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Abstract
How much performance do VM instruction-pointer (IP) updates cost and how much benefit do we
get from optimizing them away? Two decades ago it had little effect on the hardware of the day, but
on recent hardware the dependence chain of IP updates can become the critical path on processors
with out-of-order execution. In particular, this happens if the VM instructions are light-weight and
the application programs are loop-dominated. The present work presents several ways of reducing
or eliminating the dependence chains from IP updates, either by breaking the dependence chains
with the loop optimization or by reducing the number of IP updates (the c and ci optimizations)
or their latency (the b optimization). Some benchmarks see speedups from these optimizations by
factors > 2 on most recent cores, while other benchmarks and older cores see more modest results,
often in the speedup ranges 1.1–1.3.
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1 Introduction

Interpreters are a popular approach for implementing programming languages. Their benefits
are simplicity of implementation, portability, and fast edit-run cycles. While they cannot
compete in execution performance with JIT compilers or ahead-of-time compilers, a fast
interpreter is not that far away: e.g., with the IP update optimizations of the present work,
Gforth has similar performance to the SwiftForth JIT compiler and to gcc -O0 (see Section 6).

This paper uses Gforth as an example high-performance interpreter. Gforth implements
a virtual machine (VM) and uses several previously published techniques for achieving high
performance (see Section 2), most notably dynamic superinstructions (aka selective inlining)
with replication and stack caching.

At the start of this work, every VM instruction in Gforth performed a VM instruction-
pointer (IP) update [3]. It turns out that these IP updates (both the increments for ordinary
instructions and the loads for taken branches) form a critical dependence path that limits
the execution performance of many programs on modern processors.

We introduce a collection of optimizations for reducing these dependences: The loop
optimization (l) breaks dependency chains in loops (Section 4.1). Optimization c combines
the IP updates of VM instructions that do not need an up-to-date IP (Section 4.2); the
immediate optimization (i) avoids the need for an up-to-date IP for VM instructions with
immediate operands (Section 4.3); The branch optimization (b) optimizes VM branches by
replacing loads with (lower-latency) adds (Section 4.4).

© M. Anton Ertl and Bernd Paysan;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 14; pp. 14:1–14:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anton@mips.complang.tuwien.ac.at
https://www.complang.tuwien.ac.at/anton/
https://orcid.org/0009-0009-3794-4295
https://doi.org/10.4230/LIPIcs.ECOOP.2024.14
https://www.complang.tuwien.ac.at/anton/ip-updates.tar.xz
https://www.complang.tuwien.ac.at/anton/ip-updates.tar.xz
https://git.savannah.gnu.org/cgit/gforth.git
https://archive.softwareheritage.org/swh:1:dir:61eb3b71325060fe2e01f5e819eb0bec959e5bf0;origin=https://git.savannah.gnu.org/git/gforth.git;visit=swh:1:snp:1faec00a6c15a4437d644656cc7a1f6d9cc3b878;anchor=swh:1:rev:9ea3267b29894afeda9b707899aa147c6ccb7af8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 The Performance Effects of Virtual-Machine Instruction Pointer Updates

Section 2 explains the interpreter performance techniques necessary to understand the
present work. Section 3 explains how data dependences influence the performance of modern
processors. Section 4 describes the optimizations and shows an example of their application;
the novel loop (Section 4.1), immediate (Section 4.3), and branch (Section 4.4) optimizations
are among the main contributions of this work. Section 5 describes the measurement setup.
The other main contribution of this work is in the empirical evaluation of the optimizations
(Section 6). Finally, we discuss the applicability to other languages (Section 7), how to get
the source code (Section 8) and related work (Section 9).

1.1 Why Gforth? Is this paper relevant for other languages?

You may wonder why we use Gforth and whether our results are relevant for other languages
and their VMs.

We chose Gforth in the present work because it already implemented a number of
techniques for increasing performance, in particular dynamic superinstructions and stack
caching. As a result, Gforth’s VM executes so few real-machine instructions per VM
instruction that the dependences formed from IP updates become a bottleneck on certain
programs.

We think that our IP update optimizations are also applicable to other VMs, but it
depends on the VM, its implementation, and the characteristics of programs that are run on
it how big the benefits will be. For a longer discussion, see Section 7.

2 Interpreter performance techniques

This section provides an overview of the performance techniques as far as necessary for
understanding the IP update optimization, with literature references.

2.1 Virtual machines

Most interpreted programming language implementations compile the source code with a
simple compiler into an intermediate code that represents the source program as a sequence
of instructions of a virtual machine (VM) that is designed as both an easy target for the
compiler and for easy (and ideally efficient) interpreted implementation of this code. Some
well-known virtual machines, such as the Java Virtual Machine [15] and WebAssembly [12]
also serve as program interchange formats, but in the present paper we focus on the role of
virtual machines for execution in fast interpreters.

For our running example, we use Gforth’s VM. Gforth is an implementation of the
programming language Forth, a low-level (address arithmetic etc.) stack-based programming
language.

Our running example is the inner loop of the siev benchmark:

do
0 i c!
dup +loop

We look only at the body of the loop, i.e., without the do. In Gforth’s VM, the body
looks as follows:



M. A. Ertl and B. Paysan 14:3

loophead: lit
0
i
c!
dup
(+loop)
loophead

Each line occupies one machine word, and slanted blue lines are immediate operands of
the preceding VM instruction.

An interpreter for VM code keeps a pointer to the current VM instruction (the IP) around
and uses it for finding immediate operands of the VM instruction and for finding the next
VM instruction. In case of a VM-level direct branch instruction like (+loop), the immediate
operand is the branch target and if the branch is taken, the IP is set to the value of the
immediate operand.

That’s all you need to understand the optimization in the paper in the abstract, but to
round out the picture, the rest of this section describes what these VM instructions do.

This Forth code corresponds to the following C code:

do {
*p = 0;
p += prime;

} while (p<pend)

Gforth’s VM is stack-based and is relatively close to the Forth source code, with the
following exceptions: Gforth compiles the number 0 to the VM instruction lit with the
immediate operand 0, and it compiles +loop to the VM instruction (+loop) with an
immediate operand: the address of the VM instruction that (+loop) jumps to unless it exits
the loop.

lit pushes its immediate operand on the data stack (or stack, for short). i pushes the
current counter of the do...+loop counted loop on the stack (in this loop the counter contains
the address corresponding to p in the C fragment). c! (pronounced “c-store”) stores the
second item on the stack to the byte pointed to by the address on the top-of-stack (TOS),
popping both stack items. dup pushes another copy of the current top-of-stack value on the
stack; this value corresponds to prime in the C program.

(+loop) pops the top-of-stack and adds it to the loop counter and checks for loop
termination.1 If another iteration is merited, (+loop) performs a VM-level jump to loophead.

2.2 Switch dispatch

A common way to implement an interpreter in C is to use a big switch statement along the
lines of:

1 As you will see in the assembly code later, this check is more complex than one would expect from the C
code. The reason is that +loop is specified to support circular arithmetic and both positive and negative
increments, which complicates the termination condition. For details see https://forth-standard.
org/standard/core/PlusLOOP.
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for (;;) {
switch (*ip) {

case dup: dsp[0] = tos; dsp--; ip++; break;
case lit: dsp[0] = tos; dsp--; tos = ip[1]; ip+=2; break;
....

