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Abstract
Rely-guarantee (RG) logic uses thread interference specifications (relies and guarantees) to reason
about the correctness of multithreaded software. Unfortunately, RG logic requires each function
postcondition to be “stabilized” or specialized to the behavior of other threads, making it difficult
to write function specifications that are reusable at multiple call sites.

This paper presents mover logic, which extends RG logic to address this problem via the notion
of atomic functions. Atomic functions behave as if they execute serially without interference from
concurrent threads, and so they can be assigned more general and reusable specifications that avoid
the stabilization requirement of RG logic. Several practical verifiers (Calvin-R, QED, CIVL, Armada,
Anchor, etc.) have demonstrated the modularity benefits of atomic function specifications. However,
the complexity of these systems and their correctness proofs makes it challenging to understand and
extend these systems. Mover logic formalizes the central ideas of reduction in a declarative program
logic that provides a foundation for future work in this area.
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1 Introduction

Verifying that a multithreaded software system behaves correctly for all possible inputs and
thread interleavings is a critically important problem in computer science. To verify large
systems, verification techniques must employ modular reasoning in which each function’s
implementation is verified with respect to its specification. In a multithreaded system, writing
precise and reusable function specifications is a rather difficult challenge, since concurrent
threads can observe and change the state of a function call not just in its initial and final
states, but also at any intermediate states during the function’s execution. Thus, function
specifications must describe not just the function’s precondition and postcondition, but also
how the function may influence and be influenced by other concurrent threads. To address
this problem, Rely-Guarantee (RG) logic [33] uses function specifications that include:

a guarantee G describing how each step of the function may update shared state, and
a rely assumption R describing the behavior of interleaved steps of other threads. The rely
assumption might, for example, specify that interleaved steps preserve a data invariant.
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Under RG logic, however, a function’s postcondition must summarize not only the
behavior the function itself but also the behavior of interleaved steps of other threads [56].
Consequently, RG function specifications are often specialized to the rely assumption and
data invariants of a particular client, limiting reuse of those function specifications in other
clients, as we illustrate in Section 2.

Lipton’s theory of reduction [41] provides a promising approach to address this problem.
It uses a commuting argument to show that certain functions are atomic and behave as
if they execute serially (without interleaved steps of other threads). Consequently, atomic
functions do not require interleaved rely assumptions, and they can be precisely specified
using preconditions and postconditions that are independent of any specific client.

Reduction has been widely adopted in a variety of software validation tools, including
dynamic analyses [17, 54, 55, 9], type systems [50, 24, 23, 22], and other tools [6, 61, 62, 60].
Over the past two decades, software verifiers based on reduction (e.g., Calvin-R [25], QED [15],
CIVL [30, 38], Armada [42], and Anchor [19]) have demonstrated the utility of atomic function
specifications in verifying sophisticated concurrent code. To date, however, reduction-based
verifiers have not been based on an underlying program logic, such as RG logic. Instead, their
soundness arguments are typically based on monolithic proofs whose complexity inhibits
further research. To address this complexity barrier, we present mover logic, which extends
RG logic to support atomic function specifications via reduction-based reasoning.

In mover logic, thread interference points are documented with yield annotations that
have no run-time effect. Mover logic verifies that every sequence of operations between two
yield points is reducible and hence amenable to sequential reasoning. In order to verify
reducibility, mover logic uses synchronization specifications describing both when each thread
can access each shared location and how those accesses commute with concurrent accesses of
other threads. In contrast to RG logics that must stabilize all state predicates under the rely
assumption, mover logic only needs to stabilize predicates at yield points. Atomic functions
have no yield points and can thus be specified with traditional pre- and postconditions.
Moreover, atomic function specifications need not include a client-specific rely assumption
that would limit reuse in other clients that have different rely assumptions or data invariants.

Mover logic is a declarative program logic (similar in style to Hoare Logic and RG Logic)
that helps explain and justify many subtle aspects of reduction-based verification, including:

what code blocks are reducible;
where yield annotations are required;
which functions are atomic;
what atomic and non-atomic function specifications mean;
what reasoning is performed by the verifier;
why this reasoning is sound; and
which programs are verifiable or not verifiable, and why.

Mover logic simplifies the soundness proof for any specific verifier, because the proof now
must only show that the verifier follows the rules of mover logic.

The presentation of our results proceeds as follows.
Section 2 illustrates the specification entanglement problem of RG logic and shows how
mover logic avoids this problem.
Section 3 reviews Lipton’s theory of reduction.
Sections 4 and 5 present an overview of mover logic and additional examples.
Section 6 formalizes a core multithreaded language.
Section 7 and 8 present mover logic for this language.
Sections 9 and 10 discuss related work and summarize our contributions.
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For clarity of exposition, our presentation of mover logic targets an idealized multithreaded
language that captures the essential complexities of multithreaded function specifications.
Extending the logic to more complex languages remains an important topic for future work.

2 Limitations of Rely-Guarantee Logic

We motivate the need for mover logic via the example code in Figure 1 (left). That code
consists of:
1. A counter library that contains the function add(n) that adds n to the variable x and

returns the new value of x. The initial value of variable x is 0, and it is protected by lock
m, whose value is either the thread identifier tid of the thread holding the lock or 0 if
unheld. The lock is initially unheld.

2. A first client that creates two threads, and each thread calls add(2) multiple times
before asserting that x is even.

This program verifies under RG logic based on the invariant that x is always even. This
even(x) invariant is a precondition and postcondition for both add() and client()1:

requires even(x)
ensures even(x)

In addition, each step by each thread in the program is guaranteed to preserve this invariant.
As a result, each thread can rely on other threads to preserve the invariant:

relies even(x)
guarantees even(x)

These RG specifications are sufficient to verify that the program does not go wrong by
failing the even(u) assertion in client(), but unfortunately the specification for add() is
tightly-coupled, or entangled, with the even(x) data invariant from this particular client. A
different client would necessitate revising and re-verifying the counter library, which makes
modular verification more challenging and less scalable. For example, the second client in
Figure 1 (right) enforces the data invariant x >= 0, but it cannot be verified with the add()
specification entangled with the first client. Others have noted this limitation as well (see,
for example, [14, 56]).

2.1 Disentangling RG Specifications: First Attempt
The goal of this paper is to support specifications for library functions like add() that are
not specialized to one particular client. As a first attempt to achieve that goal, the code in
Figure 2 (left) uses the following natural postconditions for add(), where \old(x) and x
refer to the value of x upon function entry and exit, respectively:

ensures x == \old(x) + n
ensures \result == x

1 Frame conditions, which specify the locations a function may read or modify, also play a key role
in modular function specifications, but we do not consider them in this paper due to lack of space.
Extending mover logic with frame conditions, perhaps using ideas from separation logic [47, 49], remains
an important topic for future work.
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Second Client

  void main() {
    fork { client(); }
    fork { client(); }
  }

  relies     x >= 0
  guarantees x >= 0
  requires   x >= 0
  ensures    x >= 0
  void client() {
    add(2); 
    int u = add(3);
    assert u >= 0;
  }

Counter Library

  int x;
  lock m;

  relies     even(x)
  guarantees even(x)
  requires   even(x)
  requires   even(n)
  ensures    even(x)
  ensures    even(\result)
  int add(int n) {
    acquire(m);
    int r = x; 
    r = r + n;
    x = r;
    release(m);
    return r;
  }

First Client

  void main() {
    fork { client(); }
    fork { client(); }
  }

  relies     even(x)
  guarantees even(x)
  requires   even(x)
  ensures    even(x)
  void client() {
    add(2); 
    int u = add(2);
    assert even(u);
  }

