
Mutation-Based Lifted Repair of Software Product
Lines
Aleksandar S. Dimovski #

Mother Teresa University, Skopje, North Macedonia

Abstract
This paper presents a novel lifted repair algorithm for program families (Software Product Lines -
SPLs) based on code mutations. The inputs of our algorithm are an erroneous SPL and a specification
given in the form of assertions. We use variability encoding to transform the given SPL into a single
program, called family simulator, which is translated into a set of SMT formulas whose conjunction
is satisfiable iff the simulator (i.e., the input SPL) violates an assertion. We use a predefined set of
mutations applied to feature and program expressions of the given SPL. The algorithm repeatedly
mutates the erroneous family simulator and checks if it becomes (bounded) correct. Since mutating
an expression corresponds to mutating a formula in the set of SMT formulas encoding the family
simulator, the search for a correct mutant is reduced to searching an unsatisfiable set of SMT
formulas. To efficiently explore the huge state space of mutants, we call SAT and SMT solvers in
an incremental way. The outputs of our algorithm are all minimal repairs in the form of minimal
number of (feature and program) expression replacements such that the repaired SPL is (bounded)
correct with respect to a given set of assertions.

We have implemented our algorithm in a prototype tool and evaluated it on a set of #ifdef-based
C programs (i.e., annotative SPLs). The experimental results show that our approach is able to
successfully repair various interesting SPLs.

2012 ACM Subject Classification Software and its engineering → Software product lines; Theory of
computation → Abstraction

Keywords and phrases Program repair, Software Product Lines, Code mutations, Variability encoding

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.12

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.5

1 Introduction

A program family (Software Product Line - SPL) represents a set of similar programs, known
as variants, generated from a common code base [2]. SPL engineering has been successfully
applied in industry to meet the need for custom-tailored software. For instance, different
variants from an SPL can target different platforms or may serve customization requirements
for different customers. The variants are specified in terms of features selected for that
particular variant. The popular #ifdef directives from the C preprocessor CPP [43] represent
the most common way to implement such (annotative) program families. An #ifdef directive
specifies under which presence conditions (i.e., feature selections or feature expressions), parts
of code should be included or excluded from a variant at compile-time. SPLs are often used
in the development of the embedded and safety-critical systems (e.g., mobile devices, cars,
medicine, avionics), where their behavioral correctness is of primary interest. In particular,
the focus is on applying various verification and analysis techniques from the field of formal
methods, which can give stronger guarantees on the correctness of software systems. In the
last decade, much effort has been invested in designing specialized so-called lifted (family-
based) formal verification and analysis algorithms [4, 6, 9, 43, 30, 14, 23, 15, 20, 22, 25, 55],
which allow simultaneous verification of all variants of an SPL in a single run by exploiting
the commonalities between the variants. They usually return an error trace, which shows

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Aleksandar S. Dimovski;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 12; pp. 12:1–12:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aleksandar.dimovski@unt.edu.mk
https://orcid.org/0000-0002-3601-2631
https://doi.org/10.4230/LIPIcs.ECOOP.2024.12
https://doi.org/10.4230/DARTS.10.2.5
https://doi.org/10.4230/DARTS.10.2.5
https://doi.org/10.4230/DARTS.10.2.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Mutation-Based Lifted Repair of Software Product Lines

Variability
encoding

Translator
(CBMC) Mutator

Generator
(SAT)

Verifier
(SMT)

SPL family
simulator

SF
soft

SVar
soft

Shard

S1, . . . , Sn

formula yes

correct
SPL

no

Figure 1 Diagram illustrating our lifted repair system.

how the given specification is violated. However, the users still need to process the obtained
result, in order to isolate the cause of the error to a small part of the code and subsequently
to repair the given SPL. Here, we consider the problem of SPL repair, which is defined
to be a code transformation such that the repaired SPL satisfies a given specification (e.g.
assertion). Automatic SPL repair is an important problem since even if an error is identified
in the verification phase, the manual error-repair is a nontrivial time-consuming task that
requires close knowledge of the SPL. For instance, the error-repair of one variant may
cause new errors to appear in other variants due to the feature interaction in the given
SPL [3]. Recently, researchers have developed several successful single-program repair tools
[28, 37, 40, 42, 45, 46, 48, 50, 51]. However, these tools cannot be directly applied to SPLs
as they are only able to handle pre-processed single programs.

In this paper, we lift the mutation-based approach AllRepair [50, 51] for repairing
single programs to program families (SPLs). Figure 1 illustrates our lifted repair system.
More specifically, we use variability encoding [30, 56] to transform program families to single
programs, called family simulators, by replacing compile-time variability with run-time
variability (non-determinism). The (family) simulator, which contains the computations of all
variants of a program family, is then translated into a set of SMT formulas using the CBMC
bounded model checker [8]. The conjunction of the obtained SMT formulas is satisfiable iff
there is an assertion violation in the given simulator iff there is an assertion violation in at
least one variant of the original program family. On the other hand, the conjunction of the
obtained SMT formulas is unsatisfiable iff all assertions are valid in the given simulator iff all
assertions are valid in all variants of the original program family. We use a bounded notion of
correctness, since we consider only bounded computations in which each loop and recursive
call are inlined at most b times. Each statement in the simulator corresponds to a formula in
the obtained set of SMT formulas, which can be partitioned into subset Shard encoding parts
of the program that cannot be changed and subset Ssoft = SF

soft ∪ SVar
soft encoding parts of the

program that can be changed. Therefore, mutating a feature or program expression found
in a statement that can be changed corresponds to changing the respective SMT formula
from SF

soft or SVar
soft, respectively. The mutator unit generates mutated family simulators

(mutants) by using a predefined set of syntactic mutations/edits applied to feature and
program expressions. Hence, in our repair model, we permit feature and program expressions
to be changed but not statements. For example, we allow replacement of #ifdef guards
(e.g., by applying ¬ to features, replacing ∧/∨ with ∨/∧) and right-hand sides of assignments
(e.g., by increasing or decreasing a constant, replacing +/− with −/+). Thus, the size of
the space of mutants depends on the choice of permissable mutations/edits used for repair.
The mutants are explored in increasing number of mutations applied to the original family

A. S. Dimovski 12:3

simulator, so that only minimal sets of mutations are considered. Hence, the search in
the space of mutants reduces to searching for an unsatisfiable set of SMT formulas. This
search is performed using an iterative generate-and-verify process. The generator produces a
minimally changed mutant using a SAT solver and the verifier checks the bounded-correctness
of mutant using an SMT solver. This way, we find a solution with a minimal number of
syntactic changes/edits to the original (incorrect) program family. Therefore, the type of
errors that can be corrected is determined by the fixed set of syntactic mutations/edits, which
can be applied to feature and program expressions. Hence, our approach can make repairs
by replacing expressions in #ifdef-guards and right-hand sides of assignments with another
expressions of the same form, but it cannot make repairs by replacing (adding/deleting)
statements (e.g., replace assignment with if statement) or by replacing expressions with
another expressions of different form (e.g., replace expression 5 with x+y). Both SAT and
SMT solvers are used in an incremental way, which means that learned information is passed
between successive calls. Since variants in a program family as well as mutated simulators
are very similar, their encodings as sets of SMT formulas will have a lot in common. Hence,
we can reuse the information that was gathered in checking previous mutated simulators to
expedite the solution of the current one. The incremental solving was implemented via the
mechanisms called assumptions and guard variables [26].

We have implemented our algorithm for repairing #ifdef-based C program families in a
prototype tool, called SPLAllRepair, which is built on top of the AllRepair tool [50, 51].
The tool uses the CBMC model checker [8] for translating single programs to SMT formulas,
as well as the MiniCard [39] and Z3 [11] tools for SAT and SMT solving. We illustrate
this approach for automatic repair on a number of C program families from the literature
[10, 37, 46, 50, 51], and we report very encouraging results. We compare performances
of two versions of our tool, with smaller and bigger sets of possible mutations, as well as
with the Brute-force approach that repairs all variants from a program family one by one
independently.

We summarize the contributions of this paper as follows:
Lifted Algorithm for SPL Repair: We propose a novel lifted algorithm based on variability

encoding and syntactic code mutations for repairing program families;
Synthesizing Minimally Repaired SPLs: We automatically compute all minimal repaired

program families (minimal in the number of code replacements) that are bounded correct
by mutating feature and program expressions;

Implementation and Evaluation: We build a prototype tool for automatically repairing
#ifdef-based C program families, and present experimental results by evaluating it on a
dozen of C benchmarks.

2 Motivating Example

We now present an overview of our approach using a motivating example. Consider the
#ifdef-based C program family intro1, shown in Fig. 2, which uses two Boolean features
A and B. They induce a family of four variants defined by the set of configurations K =
{A ∧ B, ¬A ∧ B, A ∧ ¬B, ¬A ∧ ¬B}. For each configuration, a different variant (single program)
can be generated by appropriately resolving #if directives. For example, the variant for
configuration (A ∧ B) will have both features A and B enabled (set to true or 1), thus yielding
the body of main(): int x=0; x=x+2; assert(x≥0); return x. The variant for (¬A∧¬B)
will have both features A and B disabled (set to false or 0), so it has the following body
of main(): int x=0; x=x-2; assert(x≥0); return x. In such program families, it may

ECOOP 2024

12:4 Mutation-Based Lifted Repair of Software Product Lines

int main(){
1⃝ int x := 0;
2⃝ #if (A) x := x+2; #endif
4⃝ #if (¬A ∧ ¬B) x := x-2; #endif
6⃝ assert (x ≥ 0);
7⃝ return x;

}

Figure 2 intro1.

int A := [0, 1];
int B := [0, 1];
int main(){

int x := 0;
if (A) x := x+2;
if (¬A∧¬B) x := x-2;
assert (x ≥ 0);
return x;

}

Figure 3 intro2.

A0 := [0, 1];
B0 := [0, 1];
int main(){

x0 := 0;
g0 := A0;
x1 := x0+2;
x2 := g0?x1 : x0;
g1 := ¬A0 ∧ ¬B0;
x3 := x2-2;
x4 := g1?x3 : x2;
assert (x4 ≥ 0);
return x4; }

Figure 4 intro3.

