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Abstract
Reactive software calls for instrumentation methods that uphold the reactive attributes of systems.
Runtime verification imposes another demand on the instrumentation, namely that the trace event
sequences it reports to monitors are sound – that is, they reflect actual executions of the system
under scrutiny. This paper presents RIARC, a novel decentralised instrumentation algorithm for
outline monitors meeting these two demands. Asynchrony in reactive software complicates the
instrumentation due to potential trace event loss or reordering. RIARC overcomes these challenges
using a next-hop IP routing approach to rearrange and report events soundly to monitors.

RIARC is validated in two ways. We subject its corresponding implementation to rigorous
systematic testing to confirm its correctness. In addition, we assess this implementation via extensive
empirical experiments, subjecting it to large realistic workloads to ascertain its reactiveness. Our
results show that RIARC optimises its memory and scheduler usage to maintain latency feasible for soft
real-time applications. We also compare RIARC to inline and centralised monitoring, revealing that
it induces comparable latency to inline monitoring in moderate concurrency settings where software
performs long-running, computationally-intensive tasks, such as in Big Data stream processing.
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1 Introduction

Modern software is generally built in terms of concurrent components that execute without
relying on a global clock or shared state [87]. Instead, components interact via non-blocking
messaging, creating a loosely-coupled architecture known as a reactive system [9, 94], which

responds in a timely manner (is responsive),
remains available in the face of failure (is resilient),
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2:2 Runtime Instrumentation for Reactive Components

reacts to inputs from users or their environment (is message-driven), and
grows and shrinks to accommodate varying computational loads (is elastic).

The real-world behaviour of reactive systems is hard to understand statically, and monitoring
is used to inspect their operation at runtime, e.g. for debugging [111], security checking [62],
profiling [76], resource usage analysis [36], etc. This paper considers runtime verification (RV),
an application of monitoring used to detect whether the current execution of a system under
scrutiny (SuS) deviates from its correct behaviour [17, 71, 22]. A RV monitor is a sequence
recogniser [123, 101]: a state machine that incrementally analyses a finite fragment of the
runtime information exhibited by a SuS to reach an irrevocable verdict (see [6, 5] for details).

Instrumentation lies at the core of runtime monitoring [70, 22, 64]. It is the mechanism
by which runtime information from a SuS is extracted and reported to monitors as a stream
of system events called a trace. Software is typically instrumented in one of two ways. Inline
instrumentation, or inlining, modifies the SuS by injecting tracing instructions at specific
joinpoints, e.g. using AspectJ [90] or BCEL [54]. Outline instrumentation, or outlining, uses
an external tracing infrastructure to gather events, e.g. LTTng [56] or OpenJ9 [58], thereby
treating the SuS as a black box. A key requirement setting RV apart from monitoring, e.g.,
telemetry [85] or profiling [121, 26], is that the instrumentation must report sound traces.

▶ Definition 1 (Sound traces). A finite trace T is sound w.r.t. a system component P iff it is
1. Complete. T contains all the events exhibited by P so far, and
2. Consistent. The event sequence in T reflects the order the events occur locally at P . ⌟

Traces violating this soundness invariant are unfit for RV, as omitted, spurious, or out-
of-sequence events incorrectly characterise the system behaviour, nullifying the verdicts
that monitors flag [22, 52]. Reactive software imposes another requirement: that the
instrumentation safeguards the responsive, resilient, message-driven, and elastic attributes of
the SuS. This necessitates an instrumentation method which is itself reactive, in order to
1. not hamper the SuS by inducing unfeasible runtime overhead (is responsive),
2. permit monitors to fail independently of SuS components (is resilient),
3. react to trace events without blocking the SuS (is message-driven), and
4. grow and shrink in proportion to the size of the SuS (is elastic).

Limitations of current RV instrumentation methods. State-of-the-art RV tools use in-
strumentation methods that do not satisfy all of the conditions 1 – 4 above. This renders
them inapplicable to reactive software; see [64, tables 3 and 4] for details. Many approaches,
including [24, 31, 49, 75, 110, 122, 127, 19], assume systems with a fixed architecture where
the number of components remains constant at runtime, failing to meet condition 4. Works
foregoing the assumption of a fixed system size, such as [45, 91, 60, 59, 25, 31, 68, 3], inline
the SuS with monitors statically. Inlining monitors pre-deployment inherently accommodates
systems that grow and shrink (condition 4) as a by-product of the embedded monitor code
that executes on the same thread of system components; see fig. 1a. This scheme, however,
has shortcomings that make it less suited to reactive software. Recent studies [22, 52] observe
that the lock-step execution of the SuS and monitors can impair the operation of the instru-
mented system, e.g. slow runtime analyses manifest as high latencies [37], and faulty monitors
may break the system [69], which do not meet conditions 1 and 2 (e.g. MQ in fig. 1a). Other
works [46, 16] argue that errors, such as deadlocks or component crashes, are hard to detect
since the monitoring logic shares the runtime thread of the affected component. Entwining
the execution of the SuS and monitors may also diminish the scalability, performance, and
resource usage efficiency of the monitored system because inlined monitor code cannot be run
on separate threads [12]. Lastly, inlining is incompatible with unmodifiable software, such as
closed-source components (e.g. R in figs. 1a – 1c), making outlining the only alternative.
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Outline instrumentation can address the limitations of inlining by isolating the SuS
and its monitors (works [45, 37, 38] that view externalised monitors as “outline” embed
tracing code to extract events from the SuS, subjecting them to the cons of inlining). The
latest survey on decentralised RV [71, tables 1 and 2] establishes that outlining-based tools,
e.g. [50, 18, 19, 72, 37, 38, 125, 65], are variations on centralised instrumentation. In this
set-up, events exhibited by SuS components are funnelled through a global trace buffer
(e.g. κ{P ,Q,R} in fig. 1b) that a singleton monitor can analyse asynchronously, meeting
condition 3. Yet, the central buffer introduces contention and sacrifices the scalability of
the SuS [11], violating condition 4. Centralised architectures are prone to single point of
failures (SPOFs) [94, 93] (violating condition 2), which is not ideal for monitoring medium-
scale reactive systems.

Contribution. We propose RIARC, a decentralised instrumentation algorithm for outline
monitors that overcomes the above shortcomings, fulfilling conditions 1 – 4. Outline monitors
minimise latency effects due to slow trace event analyses associated with inlining (meeting
condition 1). While RIARC does not handle monitor failure explicitly, it intrinsically enjoys
a degree of fault tolerance by isolating the SuS and its decentralised monitor components
(meeting condition 2); e.g. monitors M{P} and M{Q,R} in fig. 1c. RIARC uses a tracing
infrastructure to obtain system events passively without modifying the SuS (meeting con-
dition 3). The algorithm equips each isolated monitor with a local trace buffer, using it
to report events based on the SuS components a monitor is tasked to analyse (e.g. buffers
κ{P} and κ{Q,R} in fig. 1c). RIARC reorganises its instrumentation set-up to reflect dynamic
changes in the SuS. It reacts to specific events in traces to instrument monitors for new
SuS components and to remove redundant monitors when it detects graceful or abnormal
component terminations. This enables RIARC to grow and shrink the verification set-up
on demand (meeting condition 4). Given the challenges of fulfilling the conditions 1 – 4, we
scope our work to settings where communication is reliable (i.e., no message corruption,
duplication, and loss) [57] and Byzantine failures do not arise [96].

To the best of our knowledge, the approach RIARC advocates is novel. One reason why
outlining has never been adopted for decentralising monitors are the onerous conditions 1 – 4
imposed by reactive software. Utilising non-invasive tracing makes our set-up necessarily asyn-
chronous. At the same time, this complicates the instrumentation, which must ensure trace
soundness (def. 1), notwithstanding the inherent phenomena arising from the concurrent exe-
cution of the SuS and monitors, e.g. trace event reordering and process crashes. Consequently,
the second reason is that the overhead incurred to uphold this invariant – in addition to
scaling the verification set-up as the SuS executes – is perceived as prohibitive when compared
to inlining. This opinion is often reinforced when the viability of outline instrumentation is
predicated on empirical criteria tied to monolithic, batch-style programs, that may not apply
to reactive software (e.g. percentage slowdown); e.g. see [97, 114, 113, 47, 46, 119, 30, 98].

This paper shows how instrumenting outline monitors under conditions 1 – 4 can be
achieved using a decentralised approach that guarantees def. 1, while also exhibiting overheads
considered feasible for typical soft real-time reactive systems. Concretely, we

(i) recall the benefits of the actor model [82, 10] for building reactive systems and argue
how our model of processes and tracers readily maps to that setting, sec. 2;

(ii) give a decentralised instrumentation algorithm for outline monitors, detailing how the
reactive characteristics of the SuS can be preserved whilst ensuring def. 1, sec. 3;

(iii) show the implementability of our algorithm in an actor language and systematically
validate the correctness of its corresponding implementation w.r.t. def. 1 by exhaustively
inducing interleaved executions for a selection of instrumented systems, sec. 4;

ECOOP 2024
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Figure 1 P,Q,R instrumented in inline (left), centralised (middle) and decentralised (right)
modes.

(iv) back up the feasibility of the implemented algorithm via a comprehensive empirical
study that uses various workload configurations surpassing the state of the art, showing
that the induced overhead minimally impacts the reactive attributes of the SuS, sec. 5.

The extended version [8] contains the full details about RIARC and further discussion of
our experiments and results. That material is ancillary to the one presented in this paper.

2 A computational model for reactive systems

The actor model [82, 10] emerged as the paradigm to design and build reactive systems [33].
Actors – the units of decomposition in this model – are abstractions of concurrent entities
that share no mutable memory with other actors. Instead, actors interact through asyn-
chronous message passing and alter their internal state based on the messages they consume.
Asynchronous communication decouples actors spatially and temporally, which fully isolates
system components and establishes the foundation for resiliency and elasticity [32, 94]. Each
actor is equipped with an incoming message buffer called the mailbox, from which messages
deposited by other actors can be selectively read. Besides sending and receiving messages,
actors can spawn other actors. Actors in a system are addressable by their unique process
identifier (PID), which they use to engage in directed, point-to-point communication. This
idea of addressability is central to the actor model: it enables reasoning about decentralised
computation, as the identity of components or messages can be propagated through a system
and used in handling complex tasks, such as process registration and failure recovery [33]. As
is often the case in decentralised computations, we assume that messages exchanged between
pairs of processes are always received in the order in which they have been sent [43].

