
Fearless Asynchronous Communications with
Timed Multiparty Session Protocols
Ping Hou #

University of Oxford, UK

Nicolas Lagaillardie #

Imperial College London, UK

Nobuko Yoshida #

University of Oxford, UK

Abstract
Session types using affinity and exception handling mechanisms have been developed to ensure the
communication safety of protocols implemented in concurrent and distributed programming languages.
Nevertheless, current affine session types are inadequate for specifying real-world asynchronous
protocols, as they are usually imposed by time constraints which enable timeout exceptions to prevent
indefinite blocking while awaiting valid messages. This paper proposes the first formal integration
of affinity, time constraints, timeouts, and time-failure handling based on multiparty session types for
supporting reliability in asynchronous distributed systems. With this theory, we statically guarantee
that asynchronous timed communication is deadlock-free, communication safe, while being fearless –
never hindered by timeout errors or abrupt terminations.

To implement our theory, we introduce MultiCrustyT, a Rust toolchain designed to facilitate the
implementation of safe affine timed protocols. MultiCrustyT leverages generic types and the time
library to handle timed communications, integrated with optional types for affinity. We evaluate
MultiCrustyT by extending diverse examples from the literature to incorporate time and timeouts.
We also showcase the correctness by construction of our approach by implementing various real-world
use cases, including protocols from the Internet of Remote Things domain and real-time systems.

2012 ACM Subject Classification Software and its engineering → Software usability; Software and
its engineering → Concurrent programming languages; Theory of computation → Process calculi

Keywords and phrases Session Types, Concurrency, Time Failure Handling, Affinity, Timeout, Rust

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.19

Related Version Full Version: https://arxiv.org/abs/2406.19541 [19]

Supplementary Material Software (Source Code): https://github.com/NicolasLagaillardie/
mpst_rust_github, archived at swh:1:dir:08181be2bf9b8bd74ec08356de274ee93a9c7db9
Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.10

Funding Work supported by: EPSRC EP/T006544/2, EP/K011715/1, EP/K034413/1, EP/L00058X/1,
EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1, EP/X015955/1, NCSS/EPSRC
VeTSS, and Horizon EU TaRDIS 101093006.

Acknowledgements We thank the anonymous reviewers for their useful comments and suggestions.

1 Introduction

Background. The growing prevalence of distributed programming has emphasised the
significance of prioritising reliability in distributed systems. Dedicated research efforts focus
on enhancing reliability through the study and modelling of failures. This research enables
the design of more resilient distributed systems, capable of effectively handling failures and
ensuring reliable operation.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Ping Hou, Nicolas Lagaillardie, and Nobuko Yoshida;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 19; pp. 19:1–19:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ping.hou@cs.ox.ac.uk
https://orcid.org/0000-0001-6899-9971
mailto:n.lagaillardie19@imperial.ac.uk
https://orcid.org/0000-0002-6431-4100
mailto:nobuko.yoshida@cs.ox.ac.uk
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2024.19
https://arxiv.org/abs/2406.19541
https://github.com/NicolasLagaillardie/mpst_rust_github
https://github.com/NicolasLagaillardie/mpst_rust_github
https://archive.softwareheritage.org/swh:1:dir:08181be2bf9b8bd74ec08356de274ee93a9c7db9;origin=https://github.com/NicolasLagaillardie/mpst_rust_github;visit=swh:1:snp:4cceb5c92875b3636d629b8455680462dca3afeb;anchor=swh:1:rev:48a8890fb068556bf05d91e56cb48263faa8eb8d
https://doi.org/10.4230/DARTS.10.2.10
https://doi.org/10.4230/DARTS.10.2.10
https://doi.org/10.4230/DARTS.10.2.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

A lightweight, type-based methodology, which ensures basic reliability – safety in distrib-
uted communication systems, is session types [16]. This type discipline is further advanced
by Multiparty Session Types (MPST) [17, 18], which enable the specification and verification
of communication protocols among multiple message-passing processes in concurrent and
distributed systems. MPST ensure that protocols are designed to prevent common safety
errors, i.e. deadlocks and communication mismatches during interactions among many parti-
cipants [17, 18, 37]. By adhering to a specified MPST protocol, participants (a.k.a. end-point
programs) can communicate reliably and efficiently. From a practical perspective, MPST
have been implemented in various programming languages [5, 26, 28, 32, 40, 42], facilitating
their applications and providing safety guarantees in real-world programs.

Nevertheless, tackling the challenges of unreliability and failures remains a significant
issue for session types. Most session type systems operate under the assumption of flawless
and reliable communication without failures. To address this limitation, recent works [31,
14, 15, 28] have developed affine session types by incorporating the affinity mechanism that
explicitly accounts for and handles unreliability and failures within session type systems.
Unlike linear types that must be used exactly once, affine types can be used at most once,
enabling the safe dropping of subsequent types and the premature termination of a session
in the presence of protocol execution errors.

In most real-life devices and platforms, communications are predominantly asynchronous:
inner tasks and message transfers may take time. When dealing with such communications,
it becomes crucial to incorporate time constraints and implement timeout failure handling
for each operation. This is necessary to avoid potential blockages where a process might
wait indefinitely for a message from a non-failed process. While various works, as explained
later, address time conditions and timeouts in session types, it is surprising that none of the
mentioned works on affine session types tackles timeout failures during protocol execution.

This Paper. We introduce a new framework, affine timed multiparty session types (ATMP),
to address the challenges of timeouts, disconnections and other failures in asynchronous
communications:
(1) We propose ATMP, an extension of asynchronous MPST that incorporates time spe-

cifications, affinity, and mechanisms for handling exceptions, thus facilitating effective
management of failures, with a particular focus on timeouts. Additionally, we demonstrate
that properties from MPST, i.e. type safety, protocol conformance, and deadlock-freedom,
are guaranteed for well-typed processes, even in the presence of timeouts and their
corresponding handling mechanism;

(2) We present MultiCrustyT, our Rust toolchain designed for building asynchronous
timed multiparty protocols under ATMP: MultiCrustyT enables the implementation of
protocols adhering to the properties of ATMP.

The primary focus of ATMP lies in effectively handling timeouts during process execution,
in contrast to the approaches in [4, 3], which aim to completely avoid time failures. Bocchi et
al. [4] introduce time conditions in MPST to ensure precise timing in communication protocols,
while their subsequent work [3] extends binary timed session types to incorporate timeouts,
allowing for more robust handling of time constraints. Yet, they adopt strict requirements
to prevent timeouts. In [4], feasibility and wait-freedom are required in their protocol design.
Feasibility requires precise time specifications for protocol termination, while wait-freedom
prohibits overlapping time windows for senders and receivers in a protocol, which is not
practical in real-world applications. Similarly, in [3], strong conditions including progress of
an entire set of processes and urgent receive are imposed. The progress property is usually
undecidable, and the urgent receive condition, which demands immediate message reception
upon availability, is infeasible with asynchronous communication.

P. Hou, N. Lagaillardie, and N. Yoshida 19:3

Recently, [30] proposes the inclusion of timeout as the unique failure notation in MPST,
offering flexibility in handling failures. Time also plays a role in synchronous communication
systems, where [22] develops rate-based binary session types, ensuring synchronous message
exchanges at the same rate, i.e. within the same time window. However, in both [30] and [22],
time constraints are not integrated into types and static type checking, resulting in the
specifications lacking the ability to guide time behaviour. Additionally, the model used in [22]
assumes that all communications and computations are non-time-consuming, i.e. with zero
time cost, making it unfeasible in distributed systems.

By the efficient integration of time and failure handling mechanisms in our framework,
none of those impractical requirements outlined in [4, 3] is necessary. In ATMP, when a process
encounters a timeout error, a mechanism for handling time failures is triggered, notifying all
participants about the timeout, leading to the termination of those participants and ultimately
ending the session. Such an approach guarantees that participants consistently reach the end
of the protocol, as the communication session is entirely dropped upon encountering a timeout
error. As a result, every process can terminate successfully, reducing the risk of indefinite
blockages, even with timeouts. Additionally, in our system, time constraints over local
clocks are incorporated with types to effectively model asynchronous timed communication,
addressing the limitations in [30, 22].

Except for [22], the aforementioned works on timed session types focus more on theory,
lacking implementations. To bridge this gap on the practical side, we provide MultiCrustyT,
a Rust implementation of ATMP designed for secure timed communications. MultiCrustyT

makes use of affine timed meshed channels, a communication data structure that integrates
time constraints and clock utilisation. Our toolchain relies on macros and native generic types
to ensure that asynchronous protocols are inherently correct by construction. In particular,
MultiCrustyT performs compile-time verification to guarantee that, at any given point in
the protocol, each isolated pair of participants comprises one sender and one receiver with
corresponding time constraints. Additionally, we employ affine asynchronous primitives and
native optional types to effectively handle runtime timeouts and errors.

To showcase the capabilities and expressiveness of our toolchain, we evaluate MultiCrustyT

through examples from the literature, and further case studies including a remote data
protocol from an Internet of Remote Things (IoRT) network [7], a servo web protocol from a
web engine [38], and protocols from real-time systems such as Android motion sensor [2],
PineTime smartwatch [35], and keyless entry [41]. Our comparative analysis with a Rust
implementation of affine MPST without time [28] reveals that MultiCrustyT exhibits minimal
overhead while providing significantly strengthened property checks.

Structure. § 2 offers a comprehensive overview of our theory and toolchain. § 3 provides
a session π-calculus for ATMP that incorporates timeout, affinity, asynchrony, and failure
handling mechanisms. § 4 introduces an extended theory of asynchronous multiparty session
types with time annotations. Additionally, we present a typing system for ATMP session
π-calculus, and demonstrate the properties of typed processes. § 5 delves into the design and
usage of MultiCrustyT, our Rust implementation of ATMP. § 6 showcases the compilation
and execution benchmarks of MultiCrustyT, based on selected case studies. § 7 concludes
the paper by discussing related work, and offering conclusions and potential future work.
Full proofs, auxiliary material, and more details of MultiCrustyT can be found in the full
version of the paper [19]. Our toolchain and evaluation examples are available in an artifact.

ECOOP 2024

https://zenodo.org/doi/10.5281/zenodo.11032195

19:4 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

Section 4

Section 3

Section 5

Thms 17, 21, 24 Type Checking

Section 4

Processes with
Affinity, Time, and Timeouts

Timed Local Types

Timed Global Type νScrT

Communicating
Timed Automata

MultiCrustyT

Programs written
with MultiCrustyT API

Projection

Generation

Type
Checking

Projection Thms 13, 14

(a) Top-down view of ATMP (left)
and MultiCrustyT (right).

5 ≤ C
Ser ≤ 6

Server Satellite Sensor

alt

 GetData

 GetData

 Data

 Data

 Close

 Close

6 ≤ C
Ser ≤ 7 ; C

Ser := 0

5 ≤ C
Sa1 ≤ 6

6 ≤ C
Sa1 ≤ 7 ; C

Sa1 := 0

5 ≤ C
Ser ≤ 65 ≤ C
Sa1 ≤ 6

5 ≤
 C Sen

 ≤ 6

6 ≤
 C Sen

 ≤ 7 ; C
Sen

 :=
 0

5 ≤
 C Sa2

 ≤
6

6 ≤
 C Sa2

 ≤ 7 ; C
Sa2

 :=
 0

5 ≤
 C Sa2

 ≤ 6

5 ≤
 C Sen

 ≤ 6

Sensor gathers data for 5 seconds

Sensor gathers data for 5 seconds

(b) Global protocol for remote data.

Figure 1 Overview of affine asynchronous communication with time.

2 Overview

In this section, we give an overview of affine timed multiparty session types (ATMP) and
MultiCrustyT, our toolchain for implementing affine timed asynchronous protocols. First, we
share a real-world example inspiring our work on affine asynchronous timed communication.

Fig. 1b depicts our running example, remote data. This real-world scenario is sourced from
a satellite-enabled Internet of Remote Things network [7], and describes data transmissions
among a Sensor (Sen), a Server (Ser), and a Satellite (Sat): Ser aims to periodically retrieve
data gathered by Sen via Sat. The protocol revolves around a loop initiated by Ser, which
faces a decision: either retrieve data or end the protocol. In the former scenario, Ser requests
data retrieval from Sen with a message labelled GetData via Sat within the time window of 5
and 6 time units, as indicated by clock constraints (i.e. 5 ≤ CSer ≤ 6, where CSer is the clock
associated with Ser). Upon receiving this request, Sen responds by sending the data with a
message labelled Data to Ser through Sat within 6 and 7 time units, followed by clock resets
denoted as reset predicates (i.e. CSer := 0, resetting the clock to 0). In the alternative branch,
Ser sends a Close message to Sat, which is then forwarded to Sen, between 5 and 6 time units.

Our remote data protocol includes internal tasks that consume time, notably Sen requiring
5 time units to gather data before transmitting. In cases where our protocol lacks a specified
timing strategy (i.e. no time requirements), and Sen cannot accomplish the data-gathering
tasks, it results in indefinite blocking for Sat and Ser as they await the data. This could lead
to undesirable outcomes, including partially processed data, data corruption, or incomplete
transmission of processed data. Therefore, incorporating time constraints into communication
protocols is imperative, as it better reflects real-world scenarios and ensures practical viability.

2.1 ATMP: Theory Overview

Our ATMP theory follows the top-down methodology [17, 18], enhancing asynchronous MPST
with time features to facilitate timed global and local types. As shown in Fig. 1a (left), we
specify multiparty protocols with time as timed global types. These timed global types are
projected into timed local types, which are then used for type-checking processes with affine
types, time, timeouts, and failure handling, written in a session calculus. As an example,
we consider a simple communication scenario derived from remote data: the Satellite (Sat)
communicates with the server (Ser) by sending a Data message (Data). Specifically, Sat needs
to send the message between 6 and 7 time units and reset its clock afterwards, while Ser is
expected to receive the message within the same time window and reset its clock accordingly.

P. Hou, N. Lagaillardie, and N. Yoshida 19:5

Timed Types and Processes. This communication behaviour can be represented by the
timed global type G:

Sat→Ser: {Data{6 ≤ CSat ≤ 7, CSat := 0, 6 ≤ CSer ≤ 7, CSer := 0}.end}
where CSat and CSer denote the clocks of Sat and Ser, respectively. A global type represents
a protocol specification involving multiple roles from a global standpoint.

Adhering to the MPST top-down approach, a timed global type is then projected onto
timed local types, which describe communications from the perspective of individual roles.
In our example, G is projected onto two timed local types, one for each role Sat and Ser:

TSat = Ser⊕Data{6 ≤ CSat ≤ 7, CSat := 0}.end TSer = Sat&Data{6 ≤ CSer ≤ 7, CSer := 0}.end

Here TSat indicates that Sat sends (⊕) the message Data to Ser between 6 and 7 time units
and then immediately resets its clock CSat. Dually, TSer denotes Ser receiving (&) the message
from Sat within the same time frame and resetting its clock CSer.