Sintro = {
A0=[0, 1],
B0=[0, 1],
x0=0,

g0=A0,

x1=x0+2,

x2=ite(g0,x1,x0),

g1=¬A0 ∧ ¬B0,

x3=x2-2,

x4=ite(g1,x3,x2),

¬(x4 ≥ 0)
}

Figure 5 Sintro.

happen that errors (e.g., assertion violations) occur in some variants but not in others. In the
intro1 family, the assertion is valid for variants (A ∧ B), (A ∧ ¬B), (¬A ∧ B) since the returned
value x will be 2, 2, 0, respectively. However, the assertion fails for variant (¬A ∧ ¬B) since
the returned value x will be -2 in this case. The goal is to automatically repair this program
family, so that the assertion is valid for all its variants.

If we make mutations only to feature expressions, there are two possible repairs of intro1
that remedy the feature interaction (¬A ∧ ¬B) responsible for the fault. First, the feature
expression (A) at loc. 2⃝ can be replaced with (¬A), thus making the assertion correct for
all variants: the returned value x will be 0 for variants (A ∧ B), (A ∧ ¬B), (¬A ∧ ¬B); and
2 for (¬A ∧ B). Second, the feature expression (¬A ∧ ¬B) at loc. 4⃝ can be replaced with
(A ∧ ¬B), thus making the assertion correct for all variants: the returned value x will be 0
for variants (¬A ∧ B), (A ∧ ¬B), (¬A ∧ ¬B); and 2 for (A ∧ B). If we make mutations only to
program expressions, then one possible repair is the program expression (x-2) at loc. 5⃝ to
be replaced with (x+2). The above three repairs are all minimal patched mutations obtained
by applying only one code mutation to the original program family. Note that the found
repairs depend on the sets of mutations applied to feature and program expressions. For
example, if we allow mutations of the arithmetic operator - to * and of the integer constant
n to 0, we will also find additional minimal repairs that replace the expression (x-2) at loc.

5⃝ with (x*2) or (x-0).
Our algorithm for repairing program families goes through four steps. We refer to the

running example intro1 in Fig. 2 to demonstrate the steps.

A. S. Dimovski 12:5

(1) We transform the program family to a single program, called family simulator, using
variability encoding [30, 56], such that all features are first declared as global variables
and non-deterministically initialized to 0 or 1, and then all #if directives are transformed
into ordinary if statements with the same branch condition. For example, the single
program intro2 in Fig. 3 is a simulator for the program family intro1 in Fig. 2. Features
A and B are defined as non-deterministically initialized global variables and two #if
directives are replaced with if-s.

(2) The simulator is simplified (e.g., branch conditions are replaced with fresh Boolean
variables), unwinded by unrolling loops and recursive functions b times, and converted to
static single assignment (SSA) form. In the SSA form, time-stamped versions of program
variables are created: every time a variable is assigned, the time-stamp is incremented
by one and then the variable is renamed; every time a variable is read, it is renamed
using the current time-stamp. Thus, the single program intro3 in Fig. 4 is obtained by
simplifying and converting to SSA form the simulator intro2 in Fig. 3. For example, the
if condition (¬A0 ∧ ¬B0) is assigned to a fresh Boolean variable g1, the first assignment
to x is replaced by an assignment to x0, the second by an assignment to x1, etc. We use
Φ-assignments to determine which copy of x will be used after if-s. For example, the
Φ-assignment x2 := g0?x1 : x0 means that x1 is used if g0 is true, and x0 is used if g0
is false.

(3) The simplified program in SSA form is converted to a program formula. Hence, the
program intro3 in Fig. 4 is converted to a set of SMT formulas Sintro shown in Fig. 5,
such that the corresponding program formula φintro is a conjunction of all SMT formulas
in Sintro. Note that the Φ-assignment x2 := g0?x1 : x0 is converted to the formula
x2=ite(g0,x1,x0), which means (g0 ∧ x2=x1) ∨ (¬g0 ∧ x2=x0), while assert(be) is
converted to (¬be). Therefore, a program is correct (i.e., all assertions in it are valid) iff
the corresponding program formula is unsatisfiable.

(4) By making mutations in the set of SMT formulas, we aim to construct an unsatisfiable
program formula and report the corresponding program as repaired. In the running
example, if one of the following mutations: (g0=¬A), (g1=A∧¬B), or (x3=x2+2), is applied
to the set of SMT formulas Sintro in Fig. 5, we obtain an unsatisfiable program formula.
This way, we generate a minimally mutated program family, which contains only one
code mutation, that is correct.

3 Background

In this section, we introduce the background concepts used in later developments. We
begin with the definition of syntax and semantics of program families. Then, we proceed to
introducing the bounded program analysis for translating single programs to SMT formulas.

3.1 Program Families
Let F = {A1, . . . , An} be a finite set of Boolean features available in a program family. A
configuration k : F → {true, false} is a truth assignment or a valuation, which gives a truth
value to each feature. If k(A) = true, then feature A is enabled in configuration k, otherwise
A is disabled. We assume that only a subset K of all possible configurations are valid. Each
configuration k ∈ K can also be represented by a formula: (k(A1) · A1 ∧ . . . ∧ k(An) · An),
where true · A = A and false · A = ¬A. We write K for the set of all valid configurations.
We define feature expressions, denoted FeatExp(F), as the set of propositional logic formulas
over F:

θ (θ ∈ FeatExp(F)) ::= true | A ∈ F | ¬θ | θ ∧ θ | θ ∨ θ

ECOOP 2024

12:6 Mutation-Based Lifted Repair of Software Product Lines

We consider a simple sequential non-deterministic programming language, in which the
program variables Var={x1, . . . , xn} are statically allocated and the only data type is the
set Z of mathematical integers. To define program families, a new compile-time conditional
statement is introduced: “#if (θ) s #endif”, such that the statement s will be included in
the variant corresponding to configuration k ∈ K only if θ is satisfied by k, i.e. k |= θ. The
syntax is:

s (s ∈ Stm) ::= skip | x:=ae | s; s | if (be) then s else s | while (be) do s |
#if (θ) s #endif | assert(be) | assume(be)

ae (ae ∈ AExp) ::= n | [n, n′] | x | ae⊕ae,

be (be ∈ BExp) ::= ae▷◁ae | ¬be | be ∧ be | be ∨ be

where n ∈ Z, x ∈ Var, ⊕ ∈ {+, −, ∗, %, /}, ▷◁∈ {<, ≤, ==, !=}, and integer interval [n, n′]
denotes a random integer in the interval. Without loss of generality, we assume that a
program family P is a sequence of statements followed by a single assertion, whereas a single
program p is a sequence of statements without #if-s followed by an assertion.
▶ Remark 1. The C preprocessor CPP [32] also uses other compile-time conditional statements
that can be desugared and represented only by the #if construct we use in this work,
e.g. #if (θ) s0 #else s1 #endif is translated into #if (θ) s0 #endif ; #if (¬θ) s1 #endif.
Compile-time conditional constructs can also be defined at the level of expressions, e.g.
#if (θ) ae0 #else ae1 #endif, and they can be translated into compile-time conditional
statements by code duplication [32]. We use variability at the level of statements for
pedagogical reasons in order to keep the presentation focussed.

A program family is evaluated in two phases. First, the C preprocessor CPP [32] takes
a program family s and a configuration k ∈ K as inputs, and produces a variant (single
program without #if-s) corresponding to k as output. Second, the obtained variant is
evaluated using the standard single-program semantics [20]. The first phase is specified
by the projection function πk, which is an identity for all basic statements and recursively
pre-processes all sub-statements of compound statements. Hence, πk(skip) = skip and
πk(s;s′) = πk(s);πk(s′). The most interesting case is “#if (θ) s #endif”, where the statement
s is included in the variant k if k |= θ; 1 otherwise s is excluded from the variant k. That is:

πk(#if (θ) s #endif) =
{

πk(s) if k |= θ

skip if k ̸|= θ

Given a program family P , the set of all variants derived from P is {πk(P) | k ∈ K}.

3.2 Bounded Program Analysis
Unbounded loops with memory allocation are the reason for the undecidability of the
assertion verification problem [24]. To avoid undecidability, we impose a bound on the loops
by discarding all executions paths in which a loop is iterated more than a pre-determined
number of times. That is, we analyze a new bounded program that under-approximates
the original program. Using such bounded program, we can build a SMT formula that
represents its semantics. We now briefly explain how a pre-processed program without #if-s
is translated into a set of SMT formulas using the CBMC bounded model checker [8]. We
present only the details that are important to understand our algorithm.

1 Since k ∈ K is a valuation function, either k |= θ holds or k ̸|= θ holds for any θ.

A. S. Dimovski 12:7

The given pre-processed (single) program undergoes three transformations: simplification,
unwinding, and conversion to SSA form. Recall from Section 2 that the simplification ensures
that all branch conditions are replaced with fresh Boolean variables, whereas the SSA-form
guarantees that each local variable has a single static point of definition. More specifically,
in SSA-form each assignment to a variable x is changed into an unique assignment to a new
variable xi. Hence, if variable x has n assignments to it throughout the program, then n new
variables x0 to xn−1 are created to replace x. All uses of x are replaced by a use of some
xi. To decide which definition of a variable reaches a particular use after an if-statement
with the guard g, we add the Φ-assignment xk := g?xi : xj after the if. This means that
if control reaches the Φ-assignment via the path on which g is true, Φ selects xi; otherwise
Φ selects xj . This way, all uses of x after an Φ-assignment xk := g?xi : xj become uses of
Φ-assignment xk until the next assignment of x. The unwinding with bound b means that all
while loops and recursive functions are unwound b times, so that we consider only so-called
b-bounded paths that are going through them at most b times. For example, the statement
“while (be) do s” after unwinding with b = 2 will be transformed to:

g:=be; if (g) then {s; g:=be; if (g) then {s; g:=be; assume(¬g); } }

where we use assume(¬g) to block all paths longer than the bound b. After the above three
transformations, in the obtained simplified program all original expressions are right-hand
sides (RHSs) of assignments, loops are replaced with if-s, and each variable is assigned once.
For example, the simplified program intro3 is obtained from intro2 by the above three
transformations.

