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Abstract
Join patterns provide a promising approach to the development of concurrent and distributed
message-passing applications. Several variations and implementations have been presented in the
literature – but various aspects remain under-explored: in particular, how to specify a suitable
notion of message matching, how to implement it correctly and efficiently, and how to systematically
evaluate the implementation performance.

In this work we focus on actor-based programming, and study the application of join patterns with
conditional guards (i.e., the most expressive and challenging version of join patterns in literature).
We formalise a novel specification of fair and deterministic join pattern matching, ensuring that older
messages are always consumed if they can be matched. We present a stateful, tree-based join pattern
matching algorithm and prove that it correctly implements our fair and deterministic matching
specification. We present a novel Scala 3 actor library (called JoinActors) that implements our
join pattern formalisation, leveraging macros to provide an intuitive API. Finally, we evaluate the
performance of our implementation, by introducing a systematic benchmarking approach that takes
into account the nuances of join pattern matching (in particular, its sensitivity to input traffic and
complexity of patterns and guards).
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1 Introduction

Programming concurrent and distributed message-passing applications is difficult, espe-
cially in scenarios where multiple concurrent processes need to synchronise and exchange
data when complex conditions are satisfied. The join calculus [8] introduced join patterns,
an intriguing construct for concurrent programming that can help address these scenarios. A
join pattern with conditional guard is reminiscent of a clause in a typical pattern matching
construct: it has the form “J if γ ▷ P” – where J is a message pattern describing a com-
bination of incoming messages and binding zero or more variables, and γ is a guard, i.e., a
boolean expression that may use the variables bound in J . A program using join patterns
can wait until a desired combination of messages arrives (in any order); when some of the
messages are matched by the message pattern J and their payloads satisfy the guard γ, the
process P is executed. We now illustrate programming with join patterns with an example
emerging from an industrial case study where a monitoring program handles a variety of
messages emitted by machines and devices deployed on a factory shop floor. (To illustrate
our proposal, we only show a representative sample of the the actual monitoring application.)

1 def monitor() = Actor[Event, Unit] {
2 receive { (self: ActorRef[Event]) => {
3 case ( Fault(_, fid1, _, ts1),
4 Fix(_, fid2, ts2) ) if fid1 == fid2 =>
5 updateMaintenanceStats(ts1, ts2)
6 Continue
7

8 case ( Fault(mid, fid1, descr, ts1),
9 Fault(_, fid2, _, ts2),

10 Fix(_, fid3, ts3) ) if fid2 == fid3 && ts2 > ts1 + TEN_MIN =>
11 updateMaintenanceStats(ts2, ts3)
12 log(s"Fault ${fid1} ignored for ${(ts2 - ts1) / ONE_MIN} minutes")
13 self ! DelayedFault(mid, fid1, descr, ts1) // For later processing
14 Continue
15

16 case ( DelayedFault(_, fid1, _, ts1),
17 Fix(_, fid2, ts2) ) if fid1 == fid2 =>
18 updateMaintenanceStats(ts1, ts2)
19 Continue
20

21 case Shutdown() => Stop
22 } }
23 }

Listing 1 Simplified factory shop floor maintenance monitor, written using our Scala 3 library
JoinActors (presented in Section 4).
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Example: Monitoring a Factory Shop Floor. The Scala 3 Listing 1 is structured as an
actor [1] that uses our join patterns library JoinActors (as introduced in Section 4). Its
coding style is reminiscent of popular libraries like Akka and Pekko.1 The constructor
Actor[Event, Unit] (line 1) means that the actor’s mailbox receives messages of type Event
(which has various subtypes), and whenever the actor stops running, it yields a Unit value.
The “receive { ... }” block (lines 2–22) executes whenever messages are received, binding
“self” to a reference to the monitor actor itself (usable to send messages to its mailbox).

The monitor actor in Listing 1 is used in a scenario where machines on the factory
shop floor may occasionally require human intervention, so they may emit messages like
Fault(3, 42, "Motion sensor error", 10:31) carrying information such as the machine and
fault identifiers as well as a description and timestamp. When such an event occurs, a
technician is expected to reach the machine and report that the fault is being fixed, by using
a handheld device to emit a message like Fix(35, 42, 10:33) (carrying the worker id, fault
id being fixed, and timestamp).

The key difference between the actor depicted in Listing 1 and a “standard” actor in
libraries like Akka/Pekko lies in their message processing mechanisms. While the latter
can only react to individual messages arriving in its mailbox, the actor in Listing 1 reacts
whenever a combination of messages in its mailbox matches one of the join patterns with
guards specified within its “receive { ... }” block.

The case on lines 3–4 is triggered when the monitor detects in its mailbox both a Fault
and a Fix message referring to the same fault (guard “fid1 == fid2”). In this case,
the messages are removed from the mailbox, the monitor updates certain maintenance
statistics (line 5), and then resumes execution by returning Continue (line 6).
The case on lines 8–10 activates when the monitor sees two Fault message and a Fix
message that handles the most recent fault, with the older fault being emitted more
than 10 minutes earlier (guard “fid2 == fid3 && ts2 > ts1 + TEN_MIN”). In this case, the
monitor also logs a warning and resends the unhandled fault to its own mailbox (as a
DelayedFault) for later processing (lines 12–13);
The case on lines 16–17 is similar to the first case above, except that it consumes the
DelayedFaults emitted by the second case;
The case on line 21 reacts to a Shutdown message by Stopping the monitor.

Notice that the join pattern matching cases do not depend on the order of messages in
the mailbox: for instance, the first and second cases in Listing 1 (lines 3–4, 8–10) can be
triggered even if, due to network delays or temporary partitions, the Fix message reaches the
monitor mailbox before the corresponding Fault.2

The monitor in Listing 1 has a declarative and rather intuitive flavour – but writing it
without a library (like ours) supporting join patterns is much harder. E.g., to just implement
the first and second case (lines 3–4, 8–10), a programmer writing a “regular” Akka/Pekko
actor would need to write code for processing one incoming message at a time, remembering
how many Faults and/or Fixes it has seen thus far, and checking whether any combination
creates a match with the newly-arrived message, and satisfies the guards; this handcrafted
pattern matching logic should not “forget” any message combination, and should also support
messages arriving out-of-order. As the number and complexity of message patterns increases,
the handcrafted pattern matching code can become complicated, bug-prone, and inefficient.

1 https://akka.io/, https://pekko.apache.org/
2 The program in Listing 1 only assumes that each device has an accurate-enough clock, so message

timestamps can be compared (with some tolerance) to determine which event happened first.
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Open Problems. Although promising, join patterns are still subject of research and their
adoption has yet to become “mainstream” in programming. In this work we tackle three
aspects that, we believe, have been under-explored thus far.

1. Formalising how a join pattern matching construct should select messages when multiple
options are available. Existing work (both theoretical and implementation-oriented,
discussed in Section 2) leaves the message selection unspecified (i.e., allowing for non-
determinism in the matching semantics), or follows a “first matching pattern wins”
approach – which may cause older messages to be “forgotten” in the mailbox to the
advantage of newer messages (we will discuss this in Section 3). This may yield “unfairness”
towards the messages in the mailbox: a message in the box is perpetually neglected when
“newer” messages are used in the matching.3

2. Implementing join patterns with guards in a correct and efficient way. Most existing
implementations address message patterns without guards [9, 2, 23, 27, 16]. However,
supporting guards is much harder: finding a combination of messages in a mailbox that
satisfies a guard may require computing up to a factorial number of message combinations,
and in order to reduce such computations, it becomes necessary to maintain the state
of partial matches. Other authors have considered this issue [12, 20, 22] – but unlike
us, they have either not provided a specific notion of matching nor demonstrated that
their optimisation approaches (if any) correctly adhere to a desired matching specification
(see problem 1 above). In fact, the papers [12, 20] do not define a notion of “preferred
matching” while such a notion is mentioned in the doctoral thesis [21] without a formal
definition nor proof of the properties of their algorithm.

3. Systematically evaluating join pattern matching performance. The performance of join
pattern matching is highly dependant on the input message traffic and on the complexity
of patterns and guards – but these aspects have not been systematically explored, and
there is no standardised benchmarking suite for join pattern implementations (akin to
Savina [13] for actor implementations). For instance, the measurements in [27] focus on
classic synchronisation problems, with simple patterns, and without guards.

Contributions and Structure of the Paper. We address the aforementioned challenges by
presenting a novel formalisation and implementation of join pattern matching with guards.
After the background and related work (Section 2), we introduce our contributions.

In Section 3, we present a formal specification of fair and deterministic join pattern match-
ing guaranteeing that oldest messages are always consumed if they can be used (Defs. 3.8
and 3.10). We also introduce a stateful tree-based matching algorithm (Defs. 3.20 and 3.23),
and we prove that it respects the formal specification of fair matching (Theorem 3.25).
In Section 4 we present JoinActors, our Scala 3 library for actors with join patterns,
including both a “brute-force” and a stateful tree-based implementation of our determ-
inistic fair matching semantics. JoinActors uses macros to provide an intuitive API.
JoinActors is the companion artifact of this paper.
In Section 5 we evaluate the relative performance of the matching algorithms implemented
in JoinActors, including (in Section 5.6) a comparison with an alternative implementation
of our fair matching policy that uses the RETE algorithm [6]. Our evaluation explores
variations of the input traffic and the complexity of join patterns and guards: we see this

3 This can be considered a form of fairness of instruction according to the terminology in [11].
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as a step towards a standardised and systematic benchmarking approach for future join
pattern implementations. Overall, our experiments show that the performance of our
implementation of the stateful tree-based matching is suitable for applications like floor
shop monitoring (described above) or smart house automation (described in Section 5.3).