In the final step of the top-down approach, we employ timed local types to conduct
type-checking for processes, denoted as Pi, in the ATMP session calculus. Our session calculus
extends the framework for affine multiparty session types (AMPST) [28] by incorporating
processes that model time, timeouts, and asynchrony. In our example, TSat and TSer are used
for the type-checking of s[Sat] and s[Ser], which respectively represent the channels (a.k.a.
session endpoints) played by roles Sat and Ser in a multiparty session s, within the processes:

PSat = delay(C1 = 6.5) . s[Sat]0.4[Ser]⊕Data.0 PSer = delay(C2 = 6) . s[Ser]0.3[Sat]Data.0

The Satellite process PSat waits for exactly 6.5 time units (delay(C1 = 6.5)), then sends the
message Data with a timeout of 0.4 time units (s[Sat]0.4[Ser]⊕Data), and becomes inactive (0).
Meanwhile, the Server process PSer waits for 6 time units (delay(C2 = 6)), then receives the
message with a timeout of 0.3 time units (s[Ser]0.3[Sat]Data), subsequently becoming inactive.

Solution to Stuck Processes Due to Time Failures. It appears that the parallel execution
of PSat and PSer, PSat | PSer, cannot proceed further due to the disparity in timing requirements.
Specifically, using the same session s, Sat sends the message Data to Ser between 6.5 and 6.9
time units, while Ser must receive it from Sat between 6 and 6.3 time units. This results in a
stuck situation, as Ser cannot meet the required timing condition to receive the message.

Fortunately, in our system, timeout failures are allowed, which can be addressed by
leveraging affine session types and their associated failure handling mechanisms. Back to
our example, when s[Ser] waits for 6 time units and cannot receive Data within 0.3 time
units, a timeout failure is raised (timeout[s[Ser]0.3[Sat]Data.0]). Furthermore, we apply our
time-failure handling approach to manage this timeout failure, initiating the termination of
the channel s[Ser] and triggering the cancellation process of the session s (s). As a result,
the process will successfully terminate by canceling (or killing) all usages of s within it.

Conversely, the system introduced in [4] enforces strict requirements, including feasibility
and wait-freedom, on timed global types to prevent time-related failures in well-typed
processes, thus preventing them from becoming blocked due to unsolvable timing constraints.
Feasibility ensures the successful termination of each allowed partial execution, while wait-
freedom guarantees that receivers do not have to wait if senders follow their time constraints.
In our example, we start with a timed global type that is neither feasible nor wait-free,
showcasing how our system effectively handles time failures and ensures successful process
termination without imposing additional conditions on timed global types. In essence,
reliance on feasibility and wait-freedom becomes unnecessary in our system, thanks to the
inclusion of affinity and time-failure handling mechanisms.

ECOOP 2024

19:6 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

1 struct Send<T,
2 const CLOCK: char,
3 const START: i128,
4 const INCLUDE_START: bool,
5 const END: i128,
6 const INCLUDE_END: bool,
7 const RESET: char,
8 S>

(a) Send type.

1 struct Recv<T,
2 const CLOCK: char,
3 const START: i128,
4 const INCLUDE_START: bool,
5 const END: i128,
6 const INCLUDE_END: bool,
7 const RESET: char,
8 S>

(b) Recv type.

1 MeshedChannels<
2 Recv<Data,
3 ’a’,6,true,7,true,’a’,End>,
4 Send<Data,
5 ’b’,6,true,7,true,’b’,End>,
6 RoleSen<RoleSer<End>>,
7 NameSat,
8 >

(c) MeshedChannels type for Sat.

Figure 2 Main types of MultiCrustyT.

2.2 MultiCrustyT: Toolchain Overview

To augment the theory, we introduce the MultiCrustyT library, a toolchain for implementing
communication protocols in Rust. MultiCrustyT specifies protocols where communication
operations must adhere to specific time limits (timed), allowing for asynchronous message
reception and runtime handling of certain failures (affine). This library relies on two
fundamental types: Send and Recv, representing message sending and receiving, respectively.
Additionally, it incorporates the End type, signifying termination to close the connection.
Figs. 2a and 2b illustrate the Send and Recv types respectively, used for sending and receiving
messages of any thread-safe type (represented as T in Line 1). After sending or receiving a
message, the next operation or continuation (S in Line 8) is determined, which may entail
sending another message, receiving another message, or terminating the connection.

Similar to ATMP, each communication operation in MultiCrustyT is constrained by
specific time boundaries to avoid infinite waiting. These time bounds are represented by the
parameters in Lines 2–7 of Fig. 2a, addressing scenarios where a role may be required to
send after a certain time unit or receive between two specific time units. Consider the final
communication operation in the first branch of Fig. 1b from Sat’s perspective. To remain
consistent with § 2.1, the communication is terminated here instead of looping back to the
beginning of the protocol. In this operation, Sat sends a message labelled Data to Ser between
time units 6 and 7, with respect to its inner clock ’b’, and then terminates after resetting its
clock. This can be implemented as: Send<Data, ’b’, 6, true, 7, true, ’b’, End>.

To enable multiparty communication in MultiCrustyT, we use the MeshedChannels type,
inspired by [28]. This choice is necessary as Send and Recv types are primarily designed for
binary (peer-to-peer) communication. Within MeshedChannels, each binary channel pairs the
owner role with another, establishing a mesh of communication channels that encompasses all
participants. Fig. 2c demonstrates an example of using MeshedChannels for Sat in our running
example: Sat receives a Data message from Sen (Line 2) and forwards it to Ser (Line 4) before
ending all communications, following the order specified by the stack in Line 6.

Creating these types manually in Rust can be challenging and error-prone, especially
because they represent the local perspective of each role in the protocol. Therefore, as
depicted in Fig. 1a (right), MultiCrustyT employs a top-down methodology similar to ATMP
to generate local viewpoints from a global protocol, while ensuring the correctness of the
generated types by construction. To achieve this, we extend the syntax of νScr [42], a
language for describing multiparty communication protocols, to include time constraints,
resulting in νScrT . A timed global protocol represented in νScrT is then projected onto
local types, which are used for generating Rust types in MultiCrustyT.

P. Hou, N. Lagaillardie, and N. Yoshida 19:7

3 Affine Timed Multiparty Session Calculus

In this section, we formalise an affine timed multiparty session π-calculus, where processes
are capable of performing time actions, raising timeouts, and handling failures. We start
with the formal definitions of time constraints used in the paper.

Clock Constraint, Valuation, and Reset. Our time model is based on the timed automata
formalism [1, 27]. Let C denote a finite set of clocks, ranging over C, C ′, C1, . . ., that take
non-negative real values in R≥0. Additionally, let t, t′, t1, . . . be time constants ranging over
R≥0. A clock constraint δ over C is defined as:

δ ::= true
∣∣ C > b

∣∣ C = b
∣∣ ¬δ

∣∣ δ1 ∧ δ2

where C ∈ C and b is a constant time bound ranging over non-negative rationals Q≥0.
We define false, <, ≥, ≤ in the standard way. For simplicity and consistency with our
implementation (§ 5), we assume each clock constraint contains a single clock. Extending a
clock constraint with multiple clocks is straightforward.

A clock valuation V : C → R≥0 assigns time to each clock in C. We define V + t as the
valuation that assigns to each C ∈ C the value V(C) + t. The initial valuation that maps all
clocks to 0 is denoted as V0, and the valuation that assigns a value of t to all clocks is denoted
as Vt. V |= δ indicates that the constraint δ is satisfied by the valuation V. Additionally, we
use ⊔i∈IVi to represent the overriding union of the valuations Vi for i ∈ I.

A reset predicate λ over C is a subset of C that defines the clocks to be reset. If λ = ∅,
no reset is performed. Otherwise, the valuation for each clock C ∈ λ is set to 0. For clarity,
we represent a reset predicate as C := 0 when a single clock C needs to be reset. To denote
the clock valuation identical to V but with the values of clocks in λ to 0, we use V[λ 7→ 0].

Syntax of Processes. Our session π-calculus for affine timed multiparty session types (ATMP)
models timed processes interacting via affine meshed multiparty channels. It extends the
calculus for affine multiparty session types (AMPST) [28] by incorporating asynchronous
communication, time features, timeouts, and failure handling.1

▶ Definition 1 (Syntax). Let p, q, r, . . . denote roles belonging to a (fixed) set R; s, s′, . . .

for sessions; x, y, . . . for variables; m, m′, . . . for message labels; and X, Y , . . . for process
variables. The affine timed multiparty session π-calculus syntax is defined as follows:

c, d ::= x
∣∣ s[p] (variable, channel with role p)

P , Q ::= 0
∣∣ P | Q

∣∣ (νs) P (inaction, parallel composition, restriction)
cn[q]⊕m⟨d⟩.P (timed selection towards role q)
cn[q]

∑
i∈I

mi(xi).Pi (timed branching from role q with I ̸= ∅)
def D in P

∣∣ X ⟨̃c⟩ (process definition, process call)
delay(δ) . P

∣∣ delay(t) . P (time-consuming delay, deterministic delay)
timeout[P]

∣∣ try P catch Q (timeout failure, try-catch)
cancel(c) . P

∣∣ cerr
∣∣ s (cancel, communication error, kill)

s[p]▶σ (output message queue of role p in session s)
D ::= X(x̃) = P (declaration of process variable X)
σ ::= q!m⟨s[r]⟩ ·σ

∣∣ ϵ (message queue, non-empty or empty)

1 To simplify, our calculus exclusively emphasises communication. Standard extensions, e.g. integers,
booleans, and conditionals, are routine and independent of our formulation.

ECOOP 2024

19:8 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

Restriction, branching, and process definitions and declarations act as binders; fc(P) is the
set of free channels with roles in P , fv(P) is the set of free variables in P , and Πi∈IPi is
the parallel composition of processes Pi. Extensions w.r.t. AMPST calculus are highlighted.
Runtime processes, generated dynamically during program execution rather than explicitly
written by users, are underlined.

Our calculus comprises:
Channels c, d, being either variables x or channels with roles (a.k.a. session endpoints) s[p].
Standard processes as in [37, 28], including inaction 0, parallel composition P | Q, session
scope restriction (νs) P , process definition def D in P , process call X ⟨̃c⟩, and communication
error cerr.
Time processes that follow the program time behaviour of Fig. 2c:

Timed selection (or timed internal choice) cn[q]⊕m⟨d⟩.P indicates that a message m
with payload d is sent to role q via endpoint c, whereas timed branching (or timed
external choice) cn[q]

∑
i∈I mi(xi).Pi waits to receive a message mi from role q via

endpoint c and then proceeds as Pi.
The parameter n in both timed selection and branching is a timeout that allows modelling
different types of communication primitives: blocking with a timeout (n ∈ R>0), blocking
(n = ∞), or non-blocking (n = 0). When n ∈ R≥0, the timed selection (or timed branching)
process waits for up to n time units to send (or receive) a message. If the message cannot
be sent (or received) within this time, the process moves into a timeout state, raising a
time failure. If n is set to ∞, the timed selection (or timed branching) process blocks
until a message is successfully sent (or received).
In our system, we allow send processes to be time-consuming, enabling processes to wait
before sending messages. Consider the remote data example shown in Fig. 1b. This
practical scenario illustrates how a process might wait before sending a message, resulting
in the possibility of send actions failing due to timeouts. It highlights the importance of
timed selection, contrasting with systems like in [3] where send actions are instantaneous.
delay(δ) . P represents a time-consuming delay action, such as method invocation or
sleep. Here, δ is a clock constraint involving a single clock variable C, used to specify the
interval for the delay. When executing delay(δ) . P , any time value t that satisfies the
constraint δ can be consumed. Consequently, the runtime deterministic delay process
delay(t) . P , arising during the execution of delay(δ) . P , is introduced. In delay(t) . P ,
t is a constant and a solution to δ, and P is executed after a precise delay of t time units.
timeout[P] signifies that the process P has violated a time constraint, resulting in a
timeout failure.

Failure-handling processes that adopt the AMPST approach [28]:
try P catch Q consists of a try process P that is prepared to communicate with a
parallel composed process, and a catch process Q, which becomes active in the event of
a cancellation or timeout. For clarity, try 0 catch Q is not allowed within our calculus.
cancel(c) . P performs the cancellation of other processes with channel c.
s kills (terminates) all processes with session s, and is dynamically generated only at
runtime from timeout failure or cancel processes.