The generated simplified program is converted to a set of SMT formulas S as follows. An
assignment x:=ae is converted to equation formula x=ae; a Φ-assignment x := be?x1 : x2 is
converted to formula x=ite(be,x1,x2); an assume(be) is converted to formula be; and an
assert(be) is converted to formula ¬be. A statement that is part of a while body may be
encoded by several formulas ϕ1, . . . , ϕk in S due to the unwinding. In this case, we remove
ϕ1, . . . , ϕk from S, and add instead one conjunctive formula (ϕ1 ∧ . . . ∧ ϕk) in S. In effect,
we obtain that one formula in S encodes a single statement in the original program. For
example, the set Sintro is obtained from intro3 by the above conversion.

The obtained set of formulas S is partitioned into three subsets: SVar
soft that contains all

formulas corresponding to statements containing original program expressions, SF
soft that

contains all formulas corresponding to statements containing original feature expressions,
and Shard that contains the other formulas corresponding to assertions, assumptions, Φ-
assignments, and feature variable-assignments. Since all original program and feature
expressions are RHSs of assignments after the simplification phase, all formulas in SVar

soft

and SF
soft are either single assignment formulas (x=ae) or multiple assignment formulas(

(x1 = ae1) ∧ . . . ∧ (xk = aek)
)
. For example, the set Sintro in Fig. 5 is partitioned as follows:

SVar
soft = {x0=0, x1=x0+2, x3=x2-2},

SF
soft = {g0=A0, g1=¬A0 ∧ ¬B0},

Shard = {A0=[0,1], B0=[0,1], x2=ite(g0,x1,x0), x4=ite(g1,x3,x2), ¬(x4 ≥ 0)}

Given a pre-processed (single) program p, the program formula φb
p is the conjunction of

all formulas in S, where b denotes the unwinding bound used in the transformation phase of
p. The formula φb

p encodes all possible b-bounded paths in the program p that go through
each loop at most b times. We say that a program p is b-correct if all assertions in it are
valid in all b-bounded paths of p.

▶ Proposition 2 ([8]). A pre-processed (single) program p is b-correct iff φb
p is unsatisfiable.

ECOOP 2024

12:8 Mutation-Based Lifted Repair of Software Product Lines

A satisfying assignment (model) of φb
p represents a b-bounded path of p that satisfies all

assumptions but violates at least one assertion. In the following, we omit to write p and b in
the program formula φb

p when they are clear from the context.
Our approach reasons about loops by unrolling them, so it is sensitive to the unrolling

bound. We now present an example, where the unrolling bound has impact on the assertion
validity.

▶ Example 3. Consider the program:

int i:=0, x:=0; while (i<3) do {i:=i+1; x:=x+1; }

Suppose that the assertion to be checked is assert(x≥3) at the final location. If we use
the unrolling bound b = 2, we will find that the program is incorrect due to the spurious
execution path that runs the while-body 2 times. Hence, we will needlessly try to repair
this correct program. However, if we use the bound b ≥ 3, then we will establish that the
program is correct and so no repair is needed.

Suppose that the assertion to be checked is assert(x<3) at the final location. If we use
the unrolling bound b = 2, we will find that the program is correct since the assertion is valid
for all 2-bounded paths, so no repair will be performed. However, if we use the bound b ≥ 3,
then we will truly establish that the program is incorrect and so a repair is needed.

To enable incremental SMT solving, the program formula φ is instrumented with Boolean
variables called guard variables. More specifically, a formula φ = ϕ1 ∧ . . .∧ϕn is replaced with
φ′ = (x1 =⇒ ϕ1) ∧ . . . ∧ (xn =⇒ ϕn), where x1, . . . , xn are fresh guard variables. In effect,
the formula (xi =⇒ ϕi) can be satisfied by setting xi to false. Some guard variables called
assumptions are conjuncted with φ′ and passed to an incremental SMT solver. For example,
φ′ ∧ x1 ∧ x2 is satisfiable iff ϕ1 and ϕ2 are satisfiable, since the satisfying assignment will set
x3, . . . , xn to false thus making (x3 =⇒ ϕ3), . . . , (xn =⇒ ϕn) true. Thus, an incremental
SMT-solver checking the satisfiability of φ′ ∧ x1 ∧ x2 will only check satisfiability of ϕ1 and
ϕ2, thus essentially disabling formulas ϕ3, . . . , ϕn.

We will use formulas of the form AtMost({l1, . . . , ln}, k) (resp., AtLeast({l1, . . . , ln}, k))
to require that at most (resp., at least) k of the literals l1, . . . , ln are true. They are called
Boolean cardinality formulas encoding that

∑n
i=1 li ≤ k (resp.,

∑n
i=1 li ≥ k), where li is a

literal assigned the value 1 if true and the value 0 if false, and k ∈ N. We will use the
MiniCard SAT-solver [39] to check their satisfiability.

4 Lifted Repair Algorithm

In this section, we present our lifted repair algorithm, called SPLAllRepair, for repairing
program families. We first give a high-level overview of the algorithm, and then describe its
components more formally.

High-level Description

The SPLAllRepair is given in Algorithm 1. It takes as input a program family P , an
unwinding bound b, and a repair size r that limits the search space to only mutated programs
with at most r mutations (changes to the original code) applied at once. The algorithm goes
through an iterative generate-and-verify procedure, implemented using an interplay between
an SAT solver and an SMT solver. In particular, we use an SAT solver in the generate phase
to find a mutated program from the search space, whereas we use an SMT solver in the
verify phase to check if the mutated program is correct.

A. S. Dimovski 12:9

Algorithm 1 SPLAllRepair(P, b, r).
Input: Program family P , unwinding bound b, repair size r

Output: Set of solutions Sol

1 psim := VarEncode(P) ;
2 (Shard, SVar

soft, SF
soft) := CBMC(psim, b) ;

3 (S1, . . . , Sn) := Mutate(SVar
soft, SF

soft) ;
4 (S′

1, . . . , S′
n, V1, . . . , Vn, Vorig) := InstGuardVars(S1, . . . , Sn) ;

5 φb
sim := (∧s∈Shards) ∧ (∧s∈S′

1∪...∪S′
n
s) ;

6 φ := (∧n
i=1AtMost(Vi, 1)) ∧ (∧n

i=1AtLeast(Vi, 1)) ;
7 k := 1; Sol := ∅ ;
8 while (k ≤ n) ∧ (k ≤ r) do
9 φk := φ ∧ AtLeast(Vorig, n − k) ;

10 satres, V := SAT(φk) ;
11 if (satres) then
12 smtres := IncrementalSMT(φb

sim ∧ ∧v∈V v) ;
13 if (¬smtres) then
14 Sol := Sol ∪ V ;
15 φk := φk ∧ (∨v∈V \(Vorig)¬v) ;
16 else
17 φk := φk ∧ (∨v∈V ¬v) ;

18 else
19 k := k + 1 ;
20 if (Timeout) then return Sol ;
21 return Sol;

The SPLAllRepair starts by generating the family simulator psim using the pre-
processor VarEncode procedure (line 1). Then, the CBMC translation procedure calls the
CBMC model checker to generate the triple (Shard, SVar

soft, SF
soft) of sets of formulas corres-

ponding to psim as explained in Section 3.2 (line 2). By calling the Mutate procedure, we
generate all possible mutations S1, . . . , Sn of formulas in SVar

soft and SF
soft (line 3). Here Si is a

set of formulas obtained by mutating some ϕi ∈ SVar
soft ∪SF

soft. Thus, S1, . . . , Sn correspond to
n program locations where an error may occur. Next, we use the InstGuardVars procedure
to instrument all formulas in S1, . . . , Sn by fresh guard variables, so that the results are sets
of instrumented formulas S′

1, . . . , S′
n and sets of fresh guard variables V1, . . . , Vn used to guard

formulas in S′
1, . . . , S′

n (line 4). Here S′
i = {(x =⇒ ϕ) | ϕ ∈ Si, x is a fresh guard variable}.

The set Vorig contains guard variables corresponding to original formulas in SVar
soft and SF

soft.
The program formula φb

sim is then initialized to be the conjunction of all formulas from Shard

and all instrumented formulas from S′
1 ∪ . . . ∪ S′

n (line 5). Subsequently, we search the space
of all mutated formulas in increasing size order using the variable k, which is initialized to
1 and increased after each iteration (lines 8–20). In particular, we generate the boolean
formula φk [13] (line 9) expressing that k guard variables are not original, that is n − k are
original (by using AtLeast(Vorig, n − k)), and there is exactly one guard variable selected for
each statement in the program (by using φ ≡ ∧n

i=1AtMost(Vi, 1)∧∧n
i=1AtLeast(Vi, 1), line 6).

This means that every satisfying assignment of φk represents one mutated program formula
of size at most k (i.e. with k changes to the original code). The boolean formula φk is fed to
an SAT solver, which can handle Boolean cardinality formulas, to check its satisfiability. If

ECOOP 2024

12:10 Mutation-Based Lifted Repair of Software Product Lines

φk is unsatisfiable, this means that there are no unexplored mutated program formulas of
size k so we increase k by one (line 19) and generate a new formula φk. Otherwise, if φk

is satisfiable, we store in a set V all guard variables assigned true in the given satisfying
assignment of φk (line 10). To check the correctness of the mutated program corresponding
to the satisfying assignment V of φk, we call an incremental SMT solver to check φb

sim with
all guards in V passed as assumptions (i.e., φb

sim ∧ ∧v∈V v) (line 12). This is the same to
checking the conjunction of all formulas in Shard and all soft formulas guarded by variables
in V , since all other soft formulas will get satisfied by setting their guard variables to false.
Notice that SMT formulas solved consecutively in the iteration are very similar, thus sharing
majority of their assumptions and all hard formulas. This means that most of what was
learnt in solving the previous formula can be reused to solve the current one. If the result of
incremental SMT solving is true, the mutated program is not correct so we block V from
further exploration (line 17). Otherwise, we report V as a possible solution (i.e., a repaired
program family) and block all supersets of V for further exploration (lines 14,15). The
algorithm terminates when either the whole search space of mutated programs is inspected,
i.e. all possible combinations of guard variables in n locations are explored as assumptions
(k > n, line 8), or the subspace of mutated programs with at most r mutations is inspected
(k > r, line 8), or a time limit is reached (line 20).

