
A CFL-Reachability Formulation of
Callsite-Sensitive Pointer Analysis with Built-In
On-The-Fly Call Graph Construction
Dongjie He1 #Ñ

University of New South Wales, Sydney, Australia
Chongqing University, China

Jingbo Lu1 #

University of New South Wales, Sydney, Australia
Shanghai Sectrend Information Technology Co., Ltd, China

Jingling Xue #Ñ

University of New South Wales, Sydney, Australia

Abstract
In object-oriented languages, the traditional CFL-reachability formulation for k-callsite-sensitive
pointer analysis (kCFA) focuses on modeling field accesses and calling contexts, but it relies on a
separate algorithm for call graph construction. This division can result in a loss of precision in
kCFA, a problem that persists even when using the most precise call graphs, whether pre-constructed
or generated on the fly. Moreover, pre-analyses based on this framework aiming to improve the
efficiency of kCFA may inadvertently reduce its precision, due to the framework’s lack of native call
graph construction, essential for precise analysis.

Addressing this gap, this paper introduces a novel CFL-reachability formulation of kCFA for
Java, uniquely integrating on-the-fly call graph construction. This advancement not only addresses
the precision loss inherent in the traditional CFL-reachability-based approach but also enhances its
overall applicability. In a significant secondary contribution, we present the first precision-preserving
pre-analysis to accelerate kCFA. This pre-analysis leverages selective context sensitivity to improve
the efficiency of kCFA without sacrificing its precision. Collectively, these contributions represent a
substantial step forward in pointer analysis, offering both theoretical and practical advancements
that could benefit future developments in the field.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases Pointer Analysis, CFL Reachability, Call Graph Construction

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.18

Supplementary Material Software (Artifact): https://doi.org/10.5281/zenodo.11061892 [15]

Funding ARC Grants DP230102871, DP240103194, and the Fundamental Research Funds for the
Central Universities of Ministry of Education of China (No. 2024CDJXY015).

Acknowledgements We thank the anonymous reviewers for their constructive comments.

1 Introduction

Pointer analysis is fundamental to numerous static analyses, including program understanding,
program verification, security analysis, compiler optimization, and symbolic execution. Over
the past two decades, k-callsite-sensitivity [49], which distinguishes method contexts on their
k-most-recent callsites, has emerged as a prevalent context abstraction in both whole-program
[5, 60, 40] and demand-driven [53, 48, 62] pointer analyses for Java programs.

1 The first two authors contributed equally to this work.

© Dongjie He, Jingbo Lu, and Jingling Xue;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 18; pp. 18:1–18:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dongjiehe@cqu.edu.cn
https://dongjiehe.github.io
https://orcid.org/0000-0003-0304-8942
mailto:jingbo.lu@sectrend.com.cn
https://orcid.org/0000-0003-4070-3942
mailto:jingling@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~jingling/
https://orcid.org/0000-0003-0380-3506
https://doi.org/10.4230/LIPIcs.ECOOP.2024.18
https://doi.org/10.5281/zenodo.11061892
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 CFL-Reachability with On-The-Fly Call Graph Construction

Traditionally, k-callsite-sensitive pointer analysis, abbreviated to kCFA (Control-Flow
Analysis) [49], is either inclusion-based [1] or founded on context-free language (CFL)
reachability [44]. The inclusion-based formulation for kCFA [22, 57] has been incorporated
into several pointer analysis frameworks for Java [40, 59, 60, 5, 17]. In this approach, a
program’s statements are represented as points-to set constraints. The methods’ calling
contexts are delineated by parameterizing these constraints with context abstractions. Often,
the call graph for the program is constructed dynamically, i.e., on the fly to maximize
precision and efficiency [11, 47, 26, 27, 50]. Conversely, the CFL-reachability formulation
for kCFA [53] plays a pivotal role in the development of a diverse array of pointer analysis
algorithms. These include demand-driven pointer/alias analysis [53, 64, 62, 48], context
transformations [57], library-code summarization [48], and selective context-sensitivity [33].
In this approach, a program’s points-to information is determined by resolving a graph
reachability problem within a specifically constructed pointer assignment graph (PAG) [26].
This CFL-reachability formulation involves analyzing the intersection of two context-free
languages (CFLs), denoted as LF C = LF ∩ LC , where LF describes field accesses as balanced
parentheses and LC enforces callsite-sensitivity by matching method calls and returns, also
represented through balanced parentheses [53]. However, this formulation employs a distinct,
external algorithm for call graph construction, further elaborated in Section 2.

In comparison to the inclusion-based approach, the LF C -based CFL-reachability formula-
tion for kCFA suffers from two major limitations, primarily due to its reliance on a separate
algorithm for call graph construction. Firstly, this segregation can lead to a decrease in
precision within kCFA, a problem that persists regardless of whether the call graphs are
pre-constructed or generated on the fly. Secondly, certain pre-analyses, such as Selectx
[33], aim to enhance kCFA’s efficiency through the LF C -based CFL-reachability formulation.
However, these pre-analyses might unintentionally compromise its precision, undermining
the overall effectiveness of the pointer analysis.

The primary contribution of this research lies in addressing the aforementioned limitations
by introducing a new CFL-reachability formulation of kCFA. This novel formulation, for the
first time, demonstrates the feasibility of specifying kCFA entirely through CFL-reachability,
eliminating the need for a separate call graph algorithm. Our approach utilizes three CFLs,
LDCR = LD ∩ LC ∩ LR, within a new PAG framework. Here, LD extends beyond field
accesses (as in LF ) to include dynamic dispatch, LC maintains callsite-sensitivity as per
previous formulation [53], and LR introduces support for parameter passing required by
its built-in on-the-fly call graph construction. Theoretically, we demonstrate for the first
time that kCFA can be characterized as a specific type of context-sensitive language – the
intersection of multiple CFLs. This is a notable distinction, as not all context-sensitive
languages can be expressed in this manner [31, 25], underscoring the uniqueness of our
approach. The subsequent sections will delve into the challenges of designing LDCR and
provide insights into our formulation’s underpinnings.

As a secondary contribution of this research, we demonstrate the practical utility of LDCR

by introducing P3Ctx, the first precision-preserving pre-analysis designed to accelerate kCFA
in Java programs. Given the critical importance of precision in tasks such as software security
analysis, our approach distinguishes itself as the preferable option. It provides a speed
advantage without sacrificing precision. P3Ctx employs an LDCR-enabled selective context-
sensitivity technique, further substantiating the correctness of LDCR. In contrast, Selectx
[33], developed based on LF C [53], invariably encounters precision loss, thus underscoring
the superiority of our approach.



D. He, J. Lu, and J. Xue 18:3

x = new T // O ctx ∈ MethodCtx(M)
⟨O, ⌈ctx⌉hk⟩ ∈ PTS(x, ctx)

[I-New]
x = y ctx ∈ MethodCtx(M)

PTS(y, ctx) ⊆ PTS(x, ctx)
[I-Assign]

x = y.f ctx ∈ MethodCtx(M)
⟨O, htx⟩ ∈ PTS(y, ctx)

PTS(O.f, htx) ⊆ PTS(x, ctx)
[I-Load]

x.f = y ctx ∈ MethodCtx(M)
⟨O, htx⟩ ∈ PTS(x, ctx)

PTS(y, ctx) ⊆ PTS(O.f, htx)
[I-Store]

x = m(a1, . . . , an) // c ctx ∈ MethodCtx(M) ctx′ = ⌈c :: ctx⌉k

ctx′ ∈ MethodCtx(m) PTS(retm, ctx′) ⊆ PTS(x, ctx)
∀i ∈ [1, n] : PTS(ai, ctx) ⊆ PTS(pm

i , ctx′)

[I-SCall]

x = r.m(a1, . . . , an) // c ctx ∈ MethodCtx(M) ⟨O, htx⟩ ∈ PTS(r, ctx)
t = DynTypeOf(O) m′ = dispatch(c, t) ctx′ = ⌈c :: ctx⌉k

ctx′ ∈ MethodCtx(m′) PTS(retm′
, ctx′) ⊆ PTS(x, ctx)

⟨O, htx⟩ ∈ PTS(thism′
, ctx′) ∀i ∈ [1, n] : PTS(ai, ctx) ⊆ PTS(pm′

i , ctx′)

[I-VCall]

Figure 1 Inclusion-based formulation (M is the containing method of the statement being analyzed).

In summary, this paper makes the following two major contributions:

A new CFL-reachability formulation of kCFA with built-in call graph construction.

An LDCR-enabled precision-preserving pre-analysis for accelerating kCFA with selective
context-sensitivity. Compared with two state-of-the-art pre-analyses [33, 29], our pre-
analysis enables better efficiency-precision trade-offs in several application scenarios.

The rest of this paper is organized as follows. Section 2 provides background knowledge
and motivates the development of LDCR by highlighting several design challenges. Section 3
introduces LDCR, explaining how these challenges are addressed and offering insights into
its design. Section 4 presents and evaluates, P3Ctx, our LDCR-enabled pre-analysis for
accelerating kCFA. Section 5 discusses related work and Section 6 concludes the paper.

2 Background and Motivation

We start by reviewing the inclusion-based and traditional CFL-reachability LF C formulations
of kCFA (Section 2.1). Next, we use an example to illustrate their approaches to call graph
construction, discuss LF C ’s limitations, and highlight the necessity of and challenges faced
in designing LDCR, a new CFL-reachability formulation with an integrated on-the-fly call
graph construction (Section 2.2).

In our formalization, we consider a simplified Java language with six types of statements:
New for object creation (“x = new T // O”); Assign for variable assignments (“x = y”);
Load for retrieving field values (“x = y.f”); Store for assigning values to fields (“x.f =
y”); Virtual Calls for instance method calls (“x = r.m(a1, . . . , an) // c”); and Static Calls for
static method calls (“x = m(a1, . . . , an) // c”). Here, O identifies the unique abstract object
created by a particular New statement, x and y are local variables, and c identifies a callsite.
For a virtual call r.m(a1, . . . , an), we write thism′ , pm′

i and retm′ as its “this” variable, i-th
parameter and return variable for a virtual method m′ invoked at this callsite, respectively.
For a static call m(a1, . . . , an), only pm

i and retm are relevant. In scenarios where method calls
do not return a value, the flow from retm to x is disregarded.

ECOOP 2024



18:4 CFL-Reachability with On-The-Fly Call Graph Construction

x = new T // O

O
new−−→ x

[P-New]
x = y

y
assign−−−→ x

[P-Assign]
x = y.f

y
load[f]−−−→ x

[P-Load]

x.f = y

y
store[f]−−−−→ x

[P-Store]
x = m(a1, . . . , an) // c

∀ i ∈ [1, n] : ai
assign−−−→

ĉ
pm

i retm assign−−−→
č

x
[P-SCall]

x = r.m(a1, . . . , an) // c m′ is a target of this callsite

r
assign−−−→

ĉ
thism′

retm′ assign−−−→
č

x ∀ i ∈ [1, n] : ai
assign−−−→

ĉ
pm′

i

[P-VCall]

Figure 2 Rules for building the PAG required by LF C .

2.1 Background

2.1.1 Inclusion-based Formulation

Figure 1 gives the rules for such a formulation [22, 51, 57], where several auxiliary functions
are used: (1) MethodCtx maintains the contexts used for analyzing a method, (2) dispatch
resolves a virtual call to a target method, and (3) PTS records the points-to information
found context-sensitively for a variable or an object’s field. In kCFA, context sensitivity
is achieved by parameterizing variables and objects with contexts as modifiers. A calling
context of a method is abstracted by its last k callsites. Given a context ctx = [c1, . . . , cn]
and a context element c, c :: ctx stands for [c, c1, . . . , cn] and ⌈ctx⌉k stands for [c1, . . . , ck].

Let us examine the six rules in Figure 1. In [I-New], hk represents the (heap) context
length for a heap object, typically set as hk = k − 1 [51, 58, 20, 30]. [I-Assign], [I-Load],
and [I-Store] address standard assignments and field accesses. [I-SCall] and [I-VCall]
handle static and virtual calls, respectively. Let us explain [I-VCall] only. In this rule, m′ is
a target method dynamically resolved for a receiver object O (based on its dynamic type
t = DynTypeOf(O)) at callsite c. Thus, this rule is also responsible for performing on-the-fly
call graph construction during the pointer analysis. In its conclusion, ctx′ ∈ MethodCtx(m′)
reveals how the contexts of a method are introduced. Initially, for the program being analyzed,
its entry methods have only the empty context, e.g., MethodCtx(“main”) = {[ ]}. Importantly,
the receiver variable r and the other arguments a1, . . . , an are handled differently: a receiver
object flows only to the method it dispatches, while the objects pointed to by ai(i ∈ [1, n])
flow to all methods dispatched at this callsite.

2.1.2 LF C-based CFL-Reachability Formulation

In LF C [53], kCFA is solved by reasoning about CFL-reachability on a PAG representation [26].
Figure 2 gives six rules for building the PAG. For a PAG edge, its label above indicates whether
it is an assignment or field access. There are two types of assign edges: intra-procedural (for
modeling regular assignments without a below-edge label) and inter-procedural (for modeling
parameter passing with a below-edge label representing a callsite).