}
}

In this example the data stack is represented by having the top-of-stack in a local variable
tos, and the remainder of the data stack is in memory, and the local variable dsp points to
where the top-of-stack would reside if it were in memory. IP is also kept in a local variable
ip. We will use the same names for registers in assembly code shown below.

This scheme has a relatively high overhead of getting from one VM instruction imple-
mentation to the next. For lit with switch dispatch gcc -O2 produces the following code
for RISC-V (the destination register (if any) is leftmost):

.L2: #switch code
ld a4,0(ip) # a4=*ip
slli a5,a4,2 # a5=a4*4 #for indexing
add a5,a6,a5 # a5=a6+a5 #table start in a6
bgtu a4,a7,.L17 # if a4>a7 goto default #bounds check
lw a2,0(a5) # a2 = *a5 #load from table
jr a2 # indirect branch to a2

.L6: #lit code
sd tos,0(dsp) # dsp[0] = tos
ld tos,8(ip) # tos = ip[1]
addi dsp,dsp,-8 # dsp--
addi ip,ip,16 # ip += 2
j .L2 # back to switch code

Figure 1 shows the data structures involved in switch dispatch. The VM instructions
are represented as integers that are used as indexes into the switch table. We use 8-byte
VM-code slots for the code above.

The payload consists of only 3 RISC-V instructions in this case, whereas the dispatch
overhead is 8 instructions.

Gforth has never implemented switch dispatch, and instead went directly for threaded code.

2.3 Threaded code
Threaded code [1] reduces the dispatch overhead by representing each VM instruction directly
as the address of the machine code that implements it. This means that each instruction
occupies one machine word (8 bytes on a 64-bit machine) and immediate operands are usually
represented by one or more machine words. This concept results in the following code for
lit:

sd tos,0(dsp) # dsp[0] = tos
ld tos,0(ip) # tos = ip[0]
addi dsp,dsp,-8 # dsp--
addi ip,ip,16 # ip += 2
ld a4,-8(ip) # a4 = ip[-1] #address of next VM inst
jr a4 # jump to next VM inst
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lit
0
i
c!
dup
(+loop)
loophead

VM code machine code

i implementation

lit implementation
(+loop) implementation

c! implementation
dup implementation

switch table

i addr

lit addr
(+loop) addr

c! addr
dup addr

switch dispatch

threaded code

lit addr
0
i addr
c! addr
dup addr
(+loop) addr
loophead

VM code machine code

i implementation

lit implementation
(+loop) implementation

c! implementation
dup implementation

Figure 1 Switch dispatch vs. threaded code.

The dispatch code is inlined here and consists of 3 RISC-V instructions.
Figure 1 shows how the two schemes get from the VM code to the corresponding machine

code. In both schemes ip points to the VM code, and immediate operands are accessed
through ip. VM control flow is performed by setting ip to something other than the next
VM instruction.

One practical consideration is how to implement threaded code in an architecture inde-
pendent language. Fortunately it is possible by using the labels-as-value extension of GNU
C, which has been implemented by at least gcc, clang, tcc, and icc.

2.4 Selective inlining and dynamic superinstructions
One can eliminate more of the dispatch: While generating VM code, copy (real-)machine code
snippets from the interpreter to a separate memory area, thus concatenating these snippets
(Fig. 2); the threaded-code addresses then point to this newly generated real-machine code
rather than the originals as in normal threaded code.

This technique has first been outlined as memcpy method by Rossi and Sivalingham [20],
and later explored in depth as selective inlining by Piumarta and Riccardi [17]. Ertl and
Gregg combined it with replication [4] for better branch prediction. They call the result of
the concatenation dynamic superinstructions, because, like static superinstructions [18, 8, 2]
they combine a sequence of n VM instructions with n dispatches into something with only
one dispatch.

In our example (Fig. 2), each VM instruction except the last one ((+loop), which is a
VM-level branch) just continues with the next one, so the machine code of the next one can
be concatenated to the machine code of the dynamic superinstruction. The (+loop) may

ECOOP 2024
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lit addr
0
i addr
c! addr
dup addr
(+loop) addr
loophead

VM code

VM instruction implementations

static machine code

i payload; IP update
rest of threaded-code dispatch

I_lit: sd   tos,0(dsp)
       ld   tos,0(ip)
       addi dsp,dsp,-8
       addi ip,ip,16
K_lit: ld   a4,-8(ip)
       jr   a4
J_Lit:

(+loop) pyload; IP update
rest of threaded-code dispatch

c! payload; IP update
rest of threaded-code dispatch

dup implementation; IP update
rest of threaded-code dispatch

sd   tos,0(dsp)
ld   tos,0(ip)
addi dsp,dsp,-8
addi ip,ip,16

i payload; IP update
c! payload; IP update
dup implementation; IP update
(+loop) pyload; IP update
rest of threaded-code dispatch

copied machine code

Figure 2 Concatenating machine-code snippets to further reduce the dispatch overhead.

set ip to something other than the next instruction, so for (+loop) and other control-flow
VM instructions the whole code including the rest of a threaded-code dispatch is appended
in order for the control-flow change to take effect at run-time; such an instruction therefore
ends a dynamic superinstruction.

Gforth copies the machine code snippets at the same time as when it generates VM code
for newly compiled source code. Gforth does not save the machine code in its images, so its
image loader copies the machine code snippets for the VM code it loads.

This technique has provided a big performance boost to Gforth across many different
CPUs, typically by a factor of 2 over threaded code (see Fig. 10). One may balk at the
prospect of directly manipulating machine code, but the advantage of starting with an
interpreter is that Gforth can always fall back to threaded code if conditions seem adverse
(and this normally works automatically).

One may wonder if the result is not already a JIT compiler, and in certain respects
it is. But for the language implementor it is an extension of a threaded-code interpreter:
Each implementation of a VM instruction just gets labels before and after the “rest of
threaded-code dispatch” part, and when a VM instruction is generated, it also copies the
memory containing the machine code for the VM instruction (using the labels to know the
boundaries), and lets the threaded-code word point to the copy (instead of the original).
The only amount of machine-specific code are a few lines to synchronize the I-cache to the
D-cache, and GNU C provides __builtin___clear_cache for that purpose. And when the
conditions for dynamic code generation are not met, the system just falls back to plain
threaded code, overall or on a per-VM-instruction basis (e.g., for code that contains a relative
reference to an address outside the code snippet at hand). By contrast, a typical JIT compiler
needs much more machine-specific work.

2.5 Multi-representation stack caching
The Gforth baseline also uses an optimization called multi-representation stack caching. This
optimization reduces only the machine instructions in the payload, so you only need to read
this section if you want to understand the payload of our running example, too.
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s4
s5
s6

regmem

dsp

representation 3

s5
s6

regmem

dsp

representation 2

s6

regmem

dsp

representation 1
regmem

dsp

representation 0

TOS
2nd
3rd

TOS
2nd

TOS
2nd
3rd
4th

role

TOS
2nd
3rd
4th

rolerolerole

Figure 3 Four data-stack representations used by Gforth on RISC-V.

Figure 3 shows different representations of the data stack. Representation 0 keeps 0 stack
items in registers, i.e., all stack items in memory. A representation with all stack items
in memory is often seen in the literature (usually with the stack pointer pointing to the
top-of-stack, but that is just a difference in the offsets used for the memory accesses).