▶ Example 4. Let p be a simulator with 4 statements that can be mutated. Let p1 be a
repaired mutant of p consisting of mutating statement 1 with mutation M1

1 (guard variable
v1

1) and statement 3 with mutation M2
3 (guard variable v2

3). Then blocking any superset
of this mutation is done by adding the blocking clause (¬v1

1 ∨ ¬v2
3) to the Boolean formula

φk representing the search space of all mutants. This means do not apply either M1
1 to

statement 1 or do not apply M2
3 to statement 3.

On the other hand, let p2 be a buggy mutant of p consisting of mutating statement 1
with mutation M2

1 (guard variable v2
1) and statement 4 with mutation M2

4 (guard variable
v2

4). The guards for original statements 2 and 3 are vorig
2 and vorig

3 . Then the blocking clause
(¬v2

1 ∨¬vorig
2 ∨¬vorig

3 ∨¬v2
4) will be added to prune from the search space exactly the mutant

p2. Note that smaller blocking clause (with smaller number of literals) will result in a larger
set of pruned mutants.

Pre-Processor: VarEncode

The aim of the pre-processor VarEncode procedure is to transform an input program family
P with sets of features F and configurations K into an output pre-processed (single) program
without #if-s, called family simulator. The set of configurations K includes all possible
combinations of feature values. In the pre-transformation phase, we convert each feature A ∈ F
into the global variable A non-deterministically initialized to 0 or 1. Let F = {A1, . . . , An}
be the set of available features in the program family P . We generate the following pre-
transformed program:

pre-t(P) ≡ int A1 := [0, 1], . . . , An := [0, 1]; P

We now define a rewrite rule for eliminating #if-s from pre-t(P). Let K be the set of
configurations in the family P that can be equated to a propositional formula κ = ∨k∈Kk.
Note that if K contains all possible combinations of feature values, then κ ≡ true. The
rewrite rule replaces #if-s with ordinary if-s whose guards are strengthened with the feature
model κ.

#if (θ) s #endif ⇝ if (θ∧ κ) then s else skip (R-1)

A. S. Dimovski 12:11

If the current program family being transformed matches the abstract syntax tree node of the
shape #if (θ) s #endif, then replace it with the RHS of rule (R-1). We write VarEncode(P)
to be the final transformed single program obtained by repeatedly applying rule (R-1) on
pre-t(P) and on its transformed versions until we reach a point at which this rule can no
longer be applied.

A memory state σ : Σ = Var → Z is a function mapping each program variable to a value.
Given a single program p and a memory state σ, we write [[p]]σ for the set of final states
that can be derived by executing all terminating paths (computations) of p starting in the
input state σ. Note that the result is a set of states since our language is non-deterministic.
We define [[p]] = ∪σ∈P(Σ)[[p]]σ to be the set of final states that can be reached by p from
any possible input state σ ∈ P(Σ) (where P(Σ) is the powerset of Σ). The following result
shows that the set of final states from terminating computations of VarEncode(P) coincides
with the union of final states from terminating computations of all variants derived from the
program family P .

▶ Proposition 5 ([30]). For a program family P , [[VarEncode(P)]] = ∪k∈K[[πk(P)]].

▶ Example 6. Consider the program family intro1 in Fig. 2 and its family simulator
intro2≡VarEncode(intro1) in Fig. 3. The states σ contain only one program variable x.
Hence, the semantics of all variants of intro1 is:

[[πA∧B(intro1)]] = [x 7→ 2], [[πA∧¬B(intro1)]] = [x 7→ 2]
[[π¬A∧B(intro1)]] = [x 7→ 0], [[π¬A∧¬B(intro1)]] = [x 7→ −2]

On the other hand, the semantics of intro2≡VarEncode(intro1) is:

[[VarEncode(intro1)]] = {[x 7→ −2], [x 7→ 0], [x 7→ 2]}

Mutate

As explained in Section 3.2, the SMT formulas in SVar
soft and SF

soft correspond to statements
containing program and feature expressions, so our goal is to repair the given erroneous
program family by applying mutations to those formulas. A mutation is a replacement of a
program/feature expression with another expression of the same type. For example, feature
expressions A and A ∧ B can be replaced with ¬A and (A∨¬B), while program expressions
x and x + 2 can be replaced with 0 and x − 2. We maintain a fixed list of syntactic mutations
for each type of program and feature expressions. Let us assume that mutations M1, . . . , Mj

can be applied to a formula ϕ ∈ SVar
soft ∪SF

soft. Then, Mutate(ϕ) = {ϕ, M1(ϕ), . . . , Mj(ϕ)}.
Finally, we have Mutate(SVar

soft, SF
soft) = Πϕ∈SVar

soft∪SF
soft

Mutate(ϕ).
We now present the variability-specific mutations applied to feature expressions: A→¬A

(read: feature A is replaced by ¬A) and ¬A→A for features A ∈ F, as well as {∧, ∨} (read:
logical operator ∧ can be replaced with ∨, and vice versa).

▶ Example 7. Recall that SF
soft = {g0=A0, g1=¬A0 ∧ ¬B0} for our running example intro1.

If we use the variability-specific mutations A→¬A, ¬A→A for A ∈ F and {∧, ∨}, we obtain:

Mutate(SF
soft) = {g0=A0, g0=¬A0, g1=¬A0 ∧ ¬B0, g1=A0 ∧ ¬B0, g1=¬A0 ∧ B0, g1=A0 ∧ B0,

g1=¬A0 ∨ ¬B0, g1=A0 ∨ ¬B0, g1=¬A0 ∨ B0, g1=A0 ∨ B0}

Post-Processor: Interpreting results

The solutions obtained by calling the AllRepair tool to repair VarEncode(P) are interpreted
back on the original program family P . Any possible repair for VarEncode(P), which consists
of replacing some feature and program expressions, represents a valid repair for P as well.

ECOOP 2024

12:12 Mutation-Based Lifted Repair of Software Product Lines

This is due to the fact that our transformed program VarEncode(P) contains all possible
paths that may occur in any variant πk(P) for k ∈ K. A single program (variant) is b-correct
if it has no b-bounded path that leads to an assertion failure, while a program family is
b-correct if all its variants are b-correct. Therefore, the b-correctness and possible repair of
VarEncode(P) and P are isomorphic (identical).

More formally, by using Propositions 2 and 5, we can prove the following result.

▶ Corollary 8. Let P and b be a program family and an unwinding bound.
(i) φb

VarEncode(P) is unsatisfiable iff ∀k ∈ K.πk(P) is b-correct iff P is b-correct.
(ii) φb

VarEncode(P) is satisfiable iff ∃k ∈ K.πk(P) is not b-correct iff P is not b-correct.

Correctness

We first use Corollary 8 to show the b-correctness of the SPLAllRepair algorithm (where b

is the unwinding bound). That is, every solution returned by SPLAllRepair is minimal
repaired program family (b-soundness), and every minimal repaired program family with
respect to mutations we apply is eventually returned by SPLAllRepair (b-relative com-
pleteness). Our algorithm explores all mutated programs in increasing size order starting
with size 1. Every returned solution is minimally repaired due to the fact that it would have
been blocked by another smaller solution in a previous iteration. Therefore, the b-correctness
(b-soundness and b-relative completeness) of SPLAllRepair follows from the b-correctness
of AllRepair shown in [50] and Corollary 8 (i.e., the fact that VarEncode(P) and P are
isomorphic with respect to b-correctness).

The SPLAllRepair always terminates, as there are only finitely many mutations that
can be applied to any type of (feature and program) expressions so the algorithm enumerates
all possible mutated programs (simulators) until it finds the minimal repaired ones if any.
This way, we have proved the following result.

▶ Theorem 9. The algorithm SPLAllRepair(P, b, r) is b-bounded correct and terminates.

5 Evaluation

We now evaluate our approach for mutation-based lifted repair of SPLs. We show that our
approach can efficiently repair various interesting #ifdef-based C program families, and
we compare the runtime performances and precision of two versions of our algorithm, with
smaller and bigger sets of mutations, as well as with the Brute-force approach that repairs
all variants of a program family one by one independently.

Implementation

We have implemented our lifted repair algorithm SPLAllRepair in a prototype tool, which
is built on top of the AllRepair tool [50, 51] for repairing single programs. The pre-processor
VarEncode procedure is implemented in Java, while the translation and mutation procedures
(CBMC and Mutate in Algorihtm 1) are implemented by modifying the CBMC model checker
[8] written in C++, where variability-specific mutations are defined. Moreover, we have
experimented by defining various mutations to other types of program expressions (see below).
The repair phase is implemented by calling the AllRepair tool [50] written in Python. We
also call the MiniCard SAT solver [39] and the Z3 SMT solver [11]. The altered CBMC
(plus ∼1K LOC) takes as input a family simulator, and generates a gsmt2 file containing SMT
formulas for all possible mutations of the corresponding statements in the input program.
The AllRepair (∼2K LOC) takes as input a gsmt2 file, generates formulas for SAT and
SMT solving, and handles all calls to them.

A. S. Dimovski 12:13

The tool accepts programs written in C with #ifdef/#if directives. It uses three main
parameters: mutation level that defines the kind of mutations that will be applied to feature
and program expressions; unwinding bound b that shows how many times loops and recursive
functions will be inlined; and repair size r that specifies how many mutations will be applied
at most to buggy programs. We use two mutation levels: level 1 contains simpler mutations
that are often sufficient for repairment, while level 2 contains all possible mutations we apply.
For each type of feature and program expression, the list of syntactic mutations/edits in
level 1 and level 2 is given below:

type of exp. level 1 level 2

arithmetic op. {+, −}, {∗, %, ÷} {+, −, ∗, %, ÷}
relational op. {<, ≤}, {>, ≥}, {==, ! =} {<, ≤, >, ≥, ==, ! =}
logical op. {&&, ||} {&&, ||}
bit-wise op. {>>, <<}, {&, |,∧ } {>>, <<, &, |,∧ }
program vars x→0, x→−x

integer constants n→n+1, n→n−1, n→−n, n→0
feature vars A→¬A, ¬A→A A→¬A, ¬A→A

For example, for arithmetic operators in mutation level 1 we have two sets {+, −} and
{∗, %, ÷}, which means that + is replaced with − and vice versa, and ∗, %, ÷ can be replaced
with each other. On the other hand, in mutation level 2 we have one set {+, −, ∗, %, ÷},
which means that any arithmetic operator from the set can be replaced with any other.
Mutations on feature variables A ∈ F in both levels include negations of feature variables
(A→¬A, ¬A→A), whereas for program variables x ∈ Var in level 2 we have mutations for
replacing them with 0 (x→0) and changing the sign (x→−x). Integer constants n ∈ Z in
mutation level 2 can be increased by one, decreased by one, minused, or replaced with 0.