In LF C , passing arguments to parameters at both static and virtual callsites is modeled
identically by using inter-procedural assign edges ([P-SCall] and [P-VCall]). For example,
in [P-VCall], ĉ (č) signifies an inter-procedural value-flow entering into (exiting from)
m′ at callsite c, where m′ represents a virtual method discovered by a separate call graph
construction algorithm (either in advance [9, 2, 55] or on the fly [54, 53]). Therefore, ĉ (č) is
also known as an entry (exit) context.



D. He, J. Lu, and J. Xue 18:5

1 class A {
2 void foo(D p) {
3 Object v = p.f;
4 }
5 }
6 class B extends A {
7 void foo(D q) { }
8 }
9 class C extends A {

10 void foo(D r) {}
11 }
12 class D { Object f; }
13 class O { }

14 static void bar(A x, O o) {
15 D d = new D(); // D1
16 d.f = o;
17 x.foo(d); // c3
18 }
19 static void main() {
20 O o1 = new O(); // O1
21 O o2 = new O(); // O2
22 A a = new A(); // A1
23 A b = new B(); // B1
24 bar(a, o1); // c1
25 bar(b, o2); // c2
26 }

Figure 3 A motivating example.

For a PAG edge x
ℓ−→
c

y, its inverse edge, which is omitted in Figure 2 but required by

LF C , is defined as y
ℓ−→
c

x. For a below-edge label ĉ or č, ĉ = č and č = ĉ, implying that the
concepts of entry and exit contexts for inter-procedural assign edges are swapped if they are
traversed inversely.

LF C is defined as the intersection of two distinct CFLs, LF C = LF ∩ LC , with LF

pertaining to the PAG’s above-edge labels and LC to its below-edge labels. LF , a CFL over
ΣLF

, is created from above-edge labels. For each path p in the PAG, LF (p) is a string in
Σ∗

LF
, made by sequentially concatenating p’s above-edge labels. A node v is LF -reachable

from node u if a path p, termed LF -path, exists from u to v such that LF (p) ∈ LF . LC

follows a similar definition, but with ΣLC
comprising below-edge labels.

We give LF and LC below and illustrate both with an example in Section 2.2. LF enforces
field-sensitivity for field accesses by matching stores and loads as balanced parentheses:

flowsto −→ new flows∗

flows −→ assign | store[f] alias load[f]
alias −→ flowsto flowsto

flowsto −→ flows∗ new
flows −→ assign | load[f] alias store[f]

(1)

Note that u alias v iff u flowsto O flowsto v for some object O. In addition, O flowsto v iff
v flowsto O, meaning that flowsto actually represents the standard points-to relation.

LC enforces callsite-sensitivity by matching “calls” and “returns” as balanced parentheses:

realizable −→ exit entry
exit −→ exit balanced | exit č | ϵ

entry −→ entry balanced | entry ĉ | ϵ

balanced −→ balanced balanced | ĉ balanced č | ϵ

(2)

A path p in the PAG of the program is realizable iff p is an LC-path.
Finally, a variable v points to an object O iff there exists an LF C-path p from O to v,

such that LF (p) ∈ LF (p is a flowsto-path) and LC(p) ∈ LC (p is a realizable-path). Ignoring
all balanced contexts, the contexts for v and O can be directly read off from p (Section 3.2.2).

ECOOP 2024



18:6 CFL-Reachability with On-The-Fly Call Graph Construction

Table 1 Points-to results for the program in Figure 3 computed by 2CFA according to Figure 1.

Method Pointers PTS Method Pointers PTS

main()

⟨o1, [ ]⟩ {⟨O1, [ ]⟩}

bar()

⟨x, [c1]⟩ {⟨A1, [ ]⟩}
⟨o2, [ ]⟩ {⟨O2, [ ]⟩} ⟨o, [c1]⟩ {⟨O1, [ ]⟩}
⟨a, [ ]⟩ {⟨A1, [ ]⟩} ⟨d, [c1]⟩ {⟨D1, [c1]⟩}
⟨b, [ ]⟩ {⟨B1, [ ]⟩} ⟨x, [c2]⟩ {⟨B1, [ ]⟩}

B:foo()
⟨this, [c3, c2]⟩ {⟨B1, [ ]⟩} ⟨o, [c2]⟩ {⟨O2, [ ]⟩}

⟨q, [c3, c2]⟩ {⟨D1, [c2]⟩} ⟨d, [c2]⟩ {⟨D1, [c2]⟩}

A:foo()
⟨this, [c3, c1]⟩ {⟨A1, [ ]⟩} Field Pointers PTS

⟨p, [c3, c1]⟩ {⟨D1, [c1]⟩}
f

⟨D1.f, [c1]⟩ {⟨O1, [ ]⟩}
⟨v, [c3, c1]⟩ {⟨O1, [ ]⟩} ⟨D1.f, [c2]⟩ {⟨O2, [ ]⟩}

2.2 Motivation
We begin with a motivating example (Section 2.2.1) and an inclusion-based framework
featuring on-the-fly call graph construction (Section 2.2.2). We explore the limitations of
LF C without this feature (Section 2.2.3) and the challenges of developing LDCR with it
(Section 2.2.4). Transitioning from LF C to LDCR requires a new PAG representation specific
to LDCR.

2.2.1 Example
In Figure 3, classes A, B, C, D, and O are defined. B and C, subclasses of A, override the foo()
method from A. The notation T:m() represents method m() in class T. The method bar() is
a wrapper, storing the object pointed to by o in D1.f, and then invoking A:foo(), B:foo(),
or C:foo() based on the dynamic type of object x points to. In main(), O1, O2, A1, and B1
are created, in which A1 and O1 (B1 and O2) are passed into bar() as its two arguments at
callsite c1 (c2).

2.2.2 Inclusion-based Formulation
Table 1 lists the points-to results computed for the program in Figure 3 by 2CFA following the
rules in Figure 1. For main(), analyzed under [ ], its points-to relations are obtained trivially.
As for bar(), there are two calling contexts, [c1] and [c2]. Under [c1], we have PTS(x, [c1]) =
{⟨A1, [ ]⟩}, PTS(d, [c1]) = {⟨D1, [c1]⟩}, and PTS(D1.f, [c1]) = PTS(o, [c1]) = {⟨O1, [ ]⟩}. Then
A:foo() is found to be the target invoked by x.foo() at callsite c3 in line 17 ([I-VCall]).
Thus, PTS(p, [c3, c1]) = {⟨D1, [c1]⟩} and PTS(v, [c3, c1]) = {⟨O1, [ ]⟩}. Similarly, when bar()
is analyzed under [c2], we have PTS(x, [c2]) = {⟨B1, [ ]⟩}. Thus, x.foo() at callsite c3 is now
resolved to B:foo(). Note that [I-VCall] supports on-the-fly call graph construction during
the analysis and 2CFA is precise enough by not resolving C:foo() as a spurious target at c3.

2.2.3 LF C-based Formulation
LF C addresses kCFA using a separate call graph construction algorithm. This approach
separates, both conceptually and algorithmically, the parameter passing at a virtual callsite
from the dynamic dispatch process. The limitations arising from this separation are explored
below, considering whether the call graph is pre-constructed or constructed on the fly.

In Figure 3, LF C uses a PAG as shown in Figure 4, constructed with CHA [9], an
imprecise yet fast and sound call graph algorithm. In this scenario, C:foo() is conservatively
marked as a target method at callsite c3 (line 17). However, as explained later, LF C would
exclude such spurious targets when employing a more precise call graph in its analysis.



D. He, J. Lu, and J. Xue 18:7

dD1o

o1O1

o2O2

p

r

v thisA:foo()

thisC:foo()

thisB:foo()q

x

a A1

b B1

new

new

new

new

new

assign

ĉ1

assign
ĉ1

assign
ĉ2

assign

ĉ2
store[f]

ass
ign

ĉ3
assign

ĉ3assign
ĉ3

assign
ĉ3

load[f]

assi
gn

ĉ3

assign

ĉ3

Figure 4 The PAG operated on by LF C for the program given in Figure 3.

We analyze a specific traversal path leading to d, an argument in the call to foo() at
callsite c3 (line 17), originating from O1 in bar(a,o1) under [c1] or O2 in bar(b,o2) under
[c2]. The subsequent task is to assign d to the appropriate parameter, based on the target
method identified at this callsite: p for A:foo(), q for B:foo(), or r for C:foo().

2.2.3.1 Using a Call Graph Constructed in Advance

Even if LF C uses the most precise pre-built call graph, kCFA can still lose precision. For
instance, at callsite c3 (line 17) in Figure 3, both A:foo() and B:foo() are identified as
possible target methods. This means A:foo() is always considered a target method, whether
the call is from bar(a,o1) under [c1] or bar(b,o2) under [c2]. As a result, this scenario
leads to the identification of two LF C-paths:

O1 new−−→ o1
assign−−−→

ĉ1
o

store[f]−−−−→ d new−−→ D1 new−−→ d
assign−−−→

ĉ3
p

load[f]−−−−→ v (3)

O2 new−−→ o2
assign−−−→

ĉ2
o

store[f]−−−−→ d new−−→ D1 new−−→ d
assign−−−→

ĉ3
p

load[f]−−−−→ v (4)

Thus, in this LF C -based pointer analysis, v is concluded to point to both O1 and O2, despite
v actually pointing only to O1 as per 2CFA (Table 1), meaning that O2 is spurious.

LF C ’s precision loss stems from its approach to parameter passing at virtual callsites
([P-VCall]), treating them similarly to static callsites ([P-SCall]) using inter-procedural
assign edges, without accounting for CFL-reachability for specific receiver objects. As a
result, this causes LF C to overlook that the LF C -path in Equation (3) and the LF C -path in
Equation (4) are relevant only when x points to A1 at [c1] and B1 at [c2], respectively.

If LF C uses a less precise call graph, which is pre-built by, say, CHA [9], then C:foo()
will also be identified as a target method at callsite c3 (line 17), leading to r pointing to
D1 spuriously due to D1 new−−→ d

assign−−−→
ĉ3

r. However, r’s points-to set is actually empty as per

2CFA (not listed in Table 1).

2.2.3.2 Using a Call Graph Constructed On the Fly

When d is reached at callsite c3 in line 17 of Figure 3, using a call graph constructed on the
fly as in demand-driven analyses [53, 62, 48], where methods invoked at a virtual callsite
are context-specific, enables us to discern that the path in Equation (3) is an LF C-path,
while that in Equation (4) is not. This precision ensures that v points only to O1. In the
first path, x points to A1 under context [c1], identifying A:foo() as the target at c3. The
path assign−−−→

ĉ3
p

load[f]−−−−→ v confirms that v points to O1. In the second path, reaching d under

[c2] leads to B:foo() at c3 (with x pointing to B1), blocking the same path.
While LF C can address kCFA on-demand more accurately than a pre-built call graph,

precision loss may still occur in scenarios where a callsite has multiple dispatch targets
under a common context. For example, in Figure 5 (where classes E, F, and G are renamed

ECOOP 2024



18:8 CFL-Reachability with On-The-Fly Call Graph Construction

1 class E {
2 void foo(G p) {
3 Object v = p.g;
4 }}
5 class F extends E {
6 void foo(G q) { }
7 }
8 class G { Object g; }
9 G w = new G(); // G1

10 if (...) {
11 E e1 = new E(); // E1
12 w.g = e1;
13 } else {
14 F f1 = new F(); // F1
15 w.g = f1;
16 }
17 E x = w.g;
18 x.foo(null); // c

Figure 5 A small example.

from classes A, B, and D in Figure 3 to prevent name collisions), using a separate call graph
construction algorithm to identify all potential target methods at “x.foo(null)” under any
context results in the discovery of both E:foo() and F:foo(). Subsequent analysis of
CFL-reachability with LF C yields:

E1 new−−→ e1
store[g]−−−−→ w new−−→ G1 new−−→ w

load[g]−−−−→ x
assign−−−→

ĉ
thisE:foo() (5)

F1 new−−→ f1
store[g]−−−−→ w new−−→ G1 new−−→ w

load[g]−−−−→ x
assign−−−→

ĉ
thisE:foo() (6)

Therefore, both E1 and F1 will flow to thisE:foo although F1 is spurious by [I-VCall].
Similarly, both E1 and F1 will flow to thisF:foo with E1 being spurious.

LF C ’s precision loss stems from treating the receiver variable the same as other arguments
([P-VCall] in Figure 2), in contrast to the inclusion-based approach ([I-VCall] in Figure 1).
Attempting to eliminate spurious receiver objects like F1 for E:foo() informally, outside the
specifications of LF C or any call graph construction algorithm, is an ad hoc solution. This
problem has persisted in the LF C on-demand algorithm for kCFA [53], released as part of
the Soot compiler [59] and used by many other researchers [61, 48], in the last 15 years.