The examples shown earlier use representation 1, and this is also used by Gforth when it
falls back to threaded code. The advantage of this representation can be seen for dup which
does one load and two stores with representation 0, but just one store with representation 1.

By switching between representations Gforth further reduces the stack handling effort.
E.g., our running example starts in representation 1 (Gforth always uses this at the start of
a basic block) with the VM instruction lit. By choosing the lit implementation that ends
in representation 2 (i.e., lit 1 → 2), the payload of lit in this case is reduced to

ld s5,8(ip)

The old top-of-stack stays in s6 (and becomes the 2nd stack element), and the new
top-of-stack is pushed by setting s5 (the new top-of-stack) to the immediate operand.

This eliminates a memory access to the data stack as well as an update of dsp. If you
take a closer look at Fig. 4, you do not find any memory access to the data stack nor any
data-stack pointer update, so in this case data-stack caching works perfectly.

Ertl and Gregg [5, 7] discuss multi-representation stack caching in more detail.

3 Understanding performance

This section describes how program characteristics influence the performance on processors
with out-of-order (OoO) execution, and in particular, it discusses the role of instruction pointer
updates in interpreters with dynamic superinstructions. OoO processors have dominated
general-purpose computers in this century, and are now advancing towards smaller systems.
E.g., the Raspberry Pi switched to OoO cores with the Raspberry Pi 4 in 2019 and the
Compute Module 4 in 2020.

3.1 ... on modern CPUs ...
Starting from an empty pipeline, the front end of an OoO processor fetches and decodes
instructions as directed by the branch predictor, possibly running far ahead of execution.
An instruction is then executed as soon as all its inputs are available and an appropriate
functional unit is available.

ECOOP 2024
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If a branch is mispredicted, fetch, decode, and execution at first continue along the
(mis-)predicted path, but the results are not committed. When the correct direction or
branch target is determined by executing the appropriate conditional or indirect branch
instruction, the front end is redirected to fetch, decode and eventually execute from the
correct path.

This description indicates the ways in which program characteristics influence performance:
As long as mispredictions are rare, if there are enough independent instructions, execution

will be limited by the resources, either by the program needing too many of a particular
functional unit (e.g., a matrix multiply program will exercise load and store units and the
FP multiply-add a lot), or by the width of the decoder and/or the retirement unit.

On the other hand, if there are lots of dependences between instructions and the processor
offers enough resources, the dependences will determine the performance: an instruction
that depends on another instruction i on the critical dependence path will wait in the
processors’s buffers until i produces a result. After prefetching for a while, all these not-yet
ready instructions will fill the processor’s buffers and the processor’s front end has to wait
until more buffers become ready by finishing an instruction on the critical path.

In the branch misprediction case, the misprediction penalty is influenced by the kind
of dependences between instructions: If there is a short dependence path to the predicted
branch instruction, the misprediction can be resolved early. However, if the mispredicted
branch depends on an instruction in the critical dependence path, the misprediction will
not be discovered until the instructions leading to the branch have been executed; only
then can the correct path be fetched and decoded, so such a misprediction incurs a bigger
misprediction penalty. By contrast, in case of a correct prediction, the long latency until the
prediction is confirmed does not hurt, except for occupying some buffers for longer.

3.2 ... in fast interpreters

In an interpreter, there is the resource consumption and dependences inherent in the
interpreted program (i.e., also present if the program is compiled to real-machine code), but
there is also the overhead of the interpreter:

In particular, every VM interpreter updates the VM instruction pointer (IP), in order
to access immediate VM data through it, and to access the next VM instruction (or next
dynamic superinstruction). In straight-line code, this results in one addition per executed
VM instruction, with a latency of one cycle on most processors. For a VM-level absolute
branch (as used in Gforth), the new VM instruction pointer has to be loaded, with a latency
of 3–5 cycles on recent OoO processors; if the VM-level branch is relative, the loaded value
has to be added to the instruction pointer, costing an additional cycle.

A VM-level return instruction breaks the IP dependence chain of the callee, because it
loads the new VM instruction pointer from the saved return address. This continues the
dependence chain of the caller, but the callee’s chain of IP updates ends with the return.

VM interpreters also have other overheads: A stack-based VM like that of Gforth has
dependence chains through stack-pointer updates, and these dependence chains are not
broken by returns. Moreover, they keep most stack items in memory with the resulting
store-to-load latency: 4-7 cycles in many processors, but 0 cycles in several recent processors
like Zen 3 and Tiger Lake.2 However, stack caching (see Section 2.5) reduces these overheads
substantially.

2 https://www.complang.tuwien.ac.at/anton/memdep/

https://www.complang.tuwien.ac.at/anton/memdep/
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For a register-based VM, the VM register accesses are usually implemented through
real-machine memory accesses, which increases the resource consumption substantially. On
older processors there is also the latency cost of store-to-load forwarding, but the significance
of this cost depends on the dependence patterns of the interpreted program.

Previous work did not consider VM instruction-pointer updates to have much effect. Ertl
and Gregg [4] wrote:

One thing that we have not implemented is eliminating the increments of the VM
instruction pointers along with the rest of the instruction dispatch in dynamic su-
perinstructions. However, by using static superinstructions in addition dynamic
superinstructions and replication we also reduce these increments (in addition to
other optimizations); looking at the results from that, eliminating only the increments
probably does not have much effect.

For a long time our thinking was that other dependencies would dominate over VM
instruction-pointer updates, and that, with processors becoming wider (being able to execute
more instructions per cycle), instruction-pointer updates would become even less relevant.
However, for a number of benchmarks this is wrong (see Section 6).

4 Instruction-pointer update optimization

This section discusses four mostly independent optimizations. We implemented these op-
timizations in Gforth, and discuss them in this context, but they can also be applied to
implementations of other languages.

4.1 Loops
This optimization breaks the IP dependence chains on loop-back edges. In typical VM
instruction sets, the loop-back branch takes the target address as an immediate operand (e.g.,
in Fig. 4 the immediate operand loophead following the VM branch instruction (+loop)).

With the loop optimization, the loop-back address is stored on the return stack on
entering the loop, and the loop-back branch then takes its address from there (the bold
green instruction in Fig. 4). Because it does not need to access the VM instruction pointer
to do that, this breaks the dependence chain.

In Forth the return stack is a stack that contains return addresses and counted-loop
parameters. In general, the loop-back address can be stored on any stack or in a VM register;
the important part for the loop optimization is that this address must be readable by the
loop-back instruction without requiring an IP access, so one cannot use a VM register whose
number is given as immediate operand.

Unfortunately, the design of Forth makes it difficult to apply this optimization to general
loops, so we only apply it to counted loops in the present work.

However, if you are designing a virtual machine for a programming language, it may
be worthwhile to design it in a way that makes it possible to store the loop-back address
somewhere on entry to the loop, and to load it from there on the loop-back branch without
accessing the IP.

The loop optimization has very little effect on the instruction count and other dependences,
and can therefore be used to see the performance effect of breaking the IP dependence chains
independent of, e.g., the effect of reducing the number of executed instructions. In Fig. 9 we
see speedups by a factor of 2 on some benchmarks, showing that the IP-update dependence
chain really is the bottleneck for these benchmarks.

