
Learning Gradual Typing Performance
Mohammad Wahiduzzaman Khan #

CACS, University of Louisiana, Lafayette, LA, USA

Sheng Chen #

CACS, University of Louisiana, Lafayette, LA, USA

Yi He #

Data Science, College William & Mary, Williamsburg, VA, USA

Abstract
Gradual typing has emerged as a promising typing discipline for reconciling static and dynamic
typing, which have respective strengths and shortcomings. Thanks to its promises, gradual typing
has gained tremendous momentum in both industry and academia. A main challenge in gradual
typing is that, however, the performance of its programs can often be unpredictable, and adding or
removing the type of a a single parameter may lead to wild performance swings. Many approaches
have been proposed to optimize gradual typing performance, but little work has been done to aid the
understanding of the performance landscape of gradual typing and navigating the migration process
(which adds type annotations to make programs more static) to avert performance slowdowns.

Motivated by this situation, this work develops a machine-learning-based approach to predict the
performance of each possible way of adding type annotations to a program. On top of that, many
supports for program migrations could be developed, such as finding the most performant neighbor
of any given configuration. Our approach gauges runtime overheads of dynamic type checks inserted
by gradual typing and uses that information to train a machine learning model, which is used to
predict the running time of gradual programs. We have evaluated our approach on 12 Python
benchmarks for both guarded and transient semantics. For guarded semantics, our evaluation results
indicate that with only 40 training instances generated from each benchmark, the predicted times
for all other instances differ on average by 4% from the measured times. For transient semantics,
the time difference ratio is higher but the time difference is often within 0.1 seconds.

2012 ACM Subject Classification Theory of computation → Type structures; Computing methodo-
logies → Machine learning; Computing methodologies → Learning linear models

Keywords and phrases Gradual typing performance, type migration, performance prediction, machine
learning

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.21

Supplementary Material Software (Source Code): https://github.com/wahid-nlogn/ECOOP_2024_
MLGTP, archived at swh:1:dir:3f8fb3b4e2160fa825b6f823185bf8e2a7e1ec92

Funding This work has been supported in part by the National Science Foundation (NSF) under
Grant Nos. IIS-2245946, IIS-2236578, and CCF-1750886 and in part by the Commonwealth Cyber
Initiative (CCI) and DARPA.

1 Introduction

Statically typed languages offer benefits such as early programming error detection, document-
ation, and better performance but can hinder program executions when they are incomplete
or contain type errors. Dynamically-typed languages offer the benefits of fast prototyping and
flexible usability but provide less program correctness guarantee. Traditionally, languages are
either static or dynamic. In an effort to reconcile these typing disciplines, a typing discipline
named gradual typing was developed and popularized in the last decade Siek and Taha [38],

© Mohammad Wahiduzzaman Khan, Sheng Chen, and Yi He;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 21; pp. 21:1–21:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohammad-wahiduzzaman.khan1@louisiana.edu
https://orcid.org/0009-0001-1760-6645
mailto:sheng.chen@louisiana.edu
https://orcid.org/0000-0003-1735-0704
mailto:yihe@wm.edu
https://orcid.org/0000-0002-5357-6623
https://doi.org/10.4230/LIPIcs.ECOOP.2024.21
https://github.com/wahid-nlogn/ECOOP_2024_MLGTP
https://github.com/wahid-nlogn/ECOOP_2024_MLGTP
https://archive.softwareheritage.org/swh:1:dir:3f8fb3b4e2160fa825b6f823185bf8e2a7e1ec92;origin=https://github.com/wahid-nlogn/ECOOP_2024_MLGTP;visit=swh:1:snp:76cf0177c59d6640c57d9f0160a8d9cdba157bad;anchor=swh:1:rev:cd54661feb86ce5228b7bd5b88698a3b53b51ac4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Learning Gradual Typing Performance

6.2-6.629.6-30.2

18.6-19.229.5-30.0 7.2-7.3 6.2-6.5 7.1-7.4

18.1-19.0

18.6-19.4 29.9-30.2 18.2-19.2 7.1-7.3

7.0-7.4 6.1-6.8

29.9-30.2

Figure 1 Part of the performance lattice for the Pascal benchmark. The lattice consists of 16
configurations, a combination of four parameters with each being typed or untyped. Each filled
(unfilled) oval represents a typed (untyped) parameter. Each configuration shows only 4 ovals and
omits the rest, which is the same across the 16 configurations. A circled number or letter is attached
to each configuration for easy reference in the paper. Each configuration is associated with two
times, separated by a ‘-’. The first time is the measured time of the configuration and the second (in
blue) is the predicted time by our machine learning algorithm. All times are in seconds in the paper.

Siek and Vachharajani [39], Garcia and Cimini [13], Tobin-Hochstadt and Felleisen [42],
Tobin-Hochstadt et al. [43], Campora et al. [6], Castagna et al. [9], Migeed and Palsberg [22],
Phipps-Costin et al. [31], Greenman and Felleisen [14].

The main idea of gradual typing is that within a single program, parts of it may be
statically typed (by giving type annotations to parameters in that part) and parts of it may
be dynamically typed (by leaving out type annotations to parameters or explicitly giving
them the dynamic type, written as Dyn). Ideally, in gradual typing, prototyping and initial
development is done with the dynamic aspect of the language, and programs are migrated to
static aspect when performance and correctness becomes critical.

The goal of type migration is to add type annotations to parameters with dynamic
types of a program. A commonly used notion in type migration is configurations Greenman
et al. [15]. For any program, a configuration specifies which subset of all the parameters are
typed. For example, in the fully dynamic configuration, this subset is empty, and in the fully
static configuration, this subset includes all parameters. For a program with n parameters,
there can be up to 2n configurations since each parameter can be typed or untyped. We can
organize all the configurations into a lattice such that the set of typed parameters in the join
of two configurations is a union of those of the two configurations. To illustrate, Figure 1
presents a part of the lattice for the Pascal benchmark in Python.

1.1 Performance Problem in Type Migration
There are two issues related to gradual type migration:
(1) finding parameters where type annotations could be added and
(2) understanding performance changes and maintaining good (acceptable) performance as

type annotations are added.

For issue 1, a lot of work has been done to automatically adding type annotations to
dynamically-typed programs, including static approaches Castagna et al. [9], Kristensen
and Møller [19], Campora and Chen [7], Rastogi et al. [34], Chandra et al. [10], Siek and
Vachharajani [39], dynamic approaches Miyazaki et al. [24], Cristiani and Thiemann [11],
and machine learning based approaches Mir et al. [23], Peng et al. [30], Pradel et al. [33],

M. W. Khan, S. Chen, and Y. He 21:3

Allamanis et al. [3]. Several approaches have also been developed to find best migrations in
the sense of adding type annotations to as many parameters as possible Campora et al. [6],
Migeed and Palsberg [22], Phipps-Costin et al. [31]. Issue 2, however, has received less
attention.

While it is tempting to integrate all the type annotations suggested by a type migration
tool Castagna et al. [9], Kristensen and Møller [19], Campora and Chen [7], Rastogi et al. [34],
Chandra et al. [10], Siek and Vachharajani [39], Mir et al. [23], Peng et al. [30], Pradel
et al. [33], Allamanis et al. [3], doing so may turn the original configuration into a new one
that degrades performance significantly. The slowdown can be as high as more than 100
times Takikawa et al. [41], due to intricate type interactions. This is the case even when
the type annotations for all the parameters in a single project are inferred. For example, in
the spectral norm benchmark, the runtime for the fully typed configuration is about 2 times
that of a configuration that has one fewer function typed Campora et al. [8]. The reason is
that even all parameters in a project are typed, the libraries and third-party code used by
the project may not be typed.

In general, after migrating from configuration Ks to Ke, manually or with the aid of type
migration tools, the developer may face a few performance related questions. In particular, if
the performance at Ke is not satisfactory, then the user will have to explore the performance
of the neighbors of Ke to find a configuration that can restore the performance at Ks or
whose performance is the best among all neighbors.

To illustrate, consider the performance lattice for the Pascal benchmark in Figure 1. The
Pascal program has 19 parameters and thus 219 configurations, and we present a part of the
lattice in the figure. Assume the user is currently at configuration 1 and a migration tool
infers types for the four parameters, which corresponds to configuration G . However, noting
that the performance at G is about 3 times slower than that at 1 , the user will explore the
performance of neighbors and find one with good performance.

The problem is that there is no obvious strategy Greenman et al. [15], Takikawa et al. [41]
that the user could employ to quickly find desired configurations. For example, a strategy like
breadth-first-search will not find F , the configuration that both has good performance and
has largest number of parameters being typed, without trying C , D , and E . Similarly, a
strategy like depth-first-search will not find any configuration that restores performance until
it goes back to the original configuration 1 . This problem will become worse in practice
due to three reasons. First, type migration tools may suggest adding types to many more
parameters, which quickly enlarges the search space. Second, as the program becomes bigger,
it takes more time to measure the performance of each configuration. Also, it takes more
time to move from one configuration to another as more type changes are involved. Third,
since each program has its own structure and type of interactions, as witnessed by very
diverse performance lattices in different programs Takikawa et al. [41], Greenman et al. [16],
Campora et al. [8], no single searching strategy works well for all programs.

The biggest problem is probably the uncertainty associated with the exploration process.
If the user has not found a configuration with good performance following some strategy,
should the user stick to the strategy in hoping that the performance will finally improve or
change the strategy in fearing that performant configurations are in other neighborhoods.

1.2 A Machine Learning Based Solution
In this paper, we propose and develop LearnPerf, a machine learning based solution for this
problem. For each program, we train a model from the running time for a very limited
number (usually 40) of configurations. We then use this model to predict the execution times
of other configurations. To give a sense of how the predicted times of LearnPerf look like, we
present them in Figure 1 in blue.

ECOOP 2024

21:4 Learning Gradual Typing Performance

Our prediction result is pretty accurate, with the difference ratio (defined as |predicted
time – measured time|/measured time) often within 4%. On top of the prediction result, we
can develop a series of migration support under different scenarios. We list some of them
below.