Entangled Specification
Library depends on 

Client's even(x) invariant

Entangled Rely-Guarantee Specification

Verification Error
Library specification is 
not general enough to 
verify Second Client

Figure 1 Our idealized running example is an add(n) library function that atomically increases
shared variable x by n. (Left) A rely-guarantee specification. The client’s data invariant even(x)
becomes entangled in the library specification. (Right) A second client that cannot be verified
because the specification is insufficiently general.
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Counter Library

  int x;
  lock m;

  relies   m == tid ==> x == \old(x)
  …
  ensures  true;
  int add(int n) {
    acquire(m);
    int r = x;
    r = r + n;
    x = r;
    release(m);
    return r;
  }

Client

  void main() {
    fork { client(); }
    fork { client(); }
  }

  relies     even(x)
  guarantees even(x)
  requires   even(x)
  ensures    even(x)
  void client() {
    add(2); 
    int u = add(2);
    assert even(u);
  }

Disentangled RG Specification
(Second Attempt)

Verification Error
Assertion fails 
under add’s 

weaker 
postcondition

Counter Library

  int x;
  lock m;

  relies   m == tid ==> x == \old(x)
  …
  ensures  x == \old(x) + n
  ensures  \result == x
  int add(int n) {
    acquire(m);
    int r = x;
    r = r + n;
    x = r;
    release(m);
    return r;
  }

Client

  void main() {
    fork { client(); }
    fork { client(); }
  }

  relies     even(x)
  guarantees even(x)
  requires   even(x)
  ensures    even(x)
  void client() {
    add(2); 
    int u = add(2);
    assert even(u);
  }

Disentangled RG Specification
(First Attempt)

Verification Error
Postconditions are 
not stable under 
rely assumption

Figure 2 (Left) An attempt to disentangle the library specification from the client that does not
meet RG stability requirements. (Right) Another attempt that meets stability requirements but
fails to verify the client.

ECOOP 2024
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In addition, if add() has no knowledge of its client, it must assume that other client threads
could call add() with arbitrary arguments at any time, and so the natural rely assumption
is that other threads may update x whenever the lock m is not held by the current thread.
That assumption is most easily expressed as its contra-positive (where tid is the identifier of
the current thread and lock m is held by that thread when m == tid):

relies m == tid ==> x == \old(x)

Here, \old(x) and x refer to the value of x before and after an interleaved action of another
thread, respectively.

To account for interleaved steps of other threads, a central requirement of RG logic is
that all store predicates (e.g. preconditions, postconditions, and invariants) used to reason
about program behavior must be stable under this rely assumption R. This means that
interleaved R-steps from other threads must not invalidate those predicates. In the case of
add in Figure 2 (left), the postcondition x == \old(x) + n && \result == x is not stable
under the rely assumption R, reflecting that x could be concurrently modified after the lock
is released but before add() returns. Thus, Figure 2 (left) does not verify under RG logic.

2.2 Disentangling RG Specifications: Second Attempt
To ensure stability we must weaken the add() function’s postcondition to be stable under
the rely assumption, as shown in Figure 2 (right). Unfortunately, the resulting stable post
condition is simply true, which no longer guarantees anything about the value of x and is
too weak to verify the client.

2.3 Broken Invariants and Bidirectional Entanglement
As a more challenging example, consider the add() library variant in Figure 3 (left) that
temporarily breaks the even(x) invariant while holding the lock. In this case, the invariant
holds only when lock m is free:

m == 0 ==> even(x)

Stores at the program points in which the invariant is broken are not intended to be observable
by clients. However, the revised RG specifications for add() and the client must now be
based on this conditional invariant, resulting in two problems. First, the library specification
is again specialized to the client’s even(x) invariant. Second, the library’s internal locking
discipline leaks into the client’s specification, limiting our ability to modify the library code
without breaking clients. This example demonstrates that RG reasoning may force us to lose
modularity between client and library.

3 Review of Lipton’s Theory of Reduction

Our solution to this specification problem employs Lipton’s theory of reduction [41], which
classifies how steps of one thread commute with concurrent steps of another thread.

A step is a right-mover (R) if it commutes “to the right” of any subsequent step by a
different thread, in that performing the steps in the opposite order does not change the
final store. A lock acquire is a right-mover because any subsequent step from another
thread cannot modify that lock.
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Counter Library

  int x;
  lock m;

  relies     m == 0 ==> even(x)
  guarantees m == 0 ==> even(x)
  requires   m == 0 ==> even(x)
  requires   even(n)
  ensures    m == 0 ==> even(x)
  ensures    even(\result)
  int add(int n) {
    acquire(m);
    int r = x;
    r = r + n;
    x = 1;      // Break invariant 
    x = r;      //  and restore it
    release(m);
    return r;
  }

Client

  void main() {
    fork { client(); }
    fork { client(); }
  }

  relies     m == 0 ==> even(x)
  guarantees m == 0 ==> even(x)
  requires   m == 0 ==> even(x)
  ensures    m == 0 ==> even(x)
  void client() {
    add(2); 

    int u = add(2);
    assert even(u);

  }

Counter Library

  int x   both-mover if m == tid;
  lock m  write right-mover 
           if \old(m) == 0 && m == tid
          write left-mover 
           if \old(m) == tid && m == 0;

  atomic
  ensures   x == \old(x) + n
  ensures   \result == x
  int add(int n) {
    acquire(m);
    int r = x;
    r = r + n;
    x = 1;      // Break invariant 
    x = r;      //  and restore it
    release(m);
    return r;
  }

Client

  void main() {
    fork { client(); }
    fork { client(); }
  }

  relies     even(x)
  guarantees even(x)
  requires   even(x)
  ensures    even(x)
  void client() {
    add(2); 
    yield;
    int u = add(2);
    assert even(u);
    yield;
  }

Entangled Specifications
• Library depends on Client's 

even(x) invariant
• Client depends on Library’s 

synchronization

Verifiable but Entangled
Rely-Guarantee Specification

Verifiable and Disentangled
Mover Logic Specification

Disentangled 
Specifications!

Figure 3 A second version of the counter library with a temporarily broken even(x) invariant.
(Left) Under RG logic, the library specification is entangled with the client’s even(x) invariant and
the client specification is entangled with the library’s synchronization discipline. (Right) Under
mover logic, the specifications are cleanly disentangled.
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… r=x … r=r+n …○ ○ ○ ○ ○ ○… acq(m)○ ○

r=r+n○ ○ ○ ○ ○ ○…○ ○ acq(m) r=x… … x = r

Concrete
Trace

Reduced
Trace

○

○

x = r ○ …

○ return rrel(m)

○

○

rel(m) ○ …

○ ……

x == \old(x) + n
&& \result == x

R B B B L

○return r ○ …

○… ○ …

B

Figure 4 Reduction applied to an execution trace of add() from Figure 1.

Conversely, a step is a left-mover (L) if it commutes “to the left” of a preceding step of a
different thread. A lock release is a left-mover because any preceding step cannot modify
that lock.
A step is a both-mover (B) if it is both a left- and a right-mover, and it is a non-mover (N)
if neither. A race-free memory access is a both-mover because there are no concurrent,
conflicting accesses. An access to a race-prone variable is a non-mover since there may be
concurrent writes.

A sequence of steps performed by a particular thread is reducible if consists of (1) zero or
more right-movers; (2) at most one non-mover; and (3) zero or more left-movers. That is,
a sequence is reducible if the commutativity of the steps match the pattern R∗[N]L∗. Any
interleaved steps of other threads can be “commuted out” to produce a serial execution.