Frameworks, notably Erlang [12], Elixir [88], Akka [1] for Scala [117], along with oth-
ers [118, 130], instantiate the actor model. We adopt Erlang since its ecosystem is specifically
engineered for highly-concurrent, soft real-time reactive systems [131, 13, 44]. The Erlang
virtual machine (EVM) implements actors as lightweight processes. It employs per process
garbage collection that, unlike the JVM, does not subject the virtual machine to global unpre-
dictable pauses [86, 116]. This factor minimises the impact on the soft real-time properties of
a system and is also crucial to the empirical evaluation of sec. 5 since it stabilises the variance
in our experiments. The EVM exposes a flexible process tracing API aimed at reactive
software [42]. Erlang provides other components, e.g. supervision trees, message queues, etc.,
for building fault-tolerant distributed applications. While we scope our work to fault-free
settings (see sec. 1), adopting Erlang gives us the foundation upon which our work can be
naturally extended to address these aspects. Henceforth, we follow the established convention
in Erlang literature and use the terms actor, process, and component synonymously.
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2.1 Process tracing and trace partitioning
Processes in a concurrent system form a tree, starting at the root process that spawns child
processes, and so forth1. Concurrency induces inherent partitions to the execution of the
SuS in the form of isolated traces that reflect the local behaviour at each process [19]. RIARC
exploits this aspect to attain several benefits. First, one can selectively specify the SuS
processes to be instrumented. The upshot is that fewer trace events need to be gathered,
improving efficiency. Another benefit of partitioned traces is that each process can be
dynamically instrumented, free from assumptions about the number of processes the SuS is
expected to have. This makes the RV set-up elastic. Lastly, the instrumentation set-up can
partially fail, as faulty SuS or monitor processes do not imperil the execution of one another.

▶ Example 2 (Trace partitions). Trace partitions enable RIARC to instrument a system in
various arrangements. Fig. 2a depicts an interaction sequence for the execution of the SuS
from sec. 1. In this interaction, the root process, P , spawns Q and communicates with it,
at which point Q spawns process R; P and Q eventually terminate. We denote the process
spawning and termination trace events by and , and use ! and ? for send and receive
events respectively. The sound trace partitions for the processes in fig. 2a are “ P .!P . P ” for
P , “?Q . Q . Q” for Q, and the empty trace for R. ⌟

A centralised set-up such as that of fig. 1b can be obtained by instrumenting {P ,Q,R}
with one monitor, M{P ,Q,R}, whereas instrumenting the components {P} and {Q,R} with
monitors M{P} and M{Q,R} gives the decentralised arrangement of fig. 1c. Each of these
instrumentation arrangements generates different executions.

▶ Example 3 (Sound traces). For the case of fig. 1b, RIARC can report to M{P ,Q,R} one
of four possible traces “ P .!P . P .?Q . Q . Q”, “ P .!P .?Q . P . Q . Q”, “ P .!P .?Q . Q . P . Q”, or
“ P .!P .?Q . Q . Q . P ”. These sound traces result from the interleaved execution of processes
P , Q. Any other trace, e.g. “ P . P .?Q . Q . Q” or “ P .!P . P .?Q . Q . Q”, is unsound since it
contradicts the local behaviour at processes P and Q of fig. 2a. The former trace omits the
request !P that P makes to Q (it is incomplete w.r.t. P ), and the latter trace inverts Q and

Q, suggesting that Q spawns R after Q terminates (it is inconsistent w.r.t. Q). ⌟

▶ Example 4 (Separate instrumentation). Fig. 2b shows another decentralised set-up, where
P , Q, and R are instrumented separately. In this case, the instrumentation should report to
M{P}, M{Q} and M{R} the events observed locally at each process, as stated in ex. 2. ⌟

RIARC makes two assumptions about process tracing in order to support the instrument-
ation arrangements shown in figs. 1b, 1c, and 2b:
A1 Tracing processes sets. Tracing can gather events for sets of SuS processes, e.g. κ{P ,Q,R}

in fig. 1b gathers the events of {P ,Q,R}, and κ{Q,R} in fig. 1c gathers the events of {Q,R}.
A2 Tracing inheritance. Tracing gathers the events of a SuS process and the children it

spawns by default to eliminate the risk that trace events from child processes are missed.
We opt for tracing inheritance since it follows established centralised RV monitoring tools,

including [18, 41, 50, 110]. In fact, tracing assumptions A1 and A2 mean that centralised
set-ups like that of fig. 1b can be obtained just by tracing the root process P . Tracing
inheritance requires the instrumentation to intervene if it needs to channel the events of a
child process into a new trace partition that is independent from that of its parent, e.g. as in

1 For example, using spawn() in Erlang [42] and Elixir [88], ActorContext.spawn() in Akka [1],
Actor.createActor() in Thespian [118], CreateProcess() in Windows [108], etc.

ECOOP 2024
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Figure 2 SuS with processes P , Q, and R instrumented with independent monitors.

fig. 1c. In such cases, the instrumentation must first stop tracing the child process, allocate
a fresh trace buffer, and resume tracing the child process. The out-of-sync execution of the
SuS and instrumentation complicates the creation of these new trace partitions because it
can lead to reordered or missed events. This, in turn, would violate trace soundness, def. 1.

We supplement A1 and A2 with the following to keep our exposition in sec. 3 manageable:
A3 Single-process tracing. Any SuS process can be traced at most once at any point in time.
A4 Causally-ordered spawn events. Tracing gathers the spawn trace event of a parent process

before all the events of the child process spawned by that parent, e.g. if P spawns Q,
and Q receives, as in fig. 2a, the reported sequence is “ P .?Q” rather than “?Q . P ”.
The constraint of tracing assumption A3 is easily overcome by replicating trace events for

a process and reporting them to different monitors (e.g. the events in the trace partition of
process P are replicated to monitors M{Pa}, M{Pb}, M{Pc} in fig. 2c). Tracing assumption A4
requires trace buffers to reorder events using the spawner and spawned process information
carried by each event before reporting them to monitors. Sec. 3.3 gives more details.

▶ Example 5 (Unsound traces). Fig. 3a shows one possible configuration that can be reached
by our three-process system introduced in fig. 2a, where the trace buffer κ{P} contains the
events for both P and Q. The trace in buffer κ{Q} is unsound, as it inaccurately characterises
the local behaviour of process Q (the sound trace for Q should be “?Q . Q . Q”, not “ Q”). ⌟

RIARC programs trace buffers to coordinate with one another to ensure that sound traces
are invariably reported to monitors. We refer to a trace buffer and the coordination logic
it encapsulates as a tracer. RIARC employs an approach based on next-hop routing in IP
networks [80, 104] to counteract the effects of trace event reordering and loss by rearranging
and forwarding events to different tracers. Fig. 3b conveys our organisation of tracers (refer
to [8, fig. 10 in app. A] for legend). Sec. 3 details how RIARC dynamically reorganises the
tracer choreography and performs next-hop routing.

2.2 Modelling decentralised instrumentation
Since RV monitors are passive verdict-flagging machines (refer to sec. 1), they are orthogonal to
our instrumentation. We, thus, focus our narrative on tracers and omit monitors, except when
relevant in the surrounding context. The model assumes a set of SuS process, P,Q,R ∈ Prc,
and tracer names, T ∈Trc, together with a countable set of PID values to reference processes.
We distinguish between SuS and tracer PIDs, which we denote respectively by the sets,
pS,qS ∈ PidS and pT,qT ∈ PidT. The variables ıS and ȷS, and ıT and ȷT range over PIDs from
the corresponding sets PidS and PidT. We also assume the function signature sets, fS ∈SigS,
fT ∈ SigT, and, fM ∈ SigM, to denote SuS, tracer, and RV monitor functions, together with
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Figure 3 Choreographed tracers coordinating to ensure sound traces.

the variables ςS, ςT, and ςM that range over each signature set. New SuS processes are created
via the function spwn(ςS) that accepts the function signature ςS to be spawned, and returns
a fresh PID, ıS. We overload spwn to spawn tracer signatures ςT equivalently, returning
corresponding PIDs, ıT. The function self obtains the PID of the process invoking it. We
write P as shorthand for a singleton process set {P} to simplify notation.

RIARC uses three message types, τ ∈ {evt,dtc,rtd}. These determine when to create or
terminate tracer processes, and what trace events to route between tracers:

evt are trace events gathered via process tracing,

dtc are detach requests that tracers exchange to reorganise the tracer choreography, and

rtd are routing packets that transport evt or dtc messages forwarded between tracers.
We encode messages m as tuples. Trace event messages, ⟨evt,ℓ,ıS ,ȷS ,ςS⟩, comprise the event
label ℓ that ranges over the SuS events (spawn), (exit), ! (send), and ? (receive). The
PID value ıS identifies the SuS process exhibiting the trace event, and is defined for all
events. The SuS PID ȷS and function signature ςS depend on the type of the event. Tbl. 1a
catalogues the values defined for each event. We write trace events in their shorthand form,
omitting undefined values (denoted by ⊥), e.g. ⟨evt, ,ıS⟩ instead of ⟨evt, ,ıS ,⊥,⊥⟩.

Table 1 Trace event (evt), detach request (dtc), and routing packet (rtd) message index names.

(a) Messages encoding spawn, exit, send, and receive events.

Label ℓ Index Description (ıS and ȷS are SuS PIDs)

e.ıS Parent PID spawning new child PID ȷS

e.ȷS Child PID spawned by parent PID ıS

e.ςS Signature ςS spawned by parent PID ıS

e.ıS Terminated PID
e.ȷS,e.ςS Undefined for exit events

!
e.ıS Sending PID
e.ȷS Recipient PID
e.ςS Undefined for send events

?
e.ıS Recipient PID

e.ȷS,e.ςS Undefined for receive events

(b) Detach and routing messages.

Index Description

m.τ
Message type: event (evt)
detach (dtc), routing (rtd)

d.ıT
PID of tracer requesting
detach of SuS PID ıS

d.ıS
PID of SuS process to
stop tracing

r.ıT
PID of tracer that starts
routing message m

r.m
Embedded evt or dtc
message being routed

ECOOP 2024



2:8 Runtime Instrumentation for Reactive Components

Table 2 RIARC approach to ensure trace soundness (def. 1) and reactive instrumentation (sec. 1).