2.2.3.3 Discussion

In addressing kCFA, LF C depends on an external algorithm for call graph construction. This
approach not only leads to the precision loss in kCFA as previously mentioned, but also
presents another limitation: LF C is unable to track all value-flow paths involved in method
dispatch, whether the call graph is constructed beforehand or generated on-the-fly.

In analyzing “x.foo(d)” in line 17 of Figure 3, for parameter passing of d at the callsite
as per [I-VCall], it is necessary to first identify methods dispatched on the receiver objects
that x points to, then proceed with parameter passing (from d to p for A:foo(), and d to q
for B:foo()). However, in LF C , parameter passing, achieved through inter-procedural assign
edges ([P-VCall]), is conceptually and algorithmically detached from dynamic dispatch at
the callsite. It does not relate this process via CFL-reachability to its receiver objects, a
limitation also evident in the PAG shown in Figure 4.

The limitations of LF C indicate that its pre-analyses, designed to boost kCFA efficiency,
can unintentionally compromise its precision. For example, Selectx [33] aims to accelerate
kCFA through selective context-sensitivity with LF C , often leading to reduced precision.



D. He, J. Lu, and J. Xue 18:9

2.2.4 LDCR : Challenges and Our Solution
In developing LDCR, it is crucial to facilitate CFL-reachability for parameter passing in line
with kCFA. For a virtual call r.m(a1, . . . , an) at callsite c, passing an argument, denoted a,
to its corresponding parameter p in a yet-to-be-discovered target method m′ under context
C involves establishing a CFL-reachability path in a PAG representation, starting from a,
through receiver variable r for dynamic dispatch (based on the dynamic type of the object
pointed to by r under C), and ending at p. Linking a to r, especially when a ̸= r, is complex.
Additionally, in CFL-reachability, some context elements in C are consumed, i.e., matched
during dynamic dispatch and must be restored for passing a to p under the same context C.
We identify three key challenges in handling this complex parameter-passing task:

CHL1. How do we precisely pass r to the “this” variable of a target method m′ invoked
at callsite c, avoiding the precision loss as illustrated in Figure 5?
CHL2. How do we establish a CFL-reachability path in a PAG representation of the
program from ai to pi, passing through r to trigger dynamic dispatch during parameter
passing, where pi is the i-th parameter of a target method m′ discovered at callsite c
under C?
CHL3. How do we ensure the passage of ai to pi for the target method m′ invoked at
callsite c with a context abstraction that accurately characterizes parameter passing for
callsite c under C?

In our approach, illustrated using our motivating example (Figure 3), LDCR is applied to a
novel PAG representation depicted in Figure 7, distinct from the PAG used by LF C (Figure 4).
In this new formulation, we demonstrate that v points exclusively to O1, attributable to a
unique path from O1 to v:

O1
new[O]−−−−→ o1

assign−−−→
ĉ1

o
store[f]−−−−→ d

new[D]−−−−→ D1
new[D]−−−−→ d

store[1]−−−−→
ĉ3

x
assign−−−→

č1
a

new[A]−−−−→A1

new[A]−−−−→ a
assign−−−→

ĉ1
x

assign−−−→
č3

x#c3
dispatch[A]−−−−−−→

ĉ3
thisA:foo() load[1]−−−−→ p

load[f]−−−−→ v
(7)

The technical specifics of this path will be further elaborated in Section 3.
This path represents the flow of O1 to v through two calls, c1 (line 24) and c3 (line 17).

Focusing on parameter passing of d at c3 under context C = [c1], where A:foo() is the
sole target, LDCR employs a more indirect approach than LF C ’s direct inter-procedural
assign edge d

assign−−−→
ĉ3

p. LDCR dynamically identifies dispatch targets in the path from d to p

using a sequence of PAG edges. To address CHL1, we match new[A] with dispatch[A]. For
CHL2, d is stored in a special field of x to initiate dynamic dispatch, then loaded from
the same field of thisA:foo() into p (highlighted in ). Afterwards, dynamic dispatch under
C = [c1] is performed similarly to LF C (highlighted in ). To tackle CHL3, d is passed to
p under context [c3,c1], where c3 denotes the callsite and c1 the context for A1 flowing into
x (highlighted in ). The importance of the two boxed below-edge labels, ĉ3 and č3 , in
meeting CHL3 will be elaborated upon in Section 3.

3 LDCR : Design and Insights

When tackling a CFL-reachability problem, the selection of CFLs and their corresponding
graph representations are closely interconnected and thoughtfully designed. To separate this
interdependency, we first introduce a new PAG representation for a program, which supports

ECOOP 2024



18:10 CFL-Reachability with On-The-Fly Call Graph Construction

x = new T // O

O
new[T]−−−−→ x

[C-New]
M is an instance method

thisM load[i]−−−→ pM
i

[C-Param]
M is an instance method

retM store[0]−−−−→ thisM
[C-Ret]

x = r.m(a1, . . . , an) // c t <: DeclTypeOf(r) m′ = dispatch(c, t)

∀ i ∈ [1, n] : ai
store[i]−−−−→

ĉ
r r

load[0]−−−−→
č

x r
assign−−−→ r#c r

assign−−−→
č

r#c r#c
dispatch[t]−−−−−−→

ĉ
thism′

[C-VCall]

Figure 6 Rules for building the PAG required by LDCR. [C-Assign], [C-Load], [C-Store] and
[C-SCall] mirror those in Figure 2 and are excluded here to conserve space.

on-the-fly call graph construction (Section 3.1). Following this, we elaborate on LDCR by
detailing our solutions to the three challenges (CHL1 – CHL3) and providing insights into
its design (Section 3.2).

3.1 Pointer Assignment Graph
For representing a program in LDCR, we employ the rules specified in Figure 6 to construct
a PAG. The inverse of a PAG edge x

ℓ−→
c

y, implicitly defined, is y
ℓ−→
c

x, mirroring the
approach in LF C (Section 2.1.2). However, our approach uniquely allows below-edge labels
to be also either ĉ or č , where ĉ = č and č = ĉ , with c denoting a callsite. To initiate
dynamic dispatch at a callsite c, edges with boxed below-edge labels symbolize a novel type
of inter-procedural value-flow entering (indicated by ĉ ) or exiting (marked by č ) a method
at c. These specific boxed below-edge labels are introduced solely for addressing CHL3, and
their significance will be explained in Section 3.2.2.

Our PAG, designed for LDCR, primarily differs from the one for LF C (Figure 2) in handling
virtual callsites. Consequently, [C-Assign], [C-Load], [C-Store], and [C-SCall] are the
same as [P-Assign], [P-Load], [P-Store], and [P-SCall], respectively. The additional
rules in Figure 6 construct PAG edges that facilitate on-the-fly call graph construction at
virtual callsites, addressing CHL1 and CHL2.

In [C-New], O
new[T]−−−−→ x specifically encodes T, the dynamic type of O, to facilitate

dynamic dispatch on O and enable its use as a receiver object, avoiding precision loss as
depicted in Figure 5.

For [C-Param] and [C-Ret], we treat the i-th (non-this) parameter of an instance
method M (denoted as pM

i , with i starting from 1) and its return variable retM as special fields
of thisM, identified by offset i and 0, respectively. This allows the initialization of thisM.0
with a store retM store[0]−−−−→ thisM and a non-this parameter pM

i with a load thisM load[i]−−−→ pM
i .

In [C-VCall], we uniquely handle virtual calls like “x = r.m(a1, . . . , an) //c” differently
from [P-VCall] (Figure 2), using r#c to uniquely identify r at callsite c. There are two
edges between r and r#c: the edge r

assign−−−→ r#c, which is essential for passing the receiver
variable, and the edge r

assign−−−→
č

r#c, which is crucial for passing other arguments during

parameter passing, as will be explained shortly. We initially over-approximate target methods
at c using CHA ([9]), similar to LF C , for later refinement by LDCR. For each target method
m′, the argument ai is passed to the corresponding parameter pm′

i (1 ⩽ i ⩽ n) via a store
ai

store[i]−−−−→
ĉ

r and a matching load thism′ load[i]−−−→ pm′

i ([C-Param]). CFL-reachability under

LDCR involves traversing this store edge to find the dynamic type of each receiver object
pointed by r (marked by ĉ ). The sequence r

assign−−−→
č

r#c
dispatch[t]−−−−−−→

ĉ
thism′ indicates finding

the dynamic type t (marked by č ), enabling dispatch of m′ with ĉ as its entry context (i.e.,



D. He, J. Lu, and J. Xue 18:11

xdD1o

o1O1

o2O2

x#c3

aA1

bB1

thisA:foo() p v

thisB:foo() q

thisC:foo() r

new[O]

new[O]

new[A]

new[B]

new[D]

assign
ĉ1

assign
ĉ1

assign

ĉ2

assign

ĉ2
store[f]

store[1]

ĉ3
assign

č3

assign
dispatch[A]

ĉ3

load[1] load[f]

dispatch[B]

ĉ3

load[1]

dispatch[C]
ĉ3

load[1]

Figure 7 The PAG for LDCR constructed for the program given in Figure 3.

m′ = dispatch(c, t) as desired). A dispatch edge also functions as an assign edge. For the
receiver variable r, we simply use r

assign−−−→ r#c (without the need for relating r to itself).
Finally, x is assigned retm′ (stored in thism′

.0 ([C-Ret])) via a load r
load[0]−−−−→

č
x, with č

marking the conclusion of the dynamic dispatch at callsite c.
Figure 7 illustrates the PAG leveraged by LDCR for our motivating example, as presented

in Figure 3. This PAG, uniquely tailored to support LDCR’s integrated call graph construction,
shows notable differences from the PAG employed by LF C , as depicted in Figure 4.

3.2 LDCR : A New CFL-Reachability Formulation for kCFA
LDCR combines three CFLs (LDCR = LD ∩ LC ∩ LR) for addressing CHL1 – CHL3. LD,
detailed in Section 3.2.1, deals with field accesses and dynamic dispatch, catering to CHL1
and CHL2. LC , defined in Equation (2), ensures callsite-sensitivity using below-edge labels
ΣLC

, which include ĉ and č, and treats LDCR’s unique boxed labels ĉ and č as ϵ. LR,
presented in Section 3.2.2, facilitates parameter passing in on-the-fly call graph construction,
addressing CHL3. The focus will predominantly be on LD and LR, concentrating on
parameter passing, with method returns being similarly handled.

Basic Idea. LDCR, a CFL-reachability formulation, differs from LF C mainly in managing
parameter passing at virtual callsites, enabling LDCR’s built-in call graph construction
compared to LF C ’s reliance on a separate algorithm (Sec. 2.2.3.2). At a virtual callsite
“r.m(a1, . . . , an); //c” under context C, handling the receiver variable r (pointing to receiver
objects) involves addressing CHL1: passing a receiver object to thism′ for dispatch on m′.
In addition, for an argument ai, CHL2 and CHL3 are met by storing ai in r.i, verifying if
any object pointed by r under C matches dynamic type t, dynamically dispatching to m′

(m′ = dispatch(c, t)), and assigning thism′
.i to pm′

i at callsite c under context C. Method
returns are handled in a similar fashion.

▶ Example 1. Revisiting our motivating example (Figure 3) and its PAG (Figure 7), LDCR

ensures a unique path from O1 to v, as shown in Equation (7), so that v points only to O1
when bar() is invoked at c1. The sub-path from O1 to d shows that O1 is stored into d.f,
with d pointing to D1. The sub-path from d to p indicates parameter passing at callsite c3 to p
for A:foo(), dynamically identified by LDCR under C = [c1]. We have discussed addressing
CHL1 – CHL3 at this callsite in Section 2.2.4. We wish to emphasize that ĉ3 and č3
signify dynamic dispatch’s start and end at callsite c3 for d. CFL-reachability traversal
between these markers confirms that x points to A1 under [c1], necessitating a return to x

under [c1]. With receiver object A1, A:foo() is dispatched via x#c3
dispatch[A]−−−−−−→

ĉ3
thisA:foo(),

allowing d to pass to p under [c3, c1]. Unlike LF C [53] that uses [c3], LDCR specifies [c3, c1]
to indicate this occurs only when x points to A1 under [c1]. C:foo(), present in the PAG
due to CHA [9], is filtered out by LDCR’s on-the-fly call graph construction.

ECOOP 2024



18:12 CFL-Reachability with On-The-Fly Call Graph Construction

Let Ldd
F C be a demand-driven formulation of LF C that is identical in all aspects except

for one modification. This version continues to utilize a separate algorithm for on-the-fly call
graph construction, but it has been specifically enhanced to accurately handle parameter
passing for receiver variables, effectively avoiding the precision loss discussed in Section 2.2.3.2.

When developing LDCR, we treat soundness fundamentally as an issue of precision.

▶ Definition 2 (Soundness and Precision of On-the-Fly Call Graph Construction). For any
given callsite and context C, let T be the set of target methods identified under C through
Ldd

F C . Suppose L is a language differing from Ldd
F C solely in managing parameter passing at

virtual callsites. We regard L as sound if it facilitates parameter passing under C for at least
the methods in T , and as precise (besides being sound) if it enables parameter passing under
C for precisely the target methods in T .