Experimental setup and Benchmarks

Experiments are run on 64-bit Intel®CoreT M i7-1165G7 CPU@2.80GHz, VM Ubuntu 22.04.3
LTS, with 8 GB memory. We use a timeout value of 400 sec. The implementation, benchmarks,
and all obtained results are available from: https://zenodo.org/records/11179373. For
the aim of evaluation, we ran: (1) our tool with mutation level 1, denoted SPLAllRepair1;
(2) our tool with mutation level 2, denoted SPLAllRepair2; and (3) the Brute-force
approach that uses a preprocessor to generate all variants of a program family and then
applies the single-program repair tool AllRepair to each individual variant independently.

The evaluation is performed on a dozen of C programs: two warming-up examples
(intro1 in Fig. 2 and feat-inter in Fig. 6); four commonly known algorithms (feat_power
in Fig. 7, factorial in Fig. 8, sum in Fig. 9 and sum_mton in Fig. 10); Codeflaws [53], TCAS
[29], and Qlose [10] benchmarks that are widely used for evaluating program repair tools
[10, 37, 46, 50, 51]; as well as MinePump system [38] from the product-lines category of
SV-COMP 2024 (https://sv-comp.sosy-lab.org/2024) that is often used to assess product-
line verification in the SPL community [4, 9, 56, 55]. Codeflaws consists of programs
taken from buggy user submissions to the programming contest site Codeforces (http:
//codeforces.com). For each program, there is a correct reference version and several buggy
versions. Traffic Alert and Collision Avoidance System (TCAS) represents an aircraft collision
detection system used by all US commercial aircrafts. The TCAS benchmark suite consists
of a reference (correct) implementation and 41 faulty versions. In our experiments, we use
10 faulty versions that can be repaired using the mutations we apply in our approach. The

ECOOP 2024

https://zenodo.org/records/11179373
https://sv-comp.sosy-lab.org/2024
http://codeforces.com
http://codeforces.com

12:14 Mutation-Based Lifted Repair of Software Product Lines

void main(){
int x := 0;
#if (A) x := x+2; #endif
#if (B ∧ C) x := x-2; #endif
assert (x ≥ 0 && x < 4);

}

Figure 6 feat-inter.

int feat_power(int n){
assume(n ≥ 1);
int res := 0;
#if (¬A) int i := 1;

#else int i := 0; #endif
while (i < 3) {

res=res*n;
i++; }

#if (A) assert (sum==n*n*n);
#else assert (sum==n*n*n*n); #endif

return res; }

Figure 7 feat_power.

void main(int n){
assume(n ≥ 0);
int res1 := fact(n);
int res2 := fact_correct(n);
assert (res1 == res2);

}
int fact_correct(int x){

int res=1;
for (int i=2; i ≤ x; i++)

res *= i;
return res;

}

int fact(int x){
int res=1, i=2;
while (#if (A) (i<x) #else (i ≤ x) #endif){

res = mult(res,i);
i++; }

return res; }
int mult(int x, int y){

int res=0;
for (int i=1; i ≤ y; i++)

#if (B) res-=x; #else res+=x; #endif
return res;

}

Figure 8 factorial.

Qlose benchmarks are used for evaluating the Qlose program repair tool [10], which consist
of a reference (correct) implementation and several faulty versions for each programming
task. In the case of Codeflaws, TCAS, and Qlose, we have selected several faulty versions of
each benchmark and we have created a buggy program family out of them. For example,
we use tcas_v3 and tcas_v12 (resp., tcas_v16 and tcas_v17) to create the tcas_spl1
(resp., tcas_spl2) program family. Then, we use assertions to check the equivalence of the
results returned by the program family and the reference (correct) version (for example, see
main() of factorial in Fig. 8). Note that the correct version is marked so that it will not
be mutated. The MinePump SPL system contains 730 LOC and six independent optional
features: start, stop, methaneAlarm, methaneQuery, lowWaterSensor, highWaterSensor.
When activated, the controller should switch on the pump when the water level is high, but
only if there is no methane in the mine. We consider two specifications of the MinePump
system encoded as assertions in SV-COMP 2024: MinePump_spec1 checks whether the pump is
not running if the level of methane is critical; and MinePump_spec3 checks whether the pump
is running if the level of water is high. Table 1 presents characteristics of the benchmarks,
such as: the file name (Benchmark), the number of features |F| (note that |K| = 2|F|), and
the lines of code (LOC).

A. S. Dimovski 12:15

int sum(int n){
assume(n ≥ 1);
int sum := 0, i := 0;
#if (A) i := 1; #endif
while (i < n) {

#if (B) sum+=i;
#else sum-=i; #endif

i++; }
assert (sum==n*(n+1)/2);
return sum;

}

Figure 9 sum.

int sum_mton(int n, int m){
assume(n ≥ 1&&m ≥ 1);
#if (A) assume(n ≥ m);

#else assume(m ≥ n); #endif
int sum := 0;
#if (A) int i := n;

#else int i := m; #endif
while (#if (A) (i ≤ n) #else (i ≤ m) #endif)
{ sum:=sum-i;

i++; }
#if (A) assert(sum==(n*(n+1)-m*(m-1))/2);
#else assert(sum==(m*(m+1)-n*(n-1))/2);
#endif
return sum; }

Figure 10 sum_mton.

Examples

We now present several of our examples in detail. Consider the program family feat-inter
in Fig. 6. The error occurs due to the feature interaction (¬A ∧ B ∧ C). In particular, the
variant (¬A ∧ B ∧ C) is: int x=0; x=x-2; assert(x≥0 && x<4). So the assertion fails since
x has value -2 at the assertion location. The simplest fix from mutation level 1, which replaces
x:=x-2 with x:=x+2, does not work as it introduces a new error in other variants. In this
case, the feature interaction (A ∧ B ∧ C) causes the assertion failure since the value of x will be
4 at the assertion location for variant (A ∧ B ∧ C). Therefore, SPLAllRepair1 reports that
no repair is found by searching the space of 7 mutants in 0.254 sec. However, if we consider
mutations of level 2 then SPLAllRepair2 successfully finds a repair, which replaces x:=x-2
with x:=x-0, by searching the space of 25 mutants in 0.315 sec. On the other hand, the
Brute-force approach applies mutations to all faulty variants independently. As the only
faulty variant is (¬A ∧ B ∧ C), it will report the repair that replaces x:=x-2 with x:=x+2. This
is a correct repair for the variant (¬A ∧ B ∧ C), but not for the entire family. This example
shows that sometimes the Brute-force approach may not report correct results due to the
feature interaction.

The program family feat_power in Fig. 7 should find the third power of n when feature
A is enabled and the fourth power of n when A is disabled. SPLAllRepair1 suggests fixes
in 0.722 sec that replace the feature expression (¬ A) with (A) when initializing variable i
and replace while-guard (i < 3) with (i ≤ 3). The Brute-force finds that variant (A) is
correct, but variant (¬ A) is not correct and no fix is suggested as integer constants cannot
be mutated in level 1. Some possible repairs of variant (¬ A) in level 2 will make variant (A)
incorrect. For example, changing the while-guard to (i ≤ 3) will make variant (A) incorrect
since it is initialized to 0 so it will return the fourth power of n instead of the third.

The program factorial in Fig. 8 contains two implementations of the factorial function:
a correct one, called fact_correct, and a buggy one, called fact, that represents a program
family with four variants. The assertion requires that the results returned from each variant of
fact are equivalent with the result returned from fact_correct. We do not apply mutations
to fact_correct, but only to the program family fact. All three approaches suggest fixes
that replace the while-guard (i < x) with (i ≤ x) and the assignment res-=x with res+=x.

ECOOP 2024

12:16 Mutation-Based Lifted Repair of Software Product Lines

Table 1 Performance results of SPLAllRepair1 vs. SPLAllRepair2 vs. Brute-force. All
times in sec.

Benchmarks |F| LOC
SPLAllRepair1 SPLAllRepair2 Brute-force

Fix Space Time Fix Space Time Fix Space Time

intro1 2 20 ✓ 7 0.252 ✓ 25 0.304 ✓ 5 0.981
feat-inter 3 20 × 7 0.254 ✓ 25 0.315 × 9 2.110
feat_power 1 20 ✓ 16 0.722 ✓ 403 7.79 × 8 0.882
factorial 2 50 ✓ 86 2.540 ✓ 1603 107.3 ✓ 81 4.196
sum 2 30 ✓ 17 0.376 ✓ 266 2.656 ✓ 18 1.147
sum_mton 1 20 ✓ 32 0.770 ✓ 681 15.22 × 10 0.556
4-A-Codeflaws 2 95 × 52 0.426 ✓ 1390 2.578 × 36 1.180
651-A-Codeflaws 2 85 ✓ 180 3.394 ✓ 2829 38.53 ✓ 237 5.78
tcas_spl1 1 305 × 37 0.99 ✓ 158 6.10 × 37 1.41
tcas_spl2 1 305 × 38 1.19 ✓ 164 8.94 × 38 1.47
Qlose_multiA 3 32 × 122 0.711 ✓ 5415 69.21 × 65 5.781
Qlose_iterPower 2 30 × 9 0.973 ✓ 38 2.921 × 16 1.391
MinePump_spec1 6 730 ✓ 38 300.0 ✓ - timeout ✓ - timeout

MinePump_spec3 6 730 ✓ 39 291.0 ✓ - timeout ✓ - timeout

Consider the program family sum in Fig. 9, which computes the sum of all integers from 0
to a given input integer n. The specification indicates that given a positive input n (n ≥ 1),
the output represented by the variable sum is n*(n+1)/2. The body of sum is implemented
in an iterative fashion. There are two features A and B that enable different initializations of
i and different updates of sum. Let us consider mutations of level 1. If the repair size is 1
(i.e., only one original expression can be mutated), our tool cannot find a repair by searching
the space of 7 mutants in 0.321 sec. However, if the repair size is 2, then SPLAllRepair1
suggests a fix that replaces the while-guard (i < n) with (i ≤ n) and the assignment sum-=i
with sum+=i. The search space contains 17 mutants and the tool explores it in 0.376 sec.
The Brute-force approach reports a correct repair in 1.147 sec.