Message queues: s[p]▶σ represents the output message queue of role p in session s. It
contains all the messages previously sent by p. The queue σ can be a sequence of messages
of the form q!m⟨s[r]⟩, where q is the receiver, or ϵ, indicating an empty message queue. The
set of receivers in σ, denoted as receivers(σ), is defined in a standard way as:

receivers(q!m⟨s[r]⟩ ·σ′) = {q} ∪ receivers(σ′) receivers(ϵ) = ∅

P. Hou, N. Lagaillardie, and N. Yoshida 19:9

[R-Out] E
[
s[q]n[p]⊕m⟨s′[r]⟩.Q

]
| s[q]▶σ ↣ Q | s[q]▶σ ·p!m⟨s′[r]⟩ ·ϵ

[R-In] E
[
s[p]n[q]

∑
i∈I

mi(xi).Pi

]
| s[q]▶p!mk⟨s′[r]⟩ ·σ ↣ Pk{s′[r]/xk} | s[q]▶σ (k ∈I)

[R-Err] E
[
s[p]n[q]

∑
i∈I

mi(xi).Pi

]
| s[q]▶p!m⟨s′[r]⟩ ·σ ↣ cerr (∀i∈I : mi ̸= m)

[R-Det] |= δ[t/C] implies E[delay(δ) . P] ↣ delay(t) . P

[R-Time] P ⇀ Ψt(P)
[R-Fail] timeout[P] ↣ s (∃r. subjP(P) = {s[r]})
[R-Can] E[cancel(s[p]) . Q] ↣ s | Q

[R-FailCat] try timeout[P] catch Q ↣ s | Q (∃r. subjP(P) = {s[r]})
[C-Cat] try P catch Q | s ↣ Q | s (∃r. subjP(P) = {s[r]})

[C-In] s[p]n[q]
∑

i∈I
mi(xi).Pi | s[q]▶σ | s

↣
(
νs′

)
(Pk{s′[r]/xk} | s′) | s[q]▶σ | s (p /∈ receivers(σ), k ∈I, s′ /∈ fc(Pk))

[C-Queue] s[p]▶q!m⟨s′[r]⟩ ·σ | s ↣ s[p]▶σ | s | s′
[R-X] def X(x1, . . . , xn) = P in (X⟨s1[p1], . . . , sn[pn]⟩ | Q)

↣ def X(x1, . . . , xn) = P in (P {s1[p1]/x1} · · · {sn[pn]/xn} | Q)
[R-Ctx] P ↣ P ′ implies C[P] ↣ C

[
P ′

]
[R-≡] P ′ ≡ P ↣ Q ≡ Q′ implies P ′ ↣ Q′ [R-≡T] P ′ ≡ P ⇀ Q ≡ Q′ implies P ′ ⇀ Q′

[R-Ins] P ↣ P ′ implies P → P ′ [R-TC] P ⇀ P ′ implies P → P ′

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P (νs) 0 ≡ 0 (νs)
(
νs′

)
P ≡

(
νs′

)
(νs) P s | s ≡ s

(νs) (P | Q) ≡ P | (νs) Q if s ̸∈ fc(P) def D in 0 ≡ 0 def D in (νs) P ≡ (νs) (def D in P) if s ̸∈ fc(D)
delay(0) . P ≡ P def D in (P | Q) ≡ (def D in P) | Q if dpv(D) ∩ fpv(Q) = ∅

(νs) (s[p1]▶ϵ | · · · | s[pn]▶ϵ) ≡ 0 def D in (def D′ in P) ≡ def D′ in (def D in P)
if (dpv(D) ∪ fpv(D)) ∩ dpv

(
D′

)
= (dpv

(
D′

)
∪ fpv

(
D′

)
) ∩ dpv(D) = ∅

s[p]▶σ ·q1!m1⟨s1[r1]⟩ ·q2!m2⟨s2[r2]⟩ ·σ′ ≡ s[p]▶σ ·q2!m2⟨s2[r2]⟩ ·q1!m1⟨s1[r1]⟩ ·σ′ if q1 ̸= q2

Figure 3 Top: reduction rules for ATMP session π-calculus. Bottom: structural congruence rules
for the ATMP π-calculus, where fpv(D) is the set of free process variables in D, and dpv(D) is the
set of declared process variables in D. New rules are highlighted.

Operational Semantics. We present the operational semantics of our session π-calculus for
modelling the behaviour of affine timed processes, including asynchronous communication,
time progression, timeout activation, and failure handling.

▶ Definition 2 (Semantics). A try-catch context E is defined as E ::= try E catch P
∣∣ [],

and a reduction context C is defined as C ::= C | P
∣∣ (νs)C

∣∣ def D in C
∣∣ []. The

reductions →, ↣, and ⇀ are inductively defined in Fig. 3 (top), with respect to a structural
congruence ≡ depicted in Fig. 3 (bottom). We write →∗, ↣∗, and ⇀∗ for their reflexive
and transitive closures, respectively. P ↛ (or P ↣̸, P ⇀̸) means ̸ ∃P ′ such that P →P ′ (or
P↣P ′, P ⇀P ′) is derivable. We say P has a communication error iff ∃C with P = C[cerr].

We decompose the reduction rules in Fig. 3 into three relations: ↣ represents instantan-
eous reductions without time consumption, ⇀ handles time-consuming steps, and → is a
general relation that can arise either from ↣ by [R-Ins] or ⇀ by [R-TC]. Now let us explain
the operational semantics rules for our session π-calculus.
Communication: Rules [R-Out] and [R-In] model asynchronous communication by queuing
and dequeuing pending messages, respectively. Rule [R-Err] is triggered by a message label
mismatch, resulting in a fatal communication error.
Time: Rule [R-Det] specifies a deterministic delay of a specific duration t, where t is a solution
to the clock constraint δ. Rule [R-Time] incorporates a time-passing function Ψt(P), depicted
in Fig. 4, to represent time delays within a process. This partial function simulates a delay
of time t that may occur at different parts of the process. It is undefined only if P is a
time-consuming delay, i.e. P = delay(δ) . P ′, or if the specified delay time t exceeds the

ECOOP 2024

19:10 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

Ψt(0) = 0 Ψt(P1 | P2) = Ψt(P1) | Ψt(P2) Ψt((νs) P) = (νs) Ψt(P) Ψt(timeout[P]) = timeout[P]
Ψt(cerr) = cerr Ψt(def D in P) = def D in Ψt(P) Ψt(try P catch Q) = try Ψt(P) catch Ψt(Q)

Ψt(s[p]▶σ) = s[p]▶σ Ψt(delay(δ) . P) = undefined Ψt(cancel(c) . Q) = cancel(c) . Ψt(Q)

Ψt(delay(t′) . P) =
{delay(t′ − t) . P if t′ ≥ t

undefined otherwise Ψt(c∞[q]
∑

i∈I
mi(xi).Pi) = c∞[q]

∑
i∈I

mi(xi).Pi

Ψt(ct′
[q]⊕m⟨d⟩.P) =

{
ct′−t[q]⊕m⟨d⟩.P if t′ ≥ t

timeout[ct′
[q]⊕m⟨d⟩.P] otherwise

Ψt(c∞[q]⊕m⟨d⟩.P) = c∞[q]⊕m⟨d⟩.P

Ψt(s) = s Ψt(ct′
[q]

∑
i∈I

mi(xi).Pi) =
{

ct′−t[q]
∑

i∈I
mi(xi).Pi if t′ ≥ t

timeout[ct′
[q]

∑
i∈I

mi(xi).Pi] otherwise

Figure 4 Time-passing function Ψt(P).

duration of a runtime deterministic delay, i.e. P = delay(t′) . P ′ with t > t′. The latter case
arises because deterministic delays must always adhere to their specified durations, e.g. if a
program is instructed to sleep for 5 time units, it must strictly follow this duration.

Notably, Ψt(P) acts as the only mechanism for triggering a timeout failure timeout[P],
resulting from a timed selection or branching. Such a timeout failure occurs when Ψt(P) is
defined, and the specified delay t exceeds a deadline set within P .
Cancellation: Rules [C-In] and [C-Queue] model the process cancellations. [C-In] is triggered
only when there are no messages in the queue that can be received from q via the endpoint
s[p]. Cancellation of a timed selection is expected to eventually occur via [C-Queue]; therefore,
there is no specific rule dedicated to it. Similarly, in our implementation, the timed selection
is not directly cancelled either.

Rules [R-Can] and [C-Cat], adapted from [28], state cancellations from other parties. [R-Can]

facilitates cancellation and generates a kill process, while [C-Cat] transitions to the catch
process Q due to the termination of session s, where the try process P is communicating on
s. Therefore, the set of subjects of process P , denoted as subjP(P), is included in the side
condition of [C-Cat] to ensure that P has a prefix at s, as defined below:
subjP(0) = subjP(cerr) = ∅ subjP(P | Q) = subjP(P) ∪ subjP(Q) subjP(s[p]▶σ) =

{
s[p]Q

}
subjP((νs) P) = subjP(P) \ ({s[pi]}i∈I ∪

{
s[pi]

Q
}

i∈I
)

subjP(def X(x̃) = P in Q) = subjP(Q) ∪ subjP(P) \
{

x̃
}

with subjP(X
〈̃
c
〉
) = subjP(P

{̃
c/̃x

}
)

subjP(cn[q]⊕m⟨d⟩.P) = subjP(cn[q]
∑

i∈I
mi(xi).Pi) = subjP(cancel(c) . P) = {c}

subjP(delay(δ) . P) = subjP(delay(t) . P) = subjP(try P catch Q) = subjP(timeout[P]) = subjP(P)
Subjects of processes determine sessions that may need cancellation, a crucial aspect for

handling failed or cancelled processes properly. In our definition, subjects not only denote
the endpoints via which processes start interacting but also indicate whether they are used
for message queue processes. Specifically, an endpoint s[p] annotated with Q signifies its use
in a queue process. This additional annotation, and thus the distinction it implies, is pivotal
in formulating the typing rule for the try-catch process, as discussed later in § 4.4, where we
rely on subjects to exclude queue processes within any try construct.
Timeout Handling: Rules [R-Fail] and [R-FailCat] address time failures. In the event of
a timeout, a killing process is generated. Moreover, in [R-FailCat], the catch process Q is
triggered. To identify the session requiring termination, the set of subjects of the failure
process timeout[P] is considered in both rules as a side condition. Note that a timeout arises
exclusively from timed selection or branching. Therefore, the subject set of timeout[P] must
contain a single endpoint devoid of Q, indicating the generation of only one killing process.
Standard: Rules [R-X], [R-Ctx], and [R-≡] are standard [37, 28]. [R-X] expands process
definitions when invoked; [R-Ctx] and [R-≡] allow processes to reduce under reduction contexts

P. Hou, N. Lagaillardie, and N. Yoshida 19:11

and through structural congruence, respectively. Rule [R-≡T] introduces a timed variant
of [R-≡], enabling time-consuming reductions via structural congruence.
Congruence: As shown in Fig. 3 (bottom), we introduce additional congruence rules related
to queues, delays, and process killings, alongside standard rules from [37]. Specifically, two
rules are proposed for queues: the first addresses the garbage collection of queues that are
not referenced by any process, while the second rearranges messages with different receivers.
The rule for delays states that adding a delay of zero time units has no effect on the process
execution. The rule regarding process killings eliminates duplicate kills.

▶ Example 3. Consider the processes: P1 = s[Sat]0.4[Ser]⊕Data.0, P2 = s[Ser]0.3[Sat]Data.0,
and P3 = s[Sat]▶ϵ. Rule [C-Cat] can be applied to try P1 catch Q | s , as subjP(P1) = {s[Sat]}
satisfies its side condition. However, neither timeout[P1 | P2] nor timeout[P3] can generate the
killing process s , as subjP(P1 | P2) = {s[Sat], s[Ser]}, whereas subjP(P3) =

{
s[Sat]Q

}
.

▶ Example 4. Processes QSen, QSat, and QSer interact on a session s:
QSen = delay(CSen = 6.5) . Q′

Sen | s[Sen]▶ϵ where Q′
Sen = try s[Sen]0.3[Sat]⊕Data catch cancel(s[Sen])

QSat = delay(CSat = 6) . Q′
Sat | s[Sat]▶ϵ where Q′

Sat = s[Sat]0.2[Sen]
∑{

Data.s[Sat]0.3[Ser]⊕Data
fail.s[Sat]0.4[Ser]⊕fatal

}
QSer = delay(CSer = 6) . Q′

Ser | s[Ser]▶ϵ where Q′
Ser = s[Ser]0.8[Sat]

∑
{Data, fatal}

Process QSen delays for exactly 6.5 time units before executing process Q′
Sen. Here, Q′

Sen
attempts to use s[Sen] to send Data to Sat within 0.3 time units. If the attempt fails, the
cancellation of s[Sen] is triggered. Process QSat waits for precisely 6 time units before using
s[Sat] to receive either Data or fail from Sen within 0.2 time units; subsequently, in the
first case, it uses s[Sat] to send Data to Ser within 0.3 time units, while in the latter, it uses
s[Sat] to send fail to Ser within 0.4 time units. Similarly, process QSer waits 6 time units
before using s[Ser] to receive either Data or fatal from Sat within 0.8 time units.

In QSen, s[Sen] can only start sending Data to Sat after 6.5 time units, whereas in QSat,
s[Sat] must receive the message from Sen within 0.2 time units after a 6-time unit delay.
Consequently, s[Sat] fails to receive the message from Sen within the specified interval,
resulting in a timeout failure, i.e.

QSen | QSat | QSer↣delay(6.5) . Q′
Sen | s[Sen]▶ϵ | delay(6) . Q′

Sat | s[Sat]▶ϵ | delay(6) . Q′
Ser | s[Ser]▶ϵ

⇀ Ψ6.5(delay(6.5) . Q′
Sen | s[Sen]▶ϵ | delay(6) . Q′

Sat | s[Sat]▶ϵ | delay(6) . Q′
Ser | s[Ser]▶ϵ)

≡ Q′
Sen | s[Sen]▶ϵ | timeout[Q′

Sat] | s[Sat]▶ϵ | Ψ0.5(Q′
Ser) | s[Ser]▶ϵ

Therefore, the kill process s is generated from timeout[Q′
Sat], successfully terminating the

process QSen | QSat | QSer by the following reductions:
Q′

Sen | s[Sen]▶ϵ | timeout[Q′
Sat] | s[Sat]▶ϵ | Ψ0.5(Q′

Ser) | s[Ser]▶ϵ

↣ Q′
Sen | s[Sen]▶ϵ | s | s[Sat]▶ϵ | Ψ0.5(Q′

Ser) | s[Ser]▶ϵ

↣ cancel(s[Sen]) | s[Sen]▶ϵ | s | s[Sat]▶ϵ | 0 | s[Ser]▶ϵ

↣ s | 0 | s[Sen]▶ϵ | s | s[Sat]▶ϵ | 0 | s[Ser]▶ϵ ≡ 0 | s

4 Affine Timed Multiparty Session Type System

In this section, we introduce our affine timed multiparty session type system. We begin
by exploring the types used in ATMP, as well as subtyping and projection, in § 4.1. We
furnish a Labelled Transition System (LTS) semantics for typing environments (collections of
timed local types and queue types) in § 4.2, and timed global types in § 4.3, illustrating their
relationship with Thms. 13 and 14. Furthermore, we present a type system for our ATMP
session π-calculus in § 4.4. Finally, we show the main properties of the type system: subject
reduction (Thm. 17), session fidelity (Thm. 21), and deadlock-freedom (Thm. 24), in § 4.5.

ECOOP 2024

19:12 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

S ::= (δ, T) sort
G ::= p→q: {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I transmission∣∣ p⇝q:j {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I (j ∈ I) transmission en route∣∣ µt.G

∣∣ t
∣∣ end recursion, type variable, termination

T ::= p&{mi(Si){δi, λi}.Ti}i∈I

∣∣ p⊕{mi(Si){δi, λi}.Ti}i∈I external choice, internal choice∣∣ µt.T
∣∣ t

∣∣ end recursion, type variable, termination
M ::= p!m(S)·M

∣∣ ⊘ queue types

Figure 5 Syntax of timed global types, timed local types, and queue types.

4.1 Timed Multiparty Session Types

Affine session frameworks keep the original system’s type-level syntax intact, requiring no
changes. To introduce affine timed asynchronous multiparty session types, we simply need to
augment global and local types with clock constraints and resets introduced in § 3 to derive
timed global and local types. The syntax of types used in this paper is presented in Fig. 5. As
usual, all types are required to be closed and have guarded recursion variables.

Sorts. Sorts are ranged over S, S′, Si, . . ., and facilitate the delegation of the remaining
behaviour T to the receiver, who can execute it under any clock assignment satisfying δ.