1. LearnPerf is able to predict the performance for a given configuration. Assume the developer
wants to migrate the current configuration to a new one, this information can inform how
performance looks like at the new configuration.

2. LearnPerf is able to classify the performance of adjacent configurations. For a certain
number of configurations around the current one, we can classify them according to
performance speedup/slowdown scales. Takikawa et al. [41] introduced the notion 2-
deliverable, which includes all configurations whose performance degrades by less than 2
times that of the original configuration, and 2-5 usable, which includes all configurations
that slows down the original configuration by 2-5 times. With the help of LearnPerf, we
can highlight configurations that are 2-deliverable, 2-5 usable, etc.

3. For each configuration, LearnPerf is able to find the most performant configurations within its
neighborhood. If the user is not satisfied with the performance of the current configuration,
this capability can suggest an alternating configuration with good performance.

Note that this work studies the performance aspect of type migration only and is
not intended to develop a new type inference algorithm or machine learning algorithm to
automatically add type annotations. As mentioned earlier, there has been a long line of
research of adding type annotations but little work has been done for the performance aspect
except for two papers Campora et al. [8], Greenman et al. [15]. Many approaches Feltey
et al. [12], Ortin et al. [28], Moy et al. [25], Kuhlenschmidt et al. [20], Vitousek et al. [46]
have investigated performance optimization of gradual typing. Our work is orthogonal to
these approaches and we discuss the relation with them in Section 6.

To illustrate the usefulness of our migration support, assume the user was at configuration
1 and has just migrated to G and observed that the performance at G is not satisfactory.

LearnPerf can help in this case. For example, there are four neighbors of G , C through F .
LearnPerf predicts that their running times are 19.4, 30.2, 19.2, and 7.3 seconds, respectively.
Based on the predicted times, LearnPerf suggests the user to migrate to F , rather than G .
We can observe that F slows down 1 by only 15% while G slows down by 3 times.

Overall, LearnPerf finds F that reconciles both performance and static migration. It seems
undesirable to migrate to F and not G because G adds a type annotation to one more
parameter. In practice, this problem can often be solved by migrating a few parameters in
unison in later migrations.

1.3 Workflow and Contributions of This Work
Figure 2 presents the workflow of LearnPerf. Starting from any “original program”, assume the
user added some type annotations, manually or with the help of type migration tools. This will
lead to a new, more precise program that has more type annotations than the original program.
Note, that the new program may be partially typed or fully typed. As discussed earlier, both
partial and fully typed programs may experience significant performance degradation. From
the new program, we create 40 random training samples. We then extract relevant feature
vectors that characterizes runtime performance as well as the running time for each generated
configuration. This information is then input into LearnPerf for the purpose of training our
model.

M. W. Khan, S. Chen, and Y. He 21:5

Original
program

Time
prediction

model

Type inference

More precise
program

Configurations Feature vectors
 & running times

 Configurations

Feature vectors

Time predictions
& migration
suggestions

Feature
extraction &

runtime
measurement

Training
samples ML

algorithm

Feature
extraction

Testing
samplesDeep learning inference

Manual insertion

Figure 2 Workflow of LearnPerf. Solid arrows denote information flow in training phase and
dashed, blue arrows denote that in prediction phase. Dotted, red arrows denote type annotation
additions, and they are not a part of this work.

Once we have the trained model, we can support scenarios 1 through 3 by generating
appropriate configurations and predicting their running times. Section 5 will sketch the main
steps to support scenarios 2 and present our evaluation results.

In the above, the training will not start until the user initiates it. In practice, however,
our approach will actively invoke a deep learning model Mir et al. [23], Peng et al. [30], Pradel
et al. [33], Allamanis et al. [3] to generate type annotations. As a result, the performance
prediction model could be ready before the programmer starts the migration process and
needs migration support. We applied this idea to three large datasets for our evaluation
(Section 5).

Overall, this paper makes the following contributions:
1. We develop a machine-learning based approach that can help understand the performance

landscape of different configurations of a gradually-typed program. On top of that, many
migration supports can be developed.

2. We explore different features to represent program run times and find out that overheads
of casts inserted by gradual typing are simple yet representative features.

3. We implement our approach and evaluate its performance on twelve benchmarks, including
nine benchmarks that are frequently used in gradual typing research and three larger
benchmarks that each have more than 1000 LOC. We observe that with only 40 training
instances, our predicted times differ from measured times by 4% only for guarded semantics.
For transient semantics, the difference between the predicted time and measured time is
often within 0.1 seconds.

The rest of the paper is organized as follows. In Section 2, we discuss the background of
gradual typing. In Sections 3 and 4, we present our exploration of searching for appropriate
machine learning model and representative features for precisely estimating execution times of
gradual programs. In Section 5, we present the evaluation results, as well as implementation
details and benchmarks used. We discuss related work in Section 6 and conclude in Section 7.

2 Background

This section covers the background of gradual typing, with a focus on cast insertions and
their overheads.

In gradual typing, a parameter may be given a static type, a dynamic type (often written
as Dyn or is omitted) signifying that the type is not known statically, or a mix of static and
dynamic types. Static type checking is applied to program parts that use parameters with
static types, and dynamic type checking is used for other program parts.

ECOOP 2024

21:6 Learning Gradual Typing Performance

def myreduce(f, lst, init):
result = init
for i in range(len(lst)):

result = f(result,lst[i])

return result

def wider(cw:Int,ci:List(Int))->Int:
return max(cw, len(ci))

myreduce(wider,[[1], [], [4,5]],0)

def myreduce(f, lst, init):
result = init
for i in range(len(lst)):

result = (f : Dyn => Dyn -> Dyn -> Dyn)
(result, lst[i])

return result

def wider(cw, ci):
return max(cw, len(ci)) : Dyn => Int

myreduce(wider: Int -> List(Int) -> Int => Dyn,
[[1], [], [4,5]] : List(List(Int)) => Dyn,
0 : Int => Dyn)

Figure 3 A partially-typed version of myreduce (left) and its cast-inserted program (right).

For example, Figure 3 (left) presents a program snippet written in a hypothetical gradual
language in Python type hint syntax Vitousek et al. [45]. The function myreduce takes in a
binary function, a list, and an initial value and reduces the list to a single value. In this
program, static type annotations are given to the parameters, and the return of wider. All
other parameters have dynamic types. A static type error will be detected if we pass a string
value as the first argument to wider because the first parameter has a type annotation Int. In
contrast, no such error will be detected if we pass a string value as the first argument to
myreduce.

Gradually-typed languages are often obtained by adding static type checking to underlie
dynamic languages, such as Typed Clojure for Clojure, Typed Racket for Racket, and
Reticulated Python Vitousek et al. [45] for Python. As such, a common implementation
strategy of gradual typing is to translate its programs into programs in the underlying
language and insert necessary runtime type checks (often called casts) during the translation.

For example, when executed by a gradual typing implementation for Python, the program
in Figure 3 (left) is translated to the program in Figure 3 (right), which can be executed
on any Python interpreter. Comparing programs in Figure 3 left and right, we observe two
important differences. First, the program on the right does not have type annotations. This
is because the interpreter for the underlying, dynamic language often does not make use of
type annotations so they are erased during translation. Second, the program on the right has
extra constructs in the form of expr : src_type => trg_type, which are often called casts. Such
casts are inserted when the static type checker determines that expr has the type src_type but
is used in a context where a value of trg_type is required.

As runtime type checks, these casts incur runtime overheads, and different casts lead
to very different overheads. For example, the cast x : Dyn => Int can be performed where
it appears as we can always verify if x is indeed an integer and is thus very lightweight.
In contrast, the cast g : Dyn => Int -> Bool can not be verified where it appears because, for
example, we do not know how g will be used and what arguments will be passed to it. As
such, a proxy will be created for g such that the invocation of g will be handled by the proxy,
which inserts a cast to check that the argument to g is Int and another cast to check that the
return value of g is Bool. Such casts are more involved and lead to more significant overheads.
Casts over data structures and objects are similarly heavyweight.

It is not hard to envision that adding or removing the type annotation for a single
parameter in gradual typing may yield significant performance swings Takikawa et al. [41],
Greenman et al. [16]. One might consider this a reason to abandon gradual language designs
that enforce type invariants at runtime, but a study by Tunnell Wilson et al. [44] shows that
programmers often expected the behavior of programs to emulate those done by gradual
typing. This work in this paper enables programmers to enjoy the benefits of gradual typing
while staying informed about the performance landscape as they migrate programs toward
more static.

M. W. Khan, S. Chen, and Y. He 21:7

Table 1 Deep learning model performance on unseen benchmarks.

Unseen Benchmark # training # testing MAE MSE DR

Meteor 105945 1024 5.26 28.09 56.84%
Zebrafy 103969 3000 149.37 22350.18 86.96%
Pascal 101785 5184 22.82 653.85 273.42%
Chaos 100969 6000 25.67 784.96 35.57%

Richard 100969 6000 23.73 766.28 36.05%
Sieve 91608 15361 53.88 2933.99 1655.90%

Nbody 90585 16384 4.87 36.79 68.28%
Scimark 81881 25088 4.39 28.27 80.37%
Raytrace 73065 33904 6.49 46.29 110.17%

3 Feature Engineering

The two most important questions in machine learning are what kinds of models to train and
what features will be used for representing programs. In this section and next, we present
our exploration of searching for a suitable model and simple yet representative features.

3.1 First Attempt: Global Model with Deep Learning
Ideally, we train a global model that can be used to predict the runtime of different configur-
ations for all user programs. Such a model needs to be trained only once by us (the model
developer) and can be distributed to users (developers who migrate gradual programs) for
use.