We write LDC = LD ∩ LC as the intersection of LD and LC . A path p qualifies as an
LDCR-path if LD(p) ∈ LD, LC(p) ∈ LC , and LR(p) ∈ LR. An LDC -path is defined similarly.
As we will discuss further, LDC is sound yet imprecise, whereas LDCR is precise.

3.2.1 The LD Language
This CFL captures both field-sensitive accesses, similar to LF in Equation (1), and dynamic
dispatch within its language framework:

flowsto −→ new[t] (flows | dispatch[t])∗

flows −→ assign | store[f] alias load[f]

alias −→ flowsto flowsto

flowsto −→ (dispatch[t] | flows)∗ new[t]

flows −→ assign | load[f] alias store[f]

(8)

Here, ΣLD
includes all above-edge labels in the program’s PAG. LD extends LF from

Equation (1) [54, 53] by retaining its balanced parentheses approach for field accesses and
adding support for dynamic dispatch, which facilitates on-the-fly call graph construction.
Next, we describe how LD is specifically designed to address CHL1 and CHL2.

3.2.1.1 CHL1

To address CHL1 regarding parameter passing at a virtual callsite, it is crucial that a
receiver object O, pointed to by its receiver variable, is only passed to the this variable of a
method dispatchable on O. For instance, in x.foo(null) from Figure 5, where x might point
to both E1 and F1, LF C might incorrectly pass both E1 and F1 to thisE:foo(), as shown
in Equations (5) and (6), despite F1 being spurious.Note that Ldd

F C , introduced just before
Definition 2, was specifically conceptualized to mitigate such precision loss.

In LD, we explicitly specify the dynamic types of objects in four terminals: new[t],
new[t], dispatch[t], and dispatch[t]. This modification alters the two LF C -paths discussed in
Equations (5) and (6) for Figure 5 as follows:

E1
new[E]−−−−→ e1

store[g]−−−−→ w
new[G]−−−−→G1

new[G]−−−−→ w
load[g]−−−−→ x

assign−−−→ x#c
dispatch[E]−−−−−−→

ĉ
thisE:foo() (9)

F1
new[F]−−−−→ f1

store[g]−−−−→ w
new[G]−−−−→G1

new[G]−−−−→ w
load[g]−−−−→ x

assign−−−→ x#c
dispatch[E]−−−−−−→

ĉ
thisE:foo() (10)



D. He, J. Lu, and J. Xue 18:13

During a flowsto (flowsto) traversal, the type in dispatch[t] (dispatch[t]) must align with
its corresponding new[t] (new[t]). Thus, the path in Equation (9) qualifies as an LD-
path, as new[E] flows∗ dispatch[E] ∈ LD, but the path in Equation (10) does not as new[F]
flows∗ dispatch[E] /∈ LD. Hence, in LD, F1 cannot spuriously flow to thisE:foo(). Similarly,
in Equation (7), only A1 can be passed to thisA:foo(), as A:foo() is dispatchable on A1.

▶ Lemma 3. Consider a virtual callsite x = r.m(a1, . . . , an). In LD, every receiver object
pointed to by r flows only to the this variable of a method that can be dispatched on the
receiver object.

Proof Sketch. Follows from the definition of LD. ◀

3.2.1.2 CHL2

To meet CHL2 and trigger dynamic dispatch at virtual callsites during parameter passing,
we use LDC = LD ∩ LC . Re-examining the LDCR-path in Equation (7) without ĉ3 and č3 ,
we assess if O1 flows into v starting from c1. Parameter passing for d at “x.foo(d); // c3”
under C = [c1] involves traversing the sub-path from d to p of A:foo(). Starting with

d
store[1]−−−−→ x, a flowsto traversal is initiated via x

assign−−−→
č1

a
new[A]−−−−→A1 under C = [c1], returning

to x via A1
new[A]−−−−→ a

assign−−−→
ĉ1

x, dispatching at c3 through x
assign−−−→ x#c3

dispatch[A]−−−−−−→
ĉ3

thisA:foo(),

and finally passing d to p via thisA:foo() load[1]−−−−→ p. Unlike LF C ’s direct passage of d to p
in Equation (3), LDCR uses a series of edges under [c3,c1], indicating dispatch occurs only
when x points to A1 under [c1].

▶ Lemma 4. LDC is sound in handling parameter passing at virtual callsites.

Proof Sketch. Consider a virtual callsite r.m(a1, . . . , an); // c”, where parameter passing
for an argument occurs under context C. Let T represent the set of target methods identified
on the fly for this callsite under C by applying a separate call graph algorithm as in Ldd

F C .
As r is handled similarly as in Ldd

F C , it suffices to consider parameter passing for a non-this
argument ai. Focusing on ai, LDC initiates dynamic dispatch by locating receiver objects
pointed to by r under also C. Since LDC differs from Ldd

F C only in handling parameter passing
at virtual callsites, the set of target methods found by LDC must include T . In addition, for
each target m′ ∈ T , there always exists a PAG path q:

ai
store[i]−−−−→ r flowsto O flowsto r

assign−−−→ r#c
dispatch[_]−−−−−−→

ĉ
thism′ load[i]−−−→ pm′

i (11)

Here, if u represents “r flowsto O”, then “O flowsto r” is its inverse u. This ensures ai flows pi

by LD and LC(q) ∈ LC by LC . Moreover, LC(q) forms a sequence of contexts feasible under
C, as u is traversed under C. Therefore, by Definition 2, LDC is sound. ◀

3.2.2 The LR Language

LDC , though sound, is not precise. This is illustrated in examples from Figures 8 and 9,
highlighting LDC ’s limitations and underscoring the importance of LR in LDCR.

ECOOP 2024



18:14 CFL-Reachability with On-The-Fly Call Graph Construction

1 static void main() {
2 H h = new H(); // H1
3 I i1 = new I(); // I1
4 I i2 = new I(); // I2
5 h.m(i1); // c4
6 h.n(i2); // c5

7 }
8 class I {}
9 class H {

10 void m(Object p) { ... }
11 void n(Object q) { ... }
12 }

Figure 8 An example for illustrating the imprecision of LDC caused by an incorrect dispatch site.

1 static void main() {
2 J j1 = new J(); // J1
3 K k1 = new K(); // K1
4 K k2 = new K(); // K2
5 K v1 = wid(j1, k1); // c6
6 K v2 = wid(j1, k2); // c7
7 }
8 class K { }

9 class J {
10 K id(K p) {
11 return p;
12 }}
13 static K wid(J j, K k) {
14 K v = j.id(k); // c8
15 return v;
16 }

Figure 9 An example for showing the imprecision of LDC caused by an incorrect dispatch context.

LDC ’s precision loss can occur from a spurious dispatch callsite, shown by the following
two LDC-paths for Figure 8, temporarily ignoring the boxed labels ĉ4 , č4 , and č5 :

I1
new[I]−−−−→ i1

store[1]−−−−→
ĉ4

h
new[H]−−−−→ H1

new[H]−−−−→ h
assign−−−→

č4
h#c4

dispatch[H]−−−−−−→
ĉ4

thism load[1]−−−−→ p (12)

I1
new[I]−−−−→ i1

store[1]−−−−→
ĉ4

h
new[H]−−−−→ H1

new[H]−−−−→ h
assign−−−→

č5
h#c5

dispatch[H]−−−−−−→
ĉ5

thisn load[1]−−−−→ q (13)

Both LDC-paths track I1’s flow in the program’s PAG. The first path correctly leads I1 to
p. However, the second path spuriously directs I1 to q, as the flowsto traversal to identify
a’s receiver object starts at c4 but concludes at c5 spuriously. LR addresses this precision
issue by requiring matched boxed edge labels. As a result, the first path in Equation (12)
is a valid LDCR-path (with ĉ4 matched by č4 ), while the second path in Equation (13) is
invalidated (due to the mismatch of ĉ4 and č5 ).

LDC may also experience precision loss due to a spurious dispatch context. Consider the
following two LDC-paths in the PAG of Figure 9 (by ignoring the boxed labels ĉ8 and č8
for now):

K1
new[K]−−−−→ k1

assign−−−→
ĉ6

k
store[1]−−−−→

ĉ8
j

assign−−−→
č6

j1
new[J]−−−−→ J1

new[J]−−−−→ j1
assign−−−→

ĉ6
j

assign−−−→
č8

j#c8
dispatch[J]−−−−−−→

ĉ8
thisid load[1]−−−−→

p
store[0]−−−−→ thisid dispatch[J]−−−−−−→

č8
j#c8

assign−−−→
ĉ8

j
assign−−−→

č6
j1

new[J]−−−−→ J1
new[J]−−−−→ j1

assign−−−→
ĉ6

j
load[0]−−−−→

č8
v

assign−−−→
č6

v1
(14)

K1
new[K]−−−−→ k1

assign−−−→
ĉ6

k
store[1]−−−−→

ĉ8
j

assign−−−→
č6

j1
new[J]−−−−→ J1

new[J]−−−−→ j1
assign−−−→

ĉ7
j

assign−−−→
č8

j#c8
dispatch[J]−−−−−−→

ĉ8
thisid load[1]−−−−→

p
store[0]−−−−→ thisid dispatch[J]−−−−−−→

č8
j#c8

assign−−−→
ĉ8

j
assign−−−→

č7
j1

new[J]−−−−→ J1
new[J]−−−−→ j1

assign−−−→
ĉ7

j
load[0]−−−−→

č8
v

assign−−−→
č7

v2
(15)

These two LDC-paths in Figure 9 vary only by context: Equation (15) is similar to Equa-
tion (14), but replaces c7 with c6 and v2 with v1. Both track where K1 flows, starting from
“wid(j1,k1); // c6”. According to Equation (14), v1 points to K1 as expected. However,
Equation (15) inaccurately allows K1, passed at c6, to flow into v2 at c7, spuriously indicating



D. He, J. Lu, and J. Xue 18:15

v2 points to K1. Focusing on dynamic dispatch at callsite c8 in line 14 due to the call at
c6 in line 5 (Figure 9), Equation (14) shows that j initially pointing to J1 under [c6] and
maintains this during both flowsto and flowsto traversals from c6. However, Equation (15)
starts similarly but ends with j pointing to J1 under [c7], which is inconsistent with the call
at c6.

In general, LDC may lack precision as it sometimes includes spurious sub-paths for
dynamic dispatch. Consider a generic virtual callsite r.m(a1, . . . , an) // c, LDC initiates
dynamic dispatch by executing the following alias-related traversal on its receiver variable r:

· · · store[i]−−−−→
ĉ

r flowsto O flowsto r′ assign−−−→
č

′
r′#c′ dispatch[_]−−−−−−→

ĉ′
· · · (16)

Such a dispatch path, which starts from ĉ and ends at č′ , is valid if two conditions are met:
DP-C1: c = c′ (implying that r = r′), and
DP-C2: O is pointed by both r and r′ under exactly the same context.

However, LDC can ensure that r and r′ are aliases but cannot guarantee the validity of
this dispatch path. For example, Equation (13) contains a dispatch path violating DP-C1,
and Equation (15) violates DP-C2. To exclude such invalid dispatch paths in LDC -paths, LR

is designed to utilize all below-edge labels in the PAG (i.e., ĉ, č, ĉ , and č ) as terminals:

recoveredCtx −→ recoveredCtx ĉ | recoveredCtx č | recoveredCtx siteRecovered | ϵ

siteRecovered −→ ĉ ctxRecovered č

ctxRecovered −→ matched ctxRecovered | ctxRecovered matched | č ctxRecovered ĉ | ϵ

matched −→ matched matched | ĉ matched č | siteRecovered | ϵ

(17)

Here, ΣLR
includes all below-edge labels in the program’s PAG. The start symbol recoveredCtx

would define a language that contains LC if its third alternative “recoveredCtx
siteRecovered” were changed to “recoveredCtx”. Thus, LR is engaged during a dispatch
path traversal. The siteRecovered production enforces DP-C1, and the ctxRecovered and
matched productions collectively enforce DP-C2. This design enables LR to address CHL3
by reinstating the context of r.

By incorporating LR into LDC , the composite language LDCR = LD ∩ LC ∩ LR achieves
precision in managing parameter passing at virtual callsites. Reexamining the paths in
Equations (14) and (15), with the inclusion of ĉ8 and č8 , it is clear that the first path
qualifies as an LDCR-path, while the second does not. In the first path, the dynamic dispatch
starts at callsite c8 under context [c6] and returns to the same callsite under the same
context, signified by ĉ8 and č8 . Conversely, the second path, while also starting dispatch
at callsite c8 under context [c6], mistakenly returns under a different context, [c7], making
it invalid for LDCR. As a result, LDCR correctly determines that K1 is pointed to by v1, but
not by v2, effectively preventing v2 from pointing to K1 spuriously.

Below, we give a formal development of LR, followed by a proof of LDCR’s precision.
To determine the points-to set of a variable v, PTS(v, cv), using LDC , consider an LC -path

p with label LC(p) = ℓ1, . . . , ℓn, where each ℓi is a context label on an inter-procedural assign
edge. The inverse of p, p, has a label LC(p) = ℓn, . . . , ℓ1. Splitting p into sub-paths pex and
pen, we define LC

ex(p) = LC(pex) and LC
en(p) = LC(pen), with LC(p) = LC

ex(p)LC
en(p).

