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Abstract
Improving compilation time in optimizing compilers is challenging due to their large number of
interconnected components. This includes compiler optimizations, compiler tiers, heuristics, and
profiling information. Despite this complexity, research in compilation-time optimization is often
guided by analyzing metrics of entire program runs, such as the total compilation time and overall
memory footprint. This coarse-grained perspective hides relevant information, such as source
program functions for which the compiler allocates a lot of memory or compiler optimizations with
a high impact on the total compilation time. This leaves high-level metrics as the only reference
point for driving optimization design. Consequently, compilation-time regressions in one program
function that are obscured by improvements in other functions stay undetected, while the impacts of
compiler changes on untouched parts of the compiler are mainly unknown. Furthermore, developers
overlook long-standing compiler defects because their high-level metrics do not change over time.

To address these limitations, we propose ICON, a new data-driven approach to compilation-
time optimization that breaks up high-level metrics into individual source program functions,
compiler optimizations, or even into individual instructions in the compiler source code. Our
methodology enables an iterative in-depth compilation-time analysis, focusing on outliers to identify
optimization opportunities. We show that outliers, both in terms of time spent in a particular
compiler optimization, and in terms of individual compilations that take substantially longer, can
reveal potential problems in the compiler implementation. We applied our approach to GraalVM and
extracted data for multiple of its language runtimes. We analyzed the resulting data, present the first
detailed look into the distribution of compilation time in the GraalVM compiler, a state-of-the-art
multi-language compiler, and identified defects that led to regressions in overall compilation time or
the compilation time of specific languages. We furthermore designed two optimizations based on the
identified outliers that improve compilation time between 2.25% and 9.45%. We believe that our
approach can guide compiler developers in finding usually overlooked optimization potential and
defects, and focus future research efforts in making compilers more efficient.
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(a) Results of a hypothetical benchmark meas-
uring total compilation time over the course of
several commits. Lower is better.
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(b) Results split into individual function compil-
ation times over the course of several commits.
Lower is better.

1 Introduction

Improving compilation time in optimizing compilers is challenging due to their large number
of interconnected components. Multiple interacting compiler optimizations [24], several
compiler tiers, various heuristics, and different profiling information make it challenging
to identify the impact of compiler source code changes on the total compilation time of a
program. Compilation time should be minimal, especially in modern cloud applications based
on serverless functions or microservice architectures that are executed on demand and started
frequently [42, 34]. The compilation time for these services is even more relevant for runtimes
using just-in-time compilation, where the compilation time directly impacts the startup time
of a service [46]. In these runtimes, savings in compilation time are not limited to a single
compilation upfront but are reapplied every time an application is started and recompiled.
Ahead-of-time-compiled runtimes should also strive for minimal compilation time such as in
continuous integration and continuous delivery infrastructures, where compilations take up a
large portion of the resource utilization as part of build steps [3].

Despite the high complexity of optimizing compilers and a high demand for fast compil-
ation, research in this field often relies on metrics reflecting entire program runs, such as
total compilation time or overall memory footprint, to guide compilation-time optimization.
Using fine-grained metrics, such as the time spent compiling individual program functions or
the time spent in specific compiler optimizations, could reveal outliers in compilation time
that lead to defects and optimization opportunities in the compiler.

To illustrate this problem, consider the hypothetical implementation of a new compiler
phase p that introduces an optimization to a compiler. To evaluate the compilation-time
impact of p, the conventional approach of analyzing the total compilation time of several
benchmarks and comparing it with previous records seems appropriate. As shown in Figure 1a,
which illustrates the total compilation time of a hypothetical benchmark over the course
of several commits, p, implemented in 9f1, leads to a compilation-time decrease, leaving
the impression of a positive compilation-time impact. While this impression seems correct
overall, it hides valuable information which is only unveiled by analyzing the compilation
time of individual benchmark functions. As shown in Figure 1b, p improves the compilation
time of nearly all functions in the benchmark but also results in an outlier with a significant
increase in compilation time, the fft function. This outlier points towards a defect in p
that only occurs under certain conditions, which seem to be present in the fft function, and
requires further investigation. Consequently, relying solely on metrics of entire program runs
to evaluate compilation-time performance can obscure newly-introduced or long-standing
defects in compiler implementations.
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Therefore, our contribution is to describe a new approach to compiler optimization
focusing on outliers to identify defects:

We describe Iterative Compilation-time optimization through Outlier-driven Narrow-
ing (ICON), a novel data-driven approach to compilation-time optimization that splits
compilation metrics into individual functions, compiler optimizations, or even into indi-
vidual instructions in the compiler source code to identify potential problems in compiler
implementations by focusing on the outliers in extracted data (Section 3). The ap-
proach combines a fine-grained metrics extraction based on iterative narrowing with an
outlier-focused approach to finding potential optimization opportunities.
We present the first detailed look into the distribution of compilation time in the GraalVM
compiler, a state-of-the-art multi-language compiler (Section 4). We base our data on the
evaluation of 94 benchmarks from the “Are We Fast Yet?”1 [27], JetStream 22, “Computer
Language Benchmark Game,”3 [27] and several internal benchmark suites, analyzing
compilation-time metrics for five runtimes, including Python and JavaScript.
To demonstrate the effectiveness of the ICON approach, we conducted an outlier ana-
lysis on the GraalVM compilation-time metrics, identifying one language-agnostic and
three language-specific outliers in compilation time (Section 4.5). Through the iterative
application of our approach, we narrowed the scopes of the outliers in the compiler and
discovered four defects in the GraalVM compiler that were responsible for sub-optimal
compilation time in compiler optimizations.
We sketch the design of two optimizations that target two of the defects identified by our
outlier analysis and improve compilation time between 2.25% in Python and 9.45% in
Java (Section 5).

2 The Environment of Our Study

We describe ICON as a general methodology to optimize the compilation time of compilers
and apply it to a specific runtime environment to emphasize its applicability. We thus begin
our technical content by describing GraalVM, the runtime we worked with.

2.1 GraalVM
GraalVM [45] is a state-of-the-art high-performance Java Virtual Machine (JVM) [26]
that includes a dynamic optimizing compiler called GraalVM compiler. GraalVM provides
native support for JVM languages, is implemented in Java [17], and supports just-in-time
(JIT) and ahead-of-time (AOT) compilation through the JVM [45] and Native-Image [42]
deployments. The JVM deployment starts programs in the Java interpreter and just-in-time
compiles frequently executed methods with the GraalVM compiler, while the Native-Image
deployment compiles Java code ahead of time into a native executable, skipping interpretation
and compilation of Java code at run time.

In addition to JVM languages, GraalVM supports the execution of guest languages by
defining interpreters written with the Truffle framework [21]. Truffle is an abstraction layer in
GraalVM that provides a domain-specific language API based on Java annotations. It allows
to define interpreters and uses partial evaluation [44, 15, 9, 28] to transform these interpreters
into an intermediate representation that can be further optimized by the GraalVM compiler.