Timed Global Types. Timed global types are ranged over G, G′, Gi, . . ., and describe an
overview of the behaviour for all roles (p, q, s, t, . . .) belonging to a (fixed) set R. The set of
roles in a timed global type G is denoted as roles(G), while the set of its free variables as
fv(G).

A transmission p→q: {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I represents a message sent from
role p to role q, with labels mi, payload types Si (which are sorts), and continuations Gi,
where i is taken from an index set I, and mi taken from a fixed set of all labels M. Each
branch is associated with a time assertion consisting of four components: δOi and λOi for the
output (sending) action, and δIi and λIi for the input (receiving) action. These components
specify the clock constraint and reset predicate for the respective actions. A message can
be sent (or received) at any time satisfying the guard δOi (or δIi), and the clocks in λOi

(or λIi) are reset upon sending (or receiving). In addition to the standard requirements for
global types as in [11], we impose a condition from [4], stating that sets of clocks “owned” by
different roles, i.e. those that can be read and reset, must be pairwise disjoint. Furthermore,
the clock constraint and reset predicate of an output or input action performed by a role are
defined only over the clocks owned by that role.

A transmission en route p⇝q:j {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I (j ∈ I) is a runtime
construct to represent a message mj sent by p, and yet to be received by q. Recursion µt.G

and termination end (omitted where unambiguous) are standard [11]. Note that contractive
requirements [34, §21.8], i.e. ensuring that each recursion variable t is bound within a µt.. . .

and is guarded, are applied in recursive types.

Timed Local Types. Timed local types (or timed session types) are ranged over T , U, T ′, U ′,

Ti, Ui, . . ., and describe the behaviour of a single role. An internal choice (selection)
p⊕{mi(Si){δi, λi}.Ti}i∈I (or external choice (branching) p&{mi(Si){δi, λi}.Ti}i∈I) states
that the current role is to send to (or receive from) the role p when δi is satisfied, followed
by resetting the clocks in λi. Recursive and termination types are defined similarly to
timed global types. The requirements for the index set, labels, clock constraints, and reset
predicates in timed local types mirror those in timed global types.

P. Hou, N. Lagaillardie, and N. Yoshida 19:13

Queue Types. Queue Types are ranged over M, M′, Mi, . . ., and represent (possibly empty)
sequences of message types p!m(S) having receiver p, label m, and payload type S (omitted
when S =(δ, end)). As interactions in our formalisation are asynchronous, queue types are
used to capture the states in which messages are in transit. We adopt the notation receivers(·)
from § 3 to denote the set of receivers in M as receivers(M) as well, with a similar definition.

Subtyping. We introduce a subtyping relation ⩽ on timed local types in Def. 5, based on
the standard behaviour-preserving subtyping [37]. This relation indicates that a smaller type
entails fewer external choices but more internal choices.

▶ Definition 5 (Subtyping). The subtyping relation ⩽ is coinductively defined:
∀i ∈ I S′

i ⩽ Si δi = δ′
i λi = λ′

i Ti ⩽ T ′
i

p⊕{mi(Si){δi, λi}.Ti}i∈I∪J ⩽ p⊕{mi(S′
i){δ′

i, λ′
i}.T ′

i }i∈I

[Sub-⊕]

∀i ∈ I Si ⩽ S′
i δi = δ′

i λi = λ′
i Ti ⩽ T ′

i

p&{mi(Si){δi, λi}.Ti}i∈I ⩽ p&{mi(S′
i){δ′

i, λ′
i}.T ′

i }i∈I∪J

[Sub-&]
end ⩽ end

[Sub-end]

T ⩽ T ′

(δ, T) ⩽ (δ, T ′)
[Sub-S]

T {µt.T/t} ⩽ T ′

µt.T ⩽ T ′ [Sub-µL]
T ⩽ T ′{µt.T ′

/t
}

T ⩽ µt.T ′ [Sub-µR]

Projection. Projection of a timed global type G onto a role p yields a timed local type.
Our definition of projection in Def. 6 is mostly standard [37], with the addition of projecting
time assertions onto the sender and receiver, respectively.

▶ Definition 6 (Projection). The projection of a timed global type G onto a role p, written
as G↾ p, is:

(q→r: {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I)↾ p =

r⊕{mi(Si){δOi, λOi}.(Gi↾ p)}i∈I if p = q

q&{mi(Si){δIi, λIi}.(Gi↾ p)}i∈I if p = r
d

i∈I Gi↾ p otherwise

(q⇝r:j {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I)↾ p =

Gj↾ p if p = q

q&{mi(Si){δIi, λIi}.(Gi↾ p)}i∈I if p = r
d

i∈I Gi↾ p otherwise

(µt.G)↾ p =
{

µt.(G↾ p) if p ∈ roles(G) or fv(µt.G) ̸= ∅
end otherwise

t↾ p = t
end↾ p = end

where
d

is the merge operator for timed session types:
p&{mi(Si){δi, λi}.Ti}i∈I ⊓ p&

{
mj(S′

j){δ′
j , λ′

j}.T ′
j

}
j∈J

=
p&{mk(Sk){δk, λk}.(Tk ⊓T ′

k)}k∈I∩J & p&{mi(Si){δi, λi}.Ti}i∈I\J & p&
{

mj(S′
j){δ′

j , λ′
j}.T ′

j

}
j∈J\I

p⊕{mi(Si){δi, λi}.Ti}i∈I ⊓ p⊕{mi(Si){δi, λi}.T ′
i }i∈I = p⊕{mi(Si){δi, λi}.(Ti ⊓ T ′

i)}i∈I

µt.T ⊓ µt.U = µt.(T ⊓ U) t ⊓ t = t end ⊓ end = end

▶ Example 7. Take the timed global type G, and timed local types TSat and TSer from § 2.1.
Consider a timed global type Gdata, derived from remote data (Fig. 1b) as well, representing
data transmission from Sen to Ser via Sat:

Gdata = Sen→Sat: {Data{6 ≤ CSen ≤ 7, CSen := 0, 6 ≤ CSat ≤ 7, ∅}.G}

which can be projected onto roles Sen, Sat, and Ser, respectively, as:
Gdata↾ Sen = Sat⊕Data{6 ≤ CSen ≤ 7, CSen := 0}.end Gdata↾ Ser = G↾ Ser = TSer

Gdata↾ Sat = Sen&Data{6 ≤ CSat ≤ 7, ∅}.G↾ Sat = Sen&Data{6 ≤ CSat ≤ 7, ∅}.TSat

ECOOP 2024

19:14 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

(V, T) ≡ (V, T)
p ̸= q

p!m1(S1)·q!m2(S2)·M ≡ q!m2(S2)·p!m1(S1)·M

⊘·⊘ ≡ ⊘ p!m(S)·⊘·M ≡ ⊘·p!m(S)·M
M ≡ M′ (V, T) ≡ (V, T ′)

M; (V, T) ≡ M′; (V, T ′)

⊘ ⩽ ⊘
S′ ⩽ S M ⩽M′

q!m(S)·M ⩽ q!m(S′)·M′

T ⩽ T ′

(V, T) ⩽ (V, T ′)

M ⩽M′ (V, T) ⩽ (V, T ′)

M; (V, T) ⩽M′; (V, T ′)

Figure 6 Congruence (top) and subtyping (bottom) rules for timed-session/queue types.

4.2 Typing Environments
To reflect the behaviour of timed global types (§ 4.3), present a typing system for our session
π-calculus (§4.4), and introduce type-level properties (§4.5), we formalise typing environments
in Def. 8, followed by their Labelled Transition System (LTS) semantics in Def. 9.

▶ Definition 8 (Typing Environments). The typing environments Θ and Γ are defined as:
Θ ::= ∅

∣∣ Θ, X:(V1, T1), . . . , (Vn, Tn) Γ ::= ∅
∣∣ Γ, x:(V, T)

∣∣ Γ, s[p]:τ

where τ is a timed-session/queue type: τ ::= (V, T)
∣∣ M

∣∣ M; (V, T), i.e. either a timed
session type, a queue type, or a combination.

The environment composition Γ1, Γ2 is defined iff ∀c ∈ dom(Γ1) ∩ dom(Γ2) : Γi(c) =
M and Γj(c)=(V, T) with i, j ∈ {1, 2}, and for all such c, we posit (Γ1, Γ2)(c) = M; (V, T).

We write dom(Γ) = {s} iff for any c ∈ dom(Γ), there is p such that c = s[p] (i.e. Γ only
contains session s). We write s ̸∈ Γ iff ∀p : s[p] ̸∈ dom(Γ) (i.e. session s does not occur
in Γ). We write Γs iff dom(Γs) = {s}, dom(Γs) ⊆ dom(Γ), and ∀s[p] ∈ dom(Γ) : Γ(s[p]) =
Γs(s[p]) (i.e. restriction of Γ to session s). We denote updates as Γ[c 7→ τ]: Γ[c 7→ τ](c) = τ

and Γ[c 7→ τ](c′) = Γ(c′) (where c ̸= c′).
Congruence and subtyping are imposed on typing environments: Γ ≡ Γ′ (resp. Γ ⩽ Γ′)

iff dom(Γ) = dom(Γ′) and ∀c ∈ dom(Γ) : Γ(c) ≡ Γ′(c) (resp. Γ(c) ⩽ Γ′(c)), incorporating
additional congruence and subtyping rules for time-session/queue types, as depicted in Fig. 6.

In Def. 8, the typing environment Θ maps process variables to n-tuples of timed session
types, while Γ maps variables to timed session types, and channels with roles to timed-
session/queue types. Note that in our typing environments, timed session types are annotated
with clock valuations, denoted as (V, T). This enables us to capture timing information
within the type system, facilitating the tracking of the (virtual) time at which the next action
can be validated during the execution of a process.

The congruence relation ≡ for timed-session/queue types is inductively defined as in Fig. 6
(top), reordering queued messages with different receivers. Subtyping for timed-session/queue
types extends Def. 5 with rules in Fig. 6 (bottom): particularly, rule [Sub-M] states that a
sequence of queued message types is a subtype of another if messages in the same position
have identical receivers and labels, and their payload sorts are related by subtyping.

▶ Definition 9 (Typing Environment Reduction). Let α be a transition label of the form s:p!q:m,
s:p,q:m, or t. The typing environment transition α−→ is inductively defined by the rules in
Fig. 7 (top). We write Γ α−→ iff Γ α−→Γ′ for some Γ′. We define two reductions Γ→s Γ′ (where
s is a session) and Γ→Γ′ as follows:

Γ→s Γ′ holds iff Γ α−→Γ′ with α ∈ {s:p!q:m, s:p,q:m, t | p, q ∈ R} (where R is the set of all
roles). We write Γ →s iff Γ →s Γ′ for some Γ′, and →∗

s as the reflexive and transitive
closure of →s;
Γ→Γ′ holds iff Γ →s Γ′ for some s. We write Γ→ iff Γ→Γ′ for some Γ′, and →∗ as the
reflexive and transitive closure of →.

P. Hou, N. Lagaillardie, and N. Yoshida 19:15

Γ, s[p]:(V, T {µt.T/t}) α−→ Γ′

Γ, s[p]:(V, µt.T) α−→ Γ′
[Γ-µ]

Γ α−→ Γ′ α ̸= t

Γ, x:(V, T) α−→ Γ′, x:(V, T)
[Γ-,x]

Γ α−→ Γ′ α ̸= t

Γ, s[p]:τ α−→ Γ′, s[p]:τ
[Γ-,τ]

k ∈I V |= δk

s[p]:M; (V, q⊕{mi(Si){δi, λi}.Ti}i∈I) s:p!q:mk−−−−−→ s[p]:M·q!mk(Sk)·⊘; (V[λk 7→ 0], Tk)
[Γ-⊕]

k ∈I V |= δk Sk⩽S′
k

s[p]:q!mk(Sk)·M, s[q]:(V, p&
{

mi(S′
i){δi, λi}.Ti

}
i∈I

) s:q,p:mk−−−−−→ s[p]:M, s[q]:(V[λk 7→ 0], Tk)
[Γ-&]

c:(V, T) t−→ c:(V + t, T) [Γ-Ts] s[p]:M t−→ s[p]:M [Γ-Tq] s[p]:M; (V, T) t−→ s[p]:M; (V + t, T) [Γ-Tc]

Γ1
t−→ Γ′

1 Γ2
t−→ Γ′

2

Γ1, Γ2
t−→ Γ′

1, Γ′
2

[Γ-,T]
Γ ≡ Γ1 Γ1

α−→ Γ′
1 Γ′

1 ≡ Γ′

Γ α−→ Γ′
[Γ-struct]

⟨V; G⟩ t−→ ⟨V + t; G⟩ [GR-t]
⟨V; G{µt.G/t}⟩ α−→ ⟨V′; G′⟩

⟨V; µt.G⟩ α−→ ⟨V′; G′⟩
[GR-µ]

j ∈ I V |= δOj V′ = V[λOj 7→ 0]

⟨V; p→q:
{

mi(Si){Ai}.G′
i

}
i∈I⟩

s:p!q:mj−−−−−→ ⟨V′; p⇝q:j
{

mi(Si){Ai}.G′
i

}
i∈I⟩

[GR-⊕]

j ∈ I V |= δIj V′ = V[λIj 7→ 0]

⟨V; p⇝q:j
{

mi(Si){Ai}.G′
i

}
i∈I⟩

s:q,p:mj−−−−−→ ⟨V′; G′
j⟩

[GR-&]

∀i ∈ I : ⟨V; G′
i⟩

α−→ ⟨V′; G′′
i ⟩ p, q /∈ subject(α) α ̸= t

⟨V; p→q:
{

mi(Si){Ai}.G′
i

}
i∈I⟩ α−→ ⟨V′; p→q:

{
mi(Si){Ai}.G′′

i

}
i∈I⟩

[GR-Ctx-i]

∀i ∈ I : ⟨V; G′
i⟩

α−→ ⟨V′; G′′
i ⟩ q /∈ subject(α) α ̸= t

⟨V; p⇝q:j
{

mi(Si){Ai}.G′
i

}
i∈I⟩ α−→ ⟨V′; p⇝q:j

{
mi(Si){Ai}.G′′

i

}
i∈I⟩

[GR-Ctx-ii]

Figure 7 Top: typing environment semantics. Bottom: timed global type semantics, where
Ai = δOi, λOi, δIi, λIi.

The label s:p!q:m indicates that p sends the message m to q on session s, while s:p,q:m
denotes the reception of m from q by p on s. Additionally, the label t (∈ R≥0) represents a
time action modelling the passage of time.