We conclude and discuss our future work in Section 6 – including alternative matching
policies. In this work we have chosen to formalise a “oldest messages first” matching policy
because it fits many scenarios – in particular, our factory shop floor monitor (where, as in many
application domains, a “first-arrived-first-served policy” is required, and non-deterministic
matching would be inadequate), and the examples we could find in literature.

2 Background and Related Work

The Join calculus [8], emerging in the late 1990s as a variant of the asynchronous pi-calculus,
aimed at enhancing the implementability of process calculi by introducing disciplined rules
regarding locality and scoping. Its distinctive feature is the integration of restriction, recursion,
and synchronization into a single language primitive: the join definition. A join definition
comprises a list of reaction rules of the form J ▷ P , where J is the join pattern and P

is the process associated with the rule. Essentially, a join pattern specifies the message
pattern necessary to activate the process P . For instance, in the construct c1(x) ∧ c2(y) ▷ P ,
we have that c1 and c2 represent communication channels, and the process P is activated
when messages are present in both channels. Hence, if messages like c1(m1) and c2(m2) are
detected, they are consumed, and the process P is executed by substituting the variables
x and y with the corresponding values m1 and m2 (i.e., P is executed as P{m1,m2/x,y}). A
reaction rule can be seen as an evolution of a function definition in a concurrent message-
passing setting: a function activates its body upon invocation from another function, through
variable substitution – whereas a reaction rule J ▷ P activates P only when the join pattern
J is “invoked” by one or more concurrent processes that send the required input messages;
when this happens, P is executed through variable substitution.

Multiple reaction rules can be combined, such as: c1(x) ∧ c2(y) ▷ P1 + c1(z) ∧ c3(w) ▷ P2.
When multiple rules share channels (as c1 in the previous example), there may be conflicting
synchronisations, as rules contend for messages. For example, if channels c1, c2, and c3 in the
previous example have a message available, either P1 or P2 can be activated. Significantly,
all conflicting synchronisations are defined within the same combination of reaction rules:
consequently, all consumers of messages within a channel are locally introduced by a definition,
eliminating the need for global consensus in synchronisation.

Since its inception, the join calculus has inspired implementations in various programming
languages [9, 7, 5, 14, 2, 23, 24, 27]. Early implementation approaches [5] were centered
around matching automata, where join definitions are compiled into deterministic automata.
In this cases, state corresponds to the state of message queues and transitions to the
arrival of messages. Although the foundational principles of this approach have since been
adopted in other implementations [2, 23, 24], newer methods have evolved to avoid the
explicit construction of automata. Initially, most implementations relied on coarse-grained
synchronization to guarantee the atomic consumption of messages. However, this strategy
has been refined [27] by employing fine-grained concurrency for enhanced scalability. This
involves the utilization of lock-free data structures and minimizing message enqueuing
whenever possible. Subsequent optimizations have further been explored in implementations
incorporating session types [10] to prune the size of matching automata.

ECOOP 2024
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The initial implementations adhere to the original join pattern model and not support
pattern matching on consumed values. However, subsequent implementations expanded
matching capabilities. This line of work has been started in [19], where join patterns were
enriched with matching on constant values. This approach has been extended in [16] to
incorporate pattern matching on algebraic data structures. An example of this extended ap-
proach involves message patterns such as pop(e) ∧ stack(x :: xs) where the pattern associated
with the channel stack expects a message containing a non-empty list. In such scenarios,
efficient pattern satisfaction can be achieved by translating these extended join patterns into
equivalent programs. These programs utilize conventional join patterns in their definitions
while incorporating ML-style pattern matching in the processes executed after a join pattern
match. Also, [16] showed that linear message patterns (i.e., where each bound variable occurs
once) without guards can be implemented efficiently by checking bit flags.

The implementation of more expressive forms of pattern matching have been studied
in [12, 20, 22]. These works are conceptually more similar to ours: unlike [16], these works
support join patterns that include conditional guards, i.e., their reaction rules may look like
c1(x) ∧ c2(y) if x < y ▷ P (resembling pattern matching guards in Erlang or Scala); moreover,
these works adapt join patterns to an actor-based setting: in the example above, P is
activated when the mailbox of the running actor contains, e.g., the messages c1(1) and c2(2)
(in any order, and possibly among other messages). The introduction of conditional guards
significantly improves the usability of join patterns, but also significantly complicates the
implementation of join pattern matching; these works adopt different approaches for finding
and selecting a match among incoming messages. Both [12] and [20] adopt a “first-match”
approach [26], i.e., given a combination of reaction rules, they select the first one that
successfully matches the messages in the mailbox; to find that match, [12] adopts a “stateless
brute force” approach (i.e., when the mailbox contains a set of messages that might potentially
be matched by a join pattern, it tries all message combinations), while [20] maintains a
state containing a cache of partial matches, to reduce unnecessary computations. Also, [22]
reportedly adopts a variant of the RETE algorithm [6] to maintain a cache of partial matches
(as a discrimination network) – but its implementation is not publicly available.

In the join calculus, join definitions have non-deterministic matching policies: when
multiple message combinations or patterns are enabled (as we will show in Example 3.5), one
option is chosen non-deterministically. Correspondingly, existing work and implementations
based on join calculus leave matching policies unspecified, or pick the first pattern that
completes a match. However, in scenarios where the message selection policy is critical (as
in our factory automation example in Section 1, where earlier events must be handled first),
the programmer has to encode the selection logic and maintain complex states to achieve
the desired outcome. This paper addresses the issue by formalising fair and deterministic
join pattern matching, inspired by matching mechanisms in functional languages. Drawing
from our real-world factory automation use case, we propose an approach that ensures
fair message consumption based on messages “age.” While other application scenarios may
require different resolution policies, we argue that such policies should be enforced by library
mechanisms. (We discuss some alternative policies in Section 6.) In contrast to prior work,
we emphasise the formalisation of properties guaranteed by the matching mechanism: we
introduce a formal specification of fair matching and prove that a stateful algorithm effectively
implements that specification. We also contribute a comprehensive evaluation, as a first step
toward a standard benchmark suite for join pattern implementations.

An interesting effect-handlers-based language is formalised in [3] to program different
styles of matching across different message streams. Besides a common connection to the join
calculus, a key design difference with our work is that we focus on matching messages within
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an actor mailbox. The resulting features and applications are very different (e.g. a message
in a mailbox may be matched at a later time, after other messages from the same emitter –
which is not possible in a stream-based framework. Also, the work [3] does not address a
notion of fair matching among juxtaposed “joins over asynchronously arriving events” that
compete over the same input messages: in their modelling, no event binding takes precedence
over the other, all iterations proceed independently and concurrently [3, page 67:14-15].

3 Formalisation

In this section we present the formalisation and properties of our approach to join pattern
matching. In Section 3.1 we formalise the necessary notation, and in Section 3.2 we present
a specification of deterministic and fair matching, covering both individual join patterns
(Def. 3.8) and definitions (Def. 3.10). Then, in Section 3.3 we present a stateful matching
algorithm that implements our fair matching specification (Theorem 3.25) while avoiding
unnecessary computations.

3.1 Syntax
To abstractly represent messages, we assume a set C of constructors equipped with a map
arity assigning a natural number to each constructor; then, arity(c) ≥ 0 is the arity of c ∈ C
(c is a constant symbol if arity(c) = 0). A message is either a constructor of arity 0 or a term
of the form c(m1, . . . , mn) where c ∈ C, arity(c) = n > 0, and mi is a message (for i ∈ 1..n).
For instance, for the example in Section 1, Fault(3, 42, "Motion sensor error", 10:31) is
a message, with Fault being a constructor of arity 4 (numbers, strings, and timestamps are
constant symbols represented in the usual way for readability). Through the paper we use
boolean guards as pure expressions denoted with γ, using the syntax of boolean expressions
of Scala; we also use mailboxes denoted as M, as sequences of messages m1 · . . . · mn. We
will also denote variables with the symbols y, w, z, . . .

Intuitively, a join pattern is a combination of “messages with variables” that binds the
variables occurring therein. Multiple alternative join patterns can be composed in a join
definition. In Def. 3.1 we formalise join patterns equipped with guards, and join definitions.

▶ Definition 3.1 (Join patterns and join definitions). The syntax of join patterns Π and join
definitions D is given by the following grammar:

Π ::= J if γ where J ::= µ
∣∣ µ ∧ J and µ ::= m

∣∣ x
∣∣ c(µ1, . . . , µarity(c))

D ::= Π
∣∣ Π + D

We postulate that J if γ must be well-formed, namely: (i) linear, i.e., no variable in J occurs
more than once, and (ii) closed, i.e., each variable occurring in the guard γ also occurs in J .
We will often simply write J as shorthand for J if true.

Assumption (i) in Def. 3.1 is quite standard: e.g., Scala and F# require linear use of pattern
matching variables, and non-linear use can be simulated using guards (see Example 3.2
below). Assumption (ii) does not limit our results: in fact, if a guard contains variables
bound elsewhere in the surrounding program, then all such variables would be substituted
by values (thus “closing” the join pattern) before any match is attempted.