Here, LC
ex(p) and LC

en(p) are derived from exit and entry in LC ’s grammar (Equation (2)).
For s ∈ LC , B(s) returns s’s canonical form with balanced contexts removed. If c is a string
of exit contexts like č1 . . . čn, E (c) = [c1, . . . , cn] converts it into a context representation,
noting E (ϵ) = [ ].

ECOOP 2024



18:16 CFL-Reachability with On-The-Fly Call Graph Construction

For an LDC -path p from an object O to a variable v, we can clearly deduce the following
points-to relationship, including the specific contexts of O and v:

⟨O, E (B(LC
ex(p)))⟩ ∈ PTS(v, E (B(LC

en(p)))) (18)

▶ Example 5. Let us take pO1,v, the LDC -path from Equation (7), by ignoring ĉ3 and č3 . By
definition, LC(pO1,v) = ĉ1č1ĉ1ĉ3, where pex

O1,v denotes the sub-path from O1 to A1 and pen
O1,v

denotes the sub-path from A1 to v. Thus, LC
ex(pO1,v) = ĉ1č1 and LC

en(pO1,v) = ĉ1ĉ3. Since
E (B(ĉ1č1)) = [ ] and E (B(ĉ1ĉ3)) = E (ĉ1ĉ3) = [c3, c1], we have: ⟨O1, [ ]⟩ ∈ PTS(v, [c3, c1]).

To enforce DP-C1, the production siteRecovered −→ ĉ ctxRecovered č ensures that a
dispatch process starting at a callsite (indicated by ĉ ) concludes at the same callsite (marked
by č ). In the dispatch path from Equation (16), this guarantees c = c′ and r = r′. Thus,
matching ĉ with č allows c to be reinstated at the next dispatch edge, ensuring dynamic
dispatch occurs specifically at callsite c.

To enforce DP-C2, the ctxRecovered- and matched-productions are crucial, with
ctxRecovered
−→ č ctxRecovered ĉ being central. This is best understood through a generic dis-
patch path in Equation (16). DP-C2 can be rephrased as follows. Let pr,O be the flowsto
path from r to O, and its inverse pr,O a flowsto path. Consider pO,r′ as the flowsto path from
O to r′. The path from r to r′ is composed of pr,O pO,r′ or equivalently pex

r,O pen
r,O pex

O,r′ pen
O,r′ .

Applying Equation (18), we deduce:

⟨O, E (B(LC
ex(pr,O)))⟩ ∈ PTS(r, E (B(LC

en(pr,O))))

⟨O, E (B(LC
ex(pO,r′)))⟩ ∈ PTS(r′, E (B(LC

en(pO,r′)))
(19)

As r and r′ are aliases, they must always point to O with exactly the same heap context,
i.e., E (B(LC

ex(pr,O))) = E (B(LC
ex(pO,r′))). Thus, B(B(LC

ex(pr,O))B(LC
ex(pO,r′))) = ϵ

holds, implying the edge labels on path pen
r,O pex

O,r′ must be balanced. Besides, r and r′ are
required to have the same context, i.e., E (B(LC

en(pr,O))) = E (B(LC
en(pO,r′))). Thus, the

following must be true:

B
(
B(LC

en(pO,r′)B(LC
en(pr,O))

)
= ϵ (20)

implying that the edge labels in path pen
O,r′ pex

r,O must be balanced out.
Both the ctxRecovered- and matched- productions in LR play key roles during dis-

patch path traversal, as illustrated in Equation (16). The production ctxRecovered −→
č ctxRecovered ĉ enforces DP-C2 (see Equation (20)), while matched → siteRecovered initiates
traversal of another dispatch path. The other productions help bypass matched contexts
and callsites. In simple terms, for a traversal from r to O (r flowsto O), writing down all
unmatched exit contexts as č1, . . . , čn implies that the unmatched entry contexts seen on the
return from O to r′ (O flowsto r′) should be ĉn, . . . , ĉ1.

Revisiting the two LDC -paths from Equations (14) and (15), as introduced in Section 3.2.2,
the LDC-path in Equation (14) qualifies as an LDCR-path due to its valid dispatch paths.
However, the LDC-path in Equation (15) does not, as its initial dispatch path at callsite
c8 from j to j#c8 is invalid. With B(LC

en(pj,J1)) = č6 and B(LC
en(pJ1,j)) = ĉ7, we find

B(B(LC
en(pJ1,j))B(LC

en(pj,J1))) = ĉ7č6 ̸= ϵ, indicating the path is invalid as č6ĉ7 does
not balance out according to ctxRecovered −→ č ctxRecovered ĉ.

▶ Theorem 1. LDCR is precise in handling parameter passing for virtual callsites.



D. He, J. Lu, and J. Xue 18:17

Proof. Drawing from Lemmas 3 and 4, it suffices to show that for every virtual callsite
“r.m(a1, . . . , an); // c” under context C, LDCR precisely handles parameter passing for the
same target method set T identified at this callsite under C by Ldd

F C ’s call graph algorithm.
This holds as LR filters out only those LDC-paths with invalid dispatch paths. ◀

LDCR achieves the same level of precision as Ldd
F C , thereby ensuring both soundness and

precision in computing points-to information. We now employ LDCR to determine points-
to information in our motivating example (Figure 3), with Equation (18) being relevant
but focusing solely on LDCR-paths in the program’s PAG. Although CHA [9] in the PAG
(Figure 7) broadly predicts target methods at virtual callsites, LDCR’s on-the-fly call graph
construction process efficiently filters out spurious target methods like C:foo().

Finally, let us compare LDCR, a CFL-reachability-based pointer analysis, with kCFA
(Figure 1). While LDCR, like LF C [53], is suited for demand-driven analysis, kCFA is for
whole-program analysis. Their key difference is the starting point: kCFA begins with entry
methods M , including main(), and LDCR with query variables V . Thus, kCFA may not
compute points-to information for variables in V not reachable from M . In terms of precision,
if kCFA determines PTS(v, c) for variable v from M under context c, LDCR can obtain exactly
the same points-to set for v under c according to Equation (18). However, kCFA may overlook
points-to information in the code unreachable from M .

3.3 Time Complexities
The PAG construction shown in Figures 2 and 6 scales linearly with the number of program
statements. Yet, the LDCR-reachability problem, like the LF C-reachability problem [53], is
undecidable due to being an intersection of three interwoven CFLs (LD, LC , LR), making the
combinations of LD ∩ LC , LD ∩ LR, and LC ∩ LR also undecidable [45]. For any individual
CFL language L ∈ {LD, LC , LR}, the reachability problem’s time complexity can reach up
to O(m3n3), where m is the grammar size and n is the number of nodes in the PAG.

Similar to kCFA (Figure 1), which introduces k-limiting to LC in LF C , resulting in a
complexity of O(n3), we can also render the LDCR-reachability problem computable within
polynomial time for practical applications by applying k-limiting to both LC and LR.

4 P3Ctx : An Application of LDCR

In our secondary contribution, we demonstrate the effectiveness of LDCR through P3Ctx,
the first pre-analysis tool powered by LDCR for accelerating kCFA with selective context-
sensitivity, always maintaining its precision. This also confirms LDCR’s correctness. Con-
versely, Selectx [33], an LF C -enabled pre-analysis does not guarantee precision preservation.

4.1 Selective Context-Sensitivity
Selective context sensitivity enhances the efficiency of context-sensitive analyses, maintaining
much of their precision. It applies context-sensitivity selectively to crucial program variables
and objects, treating the rest context-insensitively. Selectx [33], a recent method for select-
ive context-sensitive pointer analysis in kCFA, is built on LF C , an incomplete formulation
dependent on an external call graph construction algorithm. As a result, Selectx inaccur-
ately categorizes some vital variables and objects, causing precision loss. To remedy this, we
introduce P3Ctx, a new LDCR-based pre-analysis technique for selective context-sensitivity
in kCFA, ensuring precision. P3Ctx is developed following the fundamental approach used
in [33] for creating Selectx.

ECOOP 2024



18:18 CFL-Reachability with On-The-Fly Call Graph Construction

4.1.1 CFL-Reachability-Guided Selections
Applying LF C to develop Selectx [33] is straightforward. For a flowsto path pO,n,v in LF C ,
starting from an object O to a variable v via n (a variable or object in method M), consider
pO,n as the segment from O to n, and pn,v from n to v. Then n requires context-sensitivity
in kCFA to avoid potential precision loss only if three conditions are met:

CS-C1 : LF (pO,n,v) ∈ LF

CS-C2 : LC(pO,n) ∈ LC ∧ LC(pn,v) ∈ LC

CS-C3 : Len
C (pO,n) ̸= ϵ ∧ Lex

C (pn,v) ̸= ϵ (21)

where Len
C and Lex

C are from Section 3.2.2. O from outside M flows into n along pO,n context-
sensitively and n flows out of M into v along pn,v context-sensitively, via M’s parameters (or
return variable) along each path. Note that pO,n,v itself is not required to be an LF C-path.

By replacing LF with LD in Equation (21), P3Ctx also determines n to be context-
sensitive if CS-C1– CS-C3 are met. Viewing these conditions as sufficient (rather than merely
necessary) makes both Selectx and P3Ctx conservative, potentially marking some n as
context-sensitive even when kCFA would not lose precision with context-insensitive analysis.
While Selectx could lead to precision loss due to LF C ’s incompleteness, P3Ctx, in contrast,
always preserves precision. This is because LDCR works with a PAG that clearly includes
dispatch paths for all virtual callsites in the program.

▶ Example 6. In our motivating example (Figure 3), whether v spuriously points to O2
hinges on the context sensitivity of d, o, x, and D1 in bar(). Using LF C and analyzing the
PAG in Figure 4, Selectx deems all four as context-insensitive, causing v to erroneously
point to O2 because they cannot flow out of bar() via its parameter x, failing to meet CS-C3.
In LF C ’s PAG, which relies on an external call graph construction algorithm, there are no
dispatch paths for these variables/objects to flow out of bar() through x.

In LDCR, the parameter passing of d at x.foo(d) (line 17) directly relates to x via
CFL-reachability (Figure 7). Consider pO1,n,v in Equation (7), which is an LDCR-path. For
n ∈ {d, o, x, D1}, P3Ctx designates each n as context-sensitive. This decision is because
pO1,n,v qualifies as an LD-path (CS-C1), with both pO1,n and pn,v being LC-paths (CS-C2).
Furthermore, LC

en(pO1,n) = ĉ1 ̸= ϵ and LC
ex(pn,v) = č1 ̸= ϵ, satisfying CS-C3.

4.1.2 Regularization
To make P3Ctx as lightweight as possible so that we can efficiently make context-sensitivity
selections without losing the performance benefits obtained from a subsequent main pointer
analysis, we have decided to keep LC unchanged as done in several earlier pre-analyses
[35, 32, 33] but regularize LD and LR. We first regularize LR to Lr

R as follows:

recoveredCtx −→ recoveredCtx ĉ | recoveredCtx č | recoveredCtx ĉ | recoveredCtx č | ϵ (22)

Thus, LD ∩ LC ∩ Lr
R = LD ∩ LC = LDC . By noting further that the boxed edge labels in

LR
r (i.e., ĉ and č ) are irrelevant to context-sensitivity selections and the regular entry/exit

context labels in LR
r (i.e., ĉ and č) have already been included in LC , we conclude that LR

r

(i.e., LR) can be ignored safely (or conservatively). As LDC ⊇ LDCR (i.e., LDC captures
all the possible value-flows that are captured by LDCR for a given program) according
to Lemma 4, it suffices to use LDC in place of LF C in Equation (21) in developing our
precision-preserving pre-analysis. Like the LF C-reachability problem, the LDC-reachability



D. He, J. Lu, and J. Xue 18:19

problem is also undecidable [45]. Following [33], we regularize LD into LDr and subsequently
over-approximate LDC to obtain LDrC = LDr ∩LC . In Section 4.1.3, we present an algorithm
to verify CS-C1– CS-C3 using LDrC efficiently.

We start with L0 = LD. We first over-approximate L0 by disregarding its field-sensitivity
requirement and thus obtain L1 given below:

flowsto −→ new (flows | dispatch)∗

flows −→ assign | store flowsto flowsto load
flowsto −→ (dispatch | flows)∗ new

flows −→ assign | load flowsto flowsto store

(23)

In the absence of field-sensitivity, a dispatch (dispatch) edge behaves just like an assign
(assign) edge and can thus be interpreted this way. As a result, we obtain L2 below:

flowsto −→ new flows∗

flowsto −→ flows∗ new
flows −→ assign | store flowsto flowsto load
flows −→ assign | load flowsto flowsto store

(24)

Our approximation goes further by treating a load (load) edge as also an assign (assign).
As a result, we will no longer require a store (load) edge to be matched by a load (store) edge.
This will give rise to L3 below:

flowsto −→ new flows∗

flowsto −→ flows∗ new
flows −→ assign | store flowsto flowsto
flows −→ assign | flowsto flowsto store

(25)

Finally, we obtain LDr = L4 given below by no longer distinguishing a store edge from
its inverse, store edge, so that we can represent both types of edges as a store edge:

flowsto −→ new flows∗

flowsto −→ flows∗ new
flows −→ assign | store assign∗ new new
flows −→ assign | new new assign∗ store

(26)

▶ Lemma 1. LD ⊆ LDr .