The (highlighted) main modifications in the reduction rules for typing environments,
compared to standard rules, concern time. Rule [Γ-⊕] states that an entry can perform an
output transition by appending a message at the respective queue within the time specified by
the output clock constraint. Dually, rule [Γ-&] allows an entry to execute an input transition,
consuming a message from the corresponding queue within the specified input clock constraint,
provided that the payloads are compatible through subtyping. Note that in both rules, the
associated clock valuation of the reduced entry must be updated according to the reset.

Rules [Γ-,x] and [Γ-,τ] pertain to untimed reductions, i.e. α ≠ t, within a larger environment.
Rule [Γ-Ts] models time passing on an entry of timed session type by incrementing the
associated clock valuation, while rule [Γ-Tq] specifies that an entry of queue type is not
affected with respect to time progression. Thus, rule [Γ-Tc] captures the corresponding time
behaviour for a timed-session/queue type entry. Additionally, rule [Γ-,T] ensures that time
elapses uniformly across compatibly composed environments. Other rules are standard: [Γ-µ]

is for recursion, and [Γ-struct] ensures that reductions are closed under congruence.

The reduction Γ →s Γ′ indicates that the typing environment Γ can advance on session
s, involving any roles, while Γ → Γ′ signifies Γ progressing on any session. This distinction
helps in illustrating properties of typed processes discussed in § 4.5.

ECOOP 2024

19:16 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

4.3 Relating Timed Global Types and Typing Environments
One of our main results is establishing an operational relationship between the semantics of
timed global types and typing environments, ensuring the correctness of processes typed by
environments that reflect timed global types. To accomplish this, we begin by assigning LTS
semantics to timed global types.

Similar to that of typing environments, we define the LTS semantics for timed global types
G over tuples of the form ⟨V; G⟩, where V is a clock valuation. Additionally, we specify the
subject of an action α as its responsible principal: subject(s:p!q:m) = subject(s:p,q:m) = {p},
and subject(t) = ∅.

▶ Definition 10 (Timed Global Type Reduction). The timed global type transition α−→ is
inductively defined by the rules in Fig. 7 (bottom). We denote ⟨V; G⟩ −→ ⟨V′; G′⟩ if there exists
α such that ⟨V; G⟩ α−→ ⟨V′; G′⟩, ⟨V; G⟩ −→ if there exists ⟨V′; G′⟩ such that ⟨V; G⟩ −→ ⟨V′; G′⟩,
and −→∗ as the transitive and reflexive closure of −→.

In Fig. 7 (bottom), the (highlighted) changes from the standard global type reduction
rules [11] focus on time. Rule [GR-t] accounts for the passage of time by incrementing the
clock valuation. Rules [GR-⊕] and [GR-&] model the sending and receiving of messages within
specified clock constraints, respectively. Both rules also require the adjustment of the clock
valuation using the reset predicate. Rule [GR-µ] handles recursion. Finally, rules [GR-Ctx-i]

and [GR-Ctx-ii] allow reductions of (intermediate) global types causally independent of their
prefixes. Note that the execution of any timed global type transition always starts with an
initial clock valuation V0, i.e. all clocks in V are set to 0.

We are now ready to establish a new relationship, association, between timed global types
and typing environments. This association, which is more general than projection (Def. 6)
by incorporating subtyping ⩽ (Def. 5), plays a crucial role in formulating the typing rules
(§ 4.4) and demonstrating the properties of typed processes (§ 4.5).

▶ Definition 11 (Association). A typing environment Γ is associated with a timed global type
⟨V; G⟩ for a multiparty session s, written ⟨V; G⟩ ⊑s Γ, iff Γ can be split into three (possibly
empty) sub-environments Γ = ΓG, Γ∆, Γend where:
1. ΓG is associated with ⟨V; G⟩ for s, provided as:

(i) dom(ΓG) = {s[p] | p ∈ roles(G)};
(ii) ∀s[p] ∈ dom(ΓG) : ΓG(s[p]) = (Vp, Tp);
(iii) ∀p ∈ roles(G) : G↾ p ⩽ Tp; and
(iv) V = ⊔p∈roles(G)Vp (recall that ⊔ is an overriding union).

2. Γ∆ is associated with G for s, given as follows:
(i) dom(Γ∆) = {s[p] | p ∈ roles(G)};
(ii) ∀s[p] ∈ dom(Γ∆) : Γ∆(s[p]) = Mp;
(iii) if G = end or G = µt.G′, then ∀s[p] ∈ dom(Γ∆) : Γ∆(s[p]) = ⊘;
(iv) if G = p→q: {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I , then

(a1) q /∈ receivers(Γ∆(s[p])), and
(a2) ∀i ∈ I: Γ∆ is associated with Gi for s;

(v) if G = p⇝q:j {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I , then
(b1) Γ∆(s[p]) = q!mj(S′

j)·M with S′
j ⩽ Sj, and

(b2) Γ∆[s[p] 7→ M] is associated with Gj for s.
3. ∀s[p] ∈ dom(Γend) : Γend(s[p]) = ⊘; (Vp, end).

The association · ⊑· · is a binary relation over timed global types ⟨V; G⟩ and typing
environments Γ, parameterised by multiparty sessions s. There are three requirements for
the association:

P. Hou, N. Lagaillardie, and N. Yoshida 19:17

(1) The typing environment Γ must include two entries for each role of the global type G in
s: one of timed session type and another of queue type;

(2) The timed session type entries in Γ reflect ⟨V; G⟩ by ensuring that:
a. they align with the projections of G via subtyping, and
b. their clock valuations match V;

(3) The queue type entries in Γ correspond to the transmissions en route in G.

Note that Γend is specifically used to associate typing environments and end-types ⟨V; end⟩,
as in this case, both ΓG and Γ∆ are empty.

▶ Example 12. Consider the timed global type ⟨{CSen = 0, CSat = 0, CSer = 0}; Gdata⟩, where
Gdata is from Ex. 7, and a typing environment Γdata = ΓGdata , Γ∆data , where:

ΓGdata = s[Sen]:({CSen = 0}, Sat⊕Data{6 ≤ CSen ≤ 7, CSen := 0}),

s[Sat]:({CSat = 0}, Sen&
{

Data{6 ≤ CSat ≤ 7, ∅}.Ser⊕Data{6 ≤ CSat ≤ 7, CSat := 0}
fail{6 ≤ CSat ≤ 7, ∅}.Ser⊕fatal{6 ≤ CSat ≤ 7, CSat := 0}

}
),

s[Ser]:({CSer = 0}, Sat&
{

Data{6 ≤ CSer ≤ 7, CSer := 0}
fatal{6 ≤ CSer ≤ 7, CSer := 0}

}
)

Γ∆data = s[Sen]:⊘, s[Sat]:⊘, s[Ser]:⊘

Γdata is associated with ⟨{CSen = 0, CSat = 0, CSer = 0}; Gdata⟩ for s, which can be formally
verified by ensuring that Γdata satisfies all conditions outlined in Def. 11.

We establish the operational correspondence between a timed global type and its associated
typing environment, our main result for timed multiparty session types, through two theorems:
Thm. 13 demonstrates that every possible reduction of a typing environment is mirrored by a
corresponding action in reductions of the associated timed global type, while Thm. 14 indicates
that the reducibility of a timed global type is equivalent to its associated environment.

▶ Theorem 13 (Completeness of Association). Given associated timed global type ⟨V; G⟩
and typing environment Γ: ⟨V; G⟩ ⊑s Γ. If Γ α−→ Γ′, then there exists ⟨V′; G′⟩ such that
⟨V; G⟩ α−→ ⟨V′; G′⟩ and ⟨V′; G′⟩ ⊑s Γ′.

▶ Theorem 14 (Soundness of Association). Given associated timed global type ⟨V; G⟩ and
typing environment Γ: ⟨V; G⟩ ⊑s Γ. If ⟨V; G⟩ −→, then there exists α′, V′, ⟨V′′; G′′⟩, Γ′, and
Γ′′, such that ⟨V′; G⟩ ⊑s Γ′, ⟨V′; G⟩ α′

−→ ⟨V′′; G′′⟩, Γ′ α′

−→ Γ′′, and ⟨V′′; G′′⟩ ⊑s Γ′′.

▶ Remark 15. We formulate a soundness theorem that does not mirror the completeness
theorem, differing from prior work such as [11]. This choice stems from our reliance on
subtyping (Def. 5), notably [Sub-⊕]. In our framework, a timed local type in the typing
environment might offer fewer selection branches compared to the corresponding projected
timed local type. Consequently, certain sending actions with their associated clock valuations
may remain uninhabited within the timed global type. Consider, e.g. a timed global type:

⟨Vr; Gr⟩ = ⟨{Cp = 3, Cq = 3}; p→q:
{

m1{0 ≤ Cp ≤ 1, ∅, 1 ≤ Cq ≤ 2, ∅}.end
m2{2 ≤ Cp ≤ 4, ∅, 5 ≤ Cq ≤ 6, ∅}.end

}
⟩

An associated typing environment Γr may have:
Γr(s[p]) = ({Cp = 3}, q⊕m1{0 ≤ Cp ≤ 1, ∅}.end); ⊘ ⩾ ({Cp = 3}, q⊕

{
m1{0 ≤ Cp ≤ 1, ∅}.end
m2{2 ≤ Cp ≤ 4, ∅}.end

}
); ⊘

While the timed global type ⟨Vr; Gr⟩ might transition through s:p!q:m2, the associated environ-
ment Γr cannot. Nevertheless, our soundness theorem adequately guarantees communication
safety (communication matches) via association.

ECOOP 2024

19:18 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

Θ(X) = (V1, T1), . . . , (Vn, Tn)
Θ ⊢ X :(V1, T1), . . . , (Vn, Tn)

[T-X]
∀i ∈ 1..n ci :(Vi, Ti) ⊢ ci :(V′

i, end)
end(c1 :(V1, T1), . . . , cn :(Vn, Tn))

[T-end]

(V, T) ⩽ (V′, T ′)
c:(V, T) ⊢ c:(V′, T ′)

[T-Sub]

Θ, X:(V1, T1), . . . , (Vn, Tn) · x1 :(V1, T1), . . . , xn :(Vn, Tn) ⊢ P
Θ, X:(V1, T1), . . . , (Vn, Tn) · Γ ⊢ Q

Θ · Γ ⊢ def X(x1 :(V1, T1), . . . , xn :(Vn, Tn)) = P in Q
[T-def]

end(Γ)
Θ · Γ ⊢ 0

[T-0]
Θ ⊢ X :(V1, T1), . . . , (Vn, Tn) end(Γ0) ∀i ∈ 1..n Γi ⊢ ci :(Vi, Ti)

Θ · Γ0, Γ1, . . . , Γn ⊢ X⟨c1, . . . , cn⟩
[T-X-Call]

∀t s.t. |= δ[t/C] : Θ · Γ ⊢ delay(t) . P

Θ · Γ ⊢ delay(δ) . P
[T-δ]

Θ · Γ + t ⊢ P

Θ · Γ ⊢ delay(t) . P
[T-t]

∀i∈I ∀t : t ≤ n =⇒ V + t |= δi

Γ1 ⊢ c:(V, q&{mi(Si){δi, λi}.Ti}i∈I) ∀i∈I : Si = (δ′
i, T ′

i) V′
i |= δ′

i

∀i∈I ∀t ≤ n : Θ · Γ + t, yi :(V′
i, T ′

i), c:(V + t[λi 7→ 0], Ti) ⊢ Pi

Θ · Γ, Γ1 ⊢ cn[q]
∑

i∈I
mi(yi).Pi

[T-&]

∀t : t ≤ n =⇒ V + t |= δ

Γ1 ⊢ c:(V, q⊕{m(S){δ, λ}.T }) S = (δ′, T ′) Γ2 ⊢ d:(V′, T ′) V′ |= δ′

∀t ≤ n : Θ · Γ + t, c:(V + t[λ 7→ 0], T) ⊢ P

Θ · Γ, Γ1, Γ2 ⊢ cn[q]⊕m⟨d⟩.P
[T-⊕]

Θ · Γ1 ⊢ P1 Θ · Γ2 ⊢ P2

Θ · Γ1, Γ2 ⊢ P1 | P2
[T-|]

end(Γ) n ≥ 0
Θ · Γ, s[p1]:τ1, . . . , s[pn]:τn ⊢ s

[T-Kill]

Θ · Γ ⊢ P subjP(P) = {c} Θ · Γ ⊢ Q

Θ · Γ ⊢ try P catch Q
[T-Try]

Θ · Γ ⊢ Q

Θ · Γ, s[p]:τ ⊢ cancel(s[p]) . Q
[T-Cancel]

Θ · Γ ⊢ timeout[P]
[T-Failed]

⟨V; G⟩ ⊑s Γ′ s ̸∈ Γ Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢
(
νs:Γ′

)
P

[T-ν-G]

end(Γ)
Θ · Γ, s[p]:⊘ ⊢ s[p]▶ϵ

[T-ϵ]
Θ · Γ ⊢ s[p]▶σ S = (δ, T) V |= δ Γ′ ⊢ s′[r]:(V, T)

Θ · Γ[s[p] 7→ q!m(S)·Γ(s[p])], Γ′ ⊢ s[p]▶q!m⟨s′[r]⟩ ·σ
[T-σ]

Figure 8 ATMP typing rules.

4.4 Affine Timed Multiparty Session Typing System
We now present a typing system for ATMP, which relies on typing judgments of the form:

Θ · Γ ⊢ P (with Θ omitted when empty)
This judgement indicates that the process P adheres to the usage of its variables and channels
as specified in Γ (Def. 8), guided by the process types in Θ (Def. 8). Our typing system
is defined inductively by the typing rules shown in Fig. 8, with channels annotated for
convenience, especially those bound by process definitions and restrictions.

The innovations (highlighted) in Fig. 8 primarily focus on typing processes with time,
timeout failures, message queues, and using association (Def. 11) to enforce session restrictions.
Standard from [37]: Rule [T-X] retrieves process variables. Rule [T-Sub] applies subtyping
within a singleton typing environment c:(V, T). Rule [T-end] introduces a predicate end(·) for
typing environments, signifying the termination of all endpoints. This predicate is used in
[T-0] to type an inactive process 0. Rules [T-def] and [T-X-Call] deal with recursive processes
declarations and calls, respectively. Rule [T-|] partitions the typing environment into two,
each dedicated to typing one sub-process.
Session Restriction: Rule [T-ν-G] depends on a typing environment associated with a timed
global type in a given session s to validate session restrictions.
Delay: Rule [T-δ] ensures the typedness of time-consuming delay delay(δ) . P by checking
every deterministic delay delay(t) . P with t as a possible solution to δ. Rule [T-t] types a
deterministic delay delay(t) . P by adjusting the clock valuations in the environment used
to type P . Here, Γ + t denotes the typing environment obtained from Γ by increasing the
associated clock valuation in each entry by t.