Requirement Approach

R1 Growing the set-up Instrument tracers on-demand to create new trace partitions
R2 Ensuring complete traces Route trace events to deliver them to the correct tracer
R3 Ensuring consistent traces Prioritise routed trace events before others
R4 Isolating tracers Detach tracers from others once all trace events are routed
R5 Minimising overhead Target specific processes to instrument
R6 Shrinking the set-up Garbage collect redundant tracers and monitors

Detach request messages have the form ⟨dtc,ıT ,ıS⟩. A tracer with the PID ıT uses dtc to
request that another tracer stop tracing the SuS PID ıS. Routing packet messages, ⟨rtd,ıT ,m⟩,
move evt and dtc messages between tracers. The PID ıT identifies the tracer that embeds the
message m into the routing packet and dispatches it to other tracers. Tbl. 1b summarises
detach request and routing packet messages.
▶ Note 6 (Notation). We reserve the variables e, d, and r for the messages types evt, dtc, and
rtd respectively. Our model uses the suggestive dot notation (.) to index message fields, e.g.
m.τ reads the message type, e.ℓ reads the trace event label, etc. (see tbl. 1). For simplicity,
we occasionally write the label ℓ in lieu of the full trace event form, e.g. we write instead
of ⟨evt, ,ıS⟩, etc. ⌟

3 Decentralised instrumentation

Our reason for encapsulating trace buffers and their coordination logic as tracers stems from
the actor model. Trace buffers align with actor mailboxes, which localise the tracer state
and enable tracers to run independently. The main logic replicated at each tracer is given in
algs. 1 – 3. Tracers operate in two modes, direct (◦) and priority (•), to counteract the effects
of trace event reordering. We organise our tracer logic in algs. 1 and 3 to reflect these modes,
respectively. Algs. 1 and 3 use the function AnalyseEvt, which analyses events; see [8,
app. C.5.2] for details. Auxiliary tracer logic referenced in this section is given in [8, app. A].

Every tracer maintains an internal state σ consisting of the following three maps:
the routing map, Π, governing how events are routed to other tracers,
the instrumentation map, Λ, that determines which SuS processes to instrument, and
the traced-processes map, Γ, tracking the SuS process set that the tracer currently traces.

Tbl. 2 summarises the challenges that RIARC needs to overcome to attain the reactive
characteristics stated in sec. 1. Requirements R1 and R6 in tbl. 2 oblige the instrumentation
to reorganise dynamically while the SuS executes to preserve its elasticity. Requirement R4
offers a modicum of resiliency between the SuS and tracer processes, whereas R5 minimises
the instrumentation overhead by gathering only the events monitors require. This keeps the
overall set-up responsive. Since RIARC builds on the actor model, it fulfils the message-driven
requirement intrinsically. Trace soundness is safeguarded by requirements R2 and R3.

The operations Trace, Clear and Preempt give access to the tracing infrastructure.
Trace(ıS,ıT) enables a tracer with PID ıT to register its interest in receiving trace events of a
SuS process with PID ıS. This operation can be undone using Clear(ıS,ıT), which blocks the
calling tracer ıT and returns once all the trace event messages for the SuS process ıS that are
in transit to the tracer ıT have been delivered to ıT. It is worth remarking that this behaviour
conforms to our proviso in sec. 1, i.e., no communication faults. Preempt(ıS,ıT) combines
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Clear and Trace. It enables the tracer pre-empting ıT to take control of tracing the SuS
process ıS from another tracer ı′

T that is currently tracing ıS. Tracers use Clear or Preempt
to modify the default process-tracing inheritance behaviour that tracing assumption A2
describes. We refer readers to [8, alg. 5 in app. A] for the specifics of these operations.

We focus our presentation in secs. 3.1 – 3.6 of how RIARC addresses the challenges listed in
tbl. 2 on the set-up of fig. 2b, where the processes P , Q and R, are instrumented separately.
This specific case highlights two aspects. First, it emphasises the complications that RIARC
overcomes to establish the desired set-up while ensuring trace soundness, def. 1. Second,
fig. 2b covers all other possible instrumentation set-ups. Disjoint sets of SuS processes,
including the one shown in fig. 1c, can be obtained when tracers do not act on certain
(spawn) events, as sec. 3.1 explains. Notably, any centralised set-up, e.g. the one in fig. 1b,
emerges naturally when the root tracer disregards all events exhibited by the SuS.
▶ Note 7 (Naming conventions). For clarity, we adopt the convention that a SuS process
P is spawned from the signature fSP

and is assigned the PID pS. A tracer for P is named
TP (short for T{P}) and has the PID pT. Other processes are treated likewise, e.g. the SuS
process Q has signature fSQ

, PID qS, while the tracer TQ for Q has PID qT, etc. ⌟

3.1 Growing the set-up
Fig. 4 illustrates how the hierarchical creation sequence of SuS processes described in sec. 2.1
is exploited to instrument separate tracers. RIARC programs tracers to react to (spawn)
events in the trace. In fig. 4a, the root tracer TP traces process P , step 1 . When P spawns
process Q, Q automatically inherits TP (tracing assumption A2 from sec. 2.1). Steps 2 in
fig. 4a emphasise that tracing inheritance is instantaneous. The event e = ⟨evt, ,pS ,qS ,fSQ

⟩
is generated by P when it spawns its child Q, step 3 in fig. 4a. The PID values of the parent
and child processes carried by e, namely pS and qS, are accessed via the indexes e.ıS and e.ȷS

respectively (see tbl. 1a). Tracer TP uses this PID information to instrument a new tracer
TQ for process Q in step 4 of fig. 4b. By invoking Preempt(qS,qT), TQ takes over tracing
process Q from the former tracer TP going forward. TQ creates a new trace partition for

P Q

TP

P 3

spawn 2

1 2

(a) P spawns Q; TP also traces Q, assumption
A2.

P Q

TP TQ

instr. 4

5

(b) TP instruments tracer TQ for process Q.

P Q R

TP TQ

send 6

!P 10

receive 7

?Q 9 Q 11

spawn 8

8

(c) TP and TQ analyse trace events separately.

P Q R

TP TQ TR

instr. 12

exit 14

Q 15
13

(d) P , Q, R and corresponding tracers.

Figure 4 Growing the tracer instrumentation set-up for processes P , Q and R (monitors omitted).
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(a) Trace events for P , Q, and R received by TP .
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(b) Trace events for Q routed from TP to TQ.

Figure 5 Next-hop trace event routing using tracer routing maps Π (monitors omitted).

process Q that is independent of the partition of P , step 5 . Meanwhile, TP receives the send
event ⟨evt,!,pS ,qS⟩ in step 10 after P messages Q in step 6 of fig. 4c. Subsequent events
that TP or TQ may gather are handled as described in steps 3 – 5 . Figs. 4c and 4d show
how the final tracer TR is instrumented in step 12 after Q spawns R in step 8 . As before,
TQ traces R automatically in step 8 . TQ receives the event ⟨evt, ,qS ,rS ,fSR

⟩ generated by
Q in step 11 . TR invokes Preempt(rS,rT) to create the trace partition for R in step 13 .

3.2 Ensuring complete traces
The asynchrony between the SuS and tracer processes can induce the interleaved execution
shown in fig. 5, as an alternative execution to that shown in figs. 4b – 4d. In fig. 5a, TP is slow
to handle P it receives in 3 of fig. 4a and fails to instrument TQ promptly. Consequently,
the events ?Q and Q that Q exhibits are sent to TP in steps 7 and 9 of fig. 5a. Step 11

shows the case where ⟨evt,?,qT⟩ is processed by TP , rather than by the intended tracer TQ

that would have been instrumented by TP . This error breaches the completeness property of
trace soundness w.r.t. Q, as the events ?Q and Q meant for Q reach the wrong tracer TP .

To address this issue, RIARC uses a next-hop routing approach, where tracers retain the
events they should handle and forward the rest to neighbouring tracers. We use the term
dispatch tracer (dispatcher for short) to describe a tracer that receives trace events meant to
be handled by another tracer. For instance, TP in fig. 5a becomes the dispatch tracer for
Q when it receives the events ?Q and Q exhibited by Q, steps 7 and 9 . We expect these
events to be handled by TQ once it is instrumented. Dispatchers are tasked with embedding
trace event (evt) or detach requests (dtc) into routing packet messages (rtd) and transmitting
them to the next known hop. In fig. 5b, TP dispatches the events ?Q and Q as follows. It
first instruments TQ with Q in step 11 . Next, TP prepares ⟨evt,?,rS⟩ and ⟨evt, ,qS ,rS ,fSR

⟩
for transmission by embedding each in rtd messages (steps 14 and 18 ). TP forwards the
resulting routing packets, ⟨rtd,pT ,⟨evt,?,rS⟩⟩ and ⟨rtd,pT ,⟨evt, ,qS ,rS ,fSR

⟩⟩, to its next-hop
neighbour TQ in steps 15 and 19 . The trace event ⟨evt,!,pS ,qS⟩, however, is not forwarded
but handled by TP , as step 17 shows. Concurrently, TQ acts on the forwarded events ?Q and

Q in steps 16 and 21 and instruments TR as a result, step 22 .
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Algorithm 1 Logic handling ◦ trace events, detach request dispatching, and forwarding.
1 def Loop◦(σ,ςM)
2 forever do
3 m← next message from trace buffer κ

4 match m.τ do
5 case evt : σ← HandlEvent◦(σ,ςM,m)
6 case dtc : σ←DispatchDtc(σ,ςM,m)
7 case rtd : σ←ForwdRtd◦(σ,ςM,m)

8 def HandlEvt◦(σ,ςM,e)
9 match e.ℓ do

10 case : return HandlSpwn◦(σ,ςM,e)
11 case : return HandlExit◦(σ,ςM,e)
12 case !,?: return HandlComm◦(σ,ςM,e)

13 def HandlSpwn◦(σ,ςM,e)
14 match σ.Π(e.ıS) do
15 case ⊥ : # No next-hop for e.ıS; handle e

16 AnalyseEvt(ςM,e)
17 σ← Instrument◦(σ,e,self())
18 case ȷT : # Next-hop for e.ıS exists via ȷT

19 Dispatch(e,ȷT)
# Set next-hop of e.ȷS to tracer of e.ıS

20 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
21 return σ

22 def HandlExit◦(σ,ςM,e)
23 match σ.Π(e.ıS) do
24 case ⊥ : # No next-hop for e.ıS; handle e

25 AnalyseEvt(ςM,e)
26 σ.Γ←σ.Γ\{⟨e.ıS ,◦⟩}
27 TryGC(σ)
28 case ȷT : Dispatch(e,ȷT)
29 return σ

30 def HandlComm◦(σ,ςM,e)
31 match σ.Π(e.ıS) do
32 case ⊥ : AnalyseEvt(ςM,e)
33 case ȷT : Dispatch(e,ȷT)
34 return σ

35 def DispatchDtc(σ,d)
36 match σ.Π(d.ıS) do
37 case ⊥ : fail dtc next-hop must be defined
38 case ȷT :
39 Dispatch(d,ȷT)

# Next-hop for d.ıS no longer needed
40 σ.Π←σ.Π\{⟨d.ıS ,ȷT⟩}
41 TryGC(σ)
42 return σ

43 def ForwdRtd◦(σ,r)
44 m← r.m # Read embedded message in r

45 match m.τ do
46 case dtc : return ForwdDtc(σ,r)
47 case evt : return ForwdEvt(σ,r)

48 def ForwdDtc(σ,r)
49 d← r.m

50 match σ.Π(d.ıS) do
51 case ⊥ : fail dtc next-hop must be defined
52 case ȷT :
53 Forwd(r,ȷT)

# Next-hop for d.ıS no longer needed
54 σ.Π←σ.Π\{⟨d.ıS ,ȷT⟩}
55 TryGC(σ)
56 return σ

57 def ForwdEvt(σ,r)
58 e← r.m

59 match σ.Π(e.ıS) do
60 case ⊥ : fail evt next-hop must be defined
61 case ȷT :
62 Forwd(r,ȷT)

# For spawn events, tracer also sets a
# new next-hop for e.ȷS

# Next-hop of e.ȷS to same tracer of e.ıS

63 if (e.ℓ = )
64 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
65 return σ

Tracers determine the events to retain or forward using the routing map, Π :PidS ⇀PidT.
Every tracer queries its private routing map for each message it receives on SuS PID m.ıS.
A tracer forwards a message to its neighbouring tracer with PID ıT if a next-hop for that
message exists, i.e., Π(m.ıS) = ıT. When the next-hop is undefined, i.e., Π(m.ıS) = ⊥, m is
handled by the tracer. HandlSpwn, HandlExit and HandlComm in alg. 1 implement
this forwarding logic on lines 14, 23 and 31.