▶ Example 3.2 (Well-formedness of join patterns). The join patterns shown in Example 3.4
(and also in Listing 1) are well-formed, since they are both linear and closed, whereas

Fault(mid1 , fid, descr1 , ts1 ) ∧ Fix(wid2 , fid, ts2 )

ECOOP 2024
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is not-well formed, since the double occurrence of variable fid violates linearity. Intuitively,
repeating fid can be a convenient way to state that the same fault id fid must appear in both
messages. This is not supported by our formalisation – but the same effect can be obtained
by linearising the join pattern: it is sufficient to rename the variables into fid1 and fid2 and
introduce a guard fid1 = fid2 , obtaining the first pattern shown in Example 3.4 below. ⌟

We write {m1,...,mn/x1,...,xn} for a substitution, that is a map that replaces each variable
xi for message mi. A substitution σ can be applied to join patterns and guards; for instance,
the application of the substitution σ = {42/x} to the join pattern J = Message(x), written
Jσ, yields Message(42). Similarly (isOdd(x))σ = isOdd(42).

▶ Remark 3.3. A typical join pattern rule has the form J if γ ▷ P . Following the formalisation
of ML-style pattern matching in [17], we omit the continuation process P to focus on the
matching semantics. Adding continuations P to our formalisation is routine: it would be
enough to apply substitutions σ produced by a match to the omitted process, as Pσ.

Intuitively, a mailbox M = m1 · . . . · mn yields a match for the join pattern Π =
µ1 ∧ . . . ∧ µm if γ in D if there is a substitution σ replacing all the variables in Π with some
of the messages in the mailbox, such that γσ holds true; each message in M can be used
at most once. A variable x matches any message, whereas a message constructor pattern
like Fault(x, 42, y, w) can only match a message built with a corresponding constructor,
like Fault(3, 42, "Sensor error", 10:31) with the substitution {3,”Sensor error”,123456/x,y,w}.
(For the precise matching semantics, see in Section 3.2.) Observe that when all variables in a
join pattern Π are substituted we obtain one or more ∧-separated messages; likewise, when
all variables in a guard γ are substituted, we can evaluate the boolean expression (e.g., a
predicate like γσ = isOdd(42) might evaluate to false).

A join definition D = Π1 + . . . + Πk specifies a pattern matching operation among one
of the join patterns with guards Π1 . . . Πk. This formal notation abstracts the construct
receive {...} shown in Listing 1: each case in the receive {...} is a join pattern in D.

▶ Example 3.4 (Syntax of join definitions). Assuming Fault, Fix ∈ C and adopting the syntax
in Def. 3.1 and of boolean Scala expressions, the first two join patterns in Listing 1 are:

Fault(mid1 , fid1 , descr1 , ts1 ) ∧ Fix(wid2 , fid2 , ts2 ) if fid1 = fid2
+ Fault(mid1 , fid1 , descr1 , ts1 ) ∧ Fault(mid2 , fid2 , descr2 , ts2 )

∧ Fix(wid3 , fid3 , ts3 ) if fid2 = fid3 && ts2 > ts1 + TEN_MIN

where TEN_MIN is a Scala constant representing 10 minutes; for readability, similar constants
are silently assumed throughout our examples. ⌟

3.2 Fair and Deterministic Matching Semantics for Join Patterns
We now define the notion of pattern matching for a join pattern Π = µ1 ∧ . . . ∧ µn if γ. If
we have n = 1 and a single message m, we can apply standard definitions from functional
programming languages [17] and say that Π matches m if there is a substitution σ such that
(i) µ1σ = m, and (ii) γσ evaluates to true. (Clearly, such a match can only happen if σ

substitutes all variables occurring in µ.) Instead, if n > 1 and we have multiple messages
available in a mailbox M, things are more difficult: there may be multiple ways for the
message pattern µ1 ∧ . . . ∧ µn to match different subsets of messages in M while satisfying
the guard γ; moreover, a join definition D might contain several join patterns that match
(part of) the mailbox contents. Example 3.5 illustrates this.
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▶ Example 3.5 (Multiple options for join pattern matching). Let D = Π1 + Π2 where:

Π1 = Fault(id1 , _) ∧ Fix(id2 ) if id1 = id2

Π2 = Fault(_, t1 ) ∧ Fault(id2 , t2 ) ∧ Fix(id3 ) if id2 = id3 && t2 > t1 + TEN_MIN

(observe that D corresponds to the first two cases in Listing 1 modulo the the omission of
unused messages and variables). Suppose we have the following mailbox, where subscripts
show the arrival order of messages (the lower the subscript, the older the message):

M = Fault1(1, 10:35) · Fault2(2, 10:39) · Fault3(3, 10:56) · Fix4(3)

Before message Fix4 lands in the mailbox, none of the join patterns matches any message
combination in the mailbox. Instead, when Fix4 arrives, we have the following options:

the first join pattern matches the messages Fault3 and Fix4, via the substitution
{3,3/id1 ,id2 }
the second join pattern matches both:

messages Fault1, Fault3, and Fix4, via the substitution {3,3,10:35,10:56/id1 ,id3 ,t1 ,t2 };
messages Fault2, Fault3, and Fix4, via the substitution {3,3,10:39,10:56/id1 ,id3 ,t1 ,t2 }. ⌟

Existing implementations of join patterns leave the resolution of non-deterministic choices
unspecified, or pick the first matching pattern as the “winner.” Our approach is different:
we formalise a deterministic matching policy to give programmers control over the selection
process. Consequently, we specify how to deterministically choose the messages matched by
a join pattern in Example 3.5, as well as deterministically decide which join pattern “wins”
when both match messages in the mailbox.

Def. 3.8 below formalises a deterministic and fair notion of join pattern matching: when
a join pattern can match multiple combinations of messages in the mailbox, we prioritise
the combination that consumes the oldest messages. To this end, we first introduce some
notation in Def. 3.6 that we will use to reason about mailbox contents.

▶ Definition 3.6 (Sequence length, indexing, slicing, and ordering). Given a set S and a
sequence S = s1 · . . . · sn containing elements of S, we write |S| for the length of S, ϵ for the
empty sequence, and S[i] with i ∈ 1..|S| for the element at the ith position of S. An indexing
sequence, denoted by I, is a non-empty sequence of pairwise-distinct natural numbers greater
than 0. Given a sequence S and an indexing sequence I = i1 · . . . · in such that ih ∈ 1..|S| for
each h ∈ 1..n, we write S[I] for the I-slice of S, which is the sequence S[i1] · . . . · S[in].

Let S be a set with a total order ⊑. Then, the lexicographic order ≤lex is the relation on
sequences in S∗ inductively defined as: (note that ≤lex only relates sequences of equal length)

ϵ ≤lex ϵ

s ⊑ s′ s ̸= s′

s · S ≤lex s′ · S ′
S ≤lex S ′

s · S ≤lex s · S ′

Letting sort(S) be the function returning the sorted sequence of elements of S based on
the total order ⊑, we also define the sorted length-biased lexicographic order ⩽slex as:

n = |S′| ≤ |S| sort(S)[1 · . . . · n] ⩽lex sort(S ′)
S ⩽slex S ′

We also define =slex as ⩽slex ∩ ⩽−1
slex. Note that ⩽slex is a preorder.

▶ Example 3.7. Using relations ≤lex and ⩽slex in Def. 3.6 on sequences of integers, we have:

1 · 2 · 3 ≤lex 1 · 3 · 2 ≤lex 2 · 1 · 3 ≤lex 2 · 3 · 1 ≤lex 3 · 1 · 2 ≤lex 3 · 2 · 1
1 · 2 · 3 · 4 =slex 4 · 3 · 2 · 1 <slex 1 · 2 · 3
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▶ Definition 3.8 (Fair join pattern matching). We define the following judgements

M |=σ Π the join pattern Π exactly matches mailbox M via substitution σ

M |=I Π the join pattern Π sparsely matches mailbox M via slice I
M |= Π⇝ I the join pattern Π fairly matches mailbox M via slice I

by the following inference rules:

∀i ∈ {1, . . . , n} : µiσ = mi γσ

m1·. . .·mn |=σ µ1 ∧ . . . ∧ µn if γ

M[I] |=σ Π
M |=I Π

M |=I Π ∀I′ : M |=I′ Π =⇒ I ⩽lex I′

M |= Π⇝ I

In Def. 3.8, the judgement M |=σ J if γ holds if J exactly matches all the messages in M
in the same order they occur therein, through a substitution σ such that the guard γσ holds.

This exact matching is used in the premise of judgement M |=I J if γ, which matches
a slice I of the mailbox M: i.e., the message patterns in J may only match a (possibly
reordered) subsequence M[I] of the mailbox M. Notice that the slice I and the pattern
J contain the same number of messages. Finally, the judgement M |= J if γ ⇝ I selects
the smallest slice I of M w.r.t the order ⩽lex in Def. 3.6 such that M |=I J if γ holds. The
selected slice I represents the “fairest” possible match: I indexes the oldest messages in M
that match J and satisfy the guard γ. This matching policy ensures that no message is left
indefinitely in the mailbox if it can be used to match the join pattern. Note that, if two
slices I and I ′ in the premise of the judgement contain the same indexes in different order
(i.e., they may be deemed “equally fair”), the ordering ⩽lex deterministically selects the slice
which minimises reordering between messages in M and message patterns in J .

