are observable to an
attacker, the confidentiality interface.

Such an open configuration satisfies noninterference if, when composed with different
high-confidentiality processes, behaves the same along the confidentiality interface. We prove
that all well-typed open configurations enjoy PSNI by designing a logical relation and showing
that (i) all well-typed configurations are self-related (fundamental theorem, Thm. 1) and (ii)
any two related configurations are bisimilar (adequacy theorem, Thm. 3).

To prove these results, our logical relation needs to consider some free channels in
∆, uα:T ⟨c, e⟩ that are not directly observable in terms of their confidentiality but can have
an observable effect due to their integrity. We thus define a superset of the confidentiality
interface that additionally contains channels yβ :B⟨c′, e′⟩ ∈ ∆, uα:T ⟨c, e⟩ with min integrity
e′ ⊑ ξ. We call this interface the integrity interface.

F. Derakhshan, S. Balzer, and Y. Yao 11:13

5 Regrading policy type system

This section formalizes SINTEGRITY’s type system with synchronization patterns and asyn-
chronous dynamics. SINTEGRITY supports security-polymorphic process definitions, an
example of which is discussed in § 5.4.

5.1 Process term typing
Let us recall the process term typing judgment from § 4.3:

Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:A⟨c, e⟩.

We read it as: “Process P , with maximal confidentiality and minimal integrity ⟨c, e⟩ and
running confidentiality and integrity ⟨c0, e0⟩, provides a session of type A along channel x,
given the typing of sessions offered along channels in ∆ and given a security theory Ψ”. ∆
is a linear typing context with the grammar ∆ ::= · | x:A⟨c, e⟩,∆. A security theory Ψ is
used for type checking security-polymorphic process definitions. It consists of the global
security lattice Ψ0 which is fixed for an application, security variables ψ, and constraints on
the variables (see § 5.4 and Sect. 2 in the TR).

We impose the following properties on the typing judgment, as discussed in detail in § 3.
These properties are maintained by typing as invariants. When reading them, note that
“high integrity” and “low confidentiality” both mean a “lower level” in the security lattice.
(a) ∀y:B⟨d, f⟩ ∈ ∆.Ψ ⊩ d ⊑ c,Ψ ⊩ f ⊑ e: ensuring that a child process can learn at most as

much as its parent and has at least an as stringent regrading policy as its parent.
(b) Ψ ⊩ c0 ⊑ c and Ψ ⊩ e0 ⊑ e: ensuring that a process knows at most as much as it is licensed

to and adheres to at least an as stringent regrading policy as it promises.
(c) Ψ ⊩ e0 ⊑ c0 and Ψ ⊩ e ⊑ c: ensuring that a process cannot drop more secrets than it

knows and is licensed to learn, resp.
Moreover, the typing rules for input and output have to conform to the following schema to
make sure that the running confidentiality and running integrity correctly reflect the taint
level and that a tainted process does not leak information via a send:
(1) after receiving a message, the running confidentiality and running integrity of the

receiving process must be increased to at least the maximal confidentiality and minimal
integrity of the sending process, and

(2) Before sending a message, the running confidentiality and running integrity of the
sending process must be at most the maximal confidentiality and minimal integrity of
the receiving process.

Conforming to this schema leads to the premises of the form Ψ ⊩ ⟨d1, f1⟩ = ⟨c, e⟩ ⊔ ⟨d0, f0⟩ and
Ψ ⊩ ⟨d0, f0⟩ ⊑ ⟨c, e⟩ to meet condition (1) and (2), resp., above. The judgments are defined
formally in Sect. 2 in the TR.

It is time to consider the red security annotations of the typing rules in Fig. 4. We explain
how the rules satisfy conditions (1) and (2) above:
⊕: There are two versions of the right rule for ⊕. Both versions establish condition (2)
on sends without extra premises by the invariant (b). The difference between the two
versions lies in whether Ψ ⊩ c = e is derivable or not derivable (Ψ ̸⊩ c = e). If Ψ ⊩ c = e

is derivable, then rule ⊕R1 applies; if it is not, rule ⊕R2 applies. In the former case,
the client of x, on the receiving side, adjusts its running integrity to at least e=c upon
receiving the sent message, and thus, it cannot regrade to a lower (or unrelated) level
than c. In the latter case, the min integrity e of the process is strictly lower than its
max confidentiality c. This means that the client of x might, in fact, continue to have

ECOOP 2024

11:14 Regrading Policies for Flexible IFC in Session-Typed Concurrency

Ψ ⊩ c = e k ∈ L Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:Ak⟨c, e⟩
Ψ; ∆ ⊢Σ (x⟨c,e⟩.k;P)@⟨c0, e0⟩ :: x:⊕ {ℓ:Aℓ}ℓ∈L⟨c, e⟩

⊕R1

Ψ ̸⊩ c = e ∀i, j ∈ L.Ai = Aj k ∈ L Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:Ak⟨c, e⟩
Ψ; ∆ ⊢Σ (x⟨c,e⟩.k;P)@⟨c0, e0⟩ :: x:⊕ {ℓ:Aℓ}ℓ∈L⟨c, e⟩

⊕R2

Ψ ⊩ ⟨d1 , f1 ⟩ = ⟨c, e⟩ ⊔ ⟨d0 , f0 ⟩
∀k ∈ L Ψ; ∆, x:Ak⟨c, e⟩ ⊢Σ Qk@⟨d1, f1⟩ :: z:C⟨d, f⟩ ∀i, j ∈ L.Ψ ⊨ Qi ∼⟨d1 ,f1 ⟩ Qj

Ψ; ∆, x:⊕ {ℓ:Aℓ}ℓ∈L⟨c, e⟩ ⊢Σ (casex⟨c,e⟩(ℓ⇒Qℓ)ℓ∈L)@⟨d0, f0⟩ :: z:C⟨d, f⟩
⊕L

∀k ∈ L Ψ; ∆ ⊢Σ Pk@⟨c, e⟩ :: x:Ak⟨c, e⟩ ∀i, j ∈ L.Ψ ⊨ Pi ∼⟨c,e⟩ Pj

Ψ; ∆ ⊢Σ (casex⟨c,e⟩(ℓ⇒Pℓ)ℓ∈L)@⟨c0, e0⟩ :: x:&{ℓ:Aℓ}ℓ∈L⟨c, e⟩
&R

Ψ ⊩ c = e Ψ ⊩ ⟨d0 , f0 ⟩ ⊑ ⟨c, e⟩ k ∈ L Ψ; ∆, x:Ak⟨c, e⟩ ⊢Σ Q@⟨d0, f0⟩ :: z:C⟨d, f⟩
Ψ; ∆, x:&{ℓ:Aℓ}ℓ∈L⟨c, e⟩ ⊢Σ (x⟨c,e⟩.k;Q)@⟨d0, f0⟩ :: z:C⟨d, f⟩

&L1

Ψ ̸⊩ c = e ∀i, j ∈ L.Ai = Aj

Ψ ⊩ ⟨d0 , f0 ⟩ ⊑ ⟨c, e⟩ k ∈ L Ψ; ∆, x:Ak⟨c, e⟩ ⊢Σ Q@⟨d0, f0⟩ :: z:C⟨d, f⟩
Ψ; ∆, x:&{ℓ:Aℓ}ℓ∈L⟨c, e⟩ ⊢Σ (x⟨c,e⟩.k;Q)@⟨d0, f0⟩ :: z:C⟨d, f⟩

&L2

Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:B⟨c, e⟩
Ψ; ∆, y:A⟨d, f⟩ ⊢Σ (send y x⟨c,e⟩;P)@⟨c0, e0⟩ :: x:A⊗B⟨c, e⟩

⊗R

Ψ ⊩ ⟨d1, f1⟩ = ⟨c, e⟩ ⊔ ⟨d0, f0⟩ Ψ; ∆, x:B⟨c, e⟩, y:A⟨c, e⟩ ⊢Σ Q@⟨d1, f1⟩ :: z:C⟨d, f⟩
Ψ; ∆, x:A⊗B⟨c, e⟩ ⊢Σ (y⟨c,e⟩←recvx⟨c,e⟩;Qy⟨c,e⟩)@⟨d0, f0⟩ :: z:C⟨d, f⟩

⊗L

Ψ; ∆, y:A⟨c, e⟩ ⊢Σ P@⟨c, e⟩ :: x:B⟨c, e⟩
Ψ; ∆ ⊢Σ (y⟨c,e⟩←recvx⟨c,e⟩;Py⟨c,e⟩)@⟨c0, e0⟩ :: x:A⊸ B⟨c, e⟩

⊸R

Ψ ⊩ ⟨d0 , f0 ⟩ ⊑ ⟨c, e⟩ Ψ; ∆, x:B⟨c, e⟩ ⊢Σ Q@⟨d0, f0⟩ :: z:C⟨d, f⟩
Ψ; ∆, x:A⊸ B⟨c, e⟩, y:A⟨c, e⟩ ⊢Σ (send y x⟨c,e⟩;Q)@⟨d0, f0⟩ :: z:C⟨d, f⟩

⊸L

Ψ ⊩ ⟨c1, e1⟩ = ⟨c2, e2⟩
Ψ; y:A⟨c1, e1⟩ ⊢Σ (x⟨c2,e2⟩ ← y⟨c1,e1⟩)@⟨c0, e0⟩ :: x:A⟨c2, e2⟩

