
Constrictor: Immutability as a Design Concept
Elad Kinsbruner1 # Ñ

Technion, Haifa, Israel

Shachar Itzhaky # Ñ

Technion, Haifa, Israel

Hila Peleg # Ñ

Technion, Haifa, Israel

Abstract
Many object-oriented applications in algorithm design rely on objects never changing during their
lifetime. This is often tackled by marking object references as read-only, e.g., using the const
keyword in C++. In other languages like Python or Java where such a concept does not exist,
programmers rely on best practices that are entirely unenforced. While reliance on best practices
is obviously too permissive, const-checking is too restrictive: it is possible for a method to mutate
the internal state while still satisfying the property we expect from an “immutable” object in this
setting. We would therefore like to enforce the immutability of an object’s abstract state.

We check an object’s immutability through a view of its abstract state: for instances of an
immutable class, the view does not change when running any of the class’s methods, even if some of
the internal state does change. If all methods of a class are verified as non-mutating, we can deem
the entire class view-immutable. We present an SMT-based algorithm to check view-immutability,
and implement it in our linter/verifier, Constrictor.

We evaluate Constrictor on 51 examples of immutability-related design violations. Our
evaluation shows that Constrictor is effective at catching a variety of prototypical design violations,
and does so in seconds. We also explore Constrictor with two real-world case studies.

2012 ACM Subject Classification Software and its engineering → Software design engineering;
Software and its engineering → Software defect analysis

Keywords and phrases Immutability, Design Enforcement, SMT, Liskov Substitution Principle,
Object-oriented Programming

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.22

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.9 [36]
Software (ECOOP 2024 Artifact Evaluation approved artifact): https://doi.org/10.5281/zenodo.
11003108

Funding This research was supported by the Israeli Science Foundation (ISF) grants no. 2117/23
and 651/23.

1 Introduction

Object-oriented code routinely manipulates objects and passes around references to them,
some of which are stored in other objects. Parts of the code often rely on some object not
being changed during its lifetime. This may be in order to uphold some properties as thread
safety [30], security [50] and the stability of invariants [31], allow the use of features like
interning [11], or improve the readability of the code [24]. Other considerations include
information leakage [50] and concurrency [30]. For these reasons, client code may be written
under the assumption that objects on which it relies do not change.

1 Corresponding author.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Elad Kinsbruner, Shachar Itzhaky, and Hila Peleg;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 22; pp. 22:1–22:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kinsbruner@cs.technion.ac.il
http://kinsbruner.cswp.cs.technion.ac.il
https://orcid.org/0000-0003-1314-0945
mailto:shachari@cs.technion.ac.il
https://csaws.cs.technion.ac.il/~shachari/
https://orcid.org/0000-0002-7276-7644
mailto:hilap@cs.technion.ac.il
https://hilap.cswp.cs.technion.ac.il
https://orcid.org/0000-0002-0107-5659
https://doi.org/10.4230/LIPIcs.ECOOP.2024.22
https://doi.org/10.4230/DARTS.10.2.9
https://doi.org/10.4230/DARTS.10.2.9
https://doi.org/10.5281/zenodo.11003108
https://doi.org/10.5281/zenodo.11003108
https://doi.org/10.4230/DARTS.10.2.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Constrictor: Immutability as a Design Concept

In each of these use cases, the term immutability denotes some set of specific assumptions
about the object that the use case requires: when used from multiple threads, an object’s
fields must be available to read without data races; to be safe to pass into an API, the
client programmer wants to know foreign code is not going to break the API’s relied-upon
invariants; when used as a key in a hash table, the library assumes that the hash value of the
object is going to remain constant. Despite different needs relying on different assumptions,
programming practices rely on one of two solutions: (i) documentation-based agreements
at the project or language level [44] that delegate all responsibility to human users, or (ii)
annotations that can be checked by the compiler or some external tool.

The first option is extremely expressive – as expressive as humans are – but has the
obvious downside of the risk of human error. In the scope of checked annotations, some
language features provide some steps in this direction: C++’s const keyword and Java’s
final that designate fields and variables as read-only. However, neither of these is a good
match for the cases described above: final only blocks assignment to a field or variable, but
the referenced object can still be mutated via function calls, and final does not provide
guarantees about object fields unless those happen to be final as well.