1 https://github.com/smarr/are-we-fast-yet
2 https://browserbench.org/JetStream/in-depth.html
3 https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
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Partial evaluation must be performed at run time in both GraalVM deployments since
it requires the input programs of guest language interpreters, which are not known ahead
of time. Therefore, in the context of the Truffle framework, both GraalVM deployments
support JIT compilation of partially-evaluated guest language interpreters. Consequently,
in the Native-Image deployment of a guest language, the interpreter and runtime are AOT
compiled, while the user code written in that guest language is still JIT compiled.

Through Truffle and partial evaluation, GraalVM provides official support for seven
language runtimes with competitive performance [36, 37] for popular languages such as
Python4, JavaScript5, C/C++ and others via LLVM bitcode6 [33], WebAssembly7, R8, Ruby9,
and a meta-circular Java runtime called Espresso10. Apart from implementing different
language specifications, these runtimes primarily differ in their internal data structures and
interpreter implementations, including abstract-syntax-tree (AST) interpreters, bytecode
interpreters, and hybrid approaches that combine aspects of AST and bytecode interpreters.

Our paper focuses on guest language runtimes using Truffle and partial evaluation in
the Native-Image deployment of GraalVM. Therefore, the rest of this paper will refer to
the Native-Image deployment when talking about GraalVM, the GraalVM compiler, or the
Truffle language runtimes.

2.2 GraalVM Compiler

The GraalVM compiler [45] is a dynamic optimizing compiler used by GraalVM to compile
multiple languages to highly optimized machine code. It contains numerous optimizations
that apply platform-specific and platform-independent optimizations [13] and extensively
uses speculative optimizations [11] based on assumptions [38]. If one of the assumptions no
longer holds, the GraalVM compiler invalidates the generated machine code and transfers
the execution back to the interpreter [38] through deoptimization [19].

In the context of guest language interpreters written with Truffle, GraalVM uses the
GraalVM compiler as a just-in-time compiler to partially evaluate and compile guest language
functions at run time [44]. For this purpose, the GraalVM compiler uses two different
configurations called compiler tiers11 [18]. Tier 1 focuses on compilation time and applies
fewer short-running optimizations. Tier 2 focuses on optimal machine code and applies all
optimizations available in the GraalVM compiler.

The GraalVM compiler’s architecture consists of a front end, performing platform-
independent compiler optimizations on a high-level intermediate representation (IR) called
GraalIR [11, 10], and a back end, performing register allocation and code generation on a
low-level IR called LIR [13, 41, 23]. The front end further consists of a high tier, mid tier,
and low tier, performing optimizations on different abstraction levels. When compiling guest
language functions, the truffle tier, performing partial evaluation, precedes the front end.

4 https://github.com/oracle/graalpython
5 https://github.com/oracle/graaljs
6 https://github.com/oracle/graal/tree/master/sulong
7 https://github.com/oracle/graal/tree/master/wasm
8 https://github.com/oracle/fastr
9 https://github.com/oracle/truffleruby
10 https://github.com/oracle/graal/tree/master/espresso
11 https://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.
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Listing 1 Definition of a scope, timer, and counter with the help of a try-with-resources statement.
1 TimerKey timer = DebugContext .timer("Timer");
2 CounterKey counter = DebugContext . counter (" Counter ");
3
4 void run(Graph graph) {
5 DebugContext debug = graph. getDebugContext ();
6 try ( DebugContext .Scope scope = debug.scope("Phase");
7 DebugCloseable t = timer.start(debug )) {
8 ...
9 counter . increment (debug );

10 ...
11 }
12 }

2.3 GraalVM Compiler Debug Interface

The GraalVM compiler debug interface12 in the GraalVM compiler enables logging, IR
dumping, and the extraction of compilation-time metrics, such as the execution time of the
compiler front end, the number of allocated bytes in the compiler mid tier, or the number of
generated mov instructions during register allocation. The debug interface provides timers,
for tracking execution time, memory usage trackers, for tracking memory usage (i.e., the
number of allocated bytes), and counters, to keep track of arbitrary counts. This allows
developers to get different metric values for parts of the compiler. Developers assign unique
names to these metric values and define their measurement scopes with one or several keys.
Keys allow combining measurements of several compiler regions into one metric value and
are combined based on their name. For example, if a compiler performs parts of the same
transformation in two different compiler locations and we want to measure the total time
of this transformation, we can use two keys with the same name to combine both scopes
into the same metric value. A debug context stores instances of each metric value. Debug
contexts exist once per compilation, and the compiler passes them through all phases. This
design enables a per-compilation extraction of metric values.

The debug interface provides scopes to enable the logical grouping of keys. Scopes have
names and can be nested into one another. The debug context contains helper methods to
open scopes while the closing is performed automatically with try-with-resource statements,
as shown in line 6 of Listing 1. Scopes, timer keys, and memory usage trackers use this
automatic closing mechanism, while counter keys need to be manually incremented by the
developer, as shown in line 9.

Listing 1 provides an example for the use of the debug interface. When a developer
creates a timer key with the help of the DebugContext class, as shown in line 1, the call to
timer() allocates a new key object (TimerKey) and links it to a metric value based on the
provided name. When the runtime starts the timer in line 7, the key object forwards the
name of its metric value to the debug context, which initializes the timer value. After the
runtime exits the try block in line 11, the timer stops and updates its value in the debug
context. At the end of the compilation, the compiler extracts the metric values of all debug
contexts and exports them to the console or a file.

12 https://github.com/oracle/graal/blob/master/compiler/docs/Debugging.md
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Figure 2 Abstract representation of ICON, consisting of three main phases represented by
different border styles.

The GraalVM compiler provides a Timers option alongside counterparts for memory
usage and counters to enable the extraction of specific metrics. Developers pass these options
to the compiler at program startup, which enable metric values based on their name or the
name of an enclosing scope. If a key is disabled, the compiler does not extract data for the
associated metric value.

3 ICON: Iterative Compilation-Time Optimization Through
Outlier-Driven Narrowing

We propose ICON, a new data-driven approach to compilation-time optimization, a meth-
odology focusing on outliers to identify potential problems in compiler implementations.
The key idea of ICON is to split up high-level metrics, such as total compilation time or
overall memory footprint, into individual extraction scopes, such as compiler optimizations,
compilations of individual functions, or even into individual instruction in the compiler source
code. ICON tries to find defect locations by iteratively narrowing extraction scopes until
developers can identify the source of a problem. An outlier analysis after every iteration
drives the narrowing process and identifies which extraction scopes to refine. Figure 2 shows
an abstract depiction of ICON.

ICON consists of three steps, including the metric and benchmark selection step (solid
border), the data extraction step (dotted border), and the outlier analysis and defect iden-
tification step (dashed border). To explain the methodology process depicted in Figure 2,
consider the hypothetical implementation of a compiler phase p in the compiler back end of
an existing compiler. Figure 3 shows a fragment of the resulting compiler architecture.

For the performance evaluation of p, the initial step of ICON is to pick representative
benchmarks and metrics, such as compilation time or allocated memory, and to select an
initial set of extraction scopes for the first iteration. In our example, the entire compilation
pipeline represents a good starting point, as shown by scope s0 in Figure 3. After applying
the compiler code changes and enabling the relevant timers and counters, the next step is to
extract a data set based on the selected extraction scopes with the help of the benchmarks.
An outlier analysis follows the data extraction to identify outlier compilations via statistical
analyses. This outlier analysis results either in a concrete source code location responsible
for the outliers or at least in a direction to narrow the selected extraction scopes.