Proof. Follows from the fact that Li ⊆ Li+1. ◀

While LDr is identical to LR regularized from LF in Selectx [33], our PAG (Figure 6),
which makes dynamic dispatch paths explicitly, differs fundamentally from the one operated
by LF C (Figure 2). This distinction ensures that P3Ctx preserves precision, unlike Selectx.

Let G = (N, E) be the PAG of a program. We use Andersen’s algorithm [1] instead of
CHA [9] to build its call graph in order to sharpen the precision of P3Ctx.

We use a simple DFA shown in Figure 10 to accept LDr exactly. P3Ctx runs inter-
procedurally in linear time of the number of the PAG edges in G. To deal with LC , we use
summary edges added into the PAG (facilitated by the dotted transition labeled as balanced).

ECOOP 2024



18:20 CFL-Reachability with On-The-Fly Call Graph Construction

Ostart

flows flows

newnew
assignass

ign

store

balanced

Figure 10 A DFA for accepting LDr .

4.1.3 P3Ctx
We follow [14] to develop a simple algorithm to verify CS-C1– CS-C3 efficiently based on two
properties that can be easily deduced from the DFA given in Figure 10 as stated below.

Define Q = {O, flows, flows} as the state set and δ : Q × Σ → Q as the transition function.
For each PAG edge n1

ℓ−→ n2 in G, the transition δ(q1, ℓ) = q2 leads to a one-step transition
(n1, q1) ↣ (n2, q2). The multiple-step transition ↣+ is the transitive closure of ↣. The
symmetry of flowsto and flowsto in LDr yields two straightforward properties of this DFA:

PROP-O. Let O be an object created in a method M. Then ⟨thisM, flows⟩↣+ ⟨O, O⟩ ⇐⇒
⟨O, O⟩↣+ ⟨thisM, flows⟩ always holds.
PROP-V. Let v be a variable defined in a method M. Then ⟨thisM, flows⟩↣+ ⟨v, q⟩ ⇐⇒
⟨v, q⟩ ↣+ ⟨thisM, flows⟩ always holds, where q ∈ {flows, flows} (since v is a variable).

To handle static callsites uniformly as virtual callsites, we assume that a static callsite is
invoked on a dummy receiver object. Thus, in our PAG representation (Figure 6), passing
arguments and receiving return values for a method must all flow through its “this” variable.

P3Ctx efficiently verify CS-C1– CS-C3 as follows: For CS-C1 (Equation (21)), where
LF is substituted with LDr , it is unnecessary to trace from an object along its flowsto
paths. Instead, for each method, we start from its “this” variable, over-approximating
that some object O can flow into it. For CS-C2, summary edges are utilized to confirm the
balanced-parentheses property in LC-paths. Finally, to ascertain CS-C3, we check for the
existence of any q ∈ Q such that:

⟨thisM, flows⟩ ↣+ ⟨n, q⟩ ↣+ ⟨thisM, flows⟩ (27)

where M is the containing method of n. This implies that n lies on an LDr -path collecting
some values coming from outside M via thisM and pumping them out of M via thisM.

Let R : Q 7→ ℘(N) return the set of nodes in G reached at a state q ∈ Q. Then verifying
CS-C3, i.e., checking Equation (27) involves determining if the following condition holds:

n ∈ R(O) ∨ n ∈ R(flows) ∩ R(flows) (28)

Equation (27) is satisfied either when the first disjunct applies (due to PROP-O) or when the
second disjunct applies (due to PROP-V).

Figure 11 outlines P3Ctx’s pre-analysis algorithm using three rules that streamline
inter-procedural reachability in G. Here, R−1 : N 7→ ℘(Q) inversely maps nodes to their
reachable states. The rules are: [F-Init] for initializations, [F-Propa] for iterative state
reachability determination, and [F-Sum] for applying standard context-sensitive summaries
[46] at callsites. This involves adding summary edges n1

balanced−−−−−→ n2 to encapsulate inter-
procedural reachability, thereby streamlining reachability computations for method M.



D. He, J. Lu, and J. Xue 18:21

n1
_−→̂
c

thisM ∈ E

thisM ∈ R(flows) flows ∈ R−1(thisM)
[F-Init]

n1
ℓ−→ n2 ∈ E q1 ∈ R−1(n1) δ(q1, ℓ) = q2

n2 ∈ R(q2) q2 ∈ R−1(n2)
[F-Propa]

n1
_−→̂
c

thisM ∈ E thisM _−→̌
c

n2 ∈ E flows ∈ R−1(thisM)

n1
balanced−−−−−→ n2 ∈ E

[F-Sum]

Figure 11 Rules for conducting P3Ctx over G = (N, E).

▶ Theorem 7. kCFA (performed in terms of the rules in Figure 1) produces exactly the same
points-to information when performed with selective context-sensitivity under P3Ctx.

Proof. Follows from the facts that (1) Equation (21) provides necessary conditions for
supporting selective context-sensitivity, (2) LDCR provides a specification of kCFA with CFL-
reachability for callgraph construction, (3) LDrC ⊇ LDCR, and (4) [F-Init] has weakened
CS-C1 by starting from the this variable of every method instead of every object O. ◀

The worst-case time complexity of P3Ctx in analyzing a program on G = (N, E) is
O(|E| × |Q|), which is linear to |E| as |Q| (the number of states in our DFA) is a constant.

4.2 Evaluation
We demonstrate that P3Ctx significantly speeds up kCFA while maintaining precision.
Compared to non-precision-preserving pre-analyses, Selectx [33] and Zipper [29], P3Ctx
excels in achieving more efficient precision trade-offs in certain application scenarios.

4.2.1 Experimental Setup
We implemented kCFA (Figure 1) and P3Ctx (Figure 11) in Soot [59], using its context-
insensitive pointer analysis, Spark [26], for PAG construction. To compare P3Ctx with
Selectx and Zipper, we used their existing implements from the Selectx artifact [34].
Our evaluation follows pointer analysis standards [35, 33, 32, 42, 58, 14, 16], including using
TamiFlex [4] for Java reflection, Soot’s native code summaries, and context-insensitive
analysis for special objects like strings and exceptions, distinguished per dynamic type.

We selected a set of 13 benchmarks from the DaCapo benchmark suite (latest version
6cf0380) [3] along with a large Java library (JRE1.8.0_31). We excluded jython because
both kCFA and P -kCFA could not scale this benchmark due to its overly conservative
reflection log [57]. Our artifact is publicly available at [19].

Our experiments were conducted on an Intel(R) Xeon(R) W-2245 3.90GHz machine with
512GB of RAM, operating under Ubuntu 20.04.3 LTS (Focal Fossa).

4.2.2 Results
Table 2 presents the results for kCFA and its three accelerated variants: P -kCFA (by P3Ctx),
S-kCFA (by Selectx), and Z-kCFA (by Zipper), along with Spark for comparison purposes,
focusing on k ∈ {1, 2}. For k ⩾ 3, kCFA is unscalable for all 13 programs under a 12-hour
budget and thus has never been considered in the literature [33, 42, 29, 30, 58, 50, 20, 57].

ECOOP 2024



18:22 CFL-Reachability with On-The-Fly Call Graph Construction

Table 2 Main analysis results. The analysis times for P -kCFA, S-kCFA, and Z-kCFA are given
as x(y), where x is the pointer analysis time and y is the pre-analysis time (in seconds). For all
metrics, smaller is better.

Program Metrics Spark 1CFA P -1CFA S-1CFA Z-1CFA 2CFA P -2CFA S-2CFA Z-2CFA
Time(secs) 6.6 18.0 4.7 (1.2) 3.1 (21.5) 2.8 (4) 577.1 142.5 (1.2) 16.8 (21.6) 11.2 (4)
#Call Edges 57509 55267 55267 55267 55403 54505 54505 54506 54662

avrora #Fail Casts 1197 931 931 931 965 890 890 895 942
#Alias Pairs 22327 13700 13700 13700 13703 13268 13268 13280 13547
Avg PTS 36.19 25.87 25.87 25.87 26.48 24.78 24.78 24.80 25.47
Time(secs) 30.9 81.0 28.0 (4.7) 25.3 (169.5) 23.1 (243) 1473.9 466.5 (4.8) 271.1 (174.4) 276.5 (234)
#Call Edges 171409 151995 151995 151997 152025 147428 147428 147430 150549

batik #Fail Casts 4573 3709 3709 3709 3713 3485 3485 3490 3620
#Alias Pairs 68130 38005 38005 38005 38012 32288 32288 32300 33295
Avg PTS 114.43 71.67 71.67 71.67 71.71 66.65 66.65 66.65 68.21
Time(secs) 14.8 48.7 23.3 (2.0) 20.1 (54.6) 19.7 (14) 1221.1 331.0 (2.0) 171.8 (56.8) 143.9 (14)
#Call Edges 110089 97960 97960 98000 98052 93662 93662 93703 93746

eclipse #Fail Casts 2896 2470 2470 2471 2474 2322 2322 2328 2337
#Alias Pairs 107389 58489 58489 58500 58504 51404 51404 51427 51716
Avg PTS 101.12 63.49 63.49 63.47 63.80 59.28 59.28 59.26 59.64
Time(secs) 76.0 318.8 123.1 (10.6) 113.1 (603.8) 104.0 (355) 6019.6 2399.6 (10.8) 1901.7 (604.5) 1405.1 (354)
#Call Edges 358738 325547 325547 325551 325591 313954 313954 313958 321008

fop #Fail Casts 9057 8226 8226 8228 8239 7931 7931 7938 8084
#Alias Pairs 323628 277047 277047 277047 277065 267389 267389 267401 268943
Avg PTS 233.48 141.19 141.19 141.19 141.25 132.98 132.98 132.98 135.43
Time(secs) 16.1 75.7 18.5 (2.9) 15.8 (74.1) 14.3 (40) 6406.8 4164.6 (2.8) 3807.8 (74.4) 3127.4 (39)
#Call Edges 144711 135775 135775 135782 135806 134234 134234 134241 134274

h2 #Fail Casts 2880 2477 2477 2477 2482 2398 2398 2404 2433
#Alias Pairs 77978 39209 39209 39209 39236 33331 33331 33351 33632
Avg PTS 72.61 34.61 34.61 34.61 34.68 32.63 32.63 32.64 33.20
Time(secs) 18.5 41.0 24.0 (1.9) 22.6 (48.1) 20.1 (8) 829.1 232.3 (1.9) 109.0 (48.2) 82.3 (8)
#Call Edges 85850 79431 79431 79431 79602 78190 78190 78190 78404

luindex #Fail Casts 1726 1359 1359 1360 1376 1286 1286 1292 1314
#Alias Pairs 50530 32905 32905 32905 32908 31795 31795 31807 32083
Avg PTS 53.10 24.75 24.75 24.75 24.87 23.04 23.04 23.04 23.15
Time(secs) 5.3 12.6 3.5 (1.0) 2.3 (13.9) 1.9 (3) 414.0 129.3 (1.0) 9.6 (13.9) 7.1 (3)
#Call Edges 45285 43117 43117 43117 43198 42412 42412 42412 42516

lusearch #Fail Casts 955 702 702 702 719 660 660 665 696
#Alias Pairs 20382 11693 11693 11693 11696 11263 11263 11275 11542
Avg PTS 31.38 20.73 20.73 20.74 20.85 19.73 19.73 19.75 19.94
Time(secs) 20.3 109.5 42.6 (3.0) 37.2 (139.1) 35.9 (25) 16006.8 13715.8 (3.0) 13671.4 (139.1) 9356.3 (25)
#Call Edges 159395 153150 153150 153150 153387 152090 152090 152090 152242

pmd #Fail Casts 4702 4321 4321 4321 4325 4233 4233 4238 4263
#Alias Pairs 114914 95977 95977 95977 95979 93083 93083 93095 93353
Avg PTS 90.97 68.76 68.76 68.76 68.79 67.48 67.48 67.49 67.58
Time(secs) 9.9 25.9 7.4 (1.8) 5.5 (46.4) 5.3 (9) 643.1 165.1 (1.7) 33.0 (45.9) 27.7 (9)
#Call Edges 77346 74198 74198 74200 74241 73392 73392 73394 73685

sunflow #Fail Casts 2192 1771 1771 1773 1776 1649 1649 1656 1684
#Alias Pairs 36952 21670 21670 21670 21678 20703 20703 20715 21041
Avg PTS 51.31 33.62 33.62 33.62 33.69 31.34 31.34 31.36 31.79
Time(secs) 7.4 18.9 5.8 (1.3) 4.0 (20.8) 3.7 (4) 632.9 148.7 (1.3) 16.1 (20.8) 11.7 (4)
#Call Edges 60649 57933 57933 57933 58024 57073 57073 57073 57369