Figure 4 illustrates this technique for a call to add() interleaved with steps of a second
thread. In that figure and below, the solid and hollow arrow heads indicate steps from
different threads, and arrows labeled “. . . ” represent any number of steps by that thread. The
steps of add() have the mover behavior R B B B L B, matching the reducible pattern R∗[N]L∗.
Thus we can reason about add() as if it executes sequentially and assign it the intuitive
postcondition x == \old(x) + n && \result == x.

4 Overview of Mover Logic

Mover logic extends RG logic to verify that certain functions are atomic and can therefore
be assigned more precise (unstabilized) postconditions than under RG logic. Figure 3 (right)
shows a mover logic specification for our library/client example. The declaration

int x both-mover if m == tid;

means that accesses to x are both-movers provided that the current thread holds lock m. All
other accesses are errors. The declaration for lock m specifies that acquires (which change m
from 0 to the current thread’s identifier tid) are right-movers and releases (which change m
from tid back to 0) are left-movers:

lock m write right-mover
if \old(m) == 0 && m == tid

write left-mover
if \old(m) == tid && m == 0;

These mover specifications are sufficient to verify that add is atomic. Consequently, there
is no need to apply the rely assumption at each intermediate store inside this atomic
function. Instead, sequential reasoning suffices to establish the desired postcondition
x == \old(x) + n && \result == x.
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The client() function in Figure 3 (right) is not atomic because steps of other threads
could be interleaved between the two calls to add(2). Mover logic uses a yield annotation
to identify that thread interference may occur at that point, and the store invariants at
yields must be stable under the rely assumption:

relies even(x);
guarantees even(x);

Note that this thread guarantee does not need to summarize individual steps inside the callee
add(), which would expose the broken invariant. Instead, it summarizes the entire atomic
effect of add(), which preserves the even(x) invariant. With mover logic, the client()
specification is independent of the internal synchronization discipline inside add().
This library/client example illustrates several benefits of mover logic:

Verifying that add() is atomic enables sequential reasoning inside add().
We thus avoid applying the rely assumption at each program point inside add().
As a result, add() satisfies the desired postcondition
x == \old(x) + n && \result == x, which is independent of the client-specific
data invariant even(x).
On the client side, the thread guarantee even(x) summarizes the entire behavior of
add(), rather than the behavior of each individual step.
Consequently, the client can be verified based on the illusion that even(x) always holds,
with no loss of soundness.

Thus, mover logic disentangles the library specification from the data invariant of the client
while also disentangling the client specification from the library synchronization discipline.

5 Additional Examples

5.1 Spin Lock
To further illustrate the benefits of disentangled specifications, Figure 5 (left) shows our
counter library rewritten to employ a user-defined spin lock. The spin_lock() code employs
a compare-and-set operation (cas) to attempt to change the lock l from 0 to the current
thread’s tid. The cas operation returns true if the update succeeds, and false otherwise.
Thus, the function retries until the update is success, at which point the current thread holds
the lock. The spin_unlock() function releases the lock by setting l back to 0.

Mover logic verifies that calls to spin_lock() and spin_unlock() are atomic right- and
left-movers, respectively. That enables us to avoid entangled specifications for the spin lock
and counter libraries, and the counter library’s add specification is identical to the earlier
implementation. It is still atomic and it guarantees the same post condition.

5.2 Lock-Free Queue
Figure 5 (top right) shows a lock-free single-element queue, where buf holds either the single
enqueued int or None if the queue is empty, as indicated by the declared type Optional[int].

The enqueue(v) function uses cas to switch buf from None to v and is atomic since
failing cas operations are both-movers. The dequeue() function use the action r ~= buf
to denote an unstable read of buf that can load any value into the local variable r [22].
Unstable reads can be treated as right-movers since they commute past steps by other

ECOOP 2024
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Spin Lock Library

 int l write right-mover 
        if \old(l) == 0 && l == tid
       write left-mover 
        if \old(l) == tid && l == 0;

 atomic right-mover
 ensures l == tid
 void spin_lock() {
   while (!cas(l, 0, tid)) {
     skip;
   } 
 }

 atomic left-mover
 requires l == tid
 void spin_unlock() {
   l = 0;
 }

Counter Library

 int x   both-mover if l == tid;

 atomic
 ensures x == \old(x) + n
 ensures \result == x
 int add(int n) {
   spin_lock();
   int r = x;
   r = r + n;
   x = 1;      // Break invariant 
   x = r;      //  and restore it
   spin_unlock();
   return r;
 }

Client

 void main() {
   fork { client(); }
   fork { client(); }
 }

 relies     even(x)
 guarantees even(x)
 requires   even(x)
 ensures    even(x)
 void client() {
   add(2); 
   yield;
   int u = add(2);
   assert even(u);
   yield;
 }

Verifiable Spin Lock, Counter, Client

Disentangled 
Specifications!

Disentangled 
Specifications!

List top  non-mover;

atomic
ensures head(top) == v
ensures tail(top) == \old(top)
void push(int v) {
  List t ~= top;
  List nu = v::t;
  while (!cas(top, t, nu)) {
    t ~= top;
    nu = v::t;
  }
}

atomic
ensures head(\old(top)) == \result
ensures tail(\old(top)) == top
int pop() {
  List t ~= top;
  while (t == Nil) { t ~= top; }
  List tl = tail(t);

  while (!cas(top, t, tl) {
    t ~= top;
    while (t == Nil) { t ~= top; }
    tl = tail(t);
  }
  return head(t);
}

Verifiable Lock-Free Stack Library

Optional[int] buf non-mover;

atomic
requires n != None
ensures buf == n
void enqueue(int n) {
  while (!cas(buf, None, n)) {
    skip;
  }
}

atomic
ensures \result == \old(buf) 
ensures buf == None
int dequeue() {
  Optional[int] r ~= buf;
  while (r == None) { r ~= buf; }

  while (!cas(buf, r, None)) {
     r ~= buf;
     while (r == None) { r ~= buf; }
  }
  return r;
}

Verifiable Lock-Free Queue Library

Figure 5 (Left) A new implementation of the counter library using a user-defined spin lock.
(Top Right) A single-element lock-free queue. (Bottom Right) A lock-free stack.
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threads.2 Consequently, the dequeue() function is atomic. All executions of that function
consist of unstable reads (right-movers) and failed cas operations (both-movers) followed by a
successful cas (non-mover). These sequences match the reducible pattern R∗[N]L∗. Moreover,
the final cas ensures that r is equal to the pre-cas value of buf, which enables mover logic
to establish the desired post-conditions \result == \old(buf) and buf == None.

5.3 Lock-Free Stack
Figure 5 (bottom right) shows a lock-free stack. This examples uses immutable lists, where
Nil is the empty list, v::s adds v to the front of the the list s, and head(s) and tail(s)
extract the first element and the rest of s, respectively.3

The push(v) function is atomic since it has only one non-mover operation, namely the
successful cas. The unstable reads, list allocations v::t, and failed cas operations are
both-movers or right-movers. Therefore, we can assign push(v) the following intuitive
post-condition without needing to stabilize under the rely assumption of a particular caller.

ensures head(top) == v
ensures tail(top) == \old(top)

The pop() function is also atomic due to similar reasoning and satisfies the following
post-condition without the need to stabilize it.

ensures head(\old(top)) == \result
ensures tail(\old(top)) == top

6 Mover Logic Language

We formalize mover logic for the idealized language MML (mover logic language), which we
summarize in Figure 6. Section 7.3 below translates our running example into MLL. In MLL,
threads manipulate a shared store σ that maps variables to values. Variables include x,y,z,
and m. We often use the variable m as a lock, where m is the thread identifier (tid) of the
thread holding the lock, or 0 if it is not held.