If the outlier analysis points in a new direction for the next iteration, the next step is
to select a new set of extraction scopes that narrow the existing ones and to repeat the
extraction and analysis process. In our example, a meaningful narrowing is extracting data
for the compiler back end, as shown by scope s1 in Figure 3.

If the data set of the next iteration contains evidence for the previous outliers, the process
continues by refining the extraction scopes. Otherwise, the process continues at the previous
iteration by narrowing the existing extraction scopes differently. Consequently, since we
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Figure 3 Fragment of a compiler pipeline structure after introducing a new compiler phase p.

assume that the narrowing in our example succeeded, the process continues with extraction
scopes s2 searching for outliers in individual compiler phases, including p, and scopes s3,
searching for outliers in individual compiler functions in p.

Extraction scopes can theoretically be narrowed down to individual instructions in the
compiler source code. The process ends when developers have a clear enough view about the
defect locations responsible for the outliers or cannot find any outliers in the data.

While the outlier analysis is essential to ICON, we do not specify a concrete outlier-
detection algorithm. Instead, methodology adopters can define concrete algorithms based on
the requirements and properties of their compilers. We describe the approach we used for
outlier detection in GraalVM in Section 4.4.

Although we focus on a manual inspection and outlier analysis in this paper, an automatic
outlier detection and narrowing process could enhance our approach. This automation would
aid in integrating our methodology into existing testing and benchmark infrastructures.
However, defining such an automated process is outside the scope of our paper.

In the following, we present a detailed definition of extraction scopes and describe the
necessary changes in GraalVM to support ICON.

3.1 Extraction Scopes
Extraction scopes define the granularity of the data extraction as tuples consisting of a
temporal and a spatial component. The temporal component defines how to split or aggregate
the entire execution time of the compiler into individual metric values. Examples are:

per execution. This results in one metric value for the entire run time of the compiler.
An example is the extraction of compilation time to compare against historical data.
per iteration. This requires that the program under test executes several iterations and
results in one metric value for every iteration. An example is the extraction of compilation
time for every benchmark iteration to check their consistency over time.
per compilation unit. This represents the usual approach to metric extraction and results
in one metric value for each compilation unit. The metric values depend on the compiler’s
definition of compilation units (e.g., every function, every module, etc.).
per compiler tier . This is a refinement of per compilation unit and results in one metric
value per compiler tier. An example is the compilation-time extraction of a compiler
phase for every compiler tier to compare the time spent in each compiler tier.

ECOOP 2024
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The spatial component defines how to split or aggregate the compilation pipeline (i.e.,
the compiler source code) into individual metric values. Examples are:

per pipeline. This results in one metric value for the entire compiler pipeline. An example
is the extraction of the maximum memory consumption of the compiler when running a
benchmark to check that it does not exceed a predefined threshold.
per compiler phase. This results in one metric value for each selected phase in the compiler
pipeline. An example is the extraction of compilation time per compiler phase to find
optimization potential.
per function. This results in one metric value for each selected function in the compiler
source code. An example is the memory-consumption extraction of all functions in a
phase that allocates too much memory to find the exact allocation location.
per instruction. This results in one metric value for each selected source code instruction.
An example is the extraction of memory allocation for selected source code lines in the
compiler.

The temporal and spatial components depend on the compiler architecture and might be
linked based on the compiler’s design.

3.2 Implementation in GraalVM
GraalVM was already well fitted to support our methodology. However, in terms of data
extraction, some critical parts were missing to support a fine-grained metric value extraction.

The initial implementation of the GraalVM compiler debug interface, as explained in
Section 2.3, focuses primarily on the extraction of metric values on a per-name basis. Metrics
are extracted for every compiler phase in the GraalVM compiler, so the metric values are
associated with the names of the compiler phases. This represents a limitation, since multiple
executions of the same compiler phase, which is common in the GraalVM compiler, are
merged into a single metric value. An example is the canonicalizer phase, which transforms
guest language constructs into a canonical form and is executed many times throughout a
compilation. Even though these phase executions should be treated independently, the initial
debug interface implementation merges their metric values.

To remove this limitation, we extended the existing concept of scopes in the GraalVM
compiler debug interface to aggregate, unique, and singleton scopes. Aggregate scopes are
similar to the existing scope implementation. As their name suggests, they combine the
values produced by several scope executions into a single metric value. Unique scopes on the
other hand separate the values of individual scope executions into separate metric values by
assigning them a unique name. Singleton scopes ignore the nesting of previous scopes and
produce a single metric value, regardless of the scopes they are nested in.

Consider the example in Listing 2. Since the timer key a_t in line 5 is part of an aggregate
scope, all its executions will contribute to the same metric value A.Timer, even though the
loop is executed three times. The code in line 12 however, will result in three individual
metric values U_1.Timer, U_2.Timer, and U_3.Timer, since the timer key u_t is inside a
unique scope. Although timer keys s_t in lines 7 and 14 are nested in the different outer
scopes A and U, all their executions contribute to the same metric value S.Timer, since their
nearest nesting scope is a singleton scope.

As a result of using these new scope types, it is possible to extract metric values
independently for multiple executions of the same compiler phase. This allows a more precise
analysis of the time spent in individual compiler phases and supports the fine-grained metric
value extraction required for ICON.
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Listing 2 Definition of aggregate, unique, and singleton scopes inside a loop.
1 void run ( Graph graph) {
2 DebugContext debug = graph. getDebugContext ();
3 for (int i = 0; i < 3; i++) {
4 try ( DebugContext .Scope a = debug. aggregateScope ("A");
5 TimerKey a_t = a.timer("Timer"). start(debug )) {
6 try ( DebugContext .Scope s = debug. singletonScope ("S");
7 TimerKey s_t = s.timer("Timer"). start(debug )) {
8 ...
9 }

10 }
11 try ( DebugContext .Scope u = debug. uniqueScope ("U");
12 TimerKey u_t = u.timer("Timer"). start(debug )) {
13 try ( DebugContext .Scope s = debug. singletonScope ("S");
14 TimerKey s_t = s.timer("Timer"). start(debug )) {
15 ...
16 }
17 }
18 ...

4 GraalVM Compilation-Time Evaluation

Based on ICON introduced in Section 3, we extracted compiler metrics for the GraalVM com-
piler. While our approach primarily focuses on finding defects in compiler implementations,
its implementation in GraalVM also enables a detailed view of the distribution of compiler
metrics across different compiler phases in the GraalVM compiler. We extracted compilation
time and memory usage for all compiler phases based on a large set of benchmarks. In the
context of this paper, we will focus on the evaluation of compilation time. The extracted
data contains metric values for five partial-evaluation-based language runtimes on GraalVM
and allows us to present the first detailed look into the distribution of compilation time
across compilation phases in GraalVM. This distribution represents a good starting point for
our evaluation and drives the narrowing required for the outlier analysis in Section 4.5.

We start this section by introducing the set of language runtimes we chose to get a
representative data set of compilation-time metrics, then proceed by describing the used
benchmarks and setup. We conclude by explaining the data extraction process, presenting
our results, and performing an outlier analysis on the data.