▶ Example 3.9 (Fair join pattern matching). Let Π1, Π2, and M be as in Example 3.5. By
Def. 3.8 we have that:

There is a single match for Π1: M[3 · 4] |=σ Π1 via σ = {3,3/id1 ,id2 }. Hence, we also have
M |=[3·4] Π1 and we also get M |= Π1 ⇝ [3 · 4] (i.e., the fairest way to match the join
pattern Π1 is to consume messages Fault3 and Fix4).
There are two matches for Π2:

M[1 · 3 · 4] |=σ Π2 via σ = {3,3,10:35,10:56/id1 ,id3 ,t1 ,t2 }. Therefore, M |=[1·3·4] Π1;
M[2 · 3 · 4] |=σ Π2 via σ = {3,3,10:39,10:56/id1 ,id3 ,t1 ,t2 }. Therefore, M |=[2·3·4] Π2.

Hence, since 1 · 3 · 4 ≤lex 2 · 3 · 4, we conclude M |= Π2 ⇝ [1 · 3 · 4] (i.e., the fairest way
to match the join pattern Π2 is to consume messages Fault1, Fault3, and Fix4). ⌟

Def. 3.10 concludes this section by extending the notion of fair join pattern matching
(Def. 3.8) to join definitions. The idea is that if a mailbox M allows for multiple fair matches
on different patterns in a join definition D, we pick the ith join pattern in D that matches
M via the slice I with the highest number of oldest messages w.r.t. the alternatives; and
if two patterns in D yield equally fair matches, we pick the first in D. Since join patterns
in D may match slices of different length, we rank the matches using ⩽slex (Def. 3.6). This
approach makes the choice of patterns deterministic, while ensuring fairness.

▶ Definition 3.10 (Matching of join definitions). The judgement M |= D⇝ I, i (read: “D
fairly matches mailbox M via slice I by its ith join pattern”) is defined as:

Matches =
{

(I, i)
∣∣ i ∈ {1, . . . , n} and M |= Πi ⇝ I

}
(I, i) ∈ Matches ∀(I ′, i′) ∈ Matches : I <slex I ′ or (I =slex I ′ and i ≤ i′)

M |= Π1 + Π2 + . . . + Πn ⇝ I, i
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▶ Example 3.11 (Selecting the fairest match across join definitions (1)). Continuing Ex-
ample 3.9, we can now apply Def. 3.10 to determine the fairest match for the join patterns
sum D = Π1 + Π2. Since we have both:

M |= Π1 ⇝ [3 · 4] and M |= Π2 ⇝ [1 · 3 · 4]

we rank the selected slices as 1 · 3 · 4 <slex 3 · 4 (by Def. 3.6), i.e., the slice matched by Π2 is
fairer than the slice matched by Π1. Therefore, we conclude M |= D⇝ (1 · 3 · 4), 2. ⌟

▶ Example 3.12 (Selecting the fairest match across join definitions (2)). To see why the
relation ⩽slex (Def. 3.6) considers the lexicographical ordering of sorted sequences, consider
this variation of Example 3.5:

Fault(id1 , _) ∧ Fix(id2 ) if id1 = id2
+ Fix(id3 ) ∧ Fault(_, t1 ) ∧ Fault(id2 , t2 ) if id2 = id3 && t2 > t1 + TEN_MIN

Let Π1 and Π2 be the two join patterns above. Take the same mailbox M used in
Example 3.5. Observe that the message pattern constructors in Π2 are reordered w.r.t. Ex-
ample 3.5 – and therefore, we now have M |= Π2 ⇝ [4 · 1 · 3] (i.e., the fairest match of Π2
now consumes the slice 4 · 1 · 3 of M). Intuitively, this slice is lexicographically greater than
the fairest slice 3 · 4 matched by Π1 – but the slice 4 · 1 · 3 consumes the older message
at index 1. For this reason, by Def. 3.6 we have 4 · 1 · 3 =slex 1 · 3 · 4 <slex 3 · 4 – and
consequently, the fairest match of Π2 is ranked fairer than the fairest match of Π1. As a
result, we obtain M |= D⇝ (4 · 1 · 3), 2 (by Def. 3.10) – i.e., despite the reordering of the
message pattern constructors in Π2, we match the same messages of Example 3.11 (albeit
with a differently-ordered slice). ⌟

3.3 Stateful, Tree-Based Matching Semantics for Join Patterns
Def. 3.8 offers a high-level specification for our notion of “fair matching” – but this definition
does not automatically lead to an efficient implementation. To the contrary, the direct
implementation of Def. 3.8 is a “stateless” brute-force algorithm that, whenever a new
message reaches the mailbox: (i) enumerates all possible matches; (ii) lexicographically
sorts the matches satisfying the guard γ, depending on the messages they use; and (iii)
picks the match on the smallest mailbox slice (using the lexicographical ordering ⩽lex in
Def. 3.6). This may require computing up to n! message combinations for a mailbox of length
n, every time a new message arrives. A similar brute-force approach is adopted in previous
implementations of join patterns in literature [12]. A source of inefficiency is that many
message combinations may be uselessly recomputed and retried when a new message arrives,
even if such combinations have previously failed by falsifying the guard γ. Furthermore,
when a new message yields two or more possible matches, finding the fairest one may lead to
redundant computations. These issues are illustrated in Examples 3.13 and 3.14 below.

▶ Example 3.13 (Redundant matching computations). Consider the join pattern Π1 from
Example 3.5 (recall that Π1 = Fault(id1 , _) ∧ Fix(id2 ) if id1 = id2 ), and the following
mailbox, where a message Fix1 (emitted by a factory worker’s handheld device) is delivered
to the monitor before the corresponding Fault4 (emitted by a machine):

M = Fix1(3) · Fault2(1, 10:35) · Fault3(2, 10:36) · Fault4(3, 10:37)

We have to search for a match every time a new message lands in the mailbox:
Π1 cannot match message Fix1 alone;
when the message Fault2 is delivered, the Π1 matches Fix1 · Fault2 – but the guard
id1 = id2 is not satisfied;
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when the message Fault3 is delivered, the Π1 can match Fix1 · Fault2 · Fault3 in two
possible ways using the combinations (Fix1, Fault2) and (Fix1, Fault3), neither of which
satisfies the guard – note that (Fix1, Fault2) has already been attempted;
when the message Fault4 is delivered, the Π1 matches Fix1 ·Fault2 ·Fault3 ·Fault4 in a third
possible way besides the previous two: in fact, the combination (Fix1, Fault4) satisfies
the guard – again note that the two failing combinations were already attempted. ⌟

▶ Example 3.14 (Redundant fairness computations). Consider Π2 and mailbox M from
Example 3.5:

Π2 = Fault(_, t1 ) ∧ Fault(id2 , t2 ) ∧ Fix(id3 ) if id2 = id3 ∧ t2 > t1 + TEN_MIN

M = Fault1(1, 10:35) · Fault2(2, 10:39) · Fault3(3, 10:56) · Fix4(3)

When the message Fix4 lands in M, the join pattern Π2 matches two combinations of
messages (as previously shown in Example 3.9), and they should be compared to determine
the fairest. However, as soon as we determine that the combination (Fault1, Fault3, Fix4)
satisfies the guard, it is redundant to try and compare other combinations – because none of
them consumes the message Fault1, hence they cannot possibly be fairer, by Def. 3.8. ⌟

We present an algorithm to tackle these inefficiencies based on a stateful solution. Our
algorithm keeps track of how the messages in a mailbox M can partially match a join
pattern Π, through a tree structure whose nodes contains sets of message indexes in M,
decorated with information on how such messages may complete Π. The way the tree is
incrementally constructed allows us to (1) avoid recomputing previously-failed matches, and
(2) immediately produce the fairest match (if it exists) via a depth-first traversal.

We use mailbox trees (m-trees) (Def. 3.15) to arrange integers (representing the indexes of
the messages in a mailbox) into sets that form the nodes of a tree, so that, for each branch
(X, Y ) in the tree, the child node Y is a superset of its parent node X and max X < max Y .

▶ Definition 3.15 (Mailbox trees). A mailbox tree on a finite set of natural number I (m-tree
on I for short) is a tree T = (N, E) where:

N ⊆ 2I is the set of nodes and ∅ ∈ N is the root the tree
the cardinality of each node equals its level in T and, for nodes X and Y at the same
level, X ∩ Y = ∅ and X precedes Y if max X ≤ max Y

for each edge (X, Y ) ∈ E, X ⊂ Y and max Y ̸∈ X.
We write X ∈ T if X is a node of T and i ∈ T if there is X ∈ T such that i ∈ X. An m-tree
T on I is consistent when, for each level h > 0 of T ,

⋃
{X ∈ T

∣∣ X is at level h} = I.

The “ramification” operation (Def. 3.16 below) is used to incrementally extend an m-tree
by adding the index i of a new messages that has landed in a mailbox.

▶ Definition 3.16 (Ramification). Given a tree T = (N, E) where the elements of N are
subsets of numbers, and given a natural number i ̸∈ T , let:

N ′ = N ∪ {X ∪ {i}
∣∣ X ∈ N} and E′ = E ∪ {(Y \ {max Y }, Y )

∣∣ Y ∈ N ′}

Then, we call r(T , i) = (N ′, E′) the ramification of T with i.