Motivated by recent successes of deep learning models for predicting types Mir et al. [23],
Peng et al. [30], Pradel et al. [33], Allamanis et al. [3], our first attempt is to exploit deep
learning to train a global model. For a given set of configurations for training and a set for
testing, this process consists of several steps. The main challenge here is that the training
instances may have different lengths. To solve this issue, we leverage source code embeddings
that convert each configuration into an embedding that has the same length. Specifically,
we use UniXcoder Guo et al. [17] to convert each configuration into a 4 * 768 float matrix.
These embeddings, together with runtimes of corresponding configurations, are fed into a
multi-layer perception network Popescu et al. [32] to train a global model. Based on the
trained model, we can predict the runtime for each configuration in the test set.

To test the performance of this idea, we have developed a prototype and conducted
experiments in two settings. In the first setting, we collected all configurations from nine
benchmarks (listed in Table 1), with a total of 106,969 configurations (Section 5.1 will give
more details about our evaluation benchmarks). We randomly choose 80% of them for
training, 10% for cross-validation, and 10% for testing. In the second setting, we chose
one benchmark for testing and used configurations from all other benchmarks for training.
The main difference between these two settings is that in the first setting some testing
configurations and training configurations may come from the same benchmark.

To measure the performance of this exploration and later ones in this paper, we use two
of the most popular metrics for a regression problem, mean absolute error (MAE) and mean
square error (MSE). In addition, to capture the accuracy or error ratio more intuitively, we
used another metric called difference ratio, shortened to DR. The definitions of these three
metrics are given below, where ti and t̂i denote the measured and predicted running times of

ECOOP 2024

21:8 Learning Gradual Typing Performance

the configuration i, respectively, and D denotes the testing set of instances. For example, if
the measured and predicted times for a configuration is 7.9s and 8.1s, respectively, then the
difference ratio for this configuration is 2.53%. We will use these notations throughout the
paper.

MAE =
∑D

i=1 |ti − t̂i|
|D|

MSE =
∑D

i=1(ti − t̂i)2

|D|
DR =

∑
i∈D

|ti−t̂i|
ti

|D|

The DR for the first setting is 147.58%. The details of the results for the second setting is
given in Table 1. The results show that the global model trained with deep learning performs
poorly. There are a few possible reasons. First, as discussed in Section 2, a gradual program
is often translated to a base program in the untyped, underlying language with casts inserted.
As such, the running time of a configuration roughly includes the time to execute the base
program and the overhead due to casts. To be able to precisely predict the running time, we
need to be able to do that for both parts. However, predicting the running time of a general
program is still an open problem Matsunaga and Fortes [21]. Second, the overhead due to
casts can vary significantly across different programs as it depends on program structures,
such as whether casts are in loops, whether multiple casts are applied to single values,
etc. Third, as discussed in Section 2, two configurations that differ by whether a single
parameter is typed or not may have very different runtimes. This exhibits similar phenomena
as in molecular property prediction where minor changes in molecular structures lead to
significant changes of properties Stumpfe and Bajorath [40]. Earlier work Xia et al. [50] has
demonstrated that deep models often do not perform well for such tasks.

For this reason, we decide to train an individual, project-specific model for each project in
this work. Have decided which model to train, we next explore different feature representations
to find representative features.

3.2 Second Attempt: Individual Models with Bit Strings

The problem of predicting gradual typing performance bears some similarity to perform-
ance prediction for highly-configurable software systems Kolesnikov et al. [18]. A highly-
configurable program usually contains a large number of configuration options (for example,
Linux has about 13,000 such options) for customizing the functional and non-functional
features of the program. For instance, Linux can be configured to run on a diverse set of
devices, ranging from embedding devices to servers. Each configuration option may be set or
unset, corresponding to enabling or disabling associated features, which often leads to the
inclusion or exclusion of certain pieces of code into the generated program after customization.
As such, different configurations of the same configurable program will lead to different
performances.

Understanding the performance landscape of configurable software systems is an im-
portant research problem, particularly as generating all possible programs and measuring
their performance is infeasible due to the exponential complexity (the number of different
configurations that can be generated is exponential in the number of configuration options).
A prevalent solution to this problem is building a performance-influence model for each
configurable software system. This can be achieved by generating a few samples, measuring
the performance of these samples, and building a model from them. With the performance-
influence model, predicting the performance of a certain configuration is instantaneous,
without having to generate the configuration and measure the performance.

M. W. Khan, S. Chen, and Y. He 21:9

Table 2 Python benchmark Performance (Bit strings).

Benchmark # training # testing MAE MSE DR

Monte Carlo 40 344 0.53 ± 0.00 0.45 ± 0.00 35.30%
Meteor 40 984 0.29 ± 0.02 0.19 ± 0.068 2.47%
CPU 40 2857 2.57 ± 0.06 3.487 ± 0.08 8.15%
Zebrafy 40 3960 12.25 ± 1.24 15.98 ± 0.78 91.64%
Pascal 40 5144 5.15 ± 0.18 6.44 ± 0.31 27.57%
Chaos 40 5960 2.38 ± 0.04 3.00 ± 0.06 4.78%
Richard 40 5960 9.58 ± 1.12 13.65 ± 1.68 42.88%
BenchFirst 40 5960 43.85 ± 3.88 58.58 ± 4.23 25.88%
Sieve 40 15321 0.12 ± 0.00 0.16 ± 0.00 1.56%
Nbody 40 16344 3.45 ± 0.17 4.46 ± 0.19 30.10%
Scimark 40 25048 2.41 ± 0.03 3.06 ± 0.05 17.02%
Raytrace 40 33864 5.80± 1.23 7.35 ± 1.60 38.90%

Monte Carlo 192 192 0.39 ± 0.00 0.47 ± 0.00 31.33%
Meteor 512 512 0.13 ± 0.00 0.08 ± 0.00 0.70%
CPU Benchmark 1427 1428 2.23 ± 0.03 2.84 ± 0.02 6.55%
Zebrafy 2000 2000 10.72 ± 0.95 14.58 ± 0.89 87.24%
Pascal 2592 2592 3.81 ± 0.00 5.09 ± 0.00 20.45%
Chaos 3000 3000 1.72 ± 0.01 2.13 ± 0.00 3.41%
Richard 3000 3000 8.86 ± 0.01 13.05 ± 0.02 36.78%
BenchFirst 3000 3000 28.85 ± 3.05 36.58 ± 3.90 11.88%
Sieve 7680 7680 0.10 ± 0.00 0.13 ± 0.00 1.32%
Nbody 8192 8192 2.70 ± 0.00 3.58 ± 0.00 23.64%
Scimark 12544 12544 1.75 ± 0.00 2.42 ± 0.00 12.36%
Raytrace 16952 16952 2.81± 0.00 3.19 ± 0.00 18.84%

In gradual typing, each parameter can be typed or untyped, corresponding to enabling
or disabling a configuration option. Due to this similarity, we started our exploration by
using bit-string as features for machine learning. Specifically, we treat each parameter as a
binary feature and use 1 to denote that the parameter is typed and 0 to denote it is untyped.
Feature values for all parameters are concatenated together to form a bit-string, which forms
the feature vector in this exploration.

We developed a prototype implementing this idea and tested its performance on 12
Python benchmarks (we will show details about them in Section 5.1). We present the result
in Table 2. In the upper part of Table 2, we present the results with bit-strings as features
when each individual model is trained with 40 configurations. We can observe that the
average difference ratio (DR) is quite high for several benchmarks. For example, DR is
around 92% for Zebrafy and 43% for Richard. We may think of increasing the number of
training instances to boost the performance. Surprisingly, the performance does not increase
significantly as we remarkably increase the number of training instances, as can be seen
from the bottom part of Table 2. For example, as we increased the training instances from
40 to 2000 (that is we used 50% of instances for training) for Zebrafy, the average DR is
still around 87%. Similarly, the average DR is about 37% for Nbody as we use 50% of all
instances for training.

Another issue is that as we are training an individual model for each project, using too
many training instances needs a very long preparation time. To solve this issue, we choose
to generate a limited amount of configurations but extract highly effective features.

ECOOP 2024

21:10 Learning Gradual Typing Performance

def myreduce(f:Function([Int,List(Int)],Int),
lst:List(List(Int)), init:Int):

result = init
for i in range(len(lst)):

result = f(result,lst[i])
return result

def wider(cw:Int, ci:List(Int)) -> Int:
return max(cw, len(ci))

myreduce(wider,[[1], [], [4,5]],0)

def myreduce(f, lst, init):
result = init
for i in range(len(lst)):

result = f(result : Dyn => Int,
lst[i]) : Int => Dyn

return result

def wider(cw, ci):
return max(cw, len(ci)) : Dyn => Int

myreduce(wider, [[1], [], [4,5]], 0)

Figure 4 The fully-typed version of myreduce (left) and its cast-inserted translation (right).

4 Third and Successful Attempt: Gauging Cast Overheads

The main reason that bit strings do not work well is that bits only represent whether
parameters are typed or not while the types of parameters interact in an intricate way. This
makes bit strings a poor candidate for capturing inserted casts, which are the main causes
for performance overheads. For example, if we compare the programs in Figures 3 and 4,
we can observe that while the program in Figure 4 (left) has strictly more type annotations
than that in Figure 3, no such relation appears for the casts in the translated programs. In
particular, these programs share only one common cast (the cast for the return value in
wider), and all other casts are different. The running times of these two versions of myreduce

are very different: the running time of the partially-typed version (Figure 3) is about 16
times that of the fully-typed version (Figure 4). In practice, removing or adding the type for
a single parameter may lead to a completely different cast being inserted.

Thus, instead of using bit strings, we will next explore the inserted casts of the translated
programs by gauging cast overheads. Our main idea is to give symbolic overheads to casts
and let machine learning algorithm figure out the real overhead of each cast. To give a more
formal account of our approach, we present the type syntax used for the rest of this section
below.

Base types U ::= Bool | Int | Unit

Gradual types G ::= U | G → G | Dyn | [G]

Our type definition includes base types, ranged over by U , and gradual types, ranged over
by G. Our base types include Int, Bool, and Unit, but they can be extended easily. In gradual
types, we consider two type constructors: function types and list types. Again, they can be
extended easily.