4.1 Languages
We chose a set of five language runtimes based on the Truffle framework to get a representative
data set of the compilation-time distribution in partial-evaluation-based languages compiled
by the GraalVM compiler. The runtimes differ in their interpreter implementation and the
type system of their implemented languages. Both impact the compilation-time distribution
in the GraalVM compiler. Based on the available interpreter implementations and type
systems, we chose GraalJS13, GraalPy14, Espresso15, GraalWasm16, and the GraalVM LLVM
Runtime17, as further described in Table 1.

13 https://github.com/oracle/graaljs
14 https://github.com/oracle/graalpython
15 https://github.com/oracle/graal/tree/master/espresso
16 https://github.com/oracle/graal/tree/master/wasm
17 https://github.com/oracle/graal/tree/sulong [33]
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Table 1 GraalVM language runtimes used for the extraction of compilation-time data.

Runtime Language Type system Interpreter
GraalJS JavaScript dynamic, weak typing AST interpreter
GraalPy Python dynamic, strong typing bytecode interpreter
Espresso Java static, strong typing bytecode interpreter
GraalWasm WebAssembly static, strong typing bytecode interpreter
GraalVM LLVM Runtime LLVM bitcode static, strong typing hybrid interpreter (com-

bines aspects of AST and
bytecode interpreters)

4.2 Benchmarks and Setup
We used a set of 94 benchmarks from the “Are We Fast Yet?”18 [27], JetStream 219, “Computer
Language Benchmark Game,”20 and several internal benchmark suites for our evaluation.
The benchmarks represent real-world computing tasks and are already used internally by
different GraalVM language teams to evaluate peak performance, interpreter speed, and
memory usage of their language runtimes.

We used “Are We Fast Yet?” for evaluating Espresso, the Java runtime implemented in
Truffle. It contains 14 benchmarks focusing on several computing areas, such as JSON string
parsing, the computation of the Mandelbrot set, and physics simulations [27].

We used JetStream 2 for evaluating GraalJS and executed 15 of the 64 available bench-
marks. These focus on cryptography, physics simulations, or PDF processing. Most excluded
benchmarks require browser-specific functionality unavailable in standalone JavaScript en-
gines or WebAssembly support. Since we measured our WebAssembly runtime separately,
we did not want to pollute GraalJS results with WebAssembly compilations.

We used the “Computer Language Benchmark Game” [27] benchmarks in combination
with other open source benchmarks (bzip2 21, gzip22, stockfish23, oggenc24) to evaluate
GraalPy, the Python runtime, and the GraalVM LLVM runtime. Based on the language
runtime, we selected a subset of the available benchmarks used by the respective GraalVM
language teams25. Consequently, we used 34 benchmarks for evaluating GraalPy, and 18
for the GraalVM LLVM runtime. The benchmarks include compression algorithms, chess
simulations, physics simulations, and scheduling tasks. We compiled the GraalVM-LLVM-
runtime benchmarks with a custom LLVM toolchain26 based on the Clang27 compiler 16.0.1.

For evaluating GraalWasm, we used an internal benchmark suite consisting of 13 bench-
marks. These include the Digitron benchmark, an AST interpreter for arithmetic expres-
sions, the FFT [4] benchmark, computing the Fast Fourier transform, and the Phong [31]

18 https://github.com/smarr/are-we-fast-yet
19 https://browserbench.org/JetStream/in-depth.html
20 https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html [27]
21 https://sourceware.org/bzip2/
22 https://www.gzip.org/
23 https://github.com/official-stockfish/Stockfish
24 https://xiph.org/ogg/
25 https://github.com/oracle/graalpython/tree/master/graalpython/com.oracle.graal.python.

benchmarks
26 https://github.com/oracle/graal/blob/master/sulong/docs/contributor/TOOLCHAIN.md
27 https://clang.llvm.org/

https://github.com/smarr/are-we-fast-yet
https://browserbench.org/JetStream/in-depth.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://sourceware.org/bzip2/
https://www.gzip.org/
https://github.com/official-stockfish/Stockfish
https://xiph.org/ogg/
https://github.com/oracle/graalpython/tree/master/graalpython/com.oracle.graal.python.benchmarks
https://github.com/oracle/graalpython/tree/master/graalpython/com.oracle.graal.python.benchmarks
https://github.com/oracle/graal/blob/master/sulong/docs/contributor/TOOLCHAIN.md
https://clang.llvm.org/
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benchmark, computing a shading model for a 3D scene. All of them are written in C and
compiled with the WASI SDK28 version 21.0 based on the Clang compiler version 17.0.0.
The benchmark source code is publicly available as part of the GraalWasm repository29.

We executed all benchmarks on the Community Edition (CE) and the Enterprise Edition
(EE) of GraalVM. We conducted the execution on an Intel Core i7-8750H with six cores at a
fixed CPU frequency of 2.30 GHz and turbo boost disabled. The system has 32GB of main
memory and runs Fedora Linux 38 (Workstation Edition).

We compiled all runtimes with LabsJDK CE 21 30 (labsjdk-ce-21-jvmci-23.1-b22).
The GraalVM compiler performs individual compilations in separate threads with a separate
memory space. We used sufficient iterations to ensure that the GraalVM compiler compiled all
relevant functions in each benchmark and ran each benchmark 6 times in separate processes.
We used geometric means across all 6 runs to account for measurement inaccuracies due
to garbage collection and non-deterministic optimization phases. The resulting numbers
represent the evaluation of the Native-Image deployment of GraalVM CE and EE.

4.3 Data Extraction
We surrounded the run method, the entry point of each compiler phase, of all compiler
phases in the GraalVM compiler with a unique scope, as introduced in Section 3.2, to extract
compilation-time data. This implementation allows us to get an individual metric value per
phase execution. We put method inlining and the graph decoding performed during partial
evaluation into aggregate scopes since we are not interested in inlining and decoding metrics
of individual functions but in their overall impact.

For our evaluation, we extracted the compilation time of every extraction scope in
microseconds and computed the compilation time relative to the total compilation time.
This normalization is necessary to account for the skewness of the raw data caused by
the overrepresentation of short-running compilations in the data set. We extracted metric
values for all compilations in our benchmarks and used the compilations of those source
program functions that appeared in at least 3 of the 6 benchmark runs to compute the total
compilation time for our evaluation. This preselection is necessary to avoid polluting the
data with one-time compilations that might represent outliers due to garbage collection
pauses or other non-deterministic influences happening exactly during this one compilation.

4.4 Evaluation
We start our evaluation with a high-level overview of the compilation-time distribution in
GraalVM. The selected extraction scopes reflect the GraalVM compiler architecture and
consist of partial evaluation, compilation, and code installation. We further divide the
compilation into a front end and back end, and the front end into high tier, mid tier, and
low tier. We chose the selected granularity to keep the resulting plots clear and readable. In
the context of our plots, we define total compilation time as the sum of partial evaluation,
compilation, and code installation.

28 https://github.com/WebAssembly/wasi-sdk
29 https://github.com/oracle/graal/tree/master/wasm/src/org.graalvm.wasm.benchcases/src/

bench
30 https://github.com/graalvm/labs-openjdk-21
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Figure 4 Compilation-time distribution of Tier-1 compilations in GraalVM CE and EE. Compiler
phases are from left to right based on their index.