C++’s const is seemingly a better fit, but is still not expressive enough. First, a similar
problem to final still exists, where a pointer/reference being const and its content being
immutable are still managed separately (e.g., const A* const), and that decision is still left
to the programmer. In addition to that, const can be used on a specific method, indicating
that the method cannot mutate any fields. This does not allow declaring an entire interface
as immutable, only certain method; and other methods, particularly ones introduced via
inheritance, can mutate any field, including those accessed by const methods. The semantics
of const cannot be used to enforce the property that an interface and all its implementing
hierarchy be immutable. In addition to this, for some use-cases it is too restrictive not to be
able to assign to any field, so C++ also allows marking fields as mutable (can be changed
even from const methods). It is then, again, the user’s responsibility to use this annotation
responsibly, and no formal guarantees are provided by the compiler.

Immutablity in class hierarchies. When provided with an interface or class that is supposed
to be immutable, a programmer would like to take advantage of this immutability for
purposes of design simplicity or for various optimizations. However, implementing classes and
subclasses can introduce unwanted mutations. Languages like Java and C# handle this by
marking key library classes (e.g., strings) as final or sealed. This still does not protect the
user from contract mismatches within the library implementation; and, moreover, it precludes
legitimate extensions of classes in ways that do not violate the immutability guarantees.
This is one of the instances for which the Liskov Substitution Principle (LSP) [39] applies;
inheritance as a language mechanism cannot enforce the preservation of properties, and lack
of mutations is one such property. The LSP is a principle, rather than a mechanism, because
it is not always possible to distinguish implementations that preserve the properties and ones
that do not; and because the properties themselves are often implicit.

Kotlin collections are an interesting example – Figure 1 shows a truncated version of
two interfaces, List and MutableList, from the Kotlin standard library. As summed up by a
Google developer [37]:

MutableList, as the name implies, is a list that has operations to mutate, or change,
its contents: add, remove, and replace items. It’s easy to come to the conclusion that
the List type must therefore be immutable. That’s not the case. Lists are “read-only”,
but they may or may not be mutable. [...] The MutableList interface extends the List
interface, so it’s very easy to create a list that you can change, but pass it around to
other code so that code can only read it, even as you’re still making changes.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:3

interface List <E> {
operator fun get(index: Int): E
fun indexOf (element : E): Int
operator fun contains (element : E): Boolean
// truncated

}

interface MutableList <E> : List <E> {
fun add(element : E): Boolean
fun remove (element : E): Boolean
fun clear ()
// truncated

}

class Foo(val someList : List <Int >) {
init { // called during object construction

assert (0 in someList)
}
fun doStuff () {

// some stuff
val idx = someList . indexOf (0) // implicit assumption :

// init assert still holds!
// some more stuff

}
}

Figure 1 List and MutableList from Kotlin and client code.

In other words, since MutableList instances are also List instances, the best we can say is that
List does not allow mutation and does not forbid mutation. An understandably-confused
programmer may create an instance of the Foo class (line 17 of Figure 1) using a MutableList,
which will be allowed by the type-checker. The list might at first satisfy the initial assertion,
but the programmer may then clear it before calling doStuff. doStuff relies on the assertion
in the constructor and dereferences a now-empty list, due to the mistaken assumption that
List objects cannot change. Kotlin’s list hierarchy keeps us from taking advantage of the
type checker to enforce our design decisions.

This shows how immutability-related violations of the LSP are particularly insidious.
For this reason, the Scala standard collections library and the Guava libraries for Java fully
separate their mutable collections from the immutable ones [5, 7, 21].

Object state: concrete vs. abstract. One possible solution is to “freeze” the memory:
create a copy of an object that disallows mutation of all fields. This “freeze” could be shallow
(as C++’s const would create) or deep (essentially an expensive clone). Such a shallow
“freeze” operation exists in languages such as JavaScript [8] and Ruby [4]. Both approaches
have significant disadvantages as mentioned, and are not widespread. Moreover, object fields
are sometimes used for internal bookkeeping in ways that permits – and requires – to update
their values in situations where the object’s content is not conceptually changed. An example
of this can be seen in ImmutableLookupList (Figure 2), where the field lookupCache is used for
memoizing calls to indexOf. While the class indeed mutates this field, it does so in a way
that is non-observable to the user. In such cases, memory freeze is too strong, as it would
disallow these updates. This requires the same kind of escape hatch that mutable provided
for const, which yet again puts the burden on the programmer to decide which fields present
part of the visible state. In some cases, the distinction is not even possible, because a field
may produce a visible effect for some, but not all, of the ways in which it can be mutated.