Note that the ramification of a tree T has twice as many nodes as T . Also, the construction
of m-trees does not depend on the order in which messages indexes are added, as shown in
Proposition 3.17 below. This allows us to abbreviate r(. . . r(T , i1), . . . , in) as r(T , {i1, . . . , in}).

▶ Proposition 3.17. Ramification is a commutative internal operation on m-trees.
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Proof. That ramification is internal on m-trees follows by construction given how edges are
extended in Def. 3.16. Commutativity follows by induction on the structure of T . ◀

In Def. 3.20 below we decorate each node X in an m-tree with assignments that use
the messages indexed by X to fill the variables in a join pattern. But first, we need some
auxiliary constructions.

Given a mailbox M and a join pattern J if γ with J = µ1 ∧ . . . ∧ µp, we define the function
c : {1, . . . , p} → 2{1,...,|M|} that maps each i ∈ {1, . . . , p} to the set of indexes of messages in
M that match µi; formally,

c(i) =
{

j ∈ 1..|M|
∣∣∣ there is a substitution σ such that µiσ = M[j]

}
(1)

Also, an M-assignment for J is an injective map a : {1, . . . , p} → {1, . . . , |M|} such that
i ∈ c(i) for all 1 ≤ i ≤ p. Let asgn(M, J) be the set of all M-assignments for J . (Note
that asgn(M, J) = ∅ if |M| < p.) The next Proposition 3.18 ensures that each assignment
has a unique substitution induced by the matching; such a substitution can be effectively
computed since the proof of Proposition 3.18 is constructive.

▶ Proposition 3.18. For each a ∈ asgn(M, µ1 ∧ . . . ∧ µp) there is a unique substitution σa
such that M[a(i)] = µiσa, for all i ∈ {1, . . . , p}.

Proof. Since each variable occurs at most once in µ1 ∧ . . . ∧ µp (by well-formedness, Def. 3.1),
it suffices to take σa =

⋃
i∈{1,...,p} σi where M[a(i)] = µiσi for all i ∈ {1, . . . , p}. ◀

An assignment a ∈ asgn(M, J) is valid for the guard γ if γσa evaluates to true (with σa from
Proposition 3.18).

▶ Example 3.19 (Assignments). Let Π1 and M as in Example 3.13. We have c(1) =
{2, 3, 4} and c(2) = {1}, the assignment a such that a(1) = 4 and a(2) = 1 belongs to
asgn(M, Fault(id1 , _) ∧ Fix(id2 )) and it is valid for the guard id1 = id2 while for a[3/1]
(the update of a mapping 1 to 3) we have a[1 7→ 3] ∈ asgn(M, Fault(id1 , _) ∧ Fix(id2 )) and
a[1 7→ 3] is not valid for id1 = id2 . ⌟

We are now ready to introduce assignment trees.

▶ Definition 3.20 (Assignment trees, pattern resolution). The assignment tree of a join pattern
J if γ w.r.t. mailbox M is the pair (T , a) where, letting I = c({1, . . . , p}) with c as in (1),

T = (N, E) is the subtree up-to level p of r(({∅}, ∅), I), the m-tree on I and
the map of candidate assignments a : N → 2asgn(M,J) is such that, for each node X ∈ N ,

a(X) = {a ∈ asgn(M, J)
∣∣ a is valid for γ and cod a = X}

Let t(M, J if γ) denote the assignment tree of J if γ w.r.t M. Pattern J is resolved in M if
there is a leaf X in t(M, J if γ) such that a(X) ̸= ∅.

Proposition 3.21 below is a soundess result: the assignment tree for mailbox M and join
pattern Π only contains combinations of message indexes from M that can contribute to
matching Π. Instead, Theorem 3.22 is a completeness result: it says that if an assignment
matches a join pattern Π for mailbox M, then the m-tree of M contains a node made of
exactly the messages used by that assignement. Taken together, these two results guarantee
that, if we inspect assignment trees to find possible matches for Π in mailbox M, we can only
find possible matches (soundness), and we will not miss any possible match (completeness).
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▶ Proposition 3.21. The assignment tree t(M, Π) is consistent.

Proof. The union of nodes of the same level but 0 yields c({1, . . . , p}). ◀

▶ Theorem 3.22. For all a ∈ asgn(M, J), cod a ∈ t(M, J if γ).

Proof. Assume J = µ1 ∧ . . . ∧ µp and proceed by induction on p using Def. 3.16. ◀

We now need to rank the assignments in an m-tree to align with our “fair matching”
policy (Def. 3.8). To this end, we define the total order ⪯ on asgn(M, J) as follows:

a ⪯ a′ if ⟨a(1) · ... · a(p)⟩ ≤lex ⟨a′(1) · ... · a′(p)⟩ where J = µ1 ∧ . . . ∧ µp (2)

Now, Def. 3.23 below formalises how a join pattern is “fairly” resolved in an assignment tree.
Observe that, crucially, Def. 3.23 only considers the first node in a depth-first traversal of
the assignment tree that yields some candidate assignments. This allows our algorithm to
find the fairest matches first, and avoid unnecessary traversals.

▶ Definition 3.23 (Fair resolution). Let X be the first node in a depth-first visit of the
assignment tree t(M, J if γ) at level p whose candidate assignment map a is non-empty. The
fair resolution of t(M, J if γ) is the minimal assignment in a(X) w.r.t pre-order ⪯ in (2).

Note that Def. 3.23 univocally identifies a fair resolution when a join pattern matches
multiple slices, as shown in Example 3.24 below.

▶ Example 3.24. Let Π1 be as in Example 3.5 and consider the mailbox:

Fault1(3, 10:35) · Fault2(2, 10:39) · Fault3(3, 10:56) · Fix4(3)

The assignments a =
{

1 7→ 1
2 7→ 4 and a′ =

{
1 7→ 3
2 7→ 4 are valid (observe that σa ̸= σa′), and their

fair resolution is a, since a ⪯ a′. ⌟

Finally, Theorem 3.25 below shows that the tree-based algorithm correctly computes the
fair join pattern matching according to Def. 3.8.

▶ Theorem 3.25. Let Π = J if γ with J = µ1 ∧ . . . ∧ µp, then M |= Π⇝ I if and only if the
fair resolution a of t(M, Π) is such that I = a(1) · . . . · a(p).

Proof. ( =⇒ ) Let M[I] = m1 · . . . · mp. By Def. 3.8, there is substitution σ such that
γσ holds and µiσ = mi for all i ∈ {1, . . . , p} and any other slice with this property is
greater than I. Let a be the assignment such that a(i) = I[i] for all i ∈ {1, . . . , p}. By
construction, a ∈ asgn(M, J), hence cod a ∈ t(M, J if γ) by Theorem 3.22. Let a′ be the
resolution of t(M, J if γ). By definition a′ ⪯ a which, by (2), is equivalent to say that
⟨a′(1) · ... · a′(p)⟩ ≤lex ⟨a(1) · ... · a(p)⟩. We then have the thesis since a = a′ because we also
have ⟨a(1) · ... · a(p)⟩ ≤lex ⟨a′(1) · ... · a′(p)⟩ by hypothesis.

( ⇐= ) Let I ′ be such that M |= Π ⇝ I ′, map a be the resolution of t(M, Π), and
I = [a(1) · ... · a(p)]. We have M |=I Π since M[I] |=σa Π by construction. Therefore
I ′ ≤lex I by Def. 3.8 and the codomain of the assignment a′ such that a′(i) = I ′[i] for
all i ∈ {1, . . . , p} belongs to t(M, Π) by Theorem 3.22. Let Y ∈ t(M, Π) containing this
codomain and X ∈ t(M, Π) be such that cod a ∈ X. We have the following cases: either
X precedes Y , or Y precedes X, or else X = Y . In the first case, if max X < max Y then
I ′ ̸= I and I ′ ≤lex I, which contradicts the hypothesis M |= Π ⇝ I. In the second case,
if max Y < max X then I ′ ≠ I and I ≤lex I ′, which contradicts the fact that a′ is the
resolution of t(M, Π). It must therefore be X = Y which implies a′ = a. ◀
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4 Implementation: the JoinActors Library

We now present JoinActors, our actor-based implementation of join patterns and fair
matching algorithms in the Scala 3 programming language. JoinActors is the companion
artifact of this paper, and its latest version is available at:

https://github.com/a-y-man/join-actors

In Section 4.1 we provide an overview of the join patterns API, and the main components
of the library and motivation behind the choice of Scala 3. In Section 4.2 we present the
implementation of the stateful tree-based matching, and in Section 4.3 we describe our
prototype actor framework with fair join pattern matching.

4.1 Overview

The API of JoinActors allows programmers to write join patterns using (almost-)standard
Scala pattern-matching syntax (as shown in the code snippet in Listing 1); at compile-time,
the pattern matching code is transformed (using metaprogramming) into an internal data
structure that is used by the matching algorithms to perform the join pattern matching.
To use the library, the programmer calls the receive function (which is actually a macro)
passing join patterns as regular Scala 3 pattern-matching expressions. This function also
take as a parameter the type of matching algorithm to use. The syntax for join definitions is:

receive { (self: ActorRef[...]) =>
case J1 if γ1 => RHS1

case J2 if γ2 => RHS2 ... }

We selected Scala 3 for our join pattern library because its macros allow us to implement a
straightforward API for join patterns, without necessitating specialized syntax or compiler
extensions. This way, programmers can write join patterns using familiar language constructs,
eliminating the need to learn a new language or syntax.