We show the results of the first extraction step in Figure 4, showing the compilation-time
distribution of Tier-1 compilations in GraalVM CE and EE. Since their configuration is
identical in Tier 1, we combined both editions into a single plot. Figure 5 shows GraalVM-CE
Tier-2 compilations, and Figure 6 shows GraalVM-EE Tier 2. The plots show the selected
extraction scopes from left to right based on their execution point in the compilations.

Figure 4 shows that partial evaluation has the highest impact on the total compilation
time in Tier-1 compilations, with a median between 58.5% and 72.7%. It is also apparent
that the median front-end time, in the range of 11.60% to 20.20%, is higher than the back-end
time, 8.81% to 15.70%, while the average low-tier time, 5.46% to 7.49%, is higher than the
high-tier, 1.66% to 3.79%, and mid-tier times, 3.41% to 6.90%.

Figure 5 shows that the difference in average time between front end and back end is
larger in Tier-2 compilations, 7.88%pt (percentage points) to 15.10%pt, than in Tier 1,
1.70%pt to 10.05%pt. This observation seems reasonable since the back-end compiler phases
are nearly identical in Tier-1 and Tier-2 compilations, whereas the GraalVM compiler applies
additional, longer-running optimization phases in the front end of Tier 2. We verified this
conclusion based on absolute numbers to make sure the back-end time stays consistent while
the front-end time increases. The only exception is WebAssembly, were the difference between
front end and back end is larger in Tier 1 (10.05%pt) than in Tier-2 CE (7.83%pt).

The difference between Tier-1 and Tier-2 front-end and back-end times becomes even more
apparent in Figure 6, since Tier-2 EE, with differences in the range of 22.36%pt to 29.11%pt,
has additional optimization phases compared to Tier-2 CE. Furthermore, compilation takes
an equal amount of time or longer than partial evaluation in Python, with 48.71% and
49.19%, and JavaScript, 50.27% and 46.33%. This can again be explained by the increase in
font-end time.

We try to identify possible outliers that require further investigation based on the extracted
data. We define outliers based on the interquartile range method [16] and focus on extreme
outliers that are more than 3 interquartile ranges (IQR) away from the first (Q1) and third
quantile (Q3). We represent outliers in the plots by circles above and below the boxplots.
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Figure 5 Compilation-time distribution of Tier-2 compilations in GraalVM CE. Compiler phases
are from left to right based on their index.
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Figure 6 Compilation-time distribution of Tier-2 compilations in GraalVM EE. Compiler phases
are from left to right based on their index.
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All three data sets contain many outliers within individual extraction scopes. For
example, Espresso and JavaScript contain a lot of outliers in all extraction scopes of Tier-1
compilations, while the GraalVM LLVM runtime shows significant outliers in the mid tier.
In Tier-2 compilations, JavaScript presents significant outliers in the back end, while Python
contains several outliers in the low tier of CE compilations. The GraalVM-LLVM-runtime
outliers found in the mid tier of Tier-1 compilations are also found in Tier 2.

Analyzing all outliers in all data sets would be possible. However, we will focus on the
most significant outliers to identify defects and optimizations with a high impact potential.
To select the relevant outliers, we prioritize them based on their distance from Q1 or Q3 in
terms of multiples of the IQR and look into extraction scopes with a high outlier density.

Consequently, we will analyze the outliers in the mid tier of GraalVM-LLVM-runtime
compilations. Especially the outliers in Tier-1 compilations have a distance of more than
30IQR from Q3. The outliers are consistent throughout all editions and compiler tiers and
are responsible for up to 80% of the total compilation time in Tier 1 and Tier-2 EE.

Furthermore, we will analyze the back end of JavaScript compilations. This extraction
scope shows a high outlier density throughout all editions and compiler tiers. The same
applies to the low tier of Python Tier 1 and Tier-2 CE compilations.

Although it is hard to quantify partial evaluation as an outlier, it is apparent from a
visual analysis of the plots in Figures 4 to 6 that partial evaluation takes up a significant
part of the total compilation time in all compiler editions and tiers. Therefore, in addition to
our outlier analyses, we show the applicability of our methodology for finding optimizations
in existing compiler phases by analyzing partial evaluation in all guest language runtimes.

4.5 Outlier Analysis
We perform an outlier analysis based on the possible defects identified during the evaluation
of the GraalVM compilation time in Section 4.4. We verify the defects and identify their
source code locations. In addition, we show that our approach can find optimization locations
in compilers by focusing on long-running extraction scopes.

4.5.1 Mid Tier in the GraalVM LLVM Runtime
We first analyzed the outliers in the GraalVM-LLVM-runtime mid tier and identified the
benchmark functions responsible for the outliers to find a possible defect in the compilations.
The outliers were two functions in the bzip2 and oggenc benchmarks that did not show
any suspicious characteristics in the C source code. Next, we refined our extraction scopes
from a top-level view of the mid tier to individual compiler phases. Figure 7 shows the
result of the narrowed extraction scopes of Tier-1 compilations. The figure shows that the
frame-state-assignment phase has a lot of outliers and the previously identified functions
indeed spend nearly all of their mid-tier time in the frame-state-assignment phase of Tier-1
compilations. We also verified that the frame-state-assignment phase is the defect source in
Tier-2 compilations (omitted from the paper).

Frame states are a mapping from machine state (i.e., registers and native stack frames) to
interpreter state (i.e., JVM stack frames) and are required by GraalVM during deoptimizations
to regenerate the interpreter state of a program [11, 12]. During partial evaluation, the
GraalVM compiler generates a frame-state node for every operation that changes the local
state of a method (local variables, operand stack values, and locked objects) and attaches it
to the node in the GraalIR graph that causes this change. Subsequent compiler optimization
phases might also introduce new nodes, and therefore new frame states. When entering
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Figure 7 Compilation-time distribution of the mid tier in Tier-1 compilations. Compiler phases
are from left to right based on their index.
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Figure 8 Compilation-time distribution of the two frame-state-assignment phase parts Move and
Delete. Compiler phases are from left to right based on their index.

the frame-state-assignment phase, the graph is stable and no more nodes that may cause
deoptimizations can be introduced in later compiler phases. Since the frame states are only
required by deoptimizations, the frame-state-assignment phase moves the frame states from
their originating nodes to deoptimization nodes at deoptimization points in the graph and
removes unused frame states.

To further narrow the defect location, we introduced individual timers for the two source
code method calls (Move and Delete) in the run method of the frame-state-assignment phase.
The Move method moves existing frame-state nodes, while the Delete method deletes unused
frame-state nodes. Figure 8 shows the result of this last narrowing step. The values of these
last extraction scopes are relative to the total compilation time. The figure shows that the
deletion of unused frame-state nodes is responsible for the outliers and should be optimized,
as described in Section 5.1.

4.5.2 Back End in JavaScript
We analyzed the outliers in the JavaScript back end and identified that all functions responsible
for the outliers are part of the typescript benchmark, which compiles a large TypeScript
application to JavaScript. The benchmark uses the identified functions to walk the AST of
the TypeScript application. The functions themselves are small and call each other recursively.
As a result of these recursive calls, the GraalVM compiler can perform a lot of inlining.