In the rest of this section, we first discuss how to gauge the overhead for individual
casts (Sections 4.1 and 4.2) and then the overhead for a whole program (Section 4.3). Finally,
we assess the effectiveness of cast overheads (Section 4.4).

4.1 Overheads for Individual Casts
Casts involving base types. Our first observation of gauging cast overheads is that casts
have very different runtime overheads, as we discussed in Section 2. We first deal with casts
that involve base types. For a cast of the form U ⇒ Dyn, it can be checked where it appears.
We assign the symbolic overhead U i to it. Similarly, for the cast Dyn ⇒ U , we assign the
symbolic overhead Up.

Casts involving function types. Next, we investigate overheads of casts that involve function
types. In general, as discussed in Section 2, a function cast can not be verified where it
appears. Instead, for a cast of the form f : G1 → G2 ⇒ G3 → G4, a proxy will be created to

M. W. Khan, S. Chen, and Y. He 21:11

wrap f . In place where f is called, the call is handled by the wrapper, which first casts the
argument from G3 to G1, calls f with the cast argument, and casts the return value of f

from G2 to G4. As such, a function cast induces two kinds of overheads: (1) the overhead
that creates the proxy and (2) the overhead that casts the arguments and returned values.
We refer to these two kinds of overheads as creation overhead and invocation overhead,
respectively. The creation overhead should be similar across different proxy wrappers because
type differences in casts do not cause the creation behavior to change much. As such, we
assign F c to represent a proxy creation overhead.

One challenge with invocation overheads is that they are incurred when the cast functions
are invoked, not where the function casts appear. However, it is unclear when cast functions
are invoked by looking at the translated program (neither with some standard static analysis)
because cast functions may be assigned to other variables, stored in data structures, and
passed over to other functions, and call sites can be very distant from where proxies are
created. Our solution to this problem is to gauge the invocation overhead for each cast and
directly add it to its creation overhead. This is very simple to implement: no complex alias
analysis is needed.

Interestingly, this approach works well for predicting runtimes of configurations. Intuit-
ively, the function cast created at the same program location will have the same invocation
sites across different configurations since two configurations only differ by type annotations.
Thus, if two casts cast the same function and have the same invocation overhead across two
configurations, then they induce the same cast overheads. Of course, if the arguments to
the cast functions in different configurations are cast differently, then the invocation takes
different times to complete. However, such differences should be reflected through overhead
differences of casts on the argument. Similarly, if the function cast in the first configuration
has larger invocation overhead than that in the second configuration, then the cast function
in the first configuration has more runtime overheads at invocation sites. We leave it to the
machine learning algorithm that we use to train our model to figure out the relation between
symbolic difference and the runtime difference for different configurations.

Another challenge in gauging invocation overheads is that unlike creation overheads that
are similar across different function casts, invocation overheads can vary significantly, based
on the types involved. For example, the cast f1 : Int → Int ⇒ Dyn → Dyn should have a much
smaller invocation overhead than f2 : [Int] → Int ⇒ Dyn → Dyn because the cast for the argument
for f1 is Dyn ⇒ Int and that for f2 is Dyn ⇒ [Int]. As we have seen earlier, the cast Dyn ⇒ Int is
very lightweight while the cast Dyn ⇒ [Int] involves the creation of another proxy over the
argument (We will discuss casts involve lists later in this subsection), which will be treated
as a list. Therefore, a plausible idea to accurately gauge invocation overheads is to assign
different symbols for denoting different invocation overheads to different casts, based on their
argument types and return types. The problem with this idea is that, however, we need to
introduce a lot of different symbols for invocation overheads because within a program we
could have many casts involving function types with different arities and different argument
and return types. As we wanted to train our model with as few instances as possible, having
too many symbols will negatively affect machine learning performance.

Our solution to this challenge is to break invocation overheads down and represent them
with symbols we have already introduced. Our main insight is that an invocation overhead
is originated from creating further casts at runtime. Thus, an invocation overhead can be
approximated as a sum of all the creation overheads of the argument types and the return type.
For example, for f3 : (Int → Bool) → Dyn ⇒ Dyn → Int, the invocation overhead is creating a new
function proxy for the argument to f3, which we have already introduced a symbol F c, and

ECOOP 2024

21:12 Learning Gradual Typing Performance

another cast for the Dyn ⇒ Int, which we used Up to represent the overhead. Since the created
function cast for the argument also introduces invocation overhead, we recursively apply this
idea to the argument cast Dyn ⇒ Int → Bool and calculate its invocation overhead as U i + Up.
Overall, the invocation overhead for the function cast f3 : (Int → Bool) → Dyn ⇒ Dyn → Int is
F c + 2 · Up + U i. We give an algorithm for calculating cast overheads in Figure 5.

Casts involving list types. A cast involving list types, such as l : Dyn ⇒ [Bool], also can not
be verified where it appears because this cast ensures that future write accesses to l should
add elements of type Bool only and future read accesses should get elements of Bool type. As
such, similar to casts on function types, a proxy will be created for l and the proxy will make
sure accesses to l have expected types. Therefore, the overhead of a list cast includes the
creation overhead and access overhead. For the creation overhead, we use the symbol Lc to
denote it.

For gauging access overheads, we face a challenge of locating where lists are accessed in
the program, some of what we had for gauging invocation overheads for function casts. We
adapt the solution there by gauging access overheads and add them to list creation overheads.
For gauging access overheads themselves, the main insight is that list accessing can often
be reduced to function calls Siek et al. [37], Vitousek et al. [45]. For example, for a list of
type [Bool], the function for ensuring that the element read from the list is Bool has the type
Int → Bool, where Int is the type of the parameter (list index) and Bool is the return type. The
function for ensuring that the element added to the list is Bool has the type Int → Bool → Unit,
where Int is the index type, Bool is the type of the element to be added to the list, and Unit is
the return type of the function.

Based on this idea, the read access to the list l with the cast l : Dyn ⇒ [Bool] can be
reduced to the function cast Int → Dyn ⇒ Int → Bool, and the write access can be reduced to
the cast Int → Dyn → Unit ⇒ Int → Bool → Unit. Thus, the access cost is approximated to be the
cost of these two function casts. In practice, other operations may be performed on a list,
such as insertion, extension, popping, and obtaining the length. However, read and write
accesses are good representatives of access overheads because they are used frequently while
others may not need function casts. Moreover, as we did in gauging invocation overheads, we
only need to figure out the symbolic difference of list casts for the same list across different
configurations, and let the machine learning algorithm scale that difference to appropriate
runtime differences.

4.2 An Algorithm for Gauging Individual Casts’ Overheads
We present an algorithm for gauging cast overheads in Figure 5. The algorithm is more
general than our description in Section 4. For example, the algorithm deals with function casts
that have multiple parameters. The algorithm is defined using the idea of pattern matching,
and we assume that the most specific matching rule is used to handle the computation.

The main entry of the algorithm is the function overHd, which consists of eight cases. In
the first case, the two types being cast are the same. Standard gradual typing implementations
simply drop such casts, and so we assign 0 as its overhead. Cases two and three deal with
casts between Dyn and function types, and we extend Dyn into a function type with the same
arity as the function on the other side and delegate the computation to case eight of overHd.
Cases four and five deal with casts between two function types that have different number of
parameters. We assume that corresponding parameter types (such as G1 and G′

1) and return
types are consistent Siek and Taha [38]. We extend the type with fewer parameter types by
padding it with Dyns. Cases six and seven deal with casts between Dyn and list types and are

M. W. Khan, S. Chen, and Y. He 21:13

overHd (G ⇒ G) = 0
overHd (Dyn ⇒ G1 → · · · → Gr) = overHd (Dyn → · · · → Dyn ⇒ G1 → · · · → Gr)
overHd (G1 → · · · → Gr ⇒ Dyn) = overHd (G1 → · · · → Gr ⇒ Dyn → · · · → Dyn)
overHd (G1 → · · · → Gi → Dyn ⇒ G′

1 → · · · → G′
i+j → G′

r)
= overHd (G1 → · · · → Gi → Dyn → · · · → Dyn ⇒ G′

1 → · · · → G′
i+j → G′

r)
overHd (G1 → · · · → Gi+j → Gr ⇒ G′

1 → · · · → G′
i → Dyn)

= overHd (G1 → · · · → Gi+j → Gr ⇒ G′
1 → · · · → G′

i → Dyn → · · · → Dyn)
overHd ([G] ⇒ Dyn) = overHd ([G] ⇒ [Dyn])
overHd (Dyn ⇒ [G]) = overHd ([Dyn] ⇒ [G])
overHd (G1 ⇒ G2) = createOH (G1 ⇒ G2) + callOH (G1 ⇒ G2)
createOH (Dyn ⇒ U) = Up

createOH (U ⇒ Dyn) = U i

createOH (G1 → · · · → Gr ⇒ G′
1 → · · · → G′

r) = F c

createOH ([G1] ⇒ [G2]) = Lc

callOH (Dyn ⇒ U) = 0
callOH (U ⇒ Dyn) = 0
callOH (G1 → · · · → Gn → Gr ⇒ G′

1 → · · · → G′
n → G′

r)
=

∑n
1 overHd (G′

i ⇒ Gi) + overHd (Gr ⇒ G′
r)

callOH ([G1] ⇒ [G2])
= overHd (Int → G1 ⇒ Int → G2) + overHd (Int → G1 → Unit ⇒ Int → G2 → Unit)

Figure 5 An overhead gauging algorithm.

similarly delegated to case eight. Case eight deals with all cases not matched by earlier cases.
It says that the overhead is an addition of the creation overhead, returned from createOH,
and the call overhead, returned from callOH.