The program family sum_mton in Fig. 10 computes the sum m + (m + 1) + . . . n when
feature A is enabled and (n ≥ m), and the sum n + (n + 1) + . . . m when feature A is disabled
and (m ≥ n). The corresponding specifications assert that the returned value sum is equal
to

(
n ∗ (n + 1) − m ∗ (m − 1)

)
/2 when A is on and

(
m ∗ (m + 1) − n ∗ (n − 1)

)
/2 when A is off.

The programmer has made two mistakes: when initializing variable i and when updating
variable sum in the while-body. SPLAllRepair1 suggests fixes in 0.770 sec that replace
the feature expression (A) with (¬ A) when initializing variable i and replace sum:=sum-i
with sum:=sum+i when updating sum. However, the Brute-force cannot fix any of the two
variants since mutating variable n (resp., m) to other variable m (resp., n) is not allowed.

Performance

Table 1 shows performance results of running SPLAllRepair1, SPLAllRepair2, and the
Brute-force approach on the given benchmarks. We use mutation level 1 for Brute-force.
Note that the Brute-force approach calls translation, mutation, and repair procedures
for each variant separately, whereas SPLAllRepair1 and SPLAllRepair2 call these
procedures only once per program family. Moreover, the Brute-force approach can only

A. S. Dimovski 12:17

Table 2 Performance results of SPLAllRepair1 for different values of the unwinding bound
b = 2, 5, 8. All times in sec.

Benchmarks
b = 2 b = 5 b = 8

Fix Time Fix Time Fix Time

feat_power × 0.254 ✓ 0.722 ✓ 0.978
factorial × 1.231 ✓ 3.540 ✓ 6.524
sum × 0.304 ✓ 0.376 ✓ 0.456
sum_mton × 0.589 ✓ 0.770 ✓ 0.922
651-A-Codeflaws ✓ 1.814 ✓ 3.394 ✓ 6.828

find repairs by mutating program expressions. The default values for unwinding bound is
b = 5 and for repair size is r = 1. However, for some benchmarks whose repaired versions
contain more than one code mutation, we use the minimal value of repair size r that allows
one approach to find a correct solution. For example, we use repair size r = 2 for sum. For
each approach, there are three columns: “Fix” that specifies with ✓ (resp., ×) whether the
given approach finds (resp., does not find) a correct repair for a given benchmark; “Space”
that specifies how many mutants have been inspected; and “Time” that specifies the total
time (in seconds) needed for the given tasks to be performed.

From Table 1, we can see that SPLAllRepair1 and SPLAllRepair2 combined out-
perform the Brute-force approach with respect to both repairability and runtime. In
particular, SPLAllRepair2 fully repairs 12 benchmarks, which is better than 8 full correct
repairs reported by SPLAllRepair1 and 4 full correct repairs reported by the Brute-force
approach that use the same mutations of level 1 (see also Discussion below). Note that
SPLAllRepair2 and the Brute-force timeout after 400 sec for the MinePump system.
Hence, they report only a partial list of possible repairs, denoted by ✓. On the other
hand, SPLAllRepair1 achieves time speed-ups compared to Brute-force when report
the same results, that range from 1.2 to 4 times. If we compare SPLAllRepair1 and
SPLAllRepair2, we can see that there is a trade-off between repairability and runtime.
That is, SPLAllRepair2 is more precise (12 vs. 8 fixes) but slower (from 1.2 to 42 times
slow-down when report the same results) compared to SPLAllRepair1.

Table 2 shows performance results of running SPLAllRepair1 on a selected set of
benchmarks for different unwinding bounds b. Recall that our approach reasons about loops
by unrolling (unwinding) them, so it is sensitive to the chosen unwinding bound. By choosing
larger bounds b, we will obtain more precise results (more genuine repairs), but we will
also obtain longer SMT formulas and slower speeds of the repairing tasks. We can see that
the running times of all repairing tasks grow with the number of bound b. This is due to
the fact that longer SMT formulas are generated, which need more time to be verified. Of
course, we will also obtain more precise results for bigger values of b, and less precise results
(i.e., some genuine repairs will not be reported) for smaller values of b. Hence, there is a
preision/speed tradeoff when choosing the unwinding bound b. We obtain similar results for
SPLAllRepair2 and the Brute-force.

Discussion

In summary, our experiments demonstrate that our tool outperforms the Brute-force
approach, and moreover it can be used for repairing various SPLs with different sizes of LOC,
configuration space, and mutation space. Although SPLAllRepair1 and Brute-force

ECOOP 2024

12:18 Mutation-Based Lifted Repair of Software Product Lines

have similar precision (8 vs. 4 fixes) due to the use of same sets of mutations, there is still
a difference in the quality of the reported results. As we argued before, SPLAllRepair1
and SPLAllRepair2 report repaired program families obtained by fixing both feature and
program expressions, whereas Brute-force only reports the repaired variants obtained by
fixing program expressions. Hence, the results from Brute-force have to be analyzed by
the user to produce information comparable to that returned by SPLAllRepair1 and
SPLAllRepair2 in the form of repaired program families. Moreover, the fixes of individual
variants may cause errors in other variants as evidenced by feat-inter and feat_power.

The main bottleneck for real-world SPLs, such as MinePump with 730 LOC and 6 features,
is the huge space of mutants. The problem is that the search space of mutants grows very
rapidly as the number of changeable expressions (statements) included in Ssoft grows. For
example, the space of mutants for MinePump is ∼ 1012 for mutation level 1 and ∼ 1034 for
mutation level 2. Hence, to explore even the sub-space of mutants with only 1 edit (r = 1)
we need around 300 sec for SPLAllRepair1 and >400 sec (timeout) for SPLAllRepair2.
One way to address this problem is to use variability fault localization [5, 47], which will first
identify feature and program expressions relevant for a variability bug, so that the SPL repair
algorithm will apply mutations only to those expressions. This way, we will significantly
reduce the space of all mutants without dropping any potentially correct mutant, and so we
will improve the performance of the SPLAllRepair algorithm.

The runtime performance results confirm that our lifted (family-based) repair algorithm
is indeed effective and especially so for large values of |F| and |K| = 2|F|. That is, the focus of
lifted repair algorithm is to combat the configuration space explosion of SPLs, not their LOC
or mutation space sizes. As an experiment, we took feat-inter, and we have gradually
added optional features into it by conjoining them to the presence conditions of #if-s. For
|F| = 3, SPLAllRepair1 achieves speed-up of 8.3 times compared to Brute-force, whereas
for |F| = 4 and |F| = 5 we observe speed-ups of 14.7 and 26.7 times, respectively. The
key for those speed-ups is the linear growth of the running times of SPLAllRepair1 with
the number of features |F| compared to the exponential growth of the running times of
Brute-force with |F|.

Finally, the evaluation shows that for bigger values of the unwinding bound b, we obtain
repairing tasks with slower runtime speed, but reporting more precise results.

6 Related Work

We divide our discussion of related work into two categories: lifted SPL analysis and program
repair.

Lifted SPL analysis

Formal analysis and verification of program families have been a topic of considerable research
in recent times. The challenge is to develop efficient techniques that work directly on program
families, rather than on single programs. Various lifted techniques have been introduced
that lift existing single-program analysis techniques to work on the level of program families.
Some examples are lifted syntax checking [27, 34], lifted type checking [7, 33], lifted static
analysis [6, 30, 15, 20, 55], lifted model checking [9, 16, 25], etc. There are two main lifted
techniques: to develop dedicated lifted (family-based) algorithms and tools (e.g. [9, 7, 6, 20]);
or to use specific simulators and variability encodings which transform program families into
single programs that can be analyzed by the standard single-program analysis tools. The
two approaches have different strengths and weaknesses. The advantage of the dedicated

A. S. Dimovski 12:19

lifted algorithms is that precise (conclusive) results are reported for every variant, but the
disadvantage is that their implementation and maintenance can be labor intensive and
expensive. For example, CBMC [8] is prominent (single-system) software model checker
that contains many optimization algorithms, which are result of more than two decades
research in advanced formal verification. Adapting and implementing all these algorithms in
the context of lifted software model checking would require an enormous amount of work.
Moreover, the performance of dedicated lifted algorithms still heavily depends on the size
and complexity of the configuration space of the analyzed SPL.

On the other hand, the approaches based on variability encoding [30, 56] generate a family
simulator that simulates the behaviour of all variants in an SPL. They re-use existing tools
from single-program world, but some precision may be lost when interpreting the obtained
results. The work [56] defines variability encoding on the top of TypeChef parser [34] for
C and Java SPLs, while the work [30] defines variability encoding on the top of SuperC
parser [27] for C SPLs. The results of variability encoding have been applied to testing [35],
software model checking [4], formal verification [30], and theorem proving [54] of SPLs. In
this work, we pursue this line of research by presenting a lifted repair algorithm that is based
on variability encoding of program families and an existing single-program mutation-based
repair algorithm AllRepair [50, 51].

Program repair

Automated program repair has been extensively examined in software engineering as a way
to efficiently maintain software systems [28, 37, 40, 42, 45, 46, 48, 50, 51]. These works aim
to repair the buggy program, so that the transformed program does not exhibit any faults.
Most of them use test suits as the only specification, so the correctness of a candidate is
checked by running all tests in the test suite against it. They iteratively generate a candidate
from the repair search space and check its validity by testing. Some examples are GenProg
[28], RsRepair [48], SPR [40]. The main problem of all testing-based approaches is the
generation of overfitting repairs that pass all the test cases, but they break some untested
required functionality of correct programs. This happens when the test suites do not cover
all the functionality of a program.