ECOOP 2024
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Figure 9 Compilation-time distribution of the back end in Tier-2 CE compilations. Compiler
phases are from left to right based on their index.

We narrowed the extraction scopes to individual compiler phases in the back end and
found that the identified functions on average spend 87% of their Tier-2 CE back-end time
in LIR generation, as shown in Figure 9. Tier-1 (60%) and Tier-2 EE (82%) compilations
produced similar numbers. The LIR-generation phase transforms high-level GraalIR nodes
into low-level LIR nodes by iterating over the GraalIR graph and transforming each node.

We found out that the outlier functions spend most of their time transforming nodes
that generate a LIR frame state during LIR generation. The LIR frame states represent
garbage collection and deoptimization information and the GraalVM compiler computes
them based on the frame-state nodes in the GraalIR graph by iterating over all values in the
frame state and all its parent frame states and transforming the GraalIR representation of
the frame-state values into LIR representations. A frame state has a parent frame state if its
method was inlined into another method. The parent frame state represents the frame state
of the method into which this method was inlined. We confirmed that the outlier functions
had a lot of frame states as a result of inlining and, through a last narrowing step, confirmed
that the identified outliers spend most of their time generating LIR frame states.

Optimizing this pattern would require significant changes in the compiler architecture
which was not in the scope of this paper. We reported our findings to the GraalVM compiler
team for further investigation.

4.5.3 Low Tier in Python
We analyzed the outliers in the Python low tier and found out that all outliers are instances
of the same function in all benchmarks, the time function in the Python time module31. This
function is built into GraalPy and returns the current time in seconds. The benchmarks use
this function to measure execution time.

We narrowed the extraction scopes to individual compiler phases in the low tier and found
that the identified functions spend more than 95% of the low-tier time in the low-tier-lowering
phase. Lowering transforms nodes on a higher abstraction level to node structures on a lower
abstraction level. For example, a load-field node, accessing a field on an object, is lowered to
a read node, reading a value from an address in memory.

31 https://docs.python.org/3/library/time.html#time.time

https://docs.python.org/3/library/time.html#time.time
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We also extracted the node count for the graph of the time function and found that it is
a small graph with only 157 nodes. We narrowed the extraction scopes to the lowering of
individual node types and found that four individual nodes were responsible for the time
spent in lowering. These were two exception-object nodes, one truffle-safepoint node, and one
new-instance node. The commonality between these nodes is that they are all lowered with
the help of snippets [35]. The GraalVM compiler creates these snippets the first time they
are used and caches them based on their compilation unit. This implies an initial overhead
that is, in most cases, amortized by several usages of the cached snippets. However, since
the graphs for the time functions only contain one or two of the snippet-lowered nodes, this
results in a significant run-time overhead during the low-tier-lowering phase.

Optimizing this process would again require significant changes to the implementation of
snippets and the lowering process itself, which is out of the scope of this paper. We reported
our findings to the GraalVM compiler and GraalPy teams for further investigation.

4.5.4 Partial Evaluation
The partial-evaluation time of compilations is a long-standing problem in the GraalVM
compiler and, as our evaluation shows, is responsible for up to 73% of the total compilation
time. Therefore, finding an optimization opportunity in partial evaluation would improve a
large portion of the overall compilation time in GraalVM guest language interpreters.

We narrowed the extraction scopes to sub-phases of partial evaluation to find possible
optimizations to partial evaluation. The sub-phases include decode-graph, cleanup-graph,
two post-partial-evaluation suites, decode-inline-graph, and the inline post-partial-evaluation
suite, apart from several other optimization phases and sub-phases. Figure 10 shows the
result of the narrowed extracted scopes. The plots only show the sub-phases with the highest
compilation-time impact to improve readability.

Figure 10 shows that graph decoding (DecodeGraph, DecodeInlinedGraph) has the highest
impact on compilation time spent in partial evaluation. Graph decoding iterates over a
graph representation of the program IR, processing one node after the other. During the
decoding, the GraalVM compiler applies several optimizations based on the type of each node.
Load-field nodes for example, can be constant folded, while invoke-with-exception nodes,
representing function calls, can be inlined. Partial evaluation performs graph decoding on
the main partial-evaluation function (DecodeGraph), the function for which Truffle requests
partial evaluation, and all functions inlined during partial evaluation (DecodeInlinedGraph).
In Tier-2 compilations, graph decoding of inlined functions dominates the partial-evaluation
time due to aggressive inlining policies, while in Tier 1, inlining is restricted.

We extracted the time spent processing specific node types during graph decoding by
adding singleton scopes for all node types, as described in Section 3.2. Examples of node
types are load-field nodes that load the field of an object, if nodes that represent an if
statement, and loop-begin nodes representing a loop header. Figure 11 shows the result of
the individual node types. The plots only show the node types with the highest impact on
compilation time to improve readability.

Figure 11 shows that invoke-with-exception nodes dominate the graph-decoding process.
Since invoke-with-exception nodes perform function inlining, it is expected that these nodes
take up most of the total graph-decoding time. During inlining, invoke-with-exception nodes
have to recursively decode the callee function and attach the resulting graph to the graph that
is currently decoded. This process is already heavily optimized and most of its time is spent
in the recursive decoding. Therefore, we did not further consider invoke-with-exception nodes
for finding optimization potential. We instead focused on load-field nodes. We optimized the
constant-folding performed for load-field nodes to improve the graph-decoding performance,
as described in Section 5.2.
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Figure 10 Compilation-time distribution of partial evaluation. Compiler phases are from left to
right based on their index.

5 Optimization

5.1 Frame State Assignment – Optimizing Deletion Strategies
Graphs are a common way of implementing the intermediate representation of a compiler [39,
8, 7]. The design of these graphs is crucial because optimizations require an efficient way of
traversing and manipulating the IR. The efficiency of these operations depends on the data
structures used to represent nodes and edges in the graph.

GraalVM uses a directed graph that represents data flow and control flow in a single data
structure [11, 12]. To model data flow, a node has input edges, pointing from the node using
a value to the node defining this value. The reverse edges, so-called usage edges, which point
in the opposite direction, are automatically maintained by the graph, so optimizations do not
have to deal with maintaining them. However, in contrast to input edges, usage edges are
not ordered and can only be accessed as an unordered set [11, 12]. Consequently, finding a
specific usage of a node may require traversing the entire set. Unordered sets are a common
way of reducing the memory footprint of the reverse-edge sets in JIT compilers32.

32 https://chromium.googlesource.com/v8/v8/+/refs/heads/main/src/compiler/node.h#181,
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/opto/node.hpp#L319

https://chromium.googlesource.com/v8/v8/+/refs/heads/main/src/compiler/node.h#181
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/opto/node.hpp#L319
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Figure 11 Compilation-time distribution of individual node types during graph decoding. Node
types are from left to right in alphabetical order.

Usage edges are needed, for example, for deleting unused nodes in dead code elimina-
tion [29]. If a node is no longer used, its usage edges must be removed from all its inputs
before the node can be deleted. As a result of deleting a usage of an input node, the input
node itself can become unused, i.e., its usage set may become empty. This can lead to the
transitive deletion of other nodes, which, in the worst case, requires several full traversals of
potentially countless node usage sets.