The definition of createOH is straightforward: it assigns a corresponding symbolic
overhead to each kind of cast. The function callOH implements the idea of invocation
overheads and access overheads discussed in Section 4. For casts involving base types, the
call overhead is 0 because they can not be invoked or no elements may be accessed from
them. The call overhead for a function cast is the overhead of casting all parameter types
plus that of casting the return type. The call overhead for a list cast is the total overhead of
read access and write access.

The following example illustrates the calculation process for gauging the overhead for the
cast Dyn ⇒ [Bool].

overHd (Dyn ⇒ [Bool])
=overHd ([Dyn] ⇒ [Bool])
=createOH ([Dyn] ⇒ [Bool]) + callOH ([Dyn] ⇒ [Bool])
=Lc + callOH ([Dyn] ⇒ [Bool])
=Lc + overHd (Int → Dyn ⇒ Int → Bool) + overHd (Int → Dyn → Unit ⇒ Int → Bool → Unit)
=Lc + F c + overHd (Int ⇒ Int) + overHd (Dyn ⇒ Bool) + overHd (Int → Dyn → Unit ⇒ Int → Bool → Unit)
=Lc + F c + 0 + Up + F c + overHd (Int ⇒ Int) + overHd (Bool ⇒ Dyn) + overHd (Unit ⇒ Unit)
=Lc + F c + 0 + Up + F c + U i

=Lc + 2 · F c + Up + U i

Due to the limited space, the algorithm in Figure 5 deals with base types, function types,
and list types only. Our implementation supports many more types, including dictionary
types, tuples, objects, records, and several others, with the same idea.

ECOOP 2024

21:14 Learning Gradual Typing Performance

4.3 Representing Overheads for a Program
Without the loss of generality, we assume that a program consists of a few functions and
top-level statements. When the program is translated, casts are inserted into function
definitions and top-level statements. To extract the feature vector for a program, we repeat
the following for each function. For each cast inserted in the function, we use Figure 5 to
calculate the overhead. We then sum the overheads for all casts together. If a cast appears
in a loop, then we automatically instrument the loop, obtain the number of times the loop is
executed, and multiply the cast overhead by that number. For example, if a function has
two casts that are outside of loops and have the overheads F c + Up and Lc + F c + Up + U i,
then the total overhead for that function is Lc + 2 · F c + 2 · Up + U i. The feature vector for
that function is the coefficients of all overhead symbols, represented as 1, 2, 2, 1 in this case.
The machine learning algorithm will turn these coefficients into runtime predictions.

Similarly, for the casts inserted in top-level statements, we calculate the overhead of each
cast and sum them together.

Finally, we concatenate representations for all functions and top-level statements, forming
a list of coefficients. This list will be the feature representation of the whole program.

4.4 Assessing Feature Effectiveness

Figure 6 3D PCA analysis for Nbody using bit strings (left) and cast overheads (right). Both
figures are generated with elevation of 10.0 and use azimuth angle 50.

Our approach LearnPerf is developed using cast overheads as features. For all the bench-
marks we used to evaluate the performance, the DR is always less than 4% except for one
benchmark whose DR is 5.3% (We will present the results in more detail in Section 5). In
general, this means that our predicted time is in average within 4% of difference compared
to the real measured time. We view this as a significant improvement over the performance
of bit-string based solution, where DR is often higher than 30% and can be as high as 90%.

We have performed a PCA analysis Abdi and Williams [1] to understand the effectiveness
of both bit strings and cast overheads. Figure 6 presents the analysis results for Nbody. In the
figure, axes represent values of PCA components and colored circles represent configurations.
In particular, configurations with similar running times get the same color. The running
times of Nbody are roughly in three groups: those less than 7.5s (seconds), between 12.5s
and 15s, and more than 20s (see Figure 7 for more details). From Figure 6, we can observe
that bit strings fail to separate configurations while cast overheads successfully separate
configurations according to their runtimes. Intuitively, clear separations of configurations
according to their runtimes mean fewer prediction errors. This shows the usefulness of using
cast overheads as features.

M. W. Khan, S. Chen, and Y. He 21:15

Table 3 Python benchmarks used for performance evaluation. The last column gives the number
of configurations generated for the corresponding benchmark.

Benchmark LOC # of functions # of pars # of typed pars # of configurations

Monte Carlo 90 4 9 9 385
Meteor 238 8 26 14 1024
CPU 2824 32 39 23 2897
Zebrafy 1578 28 72 38 4000
Pascal 70 7 19 15 5184
chaos 271 22 42 29 6000
Richard 455 21 94 67 6000
BenchFirst 1017 27 76 54 6000
Sieve 56 9 22 21 15361
Nbody 195 4 21 18 16384
Scimark 65 5 22 17 25088
Raytrace 254 37 67 38 33904

5 Performance Evaluation

We have implemented LearnPerf in Python. The main components are type addition, feature
extraction, model training. Some of evaluated benchmarks are adopted from earlier work in
gradual typing Campora et al. [8], Vitousek et al. [45], which already have type information.
For other benchmarks, we use HiTyper (Peng et al. [30]), a state-of-the-art deep learning
approach, to infer types that may be added. One issue with HiTyper is that some inferred
types are erroneous, as noted by Yee and Guha Yee and Guha [51]. We remove a type
annotation whenever adding it causes static type conflicts. We generate a new, more precisely
typed program after merging the type annotations from HiTyper into the original program.
From the new program, we generate a desired number of configurations for each benchmark
(Table 5).

We implemented feature extractions on top of Reticulated Python (Vitousek et al. [45,
47, 46]). To test the generality of our approach, we have implemented feature extractions for
both the guarded semantics Vitousek et al. [45] and transient semantics (Vitousek et al. [47]).
Since these two semantics lead to different translated programs, we have different feature
extraction codes. However, both implementations are based on the idea of gauging cast
overheads, discussed in Section 4. Our feature extraction, which totals about 1,850 lines of
code, supports the most commonly used Python types, including lists, functions, dictionary
types, tuples, iterables, objects, classes, and many others.

The model training component is implemented on top of the scikit-learn Pedregosa
et al. [29] package, a frequently used machine learning Library in Python. We use scikit-
learn’s various models, its training-testing data split package, and its metrics package. This
component includes less than 200 LOC.

5.1 Benchmarks
To evaluate the performance of LearnPerf, we adopted nine benchmarks that were commonly
used in gradual typing research in Python (Vitousek et al. [47, 46], Campora et al. [8].
These programs are relatively small, often below 500 LOC. In addition, we adopted three
large benchmarks, including Zebrafy (a Python program for creating PDF files) and CPU

ECOOP 2024

21:16 Learning Gradual Typing Performance

Benchmark and BenchFirst (two performance bench-marking programs). For each benchmark,
we present the name, lines of code, number of functions, number of parameters, number
of parameters that are typed originally or with the help of HiTyper, and total number of
configurations we generated for evaluating our performance in Table 3.

The number of configurations generated for each benchmark is mainly determined by
two factors: the number of parameters in the benchmark and the time required to run each
configuration. For example, each configuration in Zebrafy, CPU Benchmark, and BenchFirst
takes more than 100 seconds to finish. As a result, we generate about only 4000 configurations
for such benchmarks.

The configurations for each benchmark for evaluating performance are generated follow
the insights from Greenman et al. [16] to ensure that they are representative. We can
imagine that all configurations from a benchmark be organized into a lattice based on
the parameters that are typed. The lattice includes 2n configurations if n parameters are
typed. All configurations in the same row of the lattice assign types to the same number of
parameters. For example, the bottom-most row assigns types to zero parameters, and the
row above assign types to only one parameters, and the row above that assign types to two
parameters, and so on.

In our experiments, we generated configurations such that every row of the lattice is
covered. Moreover, we try to maintain same proportion of generated configurations over all
configurations in a row across all rows. However, for middle rows, the percentage is smaller
because there are too many configurations in them. For example, the middle row has C

n
2

n

configurations. Once these configurations are generated, we randomly split them so that 40
are used for training and the remaining are used for testing. Note, we repeated 5 times for
the training/testing process.

The running times in this paper are measured on a machine equipped with Intel(R)
Core(TM) i9-9900K CPU @ 3.60GHz, 8 Core(s), and 16GB RAM. Each measured time is an
average of 10 runs.

Figure 7 gives an idea of how execution times look as a certain number of parameters
are typed. The figure shows that while the running times of some benchmarks are clustered,
others are scattered. We believe that these benchmarks serve the evaluation purpose well.

Our evaluation focus on Scenarios 1 and 3 only. The result for Scenario 2 is similar to
that for Scenario 3, and we omit it in the paper.

5.2 Supporting Scenario 1
To simulate the real development scenario, we randomly selected 40 instances from all
generated configurations as training instances, and we use linear regression to train a time
prediction model. Compared to standard machine learning applications, our approach uses
significantly fewer data instances for training.

To ensure that the model correctly learns patterns from the data and doesn’t pick up too
much noise, we used k-fold cross-validation technique. As is standard in machine learning
practice, our results are averaged over all k trials to get the overall performance of the model.
We set k to 5 in our evaluation. Experiments were run on the same machine we used for
generating benchmark’s configurations.

Table 4 describes the performance of LearnPerf on all evaluated benchmarks. Columns
three through five of the table show that even when the model is trained with only 40
instances, our prediction result is very accurate, with DR (defined in Section 3.2) less than
3% for nine benchmarks, between 3% and 4% for two benchmarks, and is 5.26% for one
benchmark. Intuitively, this means that our predicted times are very close to measured times.

M. W. Khan, S. Chen, and Y. He 21:17

Figure 7 Benchmark’s configurations description: Run Time vs Number of parameters typed for
each benchmark.

Columns six and seven of Table 4 present the ratios of configurations whose DR are less
and greater than 10%, respectively. The result shows that there are fewer configurations that
have large difference ratios.