Dynamically populating the routing map is key to transmitting messages between tracers.
A tracer adds the new mapping e.ȷS 7→ ȷT to its routing map Π in case 1 or 2 below whenever
it processes spawn trace events e = ⟨evt, ,ıS ,ȷS ,ςS⟩. One of two cases is considered for e.ıS:
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Algorithm 2 Tracer instrumentation operations for direct (◦) and priority (•) modes.
Expect: e = ⟨evt, ,ıS ,ȷS ,ςS⟩

1 def Instrument◦(σ,e,ıT)
2 if ((ςM←σ.Λ(e.ςS)) ̸=⊥)

# New tracer ȷT for new SuS process e.ȷS

3 ȷT← spwn(Tracer(σ,ςM,e.ȷS,ıT))
4 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
5 else

# In ◦ mode, this tracer has detached
# all processes from its dispatcher ıT

# This tracer traces new SuS process e.ȷS

# by tracing inheritance assumption A2

6 σ.Γ←σ.Γ∪{⟨e.ȷS ,◦⟩}
7 return σ

Expect: e = ⟨evt, ,ıS ,ȷS ,ςS⟩
8 def Instrument•(σ,e,ıT)
9 if ((ςM←σ.Λ(e.ςS)) ̸=⊥)

# New tracer ȷT for new SuS process e.ȷS

10 ȷT← spwn(Tracer(σ,ςM,e.ȷS,ıT))
11 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
12 else

# In • mode, this tracer must detach
# SuS process e.ȷS from its dispatcher ıT

13 Detach(e.ȷS,ıT)
# This tracer traces new SuS process e.ȷS

14 σ.Γ←σ.Γ∪{⟨e.ȷS ,•⟩}
15 return σ

1. Π(ıS) = ⊥. The next-hop for e is undefined, which cues the tracer to instrument the SuS
process with PID ȷS. When applicable, the tracer processes the event and instruments a
separate tracer with PID ȷT. It then adds the mapping e.ȷS 7→ ȷT to Π. The tracer leaves
Π unmodified and handles the event itself if a separate tracer is not required. Opting for
a separate tracer is determined by the instrumentation map Λ, as discussed in sec. 3.5.

2. Π(ıS) = ȷT. The next-hop for e is defined, and the tracer forwards the event to the
neighbouring tracer ȷT. The tracer also records a new next-hop by adding e.ȷS 7→ ȷT to Π.

The addition of e.ȷS 7→ ȷT in cases 1 and 2 ensures that future events originating from ȷS can
always be forwarded via a next-hop to a neighbouring tracer ȷT (see invariants on lines 37,
51, and 60). Fig. 5b shows the routing maps of the tracers TP and TQ. TP adds qS 7→ qT in
step 13 after processing ⟨evt, ,pS ,qS ,fSQ

⟩ from its trace buffer in 10 . TP then instruments
Q with the tracer TQ in step 11 ; an instance of case 1. The function Instrument in alg. 2
details this on line 4, where the mapping e.ȷS 7→ ȷT is added to Π following the creation of
tracer ȷT, line 3. Step 20 of fig. 5b is an instance of case 2. Here, TP adds rS 7→ qT to ΠP

after processing ⟨evt, ,qS ,rS ,fSR
⟩ for R in step 18 since ΠP (qS) = qT. Crucially, TP does not

instrument a new tracer, but delegates the task to TQ by forwarding Q. Lines 20 and 64 in
alg. 1 (and later line 24 in alg. 3) are manifestations of this, where the mapping e.ȷS 7→ ȷT is
added after the event e is forwarded to the next-hop ȷT. TQ instruments the SuS process
R in step 22 with TR, which has the PID rT. It then adds the mapping rS 7→ rT to ΠQ in
step 24 , as no next-hop is defined for qS, i.e., ΠQ(qS) = ⊥. Henceforth, any events exhibited
by R and received at TP can be dispatched by the latter tracer through TQ to TR.

Note that every tracer is only aware of its neighbouring tracers. This means messages may
pass through multiple tracers before reaching their intended destination. Next-hop routing
keeps the logic inside RIARC straightforward since tracers forward messages based on local
information in their routing map. This approach makes the instrumentation set-up adaptable
to dynamic changes in the SuS and has been shown to induce lower latency when compared to
general routing strategies [80, 104]. The DAG of interconnected tracers induced by next-hop
routing ensures that every message is eventually delivered to the correct tracer if a path
exists or handled by the tracer otherwise. Fig. 5b illustrates this concept, where the next-hop
mappings inside ΠP point to TQ, and the mappings in ΠQ point to TR. Consequently, any
events that R exhibits and that TP receives are forwarded twice to reach the target tracer TR:
from tracer TP to TQ, and from TQ to TR. RIARC relies on the operations Dispatch and
Forwd to achieve next-hop routing (see [8, alg. 4 in app. A]). Dispatch creates a routing
packet, ⟨rtd,ıT ,m⟩, and embeds the trace event or detach message m to be routed. Alg. 1
shows how tracers handle routing packets. For instance, ForwdEvt extracts the embedded
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message from the routing packet on line 58 and queries the routing map to determine the
next-hop, line 59. If found, the packet is forwarded, as Forwd(r,ȷT) on line 62 indicates.
Crucially, the fail invariant on line 60 asserts that the next-hop for a routing packet is always
defined. The cases for DispatchDtc and ForwdDtc in alg. 1 are analogous.

3.3 Ensuring consistent traces
Next-hop routing alone does not guarantee trace consistency, i.e., that the order of events
in the trace reflects the one in which these occur locally at SuS processes, def. 1. Trace
event reordering arises when a tracer gathers events of a SuS process (we call these direct
events) and simultaneously receives routed events concerning said process from other tracers.
Fig. 6a gives another interleaving to the one of fig. 5b to underscore the deleterious effect
such a race condition provokes when events are reordered at TQ. In step 12 TQ takes over
TP to continue tracing process Q. TQ collects the event Q in step 15 , which happens before
TQ receives the routed event ?Q concerning Q in step 17 of fig. 6a. If TQ processes events
from its trace buffer κQ in sequence, as in step 18 , it violates trace consistency w.r.t. Q

(the correct trace ordering should be “?Q . Q . Q”). Naïvely handling before ? erroneously
reflects that Q receives messages after it terminates.

RIARC tracers resolve this issue by prioritising the processing of routed trace events using
selective message reception [42]. In doing so, tracers encode the invariant that “routed events
temporally precede all others that are gathered directly by the tracer”. RIARC tracers operate
in one of two modes, priority (•) and direct (◦), which adequately distinguishes past (i.e.,
routed) and current (i.e., direct) events from the perspective of the tracer receiving them.

Fig. 6b illustrates this concept. It shows that when in priority mode, TQ dequeues the
routed events ?Q and Q labelled by • first. The event ?Q is handled in step 23 , whereas

Q results in the instrumentation of tracer TR in step 25 of fig. 6b. Meanwhile, TQ can
still receive events directly from Q while priority events are being handled. Yet, direct trace
events from Q are considered only after TQ transitions to direct mode. Newly-instrumented
tracers default to • mode to implement the described logic; see [8, line 14 in alg. 4 of app. A].
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Q 15
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Figure 6 Trace event reordering using priority (•) and direct (◦) tracer modes (monitors omitted).
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Algorithm 3 Logic handling • trace events, detach request acknowledgements, and forwarding.
1 def Loop•(σ,ςM)
2 forever do
3 r← next rtd message from trace buffer κ

4 m← r.m # Read embedded message in r

5 match m.τ do
6 case evt : σ← HandlEvt•(σ,ςM,r)
7 case dtc :

# dtc ack relayed from dispatch tracer
8 σ←HandlDtc(σ,ςM,r)

9 def HandlEvt•(σ,ςM,r)
10 e← r.m

11 match e.ℓ do
12 case : return HandlSpwn•(σ,ςM,r)
13 case : return HandlExit•(σ,ςM,r)
14 case !,?: return HandlComm•(σ,ςM,r)

15 def HandlSpwn•(σ,ςM,r)
16 e← r.m

17 match σ.Π(e.ıS) do
18 case ⊥ : # No next-hop for e.ıS; handle e

19 AnalyseEvt(ςM,e)
20 ıT← r.ıT # Read PID of dispatch tracer
21 σ← Instrument•(σ,e,ıT)
22 case ȷT : # Next-hop for e.ıS exists via ȷT

23 Forwd(r,ȷT)
# Set next-hop of e.ȷS to tracer of e.ıS

24 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
25 return σ

26 def HandlExit•(σ,ςM,r)
27 e← r.m

28 match σ.Π(e.ıS) do
29 case ⊥ : # No next-hop for e.ıS; handle e

30 AnalyseEvt(ςM,e)
31 σ.Γ←σ.Γ\{⟨e.ıS ,•⟩}
32 TryGC(σ)
33 case ȷT : Forwd(r,ȷT)
34 return σ

35 def HandlComm•(σ,ςM,r)
36 e← r.m

37 match σ.Π(e.ıS) do
38 case ⊥ : AnalyseEvt(ςM,e)
39 case ȷT : Forwd(r,ȷT)
40 return σ

41 def HandlDtc(σ,ςM,r)
42 d← r.m

43 match σ.Π(d.ȷS) do
44 case ⊥ :
45 assert d.ıT = self() unexpected dtc ack
46 σ.Γ←

(
σ.Γ\{⟨d.ȷS ,•⟩}

)
∪{⟨d.ȷS ,◦⟩}

47 if ({⟨ıS ,γ⟩ | ⟨ıS ,γ⟩ ∈σ.Γ,γ = •}= ∅)
48 Loop◦(σ,ςM) # Put tracer in ◦ mode
49 case ȷT :
50 assert d.ıT ̸= self() dtc meant for ıT

51 Forwd(r,ȷT)
52 return σ

Loop• in alg. 3 shows the logic prioritising routed events, which are dequeued on line 3
and handled on line 6. HandlSpwn, HandlExit, and HandlComm in Loop◦ and Loop•
handle events differently. A tracer in direct mode performs one of three actions (see alg. 1):
1. it analyses events for RV purposes via the function AnalyseEvt(ςM,e), e.g. line 32,
2. it dispatches events that it directly gathers using Dispatch(e,ȷT), when events ought to

be handled by other tracers, e.g. line 33, or
3. it forwards routed events to the next-hop through Forwd(r,ȷT), e.g. line 62.
Tracers in priority mode exclusively handle routed messages as points 1 and 3 describe, e.g.
lines 38 and 39 in alg. 3. However, no event dispatching is performed.