For the frame-state-assignment phase of the GraalVM compiler, the outlier analysis
in Section 4.5.1 showed that the deletion of unused frame-state nodes is responsible for a
substantial part of the mid-tier time.

Normally, the traversal of usage sets during the deletion of frame-state nodes does not
represent a problem, since the number of frame-state nodes is usually small. However,
the graphs in which we identified outliers contained hundreds of frame-state nodes due to
excessive inlining, resulting in slowdowns in the frame-state-assignment phase. Therefore,
we updated the algorithm for deleting nodes. In the original implementation, every unused
node was visited one after the other, and the usage sets of the node’s inputs were updated
immediately when deleting the node. This led to a lot of usage set traversals due to the
transitive deletion of nodes.

Instead of updating the usage sets of nodes immediately, the updated algorithm tracks
the usage counts of nodes in a separate map. The algorithm performs a depth-first traversal
of the graph starting at the inputs of the deleted frame-state nodes, updates the usage counts
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            2.1.2.1 RemoveValueProxyPhase

                2.1.2.1.1 IncrementalCanonicalizerPhase

            2.1.2.2 TruffleSafepointInsertionPhase

            2.1.2.3 LoopSafepointInsertionPhase

            2.1.2.4 GuardLoweringPhase

            2.1.2.5 MidTierLoweringPhase

                2.1.2.5.1 SchedulePhase
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            2.1.2.6 FrameStateAssignmentPhase

            2.1.2.7 CanonicalizerPhase

            2.1.2.8 WriteBarrierAdditionPhase

Figure 12 Compilation-time distribution of the mid tier in Tier-1 compilations after optimizing
the frame-state-assignment phase. Compiler phases are from left to right based on their index.

in the map, and deletes unused nodes along the way. The traversal stops at nodes whose
usage count in the map is non-zero. After the graph traversal, only nodes that are alive and
have changed usage counts need to be updated. The pseudocode for the updated algorithm
can be found in the appendix (Listing 3).

As a result of this optimized algorithm, the previous outliers no longer exist. We show
the updated mid-tier compilation time of Tier-1 compilations in Figure 12. We also verified
that the outliers no longer exist in Tier 2 (omitted from the paper). Due to the reduction
of the time spent in the frame-state-assignment phase, new outliers in the incremental
canonicalizer phase (2.1.2.1.1) arose that would be worth investigating, but are outside the
scope of this paper. We confirmed that the new outliers were not caused by changes in the
frame-state-assignment phase but were already present in the previous data set.

5.2 Graph Decoding – Constant-Fold Caches
Constant-folding is a crucial operation in compilers based on partial evaluation, because it
allows these compilers to evaluate parts of the program at compilation time, and thus simplify
the program [29, 1, 40]. When a partial-evaluation-based compiler identifies a constant in the
program representation, many subsequent operations depending on that constant can also
be replaced with constants. For example, a read operation from a field of a constant object
(i.e., an object represented by a constant pointer), can be evaluated during compilation, and
can be replaced with another constant that holds the value of the respective field.

Object-field reads and array reads on constant values are very common operations in
interpreters, because the program representation is encoded in either ASTs or bytecode
arrays [25], and the interpreter is partially evaluated for a given section of the program
that is a constant value from the perspective of the compilation. Thus it is critical that
constant-folding is executed very efficiently.

Reading a field from a constant object requires the compiler to (1) determine whether the
field or an array location is guaranteed to remain constant after partial evaluation, and (2)
to read the value from the respective offset in the program’s memory. The first step usually
relies on modifiers or annotations found in the source code of the interpreter. Both of these
steps involve calls to the runtime environment, and rely on reflective metadata, which is
usually expensive to obtain compared to a simple object-field read.

In the GraalVM compiler, the outlier analysis in Section 4.5.4 showed that the constant-
folding of load-field nodes (which represent object-field reads in GraalIR) is responsible for a
substantial part of the partial-evaluation time.
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Figure 13 Comparison of time spent in load-field nodes during graph decoding before and after
the introduction of caches. The time with caches is on the left in each plot, the time without caches
on the right.

If the same constant occurs multiple times in an IR graph, it is represented by a single
IR node to reduce memory footprint and compilation time [7, 8, 11, 12]. To maintain this
graph property, the GraalVM compiler, before adding a new constant node to the graph,
performs a graph traversal to look for equivalent nodes. This can be an expensive operation
depending on the graph size.

In the current partial-evaluation implementation in the GraalVM compiler, all constant-
folding attempts are independent. This means that the reflective metadata and value are
loaded again and again regardless of whether this information was already retrieved by a
previous constant-folding attempt. In addition, every constant-folding attempt allocates a
new constant node that is discarded when the GraalVM compiler identifies an equivalent
node in the graph. On average, the same constant field is read 8.5 times per compilation
unit across all compiler tiers and editions. Therefore, to reduce the number of calls to the
runtime environment as well as the number of allocated constant nodes and the number of
graph traversals, we introduced a two-layer cache system in the constant-folding performed
during partial evaluation.

As a result, the impact of constant-folding on partial evaluation was reduced, as shown
in Figure 13. Overall, this optimization led to a compilation-time reduction between 2.25%
(Python) and 6.88% (LLVM Runtime) in Tier 1, between 2.48% (Python) and 8.16%
(WebAssembly) in Tier-2 CE, and between 4.49% (JavaScript) and 9.45% (Espresso) in
Tier-2 EE.

6 Related Work

There is extensive research in the field of compilation-time optimization [22, 20, 30, 24, 2].
However, ICON, focusing on identifying outliers to find optimization opportunities in existing
compilers, combines multiple aspects that we are not aware of being found together in any
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sole research. It combines (1) iterative narrowing of scopes to analyze a problem with (2)
focusing on outliers in extracted data to (3) improve compilation-time metrics. We, therefore,
focus on related work in compiler optimization similar to ICON in at least one aspect.

Brown et al. [5], propose a data-driven methodology to identify the impact of compiler
optimizations on security-oriented aspects of the generated machine code. They evaluate 20
benchmarks and analyze the availability of gadget sets used for code reuse attacks based
on the enabled compiler optimizations in the GCC and Clang compilers. They perform a
coarse-grained analysis based on optimization levels available in GCC and Clang, and a
fine-grained analysis on individual optimizations in those compilers, similar to the narrowing
of scopes in ICON. Furthermore, they use an outlier analysis to identify relevant compiler
optimizations, similar to the outlier analysis defined in ICON.

Bryksin et al. [6], propose a method to identify code anomalies in order to find issues
in compilers. They focus on source code fragments that are not typically found in a
given programming language or uncharacteristic bytecode produced by a compiler. With
anomaly detection algorithms, similar to the outlier detection in ICON, they identified several
optimization opportunities in the Kotlin compiler.

Regarding compilation-time optimization, existing work can be categorized into approaches
for phase selection and ordering [22, 30, 24, 2], automatic compiler optimization level
selection [20], and automatic compiler heuristics or optimization tuning [14, 32]. Most
existing approaches use machine learning and primarily focus on the common case instead of
outliers.

6.1 ICON-like Approaches in Other Compilers
Based on online reports33, compilation time is an important factor for many state-of-the-art
compiler implementations. To improve these metrics, some compiler teams are actively
working on improving their tooling to extract compilation-time metrics34.