Fwd

Ψ ′; ∆′
1 ⊢Σ X = P@⟨ψ0, ω0⟩ :: x:A⟨ψ, ω⟩ ∈ Σ

Ψ ⊩ γ : Ψ ′ γ̂(∆′
1) = ∆1 Ψ ⊩ ⟨γ̂(ψ), γ̂(ω)⟩ ⊑ ⟨d, f ⟩

Ψ ⊩ f0 ⊑ γ̂(ψ0) Ψ ⊩ f0 ⊑ γ̂(ω0) Ψ; ∆2, x:A⟨γ̂(ψ), γ̂(ω)⟩ ⊢Σ Q@⟨d0, f0⟩ :: z:C⟨d, f⟩
Ψ; ∆1,∆2 ⊢Σ ((x⟨γ̂(ψ),γ̂(ω)⟩ ← X[γ]← ∆1)@⟨γ̂(ψ0), γ̂(ω0)⟩;Qx)@⟨d0, f0⟩ :: z:C⟨d, f⟩

Spawn

Ψ; · ⊢Σ (closex⟨c,e⟩)@⟨c0, e0⟩ :: x:1⟨c, e⟩
1R

Ψ ⊩ ⟨d1 , f1 ⟩ = ⟨c, e⟩ ⊔ ⟨d0 , f0 ⟩ Ψ; ∆ ⊢Σ Q@⟨d1, f1⟩ :: z:C⟨d, f⟩
Ψ; ∆, x:1⟨c, e⟩ ⊢Σ (waitx⟨c,e⟩;Q)@⟨d0, f0⟩ :: z:C⟨d, f⟩

1L

Figure 4 Process term typing rules of SINTEGRITY.

its running integrity as low as e ⊏ c and, at some point in the future, drop its running
confidentiality to e and start sending to channels with lower (or unrelated) confidentiality
than c. The additional premise ∀i, j ∈ L.Ai = Aj in ⊕R2 prevents potential leaks through
different continuation protocols at that future point, i.e., it ensures that the client’s future
communications with channels of lower confidentiality level than c do not depend on the
continuation protocol chosen now.

F. Derakhshan, S. Balzer, and Y. Yao 11:15

TVarR
Y = A ∈ Σ Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:A⟨c, e⟩

Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:Y ⟨c, e⟩
TVarL
Y = A ∈ Σ Ψ; ∆, x:A⟨c, e⟩ ⊢Σ Q@⟨d0, f0⟩ :: z:C⟨d, f⟩

Ψ; ∆, x:Y ⟨c, e⟩ ⊢Σ Q@⟨d0, f0⟩ :: z:C⟨d, f⟩
⊩Σ;Ψ0 (·) sig

Σ1

⊩Σ A wfmd ⊩Σ;Ψ0 Σ′ sig
⊩Σ;Ψ0 Y = A,Σ′ sig

Σ2

∀i ∈ {1 . . .n}.Ψ ⊩ ⟨ψi , ωi⟩ ⊑ ⟨ψ, ω⟩,Ψ ⊩ ωi ⊑ ψi

Ψ ⊩ ⟨ψ0 , ω0 ⟩ ⊑ ⟨ψ, ω⟩ Ψ ⊩ ω0 ⊑ ψ0 Ψ ⊩ ω ⊑ ψ
Ψ; y1:B1⟨ψ1, ω1⟩, . . . , yn:Bn⟨ψn, ωn⟩ ⊢Σ P@⟨ψ0, ω0⟩ :: x:A⟨ψ, ω⟩ ⊩Σ;Ψ0 Σ′ sig
⊩Σ;Ψ0 Ψ; y1:B1⟨ψ1, ω1⟩, . . . , yn:Bn⟨ψn, ωn⟩ ⊢ X = P@⟨ψ0, ω0⟩ :: x:A⟨ψ, ω⟩,Σ′ sig

Σ3

Figure 5 Signature checking rules of SINTEGRITY.

The first premise of rule ⊕L updates the running integrity and confidentiality based on
x’s security levels to enforce condition (1) for receives. Moreover, as explained in § 3.3,
the third premise invokes the pattern check pairwise for every two branches conditioned
on the running confidentiality d1 and running integrity f1 after the receive. We detail the
synchronization pattern check rules later in § 5.2.
&: The left and right rules for & are dual to ⊕, except that the sends in &L1 and &L2

have to be guarded by their second and third premises, resp., to ensure condition (2) on
sends. In &R, the updated running confidentiality and running integrity is equal to the
max confidentiality and max integrity by invariant (b).
⊗, ⊸, 1: The rules for the rest of the connectives use the same set of premises to ensure
conditions (1) and (2). Rules ⊗R and ⊸L, moreover, ensure that a channel can be sent
over another channel only if they have the same security levels.
fwd: The forward rule requires that the security levels of the involved channels match.
Spawn: The rule relies on an order-preserving substitution Ψ ⊩ γ : Ψ′, guaranteeing that
the security terms provided by the spawner comply with the order expected among those
terms by the spawnee. The substitution maps the security terms in the context in the
signature to the one provided by the spawner, i.e., γ̂(∆′

1) = ∆1. The rule also establishes
invariants (a)-(c) for the newly spawned process via the premise Ψ ⊩ ⟨γ̂(ψ), γ̂(ω)⟩ ⊑ ⟨d, f⟩.
The running confidentiality and the running integrity of the spawned process will result
from applying the substitution to the corresponding levels in the signature, i.e., γ̂(ψ0)
and γ̂(ω0), resp. The premises Ψ ⊩ f0 ⊑ γ̂(ψ0) and Ψ ⊩ f0 ⊑ γ̂(ω0) allow the newly
spawned process to start its running confidentiality and integrity at least at the spawner’s
running integrity f0. This facilitates regrading to f0 in case of a tail call. Note that
Ψ ⊩ f0 ⊑ γ̂(ω0) prevents the spawnee from employing more pattern checks than the
spawner because the spawnee would otherwise be affected by the spawners negligence.

Signature checking. The syntax of process definitions in the signature is also enhanced
with the security levels and is of the form Ψ; ∆ ⊢ X = P@⟨ψ0, ω0⟩::(z:A⟨ψ, ω⟩). Fig. 5 lists the
signature checking rules. Signature checking happens relative to a globally fixed security
lattice Ψ0 of concrete security levels. Rule Σ3 initiates type-checking of a process definition
via its fifth premise and enforces invariants (a)-(c) on the process via the first four premises.

ECOOP 2024

11:16 Regrading Policies for Flexible IFC in Session-Typed Concurrency

Unsync1
Ψ ̸⊩ d ⊑ f Ψ ⊩ d ⊑ e Ψ ⊨ P ∼⟨d,f⟩ Q

Ψ ⊨↑x⟨c,e⟩ .P ∼⟨d,f⟩ Q

Unsync2
Ψ ̸⊩ d ⊑ f Ψ ⊩ d ⊑ e Ψ ⊨ P ∼⟨d,f⟩ Q

Ψ ⊨ P ∼⟨d,f⟩↑x⟨c,e⟩ .Q

Ψ ⊩ d ⊑ f
Ψ ⊨ P ∼⟨d,f⟩ Q

Unsync3

Ψ ̸⊩ d ⊑ f Ψ ⊩ d ⊑ e0 ∀y:B⟨c′, e′⟩ ∈ ∆.Ψ ⊩ d ⊑ e′ Ψ ⊨ P ∼⟨d,f⟩ Q

Ψ ⊨ (x⟨c,e⟩ ← X[γ]← ∆)@⟨c0, e0⟩;Px ∼⟨d,f⟩ Q
Unsync-Spawn1

Ψ ̸⊩ d ⊑ f Ψ ⊩ d ⊑ e0 ∀y:B⟨c′, e′⟩ ∈ ∆.Ψ ⊩ d ⊑ e′ Ψ ⊨ P ∼⟨d,f⟩ Q

Ψ ⊨ P ∼⟨d,f⟩ (x⟨c,e⟩ ← X[γ]← ∆)@⟨c0, e0⟩;Qx
Unsync-Spawn2

SndLab
Ψ ̸⊩ d ⊑ f Ψ ̸⊩ d ⊑ e Ψ ⊨ P ∼⟨d,f⟩ Q

Ψ ⊨ x⟨c,e⟩.k;P ∼⟨d,f⟩ x
⟨c,e⟩.ℓ;Q

RcvLab
Ψ ̸⊩ d ⊑ f ∀j ∈ I, k ∈ L.Ψ ⊨ Pj ∼⟨d,f⊔e⟩ Qk

Ψ ⊨ casex⟨c,e⟩(ℓ⇒Pℓ)ℓ∈I ∼⟨d,f⟩ casex⟨c,e⟩(ℓ⇒Qℓ)ℓ∈L
SndChn
Ψ ̸⊩ d ⊑ f Ψ ̸⊩ d ⊑ e Ψ ⊨ P ∼⟨d,f⟩ Q

Ψ ⊨ send y x⟨c,e⟩;P ∼⟨d,f⟩ send y x⟨c,e⟩;Q
RcvChn

Ψ ̸⊩ d ⊑ f Ψ ⊨ [y/y1]P ∼⟨d,f⊔e⟩ [y/y2]Q
Ψ ⊨ y1←recvx⟨c,e⟩;Py1 ∼⟨d,f⟩ y2←recvx⟨c,e⟩;Qy2

Ψ ̸⊩ d ⊑ f
(Ψ ̸⊩ d ⊑ e0 or ∃y:B⟨c′, e′⟩ ∈ ∆.Ψ ̸⊩ d ⊑ e′) Ψ ⊨ [x/x1]P ∼⟨d,f⟩ [x/x2]Q

Ψ ⊨ (x⟨c,e⟩
1 ← X[γ]← ∆)@⟨c0, e0⟩;Px1 ∼⟨d,f⟩ (x⟨c,e⟩

2 ← X[γ]← ∆)@⟨c0, e0⟩;Qx2

Sync-Spawn

Ψ ̸⊩ d ⊑ f
Ψ ⊨ x⟨c1,e1⟩ ← y⟨c2,e2⟩ ∼⟨d,f⟩ x

⟨c1,e1⟩ ← y⟨c2,e2⟩ Fwd

Ψ ̸⊩ d ⊑ f
Ψ ⊨ closex⟨c,e⟩ ∼⟨d,f⟩ closex⟨c,e⟩ Close

Ψ ̸⊩ d ⊑ f Ψ ⊨ P ∼⟨d,f⊔e⟩ Q

Ψ ⊨ waitx⟨c,e⟩;P ∼⟨d,f⟩ waitx⟨c,e⟩;Q
Wait

Figure 6 Synchronization pattern checking rules of SINTEGRITY.