P. Hou, N. Lagaillardie, and N. Yoshida 19:19

Timed Branching and Selection: Rules [T-&] and [T-⊕] are for timed branching and
selection, respectively. We elaborate on [T-&], as [T-⊕] is its dual. The first premise in [T-&]

specifies a time interval [V,V + n] within which the message must be received, in accordance
with each δi. The last premise requires that each continuation process be well-typed against
the continuation of the type in all possible typing environments where the time falls between
[V,V + n]. Here, the clock valuation V is reset based on each λi. The remaining premises
stipulate that the clock valuation V′

i of each delegated receiving session must satisfy δ′
i, and

that c is typed.
Try-Catch, Cancellation, and Kill: Rules [T-Try], [T-Cancel], and [T-Kill] pertain to try-
catch, cancellation, and kill processes, respectively, analogous to the corresponding rules
in [28]. [T-Cancel] is responsible for generating a kill process at its declared session. [T-Kill]

types a kill process arising during reductions: it involves broadcasting the cancellation of
s[p] to all processes that belong to s. [T-Try] handles a try-catch process try P catch Q by
ensuring that the try process P and the catch process Q maintain consistent session typing.
Additionally, P cannot be a queue or parallel composition, as indicated by subjP(P) = {c}.
Timeout Failure: Rule [T-Failed] indicates that a process raising timeout failure can be
typed by any typing environment.
Queue: Rules [T-ϵ] and [T-σ] concern the typing of queues. [T-ϵ] types an empty queue under
an ended typing environment, while [T-σ] types a non-empty queue by inserting a message
type into Γ. This insertion may either prepend the message to an existing queue type in Γ
or add a queue-typed entry to Γ if not present.

▶ Example 16. Take the typing environment Γdata from Ex. 12, along with the processes QSen,
QSat, QSer from Ex. 4. Verifying the typing of QSen | QSat | QSer by Γdata is easy. Moreover,
since Γdata is associated with a timed global type ⟨{CSen = 0, CSat = 0, CSer = 0}; Gdata⟩ for
session s (as demonstrated in Ex. 12), i.e. ⟨{CSen = 0, CSat = 0, CSer = 0}; Gdata⟩ ⊑s Γdata,
following [T-ν-G], QSen | QSat | QSer is closed under Γdata, i.e. ⊢ (νs:Γdata) QSen | QSat | QSer.

4.5 Typed Process Properties
We demonstrate that processes typed by the ATMP typing system exhibit the desirable proper-
ties: subject reduction (Thm. 17), session fidelity (Thm. 21), and deadlock-freedom (Thm. 24).

Subject Reduction. Subject reduction ensures the preservation of well-typedness of processes
during reductions. Specifically, it states that if a well-typed process P reduces to P ′, this
reduction is reflected in the typing environment Γ used to type P . Notably, in our subject
reduction theorem, P is constructed from a timed global type, i.e. typed by an environment
associated with a timed global type, and this construction approach persists as an invariant
property throughout reductions. Furthermore, the theorem does not require P to contain
only a single session; instead, it includes all restricted sessions in P , ensuring that reductions
on these sessions uphold their respective restrictions. This enforcement is facilitated by rule
[T-ν-G] in Fig. 8.

▶ Theorem 17 (Subject Reduction). Assume Θ · Γ ⊢ P where ∀s ∈ Γ : ∃⟨V; G⟩ : ⟨V; G⟩ ⊑s Γs.
If P →P ′, then ∃Γ′ such that Γ→∗ Γ′, Θ · Γ′ ⊢ P ′, and ∀s ∈ Γ′ : ∃⟨V′; G′⟩ : ⟨V′; G′⟩ ⊑s Γ′

s.

▶ Corollary 18 (Type Safety). Assume ∅ · ∅ ⊢ P . If P →∗ P ′, then P ′ has no communication
error.

▶ Example 19. Take the typed process QSen | QSat | QSer and the typing environment Γdata
from Exs. 4, 12, and 16. After a reduction using [R-Det], QSen | QSat | QSer transitions to
delay(6.5) . Q′

Sen |s[Sen]▶ϵ|delay(6) . Q′
Sat |s[Sat]▶ϵ|delay(6) . Q′

Ser |s[Ser]▶ϵ = Q2, which

ECOOP 2024

19:20 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

remains typable by Γdata (Γdata →∗ Γdata). Then, applying [R-Time], Q2 evolves to Ψ6.5(Q2),
typed as Γdata+6.5, derived from Γdata

6.5−−→ Γdata+6.5. Further reduction through [R-Fail] leads
Ψ6.5(Q2) to Q′

Sen |s[Sen]▶ϵ |s |s[Sat]▶ϵ |Ψ0.5(Q′
Ser) |s[Ser]▶ϵ = Q3, typable by Γdata +6.5.

Later, via [C-Cat], Q3 reduces to cancel(s[Sen])|s[Sen]▶ϵ|s |s[Sat]▶ϵ|Ψ0.5(Q′
Ser)|s[Ser]▶ϵ,

which can be typed by Γ′′
data, obtained from Γdata + 6.5 s:Sen!Sat:Data−−−−−−−−→ · s:Sat,Sen:Data−−−−−−−−→ Γ′′

data.

Session Fidelity. Session fidelity states the converse implication of subject reduction: if a
process P is typed by Γ and Γ can reduce, then P can simulate at least one of the reductions
performed by Γ – although not necessarily all such reductions, as Γ over-approximates the
behavior of P . Consequently, we can infer P ’s behaviour from that of Γ. However, this result
does not hold for certain well-typed processes, such as those that get trapped in recursion
loops like def X(...) = X in X, or deadlock due to interactions across multiple sessions [8].
To address this, similarly to [37] and most session type works, we establish session fidelity
specifically for processes featuring guarded recursion and implementing a single multiparty
session as a parallel composition of one sub-process per role. The formalisation of session
fidelity is provided in Thm. 21, building upon the concepts introduced in Def. 20.

▶ Definition 20 (From [37]). Assume ∅ · Γ ⊢ P . We say that P :
1. has guarded definitions if and only if in each process definition in P of the form

def X(x1 :(V1, T1), ..., xn :(Vn, Tn)) = Q in P ′, for all i ∈ 1...n, Ti ̸⩽end implies that a call
Y ⟨..., xi, ...⟩ can only occur in Q as a subterm of xi

n[q]
∑

j∈J mj(yj).Pj or xi
n[q]⊕m⟨d⟩.P ′′

(i.e. after using xi for input or output);
2. only plays role p in s, by Γ, if and only if

(i) P has guarded definitions;
(ii) fv(P) = ∅;
(iii) Γ=Γ0, s[p]:τ with τ ̸⩽ (V, end) and end(Γ0);
(iv) in all subterms (νs′ :Γ′) P ′ of P , we have Γ′ ⩽ s′[p′]:⊘; (V′, end) or Γ′ ⩽ s′[p′]:(V′, end)

(for some p′,V′).
We say “P only plays role p in s” if and only if ∃Γ : ∅ · Γ ⊢ P , and item 2 holds.

In Def. 20, item 1 describes guarded recursion for processes, while item 2 specifies a
process limited to playing exactly one role within one session, preventing an ensemble of
such processes from deadlocking by waiting for each other on multiple sessions.

We proceed to present our session fidelity result, taking kill processes into account. We
denote Q to indicate that Q consists only of a parallel composition of kill processes. Similar
to subject reduction (Thm. 17), our session fidelity relies on a typing environment associated
with a timed global type for a specific session s to type the process, ensuring the fulfilment
of single-session requirements (Def. 20) and maintaining invariance during reductions.

▶ Theorem 21 (Session Fidelity). Assume ∅ · Γ ⊢ P , with ⟨V; G⟩ ⊑s Γ, P ≡ Πp∈IPp | Q ,
and Γ =

⋃
p∈I Γp ∪ Γ0, such that ∅ · Γ0 ⊢ Q , and for each Pp:

(1) ∅ · Γp ⊢ Pp, and
(2) either Pp ≡ 0, or Pp only plays role p in s, by Γp.
Then, Γ →s implies ∃Γ′, ⟨V′; G′⟩, P ′ such that Γ →s Γ′, P →∗ P ′, and ∅ · Γ′ ⊢ P ′, with
⟨V′; G′⟩ ⊑s Γ′, P ′ ≡ Πp∈IP ′

p | Q′ , and Γ′ =
⋃

p∈I Γ′
p ∪ Γ′

0 such that ∅ · Γ′
0 ⊢ Q′ , and for

each P ′
p:

(1) ∅ · Γ′
p ⊢ P ′

p, and
(2) either P ′

p ≡ 0, or P ′
p only plays role p in s, by Γ′

p.

▶ Example 22. Consider the processes QSen, QSat, QSer from Ex. 4, the process Q3
from Ex. 19, and the typing environment Γdata from Ex. 12. QSen, QSat, and QSer only play
roles Sen, Sat, and Ser, respectively, in s, which can be easily verified. As demonstrated

P. Hou, N. Lagaillardie, and N. Yoshida 19:21

in Ex. 19, Q3 is typed by Γdata + 6.5, satisfying all prerequisites specified in Thm. 21.
Consequently, given Γdata + 6.5 s:Sen!Sat:Data−−−−−−−−→ Γ′

data, there exists Q4, resulting from Q3 → Q4
via [R-Out], such that Γ′

data can type Q4, with Γ′
data and Q4 fulfilling the single session

requirements of session fidelity.

Deadlock-Freedom. Deadlock-freedom ensures that a process can always either progress
via reduction or terminate properly. In our system, where time can be infinitely reduced
and session killings may occur during reductions, deadlock-freedom implies that if a process
cannot undergo any further instantaneous (communication) reductions, and if any subsequent
time reduction leaves it unchanged, then it contains only inactive or kill sub-processes. This
desirable runtime property is guaranteed by processes constructed from timed global types.
We formalise the property in Def. 23, and conclude, in Thm. 24, that a typed ensemble of
processes interacting on a single session, restricted by a typing environment Γ associated
with a timed global type ⟨V0; G⟩, is deadlock-free.

▶ Definition 23 (Deadlock-Free Process). P is deadlock-free if and only if P →∗ P ′↣̸ and
∀t ≥ 0 : Ψt(P ′) = P ′ (recall that Ψt(·) is a time-passing function defined in Fig. 4) implies
P ′ ≡ 0 | Πi∈Isi .

▶ Theorem 24 (Deadlock-Freedom). Assume ∅·∅⊢P , where P ≡ (νs:Γ) Πp∈roles(G)Pp,
⟨V0; G⟩ ⊑s Γ, and each Pp is either 0 (up to ≡), or only plays p in s. Then, P is deadlock-free.

▶ Example 25. Given the processes QSen, QSat, and QSer from Ex. 4, along with the typing
environment Γdata from Ex. 12, (νs:Γdata) QSen | QSat | QSer is deadlock-free.

5 Design and Implementation of MultiCrustyT

In this section, we present our toolchain, MultiCrustyT, a Rust implementation of ATMP.
MultiCrustyT is designed with two main goals: correctly cascading failure notifications,
and effectively handling time constraints. To achieve the first goal, we use Rust’s native
?-operator along with optional types, inspired by [28]. For the second objective, we begin by
discussing the key challenges encountered during implementation.

Challenge 1: Representation of Time Constraints. To handle asynchronous timed communic-
ations using ATMP, we define a time window (δ in ATMP) and a corresponding behaviour for
each operation. Addressing this constraint involves two subtasks: creating and using clocks
in Rust, and representing all clock constraints as shown in § 3. Rust allows the creation of
virtual clocks that rely on the CPU’s clock and provide nanosecond-level accuracy. Addition-
ally, it is crucial to ensure that different behaviours can involve blocking or non-blocking
communications, pre- or post-specific time tags, or adherence to specified time bounds.

Challenge 2: Enforcement of Time Constraints. To effectively enforce time windows, imple-
menting reliable and accurate clocks and using them correctly is imperative. This requires
addressing all cases related to time constraints properly: clocks may be considered unreliable
if they skip ticks, do not strictly increase, or if the API for clock comparison does not
yield results quickly enough. Enforcing time constraints in MultiCrustyT involves using two
libraries: the crossbeam_channel Rust library [9] for asynchronous messaging, and the
Rust standard library time [39] for handling and comparing virtual clocks.

ECOOP 2024

19:22 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

5.1 Time Bounds in MultiCrustyT

Implementing Time Bounds. To demonstrate the integration of time bounds in
MultiCrustyT, we consider the final interaction between Sen and Sat in Fig. 1b, spe-
cifically from Sat’s perspective: Sat sends a Close message between time units 5 and 6 (both
inclusive), following clock CSat2, which is not reset afterward.

In MultiCrustyT, we define the Send type for message transmission, incorporating various
parameters to specify requirements as Send<[parameter1],[parameter2],...>. Assuming the
(payload) type Close is defined, sending it using the Send type initiates with Send<Close,...>.
If CSat2 is denoted as ’b’, the clock ’b’ is employed for time constraints, expressed as
Send<Close,’b’,...>. Time bounds parameters in the Send type follow the clock declaration.
In this case, both bounds are integers within the time window, resulting in the Send type
being parameterised as Send<Close,’b’,0,true,1,false,...>. Notably, bounds are integers
due to the limitations of Rust’s generic type parameters. To ensure that the clock ’b’ is not
reset after triggering the send operation, we represent this with a whitespace char value in
the Send type: Send<Close,’b’,0,true,1,false,’ ’,...>. The last parameter, known as the
continuation, specifies the operation following the sending of the integer. In this case, closing
the connection is achieved with an End type. The complete sending operation is denoted as
Send<Close, ’b’, 0, true, 1, false, ’ ’, End>.

Similarly, the Recv type is instantiated as Recv<Close,’b’,0,true,1,false,’ ’,End>. The
inherent mirroring of Send and Recv reflects their dual compatibility. Figs. 2a and 2b provide
an analysis of the functioning of Send and Recv, detailing their parameters and features.
Generic type parameters preceded by const within Send and Recv types also serve as values,
representing general type categories supported by Rust. This type-value duality facilitates
easy verification during compilation, ensuring compatibility between communicating parties.

Enforcing Time Bounds. It is crucial to rely on dependable clocks and APIs to enforce
time constraints. Rust’s standard library provides the time module [39], enabling developers
to manage clocks and measure durations between events. This library, utilising the OS API,
offers two clock types: Instant (monotonic but non-steady) and SystemTime (steady but non-
monotonic). In MultiCrustyT, the Instant type serves for both correctly prioritising event
order and implementing virtual clocks. Virtual clocks are maintained through a dictionary
(HashMap in Rust). Table 1 details the primitives provided by MultiCrustyT for sending and
receiving payloads, implementing branching, or closing connections. All primitives, except
for close, require a specific HashMap of clocks to enforce time constraints.