ECOOP 2024
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VM code unoptimized l c ci cib
lit 1 → 2 addi ip,ip,16 addi ip,ip,16 addi ip,ip,16
0 ld s5,-8(ip) ld s5,-8(ip) ld s5,-8(ip) ld s5,8(ip) ld s5,8(ip)
i 2 → 3 addi ip,ip,8 addi ip,ip,8

ld s4,0(rp) ld s4,0(rp) ld s4,0(rp) ld s4,0(rp) ld s4,0(rp)
c! 3 → 1 addi ip,ip,8 addi ip,ip,8

sb s5,0(s4) sb s5,0(s4) sb s5,0(s4) sb s5,0(s4) sb s5,0(s4)
dup 1 → 2 addi ip,ip,8 addi ip,ip,8

mv s5,s6 mv s5,s6 mv s5,s6 mv s5,s6 mv s5,s6
(+loop) 2 → 1 addi ip,ip,16 addi ip,ip,8 addi ip,ip,40 addi ip,ip,56
loophead ld a5,0(rp) ld a5,0(rp) ld a5,0(rp) ld a5,0(rp) ld a5,0(rp)

ld a4,8(rp) ld a4,8(rp) ld a4,8(rp) ld a4,8(rp) ld a4,8(rp)
ld a2,-8(ip) ld a2,-8(ip) ld a2,-8(ip)
add a3,s5,a5 add a3,s5,a5 add a3,s5,a5 add a3,s5,a5 add a3,s5,a5
sub a4,a5,a4 sub a4,a5,a4 sub a4,a5,a4 sub a4,a5,a4 sub a4,a5,a4
add a4,s5,a5 add a4,s5,a5 add a4,s5,a5 add a4,s5,a5 add a4,s5,a5
xor a5,a4,a5 xor a5,a4,a5 xor a5,a4,a5 xor a5,a4,a5 xor a5,a4,a5
xor a5,s5,a5 xor a5,s5,a5 xor a5,s5,a5 xor a5,s5,a5 xor a5,s5,a5
and a4,a5,a4 and a4,a5,a4 and a4,a5,a4 and a4,a5,a4 and a4,a5,a4
sd a3,0(rp) blt a5,zero,x sd a3,0(rp) sd a3,0(rp) sd a3,0(rp)
blt a5,zero,x ld ip,16(rp) blt a5,zero,x blt a5,zero,x blt a5,zero,x
ld a5,0(a2) sd a3,0(rp) ld a5,0(a2) ld a5,0(a2) ld a5,0(ip)
mv ip,a2 ld a5,0(ip) mv ip,a2 mv ip,a2
jr a5 jr a5 jr a5 jr a5 jr a5
x: x: x: x: x:

Figure 4 The inner loop of the benchmark siev in Gforth’s VM code, and the corresponding
RISC-V code produced by Gforth without optimization and with various IP-update optimizations:
l optimizes loops, c combines IP updates, i optimizes immediate operands, b optimizes branches.
1 → 2 etc. indicates a stack representation change (see Section 2.5). For instructions with destination
registers, the destination is leftmost. The instruction that starts a new IP dependence chain (in the
loop) is bold green. Instructions that continue IP update dependence chains are slanted red. Some
register names have been changed for ease of understanding: ip is the VM instruction pointer, rp is
the return-stack pointer. s6, s5, s4 contain stack elements (see Fig. 3).

While it is possible to combine this optimization with the others, we think that the
combination of the others is effective enough in reducing the IP dependence chain, and that
adding the loop optimization would not help once the other optimizations are performed.
However, we consider the loop optimization to be an alternative that requires less effort.

You can see the result in column l of Fig. 4. The decisive difference is that the ld a2,-8(ip)
in (+loop) in unoptimized, c, ci loads the branch target from VM code using the IP, while
the ld ip,16(rp) loads the branch target from the return stack (using rp).

We implemented a prototype of this optimization in Gforth by adding 89 lines.

4.2 Combining instruction-pointer updates
There are VM instructions where the payload of the implementation does not read the IP
and therefore does not need an up-to-date IP. In our running example i, c! and dup do not
need an up-to-date IP.
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Therefore the IP update can be left away. When there is finally a reason for an up-to-date
IP, all the updates can be combined into one addition of a larger constant.

Columns unoptimized3 and c of Fig. 4 illustrate this. In unoptimized every VM instruction
has its own IP update; in c, lit has an IP update, because it loads its immediate operand 0
in the VM code through ip. The next three VM instructions i, c! and dup don’t need an
up-to-date IP, so c eliminates their IP updates. Finally, (+loop) needs an up-to-date IP in
order to load its immediate operand loophead (the loop-back address) from the VM code,
so Gforth’s compiler inserts an IP update by 40 covering all VM instructions i...(+loop)
(inclusive), the same as the sum of the corresponding IP updates in unoptimized.

The optimization itself is trivial: The code generator just keeps track of where IP actually
points to, and when an up-to-date IP is needed, it inserts the appropriate update.

One not quite trivial part, however, is: When is an up-to-date IP needed?

Superblock end: The next VM instruction is the target of a VM jump. Because the IP may
be used afterwards, we have to synchronize the IPs coming from different paths at this
point, and we do it by letting it point to the first VM instruction in the new superblock.

Calls: VM instructions like call and execute (an indirect call) also require an up-to-date
IP: calls save the IP (which points to the next instruction at that point) as return address,
and after returning execution continues at that address. The routine invoked by execute
finishes with a threaded-code dispatch, which needs an up-to-date IP.

Non-relocatable VM instruction: When the machine code for a VM instruction is not
relocatable (typically because there is a call to a C function in the machine code), this
code cannot be used in a dynamic superinstruction. Instead, this code is called through a
threaded-code dispatch (which uses IP), and this code then updates the IP and makes
another threaded-code dispatch for continuing execution after this VM instruction.

Immediate operands: The IP is used when accessing immediate operands of VM instructions.

One particular case of this optimization is VM instructions like Gforth’s ;s which returns
from a definition. It does not need an up-to-date IP beforehand, and it branches elsewhere
(returning to the caller at the VM level), so there is no need to update the IP afterwards,
and we suppress such an update.

The other not quite trivial part is how to generate the machine code in the dynamic
superinstruction framework for which the actual machine code that is copied around is just
an opaque code snippet.

The first question is how to separate the IP update that is part of every VM instruction
implementation (as part of the threaded-code dispatch) so that we can copy the machine
code without the IP update.

Because the IP needs to be up-to-date in front of some VM instructions, we put the
IP update at the start of each VM-instruction implementation, resulting in the following
template:

I_inst:
update ip

L_inst:
non-dispatch code

K_inst:
rest of dispatch

J_inst:

3 This column shows the code for a Gforth version that includes ip-update optimizations but has them
disabled; this means that it uses the same register allocation and instruction schedule as the various
optimized variants, which makes it easy to compare with the other columns.
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Figure 5 Proportion of IP updates or lit 0->1 offsets with distances less than a given number
of machine words in Gforth’s image (static counts).

If the resulting code is relocatable and code for the VM instruction inst should be
generated, the code generator first generates an appropriate IP update if necessary (but
normally does not use the update between I_inst and L_inst for that). Then it copies the
code between L_inst and K_inst.

The code generator needs code snippets for different amounts of IP updating, because
it cannot just patch a constant into a template for IP-updating (the code generator does
not know anything about the internal structure of the machine code). Instead, we added
code snippets for IP updates for a range of values (by 1–23 machine words) to the C source
code of Gforth, and the code generator selects the right one, or (for IP updates > 23 words)
generates a sequence of IP updates.