5.2 Synchronization patterns

To check synchronization patterns, we use the judgment Ψ ⊨ P ∼⟨d,f⟩ Q, defined inductively
in Fig. 6. The judgment states that process terms P and Q are synchronized in terms of
their communication pattern, meaning that if P outputs along channel x, so must Q, and
that if P inputs along channel x, so must Q, and vice versa. The check is conditioned on
the running confidentiality d and running integrity f of the recipient after branching, and is
pairwise called for all branches of a case statement. Let us assume that right after branching,
the known secret of a process (its running confidentiality) is of level d. The goal of the
synchronization pattern checks is to rule out any leakage of this secret of level d via regrading.
Such leakage is only possible if the process (or any process that receives this secret from it)
regrades to a lower or unrelated level than the secret d. However, if d ⊑ f , we know that
this can never happen. Therefore, if Ψ ⊩ d ⊑ f , the judgment Ψ ⊨ P ∼⟨d,f⟩ Q trivially holds.
This case is handled by Rule Unsync3 and is a base case of the inductive definition.

F. Derakhshan, S. Balzer, and Y. Yao 11:17

The interesting case is when Ψ ̸⊩ d ⊑ f , meaning that the process can potentially regrade
to a lower (or unrelated) level than d. In this case, the rules have to ensure that the secret d
does not affect the ability of the process itself or the processes communicating with it to
reach a regrading point. Furthermore, the secret d cannot affect the continuation of the
process after regrading. In this case, the rules consider whether the next action in P and Q

is a receive, send (except close), spawn, close, or forward:
The receives are checked to be synchronized in P and Q by the rules RcvLab and RcvChan.
The pattern check is invoked inductively on the continuation, with updated running
integrity (f ⊔ e) to take into account the receive. The confidentiality of the learned secret
d, however, remains constant under inductive invocations as it has to continue preventing
the leak of the original secret. The receives have to be synchronized as long as Ψ ̸⊩ d ⊑ f
holds, since different receives in P and Q might result in one branch reaching the regrading
point and the other one not (related to non-reactiveness).
Different sends in two branches of a process does not impact whether or not the process
itself reaches a regrading point (sends are non-blocking). But, it may impact whether or
not the other process, on the receiving side, reaches the regrading point based on the
secret. If the carrier channel’s min integrity e is high enough, the receiving process cannot
regrade to a level lower (or unrelated) than d, and we do not need to synchronize the
sends. The sends must only be synchronized if the carrier channel’s min integrity e is not
greater than or equal to the level d of the secret (d ̸⊑ e). Rules Unsync1 and Unsync2
correspond to the former case where d ⊑ e; for brevity, in these rules, we use process
terms with any output prefix defined as ↑x⟨c,e⟩ .P ≜ x⟨c,e⟩.k;P | send y x⟨c,e⟩;P. And rules
SndLab and SndChan correspond to the latter where d ̸⊑ e. In either case, the pattern
check is invoked inductively on the continuation, with unchanged running integrity.
Similar to the reasoning in the case of sends, if the running integrity of the spawned
process and the min integrity of all its channels are high enough, there is no need to
synchronize the spawns (Unsync-Spawn rules). Otherwise, the two branches must spawn
the same processes with the same arguments (Sync-Spawn).
Rules Close and Fwd are the other base cases of the inductive definition. They insist
that the two branches P and Q can synchronize their termination behavior.

5.3 Configuration typing and asynchronous dynamics
The configuration typing judgment is of the form Ψ0; ∆ ⊩ C :: ∆′, where Ψ0 is the security
lattice and C is a set of runtime processes proc(yα⟨c, e⟩, P@⟨c′, e′⟩) and messages msg(M).
Fig. 7 shows the configuration typing. The security premises in the proc and msg rules
enforce the invariants (a)-(c) on the process term judgment before invoking process typing.

The dynamic rules in Fig. 8 take care of updating the running confidentiality and integrity
of each process after a receive. For brevity, we write ⟨p⟩ to refer to a pair of confidentiality
and integrity labels ⟨c, e⟩. Rule Spawn relies on the substitution mapping γ given by the
programmer and its lifting γ̂ to the process term level. It looks up the definition of process X
in the signature and instantiates the security variables occurring in the process body using γ.
The condition γ̂(Ψ′) = Ψ0 ensures that all security variables are instantiated with a concrete
security level. For brevity, we omit a channel generations as well as Σ, which is fixed.

5.4 Banking example
The following example implements a bank that authorizes transactions made by its customers
and sends a copy to their bank accounts. In line with our security lattice, we assume that the
bank has two customers, Alice and Bob. To authenticate themselves, a customer sends their

ECOOP 2024

11:18 Regrading Policies for Flexible IFC in Session-Typed Concurrency

Ψ0 ;x:A[⟨d, e⟩] ⊩ · :: (x:A[⟨d, e⟩])
emp

Ψ0 ; ∆0 ⊩ C :: ∆ Ψ0 ; ∆′
0 ⊩ C1 :: x:A[⟨d, e⟩]

Ψ0 ; ∆0,∆′
0 ⊩ C C1 :: ∆, x:A[⟨d, e⟩]

comp

Ψ0 ⊩ d1 ⊑ d Ψ0 ⊩ e1 ⊑ e
∀y:B[⟨d ′, e′⟩] ∈ ∆′

0 ,∆ (Ψ0 ⊩ d ′ ⊑ d) ∀y:B[⟨d ′, e′⟩] ∈ ∆′
0 ,∆ (Ψ0 ⊩ e′ ⊑ e)

Ψ0 ⊩ e1 ⊑ d1 Ψ0 ⊩ e ⊑ d ∀y:B[⟨d ′, e′⟩] ∈ ∆′
0 ,∆ (Ψ0 ⊩ e′ ⊑ d ′)

Ψ0 ; ∆0 ⊩ C :: ∆ Ψ0 ; ∆′
0,∆ ⊢ P@⟨d1 , e1 ⟩ :: (x:A[⟨d, e⟩])

Ψ0; ∆0,∆′
0 ⊩ C proc(x[⟨d, e⟩], P@⟨d1, e1⟩) :: (x:A[⟨d, e⟩])

proc

∀y:B[⟨d ′, e′⟩] ∈ ∆′
0 ,∆ (Ψ0 ⊩ d ′ ⊑ d) Ψ0 ⊩ e ⊑ d ∀y:B[⟨d ′, e′⟩] ∈ ∆′

0 ,∆ (Ψ0 ⊩ e′ ⊑ d ′)
Ψ0 ; ∆0 ⊩ C :: ∆ Ψ0 ; ∆′

0,∆ ⊢M@⟨d, e⟩ :: (x:A[⟨d, e⟩])
Ψ0 ; ∆0,∆′

0 ⊩ C,msg(M) :: (x:A[⟨d, e⟩])
msg

Figure 7 Configuration typing rules of SINTEGRITY.

Spawn proc(yα⟨p⟩, (x⟨p′⟩ ← X[γ]← ∆)@⟨p2 ⟩;Q@⟨p1 ⟩)
(Ψ ′; ∆′ ⊢ X = P@⟨ψ0 , ω0 ⟩ :: x : B′⟨ψ, ω⟩ ∈ Σ)

7→ proc(x0⟨p′⟩, ([x0,∆/x,∆′]γ̂(P))@⟨p2 ⟩) proc(yα⟨p⟩, ([x0/x]Q)@⟨p1 ⟩)
(Ψ0 ⊩ γ : Ψ ′, x0 fresh)

1snd proc(yα⟨p⟩, (close yα)@⟨p1 ⟩) 7→ msg(close yα)
1rcv msg(close yα) proc(xβ⟨p′⟩, (wait yα;Q)@⟨p1 ⟩) 7→ proc(xβ⟨p′⟩, Q@⟨p1 ⟩ ⊔ ⟨p⟩)
⊕snd proc(yα⟨p⟩, yα.k;P@⟨p1 ⟩) 7→ proc(yα+1⟨p⟩, ([yα+1/yα]P)@⟨p1 ⟩) msg(yα.k)
⊕rcv msg(yα.k) proc(uγ⟨p′⟩, case y⟨p⟩

α ((ℓ⇒ Pℓ)ℓ∈L)@⟨p1 ⟩)
7→ proc(uγ⟨p′⟩, ([yα+1/yα]Pk)@⟨p1 ⟩ ⊔ ⟨p⟩)

&snd proc(yα⟨p⟩, (xβ .k;P)@⟨p1 ⟩) 7→ msg(xβ .k) proc(yα⟨p⟩, ([xβ+1/xβ]P)@⟨p1 ⟩)
&rcv proc(yα⟨p⟩, (case yα(ℓ⇒ Pℓ)ℓ∈L)@⟨p1 ⟩) msg(yα.k) 7→ proc(vδ⟨p⟩, ([yα+1/yα]Pk)@⟨p⟩)
⊗snd proc(yα⟨p⟩, (sendxβ yα;P)@⟨p1 ⟩) 7→ proc(yα+1⟨p⟩, ([yα+1/yα]P)@⟨p1 ⟩) msg(sendxβ yα)
⊗rcv msg(sendxβ yα) proc(uγ⟨p′⟩, (w ← recv y⟨p⟩