Thread-local variables r are supported by having each thread access a separate variable
rtid for each thread tid. The language includes reads and writes to global and local variables,
acquires and releases of locks, local computations, etc. For generality and simplicity, we
abstract all of these store-manipulation operations as actions A ⊆ Tid × Store × Store. Note
that an action may depend on the current thread’s identifier. We write actions as formulae in
which \old(x) and x to refer to the values of x in the pre-store and post-store, respectively.
We write ⟨A⟩x to denote an action that only changes x:

⟨A⟩x
def= { (tid, σ, σ′) | (tid, σ, σ′) ∈ A ∧ ∀y ∈ Var . y ̸= x ⇒ σ(y) = σ′(y) }

2 Unstable reads are a proof technique that trades off our ability to reason about the value stored in r for
the ability to treat the unstable read as a right-mover. An implementation of unstable read may exhibit
any a subset of the allowed behaviors, including simply performing a conventional read.

3 The duplicated code in this example could be removed in a language with richer control structures such
as break statements.

ECOOP 2024
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Syntax

(Statements) s ::= skip | wrong | A | s; s | if C s else s

| while C s | f() | yield
(Action) A ⊆ Tid × Store × Store
(Thread Identifier) t, u ∈ Tid = {1, 2, . . .}
(Conditional Action) C ::= A⋄A

(Variable Declaration) var ::= x var_spec

x, y, r, m ∈ Var
(Function Declaration) fn ::= fn_spec f() { s }

f ∈ FunctionName
(Declaration Table) D ::= var | fn

(D is left implicit in the semantics for brevity)

Semantics

(Store) σ ∈ Var → Value
(State) Σ ::= s1..sn · σ

(Evaluation Context) E ::= • | E; s

s · σ →t s′ · σ′

[E-seq] E[skip; s] · σ →t E[s] · σ

[E-yield] E[yield] · σ →t E[skip] · σ

[E-action] E[A] · σ →t E[skip] · σ′ if (t, σ, σ′) ∈ A

[E-if] E[if (A1⋄A2) s1 else s2] · σ →t E[si] · σ′ if (t, σ, σ′) ∈ Ai, for i ∈ 1, 2
[E-while] E[while C s] · σ →t E[if C (s; while C s) else skip] · σ

[E-call] E[f()] · σ →t E[s] · σ if fn_spec f() { s } ∈ D

Σ → Σ′

[E-State]
st · σ →t s′

t · σ′

s1..st..sn · σ → s1..s′
t..sn · σ′

Figure 6 Mover Logic Language.

We can then express assignments and locking operations as follows. Note that acquire(m)
blocks if the lock is already held, i.e. if \old(m) ̸= 0. We use the notation expr[x := \old(x)]
to denote expr with all occurrences of x replaced by \old(x).

acquire(m) def= ⟨\old(m) = 0 ∧ m = tid⟩m

release(m) def= ⟨m = 0⟩m

x = expr
def= ⟨x = expr[x := \old(x)]⟩x

The unstable read rtid ~= x from Section 5.3 may store any value4 in the local variable rtid :

rtid ~= x
def= { (tid, σ, σ[rtid := v]) | v ∈ Value }

4 In a language with types, this definition can be easily adapted to only store type-correct values into rtid .
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Mover Logic Language includes if and while statements that condition execution either
on whether a Boolean test is true or on whether a store-manipulating operation, such as cas,
succeeds. To handle these two cases uniformly, we introduce a conditional action C = A1⋄A2
where A1 is an action capturing a true test or successful operation and A2 is an action
capturing a false test or failed operation. For generality, both cases may modify the store
and both may be feasible on some pre-states.

We encode any state predicate B ⊆ Store as the conditional action {(tid, σ, σ) | σ ∈
B} ⋄ {(tid, σ, σ) | σ ̸∈ B} that distinguishes the true/false cases but never modifies the store.
The following illustrates this encoding for the test x >= 0.

x >= 0 def= {(tid, σ, σ) | σ(x) ≥ 0} ⋄ {(tid, σ, σ) | σ(x) < 0}

As a more interesting example, we encode cas as the following conditional action:

cas(x,v,v′) def= ⟨\old(x) = v ∧ x = v′⟩x ⋄ I

where the identity action I = { (t, σ, σ) | t ∈ Tid and σ ∈ Store}. This definition permits
cas to non-deterministically fail from any pre-state, which enables us to treat failed cas
operations as both movers [19].

Given C = A1⋄A2, the if statement if C s1 else s2 may either: 1) evaluate the action
A1 and then s1, or 2) evaluate A2 and then s2. The former is the “true” case and the latter
is the “false” case, with the desired behavior regardless of whether C encodes a predicate test
or a potentially-failing store update. To prevent the if statement from blocking, we require
(A1 ∪ A2) to be total on the state, i.e. { σ | (t, σ, _) ∈ (A1 ∪ A2) } = State.

The while statement while C s behaves similarly. It iterates as long as C succeeds. We
may need to test the negation of a conditional action. The negation of C = A1⋄A2, written
!C, is simply A2⋄A1. The language includes the statement wrong to indicate than an error
occurred. The statement assert B abbreviates if B skip else wrong. The goal of mover
logic is to verify that programs do not go wrong.

Global variable declarations have the form x var_spec and are kept in a global declaration
table D. Function declarations have the form fn_spec f() { s } and are also kept in D.
Specifications for globals (var_spec) and functions (fn_spec) are described in Sections 7 and 8,
respectively. For notational simplicity, D is left as an implicit argument to the evaluation
judgments. To keep the core language as simple as possible, we elide formal parameters and
return values. Instead, parameters and return values are passed in thread-local variables, as
described below in Section 7.3.5

In our examples, we include types, curly braces, semicolons, and other standard syntactic
forms to aid readability.

An execution state

Σ = s1..sn · σ

consists of sequence of threads s1..sn with a shared store σ. The evaluation relation Σ → Σ′

is based on evaluation contexts E[. . .], which identify the next statement to be evaluated. A
state Σ = s1..sn · σ is wrong if any thread is about to execute wrong, i.e., if si = E[wrong].
The semantics demonstrates that yield annotations have no effect at run time, but they are
used in the mover logic described below.

5 Extending the language to include function arguments and results is straightforward, but it adds
notational complexities that are orthogonal to our core contributions.
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7 Mover Logic Effects and Specifications

Mover logic divides the execution of each thread into reducible code sequences that are
separated by yield statements identifying where thread interference may be observed.

7.1 Effects

We use a language of effects to reason about reducible code sequences separated by yields:

e ∈ Effect ::= Y | R | L | B | N | E

where
Y is the effect of a yield annotation;
R describes right-mover actions;
L describes left-mover actions;
B describes both-mover actions that are both left- and right-movers;
N describes non-mover actions that are neither left- nor right- movers; and
E describes erroneous situations, such as the sequential composition of two non-mover
actions without an intervening yield, which is not a reducible sequence.

Our strategy for verifying that yields correctly separate reducible sequences is based on
the DFA [62] shown below (left). The DFA captures reducible sequences R∗[N]L∗ separated
by yields Y, which resets the DFA to the initial “pre-commit” state on the left to start a new
reducible sequence. The first left-mover or non-mover in a reducible sequence is often called
the commit action and moves us from the pre-commit to the post-commit phase.

Pre
Commit

Post
Commit Error

R|B L|B

L|N R|N

Y
Y

N

R L

B

Y

E

From this DFA, we derive the ordering Y ⊑ B ⊑ R, L ⊑ N ⊑ E, which is also shown above (right).
For example, R ⊑ N, since for any effect sequences α and β, if α N β is accepted by this DFA,
the α R β is also accepted. We define a standard join operation ⊔ via this ordering.