In contrast to testing-based approaches, our work belongs to the category of repair tools
that use formal techniques to guide the repair process. Several techniques, such as SemFix
[45] and Angelix [42], use symbolic execution to find a repair constraint and then generate
a correct fix based on it. Similarly to our work, Könighofer et al. [37] also use assertions
as formal specifications, but instead of mutations they use on-the-fly concolic execution
(a variant of symbolic execution that uses both symbolic and concrete input values) and
templates (linear expressions of program variables with unknown coefficients) as repairs.
The solutions for unknown coefficients are found by SMT solving, thus discovering the
repaired program. The Maple tool [46] utilizes a formal verification system to locate buggy
expressions, which are again replaced with templates in which the unknown coefficients are
determined using constraint solving. The work [36] uses a deductive synthesis framework for
repairing recursive functional programs with respect to specifications expressed in the form
of pre- and post-conditions.

Finally, our approach is inspired by Rothenberg and Grumberg [50, 51] that have developed
the AllRepair tool for automatic program repair based on code mutations. In this paper,
we pursue this line of work by applying it in a new context of SPL repair, which is done by
taking into account all specific characteristics of SPLs. This way, we broaden the space of
programs that can be repaired.

ECOOP 2024

12:20 Mutation-Based Lifted Repair of Software Product Lines

The Qlose tool [10] introduces a quantitative program repair algorithm that finds the
“optimal” solutions by taking into account multiple quantitative objectives, such as the
number of syntactic edits and semantic changes in program behaviours/executions. The
work [41] proposes a semantic program repair technique that performs counterexample-guided
inductive repair loop via symbolic execution. In this work, we currently find a solution with
minimal number of syntactic changes to the original program family. The semantics of the
program family is encoded as an SMT formula that is mutated and checked for correctness
by an SMT solver. In the future, we plan to investigate some semantics-based learning
techniques that will use the counterexamples returned by the SMT solver to guide the
algorithm towards finding faster solutions.

Automated program repair has often been combined with fault localization. Fault
localization [31, 17] is a technique for automatically generating concise error explanations
in the form of locations/statements relevant for a given error that describe why the error
has occurred. The works [12, 49, 51] use fault localization to narrow down the repair search
space, followed by applying program repair. Firstly, fault localization suggests locations in
the erroneous program that might be the cause of the error. Subsequently, the program
repair attempts to change only those locations detected by the fault localization in order to
eliminate the error. This way, the original program repair procedure is speeded up without
incurring any precision loss. Recently, variability fault localization in buggy SPL systems
has also been a subject of research [5, 44, 47]. They use spectrum-based fault localization
(SBFL) metric [1] to calculate the suspiciousness scores for localizing variability bugs at the
level of features [5] and statements [44, 47] based on the test information (program spectra).
We can combine the variability fault localization and our variability-aware repair method
to additionally prune the search space of mutants, thus improving the performances of our
approach.

Program repair is also related to program sketching [52], where a program with missing
parts (holes) has to be completed in such a way that a given specification is satisfied. One
of the earliest and widely-known approach to solve the sketching problem is the Sketch
tool [52], which uses SAT-based counterexample-guided inductive synthesis. It iteratively
performs SAT queries to find integer constants for the holes so that the resulting program is
correct on all possible inputs. The works [19, 21] introduce the FamilySketcher tool that
solves the sketching problem by using a lifted static analysis based on abstract interpretation.
The key idea is that all possible sketch realizations represent a program family, and so the
sketch search space is explored via an efficient lifted analysis of program families, which uses
a specifically designed decision tree abstract domain. The FamilySketcher also generates
an optimal solution to the sketching problem with respect to the number of execution steps
to termination. Furthermore, the approach [18] uses abstract static analysis and logical
abduction to solve the generalized program sketching problem where the missing holes can
be replaced with arbitrary expressions, not only with integer constants as in the case of
Sketch and FamilySketcher tools.

7 Conclusion

In this paper, we have introduced an automated SPL repair framework using variability
encoding, bounded model checking and cooperation between SAT and SMT solvers. More
specifically, we utilize the CBMC bounded model checker to translate the family simulator of
a program family to a program formula. By checking the satisfiability of the program formula
using an SMT solver, we verify the correctness of the given program family. Then, each

A. S. Dimovski 12:21

formula corresponding to a buggy (feature or program) expression is replaced by a mutated
patch, to create a new SMT formula that is again checked for satisfiability. To ensure that
only minimally mutated programs are considered, we call a SAT solver. By experiments we
have shown that our prototype tool can discover interesting patches for various buggy SPLs.

The huge space of mutants can be a bottleneck when dealing with real-world SPLs that
have high sizes of LOCs and features. To overcome this problem, we can consider different
techniques for pruning the search space of all possible mutations in the future. One possibility
is to use variability fault localization [5, 47], which will find statements relevant for the
variability bug. The formulas corresponding to all other statements will be included in Shard

and so no mutations will be applied to them. By mutating only statements relevant for the
bug, we will significantly reduce the space of all mutants, thus speeding up the SPL repair
method without any precision loss.

References
1 Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. Spectrum-based multiple fault

localization. In ASE 2009, 24th IEEE/ACM International Conference on Automated Software
Engineering, Auckland, New Zealand, November 16-20, 2009, pages 88–99. IEEE Computer
Society, 2009. doi:10.1109/ASE.2009.25.

2 Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. Feature-Oriented
Software Product Lines - Concepts and Implementation. Springer, 2013. doi:10.1007/
978-3-642-37521-7.

3 Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk Beyer. Detection
of feature interactions using feature-aware verification. In 26th IEEE/ACM Int. Conf. on
Automated Software Engineering (ASE 2011), pages 372–375, 2011. doi:10.1109/ASE.2011.
6100075.

4 Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and Dirk Beyer.
Strategies for product-line verification: case studies and experiments. In 35th Inter. Conference
on Software Engineering, ICSE ’13, pages 482–491, 2013. doi:10.1109/ICSE.2013.6606594.

5 Aitor Arrieta, Sergio Segura, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxeberria. Spectrum-
based fault localization in software product lines. Inf. Softw. Technol., 100:18–31, 2018.
doi:10.1016/J.INFSOF.2018.03.008.

6 Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira Mezini.
Spllift: statically analyzing software product lines in minutes instead of years. In ACM
SIGPLAN Conference on PLDI ’13, pages 355–364, 2013.

7 Sheng Chen, Martin Erwig, and Eric Walkingshaw. An error-tolerant type system for variational
lambda calculus. In ACM SIGPLAN International Conference on Functional Programming,
ICFP’12, pages 29–40, 2012. doi:10.1145/2364527.2364535.

8 Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs.
In Tools and Algorithms for the Construction and Analysis of Systems, 10th International
Conference, TACAS 2004, Proceedings, volume 2988 of LNCS, pages 168–176. Springer, 2004.
doi:10.1007/978-3-540-24730-2_15.

9 Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel Legay, and
Jean-François Raskin. Featured transition systems: Foundations for verifying variability-
intensive systems and their application to LTL model checking. IEEE Trans. Software Eng.,
39(8):1069–1089, 2013. doi:10.1109/TSE.2012.86.

10 Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program repair with quantitative
objectives. In Computer Aided Verification - 28th International Conference, CAV 2016,
Proceedings, Part II, volume 9780 of LNCS, pages 383–401. Springer, 2016. doi:10.1007/
978-3-319-41540-6_21.

11 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and

ECOOP 2024

https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1109/ICSE.2013.6606594
https://doi.org/10.1016/J.INFSOF.2018.03.008
https://doi.org/10.1145/2364527.2364535
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-319-41540-6_21

12:22 Mutation-Based Lifted Repair of Software Product Lines

Analysis of Systems, 14th International Conference, TACAS 2008. Proceedings, volume 4963
of LNCS, pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

12 Vidroha Debroy and W. Eric Wong. Using mutation to automatically suggest fixes for faulty
programs. In Third International Conference on Software Testing, Verification and Validation,
ICST 2010, pages 65–74. IEEE Computer Society, 2010. doi:10.1109/ICST.2010.66.

13 Aleksandar Dimovski and Danilo Gligoroski. Generating highly nonlinear boolean functions
using a genetic algorithm. In 6th Int. Conference on Telecommunications in Modern Satellite,
Cable and Broadcasting Service, TELSIKS 2003, volume 2 of IEEE, pages 604–607, 2003.
doi:10.1109/TELSKS.2003.1246297.

14 Aleksandar S. Dimovski. Symbolic game semantics for model checking program families. In
Model Checking Software - 23nd International Symposium, SPIN 2016, Proceedings, volume
9641 of LNCS, pages 19–37. Springer, 2016.

15 Aleksandar S. Dimovski. Lifted static analysis using a binary decision diagram abstract domain.
In Proceedings of the 18th ACM SIGPLAN International Conference on GPCE 2019, pages
102–114. ACM, 2019. doi:10.1145/3357765.3359518.

16 Aleksandar S. Dimovski. Ctl⋆ family-based model checking using variability abstractions
and modal transition systems. Int. J. Softw. Tools Technol. Transf., 22(1):35–55, 2020.
doi:10.1007/s10009-019-00528-0.

17 Aleksandar S. Dimovski. Error invariants for fault localization via abstract interpretation.
In Static Analysis - 30th International Symposium, SAS 2023, Proceedings, volume 14284 of
LNCS, pages 190–211. Springer, 2023. doi:10.1007/978-3-031-44245-2_10.

18 Aleksandar S. Dimovski. Generalized program sketching by abstract interpretation and logical
abduction. In Static Analysis - 30th International Symposium, SAS 2023, Proceedings, volume
14284 of LNCS, pages 212–230. Springer, 2023. doi:10.1007/978-3-031-44245-2_11.

19 Aleksandar S. Dimovski. Quantitative program sketching using decision tree-based lifted
analysis. J. Comput. Lang., 75:101206, 2023. doi:10.1016/J.COLA.2023.101206.

20 Aleksandar S. Dimovski and Sven Apel. Lifted static analysis of dynamic program families
by abstract interpretation. In 35th European Conference on Object-Oriented Programming,
ECOOP 2021, volume 194 of LIPIcs, pages 14:1–14:28. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.ECOOP.2021.14.

21 Aleksandar S. Dimovski, Sven Apel, and Axel Legay. Program sketching using lifted analysis
for numerical program families. In NASA Formal Methods - 13th International Symposium,
NFM 2021, Proceedings, volume 12673 of LNCS, pages 95–112. Springer, 2021. doi:10.1007/
978-3-030-76384-8_7.