α ;P)@⟨p1 ⟩)
7→ proc(uγ⟨p′⟩, ([xβ/w][yα+1/yα]P)@(⟨p1 ⟩ ⊔ ⟨p⟩))

⊸snd proc(yα⟨p⟩, (sendxβ uγ ;P)@⟨p1 ⟩) 7→ msg(sendxβ uγ) proc(yα⟨p⟩, ([uγ+1/uγ]P)@⟨p1 ⟩)
⊸rcv proc(yα⟨p⟩, (w ← recv yα;P)@⟨p1 ⟩) msg(sendxβ yα) 7→ proc(vδ⟨p⟩, ([xβ/w][yα+1/yα]P)@⟨p⟩)

Figure 8 Asynchronous dynamics of SINTEGRITY.

token to the bank. The bank then verifies the token and, if the verification is successful, sends
the message succ to the customer, otherwise the message fail. Moreover, if the verification is
successful, the bank creates a transaction statement and sends it to another process that
represents the account of the customer in the bank. Once done, the bank continues to serve
the next customer by making a recursive call. We assume that the bank alternates between
its two customers, Alice and Bob, by making a mutually recursive call from BankA, which
serves Alice, to BankB, which serves Bob, and vice versa. At each recursive call, a bank
process regrades its running confidentiality to interact with the next customer. The example
showcases a characteristic feature of our type system: it accepts an implementation for a bank
that interactively communicates with Alice and Bob without jeopardizing noninterference.

The following session types dictate the above protocol:
customer = ⊕{tokblack : &{succ : customer, fail : customer},

tokwhite : &{succ : customer, fail : customer}}
account = transfer ⊸ account
transfer = ⊕{transaction : 1}

Fig. 9 shows the process implementations BankA, BankB, CustomerA, and StatementA. The
latter two are the implementation of Alice’s customer and statement process, resp. The
implementation of CustomerA is as expected. StatementA signals a single transfer by sending
the label transaction and terminates. The implementation of corresponding processes for Bob,

F. Derakhshan, S. Balzer, and Y. Yao 11:19

Ψ; y1:customer⟨ψ,guest⟩, y2:customer⟨ψ′,guest⟩, w1:account⟨ψ,ψ⟩, w2:account⟨ψ′, ψ′⟩
⊢ BankA :: x:1⟨bank,bank⟩
x← BankA ← y1, y2, w1, w2 =
case y1 (tokwhite ⇒ y1.succ; (u← StatementA[γ]← ·); senduw1; (x′ ← BankB[γ]← y1, y2, w1, w2);

x← x′

| tokblack ⇒ y1.fail; (x′ ← BankB[γ]← y1, y2, w1, w2); x← x′)@⟨guest,guest⟩

Ψ; y1:customer⟨ψ,guest⟩, y2:customer⟨ψ′,guest⟩, w1:account⟨ψ,ψ⟩, w2:account⟨ψ′, ψ′⟩
⊢ BankB :: x:1⟨bank,bank⟩
x← BankB ← y1, y2, w1, w2 =
case y2 (tokblack ⇒ y2.succ; (u← B[γ]← ·); senduw2; (x′ ← BankA[γ]← y1, y2, w1, w2); x← x′

| tokwhite ⇒ y2.fail; (x′ ← BankA[γ]← y1, y2, w1, w2); x← x′)@⟨guest,guest⟩

Ψ; · ⊢ CustomerA :: y:customer⟨ψ,guest⟩
y ← CustomerA ← · =
y.tokwhite; case y (succ ⇒ (y′ ← CustomerA[γ]← ·); y ← y′

| fail ⇒ (y′ ← CustomerA[γ]← ·); y ← y′) @⟨ψ,guest⟩

Ψ; · ⊢ StatementA :: u:transfer⟨ψ,ψ⟩
u← StatementA ← · = u.transaction; closeu @⟨ψ,ψ⟩

Figure 9 Security-polymorphic process definitions.

i.e., CustomerB, and StatementB, would be similar. The example is typed using the security
theory Ψ, consisting of the concrete security lattice Ψ0, the security variables ψ and ψ′,
and the set of constraints {guest ⊑ ψ ⊑ bank,guest ⊑ ψ′ ⊑ bank}. (See TR for the formal
definition of a security theory.) To execute this program using the dynamics in Fig. 8, we
provide the order-preserving substitution Ψ0 ⊩ γ′ :: Ψ, defined as γ′ := {ψ 7→ alice, ψ′ 7→ bob}.

Let us examine the pattern checks ∼⟨ψ,guest⟩ invoked by case y1(. . .) in BankA, relating
the branches corresponding to black and white tokens. The sends along y1 match in both
branches, as demanded by SndLab (since Ψ ̸⊩ ψ⊑guest), even though the sent labels are not
the same. The unsynchronized spawn and send along w1 is verified by Unsync-Spawn1 and
Unsync1, resp., since Ψ ⊩ ψ ⊑ ψ. The matching tail calls are verified with Sync-Spawn.

6 Progress-sensitive noninterference

This section presents our main result, PSNI, which we prove using a logical relation.

6.1 Attacker model
The attacker model assumes a configuration D with prior annotation of its free channels
with security levels, the attacker’s confidentiality level ξ, and a nondeterministic scheduler.
The attacker knows the source code of D, can only observe the messages sent along the free
channels of D with confidentiality level c ⊑ ξ, and cannot measure the passing of time.

6.2 Noninterference via an integrity logical relation
Noninterference amounts to a process equivalence up to the confidentiality level ξ of an
observer. In a message-passing system, it boils down to an equivalence of a configuration with
interacting processes. This section focuses on noninterference for tree-shaped configurations.
The definition can be extended to forests by enforcing pairwise relation between their trees.

An open configuration Ψ0; ∆ ⊩ D :: xα:A⟨c, e⟩ has the free channels ∆ and xα to commu-
nicate with its external environment; it sends outgoing messages to and receives incoming
messages from the environment along these free channels. Two observationally equivalent

ECOOP 2024

11:20 Regrading Policies for Flexible IFC in Session-Typed Concurrency

(B1,B2) ∈ EξΨ0
J∆ ⊩ KKm+1 iff (D1;D2) ∈ TreeΨ0 (∆ ⊩ K) and∀Υ1, Θ1, D′

1. if D1 7→∗Υ1;Θ1 D′
1 then

∃Υ2D′
2. such that D2 7→∗Υ2 D′

2 and Υ1 ⊆ Υ2 and
∀ yα ∈ Out(∆ ⊩ K). if yα ∈ Υ1. then (D′

1;D′
2) ∈ VξΨ0

J∆ ⊩ KKm+1
·;yα

and
∀ yα ∈ In(∆ ⊩ K).if yα ∈ Θ1. then (D′

1;D′
2) ∈ VξΨ0

J∆ ⊩ KKm+1
yα;·

(B1,B2) ∈ EξΨ0
J∆ ⊩ KK0 iff (D1;D2) ∈ TreeΨ0 (∆ ⊩ K)

Figure 10 Term interpretation of logical relation.

(l1) (D1;D2) ∈ VξΨ0
J∆, yα:1⟨c, e⟩ ⊩ KKm+1

yα;·
iff (D1;D2) ∈ TreeΨ0 (∆, yα:1⟨c, e⟩ ⊩ K) then

(msg(close y⟨c,e⟩
α)D1; msg(close y⟨c,e⟩

α)D2) ∈ EξΨ0
J∆ ⊩ KKm

(l2) (D1;D2) ∈ VξΨ0
J∆, yα : ⊕{ℓ:Aℓ}ℓ∈I⟨c, e⟩ ⊩ KKm+1

yα;·
iff (D1;D2) ∈ TreeΨ0 (∆, yα:⊕ {ℓ:Aℓ}ℓ∈I⟨c, e⟩ ⊩ K) and ∀k1, k2 ∈ I.if(c ⊑ ξ → k1 = k2) then

(msg(y⟨c,e⟩
α .k1)D1; msg(y⟨c,e⟩

α .k2)D2) ∈ EξΨ0
J∆, yα+1:Ak1⟨c, e⟩ ⊩ KKm

(l3) (D1;D2) ∈ VξΨ0
J∆, yα:&{ℓ:Aℓ}ℓ∈I⟨c, e⟩ ⊩ KKm+1

·;yα

iff (D1;D2) ∈ TreeΨ0 (∆, yα:&{ℓ:Aℓ}ℓ∈I⟨c, e⟩ ⊩ K) and ∃k1, k2 ∈ I.(c ⊑ ξ → k1 = k2) and
D1 = msg(y⟨c,e⟩

α .k1)D′
1 and D2 = msg(y⟨c,e⟩

α .k2)D′
2 and

(D′
1;D′

2) ∈ EξΨ0
J∆, yα+1:Ak1⟨c, e⟩ ⊩ KKm

(l4) (D1;D2) ∈ VξΨ0
J∆, yα:A⊗B⟨c, e⟩ ⊩ KKm+1

yα;·
iff (D1;D2) ∈ TreeΨ0 (∆, yα:A⊗B⟨c, e⟩ ⊩ K) and∀xβ ̸∈dom(∆, yα:A⊗B⟨c, e⟩,K).