We also define sequential composition e1; e2 and iterative closure e∗, as in [62]. For
example, R; L = N since to show α R L β is accepted by the DFA it is sufficient to show that
α N β is accepted. Conversely, N; N = E (error), since α N N β is never accepted by this DFA.

e1; e2 Y B R L N E
Y Y Y Y L L E
B Y B R L N E
R R R R N N E
L Y L E L E E
N R N E N E E
E E E E E E E

e e∗

Y Y
B B
R R
L L
N E
E E
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7.2 Mover Specifications
In mover logic, the verification of a thread tid is performed in the context of a mover
specification describing how each program action A starting in the store σ commutes with
steps of other threads. Thus, mover specifications M have the type

M : Action × Tid × Store → Effect \ {Y}

For example, if action A is a local computation that only accesses thread-local variables, we
would naturally have

M(A, tid, σ) = B

Alternatively, if a global variable x is protected by a lock m, the write action x = expr might
have the mover specification

M(x = expr, tid, σ) =
{

B if σ(m) = tid
E otherwise

indicating that the write is a both-mover only if thread tid holds lock m. Otherwise, it is an
error. We assume that expr only accesses local variables, and that M(A, tid, σ) is never Y
since actions do not yield.

We write mover specifications in the source code using the following notation, which is
inspired by earlier reduction-based verifiers [30, 19, 21]:

var_spec ::= var_clause∗

var_clause ::= read e if P | write e if P

where P ⊆ Tid ×Store ×Store is a two-store predicate describing the pre-store and post-store
of the access to x in question. Further, P can depend on the current thread identifier tid.
Similar to actions, we write these predicates as formulae in which \old(y) and y to refer to
the values of y in the pre-store and post-store, respectively. To determine the mover effect of
a variable access, we evaluate the specification clauses in order and take the effect of the first
case where the condition P is satisfied. If no clauses apply, the access has the error effect
E. More formally, given the specification for a variable x in the source code, we collect the
sequence of clauses for reads and writes separately and then create the mover specification
M for x as follows:


 read e1 if P1

...
read en if Pn


 =⇒ M(rtid = x, tid, σ) =


e1 if P1(tid, σ, σ)
...

...
en if Pn(tid, σ, σ)
E otherwise


 write e1 if P1

...
write en if Pn


 =⇒ M(x = expr, tid, σ) =


e1 if P1(tid, σ, σ[x := σ(expr)])
...

...
en if Pn(tid, σ, σ[x := σ(expr)])
E otherwise

where rtid is a local variable, expr only accesses thread-local variables, σ(expr) is the result
of evaluating expr in the store σ, and the cases for M are evaluated in the order listed.
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Counter Library

  int x   both-mover if m == tid
  lock m  write right-mover 
           if \old(m) == 0 && m == tid
          write left-mover
           if \old(m) == tid && m == 0

  atomic    non-mover
  requires  true
  ensures   x == \old(x) + arg1tid
  ensures   resulttid == x
  add() {
 R   ⟨\old(m) == 0 ∧ m == tid⟩m
 B   rtid = x;
 B   rtid = rtid + arg1tid;
 B   x = 1;      
 B   x = rtid; 
 L   ⟨m == 0⟩m;
 B   resulttid = rtid;
  }

Client

  relies     even(x)
  guarantees even(x)
  requires   even(x)
  ensures    even(x)
  client() {
      // even(x)
 B   arg1tid = 2;
      // even(x) && arg1tid == 2
 N   addtid();
      // even(x) 
 Y   yield;
      // even(x)
 B   arg1tid = 2;
      // even(x) && arg1tid == 2
 N   add();
      // even(x) && even(resulttid)
 B   utid = resulttid;
      // even(x) && even(utid)
 B   if even(utid) skip else wrong;
      // even(x)
 Y   yield;
      // even(x)
  }

Initial State Σ
(yield; client()).(yield; client())·[x := 0, m := 0]

Figure 7 The example from Figure 3 (right) expressed in Mover Logic Language.

The declaration for a global variable x protected by a lock m is thus written as

int x read both-mover if m == tid
write both-mover if m == tid

where both-mover is syntactic sugar for the effect B. (Similarly, we use left -mover for L,
and so on.) In our examples, we abbreviate these identical read and write cases as follows.

int x both-mover if m == tid

7.3 Motivating Example, Revisited
Figure 7 expresses our motivating example from Figure 3 (right) in our Mover Logic Language.
As mentioned earlier, an access to a thread-local variable r actually accesses a (global) variable
rtid that is reserved for use by thread tid. We use thread-local variables to encode function
arguments and results. The fork statements are converted into parallel threads in the initial
state Σ. We insert a yield at the start of each thread in Σ so that the initial state is
well-formed under the non-preemptive semantics we introduce in our formal development.

Given this mover specification, mover logic successfully verifies this code. Figure 7 also
demonstrates the reasoning carried out by mover logic. The left margin shows the effect of
each action and groups those effects into reducible sequences. The add() function is a single
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reducible sequence, ensuring that we may treat it as atomic. The client() function consists
of multiple reducible sequences separated by yields. We also show invariants demonstrating
that client() is correct in comments at each program point.6

7.4 Additional Mover Specification Examples
Figure 3 (right) showed how mover specifications can capture the synchronization/commuting
behavior of lock acquires, lock releases, and lock-protected variable accesses. Our mover
specifications are inspired by the Anchor verifier, which used mover specifications to capture
many synchronization idioms [19, 1].7

To illustrate how mover specifications capture more complex synchronization disciplines,
suppose the variable y is write-protected by a lock m. That is, lock m must be held for all writes
to y but not necessarily held for reads. Consequently, y should be declared volatile if the code
is run under a weak memory model. Writes to y are non-movers (due to concurrent reads);
lock-protected reads are both-movers (because there can be no concurrent writes); and reads
without holding the lock are non-movers (due to concurrent writes). Mover specifications
capture this synchronization discipline concisely as follows, where the last clause applies only
when m is not tid.

int y write non-mover if m == tid
read both-mover if m == tid
read non-mover

The FastTrack dynamic race detector [18, 57] uses a combination of lock-protected and
write-protected disciplines to synchronize accesses to some array pointers. We illustrate that
discipline for an array pointer vc: initially, a flag is false and the pointer vc is guarded by
lock; when flag becomes true, vc becomes write-guarded by lock. The mover specification
for this discipline is captured by the first four lines in the specification for vc:

int vc[] both-mover if !flag && lock == tid
write non-mover if flag && lock == tid
read both-mover if flag && lock == tid
read non-mover if flag
[i] both-mover if !flag && lock == tid
[i] read both-mover if flag && (lock == tid || tid == i)
[i] write both-mover if flag && (lock == tid && tid == i)

This idiom enables the algorithm to avoid using a lock to protected all accesses to vc
but still replace vc with a larger array when necessary. The last three lines capture the
synchronization discipline for accessing the array entry vc[i], where we use the extended
notation “[i] var_clause” to describe the synchronization cases for actions that access
vc[i]. That entry is also initially guarded by lock when flag is false; when flag becomes
true, the entry vc[i] can only be written by thread i while holding lock, read by any
thread while holding the lock, or read by thread i without holding the lock. These reads
and writes are all both-movers. These rules prevent all conflicting reads and writes, and thus
all accesses to vc[i] are both-movers under this synchronization discipline.

6 In this example, the rely assumption even(x) is sufficient for reasoning about yield points. In code
where live ranges for local variables span yield points, we would add to the rely assumptions the
requirement that one thread does not change another thread’s local variables.