3.4 Isolating tracers
A tracer in priority mode coordinates with the dispatch tracer of a particular SuS process
it traces. This enables the tracer to determine when all of the events of that process have
been routed to it by the dispatch tracer. The negotiation is effected using dtc, which the
tracer sends to the relevant dispatch tracer. Each tracer records the set of processes it traces
in the traced-processes map, Γ : PidS ⇀ {◦,•}. A SuS process mapping is added to Γ when a
tracer starts gathering trace events for that process and removed once the process terminates.
Lines 6 and 14 in alg. 2 add fresh mappings to Γ; lines 26 in alg. 1 and 31 in alg. 3 purge
mappings from Γ. A tracer in priority mode must issue a dtc request for each process it
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tracks in Γ before it can transition to direct mode and start operating on the trace events it
gathers directly. The detach request, d = ⟨dtc,ıT ,ıS⟩, contains the PIDs of the issuing tracer
and the SuS process to be detached from the dispatch tracer. Once the tracer receives an
acknowledgement to the dtc request for the SuS PID d.ıS from the dispatch tracer, it updates
the corresponding entry d.ıS 7→ • in Γ, marking it as detached, d.ıS 7→ ◦. Alg. 3 shows this
logic on line 46. A tracer transitions from priority to direct mode once all the processes in
its Γ map are marked detached; line 47 in alg. 3 performs this check. Once in direct mode,
tracers are isolated from others in the choreography.

Fig. 6b depicts the tracer TQ in priority mode sending the detach request ⟨dtc,qT ,qS⟩
for SuS PID qS to the dispatch tracer. This happens in step 13 , after TQ starts tracing Q

directly in step 12 . Alg. 2 effects this transaction with the dispatch tracer by the operation
Detach on line 13; see [8, app. A] for definition of Detach. The dtc request issued by TQ

is deposited in the trace buffer of the dispatch tracer TP after the events ?Q and Q. TP

processes the messages in its buffer sequentially in 10 , 17 , 19 , 20 and 28 , and forwards ?Q

and Q to TQ, steps 18 and 21 . Crucially, TP acknowledges the dtc request issued by TQ:
TP dispatches dtc back to tracer TQ, as step 29 indicates. TQ first handles the events ?Q and

Q (tagged with • in fig. 6b) in steps 23 and 24 . Lastly, TQ handles dtc in 30 and marks
process Q as detached from its dispatch tracer TP . The update on the traced-process map Γ
is performed by HandlDtc on line 46 in alg. 3. Tracer TQ in fig. 6b transitions to direct
mode in step 31 , when the only process Q that it traces is detached. TQ resumes handling

Q in step 32 , which is consistent w.r.t. the events exhibited locally at Q, i.e., “?Q . Q . Q”.
An acknowledgement to a detach request sent from a dispatch tracer, ⟨dtc,ıT ,ıS⟩, is

generally propagated through multiple next-hops before it reaches the tracer with PID ıT

issuing the request. Since a dtc request informs the dispatch tracer that ıT is gathering trace
events for the SuS PID ıS directly, the next-hop entries in the routing maps of tracers on the
DAG path from the dispatch tracer to ıT are stale. Each tracer on this DAG path purges
the next-hop entry for the SuS PID ıS in Γ once it forwards dtc to the neighbouring tracer.
DispatchDtc and ForwdDtc in alg. 1 perform this clean-up. Fig. 6b does not illustrate
the latter clean-up flow, which we summarise next. After receiving dtc, the dispatch tracer
TP removes from ΠP the next-hop mapping qS 7→ qT and calls DispatchDtc to acknowledge
the detach request ⟨dtc,qT ,qS⟩ it receives from TQ. Similarly, TP removes rS 7→ qT once it
acknowledges the detach request ⟨dtc,rT ,rS⟩ sent from TR. Once TQ receives the routing
packet ⟨rtd,pT ,⟨dtc,rT ,rS⟩⟩ that embeds the detach acknowledgement TP sends, it removes
the next-hop mapping rS 7→ rT from ΠQ. TQ then forwards this dtc acknowledgement to TR.

RIARC ensures that all routing packets carrying dtc acknowledgements terminate at the
tracers that issued these dtc requests. This requires one of two tracer conditions to hold:
1. either the tracer cannot forward the dtc acknowledgement to a next-hop, meaning that

the tracer sent the dtc request, or
2. the tracer can forward the dtc acknowledgement via a next-hop, in which case the tracer

did not issue the dtc request.
Alg. 3 enforces this invariant on lines 44 and 45 for case 1, and on lines 49 and 50 for case 2.

3.5 Minimising overhead
Instrumenting specific processes – in contrast to fully instrumenting the SuS – reduces the
volume of gathered trace events and helps lower the runtime overhead induced. RIARC uses
the instrumentation map, Λ:SigS⇀SigM, to this end. Λ specifies the SuS function signatures
to instrument and the corresponding RV monitor signatures tasked with the analysis via
AnalyseEvt. RIARC utilises the signature e.ςS carried by spawn events e=⟨evt, ,ıS ,ȷS ,ςS⟩ to
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determine whether the SuS process spawning e.ςS requires a separate tracer. The Instrument
operations in alg. 2 perform this check against Λ (lines 2 and 9). If a separate tracer is
not required, e.ȷS is instrumented using the tracer of its parent process, e.ıS; see tracing
assumptions A1 and A2. This logic caters for all the set-ups shown in figs. 1b, 1c, and 2b.

3.6 Shrinking the set-up
RIARC remains elastic by discarding unneeded tracers. Tracers in direct and priority mode
purge SuS PID references from the traced-process map when handling trace events.
HandlExit◦ and HandlExit• implement this logic in algs. 1 and 3 on lines 26 and 31.
Tracer termination does not occur when the tracer has no processes left to trace, i.e., when
Γ = ∅, since the tracer may be required to forward trace events to neighbouring tracers.
Instead, tracers perform a garbage collection check each time a mapping from Γ or Π is
removed. A tracer terminates when Γ = Π = ∅, indicating that it has no SuS processes left to
trace or any next-hop forwarding to perform. TryGC used on lines 27, 41, and 55 in alg. 1,
as well as on line 32 in alg. 3 encapsulates this check. Note that garbage collection never
prematurely disrupts the RV analysis that tracers conduct, as invocations to AnalyseEvt
always precede TryGC checks in our logic of algs. 1 and 3.

4 Correctness validation

We assess the validity of RIARC in two stages. First, we confirm its implementability by
instantiating the core logic of algs. 1 – 3 to Erlang. Our implementation targets two RV
scenarios: online and offline monitoring [64, 22]. Second, we subject the implementation
to a series of systematic tests using a selection of instrumentation set-ups. These tests
exhaustively emulate the interleaved execution of the SuS and tracer processes by generating
all the valid permutations of events in a set of traces. This exercises the tracer choreography
invariants mentioned in sec. 3, confirming the integrity of the tracer DAG topology under
each interleaving. We also use specialised RV monitor signatures in AnalyseEvt to assert
the soundness (def. 1) of trace event sequences analysed by tracers; see algs. 1 and 3 in sec. 3.

4.1 Implementability
Our implementation of RIARC maps the tracer processes from sec. 3 to Erlang actors.The
routing (Π), instrumentation (Λ), and traced-processes (Γ) maps constituting the tracer state
σ are realised as Erlang maps for efficient access. Trace event buffers κ coincide with actor
mailboxes, while the remaining logic in algs. 1 – 3 translates directly to Erlang code. This
one-to-one mapping gives us confidence that our implementation reflects the algorithm logic.

In online RV, monitors analyse trace events while the SuS executes, whereas the offline
setting defers this analysis until the system terminates; [8, fig. 11 in app. B.1] captures
the distinction in process tracing between online and offline instrumentation in our setting
(showing trace buffers only). The online instrumentation set-up employs the tracing infra-
structure offered by the EVM, which deposits SuS trace event messages in tracer mailboxes.
Erlang tracing complies with tracing assumption A1, enabling RIARC to instrument disjoint
SuS processes sets. We configure the EVM with the set_on_spawn flag so that spawned
processes automatically inherit the same tracer as their parent [42]. This tracer assignment
is atomic, meeting tracing assumption A2. We also use the procs, send, and receive
tracing flags, which constrain the events emitted by the EVM to , , !, and . The EVM
enforces single-process tracing, i.e., tracing assumption A3, and guarantees that events of
descendant processes are causally-ordered [128], i.e., tracing assumption A4.
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The offline counterpart differs only in its tracing layer, where events are read as recorded
runs of the SuS. Recorded runs can be acquired externally, e.g. using DTrace [36] or LTTng [56],
making it possible to monitor systems that execute outside of the EVM. Our bespoke offline
tracing engine of [8, fig. 11b in app. B.1] fulfils tracing assumptions A1 – A4. This is crucial
since it permits the same implementation of RIARC to be used in online and offline settings.
Sec. 4.2 leverages this aspect to validate RIARC exhaustively using trace permutations.

We develop two versions of the Trace, Clear, and Preempt functions of [8, alg. 5 in
app. A] to standardise tracing for online and offline use. The overloads for online use access
the EVM tracing via the Erlang built-in primitive trace [42]. The second set of overloads
wraps around our offline tracing engine to replay files containing specifically-formatted trace
events. Offline tracing relaxes tracing assumption A4, as recorded runs do not generally
guarantee that the events of descendant SuS processes are causally ordered. Our offline
tracing logic relies on the PID information carried by events to rearrange them and recover
the causal ordering per tracing assumption A4. Trace(ıS,ıT) registers a tracer ıT with the
offline tracing engine, which maintains an event buffer for ıT, together with a set of SuS PIDs
that ıT traces. A tracer can use Trace with multiple SuS PIDs to register to obtain events
for a process set, i.e., tracing assumption A1. The tracing engine accumulates the events it
reads from file in each tracer buffer and delivers events to the corresponding tracer mailbox
once the casual ordering between events of descendant SuS processes is established. Our
offline tracing engine implements tracing inheritance (tracing assumption A2) and enforces
single-process tracing (tracing assumption A3); [8, ex. 7 in app. B.1] sketches how the tracing
engine uses its internal tracer buffers to deliver events to tracers.