Figure 5 shows that if we have IP update code snippets for updates by 1–6 machine
words, 99% of the cases statically occuring in the Gforth image can be performed with one
instruction, so for Gforth limiting the IP upates to this range would be good enough as long
as VM instructions with immediate operands (Section 4.3) are not optimized as well.

These data are somewhat specific to the Gforth VM, so if you want to minimize the
number of IP update code snippets, you should do your own measurements. As Fig. 5 shows,
a major reason for IP updates is VM instructions with immediate operands. VMs that use
local-variable accesses more than Gforth and specify the local with an immediate operand
will have shorter sequences between IP updates, which makes c alone less beneficial, but
means that even fewer IP update code snippets cover nearly all occuring distances with one
IP update.

4.3 Immediate operands
VM instructions with immediate operands are relatively frequent. We can eliminate this
reason for requiring an up-to-date IP in most cases: We introduce additional variants of
the most frequent VM instructions with immediate operands.4 These additional variants
access their immediate operand at an offset (1–23 machine words in our experimental
implementation) from where their base variant accesses the immediate operand, thus allowing
the actual IP to point 1–23 machine words in front of to up-to-date IP.

4 lit, call, ?branch, lit@, branch, (loop), lit-perform, lit+, does-xt
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When the code generator has to compile such a VM instruction, if the difference between
the actual and the up-to-date IP is within the offset range of the variants, the code generator
copies the code of the appropriate variant, and no IP update needs to be generated.

In Fig. 4, column ci shows how combining IP updates is enhanced by this immediate-
operand optimization: The first VM instruction is lit, and in c it needs an IP update; in ci,
a variant of lit that accesses its immediate operand at ip+8 instead of ip-8 (an offset of 2
machine words) is used, so there is no need to update IP.

However, (+loop) is a VM instruction that does not have such variants, so the code
generator updates the IP at the start of (+loop).

While it is not obvious from this example, this extension contributes a lot to the
effectiveness of combining IP updates: In the Gforth image, the number of static IP updates
is reduced by a factor of 5; the dynamic reduction in our benchmarks usually a factor < 2
compared to the reduction from c alone (see Fig. 8).

Figure 5 shows that IP updates by 1–16 machine words are sufficient for performing
(without resorting to sequences of adds) 99% of the remaining IP updates statically occuring
in the Gforth image. It also shows that for the most frequent VM instruction with a literal,
lit in its stack caching variant 0 → 1, 99% of the IP offsets are in the range 2–13 (machine
words).

The relevance of these numbers is as follows: The compilation time of the VM imple-
mentation increases with the number of VM instruction implementation variants, so we only
want to add additional variants when a benefit is expected. This is particularly relevant
for instructions with immediate operands, because there are a number of them, and stack
caching multiplies the numbers.

E.g., we selected only 9 VM instructions with immediate operands; stack caching increases
this to 15 variants, and having 24 subvariants with different offsets for each variant results in
a total of 360 implementations of these 9 VM instructions. We did not use additional variants
for other VM instructions with immediate operands (e.g., (+loop)) to avoid increasing the
compilation time of the interpreter too much. For the same budget of 360 implementations,
it might have been a little better to use a smaller offset range and to have offset-variants of
more VM instructions.

Another way to deal with this problem is to eliminate immediate operands by introducing
versions of VM instructions for specific immediate operands. E.g., Gforth has a general VM
instruction @local# with an immediate operand n for pushing the value of local variable n

onto the stack, but it also has @local0, which fetches the local variable 0 without needing an
immediate operand. To increase the benefits from IP update optimization, we added more
such variants to Gforth.5

These optimizations also shift the balance in VM design towards splitting one VM
instruction into several, especially if it means that an unoptimized VM instruction with a
literal operand can be replaced with an optimized one. E.g., we have replaced the general
case of @local# n (i.e., cases not covered by specialized variants like @local0) in Gforth by
the sequence lit n; @localn where @localn takes n from a register representing the top of
the data stack (pushed there by lit). The resulting code is often better than for @local#:

5 In the mainline, not in the variants used for the empirical results of the present work. The benchmarks
used for the present work don’t use local variables much, so we don’t expect that this would make a
significant difference.
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unsplit split
@local# 0 → 1 addi ip,ip,88 lit 0 → 1
64 ld a5,-8(ip) 64 ld s6,80(ip)

add a5,a5,lp @localn 1 → 1 add a5,s6,lp
ld s6,0(a5) ld s6,0(a5)

In this code lp is a register containing Gforth’s locals pointer.

4.4 Branches
When executing VM instructions, every taken VM branch that loads the target address from
the VM code (such as (+loop) in Fig. 4) performs an IP-dependent load, and thus extends
the IP dependence chain with the load latency (3–5 cycles on modern processors). Even with
the ci optimizations, these loads can mean that IP updates are still the critical dependence
path in branch-heavy code like the siev benchmark.

However, branches are often to nearby targets, which inspires the following idea: If
the target is nearby, set the IP to the target, and then execute a branch-to-IP variant of
the branch; i.e., if the branch is taken, it just needs to perform a threaded-code dispatch
to branch to where the IP currently points to. If the branch is not taken, execution just
continues after the branch, taking the changed IP into account.

To implement this, we have extended the code snippets for updating the IP to increment
the IP by -24–23 machine words. Only one branch-to-IP variant is needed for each branch, so
we implemented this additional variant for all branches where the ordinary variant just takes
the target address as immediate operand; there are branches in Gforth with an additional
immediate operand, and we cannot apply this optimization to those branches; fortunately,
they are rarely used.

You can see an example in column cib in Fig. 4. Thanks to the ci part of the optimization,
there is no IP update for the lit, so when Gforth’s code generator reaches the (+loop), the
actual IP is still at the start of the loop. The code generator determines that the target is
nearby, and proceeds to insert an IP update for setting IP to the branch target. Because
the actual IP already points to the target location, the IP update would be by 0 bytes, and
no code is generated for that, an ideal outcome; in the general case you would see one or
more IP update instructions at this point. Next, the code generator appends the code of
the (+loop) variant for the branch optimization; note that this code does not contain the
instructions ld a2,-8(ip) and mv ip,a2 for modifying the IP; it expects that the IP already
contains the right value for taking the branch.

In our experiments, we considered the target to be nearby, if it can be reached with one
IP update for conditional forward branches, or if it can be reached with three IP updates for
unconditional branches and conditional backwards branches. This assumes that backwards
branches are usually taken, and also takes into consideration that on the fall-through path
IP update for the branch might require a followup correction.

We did this for the following reasons: For unconditional branches, three IP updates have
a smaller or the same latency as a load. In case of conditional branches, a backwards branch
is a loop branch and therefore probably taken.

For the conditional forward branch, a classical rule-of-thumb says that not-taken is more
likely. If we use the original branch instruction instead of the branch-to-IP variant, the
not-taken path may work without IP update; with the branch-to-IP variant, we incur the IP
update for setting the target in either case, and in the not-taken case we may need another
IP update because of an instruction with an immediate operand in the code before the
branch target. One could reduce the latter cost by introducing variants of instructions with
immediate operands with negative offsets, but that also has its costs.
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Another idea that we have not implemented (yet) is to have IP update variants with
larger granularity. E.g. have IP update variants for −16, −15, −14, ..., 14, 15 machine
words and then −272, ..., −80, −48, 47, 79, 111, ..., 271 machine words. This would allow
to compose IP updates by −288...286 machine words by concatenating two code snippets
(typically with one instruction each) using only 47 IP-update variants (the same number
currently used in Gforth).