(msg(sendx⟨c,e⟩
β , y

⟨c,e⟩
α)D1; msg(sendx⟨c,e⟩

β , y
⟨c,e⟩
α)D2) ∈ EξΨ0

J∆, xβ :A⟨c, e⟩, yα+1:B⟨c, e⟩ ⊩ KKm

(l5) (D1;D2) ∈ VξΨ0
J∆′,∆′′, yα:A⊸ B⟨c, e⟩ ⊩ KKm+1

·;yα

iff (D1;D2) ∈ TreeΨ0 (∆′,∆′′, yα:A⊸ B⟨c, e⟩ ⊩ K) and
D1 = T1msg(sendx⟨c,e⟩

β y
⟨c,e⟩
α)D′′

1 and for T1 ∈ TreeΨ0 (∆′ ⊩ xβ :A⟨c, e⟩)
D2 = T2msg(sendx⟨c,e⟩

β y
⟨c,e⟩
α)D′′

2 and for T2 ∈ TreeΨ0 (∆′ ⊩ xβ :A⟨c, e⟩) and
(T1; T2) ∈ EξΨ0

J∆′ ⊩ xβ :A⟨c, e⟩Km and
(D′′

1 ;D′′
2) ∈ EξΨ0

J∆′′, yα+1:B⟨c, e⟩ ⊩ KKm

Figure 11 Value interpretation of logical relation for left communications.

configurations may only differ in outgoing messages of confidentiality level co ̸⊒ ξ, assuming
that the incoming messages of confidentiality level ci ⊑ ξ are the same. We introduce a logical
relation that captures this idea and accounts for integrity and regrading policies.

The logical relation relates two open configurations D1 and D2 – the two runs of the
program under consideration – and asserts that D1 and D2 send related messages to the
environment, if they receive related messages from the environment. The term interpretation
of the logical relation, defined in Fig. 10, allows the first configuration D1 to step internally
until the configuration is ready to send or receive a message across at least one external
channel. Then, it requires the second configuration D2 to step internally so that the resulting
configurations are in the value interpretation of the logical relation, defined in Fig. 11 and
Fig. 12. We call the external channels, e.g., ∆ ⊩ K in Fig. 10, the interface of D1 and D2. The
metavariable K stands for either xα:A⟨c, e⟩ or simply _:1⟨⊤,⊤⟩ which refers to an arbitrary
unobservable channel.

The idea is to build an interface consisting of those external channels of the configurations
that may impact the attacker’s observations. As such, not only do we need to include the
observable channels, i.e., with confidentiality level c ⊑ ξ, in the interface, but also those with
higher integrity than the observer, i.e., with integrity level e ⊑ ξ. After all, if a channel’s
integrity is high enough (and thus its level is low), the messages along it may affect an
observable outcome via synchronization patterns. We call such an interface integrity interface
since low-confidentiality channels are all high-integrity by typing.

F. Derakhshan, S. Balzer, and Y. Yao 11:21

(r1) (D1;D2) ∈ VξΨ0
J· ⊩ yα:1⟨c, e⟩Km+1

·;yα

iff (D1;D2) ∈ TreeΨ0 (· ⊩ yα) andD1 = msg(close y⟨c,e⟩
α) andD2 = msg(close y⟨c,e⟩

α)
(r2) (D1;D2) ∈ VξΨ0

J(∆ ⊩ yα:⊕ {ℓ:Aℓ}ℓ∈I⟨c, e⟩)Km+1
·;yα

iff (D1;D2) ∈ TreeΨ0 (∆ ⊩ yα : ⊕{ℓ:Aℓ}ℓ∈I⟨c, e⟩) and∃k1, k2 ∈ I. (c ⊑ ξ → k1 = k2)
D1 = D′

1msg(y⟨c,e⟩
α .k1) andD2 = D′

2msg(y⟨c,e⟩
α .k2)

and (D′
1;D′

2) ∈ EξΨ0
J∆ ⊩ yα+1:Ak1⟨c, e⟩K

m

(r3) (D1;D2) ∈ VξΨ0
J∆ ⊩ yα:&{ℓ:Aℓ}ℓ∈I⟨c, e⟩Km+1

yα;·
iff (D1;D2) ∈ TreeΨ0 (∆ ⊩ yα:&{ℓ:Aℓ}ℓ∈I⟨c, e⟩) then∀k1, k2 ∈ I.if (c ⊑ ξ → k1 = k2) then

(D1msg(y⟨c,e⟩
α .k1),D2msg(y⟨c,e⟩

α .k2)) ∈ EξΨ0
J∆ ⊩ yα+1:Ak1⟨c, e⟩K

m

(r4) (D1;D2) ∈ VξΨ0
J∆′,∆′′ ⊩ yα:A⊗B⟨c, e⟩Km+1

·;yα

iff(D1;D2) ∈ TreeΨ0 (∆′,∆′′ ⊩ yα:A⊗B⟨c, e⟩) and ∃xβ .
D1 = D′

1T1msg(sendx⟨c,e⟩
β y

⟨c,e⟩
α) for T1 ∈ TreeΨ0 (∆′′ ⊩ xβ :A⟨c, e⟩) and

D2 = D′
2T2msg(sendx⟨c,e⟩

β y
⟨c,e⟩
α) for T2 ∈ TreeΨ0 (∆′′ ⊩ xβ :A⟨c, e⟩) and

(T1; T2) ∈ EξΨ0
J∆′′ ⊩ xβ :A⟨c, e⟩Km and

(D′
1;D′

2) ∈ EξΨ0
J∆′ ⊩ yα+1:B⟨c, e⟩Km

(r5) (D1;D2) ∈ VξΨ0
J∆ ⊩ yα:A⊸ B⟨c, e⟩Km+1

yα;·
iff (D1;D2) ∈ TreeΨ0 (∆ ⊩ yα:A⊸ B⟨c, e⟩) and ∀xβ ̸∈dom(∆, yα:A⊸ B⟨c, e⟩).

(D1msg(sendx⟨c,e⟩
β y

⟨c,e⟩
α);D2msg(sendx⟨c,e⟩

β y
⟨c,e⟩
α)) ∈ EξΨ0

J∆, xβ :A⟨c, e⟩ ⊩ yα+1:B⟨c, e⟩Km

Figure 12 Value interpretation of logical relation for right communications.

(∆1 ⊩ D1 :: xα:A1⟨c1, e1⟩) ≡Ψ0
ξ (∆2 ⊩ D2 :: yβ :A2⟨c2, e2⟩) iff

D1 ∈ Tree(∆1 ⊩ xα:A1⟨c1, e1⟩) and D2 ∈ Tree(∆2 ⊩ yβ :A2⟨c2, e2⟩) and ∆1⇓igξ = ∆2⇓igξ = ∆ and
xα:A1⟨c1, e1⟩ ⇓ig ξ = yβ :A2⟨c2, e2⟩ ⇓ig ξ = K and ∀B1 ∈ L-IProviderξ(∆1).∀B2 ∈ L-IProviderξ(∆2).
∀T1 ∈ L-IClientξ(xα:A1⟨c1, e1⟩).∀T2 ∈ L-IClientξ(yβ :A2⟨c2, e2⟩).
∀m. (B1D1T1,B2D2T2) ∈ EξΨ0

J∆ ⊩ KKm, and ∀m. (B2D2T2,B1D1T1) ∈ EξΨ0
J∆ ⊩ KKm.

· ∈ L-IProviderξ(·)
B ∈ L-IProviderξ(∆, xα:A⟨c, e⟩) iff
e ̸⊑ ξ andB = B′T and B′ ∈ L-IProviderξ(∆) and T ∈ Tree(· ⊩ xα:A⟨c, e⟩),or
e ⊑ ξ andB ∈ L-IProviderξ(∆)

T ∈ L-IClientξ(xα:A⟨c, e⟩) iff
e ̸⊑ ξ and T ∈ Tree(xα:A⟨c, e⟩ ⊩ _ : 1⟨⊤,⊤⟩), or e ⊑ ξ and T = ·

Figure 13 Logical equivalence.

To build an integrity interface for D1 and D2, we close off their external low-integrity
(e ̸⊑ ξ) channels on the left by composing the channels with any well-typed provider and
on the right with any well-typed client. We may use different low-integrity clients and
providers to compose with each program run. These clients/providers can send different and
unsynchronized messages along their high-confidentiality and low-integrity connections to D1

and D2. The term interpretation is designed to ensure that well-typed configurations do not
leak these different messages to the attacker. Fig. 13 defines an equivalence relation between
two configurations based on this idea: it composes them with low-integrity providers/clients
and calls the term interpretation symmetrically on the compositions. In the definition, we use
the projection function to build the integrity interface, e.g., ∆⇓igξ projects out the channels
yβ :A⟨c, e⟩ ∈ ∆ with ξ ̸⊑ e. The predicate D1 ∈ TreeΨ0 (∆ ⊩ K) indicates that the configuration
D1 is well-typed. In the term and value interpretations, we generalize this predicate to the
binary case, (D1;D2) ∈ TreeΨ0 (∆ ⊩ K) indicating that both D1 and D2 are of the same type.

The term interpretation allows stepping configuration D1 7→∗Υ1;Θ1 D′
1 by iterated applica-

tion of the rewriting rules defined in Fig. 8. The star expresses that zero to multiple internal
steps can be taken. The superscripts Υ1; Θ1 denote two sets of channels occurring in the

ECOOP 2024

11:22 Regrading Policies for Flexible IFC in Session-Typed Concurrency

interface ∆ ⊩ K. The set Θ1 collects the incoming channels, i.e., channels that a process in
D1 is ready to receive from, and the set Υ1 collects the outgoing channels, i.e., channels with
a message in D1 ready to be sent. Assuming that D1 steps to D′

1, generating the outgoing
channels Υ1, D2 must be stepped D2 7→∗Υ2 D′

2 to produce at least the same set of outgoing
channels, i.e., the set Υ2 such that Υ1 ⊆ Υ2. The term interpretation then calls the value
interpretation on the resulting configurations D′

1,D′
2 for every channel that has a message

ready for transmission in D′
1, and thus D′

2, and for every channel that has a process waiting
for a message in D′

1. Insisting on Υ2 being a superset of Υ1 ensures progress-sensitive
noninterference without timing attacks: if a configuration produces observable messages
along a set of channels, the other configuration has to be able to produce the equivalent set
of messages with zero or some internal steps. The term interpretation uses focus channels
as a subscript to the value interpretation to support simultaneous communications – when
there are multiple messages ready to be sent or received along channels in the interface. The
subscript ·; yα indicates that yα ∈ Υ1 and yα; · that yα ∈ Θ1.