4.2 Correctness
Conventional testing does not guarantee the absence of concurrency errors due to the different
interleaved executions that may be possible [105]. While subjecting the system under test to
high loads raises the likelyhood of obtaining more coverage, this still depends on external
factors, such as scheduling, which dictate the executions induced in practice. Controlling
the conditions for concurrency testing requires a systematic exploration of all the interleaved
executions [74]. In fact, it is not the size of the testing load that matters, but the choice of
interleaved executions that exhaust the space of possible system states [14]. Concuerror [48]
is a tool for systematic Erlang code testing. Unfortunately, we could not use Concuerror to
test our RIARC implementation, as we were unable to integrate it with Erlang tracing.

We, nevertheless, adopt the systematic scheme advocated by Concuerror. Our approach
uses the offline tracing tool described in sec. 4.1 to induce specific interleaved sequences for
instrumentation set-ups, such as those of figs. 1b, 1c, and 2a. We obtain these sequences
by taking all the sound (def. 1) event permutations of traces produced by the SuS. These
sequences are then replayed by the offline tracing engine to systematically induce interleaved
SuS executions. Our final RIARC implementation embeds further invariants besides those
mentioned in sec. 3, e.g. the assert and fail statements in algs. 1 and 3. Readers are referred
to [8, app. B.2] for the full list. We ascertain trace soundness for each SuS interleaving that
is emulated. This is accomplished via the function AnalyseEvt, which we preload with
monitors that assert the event sequence expected at each tracer. We also use identical tests
in our empirical evaluation of sec. 5 under high loads. It is worth mentioning that while we
systematically drive the execution of the SuS, we do not control the execution of tracers.
Yet, we indirectly induce various dynamic tracer arrangements in the monitor DAG topology
under the different groupings of SuS process sets that tracers instrument. For example,
we fully instrument system depicted in fig. 2a in all its configurations, e.g. C1 = [T{P}⇝
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{P},T{Q}⇝{Q},T{R}⇝{R}], C2 = [T{P ,Q}⇝{P ,Q},T{R}⇝{R}], . . . , C5 = [T{P ,Q,R}⇝{P ,Q,R}],
as well as instrument it partially, e.g. C6 = [T{P}⇝{P}], C7 = [T{P ,Q}⇝{P ,Q}], etc. Each of
these configurations, when individually paired with every fabricated interleaved execution of
the SuS, indicate that our RIARC implementation and corresponding logic of sec. 3 is correct.

5 Empirical evaluation

We assess the feasibility of our RIARC implementation, confirming it safeguards the responsive,
resilient, message-driven, and elastic attributes of the SuS. Sec. 4 targets a small selection of
instrumentation set-ups to induce interleaved execution sequences and validate correctness
exhaustively. We now employ stress testing [109] to investigate how RIARC performs in
terms of the runtime overhead it exhibits. Our study focusses on online monitoring, as
its overhead requirement is far more stringent than offline monitoring [63, 64, 22, 71]. We
evaluate RIARC against inline instrumentation since the latter is regarded as the most efficient
instrumentation technique [62, 61, 22]. This comparison establishes a solid basis for our
results to be generalised reliably. We also compare RIARC to centralised instrumentation to
confirm that the latter approach does not scale under typical loads.

Our experiments are extensive. We use two hardware platforms to model edge-case
scenarios based on limited hardware and general-case scenarios using commodity hardware.
The evaluation subjects inline, centralised, and RIARC instrumentation to high loads that go
beyond the state of the art and use realistic workload profiles. We gauge overhead under
three performance metrics, the response time, memory consumption, and scheduler utilisation,
which are crucial for reactive systems [7, 109]. Our results confirm that the overhead RIARC
induces is adequate for applications such as soft real-time systems [42, 94], where the latency
requirement is typically in the order of seconds [92]. We also show that RIARC yields overhead
comparable to inlining in settings exhibiting moderate concurrency.

5.1 Benchmarking tool
Benchmarking is standard practice for gauging runtime overhead in software [100, 77, 35].
Frameworks, including DaCapo [28] and Savina [84], offer limited concurrency, making them
inapplicable to our case; see [8, app. C.1] for detailed reasons. Industry-proven synthetic load
testing benchmarking tools cater to reactive systems, e.g. Apache JMeter [67], Tsung [115],
and Basho Bench [23]. Their general-purpose design, however, necessarily treats systems as
a black box by gathering metrics externally, which may impact measurement precision [7].
Moreover, these load testers generate standard workloads, e.g. Poisson processes [79, 102, 89],
but lack others, e.g. load bursts, that replicate typical operation or induce edge-case stress.

We adopt BenchCRV [7], another synthetic load testing tool specific to RV benchmarking
for reactive systems. BenchCRV sets itself apart from the tools mentioned above because
it does not require external software (e.g., a web server) to drive tests. Instead, BenchCRV
produces different SuS models that closely emulate real-world software behaviour. These
models are based on the master-worker paradigm [120]: a pervasive architecture in distributed
(e.g. Big Data stream processing frameworks, render farms) and concurrent systems [129,
73, 55, 132]. Like Tsung and Basho Bench, BenchCRV exploits the lightweight EVM process
model to generate highly-concurrent synthetic workloads.

BenchCRV creates master-worker models and induces workloads derived from configurable
parameters. In these models, the master process spawns a series of workers and allocates
tasks. The volume of workers per benchmark run is set via the parameter n. Each worker
task consists of a batch of requests that the worker receives, processes, and echoes back to
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the master process. The amount of requests batched in one task is given by the parameter
w. Workers terminate when all of their allotted tasks are processed and acknowledged by
the master. BenchCRV creates workers based on workload profiles. A profile dictates how
the master spreads its creation of workers along the loading timeline, t, given in seconds.
BenchCRV supports three workload profiles based on ones typical in practice:
Steady models the SuS under stable workload (Poisson process).
Pulse models the SuS under gradually rising and falling workload (Normal distribution).
Burst models the SuS under stress due to workload spikes (Log-normal distribution).
BenchCRV records three performance metrics to give a multi-faceted view of system overhead:
Mean response time in milliseconds (ms), gauging monitoring latency effects on the SuS.
Mean memory consumption in GB, gauging monitoring memory pressure on the SuS.
Mean scheduler utilisation as a percentage of the total processing capacity, showing how

monitors maximise the scheduler use.
The prevalent use of the master-worker paradigm, the veracity with which BenchCRV models
systems, the range of realistic workload profiles, and the choice of runtime metrics it gathers
make this tool ideal for our experiments. We refer readers to [8, app. C.2] and [7] for details.

5.2 Benchmark configuration
The BenchCRV master-worker models we generate take the role of the SuS in our experiments.
We consider edge-case and general-case hardware platform set-ups for the following reasons:
PE Edge-case captures platforms with limited hardware. It uses an Intel Core i7 M620 64-bit

CPU with 8GB of memory, running Ubuntu 18.04 LTS and Erlang/OTP 22.2.1.
PG General-case captures platforms with commodity hardware. It uses an Intel Core i9

9880H 64-bit CPU with 16GB of memory, running macOS 12.3.1 and Erlang/OTP 25.0.3.
The EVMs on platforms PE and PG are set with 4 and 16 scheduling threads, respectively.

These scheduler settings coincide with the processors available on each SMP [12] platform.
We also use the PE and PG platforms with two concurrency scenarios for reactive systems:
CH High concurrency scenarios perform short-lived tasks, e.g. web apps that fulfil thousands

of HTTP client requests by fetching static content or executing back-end commands.
CM Moderate concurrency scenarios engage in long-running, computationally-intensive tasks,

e.g. Big Data stream processing frameworks.
Our benchmark workloads match the hardware capacity afforded by PE and PG:

High concurrency benchmarks on PE set n = 100k workers and w = 100 work requests
per worker. These generate ≈ (n×w requests×w responses) = 20M message exchanges
between the master and worker processes, totalling ≈ (20M× ! events×? events) = 40M
analysable trace events. Platform PG sets n=500k workers batched with w=100 requests
to produce ≈ 100M messages and ≈ 200M trace events. The high concurrency model CH
is studied in sec. 5.4.

Moderate concurrency benchmarks on PG set n = 5k workers and w = 10k work requests
per worker. These settings yield roughly the same number of trace events as on PG with
concurrency scenario CH. The moderate concurrency model CM is studied in sec. 5.5.

All experiments in secs. 5.4 and 5.5 use a total loading time of t = 100s. Each experiment
consists of ten benchmarks that apply Steady, Pulse, and Burst workloads. We repeat every
experiment thrice to obtain negligible variability and ensure the accuracy of our results; see [8,
app. C.4] for a summary of these workloads and [8, app. C.5] for the precautions we take.

The hardware, OS, and Erlang versions of platforms PE and PG, combined with the
workloads of concurrency scenarios CH and CM provide generality to our conclusions.
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5.3 Instrumentation configuration
One challenge in conducting our experiments is the lack of RV monitoring tools targeting
the EVM. To the best of our knowledge [64, tables 3 and 4], detectEr [72, 18, 19, 17, 70, 40]
is the only RV tool for Erlang that implements centralised outline instrumentation2. We are
unaware of inline RV tools besides [38] and [3, 4]. Since the former tool is unavailable, we
use the latter, more recent work3. In our experiments, we instrument the master and each
worker process in the SuS models generated from sec. 5.2 to exert the highest possible load
and capture worst-case scenarios. BenchCRV annotates work requests and responses with a
unique sequence number to account for each message in benchmark runs. We leverage this
numbering to write specialised monitor replicas that ascertain the soundness of trace event
sequences reported to every RV monitor linked with the master and workers; see [8, app. C.5]
for details. Equally crucial, this runtime checking introduces a degree of realistic RV analysis
slowdown that is uniform across all monitors in the inline, centralised, and RIARC monitoring
set-ups. We empirically estimate this slowdown at ≈ 5µs per analysed event.

5.4 High concurrency benchmarks
We study runtime overhead in the high concurrency scenario CH with two aims. First, we show
the effect overhead has on the SuS as it executes. Specifically, we consider how the memory
consumption and scheduler utilisation impact the latency a client of the SuS experiences, e.g.
end-user or application. We use the edge-case platform PE for these experiments; analogous
results obtained on PG are detailed in [8, app. C]. Our second goal targets the general-case
platform PG to assess the scalability of the instrumentation methods through their optimal
use of the additional memory and scheduler capacity afforded by PG.