We do not present empirical data for branch distances, because they depend strongly on
the programming language usage (large or small routines), the VM design (e.g, already the
splitting of VM instructions discussed in Section 4.3 changes the distances), and on compiler
features such as tail call optimization, inlining or jump-to-jump optimization. So you will
have to do your own measurements to see the distribution of distances for your VM.

For Gforth, Fig. 9 shows speedups from cb over c or from cib over ci on most benchmarks
(exceptions: brainless, cd16sim, sha512), so even the −24...23 machine-word range of IP-
update variants provides some benefit for this VM.

We implemented cib in Gforth by inserting 864 lines and deleting 316 lines.

5 Evaluation setup

5.1 Systems

We present measurements for the versions described in Section 4. As baseline we use a
Gforth version without any IP-update optimization work. We branched a variant from that
that contains only the loop optimization, and a variant that contains all new optimizations
developed in the present work, selectable individually (however, the loop optimization does
not work with cib at the moment). The Gforth variants we measured are:

baseline The Gforth version we started from. This is the numerator in the factors shown in
the speedup and instruction factor graphs. The variants/system for the specific bar is
the denominator.

unoptimized The version that contains all optimizations developed in the present work,
but with the optimizations turned off. While in the baseline the IP update of a VM
instruction is anywhere in its code, the IP update is at the start in unoptimized (so the
IP-update optimizations can eliminate it or replace it). We show this variant in some
figures to see whether the code changes had some additional effect (and to isolate this
effect, if any).

baseline+loop opt This variant adds VM instruction variants for the loop optimization (see
Section 4.1) and uses these for counted loops instead of the variant that loads the branch
target from the VM code.

unopt+loop opt This uses the same executable as the unoptimized variant, but for counted
loops it uses the VM instructions that perform the loop optimization.

c: combine IP updates This uses the same executable as unoptimized, but enables combining
IP updates (Section 4.2).

ci: c+immediate opt Like c, but also enables the optimization of VM instructions with
immediate operands (Section 4.3).

cb: c+branch opt Like c, but also enables the optimization of short VM branches (Sec-
tion 4.2).

cib: ci+branch opt Like ci, but also enables the optimization of short VM branches.

ECOOP 2024
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Program Author Description Lines Characteristics
bench-gc Anton Ertl Garbage Collector 1155 calls
brainless David Kuehling Chess 3648 calls, app
cd16sim Brad Eckert CPU emulator 937 calls, app
fcp Ian Osgood Chess 2046 calls, app
lexex Gerry Jackson Scanner Generator 3655 calls, app
siev Gilbreath/Paysan Count primes 25 counted loops
bubble Hennessy/Fraeman Sort 74 counted loops, cond. br.
matrix Hennessy/Fraeman Integer matrix multiply 57 counted loops
fib Anton Ertl Recursion 14 calls, cond. branch
fft-bench Bernd Paysan Fast Fourier transform 106 calls in counted loop
pentomino Bruce Hoyt Puzzle 516 conditional branches
sha512 Marcel Hendrix Cryptography 538 counted loops, huge body

Figure 6 Benchmark programs used.

Evaluating b alone would also have been interesting, but we left it away for time and
space reasons. However, you can see the effect of b by comparing the results of c with cb
and of ci with cib.

In addition, for Fig. 10 we compare with the following systems/compilers.

PFE is an interpreted Forth system written in C that uses one C function per VM instruction
implementation. PFE is designed to rely on explicit register allocation (a GCC extension)
for performance, but unfortunately, for AMD64 no explicit register definitions have been
added yet. We use PFE-0.33.71.

Gforth threaded code only This is the baseline Gforth with the option --no-dynamic, which
means that it falls back to using plain threaded code (Section 2.3); this option also disables
stack caching.

SwiftForth, VFX Forth Two commercial Forth systems with JIT compilers. We measured
SwiftForth x64-Linux 4.0.0-RC87 and VFX Forth 64 5.43.

gcc-12 Various optimization options for GCC 12.2. Manually written C code for four of
the benchmarks is available and was used for generating these results. The C programs
were linked statically so that the binaries could also run on machines with older glibc
implementations. For gcc the results do not include the compile time (unlike for the
Forth systems).

We compiled the three Gforth branches with gcc-12.2 on Debian 12 for AMD64 and with
gcc-10.2 on Debian 11 on ARM A64 and statically linked them so they would run on the
other platforms we used. All variants use stack caching with 0–3 registers.

5.2 Benchmarks
We use the benchmarks shown in Fig. 6. The first five are from the appbench suite of Forth
benchmarks6; they are substantial programs and therefore are probably more representative
of significant Forth applications and idiomatic Forth usage than the other benchmarks.

The next five are small benchmarks that come with Gforth: siev is based on the Byte
Sieve by Gilbreath, but we use Bernd Paysan’s Forth version and Al Aburto’s C version.

6 https://www.complang.tuwien.ac.at/forth/appbench-1.3.zip

https://www.complang.tuwien.ac.at/forth/appbench-1.3.zip
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µArchitecture Architecture Family CPU year
K8 AMD64 AMD P Athlon X2 4600+ 2005
Zen3 AMD64 AMD P Ryzen 7 5800X 2021
Penryn AMD64 Intel P Xeon E5460 2007
Nehalem AMD64 Intel P Xeon X3460 2009
Sandy Bridge AMD64 Intel P Xeon E3-1220 2011
Haswell AMD64 Intel P Core i7-4790K 2014
Skylake AMD64 Intel P Core i5-6600K 2015
Rocket Lake AMD64 Intel P Xeon W-1370P 2021
Tiger Lake AMD64 Intel P Core i5-1135G7 2021
Golden Cove AMD64 Intel P Core i3-1315U 2023
Silvermont AMD64 Intel E Celeron J1900 2013
Goldmont AMD64 Intel E Celeron J3455 2016
Goldmont+ AMD64 Intel E Celeron J4105 2017
Tremont AMD64 Intel E Celeron N4500 2021
Gracemont AMD64 Intel E Core i3-1315U 2023
Firestorm ARM A64 Apple P M1 2020

Figure 7 Microarchitectures measured and shown in Section 6. The year shows when the CPU
we measured was released. Some of the microarchitectures were released earlier in different CPUs.
“P” stands for performance core, “E” for (power or die area) efficiency core.

bubble and matrix are based on Hennessy’s Stanford integer benchmarks (in C), and have
been translated to Forth by Marty Fraeman. Four of these benchmarks are available in Forth
and C in http://www.complang.tuwien.ac.at/forth/bench.zip.

Pentomino and sha512 were included because they exhibit unusual performance charac-
teristics (for Forth programs): They both spend much of their time in long definitions, with
many branches for pentomino, and straight-line code for sha512.

Idiomatic Forth code calls many short routines, as exhibited in the appbench programs
and in fft-bench. So the results for these programs may also be representative for other
programming languages where call-heavy programs are idiomatic and implementations that
neither inline nor tail-call-optimize. On the other hand, the results for the programs dominated
by counted loops may be more representative for programs in Algol-family languages and for
systems that tail-call optimize or inline.