The value interpretation accounts for every message sent from or received by D1 and
D2, amounting to two cases per connective: one for a message exchanged along a channel
in K and one for a message exchanged along a channel in ∆. We refer to the former as
communications to the right (Fig. 12) and the latter as communications to the left (Fig. 11).
The value interpretation generally establishes the following pattern: it asserts relatedness of
outgoing messages, but assumes relatedness of incoming messages. For example, & on the
left (l3 in Fig. 11) asserts the sending of related messages and pushes the messages into the
environment, yielding D′

1, D′
2. Now, D′

1, D′
2, can each step internally, e.g., to consume the

incoming messages, requiring them to be in the term interpretation. On the other hand, &
on the right (r3 in Fig. 12) assumes receipt of related messages and pushes the messages
into the configurations D1 and D2. Relatedness for messages is determined by how they can
impact the attacker’s observations. If their carrier channel is observable to the attacker,
i.e., has confidentiality level c ⊑ ξ, then related messages must have the same labels. But
if the channel only affects the attacker’s observations via synchronization patterns, related
messages may have different labels. The clause c ⊑ ξ → k1 = k2 in the value interpretation
conveys this, enforcing equality of the communicated labels only if the channel is observable.

Relatedness for higher-order types (⊗ and ⊸) is a bit more subtle. In particular, it
requires future observations along the exchanged channels to be related. For example,
l5 in Fig. 11 for ⊸-left asserts existence of a message msg(sendx⟨c,e⟩

β y
⟨c,e⟩
α) and of sub-

trees T1 and T2 in D1 and D2. The clause comprises two invocations of the term rela-
tion, (T1; T2) ∈ Eξ

Ψ0
J∆′ ⊩ xβ :A⟨c, e⟩Km, asserting that future observations to be made

along the sent channel xβ are related, and (D′′
1 ;D′′

2) ∈ Eξ
Ψ0

J∆′′, yα+1:B⟨c, e⟩ ⊩ KKm, as-
serting that the continuations D′′

1 and D′′
2 are related. Conversely, r5 in Fig. 12 for ⊸-

right assumes receipt of a message msg(sendx⟨c,e⟩
β y

⟨c,e⟩
α) and invokes the term relation

(D1msg(sendx⟨c,e⟩
β y

⟨c,e⟩
α);D2msg(sendx⟨c,e⟩

β y
⟨c,e⟩
α)) ∈ EξΨ0

J∆, xβ :A⟨c, e⟩ ⊩ yα+1:B⟨c, e⟩Km.
As we support general recursive types, we need an index to stratify our logical relation [3,5].

We tie our index to the number of observations that can be made along the interface ∆ ⊩ K,
as suggested in [7]. We thus bound the value and term interpretation of our logical relation
by the number of observations m, for m ≥ 0, and attach them as superscripts to the relation’s
interface ∆ ⊩ K. The base case of the term interpretation, i.e., m = 0, is a trivial relation.

The fundamental theorem states that any well-typed SINTEGRITY configuration is
equivalent to itself up to the level of an arbitrary observer.

▶ Theorem 1 (Fundamental theorem). For all security levels ξ, and a well-typed configuration
Ψ0; ∆ ⊩ D :: uα:T ⟨c, e⟩ we have (∆ ⊩ D :: uα:T ⟨c, e⟩) ≡Ψ0

ξ (∆ ⊩ D :: uα:T ⟨c, e⟩).

F. Derakhshan, S. Balzer, and Y. Yao 11:23

Proof. We present a proof sketch; see the TR for details. By the definition of logical
equivalence (Fig. 13), we first need to close off the external low integrity (e ̸⊑ ξ) channels
in ∆ and uα:T ⟨c, e⟩ by composing D with arbitrary well-typed providers and clients, resp.
We use low integrity clients, T1 and T2, and low-integrity providers, B1 and B2, to compose
with each run, resulting in two configurations, D1 = B1DT1 and D2 = B2DT2. Configurations
D1 and D2 are both well-typed for the integrity interface: Ψ0; ∆′ ⊩ Di :: K where ∆′ = ∆⇓igξ

and K = uα:T ⟨c, e⟩⇓igξ. By the definition in Fig. 13, it is enough to show that D1 and D2

are in the term interpretation with the integrity interface, i.e., ∀m. (D1,D2) ∈ EξΨ0
J∆′ ⊩ KKm

and ∀m. (D2,D1) ∈ EξΨ0
J∆′ ⊩ KKm. We prove the former by induction on m; the proof of

the latter is symmetric. Specifically, we prove a more general theorem (Thm. 6.1 in TR)
for any D1 and D2 with the same observable outcome, using the notion of relevant nodes
(Def. 4.2 in TR). By the definition of the term interpretation in Fig. 10, the base case (m = 0)
is straightforward. For the inductive case, following the first row of Fig. 10, we assume
arbitrary Υ1, Θ1, and D′

1 such that D1 7→∗Υ1;Θ1 D′
1. We apply a lemma (Lem. 4.5 in TR)

stating that D2 can simulate the internal steps taken by D1, producing at least the same set
of outgoing channels Υ2, i.e., D2 7→∗Υ2 D′

2, such that D′
1 and D′

2 continue to have the same
observable outcomes. Finally, for every channel xα in Υ1 and Θ1, we case analyze on the
type of xα, showing that D′

1 and D′
2 are in the value interpretation, with xα being the focus

channel. To do so, we use the induction hypothesis to establish that after the corresponding
communication with the environment, the continuations of D′

1 and D′
2 are related by the

term interpretation for a smaller index. ◀

6.3 Adequacy
Next, we prove an adequacy theorem showing that two logically equivalent configurations
are bisimilar up to observations of confidentiality ξ.

For adequacy, we are interested in a confidentiality interface, i.e., channels with observable
max confidentiality c ⊑ ξ; after all, our goal is to prove that the configurations are equivalent
up to the confidentiality of an observer. Because the integrity interface of our logical relation
is a superset of the confidentiality interface, we need to close off those channels in the integrity
interface that are of high-confidentiality (c ̸⊑ ξ). Note that these high-confidentiality channels
are of high-integrity (e ⊑ ξ). To close off these channels, we compose the open configurations
with high-confidentiality clients and providers, possibly different ones for each program
run. These high-integrity clients and providers are connected to the open configurations via
high-integrity channels and, as a result, may affect the observable outcome of the two runs
via synchronization patterns. We therefore require them to be logically equivalent.

Based on this idea, Fig. 14 defines the bisimulation up to confidentiality ξ denoted as
≈ξa, for two well-typed configurations: it first composes the two configurations with high-
confidentiality providers (Hrel-IProvider) and clients (H-CClient), while insisting that the
high-integrity parts of the providers and clients are logically equivalent (using the relations
Hrel-IProvider and Hrel-IClient). Then it invokes an asynchronous bisimulation ≈a on
the compositions. The definition uses a projection function ⇓cfξ to build the confidentiality
interface, e.g., ∆⇓cfξ projects out the channels in ∆ with confidentiality c ̸⊑ ξ.

The asynchronous bisimulation ≈a invoked by the definition in Fig. 14 uses a labeled
transition system (LTS) following the standard definition of asynchronous bisimulation [38].
The relation D1 ≈a D2 states that every internal step or external action of D1 can be (weakly)
simulated by D2 and vice-versa. For example, when D1 takes an action by sending output q
via an external channel xα, i.e., D1

xα q−−−→ D′
1, the bisimulation ensures that for some D′

2, we
have D2

xα q===⇒ D′
2 and D′

1 ≈a D′
2. Here, xα q===⇒ stands for taking zero or more internal steps

before outputting q along xα. The full definition of bisimulation is in the TR.

ECOOP 2024

11:24 Regrading Policies for Flexible IFC in Session-Typed Concurrency

∆1 ⊩ D1 :: xα:A1⟨c1, e1⟩ ≈ξa ∆2 ⊩ D2 :: yβ :A2⟨c2, e2⟩ iff
D1 ∈ Tree(∆1 ⊩ xα:A1⟨c1, e1⟩) andD2 ∈ Tree(∆2 ⊩ yβ :A2⟨c2, e2⟩) and
∆ = ∆1 ⇓cf ξ = ∆2 ⇓cf ξ and K = yβ :A2⟨c2, e2⟩ ⇓cf ξ = xα:A1⟨c1, e1⟩ ⇓cf ξ and
∆′ = ∆1 ⇓ig ξ = ∆2 ⇓ig ξ and K′ = yβ :A2⟨c2, e2⟩ ⇓ig ξ = xα:A1⟨c1, e1⟩ ⇓ig ξ and
∀B1 ∈ H-CProviderξ(∆1),B2 ∈ H-CProviderξ(∆2).
∀T1 ∈ H-CClientξ(xα:A1⟨c1, e1⟩), T2 ∈ H-CClientξ(yβ :A2⟨c2, e2⟩).
if(B1,B2) ∈ Hrel-IProviderξ(∆′\∆) and (T1, T2) ∈ Hrel-IClientξ(K′\K) thenB1D1T1 ≈a B2D2T2.