ECOOP 2024

22:4 Constrictor: Immutability as a Design Concept

class ImmutableLookupList <E> : List <E> {
private var lookupCache : CacheEntry <E, Int >?
val backingArray : Array <E>
override fun indexOf (elem: E): Int {

if(this.cache != null && this.cache !!. first == elem)
return this.cache !!. second

var ret = -1
for(i in backingArray . indices ())

if(backingArray [i] == elem) {
ret = i
break

}

this.cache = CacheEntry (elem , ret)
return ret

}
// truncated

}

Figure 2 A class that mutates fields but not in an observable way.

For example, in the standard implementation of the union-find data structure [33], some
mutations to the pointer structure may cause visible mutation while others are just different
ways of expressing the same data.

The problem with ImmutableLookupList is actually a problem with considering lookupCache

to be part of the state. It is, of course, part of the concrete state of an ImmutableLookupList

object, i.e., it is part of the memory allocated for the object. However, let us consider how
ImmutableLookupList looks to an external observer: lookupCache is used in the implementation of
the method indexOf, and mutated by it, but this mutation is not observable – through indexOf

or any other method of ImmutableLookupList. It is, in other words, an “implementation detail”,
never exposed to any client code. It does not impact the abstract state of the object [54].
What we need, therefore, is immutability of the abstract state of the object.

1.1 Our approach: views and view immutability
In order to separate the abstract state from the fields pertaining to internal implementation,
we define an object’s view: the set of methods that expose the abstract state to the rest
of the system. The guarantee we want, then, is that if the view of an object is immutable,
and this property is enforced down the inheritance tree, the immutable hierarchy can safely
accommodate mutations of internal state. An enforcement mechanism less rigid than const

or frozen objects can allow optimizations like memoization and caching, while disallowing
the introduction of visible mutation into the hierarchy.

We define for each object two sets of methods, the set of immutable methods I, annotated
by the programmer as @immutable, which are methods that do not mutate the abstract
state of the object, and the set of view methods V , annotated as @viewmethod, whose return
values define the object’s abstract state. In the common case, V ⊆ I, and so @viewmethod also
indicates @immutable (this is not theoretically required, but conserves user effort). Marking the
class as @immutable has the same effect as marking each of the class’s methods as @immutable,
with one notable distinction: the class annotation is inherited, and applies to all methods of
the inherited class, including new methods that were not inherited from its parent class.

We then define the notion of view-immutability with regards to the view V such that when
calling any method from I, the object’s internal state may change, but the abstract state
exposed by V does not. While checking this property is not tractable, we show a relaxed
property that can be checked, that implies the stronger property under certain conditions.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:5

The notion of view-immutability is meant to be checked in a modular way – there is no
need to verify anything regarding the client code, only the data structures themselves. We
expect that common data structures in libraries be annotated with @immutable as needed,
and client code can use these data structures with the desired guarantees.

Our theory is flexible enough to support weaker notions of immutability, e.g., temporary
mutability during an init phase [51], or temporary immutability, e.g., immutable references
in the type system guaranteeing that referenced objects do not change, as in Rust [40].

We implement our approach in a linter/verifier for Python programs named Constrictor.
We translate each class to an SMT encoding using our translating compiler, Py2Smt, then
check whether each of the methods in I are indeed non-mutating.

Lightweight verification. Constrictor does not verify the code for correctness; rather,
it checks for adherence to design decisions, which is an easier problem. However, it can
still fail: Constrictor’s analysis is bounded, and its reliance on SMT inherits the solver’s
limitations. Even with these limitations, Constrictor can still act as a contract-checker. This
hinges on the fact that immutability violations are usually not bugs but rather unintended
violations of conscious design decisions made by different programmers, and as such, they
rarely hide from the programmer – or from Constrictor. Empirically, the immutability
property depends mostly on the program’s dataflow and not on complex relationships between
values. Sometimes there are some correlations that need to be tracked, e.g., in Figure 2 the
cache variable’s value is returned to client code, and so needs to be consistent with a real
value/index in the list. When the SMT solver returns unknown, there are two options: if
Constrictor is run as a verifier, these unknowns will be treated as violations, whereas if it is
run as a linter, only violations for which the solver has returned an answer will be displayed
to the user.