Our library uses a Matcher trait as a common interface to two matching algorithms:
BruteForceMatcher: the brute-force matching algorithm; this is a translation of the
declarative semantics with no state management, described in Section 3.2;
StatefulTreeMatcher: the stateful tree-based matching algorithm described in Section 3.3.

4.2 Implementing Stateful Tree-based Matching

M-trees (Def. 3.15) are the basic data structure of the our algorithm which are the cornerstone
to build assignment trees (Def. 3.20). Given a join pattern Π = J if γ with J = µ1 ∧ . . . ∧ µp

and a mailbox M, our implementation lazily builds t(M, Π) using the ramification operation
(Def. 3.16) starting from the tree (∅, ∅) and incrementally extending it in depth-first order.
When the messages of M indexed by a leaf X at level p complete Π, we check the guard γ:

if γ is satisfied by an assignment induced by X, we report the match, and remove the
matched messages from M and from the assignment tree (stopping its ramification);
otherwise, we optimise the tree by pruning the leaf X, and continue its ramification.

If no match is found, we wait for a new message to land in the mailbox, and repeat.

▶ Example 4.1 (Assignment tree construction). The assignment trees for Π1, Π2, and M in
Example 3.5 are pictorially shown below:
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∅

{Fault1}{1}

{Fault1, Fix4}{1,2} ×
{Fault2}{1}

{Fault2, Fix4}{1,2} ×
{Fault3}{1}

{Fault3, Fix4}{1,2} ✓

{Fix3}{1}

∅

{Fault1}{1,2}

{Fault1, Fault2}{1,2}

{Fault1, Fault2, Fix4}{1,2,3} ✓

{Fault1, Fault3}{1,2}

{Fault1, Fault3, Fix4}{1,2,3}

{Fault2}{1,2}

{Fault2, Fault3}{1,2}

{Fault2, Fault3, Fix4}{1,2,3}

{Fault3}{1,2}

{Fault3, Fix4}{1,2,3}

{Fix4}{3}

For readability we show
the messages with their in-
dexes in the nodes; we
also decorate the nodes
with the positions in the
join pattern that match
the node contents (e.g.,
in the leftmost tree, the
node {Fault1, Fix4}{1,2}
contains messages that fit
in the positions 1 and 2 of
Π1).

Leaves yielding a successful match (i.e., a combination of messages that complete the message
pattern and satisfy its guard) are marked with green solid box and symbol ✓. Leaves
where messages completes the join pattern without satisfying its guard are marked with
red dashed boxes and symbol ×; such leaves are immediately pruned from the tree once
computed. Leaves in dotted boxes are other potential message matches – which are not
actually computed, because an earlier successful match is found while lazily ramifying the
tree (and the earlier match is fairer than the later potential match). ⌟

In the implementation, the M-trees are represented using the TreeMap4 data structure: it
is a sorted map that takes an ordering on the keys, and for the ordering we use Def. 3.6. We
use the following data structure types:

type PatternBins = TreeMap[PatternIdxs, MessageIdxs] is a map from the positions of
the patterns to the indices of the messages that match the pattern. These are the
subscripts of the nodes in the trees of Example 4.1, where we associate the index of
a message to the index of the pattern matching it. If a join pattern contains several
messages with the same constructor (such as Fault in Π2 in Example 4.1) then these
messages will be grouped in the same bin where the key is the sequence of indices of
the join pattern and the value will be the sequence of indices of the matched messages
from the mailbox. For instance, the pattern bin of the leaf node with green solid box
{Fault1, Fault2Fix4}{1,2,3} in the rightmost tree in Example 4.1 would be represented as
[[1, 2] 7→ [1, 2], [3] 7→ [4]].
type MatchingTree = TreeMap[MessageIdxs, PatternBins] is a map from the indices of
the messages that have been matched so far to the PatternBins. Thus, the leaf node
with green solid box in the rightmost tree in Example 4.1 would have the matching tree
[1, 2, 4] 7→ [[1, 2] 7→ [1, 2], [3] 7→ [4]].

Note that these data structures contain only the indices of the partially-matched messages
and patterns. The guard is checked only when a leaf node is completed (as described above).

4.3 Prototype Actor Framework
To showcase our join patterns implementation in the actor concurrency model, JoinActors
offers a prototype actor framework in Scala. Notably, our implementation requires Java 21 or
later to run due to the use of virtual threads. We use LinkedTransferQueues as the mailbox
implementation, and ActorRef objects for sending messages into a mailbox.

4 https://scala-lang.org/api/3.x/scala/collection/immutable/TreeMap.html

https://scala-lang.org/api/3.x/scala/collection/immutable/TreeMap.html
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1 class Actor[M, T](private val matcher: Matcher[M, Result[T]]):
2 private val mailbox = LinkedTransferQueue[M]
3 val self = ActorRef(mailbox)
4

5 def start(): (Future[T], ActorRef[M]) =
6 val promise = Promise[T]
7 ec.execute(() => run(promise))
8 (promise.future, self)
9

10 @tailrec
11 private def run(promise: Promise[T]): Unit =
12 matcher(mailbox)(self) match
13 case Continue => run(promise)
14 case Stop(value) => promise.success(value)

Listing 2 The Actor class implementation in the JoinActors library.

In Listing 2 (line 1) the actor’s constructor takes a Matcher instance as a parameter. The
run method processes the messages in the mailbox using the matcher instance built by the
receive macro, which may be either a BruteForceMatcher or a StatefulTreeMatcher instance.
Depending on the result of the right-hand side of the join pattern, the actor either continues
processing messages or stops and returns a result.

5 Evaluation

In this section we present the evaluation of our implementation of join patterns and the
matching algorithms. In Section 5.1 we describe the methodology used to evaluate the
performance of the algorithms. In Section 5.2 we present the results of the custom synthetic
benchmarks. In Section 5.3 we present the results of a smart house benchmark. In Section 5.4
we present the results of a bounded buffer benchmark. In Section 5.5 we analyse the
correlation between the size of the actor mailbox and the size of the m-trees. In Section 5.6
we compare our implementation of the tree-based fair matching algorithm with an alternative
implementation based on the RETE algorithm. Overall, our experiments show that:

Our stateful tree-based algorithm outperforms the brute force strategy in “noisy” work-
loads, where messages forming the fairest match are interspersed with random and
non-matching messages. On the contrary, when the messages for the fairest match arrive
consecutively, the brute force strategy outperforms the stateful tree-based one, since
the latter incurs the overhead of building the matching tree. It is worth noticing that
non-noisy workloads are unlikely in distributed or asynchronous scenarios.
Compared to a RETE-based implementation of fair matching, our tree-based algorithm
avoids unnecessary production of matches (as it directly picks the “fairest match”) and
scales better when guards are computationally heavy. However, our tree-based algorithm
implementation is an unoptimised proof-of-concept, and for simple guards may perform
worse than an optimised RETE implementation (as the one we used).
The number of matches per second measured in our experiments also shows that our
implementation of the stateful tree-based matching is suitable for both our floor shop
opening example and the smart house scenario – where the expected input traffic is in
the order of tens of messages per second, with moderate “noise.”
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5.1 Methodology

The lack of a standard benchmark suite for join patterns makes the performance evaluation
non-trivial, as the performance of matching algorithms is highly sensitive to the inputs
(i.e. amount and order of incoming messages), the size of the message patterns, and the
complexity of the guards. Similar sensitivity has been documented e.g. in [15], which compares
the matching algorithms RETE [6] and TREAT [18] in the realm of expert and rule-based
multi-agent systems. Given that our stateful tree-based algorithm is influenced by RETE
and TREAT, our evaluation methodology is inspired by the assessment conducted in [15].

We have devised a set of benchmarks to draw insights into the performance comparison
between our stateful tree-based algorithm and the naïve brute-force algorithm. We also
identify the trade-offs between the two algorithms in different scenarios, i.e., the overhead of
maintaining state versus the overhead of reprocessing messages. To this end, we have created
custom synthetic benchmarks and adapted some benchmarks from the literature, such as
a producers-consumers bounded buffer from the Savina benchmark suite [13] and a smart
house benchmark adapted from [22]. We ran the experiments on a computer with dual Xeon
E5-2687W (8-core, 3.10GHz) and 128GB of memory, with 64-bit GNU/Linux 5.10.27. We
used OpenJDK 21 with default settings, maximum heap size set to 16 GB, and Scala 3.3.3.

5.2 Synthetic Benchmarks

The general setup of each benchmark involves a program with a single actor, which consists
of precisely one join definition, which receives message sent incrementally without delays.
A benchmark execution finishes once the actor has processed all matches for the messages
contained in its mailbox. We start measuring time just before the first message is sent and
stop when the actor halts, so to disregard the time for setting up the actor. The benchmarks
are implemented in Scala 3, and are included in the companion artifact of this paper.

Each experiment is repeated 5 times. The plots in Figs. 1 and 2 are to be read as follows:
the x-axis represents the join pattern size (i.e., the number of messages in the pattern), and
the error bars show the standard deviation of the measurements; the solid lines (measured on
the left y-axis, log scale) show the benchmark completion time; the dashed lines (measured
on the right y-axis, log scale) show the number of matches per second.