· ∈ H-CProviderξ(·)
B ∈ H-CProviderξ(∆, xα:A⟨c, e⟩) iff
c ̸⊑ ξ andB = B′T and B′ ∈ H-CProviderξ(∆) and T ∈ Tree(· ⊩ xα:A⟨c, e⟩),or
c ⊑ ξ andB ∈ H-CProviderξ(∆)

T ∈ H-CClientξ(xα:A⟨c, e⟩) iff
c ̸⊑ ξ and T ∈ Tree(xα:A⟨c, e⟩ ⊩ _ : 1⟨⊤,⊤⟩),or
c ⊑ ξ and T = ·

(·, ·) ∈ Hrel-IProviderξ(·)
(B1,B2) ∈ Hrel-IProviderξ(∆, xα:A⟨c, e⟩) iff
e ̸⊑ ξ andBi = B′

iTi and (B′
1,B′

2) ∈ Hrel-IProviderξ(∆),or
e ⊑ ξ andBi = B′

iTi and (B′
1,B′

2) ∈ Hrel-IProviderξ(∆) and · ⊩ T1 ≡Ψ0
ξ T2 :: xα:A⟨c, e⟩.

(·, ·) ∈ Hrel-IClientξ(_⟨⊤,⊤⟩)
(T1, T2) ∈ Hrel-IClientξ(xα:A⟨c, e⟩) iff
e ̸⊑ ξ or e ⊑ ξ andxα:A⟨c, e⟩ ⊩ T1 ≡Ψ0

ξ T2 :: _ : 1⟨⊤,⊤⟩

Figure 14 Asynchronous bisimulation up to observations of confidentiality ξ.

Now we are ready to present our adequacy theorem stating that, given an observer level ξ,
logically equivalent configurations are bisimilar up to observations of confidentiality ξ. The
proof of the theorem relies on a compositionality lemma, which ensures a harmony between
asserts and assumes in the value-interpretation of the logical relation.

▶ Lemma 2 (Compositionality). ∀m. (D1;D2) ∈ EξΨ0
J∆, u⟨c,e⟩

α :T ⊩ KKm and ∀m. (T1; T2) ∈
EξΨ0

J∆′ ⊩ u
⟨c,e⟩
α :T Km if and only if ∀k. (T1D1; T2D2) ∈ EξΨ0

J∆′,∆ ⊩ KKk.

▶ Theorem 3 (Adequacy). If (∆1 ⊩ D1 :: xα:A1⟨c1, e1⟩) ≡Ψ0
ξ (∆2 ⊩ D2 :: yβ :A2⟨c2, e2⟩) then

(∆1 ⊩ D1 :: xα:A1⟨c1, e1⟩) ≈ξa (∆2 ⊩ D2 :: yβ :A2⟨c2, e2⟩).

Proof. Recall from Fig. 14 that ≈ξa composes D1 and D2 with arbitrary high-confidentiality
(c ̸⊑ ξ) clients and providers, building a confidentiality interface J∆c ⊩ KcK. Let us call the
high-confidentiality providers B1 and B2 and the high-confidentiality clients T1 and T2. We can
partition the providers into high-integrity and low-integrity parts to get B1 = BHI

i BLI
i (similarly

for the clients T1 = T HI
i T LI

i), where superscripts HI and LI correspond to high-integrity and
low-integrtiy parts, resp. Our goal is to prove BHI1 BLI1 D1T HI1 T LI1 ≈a BHI2 BLI2 D2T HI2 T LI2 .
Step 1. The first step is to show that the two compositions are related by the term
interpretation as well, i.e., ∀m.(BHI

1 BLI
1 D1T HI

1 T LI
1 ;BHI

2 BLI
2 D2T HI

2 T LI
2) ∈ EJ∆c ⊩ KcK. To do

so, we can use the definition from Fig. 13 for ≡Ψ0
ξ to compose D1 and D2 with given low

integrity clients and providers T LI
1 , T LI

2 , BLI
1 , and BLI

2 to build the integrity interface J∆i ⊩ KiK
and get ∀m.(BLI

1 D1T LI
1 ;BLI

2 D2T LI
2) ∈ EJ∆i ⊩ KiK. However, this is not enough to achieve

our goal as the relation pertains to the integrity interface, and thus, the composition only
includes the low integrity providers/clients. To build the confidentiality interface and include
the high integrity parts, we use the fact that the high integrity providers BHI

1 and BHI
2

(and clients T HI
1 and T HI

2) are themselves logically equivalent. We use our compositionality
lemma (Lem. 2) to compose the high-integrity channels in the integrity interface with
these providers/clients and show that the composition results in two logically equivalent
configurations, i.e., ∀m.(BHI

1 BLI
1 D1T HI

1 T LI
1 ;BHI

2 BLI
2 D2T HI

2 T LI
2) ∈ EJ∆c ⊩ KcK.

F. Derakhshan, S. Balzer, and Y. Yao 11:25

Step 2. We complete the proof by connecting our logically related configurations to
an observational equivalence relation for session types [7], which is proved sound and
complete for asynchronous bisimulation. We first show that our integrity term interpret-
ation implies the observational equivalence relation in [7] when we consider a confiden-
tiality interface, and then use their soundness result to show that the integrity term
interpretation ∀m.(BHI

1 BLI
1 D1T HI

1 T LI
1 ;BHI

2 BLI
2 D2T HI

2 T LI
2) ∈ EJ∆c ⊩ KcK implies bisimilarity

BHI1 BLI1 D1T HI1 T LI1 ≈a BHI2 BLI2 D2T HI2 T LI2 .
Next, we briefly explain how our integrity logical relation coincides with the observational

equivalence relation (for well-typed configurations) in [7] when considering a confidentiality
interface. The observational equivalence in [7] is defined via a logical relation similar to the
one developed in this paper, but only considering the confidentiality interface. Let us call the
term and value interpretations of our logical relation Ei and Vi (defined in Figs. 10–12) and
the ones defined in [7] Ec and Vc, resp. The relation Ei is invoked for the integrity interface
J∆i ⊩ KiK in Fig. 13, and similarly Ec is invoked for the confidentiality interface J∆c ⊩ KcK,
where, by definition, ∆c is a subset of (or equal to) ∆i and Kc is a subset of (or equal to) Ki.
As the integrity logical relation may contain non-observable channels (c ̸⊑ ξ), it only insists
that the same labels are sent when communication is along observable channels. Concretely,
Vi in lines (l2), (l3), (r2), and (r3) only insists that the labels k1 and k2 sent/received along a
channel are the same if c ⊑ ξ. However, Vc always enforces sending the same labels, since a
priori the condition c ⊑ ξ holds for all the channels in its interface. In all other regards, Ei
and Vi have the same definition as Ec and Vc. As a result, it is straightforward to observe
that given an interface ∆c ⊩ Kc with only observable channels (channels with c ⊑ ξ), we have
∀m. (D1;D2) ∈ EiJ∆c ⊩ KcKm iff ∀m. (D1;D2) ∈ EcJ∆c ⊩ KcKm. ◀

7 Related work

IFC type systems using linearity. Conceptually most closely related to our work is the
work by Zdancewic and Myers on ordered linear continuations [46, 47]. The authors consider
continuation-passing style (CPS) security-typed languages to verify noninterference not only
for source-level programs but also compiled code. The authors observe that the possibility
to lower the pc label upon exiting control flow constructs, present in imperative source-
level languages, is no longer available in a CPS language. To rectify the loss of flexibility
they introduce ordered linear continuations. Similar to our pattern checks, ordered linear
continuations allow downgrading of the pc label after branching on high, because linearity
enforces the continuations to be used in every branch, in the order prescribed. In contrast
to our work, the authors only consider a sequential language and only prove PINI. Our
work moreover establishes the connection to integrity, facilitating regrading policies that are
polymorphic in the security lattice for ultimate flexibility.

In another line of work Zdancewic and Myers again employ linearity for increased flexibility
and a stronger noninterference statement [48]. The authors consider a concurrent language
with a store and first-class channels. Their main focus is observational determinism, ensuring
immunity to internal timing attacks and attacks that exploit information about thread
scheduling. To this end the authors introduce linear channels and a race freedom analysis.
Given that SINTEGRITY enjoys confluence, like other linear session type languages, it rules
out timing attacks that exploit the relative order of messages, which seems to be a stronger
property than immunity to internal timing attacks considered by the authors. Moreover, we
establish PSNI for SINTEGRITY, whereas the authors only prove PINI.

ECOOP 2024

11:26 Regrading Policies for Flexible IFC in Session-Typed Concurrency

IFC session type systems. In terms of underlying language, the work most closely related
to ours is the one by Derakhshan et al. [7, 20]. The authors develop an IFC type system
for the same family of linear session types but only consider confidentiality. Their system
annotates the process term judgments with running and max confidentiality. Their typing
rules only ensure that the running confidentiality (aka taint level) is updated correctly after
each receive and that a tainted process does not leak information via send. In particular, the
rules do not allow decreasing the taint level at any point. As a result the authors’ type system
suffers from the same restrictiveness as other IFC type systems for concurrent languages,
requiring each loop iteration to run at the maximal confidentiality reached throughout an
arbitrary iteration. For example, the authors’ IFC type system rejects the banking example
in § 5.4: as soon as the bank receives a message from one customer, say Alice, it will be
tainted and cannot send a message to any other customer, say Bob. In fact, the authors’ IFC
type system rejects all well-typed examples presented in this paper even though they enjoy
PSNI. We make our IFC type system more flexible by designing synchronization policies to
enable regrading of the taint level and using integrity labels to make the policies composable,
both of which are novel to our system. Designing these composable policies was an intricate
task, particularly due to dealing with both concurrency and general recursion.

Our logical relation for integrity is inspired by Balzer et al.’s [7] logical relation for equi-
valence. The logical relation for equivalence is defined based on the confidentiality interface.
Our logical relation, however, is based on the larger integrity interface to enable the proof of
the fundamental theorem. We prove our adequacy theorem by proving compositionality for
our logical relation, which then allows us to recast our logical relation in terms of the logical
relation for equivalence by the authors, delivering adequacy as a corollary.