The charts in secs. 5.4.1 – 5.4.3 plot performance metrics, e.g. memory consumption
(y-axis) against the number of concurrent worker processes or the execution duration (x-axis).
Since inline instrumentation prevents us from delineating the SuS and monitoring-induced
runtime overhead, we follow the standard RV literature practice and include the baseline
plots, e.g. [19, 72, 46, 38, 99, 114, 112]. Baseline plots show the unmonitored SuS to compare
the relative overhead between each evaluated instrumentation method.

5.4.1 Instrumentation overhead
The first set of experiments isolates the instrumentation overhead induced on the SuS: this
is the aggregated cost of tracing and reporting the traces soundly per def. 1 to RV monitors.
Crucially, these experiments omit monitors, as we want to quantify the instrumentation
overhead and understand its impact on the SuS. This enables us to focus on the differences
between inlining – regarded as the most efficient instrumentation method [62, 61, 22] – and
outlining. As far as we know [64, 71], outlining has never been used for decentralised RV in a
dynamic setting such as ours. While we confirm that inline instrumentation uses less memory
and scheduler capacity, RIARC dynamically scales and economises their use without adverse
impact on the latency. In fact, the latency induced by RIARC is a mere 519ms higher than
that of inline instrumentation at the peak stress-inducing loading point of 3.7k workers/s
under Burst workloads. Our experiments indicate that centralised instrumentation manages
resources poorly due to its inability to scale, increasing the chances of failure; see sec. 5.4.2.

2 https://bitbucket.org/duncanatt/detecter-lite
3 https://github.com/ScienceofComputerProgramming/SCICO-D-22-00294

https://bitbucket.org/duncanatt/detecter-lite
https://github.com/ScienceofComputerProgramming/SCICO-D-22-00294


L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:21

0

250

500

750

1000

1250

1500

1750

T
im

e
(m

s)

Steady workload

Response

Pulse workload

Response

Burst workload

Response

2.0

2.5

3.0

3.5

C
on

su
m

pt
io

n
(G

B
)

Memory Memory Memory

20 40 60 80 100

Total workers (k)

15

20

25

30

35

U
ti

lis
at

io
n

(%
)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

baseline inline RIARC centralised

Figure 7 Isolated instrumentation overhead (high workload, 100k workers).

Fig. 7 plots our results. Centralised instrumentation carries the largest overhead penalty.
Regardless of the workload applied, it uses the most memory, ≈ 3.8GB, highlighting its
ineptitude to scale. This stems from the backlog of trace event messages that accumulate in
the mailbox of the central tracer and is a manifestation of two aspects. First, the central
tracer does not consume events at the same rate worker processes produce them. Evidence
of this bottleneck is visible as high scheduler utilisation in fig. 7 (bottom). This values settles
at ≈ 36% for the benchmarks with ≈ 40k workers under the Steady workload and ≈ 60k
workers under Pulse and Burst workloads. Interpreting these < 36% scheduler usage values
in isolation may suggest that centralised instrumentation has the potential to scale. However,
its memory consumption plots in fig. 7 (middle) contradict this erroneous hypothesis.

By contrast, RIARC uses fewer resources to yield lower response times across the three
workloads. The scheduler utilisation for RIARC slightly plateaus in the Steady (≈60k workers)
and Pulse (≈ 70k workers) workload charts. This is not owed to scalability limitations of
RIARC but to the intrinsic throttling instigated by the master process [120]. In fact, the
plots for the baseline system and inline instrumentation in fig. 7 (middle) exhibit analogous
signs of throttling. Even at a peak Burst workload of 3.7k workers/s, inline and RIARC
instrumentation consume fairly similar amounts of memory, 1.7GB vs. 1.9GB, respectively.
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Figure 8 Instrumentation and RV monitoring overhead gap (high workload, 100k workers).

5.4.2 Monitoring overhead

Our second set of experiments extends the results of sec. 5.4.1 and quantifies the cost of RV
monitoring. The runtime monitoring overhead combines the instrumentation and slowdown
due to the RV analysis, established at ≈ 5µs per event in sec. 5.3 for our experiments. Fig. 8
plots the instrumentation (instr.) overhead from sec. 5.4.1 next to the runtime monitoring
overhead (mon.). It shows that the RV analysis slowdown aggravates centralised monitoring
to the point of crashing. Inline and RIARC monitoring are minimally affected. Our results
also reveal that the instrumentation incurs the major overhead portion, not the RV analysis.
Sec. 5.6 comments on this finding in the context of existing RV tools.

Fig. 8 plots our results under the Steady and Burst workloads; [8, fig. 14 in app. C.6.1]
includes all three workloads. The charts for centralised monitoring exhibit a significant
disparity between the instrumentation and runtime monitoring bar plots as the workload
increases. This trend is consistent across both workloads in fig. 8. The lack of scalability
of centralised monitoring in fig. 8 manifests as an increase in memory consumption but
stabilised scheduler usage, as in fig. 7. Memory consumption and scheduler usage for
centralised monitoring grow rapidly beyond ≈ 30k and ≈ 20k workers under the Steady and
Burst workloads, respectively. Bottlenecks led our experiments to crash (shown as missing
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bar plots in fig. 8). Crashes occur at ≈ 70k workers under the Steady and at ≈ 80k under
Burst workload. By analysing the resulting dumps, we could attribute these crashes to
memory exhaustion, which caused the EVM to fail. The dumps indicate severe memory
pressure due to the vast backlog of trace event messages in the mailbox of the central tracer.

Inline and RIARC monitoring scale to accommodate the RV analysis slowdown. This
is confirmed by cross-referencing the memory consumption and scheduler utilisation in
fig. 8 for both monitoring methods. Each displays comparable overhead in their respective
instrumentation and corresponding runtime monitoring bar plots. Fig. 8 (top) shows that
inline and RIARC monitoring increase the latency, albeit for different reasons. The internal
operation of RIARC enables us to deduce that its latency stems from message routing and
dynamic tracer reconfiguration. Its scheduler utilisation plots support this observation. The
latency due to inlining is a direct effect of RV analysis slowdown, provoked by the lock-step
execution of monitors and the SuS. Other works, e.g. [46, 37], offer similar observations.

Dissecting our results uncovers further subtleties. The optimal scheduler utilisation of
RIARC implies that its monitors are only active when triggered by trace events but remain
idle otherwise. This inference is supported by the absence of sudden or continued memory
growth for RIARC in fig. 8 (middle). The instrumentation and runtime monitoring latency
bar plots for inline monitoring exhibit a growing pairwise gap that starts at ≈ 80k workers
in fig. 8 (top right). The respective gap for RIARC at this mark is perceptibly lower. We
credit this lower latency gap to outlining, which absorbs the slowdown effect of RV analyses.
This leads us to conjecture that RIARC could accommodate monitors that perform richer RV
analyses with minimal impact on the SuS. Our calculations from fig. 8 (top right) put the
latency at 1093ms for inline monitoring vs. 1547ms for RIARC at a peak Burst workload of
3.7k workers/s: a 454ms difference, which is lower than the 519ms gap measured in sec. 5.4.1.
Sec. 5.5 shows this gap is negligible in moderate concurrency scenarios.

5.4.3 Resource usage
We employ platform PG with high concurrency CH to confirm that our observations about
inline and RIARC monitoring transfer to general cases. Secs. 5.4.1 and 5.4.2 deem centralised
monitoring to be impractical. We, thus, omit it from the sequel; see [8, app. C.6.3] for results.

Our experiments now use 16 scheduling threads, n = 500k workers, and w = 100 requests
per worker, producing ≈ 100M messages and ≈ 200M trace events; [8, fig. 13 in app. C.4]
render these Steady, Pulse, and Burst workload models. Secs. 5.4.1 and 5.4.2 bound the
memory and scheduler metrics to the period the SuS executes to portray the actual overhead
impact on the system. We refocus that view to assess the monitoring overhead in its entirety
– from the point of SuS launch until monitors complete their RV analysis. Doing so reveals
how inline and RIARC monitoring optimise the use of added memory and processing capacity.
Results show that inline and RIARC monitoring are elastic and dynamically adapt to changes
in the applied workloads; [8, app. C.6.3] confirms that centralised monitoring lacks this trait.

Fig. 9 gives a complete benchmark run under the Steady and Burst workloads. We relabel
the x-axis with the benchmark duration and omit the response time plots since response time
is inapplicable to these experiments (latency is an attribute of the SuS, not the monitors).
In this run, the Steady workload generates a sustained load of ≈ 5k workers/s whereas Burst
peaks at ≈ 17.8k workers/s under maximum load at ≈ 5s; see [8, fig. 13 in app. C.4].

Fig. 9 (top) illustrates the memory consumption patterns for inline and RIARC monitoring,
which exhibit elasticity. This elastic behaviour occurs at different points in the plots. Inline
monitoring peaks at ≈ 3.7GB at ≈ 72s and RIARC at ≈ 5.7GB at ≈ 100s under the
Burst workload. The memory consumption for both methods stabilises at around ≈ 36s
under the Steady workload, with ≈ 2.3GB for inline and ≈ 2.7GB for RIARC monitoring.
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Elasticity in these methods is due to different reasons: it is intrinsic to inline monitoring
(see sec. 1), whereas the RIARC spawns and garbage collects monitors on demand (secs. 3.1
and 3.6). These observations are certified by [8, fig. 16 in app. C.6.3] under the Pulse
workload. Centralised monitoring is insensitive to the workload applied, as [8, figs. 17 and 18
in app. C.6.3] reconfirm.

The effect of dynamic message routing and tracer reconfiguration that RIARC performs is
evident in the scheduler utilisation plots of fig. 9. Under the Steady and Burst workloads,
scheduler utilisation oscillates continually due to the sustained influx of trace events. Oscil-
lations corroborate our observation in sec. 5.4.2 about RIARC, namely, that monitors are
activated by trace events but remain idle otherwise. Active monitor periods manifest as
peaks in fig. 9. Idle periods, where monitors are placed in the EVM waiting queues, are
reflected as regions with low and stable scheduler utilisation. These oscillations showcase the
message-driven aspect of RIARC, which analyses events asynchronously. Inlining exhibits
minimal scheduler utilisation oscillations due to its lock-step execution with the SuS.

5.5 Moderate concurrency benchmarks
Our last experiment studies moderate concurrency scenarios CM. The general-case plat-
form PG sets n = 5k workers and w = 10k requests per worker, and uses 16 EVM schedulers.
We show that under these loads, RIARC induces overhead on par with inline monitoring.