Figure 8 presents a closer investigation of the evaluation result. Specifically, we divide each
benchmark into five groups in terms of their measured running time of different configurations
of the benchmark. Next, we predict the performance (running time) and measure the DR of
all configurations within each group. For every group, green represents a DR of less than
5%, cyan represents 5 to 10%, blue represents 10 to 15%, violet represents 15 to 20%, and
red represents more than 20% of DR. The figure reveals that, in general, the configurations
that have smaller running times tend to experience higher DRs. There are two potential
reasons behind this. First, a small variance in predicted time for such configurations can lead
to a higher DR. Second, even averaged over ten runs, each measured time includes a small
randomness due to computer execution dynamics, and the randomness in such configurations
has a more conspicuous impact.

ECOOP 2024

21:18 Learning Gradual Typing Performance

Table 4 The performance of LearnPerf on evaluated benchmarks. The model for each benchmark
is trained with forty randomly selected configurations. The second column gives the number of
testing instances (configurations). Columns three through five gives the average performance of all
testing instances. Columns six and seven give the ratios of instances whose DR are less than and
greater than 10%, respectively.

Benchmark # testing MAE MSE DR <10% >10%

Monte Carlo 344 0.05 ± 0.01 0.07 ± 0.01 3.597% 93.77% 6.23%
Meteor 984 0.32 ± 0.01 0.39 ± 0.02 2.70 % 97.35% 2.65%
CPU 2857 1.56 ± 0.01 2.07 ± 0.08 1.91% 99.80% 0.2%

Zebrafy 3960 2.70 ± 0.00 3.63±0.00 1.57% 92.88% 7.12%
Pascal 5144 0.37 ± 0.03 0.460 ± 0.04 2.10% 95.55% 4.45
Chaos 5960 2.37 ± 0.07 2.92 ± 0.09 3.56% 97.09% 2.91%

Richard 5960 0.55 ± 0.00 0.71 ± 0.00 0.91% 100% 0.0%
BenchFirst 5960 17.12 ± 0.03 25.06 ± 0.7 5.26% 86.04% 13.96%

Sieve 15321 0.17 ± 0.01 0.23 ± 0.01 2.18% 89.06% 10.94%
Nbody 16344 0.21 ± 0.01 0.25 ± 0.01 1.84% 99.86% 0.14%

Scimark 25048 0.14 ± 0.04 0.193 ± 0.05 0.97% 98.92% 1.08%
Raytrace 33864 0.26± 0.06 0.330 ± 0.09 1.73% 94.46% 5.54%

5.3 Supporting Scenario 3

Scenario 3 aims to find the neighbor with best performance for any given configuration.
This is particularly helpful when the current configuration has poor performance and the
user wants to find a neighbor with good performance.We can imagine that there are two
lattices with the current configuration.One grows up, adding more type annotations to
current configuration, and one grows down, removing type annotations from the current
configuration. We then use the idea of these two method to choose neighbors. However, here
we consider configurations that add/remove up to seven parameters. To evaluate how well
LearnPerf can support this scenario, we randomly choose a certain number of configurations,
and find the most performant neighbor of it using our model.

We present the detailed result for this scenario in Table 5, which includes the number of
configurations considered as the current configuration (the second column) and three metrics
to measure the performance of LearnPerf. To simplify our discussion below, we refer to a
configuration and all its neighbors as a region. Each region includes at least 100 neighbors or
includes all neighbors that add types to up to seven parameters. The first metric (column
three in the table) is the accuracy. For any given configuration, if the most performant
neighbor identified by LearnPerf is among the three neighbors with least execution times, then
we classify this as a correct identification. We consider top three neighbors because it is
common for many neighbors to have very small difference in execution times. The accuracy
is calculated by dividing the number of correct identifications over all regions considered for
that benchmark. For example, for Scimark, we considered 500 regions, and for 408 regions
LearnPerf made correct identifications. As a result, the accuracy is 81.6%.

The second metric (column four in the table) is the average differences between the
execution times of the real and the identified most performant neighbors. For example,
if the real most performant neighbor for a region has an execution time of 4.73s and the
identified neighbor has an execution time of 4.75s, then the time difference is 0.02s. This
column records the average of differences of all regions for that benchmark. The third metric
(column five in the table) calculates the time difference in percentage.

M. W. Khan, S. Chen, and Y. He 21:19

Figure 8 LearnPerfdetailed benchmark’s performance based on different measured run time groups.

Again, the table shows that our approach is very accurate in identifying the most
performant neighbors, with the difference ratio always below 1% except for Pascal that has a
2.4% DR.

5.4 Training and Prediction Times
Table 6 presents times needed for generating and measuring 40 configurations for training
the model, the time for training the model once these 40 configurations are ready, and the
average feature extraction time for each program. We do not present the prediction time
because that is less than 1ms for each configuration. From the table, we can see that the
most time in our approach is spent on measuring the running times for training the model.

For some benchmarks, measuring the times is relatively fast, such as for Monte Carlo,
Meteor, Sieve, Nbody, Scimark, and Raytrace. However, it takes significantly longer to
measure the times for some benchmarks, including CPU, Zebrafy, Chaos, Richard, and
BenchFirst. The reason is that each configuration from these benchmarks takes a long time
to complete. Usually, this large amount of measuring time will lead to a long response time.
Also, it looks like this long waiting time is hard to avoid.

ECOOP 2024

21:20 Learning Gradual Typing Performance

Table 5 LearnPerf’s performance on finding the most performant neighbor to migrate for each
benchmark.

Benchmark # of regions Accuracy Average difference(s) difference ratio

Monte Carlo 42 100% 0.0 0%
Meteor 500 77.0% 0.032 0.338%
CPU 38 94.74% 0.004 0.998%

Zebrafy 89 98.88% 0.007 0.087%
Pascal 500 44.80% 0.171 2.388%
chaos 297 83.16% 0.059 0.88%

Richard 98 100% 0 0%
BenchFirst 113 93.81% 0.004 0.058%

Sieve 500 63.6% 0.020 0.685%
Nbody 500 34.60% 0.116 1.246%

Scimark 500 81.6% 0.021 0.344%
Raytrace 385 96.88% 0.007 0.034%

Table 6 Training and Prediction time of Each benchmark.

Benchmark Measuring 40 configurations (s) Training(s) Feature extraction (ms)

Monte Carlo 53.27 1.00 10.98
Meteor 490.06 0.99 23.38
CPU 2997.87 3.3 1001.96

Zebrafy 7394.38 4.75 1012.30
Pascal 580.05 1.01 40.89
Chaos 2654.87 1.03 29.15

Richard 2462.77 1.99 1013.33
BenchFirst 21816.94 3.89 1112.32

Sieve 373.33 1.02 19.67
Nbody 488.94 0.99 25.86

Scimark 555.68 0.99 27.73
Raytrace 623.55 2.98 26.17

Fortunately, with the help of type migration tools, we can significantly shorten the
response time. The idea is that we start to measure the runtimes way before the user needs
the migration support. We tested this idea by automating the process of generating type
information for parameters with HiTyper, merging the generated type information into the
original program, randomly generating configurations for training, running all generated
configurations to measure their runtime duration, extracting features for these configurations,
and training a time prediction model based on the collected times and extracted features.
We tested this idea on three large benchmarks, including CPU, Zebrafy, and BenchFirst.

Once the model has been trained, predicting the running time is very fast. Since feature
generation is also very efficient, we can quickly provide migration support with the model. For
example, for any given configuration, LearnPerf is able to find the most performant neighbor
within a few seconds.

M. W. Khan, S. Chen, and Y. He 21:21

Figure 9 The relation between run times and the number of parameters that have type annotations
for six benchmarks for transient semantics.

5.5 Different Machine Learning Methods
We used linear regression to train our model. During the development of LearnPerf, we also
explored other machine learning algorithms, including random forest regression, decision tree
regression, and AdaBoost regression. We decided to use linear regression for the following
reasons. First, linear regression usually does not need too many training instances. In
our case, 40 training instances yield good performance. Second, training and prediction
with linear regression is very fast than other models. Third, linear regression yields good
performance across all benchmarks. For example, while random forest achieves 1.38% and
1.19% DRs for Monte and Sieve, respectively, the DRs for Raytrace and Scimark are above
13%.

We also tried some other famous Machine learning models, such as support vector machine
regression and MLP regression, but they either need more training instance or take more
times for training and prediction. Also, they do not outperform linear regression for our
problem.

5.6 Evaluation of Transient Semantics
In addition to evaluating the performance of LearnPerf on the guarded semantics, we have also
evaluated it on the transient semantics (Vitousek et al. [47]) using the same benchmarks. In
our feature extraction code for transient semantics, we set all the return values of callOH (·)
in Figure 5 to 0 because transient casts do not introduce proxies.

Figure 9 presents the runtime distributions for six benchmarks under transient semantics.
We omit the other six because their distributions are similar. Comparing this figure to
Figure 7 we observe that the runtimes in transient semantics are several magnitudes smaller
than in guarded semantics. Also, the runtimes have smaller variations across different
configurations.

Table 7 presents the performance of LearnPerf for the transient semantics. We can observe
that the DR is much higher than that for guarded semantics. Meanwhile, we observe that
the MAE and MSE are close to 0. This indicates that a possible reason that DR is relatively
high because the runtime of each configuration is very smaller, usually below 0.1 seconds. A
small randomness in measured time can lead to a high DR in this case.

ECOOP 2024

21:22 Learning Gradual Typing Performance

Table 7 Overall performance of LearnPerf for the transient semantics.

Benchmark # training # testing MAE MSE DR

Monte Carlo 40 344 0.002 ± 0.0 0.004 ± 0.0 31.43%
Meteor 40 984 0.005 ± 0.01 0.006 ± 0.0 25.09 %
CPU 40 2857 0.01 ± 0.0 0.02 ± 0.08 18.91%

Zebrafy 40 3960 0.001 ± 0.0 0.003±0.0 27.77%
Pascal 40 5144 0.01 ± 0.0 0.013 ± 0.0 18.549%
Chaos 40 5960 0.02 ± 0.0 0.06 ± 0.0 34.38%

Richard 40 5960 0.027 ± 0.0 0.033 ± 0.0 24.93%
BenchFirst 40 5960 0.033 ± 0.0 0.087 ± 0.0 25.88%

Sieve 40 15321 0.002 ± 0.0 0.001 ± 0.0 29.07%
Nbody 40 16344 0.003 ± 0.0 0.005 ± 0.01 21.78%

Scimark 40 25048 0.001 ± 0.0 0.001 ± 0.0 27.129%
Raytrace 40 33864 0.001± 0.0 0.002 ± 0.0 25.497%

Overall, our approach works pretty well for transient semantics also. The main insight
is that the algorithm in Figure 5 derives coefficients of cast overheads rather than the real
runtime overhead of casts. The overhead of a transient cast (checking type tags) can also be
estimated using coefficients.