The benchmark suite has been crafted to encompass the following three aspects.
1. Pattern size. We have considered actors with pattern sizes ranging from 1 to 6: this

mirrors scenarios found in the literature, where join patterns are usually not very long.
2. Message workload profile. We have benchmarked two kinds of input traffic workload:

(1) a “clean” workload where the messages delivered to the mailbox precisely match the
join pattern; (2) a spectrum of “noisy” workloads, where varying amounts of messages
delivered to the mailbox will not match any pattern. The noise is uniformly interspersed
with matchable messages. The rationale behind this choice is that the first scenario
should favour the brute-force algorithm, as it may minimize the advantages of maintaining
state, allowing us to measure the overhead of state maintenance. Conversely, the second
scenario will require the brute-force algorithm to analyse unusable combinations of
messages, thereby enabling us to measure the benefits of maintaining state.

3. Guard effect. We evaluated actors with join patterns, with and without guards. The
inclusion of patterns with guards is particularly tailored to the main goal of this paper,
which is to assess the benefits of state-based algorithms in the presence of guards.
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Figure 1 Pattern size without guards benchmark: without noise (left) and with noise (right).

5.2.1 Pattern Size and Workload without Guards
The first group of benchmarks compares the performance of brute-force and tree-based
algorithms in cases where actors do not use guards. We consider actors with the following
shape, for size 5 (i.e., a unique join pattern matching case for 5 messages). Note that messages
have no payload, and the only rule has no guard.

1 Actor[SizeMsg, ...] {
2 receive { (_: ActorRef[SizeMsg]) =>
3 { case (A(), B(), C(), D(), E()) => ... }
4 } }

The corresponding benchmark evaluates the performance of such actor when fed with a
stream of messages consisting on 100 repetitions of the sequence A(), B(), C(), D(), E().
Note that the mailbox is fed with messages in the exact order required for the match.

The results of the benchmark, considering actors of size 1 to 6, for both algorithms
are shown in Fig. 1. The plot on the left of Fig. 1 shows that the brute-force approach
significantly outperforms the stateful tree-based approach because the latter has the inherent
overhead to build and to update trees – whereas the brute-force algorithm defers processing
until a sufficient number of messages are received. Due to the nature of the traffic sent to
the actor, the brute-force algorithm immediately finds a match every n messages, where n is
the size of the pattern (e.g., 5 in the code snippet above). Instead, the stateful tree-based
algorithm has to update its tree for each message, and only after n messages will it find a
match and then prune the tree: hence, the retained state is only marginally utilised. However,
as shown in the right plot of Fig. 1, if we change the shape of the messages sent to the actor,
by augmenting the sequence of messages with noise (i.e. messages that do not match the
pattern), the stateful tree-based algorithm outperforms the brute-force algorithm.

5.2.2 Pattern Size and Workload with Guards
The next benchmark addresses the effect of guards. Actors resemble the ones in Section 5.2.1,
but now messages have payload and join patterns are augmented with guards, as follows:

1 Actor[SizeMsg, ...] {
2 receive { (_: ActorRef[SizeMsg]) => {
3 case (A(x), B(y), C(z), D(w), E(a))
4 if x == y && y == z && z == w && w == a => ... }
5 } }

ECOOP 2024
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Figure 2 Benchmark results for varying pattern sizes with guards: without noise (top left),
and with additional noise messages (top right) that cannot be matched by any join pattern. The
bottom plot is a variation where the noise consists of messages that might be potentially matched
by the join patterns, but whose payloads do not satisfy their guard.

As before, we first address the case of “perfect” workload, by feeding the actor with sequences
of messages as A(1), B(1), C(1), D(1), E(1), A(2), B(2), C(2), D(2), E(2), ....

The results of the benchmark are shown in Fig. 2 (top-left). Similarly to the benchmark
without guards, the brute-force algorithm outperforms the stateful tree-based algorithm on
well-behaved input traffic. However, when we augment the sequence of “noise” messages,
the results are similar to the benchmark without guards. Namely, the stateful tree-based
algorithm outperforms the brute-force algorithm. This can be seen in Fig. 2 (top-right).

Moreover, we have performed a variation of this benchmark with a different type of noise:
this time, the sequence of messages sent to the actor is augmented with payloads that do not
satisfy the guard. An example of such a sequence of messages is:
A(1) , A(-3), B(1) , B(-4), C(1) , C(-5), D(1) , D(-6), E(1) , E(-7), A(2) , ...

where only the messages highlighted in green match the pattern.
The benchmark results are shown in Fig. 2 (bottom). The performance of both algorithms

is similar, which aligns with our expectations. Noise messages will always be reprocessed
by both algorithms, as they persist as partial matches in the m-tree and as unprocessed
messages in the brute-force algorithm. These noise messages can only be discarded if they
satisfy the guard condition, which is not the case in this benchmark.

5.3 Smart House Benchmark
This benchmark is a real-world scenario adapted from [22]. In this setup, a single actor
represents the smart house monitor and controller, tasked with managing various smart
devices within a household. Specifically, the actor (1) activates the lights when someone
enters and the ambient light is below 40 lux, and (2) detects arrivals or departures based on
specific message sequences and reacts accordingly. The actor is shown in Listing 3.
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1 Actor[Action, ...] {
2 receive { (selfRef: ActorRef[Action]) =>
3 case (
4 Motion(_: Int, mStatus: Boolean, mRoom: String, t0: Date),
5 AmbientLight(_: Int, value: Int, alRoom: String, t1: Date),
6 Light(_: Int, lStatus: Boolean, lRoom: String, t2: Date)
7 ) if bathroomOccupied(...) => ...
8 case (
9 Motion(_: Int, mStatus0: Boolean, mRoom0: String, t0: Date),

10 Contact(_: Int, cStatus: Boolean, cRoom: String, t1: Date),
11 Motion(_: Int, mStatus1: Boolean, mRoom1: String, t2: Date)
12 ) if occupiedHome(...) => ...
13 case (
14 Motion(_: Int, mStatus0: Boolean, mRoom0: String, t0: Date),
15 Contact(_: Int, cStatus: Boolean, cRoom: String, t1: Date),
16 Motion(_: Int, mStatus1: Boolean, mRoom1: String, t2: Date)
17 ) if emptyHome(...) => ...
18 ...
19 } }

Listing 3 Smart house actor (arguments of predicates in the guards are omitted for readability).
The type annotations in the join patterns are not necessary, but they are included for clarity.

Each of the mentioned scenarios is implemented as a separate join pattern with guards to
ensure the correct behaviour is triggered. The performance evaluation of the implementation
is conducted by measuring the time taken to process a number of messages that activate
the patterns 1000 times, interspersed with a number of random messages intended to mimic
various real-world workloads. When the number of random messages is 0, the smart house
actor receives only exact matches: thus, for a join pattern size of 3, the actor will process
3000 such messages to get 1000 matches. Instead, in the case of 16 random messages, the
actor receives 1000 sequences of messages, each one consisting of 16 random messages plus 3
matching messages distributed throughout the sequence. The benchmark concludes once the
smart house actor has performed the expected 1000 matches.

Fig. 3 shows the results of our experiments: our implementation of the stateful tree-based
algorithm quickly outperforms the naïve brute-force one, as it can quickly reuse partial
matches and discard failed matches – whereas the brute-force algorithm has to compute all
possible matches for each new incoming message. The plot also shows that the tree-based
matching algorithm performs ∼105 matches/sec. on non-noisy traffic (i.e., every input message
is used in a join pattern match), and degrades to ∼102 as more noise is injected in the
input traffic, until ∼90% of the messages are noise. This suggests that the implementation
is suitable for a real-world application where a smart house controller may expect tens of
messages per second with some amount of noise.

5.4 Producers-Consumers Bounded Buffer
This benchmark is an example of a multi-process synchronization problem. The benchmark
involves producers and consumers represented by actors and a buffer actor. The buffer
actor acts as a manager: (1) it monitors whether the data buffer is full or empty; (2) when
consumers request work from an empty buffer, they are placed in a queue until work becomes
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Figure 3 Smart House Benchmark. The x-axis represents the number of random “noise” messages
sent with each group of 3 matchable messages; the solid lines (measured on the left y-axis, log scale)
show the completion time; the dashed lines (measured on the right y-axis, log scale) show the number
of matches per second. For each data point, the smart house actor performs 1000 matches, and the
benchmark is repeated 5 times. The error bars show the standard deviation of the measurements.

available; (3) when producers are prepared to produce data but the buffer is full, they are
queued until space opens up in the buffer; (4) it alerts producers to generate more work
when space becomes available in the data buffer.

Fig. 4 shows the results of the benchmark for a buffer size of 1000. Since the join patterns
of the bounded buffer are simple and without any guards and the messages are well-behaved,
the brute-force algorithm outperforms the stateful tree-based algorithm. The overhead of
maintaining state in the stateful tree-based algorithm is not justified in this case.

5.5 Analysis of Mailbox Size vs. Match Tree Size
We now focus on the relationship between the size of mailboxes and the size of the matching
trees maintained in-memory by our stateful matching algorithm. Our analysis uses the smart
house benchmark according to three different workload scenarios:

No noise: each batch of 3 incoming messages triggers a match, emptying the mailbox
after each match.
50% noise: each batch consists of 3 messages suitable for matching and 3 “noise”
messages that cannot be used in the matching, and thus, just accumulate in the mailbox.
66% noise: each batch consists of 3 messages suitable for matching and 6 “noise” ones.