Moderate concurrency alters the execution of the master-worker model, compared to
our benchmarks of secs. 5.4.1 – 5.4.3. In this set-up, the master creates most of its worker
processes at the initial stage of benchmark runs and spends the remaining time allocating
work requests. This change grows the request throughput, e.g. see [8, tbl. 5 in app. C.4]. One
consequence is that centralised monitoring consistently crashes under the rapid accumulation
of messages in its mailbox. We, thus, limit our study to inline and RIARC monitoring.
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Figure 9 Inline and RIARC monitoring resource usage (high workload, 500k workers).
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Tbl. 3 compares the results taken on platform PG from sec. 5.4.3 with 500k workers (high
concurrency, CH) against the ones on PG with 5k workers (moderate concurrency, CM). The
figures shown estimate the percentage overhead w.r.t. the baseline systems CH and CM at
this maximum load. Our ensuing discussion is limited to the overhead under the Steady and
Burst workloads since each respectively captures the SuS operation in typical and severe
load conditions. Readers are referred to [8, fig. 20 in app. C.6.4] for the overhead comparison
given in absolute metric values for the entirety of benchmark runs.

Tbl. 3 indicates that the memory consumption overhead due to inline monitoring is not
affected under the Steady workload, which remains at 1% in both the high and moderate
concurrency scenarios CH and CM. However, it decreases from 16% in CH to 1% in CM.
We observe the opposite effect on the scheduler utilisation overhead for inline monitoring.
For the moderate concurrency case CM, the scheduler overhead under the Steady and Burst
workloads increases to 3% and 4% respectively.

Tbl. 3 also shows that under the Steady workload, RIARC induces a 23% memory overhead
in concurrency scenario CH vs. 8% in concurrency scenario CM, a decrease of 15%. Under
the Burst workload, this overhead is reduced by 46%, from 56% in CH to 10% in CM.
The scheduler utilisation overhead for RIARC from CH to CM also registers drops of ≈ 71%
under both Steady and Burst workloads. We attribute these overhead improvements to the
lower number of worker processes the master creates in the moderate concurrency set-up,
CM. The long-running worker processes induce stability in the SuS. RIARC adapts to this
change favourably by performing fewer trace event routing and tracer reconfigurations. The
ramification of this adaptability is perceivable in the latency overhead discussed next.

RIARC inflates the latency overhead from 95% in CH to 194% in CM under the Steady
workload (+99%), and from 97% in CH to 190% in CM under the Burst workload (+93%).
However, RIARC induces less latency overhead than inline monitoring. Tbl. 3 reveals that
the latency overhead for inline monitoring grows from 4% in the high concurrency set-up CH
to 246% in the moderate concurrency set-up CM under the Steady workload (+242%). It
also grows under the Burst workload, from 55% in CH to 193% in CM (+138%). In fact,
our calculations confirm that the absolute response time for inline monitoring is slightly
worse than that of RIARC in CM: 116ms vs. 98ms under the Steady, and 182ms vs. 179ms
under the Burst workloads respectively. This latency degradation for inline monitoring stems
from the ≈ 5µs slowdown induced by the RV analysis, which results in frequent “pausing”
of worker processes. Monitors comprising richer analyses produce longer pauses in worker
processes, which can degrade the response time further [46, 37, 69].

Table 3 Percentage overhead on CH (500k) and CM (5k) w.r.t. baseline at maximum workload.

Concurrency Workload Response time % Memory consumption % Scheduler utilisation %

Inline RIARC Inline RIARC Inline RIARC

CH (500k)
Steady 4 95 1 23 0 123
Burst 55 97 16 56 0 123

CM (5k)
Steady 246 194 1 8 3 52
Burst 193 190 1 10 4 50
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5.6 Discussion
The RIARC scheduler utilisation in tbl. 3 is higher than the reported values for inline
monitoring. This should not be construed as an inefficiency. From a reactive systems
perspective, growth in the scheduler utilisation indicates scalability, as the low memory
consumption in tbl. 3 affirms. RIARC benefits from the ample schedulers to improve the
overall system response time without overtaxing the system. Indeed, [8, fig. 20 in app. C.6.4]
demonstrates that the mean absolute scheduler utilisation in the benchmarks of sec. 5.5 is
just ≈ 10% under both the Steady and Burst workloads. Tbl. 3 shows that the reduction in
latency makes RIARC comparable to inline monitoring in moderate concurrency scenarios.

Sec. 1 names responsiveness as a key reactive systems attribute [94]. RIARC prioritises
responsiveness by isolating its monitors into asynchronous concurrent units. This design
naturally exploits the available processing capacity of the host platform by maximising
monitor parallelism when possible. Inline monitoring reaps fewer benefits in identical settings
because its lock-step execution with the SuS robs it of potential parallelism gains.

Secs. 5.4.1 – 5.4.3 attest to the impracticality of centralised monitoring for reactive systems.
Bottlenecks hinder its ability to scale, compelling it to consume inordinate amounts of memory,
which can lead to failure, as sec. 5.4.2 shows. Despite these shortcomings, many RV tools in
this setting use centralised monitoring, e.g. [50, 18, 126, 65, 81, 110, 72, 37, 41, 38, 2, 103].

6 Conclusion

Reactive software calls for instrumentation methods that uphold the responsive, resilient,
message-driven, and elastic attributes of systems. This is attainable only if the instru-
mentation exhibits these qualities. Runtime verification imposes another demand on the
instrumentation: the trace event sequences it reports to monitors must be sound, i.e., traces
do not omit events and preserve the ordering with which events occur locally at processes.

This paper presents RIARC, a novel decentralised instrumentation algorithm for outline
monitors meeting these two demands. RIARC uses outline monitors to decouple the runtime
analysis from system components, which minimises latency and promotes responsiveness.
Outline monitors can fail independently of the system and each other to improve resiliency.
RIARC gathers events non-invasively via a tracing infrastructure, making it message-driven
and suited to cases where inlining is inapplicable. The algorithm is elastic: it reacts to
specific events in the trace to instrument and garbage collect monitors on demand.

Our asynchronous setting complicates the instrumentation due to potential trace event
loss or reordering. RIARC overcomes these challenges using a next-hop IP routing approach
to rearrange and report events soundly to monitors. We validate RIARC by subjecting its
corresponding Erlang implementation to rigorous systematic testing, confirming its correctness.
This implementation is validated via extensive empirical experiments. These subject the
implementation to large realistic workloads to ascertain its reactiveness. Our experiments
show that RIARC optimises its memory and scheduler usage to maintain latency feasible for
soft real-time applications. We also compare RIARC to inline and centralised monitoring,
revealing that it induces comparable latency to inlining under moderate concurrency.

Related work. Other work on inlining besides that cited in sec. 1, e.g. [78, 25, 50, 49, 53],
does not separate the instrumentation and runtime analysis. This view is commonplace in
monolithic settings, where the instrumentation is often assumed to induce minimal runtime
overhead. As a result, many inline approaches focus on the efficiency of the analysis but
neglect the instrumentation cost (e.g. [63] attributes overhead solely to the analysis). These
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arguments for monolithic systems are often ported to concurrent settings. For instance,
[107, 126, 29, 46, 125, 66, 21] propose efficient runtime monitoring algorithms but do not
account for, nor quantify, the overhead due to gathering trace events. Tools that measure the
runtime overhead, such as [41, 37, 19, 34, 72, 133], coalesce the instrumentation and runtime
analysis costs, making it difficult to gauge the source of inefficiencies. Some literature [39, 52]
even extends the assumption about minimal instrumentation overhead to offline monitoring,
stating that the instrumentation consists of “only” capturing trace events. Sec. 5.4.1 shows
this not to be the case. We are unaware of empirical studies such as ours that concretely
distinguish between and quantify the instrumentation and runtime analysis overhead.

Sec. 5.6 remarks that centralised monitoring is used for concurrent runtime verification
despite its evident limitations. One plausible reason for this is that the empirical scrutiny of
such tools lacks proper benchmarking (e.g. [50, 18, 126, 65, 81]) or uses insufficient workloads
that fail to expose the issues of centralised set-ups (e.g. [110, 72, 37, 41, 38, 2, 103]). Gathering
inadequate metrics can also bias the interpretation of empirical data; see sec. 5.4.1. Works,
such as [38, 19, 34, 124], consider the memory consumption and latency metrics. Our
evaluation of inline, centralised, and RIARC monitoring uses (i) combinations of hardware
and software, with (ii) two concurrency models that test edge-case and general-case scenarios,
under (iii) high workloads that go beyond the state of the art, applying (iv) realistic workload
profiles, interpreted against (v) relevant performance metrics that give a multi-faceted view
of runtime overhead. To the best of our knowledge, this is generally not done in other studies,
e.g. [114, 113, 47, 46, 119, 30, 106, 38, 41, 19, 50, 51, 53, 72, 59, 60, 27, 110, 97, 34].

Outline instrumentation decouples the execution of the SuS and monitor components in
space (i.e., isolated threads) and time (i.e., asynchronous messaging). The tracing infrastruc-
ture outline instrumentation uses mirrors the publish-subscribe (Pub/Sub) pattern [129].
In this set-up, consumers subscribe to a broker that advertises events. Centralised instru-
mentation follows a Pub/Sub approach: the SuS produces trace events and deposits them
into one global trace buffer that tracers receive from (see fig. 1b). Despite similarities, e.g.
tracers register and deregister with the tracing infrastructure at runtime, RIARC differs from
conventional Pub/Sub messaging in three fundamental aspects. Chiefly, Pub/Sub publishers
are unaware of the subscribers interested in receiving messages because this bookkeeping
task is appointed to the broker. By contrast, next-hop routing relies on knowing the explicit
address of recipients to forward messages. Furthermore, in Pub/Sub messaging, subscribers
do not communicate with publishers, whereas RIARC tracers exchange direct detach requests
between one another to reorganise the choreography (refer to sec. 3.4). Lastly, Pub/Sub
brokers are typically predefined and remain fixed, while trace partitioning reconfigures the
tracing topology, creating and destroying brokers in reaction to dynamic changes in SuS.

One assumption we make about process tracing is A4, i.e., tracing gathers the spawn events
of parent processes before all the events of child processes. While A4 induces a partial order
over trace events, it is weaker than happened-before causality [95], as the events gathered
from sets of child SuS processes need not be causally ordered. Demanding the latter condition
would entail additional computation on the part of the tracing infrastructure and could
increase runtime overhead. Maintaining minimal overhead is critical to our instrumentation
because it preserves the responsiveness attribute of reactive systems. Tracing assumption A4
and the RIARC logic detailed in sec. 3 guarantee trace soundness (def. 1), which suffices for
RV monitoring. Since our work targets soft real-time systems [94, 92] scoped in a reliable
messaging setting (see sec. 1), we do not tackle the problem of ensuring time-bounded
causally-ordered message delivery [20] nor implement exactly-once delivery semantics [83].
We will address these challenges in future extensions of this work.
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