tomcat #Fail Casts 1264 959 959 960 963 874 874 880 910
#Alias Pairs 30775 24504 24504 24504 24507 22202 22202 22214 22482
Avg PTS 39.88 25.37 25.37 25.37 25.51 24.03 24.03 24.04 24.62
Time(secs) 8.7 25.9 7.6 (1.5) 5.6 (41.7) 5.2 (9) 737.4 166.5 (1.5) 30.2 (43.4) 18.2 (9)
#Call Edges 70911 67742 67742 67742 67858 66814 66814 67018 67207

tradebeans #Fail Casts 1523 1132 1132 1132 1135 1054 1054 1059 1068
#Alias Pairs 36256 27175 27175 27175 27178 25683 25683 25695 25950
Avg PTS 47.67 31.80 31.80 31.80 31.87 29.95 29.95 29.98 30.18
Time(secs) 8.4 24.8 7.7 (1.6) 5.8 (46.8) 5.2 (9) 703.0 162.8 (1.5) 29.9 (49.4) 17.9 (9)
#Call Edges 70911 67742 67742 67742 67858 66814 66814 67018 67207

tradesoap #Fail Casts 1523 1132 1132 1132 1135 1054 1054 1059 1068
#Alias Pairs 36256 27175 27175 27175 27178 25683 25683 25695 25950
Avg PTS 47.67 31.80 31.80 31.80 31.87 29.95 29.95 29.98 30.18
Time(secs) 8.5 27.3 7.4 (1.4) 5.5 (42.6) 5.0 (16) 702.8 162.3 (1.6) 34.2 (42.3) 26.0 (16)
#Call Edges 69608 67132 67132 67132 67210 66360 66360 66360 66448

xalan #Fail Casts 1807 1473 1473 1473 1477 1419 1419 1424 1441
#Alias Pairs 42119 28280 28280 28280 28283 27259 27259 27271 27539
Avg PTS 45.29 29.41 29.41 29.41 29.47 28.29 28.29 28.30 28.41



D. He, J. Lu, and J. Xue 18:23

4.2.2.1 Precision

Pointer analysis precision is gauged using four key metrics: (1) “#Call Edges”, indicating
discovered call graph edges; (2) “#Fail Casts”, representing potential type cast failures; (3)
“#Alias Pairs”, counting base variable pairs in stores and loads that may alias, excluding
trivial must-aliases like direct assignments [10]; and (4) “Avg PTS”, the average number of
objects pointed to by reachable local variables. Lower metric values signify higher precision.

For each metric M , MP T A denotes the result obtained by PTA, where PTA denotes
any pointer analysis in {Spark, kCFA, P -kCFA, S-kCFA, Z-kCFA }. Let A-kCFA ∈
{P -kCFA, S-kCFA, Z-kCFA} be one of the three variants of kCFA such that A-kCFA is
no less precise than Spark but no more precise than kCFA. We define the precision loss of
A-kCFA with respect to kCFA on metric M as:

∆M
A-kCFA = (MSpark − MkCFA) − (MSpark − MA-kCFA)

MSpark − MkCFA
= MA-kCFA − MkCFA

MSpark − MkCFA
(29)

The precision gain from Spark to kCFA is 100%. If A-kCFA matches kCFA in precision
(MA-kCFA = MkCFA), then ∆M

A-kCFA = 0%, indicating no precision loss in A-kCFA. Conversely,
if A-kCFA reverts to Spark’s precision (MA-kCFA = MSpark), ∆M

A-kCFA = 100%, reflecting a
complete loss of kCFA’s precision advantage.

P -kCFA retains precision, matching kCFA across all metrics in 13 benchmarks, supported
by Theorem 7 and Table 2. S-kCFA, leveraging LF C for context-sensitivity, has small average
precision losses of 0.8%, 1.2%, 0.1%, and 0.1% in “#Call Edges”, “#Fail Casts”, “#Alias
Pairs”, and “Avg PTS”, respectively, at k = 2. However, for “#Call Edges”, S-2CFA incurs
a 5% precision loss in both tradebeans and tradesoap. Conversely, Z-kCFA experiences
higher average precision losses of 6.2%, 8.1%, 2.2%, and 2.0% for the same metrics at k = 2,
attributed to Zipper’s use of pattern-based heuristics for context-sensitivity decisions.

To explore S-2CFA’s precision loss in tradebeans (Figure 12), it is noted that S-2CFA
fails to identify the call in line 15 as monomorphic, unlike P -2CFA. When put() is invoked
on a TreeMap object, a virtual call compare() occurs on the comparator object stored in
the TreeMap object. With 2CFA, put() is analyzed under contexts [L1] and [L2]. Under
[L1], cmp links to CMP1 and k to I, leading to compare() from line 10 to be invoked under
[L3, L1]. Under [L2], cmp points to CMP2 and k to S1, calling compare() from line 14 under
[L3, L2], making o1 point uniquely to S1. Thus, the virtual call in line 15 invokes only the
toString() method defined in java.lang.String.

Selectx, using LF C , treats cmp and k in put() as context-insensitive, violating CS-C3
in Equation (21). With S-2CFA, o1 erroneously points to both I and S1 under [L3, L2],
leading to a polymorphic call in line 15. In contrast, P3Ctx with LDCR treats these as
context-sensitive, adhering to CS-C3, resulting in o1 pointing only to S1 and ensuring a
monomorphic call in line 15. This change prevents a 5% precision loss in “#Call Edges”,
potentially enhancing critical software security analyses.

4.2.2.2 Efficiency

In Table 2, the efficiency of a pointer analysis is gauged by the time required in analyzing a
program. This includes time for both the pointer analysis and the corresponding pre-analysis
in each kCFA variant, denoted as A−kCFA (A ∈ {P, S, Z}). For k = 1 and k = 2, pre-analysis
is done separately, causing slight differences in pre-analysis times for the same program.
Spark’s time is not included, as its results are shared by all three pre-analyses.

ECOOP 2024



18:24 CFL-Reachability with On-The-Fly Call Graph Construction

1 class TreeMap {
2 Comparator comparator;
3 TreeMap(Comparator cmp1) { this.comparator = cmp1; }
4 void put(Object k, Object v) {
5 Comparator cmp = this.comparator;
6 int i = cmp.compare(k, ...); // L3
7 }}
8 // in java.lang.String
9 class CaseInsensitiveComparator implements Comparator {

10 int compare(String p1, String p2) { return 0; }
11 }
12 // in org.apache.geronimo.main
13 class StringComparator implements Comparator {
14 int compare(Object o1, Object o2) {
15 String s1 = o1.toString(); // #Call Edges?
16 return s1.compareTo(o2.toString());
17 }}
18 void main() {
19 Comparator cmp1 = new CaseInsensitiveComparator(); // CMP1
20 Comparator cmp2 = new StringComparator(); // CMP2
21 TreeMap map1 = new TreeMap(cmp1); // M1
22 TreeMap map2 = new TreeMap(cmp2); // M2
23 Integer x = new Integer(1); // I
24 String y = new String(); // S1
25 z = new String(); // S2
26 map1.put(x, z); // L1
27 map2.put(y, z); // L2
28 }

Figure 12 An example abstracted from tradebeans and JDK8 to illustrate why Selectx is
not precision-preserving (by applying LF C to determine precision-critical variables/objects in a
program).

Table 2 reveals that P3Ctx, Selectx, and Zipper significantly boost kCFA for k = 2.
Z-2CFA leads with 1.7× to 41.0× speedups, averaging 10.9×. S-2CFA ranges from 1.2×
to 17.6×, averaging 6.0×. P3Ctx increases speeds from 1.2× to 4.4×, averaging 3.2×. At
k = 1, P3Ctx performs best due to lower pre-analysis overhead and faster 1CFA. Zipper
moderately improves 1CFA for most programs, but less effectively than P3Ctx. Selectx
slows down 1CFA when including pre-analysis time. For P -1CFA, speedups range from 1.6×
to 3.5×, averaging 2.6×. Z-1CFA sees 0.3× to 2.6× speedups, averaging 1.5×. S-1CFA shows
no gains, with 0.4× to 0.8× speedups, averaging 0.6×.

When assessing the precision and efficiency of P -kCFA, S-kCFA, and Z-kCFA, several key
insights emerge. For tasks where precision is paramount, such as in software security analysis,
P -kCFA emerges as the superior choice. It offers a speed advantage without compromising
the precision inherent to kCFA. In contexts where the precision of 1CFA is needed, but with
greater efficiency, P -1CFA is the standout option. It surpasses both S-1CFA and Z-1CFA in
terms of speed while retaining the precision level of 1CFA. Finally, for applications requiring
pointer analysis at the precision level of 2CFA, the recommendation depends on the user’s
priorities: Z-2CFA for those valuing efficiency above precision, S-2CFA for those who prioritize
efficiency but can accept minor precision loss, and P -2CFA for those who deem precision
crucial but also desire increased speed.

5 Related Work

In this section, we focus exclusively on prior work that is directly relevant to our study.



D. He, J. Lu, and J. Xue 18:25

CFL-Reachability. CFL-reachability, introduced in program analysis for inter-procedural
dataflow analysis [46, 44], has been applied in tackling various problems such as pointer
analysis [54, 53, 64, 61, 62, 48, 63, 35, 32], information flow [37, 28, 36], and type inference [43,
41]. Traditionally, kCFA’s CFL-reachability formulation [53, 62, 48] relies on a separate call
graph construction algorithm, either pre-applied or on-the-fly. This paper introduces LDCR,
a new CFL-reachability formulation for kCFA, integrating built-in call graph construction.
An earlier attempt to address the same problem by Sridharan [52] is sound but less precise
than LDCR due to the lack of LR. Without LR, a context used for parameter passing at a
virtual callsite can be incorrectly restored as a different context after finding the dispatched
method and returning to the same callsite (as in Figure 9).

Another line of research on CFL-reachability focuses on its computational complexity.
Generally, the all-pairs CFL-reachability problem can be resolved in O(m3n3) time, where
m is the CFL grammar size and n is the graph node count. Kodumal et al. [23] efficiently
solved Dyck-CFL-reachability in O(mn3). Chaudhuri [7] later optimized the general CFL-
reachability algorithm to subcubic time using the Four Russians’ Trick [24]. Zhang et al.
[63] demonstrated that bidirected Dyck-CFL reachability could be solved in O(n + p log p)
(with p being the graph edge count), noting that reachability in a bidirected graph forms an
equivalence relation. This complexity was further reduced to O(p + n · α(n)) in [6], where
α(n) is the inverse Ackermann function. This paper introduces P3Ctx, an LDCR-enabled
pre-analysis for accelerating kCFA, linear in terms of the number of PAG edges in the
program’s PAG and preserving precision.

A CFL-reachability-based formulation recently proposed for object-sensitive pointer
analysis [35, 38, 39] naturally includes call graph construction, as it uses receiver objects
as context elements. However, integrating call graph construction into callsite-sensitive
analyses using the traditional CFL-reachability framework [53, 62, 48] is challenging, as
detailed in Section 2. An earlier attempt [52] was sound but lacked precision, particularly in
restoring contexts correctly after method dispatch and return at virtual callsites, as shown
in Figure 9. LDCR is the first known solution to effectively integrate call graph construction
into CFL-reachability for callsite-sensitive analyses.

Selective Context-sensitivity. In the realm of pointer analysis acceleration, three primary
approaches exist: pattern-based [51, 12, 29, 30], data-driven [21, 20], and CFL-reachability-
guided [35, 33, 14, 13]. By exploiting CFL-reachability, Eagle [35, 32], Turner [14], Conch
[16, 18], and DebloaterX [13] represent recent efforts in accelerating object-sensitive pointer
analysis [39]. Selectx [33] marks the initial CFL-reachability-based effort to accelerate kCFA,
but it lacks precision preservation due to its reliance on LF C [53]. This paper introduces
P3Ctx, the first precision-preserving pre-analysis for kCFA, grounded in LDCR.

6 Conclusion

We have introduced LDCR, a new CFL-reachability formulation for supporting k-callsite-
based context-sensitive pointer analysis (kCFA), featuring a unique built-in call graph
construction to effectively handle dynamic dispatch. To demonstrate its utility, we have
also introduced P3Ctx, which is developed based on LDCR, to enhance the performance
of kCFA while preserving its precision. We hope that LDCR can provide some new insights
on understanding kCFA and its demand-driven forms [54, 53, 62], potentially inspiring
novel algorithmic advancements. Future explorations include applying LDCR to selective
context sensitivity and extending its application to areas such as library-code summarization
[48, 56, 8] and information flow analysis [28, 36].

ECOOP 2024



18:26 CFL-Reachability with On-The-Fly Call Graph Construction

References
1 Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD

thesis, University of Cophenhagen, 1994.
2 David F Bacon and Peter F Sweeney. Fast static analysis of c++ virtual function calls. In

Proceedings of the 11th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 324–341, New York, NY, USA, 1996. Association for
Computing Machinery.