Verifying Time Bounds. Our send and recv primitives use a series of conditions to ensure
the integrity of a time window. The verification process adopts a divide-and-conquer strategy,
validating the left-hand side time constraint for each clock before assessing the right-hand side
constraint. The corresponding operation, whether sending or receiving a payload, is executed
only after satisfying these conditions. This approach guarantees the effective enforcement of
time constraints without requiring complex solver mechanisms.

5.2 Remote Data Implementation
Implementation of Server. Fig. 9 explores our MultiCrustyT implementation of Ser in
the remote data protocol (Fig. 1b). Specifically, the left side of Fig. 9 delves into the
MeshedChannels type, representing the behaviour of Ser in the first branch and encapsulating
various elements. In MultiCrustyT, the MeshedChannels type incorporates n + 1 parameters,

P. Hou, N. Lagaillardie, and N. Yoshida 19:23

Table 1 Primitives available in MultiCrustyT.

let s = s.send(p, clocks)?; If allowed by the time constraint compared to the given clock in clocks,
sends a payload p on a channel s and assigns the continuation of the session
(a new meshed channel) to a new variable s.

let (p, s) = s.recv(clocks)?; If allowed by the time constraint compared to the given clock in clocks,
receives a payload p on channel s and assigns the continuation of the
session to a new variable s.

s.close() Closes the channel s and returns a unit type.

offer!(s, clocks, {

enumi :: variantk(e) => {...}k∈K })
If allowed by the time constraint compared to the given clock in clocks,
role i receives a choice as a message label on channel s, and, depending on
the label value which should match one of the variants variantk of enumi ::,
runs the related block of code.

choose_X!(s, clocks, {

enumi :: variantk(e) }i∈I)
For role X, if allowed by the time constraint compared to the given clock
in clocks, sends the chosen label, corresponding to variantk to all other
roles.

1 type EndpointSerData = MeshedChannels<
2 Send<GetData, ’a’, 5, true,5, true, ’ ’,
3 Recv<Data, ’a’, 6, true, 7, true, ’a’, End

>>,
4 End,
5 RoleSat<RoleSat<RoleBroadcast>>,
6 NameSer>;

7 fn endpoint_data_ser(
8 s: EndpointSerData,
9 clocks: &mut HashMap<char, Instant>,

10) -> Result<(), Error> { [...]
11 let s = s.send(GetData {}, clocks)?;
12 let (_data, s) = s.recv(clocks)?;[...]}

Figure 9 Types (left) and primitives (right) for Ser.

where n is the count of roles in the protocol. These parameters include the role’s name, n − 1
binary channels for interacting with other roles, and a stack dictating the sequence of binary
channel usage. All types relevant to Ser are depicted in Fig. 9 (left).

The alias EndpointSerData, as indicated in Line 1, represents the MeshedChannels type.
Binary types, defined in Lines 2–4, facilitate communication between Ser, Sat, and Sen.
When initiating communication with Sat, Ser sends a GetData message in Line 2, receives a
Data response, and ends communication on this binary channel. These operations use the
clock ’a’ and adhere to time windows between 5 and 6 seconds for the first operation and
between 6 and 7 seconds for the second. Clock ’a’ is reset only within the second operation.
The order of operations is outlined in Line 5, where Ser interacts twice with Sat using
RoleSat before initiating a choice with RoleBroadcast. Line 6 designates Ser as the owner of
the MeshedChannels type. The behaviour of all roles in each branch can be specified similarly.

The right side of Fig. 9 illustrates the usage of EndpointSerData as an input type in the
Rust function endpoint_data_ser. The function’s output type, Result<(), Error>, indicates
the utilization of affinity in Rust. In Line 11, variable ’s’, of type EndpointSerData, attempts
to send a contentless message GetData. The send function can return either a value resembling
EndpointSerData or an Error. If the clock’s time does not adhere to the time constraint
displayed in Line 2 with respect to the clock ’a’ from the set of clocks clocks, an Error is
raised. Similarly, in Line 12, Ser attempts to receive a message using the same set of clocks.
Both send and recv functions verify compliance with time constraints by comparing the
relevant clock provided in the type for the time window and resetting the clock if necessary.

Error Handling. The error handling capabilities of MultiCrustyT cover various potential
errors that may arise during protocol implementation and execution. These errors include
the misuse of generated types and timeouts, showcasing the flexibility of our implementation

ECOOP 2024

19:24 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

1 global protocol RemoteData(role Sen, role Sat, role Ser){
2 rec Loop {
3 choice at Ser {
4 GetData() from Ser to Sat within [5;6] using a and resetting ();
5 GetData() from Sat to Sen within [5;6] using b and resetting ();
6 Data() from Sen to Sat within [6;7] using b and resetting (b);
7 Data() from Sat to Ser within [6;7] using a and resetting (a);
8 continue Loop
9 } or {

10 Close() from Ser to Sat within [5;6] using a and resetting ();
11 Close() from Sat to Sen within [5;6] using b and resetting (); } } }

Figure 10 Remote data protocol in νScrT .

in verifying communication protocols. For instance, if Lines 11 and 12 in Fig. 9 are swapped,
the program will fail to compile because it expects a send primitive in Line 11, as indicated
by the type of ’s’. Another compile-time error occurs when a payload with the wrong type
is sent. For example, attempting to send a Data message instead of a GetData in Line 11
will result in a compilation error. MultiCrustyT can also identify errors at runtime. If the
content of the function endpoint_data_ser, spanning in Lines 10–12, is replaced with a single
Ok(()), the code will compile successfully. However, during runtime, the other roles will
encounter failures as they consider Ser to have failed.

Timeouts are handled dynamically within MultiCrustyT. If a time-consuming task with
a 10-second delay is introduced between Lines 11 and 12, Ser will enter a sleep state for the
same duration. Consequently, the recv operation in Line 12 will encounter a time constraint
violation, resulting in the failure and termination of Ser. Furthermore, the absence of clock
’a’ in the set of clocks, where it is required for a specific primitive, will trigger a runtime
error, as the evaluation of time constraints depends on the availability of the necessary clocks.

Timed Protocol Specification. To specify timed multiparty protocols, we extend νScr [42],
a multiparty protocol description language, with time features, resulting in νScrT . Additional
keywords such as within, using, and and resetting are incorporated in νScr to support
the specification of time windows, clocks, and resets, respectively. In Fig. 10, we illustrate the
νScrT protocol for remote data, showcasing the application of these enhancements. νScrT

ensures the accuracy of timed multiparty protocols by verifying interactions, validating time
constraints, handling clock increments, and performing standard MPST protocol checks.

6 Evaluation: Expressiveness, Case Studies and Benchmarks

We evaluate our toolchain MultiCrustyT from two perspectives: expressivity and feasibility.
In terms of expressivity, we implement protocols from the session type literature [20, 33, 13,
24, 21, 36], as well as newly introduced protocols derived from real-world applications [7, 38,
2, 35, 41]. Regarding feasibility, we compare our system to MultiCrusty [28], an untimed
implementation of affine synchronous MPST, demonstrating that our tool introduces negligible
compile-time and runtime overhead in all cases, as expected.

6.1 Performance: MultiCrustyT vs. MultiCrusty

When comparing MultiCrustyT with MultiCrusty, we evaluate their performance on two
standard benchmark protocols: the ring protocol, which involves sequentially passing a
message through roles, and the mesh protocol, where each participant sends a message to
every other. Both protocols underwent 100 iterations within a time window of 0 to 10 seconds.
Fig. 11 (top) displays benchmark results for roles ranging from 2 to 8.

P. Hou, N. Lagaillardie, and N. Yoshida 19:25

2 3 4 5 6 7 8 9 10

roles

35

45

55

T
im

e
(s

)
Mesh compilation time

AMPST

ATMP

2 3 4 5 6 7 8 9 10

roles

35

37

39

Ring compilation time

2 3 4 5 6 7 8 9 10

roles

0

4

8

12

16

20

T
im

e
(m

s)

Mesh bench time

2 3 4 5 6 7 8 9 10

roles

0

2

4

6

8

10

Ring bench time

2 5 8
roles

18

21

24

27

MultiCrusty
MultiCrustyT

(a) mesh - compilation.

2 5 8
roles

18

19

20

21

(b) ring - compilation.

2 3 4 5 6 7 8 9 10

roles

35

45

55
Ti

m
e

(s
)

Mesh compilation time

AMPST

ATMP

2 3 4 5 6 7 8 9 10

roles

35

37

39

Ring compilation time

2 3 4 5 6 7 8 9 10

roles

0

4

8

12

16

20

Ti
m

e
(m

s)

Mesh bench time

2 3 4 5 6 7 8 9 10

roles

0

2

4

6

8

10

Ring bench time

2 5 8
roles

0

6

12

MultiCrusty
MultiCrustyT

(c) mesh - runtime.

2 5 8
roles

0

3

6

9

(d) ring - runtime.

a b c d e f g h i j k l m0

3

6

9

12

15

18

Ti
m

e
(s

)

Build time

a b c d e f g h i j k l m0

1

2

Ti
m

e
(m

s)

Runtime

MultiCrusty

MultiCrustyT

Figure 11 Top: microbenchmark results for mesh and ring protocols. Bottom: benchmark
results for Calculator [20] (a), Online wallet [33] (b), SMTP [36] (c), Simple voting [20] (d), Three
buyers [24] (e), Travel agency [21] (f), OAuth [33] (g), HTTP [13] (h), Remote data [7] (i), Servo
[38] (j), Gravity sensor [2] (k), PineTime heart rate [35] (l), and Proximity based car key [41] (m).

In the ring protocol, compile-time benchmarks (Fig. 11b) indicate that MultiCrustyT

experiences a marginal slowdown of less than 2% with 2 roles, but achieves approximately 5%
faster compilation time with 8 roles. Regarding runtime benchmarks (Fig. 11d), MultiCrusty
demonstrates a 15% speed advantage with 2 roles, which decreases to 5% with 8 roles. The
overhead remains consistent, with a difference of less than 0.5 ms at 6, 7, and 8 roles.

In the mesh protocol, where all roles send and receive messages (compile-time benchmarks
in Fig. 11a and runtime benchmarks in Fig. 11c), MultiCrustyT compiles slightly slower
(less than 1% at 2 roles, 4% at 8 roles) and runs slower as well (less than 1% at 2 roles, 15%
at 8 roles). Compile times for MultiCrustyT range from 18.9 s to 26 s, with running times
ranging between 0.9 ms and 11.9 ms. The performance gap widens exponentially with the
increasing number of enforced time constraints. In summary, as the number of roles increases,
MultiCrustyT demonstrates a growing overhead, mainly attributed to the incorporation of
additional time constraint checks.

6.2 Expressivity and Feasibility with Case Studies
We implement a variety of protocols to showcase the expressivity, feasibility, and capabilities
of MultiCrustyT, conducting benchmarking using both MultiCrustyT and MultiCrusty.
The send and recv operations in both libraries are ordered, directed, and involve the same set
of participants. Additionally, when implemented with MultiCrustyT, these operations are
enriched with time constraints and reset predicates. The benchmark results for the selected
case studies, including those from prior research and five additional protocols sourced from
industrial use cases [7, 38, 2, 35, 41], are presented in the bottom part of Fig. 11. To ensure
a fair comparison between MultiCrustyT (bars) and MultiCrusty (bars), time constraints
are enforced for all examples without introducing any additional sleep or timeouts.

Note that rate-based protocols ((k), (l), (m) in Fig. 11 (bottom)) from real-time systems [2,
35, 41] are implemented in MultiCrustyT, showcasing its expressivity in real-time applications.
These implementations feature the establishment of consistent time constraints and a shared
clock for operations with identical rates. For example, in the Car Key protocol [41], where
the car periodically sends a wake-up message to probe the presence of the key, all interactions

ECOOP 2024

19:26 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

between two wake-up signals must occur within a period of e.g. 100 ms. Consequently, when
implementing this protocol with MultiCrustyT, all time constraints are governed by a single
clock ranging from 0 to 100 ms, with the clock resetting at the end of each loop.

The feasibility of our tool, MultiCrustyT, is demonstrated in Fig. 11 (bottom). The results
indicate that MultiCrustyT incurs minimal compile-time overhead, averaging approximately
1.75%. Moreover, the runtime for each protocol remains within milliseconds, ensuring
negligible impact. Notably, in the HTTP protocol, the runtime comparison percentage with
MultiCrusty is 87.60%, primarily due to the integration of 126 time constraints within
it. The relevant implementation metrics, including multiple participants (MP), branching,
recursion (Rec), and time constraints, are illustrated in Table 2.

Table 2 Metrics for protocols implemented in MultiCrustyT.

Protocol Generated
Types

Implemented
Lines of Code MP Branching Rec Time

Constraints
Calculator [20] 52 51 ✗ ✓ ✓ 11
Online wallet [33] 142 160 ✓ ✓ ✓ 24
SMTP [36] 331 475 ✗ ✓ ✓ 98
Simple voting [20] 73 96 ✗ ✓ ✗ 16
Three buyers [24] 108 78 ✓ ✓ ✗ 22
Travel agency [21] 148 128 ✓ ✓ ✓ 30
OAuth [33] 199 89 ✓ ✓ ✗ 30
HTTP [13] 648 610 ✓ ✓ ✓ 126
Remote data [7] 100 119 ✓ ✓ ✓ 16
Servo [38] 74 48 ✓ ✗ ✗ 10
Gravity sensor [2] 61 95 ✗ ✓ ✓ 9
PineTime heart rate [35] 101 111 ✗ ✓ ✓ 17
Proximity based car key [41] 70 134 ✗ ✓ ✓ 22

7 Related Work and Conclusion

Time in Session Types. Bocchi et al. [4] propose a timed extension of MPST to model
real-time choreographic interactions, while Bocchi et al. [3] extend binary session types with
time constraints, introducing a subtyping relation and a blocking receive primitive with
timeout in their calculus. In contrast to their strategies to avoid time-related failures, as
discussed in § 1 and 2, ATMP focuses on actively managing failures as they occur, offering a
distinct approach to handling timed communication.

Iraci et al. [22] extend synchronous binary session types with a periodic recursion primitive
to model rate-based processes. To align their design with real-time systems, they encode time
into a periodic construct, synchronised with a global clock. With rate compatibility, a relation
that facilitates communication between processes with different periods by synthesising and
verifying a common superperiod type, their approach ensures that well-typed processes
remain free from rate errors during any specific period. On the contrary, ATMP integrates
time constraints directly into communication through local clocks, resulting in distinct time
behaviour. Intriguingly, our method of time encoding can adapt to theirs, while the opposite
is not feasible. Consequently, not all the timed protocols in our paper, e.g. Fig. 1b, can be
accurately represented in their system. Moreover, due to its binary and synchronous features,
their theory does not directly model and ensure the properties of real distributed systems.