5.3 Hardware

We have measured a variety of different microarchitectures and show results for them. Figure 7
gives information about what the code names we use for the microarchitectures mean.

5.4 Measurements

Each benchmark was run on each system and each microarchitecture 30 times, and measured
with perf stat, measuring the events instructions:u, cycles:u, branch-misses:u, L1-dcache-
load-misses:u, and L1-icache-load-misses:u, where available (but we only show results based
on cycles and instructions here). The median of these runs is shown.

ECOOP 2024
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benchgc
brainless

cd16sim
lexex

fcp
siev

bubble
matrix

fib
fft-bench

pentomino
sha512

instruction factor (higher means fewer instructions)
unoptimized
baseline+loop opt
unopt+loop opt
c: combine ip updates
ci: c+immediate opt
cb: c+branch opt
cib: ci+branch opt
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Figure 8 Reduction factor in the number of dynamically executed AMD64 instructions of various
optimizations over baseline.

6 Results and discussion

6.1 Executed instructions
Figure 8 shows the effect of the IP update optimizations on the number of executed instructions
on AMD64. For ARM A64 and RISC-V the results look similar.

For unoptimized and both loop optimization variants, the differences in executed instruc-
tions from the baseline are small, as expected (so small that sometimes you don’t see the
bar).

For most benchmarks c (combining IP updates) reduces the executed instructions, and ci
(also optimize VM instructions with immediate operands) further reduces them (because
more IP updates can be eliminated); adding b often has little effect on the number of executed
instructions: in the usual case a load is replaced by an add.

On AMD64 and RISC-V where the IP updates have separate instructions, we can use
the reduction in instructions to get an idea of the number of payload instructions in these
benchmarks: If the unoptimized case has 1 IP update for n payload instructions, and the
optimizations eliminate the proportion α of the IP updates on average, and the instruction
reduction factor is f , we can compute n = (1 − (1 − α)f)/(f − 1). This leaves us with the
problem of knowing α. However, if we assume that α = 1, we get an upper bound for n; e.g.,
for f = 1.53 (matrix), n ≤ 1.87, while for f = 1.2 (brainless), n ≤ 5. For matrix and siev cib
eliminates all IP updates in the inner loop, and nearly all of the executed VM instructions of
these benchmarks are in the inner loops, so α is close to 1, and n is close to 1.87 for matrix
and close to 2.62 for siev.

6.2 Speedups from IP-update optimization variants
Figure 9 shows the speedups of the optimizations on Tiger Lake. As we will see, this is the
microarchitecture where we typically see the best results, but Zen3 and Gracemont are not
far off (Fig. 11).

On Tiger Lake, moving the IP updates to the start of each VM instruction (unoptimized)
hurts a little on most benchmarks, but occasionally also helps.

Applying the loop optimization provides a speedup by a factor of about 2 on the three
benchmarks (siev, bubble, matrix) that spend most of their time in short-to-medium length
counted loops. However, for the huge loop body of sha512, the IP updates result in a
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speedup over original Gforth
unoptimized
baseline+loop opt
unopt+loop opt
c: combine ip updates
ci: c+immediate opt
cb: c+branch opt
cib: ci+branch opt
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Figure 9 Speedup (reduction factor of execution cycles) on Tiger Lake of several optimizations
over baseline (higher is better).

dependence chain that fills the processor buffers long before the loop-back branch breaks
it, and the speedups of the loop optimization tend to be small. For fft-bench the inner
loop is also a counted loop, but the loop body contains calls where the return breaks the
IP dependence chain, so fft-bench does not benefit from the loop optimization. Pentomino
hardly uses counted loops, so it cannot benefit from the loop optimization (as we implemented
it). Most application benchmarks don’t benefit, either.

Among the other variants, let us first look at cib: It dominates the loop optimization
(whereas c, ci and cb don’t, as demonstrated by siev). The speedups of cib depend on the
benchmark, with siev, bubble, matrix, and sha512 showing a speedup of > 2 on Tiger Lake,
while the speedups on fft-bench and the application benchmarks are much more modest; in
code where returns break the dependence chains, the main benefit of cib is the reduction in
the number of executed instructions.

The results of c, ci, and cb are helpful in understanding the cib results: In short loops
(siev, bubble) or code with many taken branches (bubble, fib) cb helps more than ci, because
the loads of the branches are a large part of the latency chain in case of ci. By contrast,
for programs with long loop bodies like sha512, the branch optimization does not work (it

ECOOP 2024
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benchgc
brainless

cd16sim
lexex

fcp
siev

bubble
matrix

fib
fft-bench

pentomino
sha512

speedup over baseline Gforth
PFE (interpreter)
Gforth threaded code only
Gforth with ip-update optimization (cib)
SwiftForth (JIT compiler)
VFX Forth (JIT compiler)
gcc-12 -O0
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gcc-12 -O3
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Figure 10 Speedup of several Forth systems and gcc over the Gforth baseline (higher is better),
on Tiger Lake. If a benchmark does not work on a system, no bar is shown for the combination.

only covers short-distance branches) and we therefore see no difference between ci and cib.
Pentomino has many branches, but many of them are long-distance branches as far as the
branch optimization is concerned, so the benefit of the branch optimization is relatively
small for this benchmark, and the benefit of the immediate optimization is more pronounced.
Overall, for some benchmarks ci is better than cb, for others cb is better than ci; with the
exception of cd16sim, both dominate c, and are dominated by cib. The difference is pretty
big in some cases, so cib can be worth the additional implementation effort.

6.3 Comparison with other systems
Figure 10 compares a selection of the Gforth variants to several other Forth systems and to
gcc. As in the other graphs, the baseline is Gforth version we started from.

Gforth with cib tends to be competitive with SwiftForth and with gcc -O0. SwiftForth
shows some slowdowns for the application benchmarks despite executing significantly fewer
instructions than Gforth; for cd16sim we identified the architectural pitfalls that it runs into7

7 I-cache/D-cache ping-pong from having instructions close to data, and ret mispredictions from using
the return address of call as data instead of returning to it.
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Figure 11 Speedup (reduction factor of execution cycles) of several optimizations over baseline;
for each benchmark (colour), four bars show, from left to right: l, c, ci, cib.

and what implementation technique causes that, and reported it to the vendor. We did not
investigate the SwiftForth performance on other benchmarks. The more sophisticated VFX
Forth outperforms Gforth with cib usually by a factor of 2. Inlining of Forth definitions
(performed by VFX, but not by Gforth) is particularly effective for cd16sim, leading to a
speedup of VFX over cib by a factor of 8. Gforth with cib is a factor > 8 faster than PFE
on the benchmarks where PFE works.

Gcc -O1 shows a factor 3–20 speedup over Gforth with cib, while for gcc -O3 the speedups
over cib range from 0.6–8. For bubble the bad performance of gcc -O3 is caused by auto-
vectorization, which exercises a slow hardware path for store-to-load-forwarding (due to
partially overlapping accesses). We also looked at the gcc -O3 code for fib, but did not find
an explanation for the slowdown compared to gcc -O1.

6.4 Speedups on different microarchitectures
Figure 11 shows a selection of the Gforth variants on several different microarchitectures.
Most of them show similar speedups to Tiger Lake, which we discussed earlier.