7 Our syntax for mover specifications is a syntactic variant of the Anchor syntax. In essence, our
specifications are sequential var_clauses, whereas Anchor combines these clauses into a single binary
decision tree using the syntax bool_expr ? mover_spec : mover_spec.
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As a final example, consider a concurrent hashtable consisting of a table array and a
locks array, which has length N. The entry table[i] is protected by locks[i % N]. The
table reference itself may change when, for example, table is replaced with a larger array.
To ensure such changes are done without interference, a write to table is permitted only
when a thread holds all locks. In contrast, table can be read by a thread holding any lock.
All such reads and writes are both-movers, as captured by the following mover specification:

Entry table[] write both-mover if ∀i ∈ [0, N). locks[i] == tid
read both-mover if ∃i ∈ [0, N). locks[i] == tid
[i] both-mover if locks[i % N] == tid

As illustrated in the previous two examples from the Anchor verifier [19], mover
specifications can naturally capture synchronization disciplines that vary with the current
program state.

A final example comes from the common iterative parallel algorithm pattern in which a
synchronization barrier is used to divide the computation into a series of phases. In the even
phases, the main thread (with tid = 0) updates shared data structures, and in odd phases,
worker threads concurrently read data from those structures, as specified below.

int z read both-mover if phase % 2 == 1
both-mover if phase % 2 == 0 && tid == 0

8 Mover Logic

In this section, we show the proof rules for how mover logic handles statements (Section 8.1);
function definitions, calls, and specifications (Sections 8.2–8.3); and run-time states (Sec-
tion 8.4).

8.1 Mover Logic
Mover logic is defined via the judgments in Figures 8 and 9. The main judgment

R; G ⊢ s : P → Q · e

verifies that, when starting from a store satisfying the precondition P , the statement s

terminates only in stores satisfying the postcondition Q (i.e. partial correctness). In addition,
the judgment uses the mover specification M to verify that s consists of reducible sequences
separated by yields. At each yield point, the rely assumption R ⊆ Tid × Store × Store is
used to model potential interference from other threads. Conversely, the thread guarantee
G ⊆ Tid × Store × Store summarizes the behavior of each reducible code sequence between
two yield points in s. The effect e summarizes how s commutes with steps of other threads.

In the rules, the precondition P can refer to the value of variable x in the initial store σ0 of
the current reducible code sequence via the notation \old(x). Thus P is a two-store relation
P ⊆ Tid × Store × Store relating that initial store σ0 to the pre-store σ for the execution of
s. We show that requirement visually in the following trace, where (tid, σ0, σ) ∈ P .

yield …○ !0 ○ s !’ … ○… ○ … !
P

Q
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One-Store and Two-Store Predicates and Supporting Definitions

S, T ⊆ Tid × Store
R, G, P, Q, A ⊆ Tid × Store × Store

Two(S) def= { (t, σ, σ) | (t, σ) ∈ S }

Post(P ) def= { (t, σ) | (t, _, σ) ∈ P }

I
def= { (t, σ, σ) | t ∈ Tid, σ ∈ Store }

P ; A
def=

{
(t, σ, σ′′)

∣∣∣∣ (t, σ, σ′) ∈ P and
(t, σ′, σ′′) ∈ A

}
Yield(P, R) def=

{
(t, σ′, σ′)

∣∣∣∣ (t, _, σ) ∈ P and
(t, σ, σ′) ∈ R∗

}
Mover Logic Proof Rules

R; G ⊢ s : P → Q · e

[M-action]
M(A, P ) = e

e ⊑ L ⇒ A is total
R; G ⊢ A : P → (P ; A) · e

[M-seq]
R; G ⊢ s1 : P → Q1 · e1

R; G ⊢ s2 : Q1 → Q2 · e2

R; G ⊢ s1; s2 : P → Q2 · (e1; e2)

[M-if]
R; G ⊢ s1 : P ; A1 → Q · e1

R; G ⊢ s2 : P ; A2 → Q · e2

e = (M(A1, P ); e1) ⊔ (M(A2; P ); e2)
R; G ⊢ if (A1⋄A2) s1 else s2 : P → Q · e

[M-while]
R; G ⊢ s : P ; A1 → P · e1

e = (M(A1, P ); e1)∗; M(A2, P )
e ̸⊑ L

R; G ⊢ while (A1⋄A2) s : P → P ; A2 · e

[M-skip]

R; G ⊢ skip : P → P · B

[M-wrong]

R; G ⊢ wrong : ∅ → ∅ · B

[M-conseq]
P ⇒ P1

Q1 ⇒ Q

R ⇒ R1

G1 ⇒ G e1 ⊑ e

R1; G1 ⊢ s : P1 → Q1 · e1

R; G ⊢ s : P → Q · e

[M-yield]

P ⇒ G

Q = Yield(P, R)
R; G ⊢ yield : P → Q · Y

Figure 8 Mover logic proof rules and supporting definitions.

The two-store postcondition Q ⊆ Tid × Store × Store relates σ0 to the post-store σ′ of s.
Many of the mover logic rules are extensions of Hoare logic incorporating reduction effects.

For example, the rule [M-seq] states that a sequential composition (s1; s2) commutes as e1; e2,
the sequential composition of the effects of its sub-statements, and that the precondition and
postcondition are related as follows:

yield○ ○ s2 ○ … ○… ○ s1 ○
P

Q2

Q1

The rule [M-skip] indicates that skip has no effect, so its precondition and postcondition
are identical. The rule [M-wrong] verifies that wrong is never executed via the unsatisfiable
precondition ∅. That is, this rule rejects any program that may execute wrong from any state.
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Function Specification Syntax

fn_spec ::= atomic e requires S ensures Q

| relies R guarantees G requires S ensures T

Proof Rules for Function Definitions and Calls

⊢ fn

[M-def-atomic]
f() is not (directly or indirectly) recursive

∅; ∅ ⊢ s : Two(S) → Q · e

⊢ atomic e

requires S ensures Q f() { s }

… …○ ○ ○ … ○

Q
S

… ○ … ○

s

[M-def-non-atomic]
R; G ⊢ s : Two(S) → Two(T ) · R G ̸= ∅

⊢ relies R guarantees G

requires S ensures T f() { s }

○ … ○ yield ○ … ○… ○ yield ○

Q1 R* Q2 R* Q3

S T

(⇒G) (⇒G) 

s

(⇒I) 

R; G ⊢ s : P → Q · e

[M-call-atomic]
atomic e

requires S ensures Q f() { s } ∈ D

Post(P ) ⇒ S

R; G ⊢ f() : P → (P ; Q) · e

… f()○ ○yield○ ○ … ○

P;Q
P

S
Q

[M-call-non-atomic]
relies R guarantees G

requires S ensures T f() { s } ∈ D

R; G ⊢ f() : Two(S) → Two(T ) · R

… f()○ ○yield○ ○ … ○

P
S

(⇒I) 
T

Verification of States

⊢ Σ
[M-state]

∀fn ∈ D. ⊢ fn M is valid I ⇒ G

∀t ∈ Tid.

[
R; G ⊢ st : Pt → Qt · et and et ̸= E and Qt ⇒ G

and st is yielding and (t, σ, σ) ∈ Pt

]
∀t, u ∈ Tid. t ̸= u ⇒ (G[tid := t] ⇒ R[tid := u])

⊢ s1..sn · σ

Figure 9 Mover logic proof rules for function definition, calls, and run-time states.
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The rule [M-action] computes the effect of action A from states σ satisfying the current
precondition P . That rule uses the function to compute this effect:

M(A, P ) def=
⊔

(t,_,σ)∈P

M(A, t, σ)

(Note that we are overloading M here.) The postcondition of A is then the precondition
P sequentially composed with the action A, i.e. P ; A. A key technical requirement of the
reduction theorem is that once an atomic block R∗[N]L∗ enters its post-commit (or left-mover
part), then it must terminate. It cannot block or diverge [24].8 Hence, we require that A is
total if it is a left-mover. We place similar restrictions on loops.