We surveyed the V8 35 JavaScript and WebAssembly compiler, the Clang36 compiler in
LLVM, the GCC 37 compiler, the Java HotSpot [23] compiler, and the C# RyuJIT 38 compiler
in order to identify to which extent their capabilities overlap with the ideas proposed by
ICON. Table 2 shows our findings from analyzing the documentation and source code of the
compilers, as well as information provided by online forums and mailing lists. We tried to
find out whether the compilers provide a way of extracting compilation-time metrics (column
1), whether they support the narrowing of extraction scopes (column 2), and whether they
try to optimize compilation time based on outliers (column 3).

Based on the available compiler source code and the presence of compiler flags described in
the online documentation, all surveyed compilers provide compilation-time metrics, although
to varying degrees. To the best of our knowledge, HotSpot provides the compilation time

33 https://github.com/llvm/llvm-project/labels/slow-compile,
https://gcc.gnu.org/pipermail/gcc-bugs/2024-March/857635.html,
https://discourse.llvm.org/t/gsoc-2024-statistical-analysis-of-llvm-ir-compilation-
with-clang/77532

34 https://bugs.openjdk.org/browse/JDK-8311896
35 https://v8.dev/
36 https://clang.llvm.org/
37 https://gcc.gnu.org/
38 https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/jit/ryujit-overview.md

https://github.com/llvm/llvm-project/labels/slow-compile
https://gcc.gnu.org/pipermail/gcc-bugs/2024-March/857635.html
https://discourse.llvm.org/t/gsoc-2024-statistical-analysis-of-llvm-ir-compilation-with-clang/77532
https://discourse.llvm.org/t/gsoc-2024-statistical-analysis-of-llvm-ir-compilation-with-clang/77532
https://bugs.openjdk.org/browse/JDK-8311896
https://v8.dev/
https://clang.llvm.org/
https://gcc.gnu.org/
https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/jit/ryujit-overview.md


F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:23

Table 2 Capabilities of compilation-time optimization of V8, Clang, GCC, HotSpot, RyuJIT,
and GraalVM with ICON.

Compiler Metrics extraction Scope narrowing Outlier analysis
V8 yes no no
Clang yes yes no
GCC yes yes no
HotSpot yes no no
RyuJIT yes no no
GraalVM with ICON yes yes yes

across all compilations via the -XX:+CITime flag. V8 and RyuJIT report a fixed set of metrics
for all compilation units via compiler flags (V839, RyuJIT40). Clang41 and GCC42 provide
detailed reports about time spent in individual optimizations via the -ftime-report flag.

Regarding scope narrowing, Clang allows passing a parameter to the -ftime-report
compiler flag to differentiate whether the time is reported “per-pass” or “per-pass-run” to
separate or combine individual pass executions. GCC supports narrowing via a separate
compiler flag -ftime-report-details. As far as we know, none of the other compilers
provide options to change the scope of extracted metrics.

To the best of our knowledge, the GraalVM compiler with our ICON enhancements is
the only compiler using outliers to improve compilation time.

6.2 Synergy with Regression Testing
In addition to finding optimization opportunities in compilers, ICON is well suited to
accompany compiler regression testing. While regression testing ensures that changes to
the source code do not break existing compiler features and do not impair the correctness
of the produced machine code [43], our approach ensures that changes to the source code
do not lead to compilation-time regressions, additional memory allocation, or other aspects
negatively impacting compilation. Therefore, in addition to ensuring the correctness of the
output via regression testing, ICON ensures the efficiency of the compilation process and
identifies any newly introduced defects. Both can execute the same tests, so no additional
input programs are required to integrate ICON.

7 Conclusion

We presented ICON, a new data-driven approach to compilation-time optimization that
splits high-level metrics into individual source program functions, compiler optimizations, or
even into individual instruction in the compiler source code. By focusing on outliers in the
extracted data, this approach can identify potential optimization opportunities in compiler
implementations that are usually overlooked and provides a systematic approach to the
analysis of compilation-time metrics.

39 https://chromium.googlesource.com/v8/v8/+/refs/heads/main/src/diagnostics/
compilation-statistics.h,https://v8.dev/docs/trace

40 https://github.com/dotnet/runtime/blob/main/src/coreclr/jit/compiler.h#L1643,
https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/jit/viewing-jit-dumps.
md#miscellaneous-always-available-configuration-options

41 https://releases.llvm.org/12.0.0/tools/clang/docs/ClangCommandLineReference.html#
cmdoption-clang1-ftime-report

42 https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html#index-ftime-report
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To demonstrate the effectiveness of our approach, we used ICON to extract a detailed
view of the compilation time of the individual optimizations of the GraalVM compiler and
performed a comprehensive outlier analysis on the resulting data with the goal of finding
optimization potential. We found that most of the compilation time is spent in partial
evaluation throughout all compiler tiers and editions, while the front end takes more time
than the back end, especially in Tier-2 compilations.

The outlier analysis led to one language-agnostic and three language-specific outliers
in compilation time. In the outlier analysis, the spatial component of the extraction-scope
narrowing turned out to be useful at all levels. While the per-node analysis of partial
evaluation helped us to identify an optimization opportunity in constant-folding, the per-
phase analysis applied to the compiler mid tier, low tier and back end led to the detection
of compiler defects in Python, JavaScript, and the GraalVM LLVM runtime, and helped
us to develop an improved algorithm for the frame-state-assignment phase. Similarly, the
temporal component was useful for analyzing Python, and we identified a single function as
the compiler defect source.

Based on the identified optimization opportunities, we added additional caches to the
constant-folding performed during partial evaluation and implemented a new deletion strategy
for unused nodes in the frame-state-assignment phase. We reported the two remaining findings
to the GraalVM compiler and language teams. The implemented optimizations improved
compilation time in all languages between 2.25% (Python) and 9.45% (Espresso).
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A Frame-State Algorithm

Listing 3 Pseudo-code representation of the updated deletion algorithm.
1 void deleteUnusedNodes (List <Node > deleteList ) {
2 // track the usages of each node
3 Map <Node , Int > usages = new Map ();
4 Set <Node > maybeDelete = new Set ();
5
6 // delete the initial set of nodes
7 for (Node n in deleteList ) {
8 delete (n);
9 for (Node input in n. inputs ()) {

10 Int u = usages [input ];
11 if (u == null) {
12 u = input. usageCount ();
13 }
14 usages [input] = u - 1;
15 maybeDelete .add(input );
16 }
17 }
18
19 // fixed point iteration to delete nodes transitively
20 for (Node n in maybeDelete ) {
21 if ( shouldBeDeleted (n, u)) {
22 delete (n);
23 for (Node input in n. inputs ()) {
24 Int u = usages [input ];
25 if (u == null) {
26 u = input. usageCount ();
27 }
28 usages [input] = u - 1;
29 maybeDelete .add(input );
30 }
31 }
32 }
33
34 // remove the usages of nodes that were not deleted
35 // and for which the usage count changed
36 for (Node n, Int u in usages ) {
37 if ( isAlive (n) && n. usageCount () != u) {
38 n. removeDeadUsages ();
39 }
40 }
41 }
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