We evaluate Constrictor on 51 examples of immutability-related design violations. Our
evaluation shows that Constrictor is effective at catching a variety of prototypical design
violations, and does so in seconds. We also explore Constrictor with two real world case
studies, one fixing a design problem in a collections module, and the other introducing
memoization into an immutable design pattern. Moreover, we explore human errors that
could be made when providing Constrictor with annotations.

Contributions. The contributions of this paper are:
A definition of view immutability, and a relaxed definition that can be statically checked.
An SMT-based algorithm for checking view immutability.
Py2Smt, a compiler that encodes Python functions for SMT solvers.
Constrictor, a verifier/linter that implements our algorithm for Python programs.
An empirical evaluation of Constrictor and detailed analysis of the results.2

2 Overview

Constrictor is a linter/verifier for Python, so, from now on, the examples will be written in
Python. The general concepts are identical and we will be using full type annotations.

We continue our running example that consists of a list library that includes the interface
LookupList in Figure 3. This interface only contains methods that allow for the inspection
of instances of its implementors. The programmer’s intent was that instances of LookupList

should not be mutated (visibly) through their methods. Users of the library rely on this
assumption, which until now was only enforced by comments and naming conventions.

2 Our replication package is available as a DARTS artifact [36].

ECOOP 2024

22:6 Constrictor: Immutability as a Design Concept

@immutable
class LookupList [E]:

@viewmethod
def __getitem__ (self , idx: int) -> E:

pass

def index_of (self , element : E) -> int:
pass

@viewmethod
def get_size (self) -> int:

pass

Figure 3 A Python interface for a list class with an index_of method.

The programmer seeks to formalize this assumption: they add the @immutable annotation
LookupList. Because LookupList functions as an interface, the substitution principle [39]
dictates that the @immutable annotation should hold for inheriting classes as well.

Consider two implementors of LookupList (Figure 4). One of them, UpdatingLookupList,
violates this assumption by adding methods that mutate the state in a visible way. The
other, MemoizingLookupList, also mutates an object field, but does not change the abstract
state of the object as observed through the LookupList interface: the field cached is used for
memoization: storing index_of’s most recent input/output. Since both classes update data
in object fields, the distinction between them is not a simple semantic check.

Our goal is for Constrictor to warn the user about the @immutable annotation’s violation
in UpdatingLookupList, and not generate a spurious warning for MemoizingLookupList.

Immutable abstract state. The sense in which we would like LookupList to be immutable
is that the return values of “getter” methods, such as __getitem__, do not change after
calling any of LookupList’s methods. In this sense, their abstract state is represented by their
“observing” methods, whose return values should not change if we wish to consider LookupList

an immutable interface.
We call the set of methods representing the abstract state the class’s view: if two objects

can be viewed differently through these methods, they definitely do not represent the same
conceptual object. Notice that defining the view as just __getitem__ and get_size would be
equivalent to defining it to be all three methods of LookupList, because for any implementation
upholding the class contract, two instances agreeing on the return values of __getitem__ and
get_size for all parameters would also agree on the return values of the other two methods.

The choice of view is akin to defining the abstract object: index_of only exposes the first
instance of every value, and different lists that share the locations of duplicate elements – it
does not matter which elements as long as they are duplicates – would be equivalent under
a view made up of only index_of. Moreover, if LookupList had a contains method returning
whether an element is in the list somewhere, then a view comprising only contains would
essentially define the abstract object to be equivalent to a set.

It is therefore important to choose a view that represents the intended abstract state for
the class. Modeling a list essentially means modeling a partial function mapping indices to
elements, which can be achieved with one of the views above. Between equivalent views,
choosing the smallest one will reduce the size of formulas generated by Constrictor, which
will usually reduce the tool’s run time.