For each scenario, we send 10 batches of messages, triggering 10 join pattern matches. The
results are collected in Fig. 5, where the plots in the each row correspond to one of our
scenarios. Despite the potential for m-trees to grow exponentially with mailbox size, the plots
show a mostly flat and almost-linear correlation between mailbox size and m-tree size. For
instance, the left plot in the first row of Fig. 5 illustrates the relationship between the number
of messages processed by the actor and both the mailbox and m-tree sizes. Spikes indicate a
join pattern match, leading to message removal and m-tree pruning. The right plot in the
first row further explores the correlation between mailbox and m-tree sizes, demonstrating,
for example, that a mailbox with two messages correlates to an m-tree size of 5-7 nodes,
depending on the messages and applicable join patterns.

The results for the noise scenarios are respectively in the second and third row of Fig. 5:
they show that mailbox and m-tree sizes decrease after each match similarly to the no-noise
scenario. However, “noise” messages accumulate generating partial matches in the m-tree.
Flat lines in the m-tree size plot signify unmatchable messages, leaving m-trees unchanged.
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Figure 4 Producers-consumers bounded buffer benchmark: time to produce and consume data
in a buffer of size 1000 against the number producers and consumers. The solid lines (measured on
the left y-axis, log scale) show the benchmark completion time; the dashed lines (measured on the
right y-axis, log scale) show the number of matches per second. The benchmark is repeated 5 times.
The error bars show the standard deviation of the measurements.

5.6 Comparison with a RETE-based Fair Matching Implementation
In this section we compare our implementation of our stateful tree-based fair join pattern
matching algorithm against an implementation based on the RETE algorithm. The use of
RETE takes inspiration from [28], but here we use the Evrete library for Java.5 To implement
an Evrete-based actor that realises our fair matching policy, we proceed as follows.

1. We set up an Evrete session where:
each incoming message is a modelled as a fact with a unique id (denoting the order of
arrival), and
each pattern matching case is encoded as a rule that Evrete will check against all
combinations of “message facts” in the session. If a combination of “message facts”
satisfies a rule, their message ids are stored in a collection of matches for that rule.

2. We implement an actor (as a JVM virtual thread) that, when a new message arrives:
a. stores the message as a “message fact” in the aforementioned Evrete session,
b. fires the session rules, and
c. if one or more successful matches are produced by any of the rules, then:

i. sorts the collections of successful matches (if any) by fairness (using Def. 3.6 on the
“message fact” ids);

ii. finds the fairest match;
iii. removes from the session all the “message facts” used by such a fairest match; and
iv. clears the collections of successful matches.

A key difference between RETE and our stateful tree-based fair matching algorithm is that
RETE exhaustively computes all possible matches when the rules are fired, and such matches
must be sorted to find the fairest (see item 2(c)i above). Instead, our algorithm only computes
matches “on demand” by finding the fairest first, through a lazy depth-first traversal of the
match tree. This suggests that our tree-based fair matching algorithm is computationally less
expensive than the RETE-based implementation outlined above. However, the comparative
benchmarks are also influenced by multiple implementation differences:

5 https://www.evrete.org
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Figure 5 Mailbox size against the size of the matching tree: sizes based on the number of
processed messages (left column) and mailbox/tree size correlation (right column).

our implementation of tree-based fair matching is a proof-of-concept, is not optimised,
is single-threaded, and is almost completely written in functional Scala. In particular,
adding partial matches to the m-tree is a rather expensive operation, because the m-tree
is currently implemented as an immutable data structure;
instead, Evrete is being developed since 2020 and is significantly optimised, multi-threaded,
and written in imperative Java using high-performance mutable data structures.

Consequently, Evrete can produce a significantly higher amount of matches-per-second
w.r.t. our implementation – and thus, its exhaustive production of matches can be often
faster than our “on-demand, fairest-first” production.

For these reasons, we have designed a benchmark (based on the “smart house” in
Section 5.3) that discriminates the computational characteristics of our tree-based fair
matching algorithm and the Evrete-based implementation, despite implementation differences:
1. we send n groups of “prefix” messages that create a partial match for a join pattern;
2. then, we send one message that can complete the join pattern with any of the previous

“prefix” messages.
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Figure 6 Comparison of tree-based vs. Evrete-based implementation of fair matching. The x-axis
shows the number of groups of “prefix” messages sent before a completing message. The y-axis
shows the time taken to perform 10 matches.

E.g., for the pattern Motion(. . . ) ∧ AmbientLight(. . . ) ∧ Light(. . . ), we send n times the “prefix”
messages Motion(...), AmbientLight(...) (which partially match the pattern), and finally
we send a message Light(...), which can be combined with any previous “prefix” message
to complete the pattern. In this situation, the Evrete-based implementation will compute
all possible matches and then find the fairest – while our stateful tree-based fair matching
algorithm will immediately produce the fairest match between Light(...) and the oldest
Motion(...), AmbientLight(...) messages. The benchmark measures the time taken to
process up to n groups of messages followed by a completing message. In total, we send
(2n+1)×10 messages, thus triggering 10 matches. We perform two variants of this benchmark:

one with simple guards (the ones used in Section 5.3), and
one where we artificially slow down the time necessary to evaluate the guards, simulating
computationally-intensive “heavy guards” that take ∼0.1 milliseconds to be computed.

The results are shown in Fig. 6. The plot on the left (with “simple” guards) shows
that the Evrete-based implementation of fair matching outperforms our stateful tree-based
implementation. The plot on the right shows that, with “heavy guards”, our stateful tree-
based implementation outperforms the Evrete-based one: this is because our tree-based
algorithm evaluates the “heavy guards” only once (after finding the fairest match), whereas
Evrete computes the “heavy guards” repeatedly, for each possible match contained in the
actor mailbox. Observe that the overall execution time of our algorithm in the plots of Fig. 6
does not change significantly. This suggest that our algorithm is less sensitive to “heavy
guards” than the Evrete-based implementation.

6 Conclusion

We have addressed the problem of formalising and implementing join pattern matching for
actor-based concurrent and distributed systems. We have contributed a novel specification
of fair and deterministic join pattern matching guaranteeing that the oldest messages in an
actor’s mailbox are eventually consumed, if allowed by the patterns. We have presented a
novel stateful tree-based join pattern matching algorithm that avoids wasteful recomputations
across matches, and we have proved that our algorithm correctly implements the fair matching
specification. We have presented a novel actor library for Scala 3 that implements fair join
pattern matching, with both stateless and stateful algorithms. We have presented a systematic
benchmark suite for join-pattern-based systems, and we have applied it to evaluate our
implementation. We have assessed the performance of our stateful tree-based algorithm in
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comparison to the brute-force algorithm and a RETE-based implementation, under various
conditions. The findings reveal a performance trade-off: the brute-force algorithm excels when
dealing with well-behaved workloads, where maintaining state is an unnecessary overhead,
whereas the stateful tree-based algorithm outperforms in scenarios with relative noise in the
input messages (which is to be expected in many real-world applications) and complex guards,
as evidenced in the smart house benchmark. The synthetic benchmarks in Sections 5.2.1
and 5.2.2 underscore the high sensitivity of the matching algorithms to their workload and
guard complexity. These insights should be taken into account when choosing the matching
algorithm, depending on the nature of the application and anticipated workload.

Future work. Our specification of fair join pattern matching includes several design decisions
that may be fine-tuned depending on the application context. E.g., in some settings it may
be better to select the pattern with the longest match, and in some settings it may be useful
to match the newest messages in a mailbox (e.g., if the input traffic volume is too high for
processing every message in real-time). We can specify and implement these alternative
policies with minimal adjustments to our definitions, results, and library implementation:
we plan to study them, and explore other possibilities. Also, ensuring “fair choice” when
multiple join patterns are enabled is another intriguing notion of fairness that would require
a significantly different formalisation of matching semantics; we leave this as future work.

We plan to study the problem of join pattern unreachability, i.e., whether a pattern will
always be preempted by its alternatives. E.g., if a join definition contains the two join patterns
A(x) + A(x) ∧ B(y), the former may be always preferred to the latter, or not, depending on
the nuances of the matching policy across patterns (e.g., first-match vs. longest-match). We
plan to study how to statically verify whether a join pattern is unreachable, and extend our
Scala 3 implementation to issue a compile-time warning when this occurs.

Our evaluation shows that selecting the best-performing strategy for join pattern matching
is not trivial: depending on the expected input traffic and the complexity of the patterns
and guards, stateful matching may be faster than stateless matching, or vice versa. Our
Scala 3 library JoinActors can be easily tweaked to allow programmers choose a specific
matching strategy per pattern; it could also be extended to switch matching strategy “on
the fly” (i.e., between matches), and it could be interesting to study how to automatically
switch strategy depending on input traffic observations. We plan to adapt JoinActors to
let programmers select a suitable matching strategy based on a custom heuristic.

JoinActors is a proof-of-concept prototype, and we plan to heavily optimise it – in
particular, by using a more efficient mutable data structure to represent m-trees, allowing for
faster updates when new messages arrive, and faster traversals for finding the fairest match.
The need for such optimisations is highlighted by the results shown in Section 5.6, and we
plan to study the internals of the Evrete library to inspire future improvements.

We see our evaluation in Section 5 as a first necessary step towards establishing a standard,
comprehensive benchmark suite for existing and future join pattern implementations, in the
spirit of Savina [13] for actor implementations. We will study how to further improve our
benchmark suite, and we welcome feedback and suggestions from the community.
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