22 Aleksandar S. Dimovski, Sven Apel, and Axel Legay. Several lifted abstract domains for
static analysis of numerical program families. Sci. Comput. Program., 213:102725, 2022.
doi:10.1016/J.SCICO.2021.102725.

23 Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Finding suitable variability
abstractions for lifted analysis. Formal Aspects Comput., 31(2):231–259, 2019. doi:10.1007/
s00165-019-00479-y.

24 Aleksandar S. Dimovski and Ranko Lazic. Compositional software verification based on
game semantics and process algebra. Int. J. Softw. Tools Technol. Transf., 9(1):37–51, 2007.
doi:10.1007/S10009-006-0005-Y.

25 Aleksandar S. Dimovski and Andrzej Wasowski. From transition systems to variability models
and from lifted model checking back to UPPAAL. In Models, Algorithms, Logics and Tools,
volume 10460 of LNCS, pages 249–268. Springer, 2017. doi:10.1007/978-3-319-63121-9_13.

26 Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Theory and Applications of
Satisfiability Testing, 6th International Conference, SAT 2003, volume 2919 of LNCS, pages
502–518. Springer, 2003. doi:10.1007/978-3-540-24605-3_37.

27 Paul Gazzillo and Robert Grimm. Superc: parsing all of C by taming the preprocessor. In
Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN Conference on Programming

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/ICST.2010.66
https://doi.org/10.1109/TELSKS.2003.1246297
https://doi.org/10.1145/3357765.3359518
https://doi.org/10.1007/s10009-019-00528-0
https://doi.org/10.1007/978-3-031-44245-2_10
https://doi.org/10.1007/978-3-031-44245-2_11
https://doi.org/10.1016/J.COLA.2023.101206
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1016/J.SCICO.2021.102725
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/S10009-006-0005-Y
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-540-24605-3_37

A. S. Dimovski 12:23

Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, pages
323–334. ACM, 2012. doi:10.1145/2254064.2254103.

28 Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Genprog: A
generic method for automatic software repair. IEEE Trans. Software Eng., 38(1):54–72, 2012.
doi:10.1109/TSE.2011.104.

29 Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam A. Porter, and Gregg Rothermel.
An empirical study of regression test selection techiques. ACM Trans. Softw. Eng. Methodol.,
10(2):184–208, 2001. doi:10.1145/367008.367020.

30 Alexandru F. Iosif-Lazar, Ahmad Salim Al-Sibahi, Aleksandar S. Dimovski, Juha Erik Sa-
volainen, Krzysztof Sierszecki, and Andrzej Wasowski. Experiences from designing and
validating a software modernization transformation (E). In 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2015, pages 597–607, 2015.
doi:10.1109/ASE.2015.84.

31 Manu Jose and Rupak Majumdar. Cause clue clauses: error localization using maximum
satisfiability. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, pages 437–446. ACM, 2011. doi:10.1145/1993498.
1993550.

32 Christian Kästner. Virtual Separation of Concerns: Toward Preprocessors 2.0. PhD thesis,
University of Magdeburg, Germany, May 2010.

33 Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. Type checking annotation-
based product lines. ACM Trans. Softw. Eng. Methodol., 21(3):14, 2012.

34 Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus Ostermann,
and Thorsten Berger. Variability-aware parsing in the presence of lexical macros and conditional
compilation. In OOPSLA’11, pages 805–824. ACM, 2011.

35 Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch, Sven Apel, Tillmann
Rendel, and Klaus Ostermann. Toward variability-aware testing. In FOSD ’12, pages 1–8,
2012.

36 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. Deductive program repair. In
Computer Aided Verification - 27th International Conference, CAV 2015, Proceedings, Part II,
volume 9207 of LNCS, pages 217–233. Springer, 2015. doi:10.1007/978-3-319-21668-3_13.

37 Robert Könighofer and Roderick Bloem. Repair with on-the-fly program analysis. In 8th
International Haifa Verification Conference, HVC 2012, volume 7857 of LNCS, pages 56–71.
Springer, 2012. doi:10.1007/978-3-642-39611-3_11.

38 Jeff Kramer, Jeff Magee, Morris Sloman, and A. Lister. Conic: An integrated approach to
distributed computer control systems. IEE Proc., 130(1):1–10, 1983.

39 Mark H. Liffiton and Jordyn C. Maglalang. A cardinality solver: More expressive constraints
for free - (poster presentation). In Theory and Applications of Satisfiability Testing - SAT 2012
- 15th International Conference, Proceedings, volume 7317 of LNCS, pages 485–486. Springer,
2012. doi:10.1007/978-3-642-31612-8_47.

40 Fan Long and Martin C. Rinard. Staged program repair with condition synthesis. In
Proceedings of the 2015 10th Joint Meeting on ESEC/FSE 2015, pages 166–178. ACM, 2015.
doi:10.1145/2786805.2786811.

41 Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury.
Semantic program repair using a reference implementation. In Proceedings of the 40th
International Conference on Software Engineering, ICSE 2018, pages 129–139. ACM, 2018.
doi:10.1145/3180155.3180247.

42 Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: scalable multiline program
patch synthesis via symbolic analysis. In Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, pages 691–701. ACM, 2016. doi:10.1145/2884781.2884807.

43 Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Systematic
derivation of correct variability-aware program analyses. Sci. Comput. Program., 105:145–170,
2015. doi:10.1016/j.scico.2015.04.005.

ECOOP 2024

https://doi.org/10.1145/2254064.2254103
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/367008.367020
https://doi.org/10.1109/ASE.2015.84
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1007/978-3-319-21668-3_13
https://doi.org/10.1007/978-3-642-39611-3_11
https://doi.org/10.1007/978-3-642-31612-8_47
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/3180155.3180247
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1016/j.scico.2015.04.005

12:24 Mutation-Based Lifted Repair of Software Product Lines

44 Kien-Tuan Ngo, Thu-Trang Nguyen, Son Nguyen, and Hieu Dinh Vo. Variability fault
localization: a benchmark. In SPLC ’21: 25th ACM International Systems and Software
Product Line Conference, Leicester, United Kingdom, September 6-11, 2021, Volume A, pages
120–125. ACM, 2021. doi:10.1145/3461001.3473058.

45 Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. Semfix:
program repair via semantic analysis. In 35th International Conference on Software Engineering,
ICSE ’13, pages 772–781. IEEE Computer Society, 2013. doi:10.1109/ICSE.2013.6606623.

46 Thanh-Toan Nguyen, Quang-Trung Ta, and Wei-Ngan Chin. Automatic program repair using
formal verification and expression templates. In Verification, Model Checking, and Abstract
Interpretation - 20th International Conference, VMCAI 2019, Proceedings, volume 11388 of
LNCS, pages 70–91. Springer, 2019. doi:10.1007/978-3-030-11245-5_4.

47 Thu-Trang Nguyen, Kien-Tuan Ngo, Son Nguyen, and Hieu Dinh Vo. A variability fault
localization approach for software product lines. IEEE Trans. Software Eng., 48(10):4100–4118,
2022. doi:10.1109/TSE.2021.3113859.

48 Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The strength of
random search on automated program repair. In 36th International Conference on Software
Engineering, ICSE ’14, pages 254–265. ACM, 2014. doi:10.1145/2568225.2568254.

49 Urmas Repinski, Hanno Hantson, Maksim Jenihhin, Jaan Raik, Raimund Ubar, Giuseppe Di
Guglielmo, Graziano Pravadelli, and Franco Fummi. Combining dynamic slicing and mutation
operators for ESL correction. In 17th IEEE European Test Symposium, ETS 2012, pages 1–6.
IEEE Computer Society, 2012. doi:10.1109/ETS.2012.6233020.

50 Bat-Chen Rothenberg and Orna Grumberg. Sound and complete mutation-based program
repair. In FM 2016: Formal Methods - 21st International Symposium, Proceedings, volume
9995 of LNCS, pages 593–611, 2016. doi:10.1007/978-3-319-48989-6_36.

51 Bat-Chen Rothenberg and Orna Grumberg. Must fault localization for program repair. In
Computer Aided Verification - 32nd International Conference, CAV 2020, Proceedings, Part II,
volume 12225 of LNCS, pages 658–680. Springer, 2020. doi:10.1007/978-3-030-53291-8_33.

52 Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013. doi:10.1007/
s10009-012-0249-7.

53 Shin Hwei Tan, Jooyong Yi, Yulis, Sergey Mechtaev, and Abhik Roychoudhury. Codeflaws:
a programming competition benchmark for evaluating automated program repair tools. In
Proceedings of the 39th International Conference on Software Engineering, ICSE 2017 -
Companion Volume, pages 180–182. IEEE Computer Society, 2017. doi:10.1109/ICSE-C.
2017.76.

54 Thomas Thüm, Ina Schaefer, Martin Hentschel, and Sven Apel. Family-based deductive
verification of software product lines. In Generative Programming and Component Engineering,
GPCE’12, pages 11–20. ACM, 2012. doi:10.1145/2371401.2371404.

55 Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven Apel.
Variability-aware static analysis at scale: An empirical study. ACM Trans. Softw. Eng.
Methodol., 27(4):18:1–18:33, 2018. doi:10.1145/3280986.

56 Alexander von Rhein, Thomas Thüm, Ina Schaefer, Jörg Liebig, and Sven Apel. Variability
encoding: From compile-time to load-time variability. J. Log. Algebraic Methods Program.,
85(1):125–145, 2016. doi:10.1016/j.jlamp.2015.06.007.

https://doi.org/10.1145/3461001.3473058
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1007/978-3-030-11245-5_4
https://doi.org/10.1109/TSE.2021.3113859
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1109/ETS.2012.6233020
https://doi.org/10.1007/978-3-319-48989-6_36
https://doi.org/10.1007/978-3-030-53291-8_33
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1109/ICSE-C.2017.76
https://doi.org/10.1109/ICSE-C.2017.76
https://doi.org/10.1145/2371401.2371404
https://doi.org/10.1145/3280986
https://doi.org/10.1016/j.jlamp.2015.06.007

	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Program Families
	3.2 Bounded Program Analysis

	4 Lifted Repair Algorithm
	5 Evaluation
	6 Related Work
	7 Conclusion