When considering both implementations of LookupList, it appears as though both im-
plementations cause state mutation by changing fields. However, one, MemoizingLookupList,
realizes the contract and does not mutate the state visibly, while the other, UpdatingLookupList,
mutates the state in a way that can be observed from outside the class.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:7

class MemoizingLookupList [E](LookupList):
cached : Pair[int , E]
data: list[E]
size: int

def index_of (self , element : E) -> int:
if self. cached . second == element :

return self. cached .first
for i in range(self.size):

if self.data[i] == element :
self. cached = Pair(i, element) # mutation !
return i

return -1
truncated

class UpdatingLookupList [E](LookupList):
data: list[E]
size: int

def index_of (self , element : E) -> int:
for i in range(self.size):

if self.data[i] == element :
return i

return -1

def add(self , element : E):
self.data. append (element) # mutation !
self.size += 1 # mutation !

def remove (self , element : E):
self.size -= 1 # mutation !

truncated

Figure 4 Two implementations of the list interface from Figure 3.

This motivates us to define view-immutability: a class is view-immutable if calling any
of its methods on any instance with any parameters does not affect the return values of
any method in the class’s view. This definition allows MemoizingLookupList and rules out
UpdatingLookupList.

2.1 Reasoning about view-immutability
In order to verify view-immutability, and know that our assumptions about the abstract state
hold, we would need to prove a very strong property: for every state that an object can reach,
and for every method m that we would like to show is immutable, the state of the object
before and after calling m are indistinguishable for any trailing sequence of methods in the
object’s view. In other words, calling m (or not calling it) does not change the information
returned from the object’s view.

In other words, we would be considering two sequences of calls on object o:

init(⃗a); m1(); · · · ; mk(); m(); mk+1(); · · · ; mk+n()
init(⃗a); m1(); · · · ; mk(); mk+1(); · · · ; mk+n()

where throughout the sequence, if mi is part of the class view, the return value of mi is the
same. The calls up to mk constitute the object’s initialization phase, which defines all the
reachable object states. We assume that all methods are deterministic, so the values returned
during initialization are trivially equal, and it remains to be checked for mk+1, . . . , mk+n.
This task is hard to automate because it requires reasoning about unbounded sequences of
method calls. At the very least, some user intervention would be needed, in the form of
data-structure invariants or other guidance [12,15,28].

ECOOP 2024

22:8 Constrictor: Immutability as a Design Concept

View abstraction. Our approach is inspired by successful notions from the field of model
checking [20]. Instead of tracking sequences of method invocations, we establish an invariant
that holds at every step; one “step” being a synchronous method application mi(⃗a) on two
object states σ1, σ2. The invariant is derived from our notion of view: we assume that the
methods in V represent the abstract state of the object. Therefore we would like to maintain
the invariant that the two states are view-equivalent – that is, all the view methods always
return equal values when invoked on σ1 and σ2. We denote this by σ1 ≡V σ2.

To translate the problem to model checking, object states are modeled as valuations to
the object’s fields (with a signature as defined by the respective class declaration). Methods
are then represented as transitions between states. We denote the transition from σ to
σ′ using the method m as σ

m
; σ′. The problem is reduced to safety verification with the

relational invariant σ1 ≡V σ2.
While this abstraction deliberately omits some internal information about the state,

which may introduce spurious warnings, this modeling makes the problem amenable to well-
established model-checking techniques based on SMT. We employ a Floyd-style approach:
we construct the control-flow graph of each method and then trace all control paths up to
some bound. Every program statement is associated with a first-order semantics, which are
composed along each path to construct a path transition relation. The transition relation for
the method is the disjunction over all of these paths. More details are given in Section 5.

2.2 Validation steps

This subsection walks through how Constrictor performs the check as explained, using our
motivating example MemoizingLookupList to illustrate how Constrictor is able to show that
this class satisfies the @immutable contract despite benign mutations caused by its methods.

The LookupList interface is annotated as @immutable, indicating all its methods should
be non-mutating. The developer of LookupList additionally annotates the __getitem__ and
get_size methods as @viewmethod, defining the view of the object. The @viewmethod annotations
are inherited by MemoizingLookupList along with the @immutable annotation on the class. Note
that the inherited @immutable annotation on the class requires all of its methods to be
non-mutating, including ones that are not inherited from LookupList.

This annotated code is the input to Constrictor. Constrictor first checks that the
view of MemoizingLookupList is faithful, i.e., can represent the abstract state of the class. It
then verifies that all methods marked @immutable do not affect the values of the view.

Step 1: Encoding to SMT. First, we convert each Python method m to an internal
representation describing an approximation of the changes it makes to the object. We denote
this the transition relation of the function and label it TRm.