Le Brun et al. [30] develop a theory of multiparty session types that accounts for different
failure scenarios, including message losses, delays, reordering, as well as link failures and
network partitioning. Unlike ATMP, their approach does not integrate time specifications or
address failures specifically related to time. Instead, they use timeout as a generic message
label (�) for failure branches, which triggers the failure detection mechanism. Except for [22],
all the mentioned works on session types with time are purely theoretical.

P. Hou, N. Lagaillardie, and N. Yoshida 19:27

Affinity, Exceptions and Error-Handling in Session Types. Mostrous and Vasconcelos [31]
propose affine binary session types with explicit cancellation, which Fowler et al. [14] extend
to define Exceptional GV for binary asynchronous communication. Exceptions can be nested
and handled over multiple communication actions, and their implementation is an extension
of the research language Links. Harvey et al. [15] incorporate MPST with explicit connection
actions to facilitate multiparty distributed communication, and develop a code generator
based on the actor-like research language Ensemble to implement their approach. The work
in [31] remains theoretical, and both [31, 14] are limited to binary and linear logic-based
session types. Additionally, none of these works considers time specifications or addresses
the handling of time-related exceptions in their systems, which are key aspects of our work.

Session Types in Rust. MultiCrusty, extensively compared to MultiCrustyT, is a Rust
implementation based on affine MPST by Lagaillardie et al. [28]. Their approach relies on
synchronous communication, rendering time and timeout exceptions unnecessary.

Cutner et al. [10] introduce Rumpsteak, a Rust implementation based on the tokio Rust
library, which uses a different design for asynchronous multiparty communications compared
to MultiCrustyT, relying on the crossbeam_channel Rust library. The main goal of [10] is
to compare the performance of Rumpsteak, mainly designed to analyse asynchronous message
reordering, to existing tools such as the k-MC tool developed in [29]. Unlike MultiCrustyT,
Rumpsteak lacks formalisation, or handling of timed communications and failures.

Typestate is a Rust library implemented by Duarte and Ravara [12], focused on helping
developers to write safer APIs using typestates and their macros #[typestate], #[automaton]
and #[state]. MultiCrustyT and Typestate are fundamentally different, with Typestate
creating a state machine for checking possible errors in APIs and not handling affine or timed
communications. Ferrite, a Rust implementation introduced by Chen et al. [6], is limited
to binary session types and forces the use of linear channels. The modelling of Ferrite is
based on the shared binary session type calculus SILLs.

Jespersen et al. [23] and Kokke [25] propose Rust implementations of binary session
types for synchronous communication protocols. [22] extends the framework from [23] to
encode the rate compatibility relation as a Rust trait and check whether two types are
rate compatible. Their approach is demonstrated with examples from rate-based systems,
including [2, 35, 41]. Motivated by these applications, we formalise and implement the
respective timed protocols in MultiCrustyT, showcasing the expressivity and feasibility of
our system in real-time scenarios.

Conclusion and Future Work. To address time constraints and timeout exceptions in
asynchronous communication, we propose affine timed multiparty session types (ATMP) along
with the toolchain MultiCrustyT, an implementation of ATMP in Rust. Thanks to the
incorporation of affinity and failure handling mechanisms, our approach renders impractical
conditions such as wait-freedom and urgent receive obsolete while ensuring communication
safety, protocol conformance, and deadlock-freedom, even in the presence of (timeout) fail-
ures. Compared to a synchronous toolchain without time, MultiCrustyT exhibits negligible
overhead in various complex examples including those from real-time systems, while enabling
the verification of time constraints under asynchronous communication. As future work, we
plan to explore automatic recovery from errors and timeouts instead of simply terminating
processes, which will involve extending the analysis of communication causality to timed
global types and incorporating reversibility mechanisms into our system.

ECOOP 2024

19:28 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

References
1 Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–

235, 1994. doi:10.1016/0304-3975(94)90010-8.
2 Android. Motion Sensors, 2009. URL: https://developer.android.com/guide/topics/

sensors/sensors_motion.
3 Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Asyn-

chronous timed session types. In Luís Caires, editor, Programming Languages and Systems,
pages 583–610, Cham, 2019. Springer International Publishing.

4 Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty session types. In
Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 - Concurrency Theory - 25th
International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings,
volume 8704 of Lecture Notes in Computer Science, pages 419–434. Springer, 2014. doi:
10.1007/978-3-662-44584-6_29.

5 David Castro, Raymond Hu, SungShik Jongmans, Nicholas Ng, and Nobuko Yoshida. Distrib-
uted Programming Using Role-Parametric Session Types in Go: Statically-Typed Endpoint
APIs for Dynamically-Instantiated Communication Structures. Proc. ACM Program. Lang.,
3(POPL), January 2019. Place: New York, NY, USA Publisher: Association for Computing
Machinery. doi:10.1145/3290342.

6 Ruo Fei Chen, Stephanie Balzer, and Bernardo Toninho. Ferrite: A Judgmental Embedding
of Session Types in Rust. In Karim Ali and Jan Vitek, editors, 36th European Conference on
Object-Oriented Programming (ECOOP 2022), volume 222 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 22:1–22:28, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2022.22.

7 Yingying Chen, Minghu Zhang, Xin Li, Tao Che, Rui Jin, Jianwen Guo, Wei Yang, Baosheng
An, and Xiaowei Nie. Satellite-enabled internet of remote things network transmits field
data from the most remote areas of the tibetan plateau. Sensors, 22(10):3713, 2022. doi:
10.3390/S22103713.

8 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global
progress for dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science, 26(2):238–302, 2016. doi:10.1017/S0960129514000188.

9 The Developers of Crossbeam. Crate: Crossbeam channel, 2022. Last accessed: October 2022.
URL: https://crates.io/crates/crossbeam-channel.

10 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-Free Asynchronous Message
Reordering in Rust with Multiparty Session Types. In 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, volume abs/2112.12693 of PPoPP ’22, pages
261–246. ACM, 2022. doi:10.1145/3503221.3508404.

11 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Compatibility in Communicating
Automata: Characterisation and Synthesis of Global Session Types. In 40th International
Colloquium on Automata, Languages and Programming, volume 7966 of LNCS, pages 174–186,
Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-39212-2_18.

12 José Duarte and António Ravara. Taming stateful computations in rust with typestates.
Journal of Computer Languages, 72:101154, 2022. doi:10.1016/j.cola.2022.101154.

13 Roy Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax
and Routing. Technical Report RFC7230, RFC Editor, June 2014. doi:10.17487/rfc7230.

14 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional Asynchronous
Session Types: Session Types Without Tiers. Proc. ACM Program. Lang., 3(POPL):28:1–28:29,
January 2019. Place: New York, NY, USA Publisher: ACM. doi:10.1145/3290341.

15 Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty Session Types for
Safe Runtime Adaptation in an Actor Language. In Anders Møller and Manu Sridharan, editors,
35th European Conference on Object-Oriented Programming (ECOOP 2021), volume 194 of
Leibniz International Proceedings in Informatics (LIPIcs), page 30, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2021.10.

https://doi.org/10.1016/0304-3975(94)90010-8
https://developer.android.com/guide/topics/sensors/sensors_motion
https://developer.android.com/guide/topics/sensors/sensors_motion
https://doi.org/10.1007/978-3-662-44584-6_29
https://doi.org/10.1007/978-3-662-44584-6_29
https://doi.org/10.1145/3290342
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://doi.org/10.3390/S22103713
https://doi.org/10.3390/S22103713
https://doi.org/10.1017/S0960129514000188
https://crates.io/crates/crossbeam-channel
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1016/j.cola.2022.101154
https://doi.org/10.17487/rfc7230
https://doi.org/10.1145/3290341
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10

P. Hou, N. Lagaillardie, and N. Yoshida 19:29

16 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems - ESOP’98, 7th European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFB0053567.

17 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008, pages 273–284. ACM, 2008. Full version in [18].
doi:10.1145/1328438.1328472.

18 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
J. ACM, 63(1), 2016. doi:10.1145/2827695.

19 Ping Hou, Nicolas Lagaillardie, and Nobuko Yoshida. Fearless asynchronous communications
with timed multiparty session protocols, 2024. arXiv:2406.19541.

20 Raymond Hu and Nobuko Yoshida. Hybrid Session Verification Through Endpoint API
Generation. In Perdita Stevens and Andrzej Wasowski, editors, Fundamental Approaches
to Software Engineering, volume 9633, pages 401–418. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016. doi:10.1007/978-3-662-49665-724.

21 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming
in Java. In Jan Vitek, editor, ECOOP’08, volume 5142 of LNCS, pages 516–541, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. doi:10.1007/978-3-540-70592-5_22.

22 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek. Validating iot devices
with rate-based session types. Proc. ACM Program. Lang., 7(OOPSLA2):1589–1617, 2023.
doi:10.1145/3622854.

23 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session Types
for Rust. In Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming,
WGP 2015, pages 13–22, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2808098.2808100.

24 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and Blame Assignment for
Higher-Order Session Types. SIGPLAN Not., 51(1):582–594, January 2016. doi:10.1145/
2914770.2837662.

25 Wen Kokke. Rusty Variation: Deadlock-free Sessions with Failure in Rust. Electronic
Proceedings in Theoretical Computer Science, 304:48–60, September 2019. doi:10.4204/
eptcs.304.4.

26 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking Protocols
with Mungo and stmungo. In Proceedings of the 18th International Symposium on Principles
and Practice of Declarative Programming, PPDP ’16, pages 146–159, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2967973.2968595.

27 Pavel Krcál and Wang Yi. Communicating timed automata: The more synchronous, the
more difficult to verify. In Thomas Ball and Robert B. Jones, editors, Computer Aided
Verification, 18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings, volume 4144 of Lecture Notes in Computer Science, pages 249–262. Springer,
2006. doi:10.1007/11817963_24.

28 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic: Affine
Rust Programming with Multiparty Session Types. In Karim Ali and Jan Vitek, editors, 36th
European Conference on Object-Oriented Programming (ECOOP 2022), volume 222 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 4:1–4:29, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2022.4.

29 Julien Lange and Nobuko Yoshida. Verifying Asynchronous Interactions via Communicating
Session Automata. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification -
31st International Conference, CAV 2019, volume 11561 of Lecture Notes in Computer Science,
pages 97–117, Cham, 2019. Springer. doi:10.1007/978-3-030-25540-4_6.

ECOOP 2024

https://doi.org/10.1007/BFB0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://arxiv.org/abs/2406.19541
https://doi.org/10.1007/978-3-662-49665-724
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/3622854
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2914770.2837662
https://doi.org/10.1145/2914770.2837662
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1007/11817963_24
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.1007/978-3-030-25540-4_6

19:30 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

30 Matthew Alan Le Brun and Ornela Dardha. MAGπ: Types for Failure-Prone Communication.
In Thomas Wies, editor, Programming Languages and Systems, pages 363–391, Cham, 2023.
Springer Nature Switzerland. doi:10.1007/978-3-031-30044-8_14.

31 Dimitris Mostrous and Vasco T. Vasconcelos. Affine Sessions. Logical Methods in Computer
Science ; Volume 14, 8459:Issue 4 ; 18605974, 2018. Medium: PDF Publisher: Episciences.org.
doi:10.23638/LMCS-14(4:14)2018.

32 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for
multiparty conversations. Formal Aspects of Computing, 29(5):877–910, 2017.

33 Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. Spy: Local Verification of Global
Protocols. In Axel Legay and Saddek Bensalem, editors, Runtime Verification, volume
8174 of LNCS, pages 358–363, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-40787-1_25.

34 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
35 Pine64. PineTime, 2019. URL: https://www.pine64.org/pinetime/.
36 Jonathan Postel. Rfc0821: Simple mail transfer protocol, 1982.
37 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.

ACM Program. Lang., 3(POPL):30:1–30:29, 2019. doi:10.1145/3290343.
38 Servo. Servo Web Browser commit, 2015. URL: https://github.com/servo/servo/commit/

434a5f1d8b7fa3e2abd36d832f16381337885e3d.
39 Developers Rust of the library Time. Module std::time documentation, 2023. URL: https:

//doc.rust-lang.org/std/time/index.html.
40 Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A multiparty session typing

discipline for fault-tolerant event-driven distributed programming. Proceedings of the ACM on
Programming Languages, 5(OOPSLA):1–30, October 2021. doi:10.1145/3485501.

41 Lennert Wouters, Eduard Marin, Tomer Ashur, Benedikt Gierlichs, and Bart Preneel. Fast,
furious and insecure: Passive keyless entry and start systems in modern supercars. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2019(3):66–85, 2019. doi:
10.13154/TCHES.V2019.I3.66-85.

42 Nobuko Yoshida, Fangyi Zhou, and Francisco Ferreira. Communicating finite state machines
and an extensible toolchain for multiparty session types. In Evripidis Bampis and Aris
Pagourtzis, editors, Fundamentals of Computation Theory, pages 18–35, Cham, 2021. Springer
International Publishing.

https://doi.org/10.1007/978-3-031-30044-8_14
https://doi.org/10.23638/LMCS-14(4:14)2018
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-642-40787-1_25
https://www.pine64.org/pinetime/
https://doi.org/10.1145/3290343
https://github.com/servo/servo/commit/434a5f1d8b7fa3e2abd36d832f16381337885e3d
https://github.com/servo/servo/commit/434a5f1d8b7fa3e2abd36d832f16381337885e3d
https://doc.rust-lang.org/std/time/index.html
https://doc.rust-lang.org/std/time/index.html
https://doi.org/10.1145/3485501
https://doi.org/10.13154/TCHES.V2019.I3.66-85
https://doi.org/10.13154/TCHES.V2019.I3.66-85

	1 Introduction
	2 Overview
	2.1 ATMP: Theory Overview
	2.2 MultiCrusty^T: Toolchain Overview

	3 Affine Timed Multiparty Session Calculus
	4 Affine Timed Multiparty Session Type System
	4.1 Timed Multiparty Session Types
	4.2 Typing Environments
	4.3 Relating Timed Global Types and Typing Environments
	4.4 Affine Timed Multiparty Session Typing System
	4.5 Typed Process Properties

	5 Design and Implementation of MultiCrusty^T
	5.1 Time Bounds in MultiCrusty^T
	5.2 Remote Data Implementation

	6 Evaluation: Expressiveness, Case Studies and Benchmarks
	6.1 Performance: MultiCrusty^T vs. MultiCrusty
	6.2 Expressivity and Feasibility with Case Studies

	7 Related Work and Conclusion