IFC type systems for multiparty session types and process calculi. IFC type systems have
also been explored for multiparty session types [10–13]. These works explore declassification
[10,12] and flexible runtime monitoring techniques [11, 13]. Our work not only differs in use
of session type paradigm (i.e., binary vs. multiparty) but also in use of a logical relation for
showing noninterference. Our work is more distantly related with IFC type systems for process
calculi [16–18,25,25,28,29,31,34,48]. These works prevent information leakage by associating
a security label with channels/types/actions [29], read/write policies with channels [25,25], or
capabilities with expressions [16]. Honda et al. [29] also use a substructural type system and
prove a sound embedding of Dependency Core Calculus (DCC) [2] into their calculus. Our
work sets itself apart in its use of session types and meta theoretic developments based on
logical relations. Moreover, our IFC type system is more permissive as it allows for regrading
of the taint level, while preserving noninterference.

Declassification. Our notion of regrading may seem related to declassification, which has
extensively been studied for IFC type systems for functional and imperative languages [1,6,15,
22,32,33,44,45,49] and allows an entity to downgrade its level of confidentiality. However, our
work significantly differs from declassification as it preserves PSNI, whereas declassification
systems deliberately release information and thus intentionally weaken noninterference.

In particular, robust declassification [6,15,33,44,45,49] prevents adversaries from exploiting
downgrading of confidentiality, by complementing confidentiality with integrity. It uses
integrity to ensure that downgrading decisions can be trusted, i.e., cannot be influenced by
an attacker. As such, only high-integrity data can influence the taint level to be lowered.
This is similar to our system, where the higher the integrity of a process, the lower level it
can regrade the taint level. The difference, however, is that we enforce extra synchronization

F. Derakhshan, S. Balzer, and Y. Yao 11:27

policies on our high-integrity processes to ensure that they cannot induce information leaks by
lowering the taint level. This contrasts with work on robust declassification, which introduces
leakage intentionally and thus compromises noninterference.

References
1 Martín Abadi. Secrecy by typing in security protocols. In TACS, volume 1281 of LNCS, pages

611–638. Springer, 1997.
2 Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of

dependency. In POPL, pages 147–160. ACM, 1999.
3 Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In

ESOP, volume 3924 of LNCS, pages 69–83. Springer, 2006.
4 Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv, Thomas

Schmitz, and Keith Winstein. Secure serverless computing using dynamic information flow
control. Proc. ACM Program. Lang., 2(OOPSLA):118:1–118:26, 2018.

5 Andrew W. Appel and David A. McAllester. An indexed model of recursive types for
foundational proof-carrying code. TOPLAS, 23(5):657–683, 2001.

6 Aslan Askarov and Andrew C. Myers. Attacker control and impact for confidentiality and
integrity. Log. Methods Comput. Sci., 7(3), 2011.

7 Stephanie Balzer, Farzaneh Derakhshan, Robert Harper, and Yue Yao. Logical relations for
session-typed concurrency. CoRR, abs/2309.00192, 2023. arXiv:2309.00192.

8 Kenneth J. Biba. Integrity considerations for secure computer systems. Technical Report
ESD-TR-76-372, Electronic Systems Division, Air Force Systems Command, United States
Air Force, 1977.

9 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In CONCUR,
volume 6269 of LNCS, pages 222–236. Springer, 2010.

10 Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Typing access control
and secure information flow in sessions. Inf. Comput., 238:68–105, 2014.

11 Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Information flow safety
in multiparty sessions. Mathematical Structures in Computer Science, 26(8):1352–1394, 2016.
doi:10.1017/S0960129514000619.

12 Sara Capecchi, Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Tamara Rezk. Session
types for access and information flow control. In CONCUR, pages 237–252, 2010.

13 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Jorge A. Pérez. Self-adaptation and
secure information flow in multiparty communications. Formal Aspects Comput., 28(4):669–696,
2016.

14 Iliano Cervesato and Andre Scedrov. Relating state-based and process-based concurrency
through linear logic. Inf. Comput., 207(10):1044–1077, 2009.

15 Stephen Chong and Andrew C. Myers. Decentralized robustness. In CSFW, pages 242–256.
IEEE, 2006.

16 Silvia Crafa, Michele Bugliesi, and Giuseppe Castagna. Information flow security for boxed
ambients. Electronic Notes in Theoretical Computer Science, 66(3):76–97, 2002.

17 Silvia Crafa and Sabina Rossi. A theory of noninterference for the π-calculus. In TGC, volume
3705 of LNCS, pages 2–18. Springer, 2005.

18 Silvia Crafa and Sabina Rossi. Controlling information release in the pi-calculus. Inf. Comput.,
205(8):1235–1273, 2007.

19 Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module? In PLDI, pages
50–63. ACM, 1999.

20 Farzaneh Derakhshan, Stephanie Balzer, and Limin Jia. Session logical relations for noninter-
ference. In LICS, pages 1–14. IEEE, 2021.

21 Farzaneh Derakhshan, Stephanie Balzer, and Yue Yao. Regrading policies for flexible informa-
tion flow control in session-typed concurrency. CoRR, 2024.

ECOOP 2024

https://arxiv.org/abs/2309.00192
https://doi.org/10.1017/S0960129514000619

11:28 Regrading Policies for Flexible IFC in Session-Typed Concurrency

22 Elena Ferrari, Pierangela Samarati, Elisa Bertino, and Sushil Jajodia. Providing flexibility in
information flow control for object-oriented systems. In IEEE Symposium on Security and
Privacy, pages 130–140. IEEE, 1997.

23 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2-3):191–225, 2005.

24 Daniel Heidin and Andrei Sabelfeld. A perspective on information flow control. Technical
report, Marktoberdorf, 2011.

25 Matthew Hennessy. The security pi-calculus and non-interference. J. Log. Algebraic Methods
Program., 63(1):3–34, 2005.

26 Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of LNCS, pages 509–523.
Springer, 1993.

27 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In ESOP, volume 1381 of
LNCS, pages 122–138. Springer, 1998.

28 Kohei Honda, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Secure information flow
as typed process behaviour. In ESOP, volume 1782 of LNCS, pages 180–199. Springer, 2000.

29 Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow. In
POPL, pages 81–92. ACM, 2002.

30 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In POPL, pages 273–284. ACM, 2008.

31 Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Acta Inf., 42(4):291–
347, December 2005.

32 Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label model.
TOSEM, 9(4):410–442, 2000.

33 Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust declassification
and qualified robustness. J. Comput. Secur., 14(2):157–196, 2006.

34 François Pottier. A simple view of type-secure information flow in the π-calculus. In CSFW-15,
pages 320–330. IEEE, 2002.

35 Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforcement for distributed programs.
In SAS, volume 2477 of LNCS, pages 376–394. Springer, 2002.

36 Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE J.
Sel. Areas Commun., 21(1):5–19, 2003.

37 Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded programs.
In CSFW, pages 200–214. IEEE, 2000.

38 Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

39 Geoffrey Smith and Dennis M. Volpano. Secure information flow in a multi-threaded imperative
language. In POPL, pages 355–364. ACM, 1998.

40 Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and David Mazières.
Addressing covert termination and timing channels in concurrent information flow systems. In
ICFP, pages 201–214. ACM, 2012.

41 Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions, and
sessions: A monadic integration. In ESOP, volume 7792 of LNCS, pages 350–369. Springer,
2013.

42 Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type system for secure
flow analysis. J. Comput. Secur., 4(2/3):167–188, 1996.

43 Philip Wadler. Propositions as sessions. In ICFP, pages 273–286. ACM, 2012.
44 Steve Zdancewic. A type system for robust declassification. In MFPS, volume 83 of Electronic

Notes in Theoretical Computer Science, pages 263–277. Elsevier, 2003.
45 Steve Zdancewic and Andrew C. Myers. Robust declassification. In CSFW, pages 15–23.

IEEE, 2001.

F. Derakhshan, S. Balzer, and Y. Yao 11:29

46 Steve Zdancewic and Andrew C. Myers. Secure information flow and CPS. In ESOP, volume
2028 of LNCS, pages 46–61. Springer, 2001.

47 Steve Zdancewic and Andrew C. Myers. Secure information flow via linear continuations.
High. Order Symb. Comput., 15(2-3):209–234, 2002.

48 Steve Zdancewic and Andrew C. Myers. Observational determinism for concurrent program
security. In CSFW, pages 1–15. IEEE, 2003.

49 Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Secure program
partitioning. TOCS, 20(3):283–328, 2002.

ECOOP 2024

	1 Introduction
	2 Motivating example and background
	3 Key ideas
	3.1 Regrading confidentiality
	3.2 The need for regrading policies
	3.2.1 Hasty analyzer – optimization may introduce a timing attack
	3.2.2 Reckless analyzer – be careful with synchronization

	3.3 Regrading policies in a nutshell

	4 Blueprint for Formal Development
	4.1 Vanilla intuitionistic session types – statics
	4.1.1 Process term typing
	4.1.2 Signature checking

	4.2 Vanilla intuitionistic session types – dynamics
	4.2.1 Asynchronous dynamics
	4.2.2 Configuration typing

	4.3 Roadmap for SINTEGRITY
	4.3.1 Regrading policy type system
	4.3.2 PSNI via a logical relation

	5 Regrading policy type system
	5.1 Process term typing
	5.2 Synchronization patterns
	5.3 Configuration typing and asynchronous dynamics
	5.4 Banking example

	6 Progress-sensitive noninterference
	6.1 Attacker model
	6.2 Noninterference via an integrity logical relation
	6.3 Adequacy

	7 Related work