5.7 Threats to Validity
It may be possible that the results observed in our evaluation do not transfer to other Python
programs. We have done the following to reduce this possibility. (1) We chose the benchmarks
that are commonly used in the literature for evaluating gradual typing performance as well
as three large Python programs (details in Section 5.1). (2) The evaluated programs cover
most commonly used language features in Python, including control structures such as
conditionals and loops, functions, classes with inheritance, tuples, dictionaries, nested lists,
etc. (3) The amount of typed parameters can have a big impact on the results. As shown in
Table 5, the percentages that parameters have types are quite diverse, ranging from about
50% (Meteor and Zebrafy) to about 100% (Monte Carlo, Sieve, and Nbody). (4) The kinds
of casts in translated programs could also affect the performance of LearnPerf. After checking
the translated programs, we observed the presence of simple casts (about 63% of all casts)
between basic types as well as higher-order casts (about 37% of all casts) between function
types, list types, and object types. (5) Each time is an average of 10 runs and each machine
learning experiment is averaged over 5 trials.

6 Related Work

Understanding performance changes during migration. While a lot of work has been done
to automatically migrate dynamic programs toward more static, little work has been done to
aid the performance aspect during program migration except for a few efforts.

Our work is closely related to the work by Campora et al. [8]. They developed Herder
to help navigate the performance landscape during migration. However, there are many
differences between LearnPerf and Herder. First, LearnPerf is able to precisely predict a
time for any configuration while Herder is able to find only a symbolic overhead for each
configuration. There is no direct mapping from these symbolic values to real runtimes

M. W. Khan, S. Chen, and Y. He 21:23

and so the relation between two symbolic values often does not carry over to the real
runtimes. For example, two configurations from a single benchmark have symbolic values
2 ∗ ℓ3 ∗ ℓ4 and 67 ∗ ℓ3 ∗ ℓ4, respectively, while their corresponding runtimes are 24.79 and
37.38 seconds, respectively. As a result, several migration supports are possible with LearnPerf

but not Herder, such as classifying neighbors of a certain configuration based on their
speedup/slowdown ratios.

Another difference is that, since our approach is based on machine learning, we only need
to extract approximate values for features. Herder, however, is based on static analysis
and needs to be very accurate. For example, in LearnPerf, the overhead for a function cast
is a simple addition of creation overhead and invocation overhead. In Herder, a function
cast needs to be transformed to an intermediate language to simulate the creation of proxies.
As a result, it is easier to support more language features in LearnPerf than in Herder. For
example, we support object and class types, but they were missing in Herder.

Greenman et al. [15] also investigated the performance problem during program migration
but from a very different perspective. Through a large-scale empirical study, the authors
studied how outputs from profilers may be exploited for proving migration supports. They
considered seventeen strategies for how to avoid configurations with unacceptable performance
and navigate to configurations to acceptable performance. Through the study, they generated
three useful lessons for developers and one lesson for language designers for how to deal with
the performance problem. Their focus is very different from our work in that we aim to
predict the runtime for each configuration, and provide other migration supports, such as
finding the best performing configuration among the neighbors, on top of that.

Assessing and Optimizing Gradual Typing Performance. Takikawa et al. [41] evaluated
the performance of Typed Racket, focusing on the areas mixing untyped and typed code. The
evaluation revealed significant runtime overhead in sound gradual typing. In evaluating the
performance of a gradual type system, Greenman et al. [16] conducted a thorough analysis by
fully annotating a series of benchmarks in Typed Racket. Absolute performance calculations
were derived by generating a significant subset of configurations from the complete lattice
of possible configurations. Performance ratios for each configuration were then compared
against base configurations to identify K-step and D-deliverable configurations.

Since the report of the performance problem in gradual typing, a lot of work has been
done to solve this problem, ranging from designing new type systems or new languages,
inferring more types to reduce casts, to developing more efficient cast languages.

Rastogi et al. [34] introduced a type inference algorithm for existing gradually typed code,
especially focusing on the inflow and outflow of types. Their approach supports open-world
soundness to enable sound interactions with unseen code. Instead, Nguyen et al. [27] used
static analysis to remove casts that always succeed without considering open-world soundness.

The idea of developing new languages to avoid expensive interactions has been explored
by Muehlboeck et al. Muehlboeck and Tate [26]. Several approaches have been developed to
exploit compilers or JITs to improve gradual typing performance Rastogi et al. [35], Richards
et al. [36], Bauman et al. [5]. Another important line of improving gradual typing performance
is through the design of new or change cast constructs Feltey et al. [12], Kuhlenschmidt
et al. [20]. The work by Allende et al. [4] designed confined gradual typing, allowing users
to control the flowing of type information through type annotations for reducing expensive
boundary crossings.

Our approach is complementary to these approaches in that they do not try to compare
the performance of different configurations and identify performant configurations. Also,
while these approaches optimize the performance of gradual programs, they often do not

ECOOP 2024

21:24 Learning Gradual Typing Performance

fully reduce the overheads due to runtime type checks. This paper shows that our approach
works well for both the guarded and transient semantics. It looks promising in applying our
idea to the translated programs from these approaches to predict the performance of these
optimized programs.

Machine Learning for Programming. Many machine learning based approaches have
been developed for solving programming language and software engineering problems Wan
et al. [49], Allamanis et al. [2]. A main trend is using deep models, such as large language
models, to automatically extract code features. Interestingly, our exploration shows that
deep learning approach does not produce a good model for performance prediction for our
problem. Vo and Nguyen [48] observed a similar phenomenon for vulnerability detection.

7 Conclusion

With gradual typing, developers enjoy the benefits of both static and dynamic typing. A
major obstacle of adopting gradual typing is that the runtime overhead when going from
less typed regions to more typed regions is often high and unpredictable. To address this
issue, we developed a machine learning-based solution named LearnPerf that approximates
runtime overheads due to inserted casts. We have evaluated our approach on 12 Python
benchmarks, with each of the three large benchmarks having more than 1000 LOC. The
evaluation results demonstrated that LearnPerf is able to precisely predict the execution time
of each configuration. On top of that, we can develop further migration supports, such as
finding the most performant neighbor of a configuration when it has poor performance. Our
approach works well for both guarded and transient semantics. In the future, we would like
to extend our approach to support a more macro level gradually-typed language, such as
Typed Racket. It is also interesting to investigate if our approach can be employed to predict
the performance of optimized gradual programs.

References
1 Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary

reviews: computational statistics, 2(4):433–459, 2010.
2 Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. A survey

of machine learning for big code and naturalness. ACM Comput. Surv., 51(4), July 2018.
doi:10.1145/3212695.

3 Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. Typilus: neural type
hints. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM, June 2020. doi:10.1145/3385412.3385997.

4 Esteban Allende, Johan Fabry, Ronald Garcia, and Éric Tanter. Confined gradual typing.
In Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pages 251–270, New York, NY, USA, 2014.
ACM. doi:10.1145/2660193.2660222.

5 Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. Sound
gradual typing: Only mostly dead. Proc. ACM Program. Lang., 1(OOPSLA):54:1–54:24,
October 2017. doi:10.1145/3133878.

6 John Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. Migrating gradual types. In
Proceedings of the 45th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL ’18, New York, NY, USA, 2018. ACM.

7 John Peter Campora and Sheng Chen. Taming type annotations in gradual typing. Proc.
ACM Program. Lang., 4(OOPSLA), November 2020. doi:10.1145/3428259.

https://doi.org/10.1145/3212695
https://doi.org/10.1145/3385412.3385997
https://doi.org/10.1145/2660193.2660222
https://doi.org/10.1145/3133878
https://doi.org/10.1145/3428259

M. W. Khan, S. Chen, and Y. He 21:25

8 John Peter Campora, Sheng Chen, and Eric Walkingshaw. Casts and costs: Harmonizing
safety and performance in gradual typing. Proc. ACM Program. Lang., 2(ICFP):98:1–98:30,
July 2018. doi:10.1145/3236793.

9 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. Gradual
typing: A new perspective. Proc. ACM Program. Lang., 3(POPL), January 2019. doi:
10.1145/3290329.

10 Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Sridharan,
Frank Tip, and Youngil Choi. Type inference for static compilation of javascript. In Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, pages 410–429, New York, NY, USA,
2016. ACM. doi:10.1145/2983990.2984017.

11 Fernando Cristiani and Peter Thiemann. Generation of typescript declaration files from
javascript code. In Proceedings of the 18th ACM SIGPLAN International Conference on
Managed Programming Languages and Runtimes, MPLR 2021, pages 97–112, New York, NY,
USA, 2021. Association for Computing Machinery. doi:10.1145/3475738.3480941.

12 Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent
St-Amour. Collapsible contracts: Fixing a pathology of gradual typing. Proc. ACM Program.
Lang., 2(OOPSLA), October 2018. doi:10.1145/3276503.

13 Ronald Garcia and Matteo Cimini. Principal type schemes for gradual programs. In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 303–315, New York, NY, USA, 2015. ACM. doi:10.1145/
2676726.2676992.

14 Ben Greenman and Matthias Felleisen. A spectrum of type soundness and performance. Proc.
ACM Program. Lang., 2(ICFP):71:1–71:32, July 2018. doi:10.1145/3236766.