One exception is Golden Cove (the P-Core of recent Intel CPUs); Golden Cove implements
a hardware optimization that reduces the latency of adding a constant to zero cycles.8 This
hardware optimization subsumes the c and i optimizations to some extent, and consequently,

8 https://www.complang.tuwien.ac.at/anton/additions/
https://chipsandcheese.com/2021/12/21/gracemont-revenge-of-the-atom-cores/
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Figure 12 Speedups of cib over the baseline for different benchmarks on successive generations of
Intel’s P-cores (left) and Intel’s E-cores (right).

we see lower speedups on Golden Cove than on Tiger Lake from these optimizations on a
number of benchmarks. The benefit of the loop and branch optimization is still present,
and shows up especially in code with short loops, such as siev and bubble, but the overall
tendency is lower speedups from IP-update optimizations on Golden Cove. However, it still
can pay off to apply IP-update optimizations, because CPUs with Golden Cove cores usually
also have Gracemont E-cores, which benefit more from IP-update optimizations.

The other exception is the K8 microarchitecture (first released 2003). On the K8 the
loop optimization tends to provide no benefit, and the other optimizations tend to provide
benefits smaller than the reduction in instructions. This indicates that on the K8 the IP
updates are not the critical path in instruction execution on any of these benchmarks.

We also looked at a variety of other CPUs (Fig. 12), and the tendency is that within
a family of microarchitectures (e.g., Intel’s P-cores, with the exception of Golden Cove, as
discussed above), the speedups from cib tend to be higher for more recent microarchitec-
tures and lower for older microarchitectures. Along with the K8 results this explains why
investigations on IP update optimizations have not been published earlier.



M. A. Ertl and B. Paysan 14:23

7 Applicability to other languages

In principle the IP-update optimizations can be applied to any VM implementation. In
practice the benefit depends on how light-weight or heavy-weight the payload of your VM
instructions is, on the characteristics of the executed programs.

Concerning program characteristics, loop-dominated programs benefit much more from
the IP-update optimizations than call-dominated programs (see Section 6.2); but note that if
you implement inlining or tail-call optimization, this can change call-dominated programs
into loop-dominated programs.

Concerning the weight of VM instructions, IP update optimizations benefit VMs with
lightweight instructions, such as Gforth, the OCaml interpreter, the JVM or WebAssembly.
The lighter the payload is, the more these optimizations pay off.

By contrast, for a language implementation like Tcl with its heavy VM instructions,
already dynamic superinstructions did not pay off; the speedup from the reduced dispatch
overhead was small, and was compensated by increased I-cache misses [22].

Even if the VM instructions are middle-weight, we expect the benefit of the IP-update
optimization to be small. E.g., if a VM instruction has an average payload of 10 instructions
per VM instruction, the bottleneck will be in the payload (in the resource requirements, or
in the latency), and the only benefit of the IP-update optimization will be to reduce the
resource load, and that contribution will be relatively small (10%).

If you design a virtual machine that is lightweight enough that IP updates could be a
bottleneck one day, it’s a good idea to make it flexible enough make the loop optimization
(Section 4.1) possible, which can be applied with relatively low effort.

8 Source code

The source code is in the git repository of Gforth:

git clone https://git.savannah.gnu.org/git/gforth.git

After that you can get the versions used for generating the data with:

cd gforth
# one of:
git checkout ecoop24-ip-updates-baseline #baseline
git checkout ecoop24-loopopt #baseline+loop opt
git checkout ecoop24-ip-updates #unopt, unopt+loop opt, c, ci, cb, cib
git checkout master #Gforth mainline

The main line of Gforth now uses cib by default.
You can find a package containing the checked out source code, binaries for AMD64,

ARM A64, and RV64GC, benchmarks, and the resulting data on
https://www.complang.tuwien.ac.at/anton/ip-updates.tar.xz.

9 Related work

One difference between the approaches of Piumarta and Riccardi [17] and Ertl and Gregg [4]
on selective inlining/dynamic superinstructions is that Piumarta and Riccardi eliminated the
VM instruction slots of the VM instruction slots that are no longer needed for threaded-code
dispatch. This eliminates as many IP updates as the c optimization, but Ertl and Gregg

ECOOP 2024
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expected that this “does not have much effect”. And indeed, the K8 results (similar to the
hardware they used at the time) show a speedup ≤ 1.1 for c on most benchmarks (Section 6).
However, on newer cores c provides speedups > 1.3 on some benchmarks, and we expect
the same speedups from Piumarta and Riccardi’s instruction slot elimination. In any case,
neither paper gives any performance evaluation of this issue, while the present work does
and also explores additional optimizations: for loops, immediates, and branches.

kForth implements counted loops in the same way as the l optimization.9
There has been a significant body of work on combining VM instructions at VM-interpreter

build time into (static) superinstructions [13, 18, 16, 11, 8, 3], which reduces instruction
pointer updates, among other benefits. But again, none of these works have evaluated how
much of the benefit is due to reducing IP updates.

More recent work on interpreter performance includes Rohou et al.’s reevaluation of the
performance impact of indirect branches in the light of improvement in hardware indirect
branch predictors [19], and Titzer’s work on an in-place interpreter for WebAssembly (which
has been designed for translation) [21].

Larose et al. [14] argue that a sophisticated metacompiler (like RPython and Truffle) can
optimize an AST interpreter written in a high-level language just as well as a VM interpreter.
However, unless they completely eliminate all references to the AST or the VM code, they
still have to maintain a pointer to the AST or VM code, and optimizing the IP updates is
relevant.

In more ambitious earlier work [6], Ertl and Gregg eliminated the VM instruction pointer
completely by eliminating all accesses to the threaded code: like the present work, it
concatenates code snippets produced with gcc, but it patches constants and branch targets
into the copied code snippets, making all access to the threaded code unnecessary. They
found a median speedup by a factor 1.32 on a K7 (a 32-bit-only predecessor of the K8), quite
an interesting contrast to the more modest speedups of the present IP-update optimization
on the K8. However, this approach requires architecture-specific support for patching the
constant and branch targets, whereas the present work is just as architecture-independent as
dynamic superinstructions. This approach cannot fall back to threaded code, and therefore
did not make it from proof-of-concept into a production feature of Gforth.

Xu and Kjolstad [24] have also used code snippets produced by a compiler and combined
them, patching in constants and branch targets. The result also does not need a VM
instruction pointer and its updates, and moreover, it uses the architecture’s call and return
instructions (instead of jumps and indirect jumps. The price paid for this, like in Ertl and
Gregg’s work [6], is architecture-specific code for patching the results.

The Maxine virtual machine [23] contains T1X, a compiler that uses snippets coming
from a Java compiler, again without referencing the VM code, but also requiring architecture-
specific code.

10 Conclusion

The IP-update optimization combination cib reduces the number of executed instructions by
roughly a factor 1.2 on AMD64, ARM A64, and RISC-V. The effect on performance varies
a lot across microarchitectures and benchmarks, between slowdowns by a factor 1.1 and
speedups by a factor 3.01.

The reason for the more spectacular speedups is that, without cib, IP-update dependence
chains become the critical path of execution on loop-dominated programs.

9 news:<us68iq$3jsgk$1@dont-email.me>

news:<us68iq$3jsgk$1@dont-email.me>
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Another way to address this problem is the loop optimization: perform a loop-back
branch to a location stored at loop entry, breaking the dependence chain. While the speedups
from this optimization are not quite as spectacular as those from cib, and this optimization
speeds up only some benchmarks, it is much easier to implement.
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