The rule [M-if] requires both the true case (A1; s1) and the false case (A2; s2) to have
the same post-condition Q. The effect e is the maximal effect of executing either A1 followed
by s1 or A2 followed by s2. The rule [M-while] for while A1⋄A2 s checks that a successful
test followed by the body preserves precondition P , which functions as a loop invariant. The
postcondition of the loop is the postcondition of A2 given the precondition P . The effect of
a loop is the iterative closure of the effect of one iteration sequentially composed with the
effect of the loop-terminating test A2.

Consider the loop in spin_lock() in Figure 5. The test !cas(l,0,tid) is the conditional
action I⋄⟨\old(l) = 0 ∧ l = tid⟩l and the loop body is skip. Since P ; I = P , rule [M-skip]
concludes that R; G ⊢ skip : P → P ·B. Further, M(I, P ) = B, because that action accesses no
global variables, and the specification for l indicates that M(⟨\old(l) = 0∧l = tid⟩l, P ) = R.
Thus, e = (B; B)∗; R = R. Also, the postcondition P ; A2 for the loop simplifies to the expected
P [l := tid]. To ensure the left-mover termination requirement, rule [M-while] requires that
e ̸⊑ L. That is, the post-commit part of a reducible sequence cannot contain loops.

The rule [M-yield] for yield first checks that the thread guarantee G includes all possible
behaviors P of the reducible sequence preceding the yield via the antecedent P ⇒ G. The
reducible sequence following the yield starts with postcondition Q = Yield(P, R) which
incorporates repeated thread interference from other threads via the iterated rely assumption
R∗ and then resets each \old(x) value to be the current value of x at the start of the new
reducible sequence.

The rule [M-conseq] extends the consequence rule of RG logic to reduction effects.

8.2 Atomic Functions
Mover logic supports both atomic and non-atomic functions. An atomic function is one
whose code body is reducible (i.e., no yield statements) and has the following form:

atomic e

requires S ensures Q f() { s }

(We elide e in the surface syntax when it is N, as in Figure 3 (right)). The precondition
S ⊆ Tid × Store describes valid initial stores for the function call and must be established by
the caller. The post condition Q ⊆ Tid × Store × Store describes possible final stores, and
it may refer to values of variables on function entry using the \old(x) notation. Since s is

8 To motivate this requirement consider the program (x = 1; while (true) skip; yield) || (assert
x != 1). This program can go wrong because the first thread writes 1 to x. However, the reducible
block containing that write never terminates after performing that write, and that write is not included
in the thread guarantee G. Thus, we require that once a reducible block commits, it must terminate.
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atomic and yield-free, we elide the rely and guarantee components from atomic function
specifications. We require atomic functions to be non-recursive to facilitate the “left-mover
terminates” requirement mentioned above.

To ensure that the function body s conforms to the function’s specification, rule
[M-def-atomic] in Figure 9 first converts S into the two-store precondition Two(S) (in
which \old(x) = x for all variables x) and then verifies the function body s with re-
spect to that precondition. We use the guarantee ∅ to enforce that s is indeed yield-free.
(Rule [M-yield] will always fail if G is ∅, provided that the yield is actually reachable, i.e.
if P ̸= ∅).

The rule [M-call-atomic] for a corresponding call to f() retrieves the above specification
from the declaration table D and then ensures that the precondition P at the call site
implies the callee’s precondition S. That rule uses Post(P ) to first convert P into a one-state
predicate. The postcondition (P ; Q) combines the call precondition P with the two-store
postcondition Q of the callee, as illustrated in the trace to the right of the rule.

8.3 Non-Atomic Functions
Non-atomic function definitions have the following form:

requires R guarantees G

requires S ensures T f() { s }

We include thread rely R and guarantee G components in these function specifications since
non-atomic function may include yield points where thread interference may occur. For
simplicity, we require that non-atomic function calls and returns happen at the start of
a reducible sequence. Consequently, the precondition S ⊆ Tid × Store and postcondition
T ⊆ Tid × Store are both one-store predicates since there is no need to summarize the
preceding reducible sequence.

The rule [M-def-non-atomic] checks that the function body s runs from the precondition
Two(S), possibly via multiple reducible sequences separated by yields, to terminate after a
final yield s in a store satisfying T . Those requirements are enforced by using Two(T ) as
the postcondition for s. Further, the body s should end in a yield, which from the definition
of e1; e2 entails that the effect of s is at most R. At a call site, the rule [M-call-non-atomic]
requires that the current reducible sequence is trivial/empty and meets the function’s one-
store precondition S by requiring the precondition Two(S) prior to the call. The rule also
converts the function’s one-store postcondition T to the two-store predicate Two(T ).

8.4 Verifying States
We now define the verification judgment ⊢ Σ to verify program states Σ = s1..sn · σ. The
rule [M-state] for this judgment in Figure 9 ensures that:

each thread st verifies from a precondition Pt that includes the initial store σ;
any pending behavior Qt at thread termination is published to G;
the thread guarantee G is reflexive;
the guarantee of each thread is contained in the rely assumption of every other thread;
each function definition in the global table D is verifiable; and
that all threads start with a yield statement (to simplify the correctness proof).

A mover specification M makes claims about how steps of one thread commute with
respect to steps of other threads, and mover logic needs to ensure that those claims are
correct. Specifically, we define a mover specification to be valid if:
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1. Right-moving actions can be moved later in a trace without changing the final store.
2. Left-moving actions can be moved earlier in a trace without changing the final store.
3. An action by one thread cannot change the effect of an action in another thread.
4. An action by one thread cannot cause a left-moving action in another thread to block.
We formalize these validity requirements as follows:

▶ Definition 1 (Validity). M is valid if the following four conditions hold for all threads
t ̸= u and A1, A2, σ, σ′:

(1) if M(A1, t, σ) ⊑ R and (t, σ, σ′) ∈ A1 and
M(A2, u, σ′) ⊑ N and (u, σ′, σ′′) ∈ A2,

then there exists σ′′′ such that
(u, σ, σ′′′) ∈ A2 and (t, σ′′′, σ′′) ∈ A1.

A1! !’ A2 !’’

A2! !’’’ A1 !’’

R⇒
A1! !’ A2 !’’
R

(2) if M(A1, t, σ) ⊑ N and (t, σ, σ′) ∈ A1 and
M(A2, u, σ′) ⊑ L and (u, σ′, σ′′) ∈ A2,

then there exists σ′′′ such that
(u, σ, σ′′′) ∈ A2 and (t, σ′′′, σ′′) ∈ A1.

A1! !’ A2 !’’

A2! !’’’ A1 !’’

L⇒
A1! !’ A2 !’’

L

(3) if M(A1, t, σ) ⊑ N and (t, σ, σ′) ∈ A1 and
M(A2, u, σ) = e for some e,

then M(A2, u, σ′) = e.
A1! !’ A2 …

A2! …e

e
⇒A1! !’

A2! …e

(4) if M(A1, t, σ) ⊑ N and (t, σ, σ′) ∈ A1 and
M(A2, u, σ) ⊑ L and (u, σ, σ′′) ∈ A2,

then there exists σ′′′ such that
(u, σ′, σ′′′) ∈ A2 and (t, σ′′, σ′′′) ∈ A1.

A2! !’’L
A1! !’ A2 !’’’

A1 !’’’
⇒

A2! !’’L
A1! !’

8.5 Correctness

The central correctness theorem for mover logic is that verified programs do not go wrong
by, for example, failing an assertion.

▶ Theorem 2 (Soundness). If ⊢ Σ then Σ does not go wrong.