3 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and
applications, pages 169–190, New York, NY, USA, 2006. Association for Computing Machinery.

4 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In Proceedings
of the 33rd International Conference on Software Engineering, pages 241–250, Honolulu, HI,
USA, 2011. IEEE.

5 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, pages 243–262, New York, NY, USA, 2009.
Association for Computing Machinery.

6 Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. Optimal Dyck reach-
ability for data-dependence and alias analysis. Proceedings of the ACM on Programming
Languages, 2(POPL):1–30, 2017.

7 Swarat Chaudhuri. Subcubic algorithms for recursive state machines. In Proceedings of the
35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 159–169, New York, NY, USA, 2008. Association for Computing Machinery.

8 Yifan Chen, Chenyang Yang, Xin Zhang, Yingfei Xiong, Hao Tang, Xiaoyin Wang, and
Lu Zhang. Accelerating program analyses in datalog by merging library facts. In International
Static Analysis Symposium, pages 77–101, Cham, 2021. Springer, Springer International
Publishing.

9 Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In European Conference on Object-Oriented Programming,
pages 77–101, Berlin, Heidelberg, 1995. Springer, Springer Berlin Heidelberg.

10 Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig. Bottom-up context-sensitive pointer
analysis for Java. In Programming Languages and Systems: 13th Asian Symposium, APLAS
2015, Pohang, South Korea, November 30-December 2, 2015, Proceedings, pages 465–484,
Cham, 2015. Springer International Publishing.

11 David Grove and Craig Chambers. A framework for call graph construction algorithms. ACM
Transactions on Programming Languages and Systems (TOPLAS), 23(6):685–746, 2001.

12 Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan, Bernhard
Scholz, and Yi Lu. An efficient tunable selective points-to analysis for large codebases. In
Proceedings of the 6th ACM SIGPLAN International Workshop on State Of the Art in Program
Analysis, pages 13–18, New York, NY, USA, 2017. Association for Computing Machinery.

13 Dongjie He, Yujiang Gui, Wei Li, Yonggang Tao, Changwei Zou, Yulei Sui, and Jingling
Xue. A container-usage-pattern-based context debloating approach for object-sensitive pointer
analysis. Proceedings of the ACM on Programming Languages, 7(OOPSLA2):971–1000, 2023.

14 Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue. Accelerating object-sensitive pointer
analysis by exploiting object containment and reachability. In Proceedings of the 35th European
Conference on Object-Oriented Programming (ECOOP 2021), pages 18:1–18:31, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.



D. He, J. Lu, and J. Xue 18:27

15 Dongjie He, Jingbo Lu, and Jingling Xue. A CFL-Reachability Formulation of Callsite-Sensitive
Pointer Analysis with Built-in On-the-Fly Call Graph Construction (Artifact). Software, version
1.0. (visited on 2024-08-27). URL: https://doi.org/10.5281/zenodo.11061892.

16 Dongjie He, Jingbo Lu, and Jingling Xue. Context debloating for object-sensitive pointer ana-
lysis. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 79–91, New York, NY, USA, 2021. IEEE. doi:10.1109/ASE51524.2021.9678880.

17 Dongjie He, Jingbo Lu, and Jingling Xue. Qilin: A new framework for supporting fine-
grained context-sensitivity in Java pointer analysis. In Karim Ali and Jan Vitek, editors, 36th
European Conference on Object-Oriented Programming (ECOOP 2022), volume 222 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 30:1–30:29, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2022.30.

18 Dongjie He, Jingbo Lu, and Jingling Xue. IFDS-based context debloating for object-sensitive
pointer analysis. ACM Transactions on Software Engineering and Methodology, 2023.

19 Dongjie He, Jingbo Lu, and Jingling Xue. A CFL-reachability formulation of callsite- sensitive
pointer analysis with built-in on-the- fly call graph construction (artifact), July 2024. doi:
10.5281/zenodo.11061892.

20 Minseok Jeon, Sehun Jeong, and Hakjoo Oh. Precise and scalable points-to analysis via data-
driven context tunneling. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–
29, 2018.

21 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. Data-driven context-sensitivity
for points-to analysis. Proceedings of the ACM on Programming Languages, 1(OOPSLA):100,
2017.

22 George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to analysis.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 423–434, New York, NY, USA, 2013. Association for Computing
Machinery.

23 John Kodumal and Alex Aiken. The set constraint/CFL reachability connection in practice.
ACM Sigplan Notices, 39(6):207–218, 2004.

24 VL Arlazarov EA Dinic MA Kronrod and IA Faradzev. On economic construction of the
transitive closure of a directred graph. In Dokl. Acad. Nauk SSSR, pages 487–88, 1970.

25 Michael John Latta. The intersection of context-free languages. PhD thesis, University of Texas
at Austin, USA, 1993. URL: https://www.proquest.com/docview/304086568?pq-origsite=
gscholar&fromopenview=true.

26 Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using Spark. In Interna-
tional Conference on Compiler Construction, pages 153–169, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

27 Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive points-to
analysis using a bdd-based implementation. ACM Transactions on Software Engineering and
Methodology (TOSEM), 18(1):1–53, 2008.

28 Yuanbo Li, Qirun Zhang, and Thomas Reps. Fast graph simplification for interleaved Dyck-
reachability. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 780–793, New York, NY, USA, 2020. Association for
Computing Machinery.

29 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Precision-guided context sensitivity
for pointer analysis. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–29,
2018.

30 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. A principled approach to selective
context sensitivity for pointer analysis. ACM Transactions on Programming Languages and
Systems, 42(TOPLAS):1–40, 2020.

31 Leonard Y Liu and Peter Weiner. An infinite hierarchy of intersections of context-free languages.
Mathematical systems theory, 7:185–192, 1973. doi:10.1007/BF01762237.

ECOOP 2024

https://doi.org/10.5281/zenodo.11061892
https://doi.org/10.1109/ASE51524.2021.9678880
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://doi.org/10.5281/zenodo.11061892
https://doi.org/10.5281/zenodo.11061892
https://www.proquest.com/docview/304086568?pq-origsite=gscholar&fromopenview=true
https://www.proquest.com/docview/304086568?pq-origsite=gscholar&fromopenview=true
https://doi.org/10.1007/BF01762237


18:28 CFL-Reachability with On-The-Fly Call Graph Construction

32 Jingbo Lu, Dongjie He, and Jingling Xue. Eagle: CFL-reachability-based precision-preserving
acceleration of object-sensitive pointer analysis with partial context sensitivity. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 30(4):1–46, 2021.

33 Jingbo Lu, Dongjie He, and Jingling Xue. Selective context-sensitivity for k-CFA with CFL-
reachability. In International Static Analysis Symposium, pages 261–285, Cham, 2021. Springer,
Springer International Publishing.

34 Jingbo Lu, Dongjie He, and Jingling Xue. Selective context-sensitivity for k-CFA with
CFL-reachability (artifact), July 2021. doi:10.5281/zenodo.4732680.

35 Jingbo Lu and Jingling Xue. Precision-preserving yet fast object-sensitive pointer analysis with
partial context sensitivity. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–
29, 2019.

36 Ana Milanova. FlowCFL: generalized type-based reachability analysis: graph reduction and
equivalence of CFL-based and type-based reachability. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–29, 2020.

37 Ana Milanova, Wei Huang, and Yao Dong. CFL-reachability and context-sensitive integrity
types. In Proceedings of the 2014 International Conference on Principles and Practices of
Programming on the Java platform: Virtual machines, Languages, and Tools, pages 99–109,
New York, NY, USA, 2014. Association for Computing Machinery.

38 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity
for points-to and side-effect analyses for Java. In Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis, pages 1–11, New York, NY, USA,
2002. Association for Computing Machinery.

39 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering and Methodology,
14(1):1–41, 2005.

40 Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 308–319, New York, NY, USA, 2006. Association for Computing
Machinery.

41 Polyvios Pratikakis, Jeffrey S Foster, and Michael Hicks. Existential label flow inference
via CFL reachability. In International Static Analysis Symposium, pages 88–106, Berlin,
Heidelberg, 2006. Springer, Springer Berlin Heidelberg.

42 Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. User-guided program
reasoning using bayesian inference. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 722–735, New York, NY, USA,
2018. Association for Computing Machinery.

43 Jakob Rehof and Manuel Fähndrich. Type-based flow analysis: from polymorphic subtyping
to CFL-reachability. ACM SIGPLAN Notices, 36(3):54–66, 2001.

44 Thomas Reps. Program analysis via graph reachability. Information and software technology,
40(11-12):701–726, 1998.

45 Thomas Reps. Undecidability of context-sensitive data-dependence analysis. ACM Transactions
on Programming Languages and Systems, 22(1):162–186, 2000.

46 Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 49–61, New York, NY, USA, 1995. Association for
Computing Machinery.

47 Barbara G Ryder. Dimensions of precision in reference analysis of object-oriented programming
languages. In International Conference on Compiler Construction, pages 126–137, Berlin,
Heidelberg, 2003. Springer, Springer Berlin Heidelberg.

48 Lei Shang, Xinwei Xie, and Jingling Xue. On-demand dynamic summary-based points-
to analysis. In Proceedings of the Tenth International Symposium on Code Generation and
Optimization, pages 264–274, New York, NY, USA, 2012. Association for Computing Machinery.

49 Olin Grigsby Shivers. Control-flow analysis of higher-order languages or taming lambda. PhD
thesis, Carnegie Mellon University, 1991. CMU-CS-91-145.

https://doi.org/10.5281/zenodo.4732680


D. He, J. Lu, and J. Xue 18:29

50 Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well:
understanding object-sensitivity. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 17–30, New York, NY, USA, 2011.
Association for Computing Machinery.

51 Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective analysis:
context-sensitivity, across the board. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 485–495, New York, NY, USA,
2014. Association for Computing Machinery.

52 Manu Sridharan. Refinement-based program analysis tools. University of California, Berkeley,
2007.

53 Manu Sridharan and Rastislav Bodík. Refinement-based context-sensitive points-to analysis for
Java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 387–400, New York, NY, USA, 2006. Association for Computing
Machinery.

54 Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. Demand-driven points-to
analysis for Java. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 59–76, New York, NY,
USA, 2005. Association for Computing Machinery.

55 Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick Lam,
Etienne Gagnon, and Charles Godin. Practical virtual method call resolution for Java. ACM
SIGPLAN Notices, 35(10):264–280, 2000.

56 Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong Mei. Summary-
based context-sensitive data-dependence analysis in presence of callbacks. In Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 83–95, New York, NY, USA, 2015. Association for Computing Machinery.

57 Rei Thiessen and Ondřej Lhoták. Context transformations for pointer analysis. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 263–277, New York, NY, USA, 2017. Association for Computing Machinery.

58 Tian Tan, Yue Li and Jingling Xue. Efficient and precise points-to analysis: modeling the
heap by merging equivalent automata. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 278–291, New York, NY, USA,
2017. Association for Computing Machinery.

59 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A Java bytecode optimization framework. In CASCON First Decade High
Impact Papers, pages 214–224. IBM Corp., USA, 2010.

60 WALA. WALA: T.J. Watson Libraries for Analysis, 2024. URL: https://github.com/wala/
WALA.

61 Guoqing Xu, Atanas Rountev, and Manu Sridharan. Scaling CFL-reachability-based points-to
analysis using context-sensitive must-not-alias analysis. In European Conference on Object-
Oriented Programming, pages 98–122, Berlin, Heidelberg, 2009. Springer, Springer Berlin
Heidelberg.

62 Dacong Yan, Guoqing Xu, and Atanas Rountev. Demand-driven context-sensitive alias analysis
for Java. In Proceedings of the 2011 International Symposium on Software Testing and Analysis,
pages 155–165, New York, NY, USA, 2011. Association for Computing Machinery.

63 Qirun Zhang, Michael R Lyu, Hao Yuan, and Zhendong Su. Fast algorithms for Dyck-CFL-
reachability with applications to alias analysis. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 435–446, New York,
NY, USA, 2013. Association for Computing Machinery.

64 Xin Zheng and Radu Rugina. Demand-driven alias analysis for c. In Proceedings of the 35th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
197–208, New York, NY, USA, 2008. Association for Computing Machinery.

ECOOP 2024

https://github.com/wala/WALA
https://github.com/wala/WALA

	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.1.1 Inclusion-based Formulation
	2.1.2 -based CFL-Reachability Formulation

	2.2 Motivation
	2.2.1 Example
	2.2.2 Inclusion-based Formulation
	2.2.3 -based Formulation
	2.2.4  : Challenges and Our Solution


	3  : Design and Insights
	3.1 Pointer Assignment Graph
	3.2  : A New CFL-Reachability Formulation for 
	3.2.1 The  Language
	3.2.2 The  Language

	3.3 Time Complexities

	4  : An Application of 
	4.1 Selective Context-Sensitivity
	4.1.1 CFL-Reachability-Guided Selections
	4.1.2 Regularization
	4.1.3 P3Ctx

	4.2 Evaluation
	4.2.1 Experimental Setup
	4.2.2 Results


	5 Related Work
	6 Conclusion