15 Ben Greenman, Matthias Felleisen, and Christos Dimoulas. How profilers can help navigate type
migration. Proc. ACM Program. Lang., 7(OOPSLA2), October 2023. doi:10.1145/3622817.

16 Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan
Vitek, and Matthias Felleisen. How to evaluate the performance of gradual type systems.
Journal of Functional Programming, 29:e4, 2019. doi:10.1017/S0956796818000217.

17 Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. arXiv preprint, 2022. arXiv:2203.03850.

18 Sergiy Kolesnikov, Norbert Siegmund, Christian K’́astner, Alexander Grebhahn, and Sven
Apel. Tradeoffs in modeling performance of highly configurable software systems. Software &
Systems Modeling, 18:2265–2283, June 2019. doi:10.1007/s10270-018-0662-9.

19 Erik Krogh Kristensen and Anders Møller. Type test scripts for typescript testing. Proc. ACM
Program. Lang., 1(OOPSLA):90:1–90:25, October 2017. doi:10.1145/3133914.

20 Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. Toward efficient gradual
typing for structural types via coercions. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2019, pages 517–532, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3314221.3314627.

21 Andréa Matsunaga and José A.B. Fortes. On the use of machine learning to predict the time
and resources consumed by applications. In 2010 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing, pages 495–504, 2010. doi:10.1109/CCGRID.2010.98.

22 Zeina Migeed and Jens Palsberg. What is decidable about gradual types? Proc. ACM Program.
Lang., 4(POPL), December 2019. doi:10.1145/3371097.

23 Amir M Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios. Type4py:
practical deep similarity learning-based type inference for python. In Proceedings of the 44th
International Conference on Software Engineering, pages 2241–2252, 2022.

24 Yusuke Miyazaki, Taro Sekiyama, and Atsushi Igarashi. Dynamic type inference for gradual
hindley–milner typing. Proc. ACM Program. Lang., 3(POPL):18:1–18:29, January 2019.
doi:10.1145/3290331.

ECOOP 2024

https://doi.org/10.1145/3236793
https://doi.org/10.1145/3290329
https://doi.org/10.1145/3290329
https://doi.org/10.1145/2983990.2984017
https://doi.org/10.1145/3475738.3480941
https://doi.org/10.1145/3276503
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/3236766
https://doi.org/10.1145/3622817
https://doi.org/10.1017/S0956796818000217
https://arxiv.org/abs/2203.03850
https://doi.org/10.1007/s10270-018-0662-9
https://doi.org/10.1145/3133914
https://doi.org/10.1145/3314221.3314627
https://doi.org/10.1109/CCGRID.2010.98
https://doi.org/10.1145/3371097
https://doi.org/10.1145/3290331

21:26 Learning Gradual Typing Performance

25 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn. Corpse reviver:
Sound and efficient gradual typing via contract verification. Proc. ACM Program. Lang.,
5(POPL), January 2021. doi:10.1145/3434334.

26 Fabian Muehlboeck and Ross Tate. Sound gradual typing is nominally alive and well. In
OOPSLA, New York, NY, USA, 2017. ACM. doi:10.1145/3133880.

27 Phúc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. Soft contract
verification for higher-order stateful programs. Proc. ACM Program. Lang., 2(POPL):51:1–
51:30, December 2017. doi:10.1145/3158139.

28 Francisco Ortin, Miguel Garcia, and Seán McSweeney. Rule-based program specialization to
optimize gradually typed code. Knowledge-Based Systems, 179:145–173, 2019. doi:10.1016/
j.knosys.2019.05.013.

29 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

30 Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu. Static
inference meets deep learning: A hybrid type inference approach for python. In Proceedings of
the 44th International Conference on Software Engineering, ICSE ’22, pages 2019–2030, New
York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3510003.3510038.

31 Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha. Solver-
based gradual type migration. Proc. ACM Program. Lang., 5(OOPSLA), October 2021.
doi:10.1145/3485488.

32 Marius-Constantin Popescu, Valentina E Balas, Liliana Perescu-Popescu, and Nikos Mastorakis.
Multilayer perceptron and neural networks. WSEAS Transactions on Circuits and Systems,
8(7):579–588, 2009.

33 Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. Typewriter: Neural type
prediction with search-based validation, 2020. arXiv:1912.03768.

34 Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The ins and outs of gradual type inference.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’12, pages 481–494, New York, NY, USA, 2012. ACM.
doi:10.1145/2103656.2103714.

35 Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin M. Bierman, and Panagiotis Vekris.
Safe & efficient gradual typing for typescript. In POPL, 2015.

36 Gregor Richards, Ellen Arteca, and Alexi Turcotte. The vm already knew that: Lever-
aging compile-time knowledge to optimize gradual typing. Proc. ACM Program. Lang.,
1(OOPSLA):55:1–55:27, October 2017. doi:10.1145/3133879.

37 Jeremy Siek, Ronald Garcia, and Walid Taha. Exploring the design space of higher-order casts.
In Giuseppe Castagna, editor, Programming Languages and Systems, pages 17–31, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

38 Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In In Scheme and
Functional Programming Workshop, pages 81–92, 2006.

39 Jeremy G. Siek and Manish Vachharajani. Gradual typing with unification-based inference.
In Proceedings of the 2008 Symposium on Dynamic Languages, DLS ’08, pages 7:1–7:12, New
York, NY, USA, 2008. ACM. doi:10.1145/1408681.1408688.

40 Dagmar Stumpfe and Jürgen Bajorath. Exploring activity cliffs in medicinal chemistry. Journal
of Medicinal Chemistry, 55(7):2932–2942, 2012. PMID: 22236250. doi:10.1021/jm201706b.

41 Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias
Felleisen. Is sound gradual typing dead? In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16, pages 456–468,
New York, NY, USA, 2016. ACM. doi:10.1145/2837614.2837630.

42 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: From scripts to pro-
grams. In Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’06, pages 964–974, New York, NY, USA,
2006. ACM. doi:10.1145/1176617.1176755.

https://doi.org/10.1145/3434334
https://doi.org/10.1145/3133880
https://doi.org/10.1145/3158139
https://doi.org/10.1016/j.knosys.2019.05.013
https://doi.org/10.1016/j.knosys.2019.05.013
https://doi.org/10.1145/3510003.3510038
https://doi.org/10.1145/3485488
https://arxiv.org/abs/1912.03768
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/3133879
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1021/jm201706b
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/1176617.1176755

M. W. Khan, S. Chen, and Y. He 21:27

43 Sam Tobin-Hochstadt, Matthias Felleisen, Robert Findler, Matthew Flatt, Ben Greenman,
Andrew M. Kent, Vincent St-Amour, T. Stephen Strickland, and Asumu Takikawa. Migratory
Typing: Ten Years Later. In Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi,
editors, 2nd Summit on Advances in Programming Languages (SNAPL 2017), volume 71
of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:17, Dagstuhl,
Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
SNAPL.2017.17.

44 Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and Shriram Krishnamurthi. The
behavior of gradual types: A user study. In DLS, number ICFP in DLS 2018, page 1–12, 2018.
doi:10.1145/3393673.3276947.

45 Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. Design and evaluation
of gradual typing for python. In Proceedings of the 10th ACM Symposium on Dynamic
Languages, DLS ’14, pages 45–56, New York, NY, USA, 2014. ACM. doi:10.1145/2661088.
2661101.

46 Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. Optimizing and evaluating
transient gradual typing. In Proceedings of the 15th ACM SIGPLAN International Symposium
on Dynamic Languages, DLS 2019, pages 28–41, New York, NY, USA, 2019. ACM. doi:
10.1145/3359619.3359742.

47 Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. Big types in little runtime:
Open-world soundness and collaborative blame for gradual type systems. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
pages 762–774, New York, NY, USA, 2017. ACM. doi:10.1145/3009837.3009849.

48 Hieu Dinh Vo and Son Nguyen. Can an old fashioned feature extraction and a light-weight
model improve vulnerability type identification performance? arXiv preprint, 2023. arXiv:
2306.14726.

49 Yao Wan, Yang He, Zhangqian Bi, Jianguo Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu,
Hai Jin, and Philip S Yu. Deep learning for code intelligence: Survey, benchmark and toolkit.
arXiv preprint, 2023. arXiv:2401.00288.

50 Jun Xia, Lecheng Zhang, Xiao Zhu, and Stan Z. Li. Why deep models often cannot beat non-
deep counterparts on molecular property prediction? In ICML 3rd Workshop on Interpretable
Machine Learning in Healthcare (IMLH), 2023. URL: https://openreview.net/forum?id=
hJG8xgj2Y5.

51 Ming-Ho Yee and Arjun Guha. Do machine learning models produce typescript types that
type check? arXiv preprint, 2023. arXiv:2302.12163.

ECOOP 2024

https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://doi.org/10.1145/3393673.3276947
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3009837.3009849
https://arxiv.org/abs/2306.14726
https://arxiv.org/abs/2306.14726
https://arxiv.org/abs/2401.00288
https://openreview.net/forum?id=hJG8xgj2Y5
https://openreview.net/forum?id=hJG8xgj2Y5
https://arxiv.org/abs/2302.12163

	1 Introduction
	1.1 Performance Problem in Type Migration
	1.2 A Machine Learning Based Solution
	1.3 Workflow and Contributions of This Work

	2 Background
	3 Feature Engineering
	3.1 First Attempt: Global Model with Deep Learning
	3.2 Second Attempt: Individual Models with Bit Strings

	4 Third and Successful Attempt: Gauging Cast Overheads
	4.1 Overheads for Individual Casts
	4.2 An Algorithm for Gauging Individual Casts' Overheads
	4.3 Representing Overheads for a Program
	4.4 Assessing Feature Effectiveness

	5 Performance Evaluation
	5.1 Benchmarks
	5.2 Supporting Scenario 1
	5.3 Supporting Scenario 3
	5.4 Training and Prediction Times
	5.5 Different Machine Learning Methods
	5.6 Evaluation of Transient Semantics
	5.7 Threats to Validity

	6 Related Work
	7 Conclusion