The proof appears in full in the extended version of this paper [20]. The basic structure is as
follows.
1. We first develop an instrumented semantics that enforces the mover specification M and

also that each thread consists of reducible sequences separated by yields.
2. In addition to the usual preemptive scheduler, we also develop a non-preemptive scheduler

for the instrumented semantics that context switches only at yields.
3. We show that the instrumented semantics under the preemptive scheduler behaves the

same as the standard semantics except that it may go wrong more often.
4. We use a reduction theorem to show that programs exhibit the same behavior under the

preemptive and non-preemptive instrumented semantics.
5. Finally, we use a preservation argument [58] to show that verified programs do not go

wrong under the non-preemptive instrumented semantics.
6. The steps above then imply that verified programs do not go wrong under the preemptive

standard semantics.

ECOOP 2024
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9 Related Work

Modular Reasoning
Concurrent software verification introduces a number of scalability challenges that require a
synthesis of various notions of modularity or abstraction to address. For example, procedure-
modular reasoning tackles large code bases by verifying each procedure with respect to a
specification of other procedures in the system. Rely-guarantee logic [33] augments procedure-
modular reasoning with a notion of thread-modular reasoning that accommodates multiple
threads by verifying each thread with respect to a specification of other threads in the system.
As demonstrated in Section 2, systems like RG logic that support procedure-modular and
thread-modular reasoning have great potential, but they are limited by entanglement between
library and client specifications.

To address that limitation, mover logic augments procedure-modular and thread-modular
reasoning with Lipton’s theory of reduction [41]. This complementary form of “interleaving”
modularity limits the number of interleavings that must be considered and enables more
precise procedure specifications for atomic functions.

In other work, separation logic combines procedure-modular reasoning with a notion
of heap-modular reasoning [47, 49], which enables verification of sub-goals while ignoring
irrelevant heap objects. Separation logic has been the foundation for a variety of verification
tools [3, 32, 44]. Concurrent separation logics including, for example [53, 46, 5, 52], extend
those ideas to a concurrent setting. While initially focused on noninterference via disjoint
access and read-only sharing, later work [14, 13] supports more tightly-coupled threads.

Much of the work on concurrent separation logic focuses on resources (e.g., heap locations)
and on ensuring threads access disjoint resources (hence ensuring noninterference). In contrast,
mover logic focuses on commuting actions.

Concurrent separation logic and mover logic also differ in where thread interference
specifications are placed. Concurrent separation logic conveniently merges interference (or
resource footprint) specifications into each method’s precondition, thus enabling the logic to
capture sophisticated resource usage idioms in a concise and elegant manner. Deny-guarantee
reasoning [14] extends concurrent separation logic to focus more on actions rather than
resources. In particular, a method’s precondition can include an “action map” specifying
what actions the method (and its concurrent threads) may perform. This action map is
analogous to our mover specifications. Several projects employ permissions or ownership,
similar to separation logic, to reason about which memory locations are available to different
threads. These include Viper [43] and VerCors [4]. These systems do not support reduction.

An important topic of for future study is how to extend mover logic with a notion of
heap modularity, perhaps similar to the core ideas of concurrent separation logic or dynamic
frames [2, 51, 35]. This body of work may also provide insight into how to develop a
compositional semantics based on mover logic.

Reduction-based Techniques
QED [15] is a program calculus and verification procedure for concurrent programs. It utilizes
iterative reduction and abstraction refinement to increase the size of the blocks that can
be considered serializable regions (at the abstract level). That approach has been shown
to be quite successful for verifying complex concurrent code and has inspired a number of
subsequent verification tools described below. Mover logic is a complementary approach
in that the combination of RG reasoning and reduction enables direct verification of code
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with yield points, without the need to create layers of abstractions. As part of that, mover
logic supports specifying and reasoning about functions that are not atomic, which is not
supported in QED. We also note that QED checks the commutativity properties of an action
via a pairwise check with all other actions in the code, whereas mover logic uses the mover
specification validity check for that purpose.

Several more recent verification tools utilize the same approach of writing a series
of programs related by refinement, abstraction, and reduction. These include the CIVL
verifier [30, 38, 40, 36, 37, 39] and the Armada verifier [42]. They are capable of handling
sophisticated concurrent code, but do require the programmer to write and maintain multiple
versions of the source code. The correctness arguments for these tools have typically been
based on monolithic proofs.

Calvin-R [25] developed a number of early ideas related to reduction and thread-modular
reasoning. The Anchor verifier [19] builds on ideas behind Calvin-R and CIVL to create a
verification technique supporting an executable, object-oriented target language, a variety of
synchronization primitives, and a new notation for specifying the interference between threads
that is the foundation for our mover specifications. While effective at some verification
tasks, Anchor’s correctness arguments are also challenging to understand and build upon.
Further, Anchor is inherently limited to small programs because it inlines nested calls
during verification, with no mechanism for procedure-modular reasoning. Mover logic may
provide a useful foundation for a procedure-modular extension of Anchor.

The difficulty in assessing the strengths and weaknesses of the tools mentioned above
without a robust underlying logic capturing what they do inspired this work. Mover logic
may provide such a foundation, detached from any particular full-scale implementation, that
it is accessible, general, and extensible. We hope implementations based on mover logic will
follow, as the logic clarifies exactly what conditions must be met in reduction-based verifiers
that attempt to integrate modular reasoning in the presence of interference.

Coq-based Techniques

Complementary approaches develop proof frameworks for verifying concurrent programs in
Coq [12]. For example, CCAL [28] provides a compositional semantic model for composing and
verifying the correctness of multithreaded components. CCAL focuses on only rely-guarantee
reasoning [33] and not reduction. CSpec [7] is a Coq library for verifying concurrent systems
modeled in Coq [12] using movers and reduction. While highly expressive, particularly
because additional proof techniques can be added as additional Coq code, users must write
significant Coq code for both specifications and proofs to use such a system. We have focused
on a logic more amenable to fully automatic reasoning. Iris [34] uses higher-order separation
logic to verify correctness of higher-order imperative programs.

Model Checking

An orthogonal approach to software verification utilizes explicit state, exhaustive model
checking. Such approaches have lower programmer overhead than other techniques, but they
are non-modular [16, 10, 11]. Specialized techniques, including reduction [29] and partial-
order methods [27, 26, 48], have been used to limit state-space explosion while checking
concurrent programs. A variety of concurrent software model checkers [8, 59, 45] have
demonstrated the potential of these approaches in constrained settings.

ECOOP 2024
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10 Summary

Over the last two decades, several promising multithreaded program verifiers have leveraged
reduction to verify sophisticated concurrent code including non-blocking algorithms, dynamic
data race detectors, and garbage collectors by leveraging precise, reusable specifications
for atomic functions. The reasoning used by these verifiers, including the notion of which
programs are verifiable, and why the verification process is sound, is unfortunately rather
complex. In contrast, Hoare logic [31] provides an accessible foundation for sequential
verifiers, and RG logic [33] provides a similar foundation for some multithreaded verifiers.

In developing mover logic, we aim to facilitate future research on reduction-based veri-
fication. Mover logic provides a declarative and formal explanation of reduction-based
verification, making it easier to understand which programs are verifiable, or not, and why;
which functions can be specified as atomic; what atomic and non-atomic function specifica-
tions mean; which code blocks are reducible; where yield annotations are required, etc. The
correctness proof for a reduction-based verifier need only show that the verifier follows the
rules of mover logic, a significant simplification over existing proof techniques.

We hope that mover logic inspires the development of more expressive reduction-based
logics and verification tools, potentially supporting features such as objects, data abstraction,
dynamic allocation, dynamic thread creation, and precise frame conditions [2, 51, 35].
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