For example, in the transition relation of UpdatingLookupList.add, the assignment of
self.size on line 28 of Figure 4 is expressed as σ′[size] = σ[size] + 1. The method’s
transition relation is the composition of the transitions of all statements across all execution
paths, in the standard manner.

Constrictor’s semantics component is called Py2Smt, and it operates at the method
level by enumerating all execution paths up to a bound (this is used, for example, in loops
such as the one in Figure 1), collecting path constraints and constructing the composed
transition relation TRm symbolically for each method m. As is usually the case with bounded
model checking [16], the computed TRm is an approximation.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:9

Step 2: Agreement formula. The transition relations of the view methods are used to
compute a set of predicates that check whether two object states are view-equivalent, i.e.
agree on the return values of all methods m ∈ V (with any arguments). These predicates are
constructed by considering all possible program states at the end of each method, where the
starting states are two given object states σ1, σ2, checking whether the return value is equal
in both. A program state – unlike an object state – also valuates all the local variables and,
in particular, the method’s return value, which we denote σ[returned]. We use a⃗ to denote
the method’s call arguments, which occur in TRm as free variables.

agreem(σ1, σ2) =∆ ∀σ′
1, σ′

2, a⃗.

TRm [⃗a](σ1, σ′
1) ∧ TRm [⃗a](σ2, σ′

2)→ σ′
1[returned] = σ′

2[returned]

View equivalence is expressed symbolically by conjoining over all view methods. In this
example, there are two:(

σ1 ≡V σ2
)

=∆ agree__getitem__(σ1, σ2) ∧ agreeget_size(σ1, σ2)

Step 3: View Fidelity. Using the transition relation for all methods and the agreement
formula, we compose for each method m the formula for checking the fidelity of the view:

∀σ1, σ2, σ′
1, σ′

2, a⃗. σ1 ≡V σ2 ∧ TRm [⃗a](σ1, σ′
1) ∧ TRm [⃗a](σ2, σ′

2) → σ′
1 ≡V σ′

2

If this formula is found valid for all methods of the class, it means two objects that are visibly
indistinguishable remain visibly indistinguishable after any operation. The formula is valid
for all four methods of MemoizedLookupList, so its view is faithful.

Step 4: View Immutability. Finally, Constrictor uses both the transition relation and the
view-equivalence relation to construct the immutability check formula for each @immutable

method: for every object state, executing the checked method on it will not change the view.
For MemoizedLookupList.index_of, this means:

∀σ, σ′, idx. TRindex_of[idx](σ, σ′)→ σ ≡V σ′

The formula for index_of is valid, and it can be validated by an SMT solver. This
verifies that index_of is view-immutable over V . In contrast, if we try the same with, e.g.,
UpdatingLookupList.add:

∀σ, σ′, el. TRadd[el](σ, σ′)→ σ ≡V σ′

The formula for add is not valid, and the solver is able to produce a counterexample
to this property. For example, if σ = {data 7→ [], size 7→ 0}, the TR is satisfied by
σ′ = {data 7→ [el], size 7→ 1}; but these are not view-equivalent. In particular, get_size()
returns 0 for σ, but 1 for σ′.

3 Definitions

In this section, we define the necessary components for Constrictor’s analysis. Let C be a
class with fields F and methods S.

▶ Definition 1 (Object State). The object state of an instance of C is its logical representation:
an assignment giving a value for each field in F .

ECOOP 2024

22:10 Constrictor: Immutability as a Design Concept

▶ Definition 2 (View). A view of C is a set of methods V ⊆ S that describe the abstract
state of the class.

The view will usually contain getters for core fields of the class, while omitting memoization
fields, caches and any other data that is not part of the object’s abstract state. While there
are usually many options for selecting V , any specific choice is an expression of intent.

▶ Definition 3 (Method Term). A method term τ for method m ∈ S is an expression
m(p1, . . . , pk) where p1..k are concrete values of the corresponding parameter types. We
denote T (X) for X ⊆ S to be the set of method terms for all m ∈ X. We use the shorthand
T ≜ T (S)

A method term τ , when operating on an object state σ, has a return value (σ.τ) and a
post-state σ′, for which we denote σ

τ
; σ′.

What we actually want is to reason about two objects being indistinguishable in the
sense that view methods, which are the representation of the abstract state of the object,
cannot tell them apart. If two objects disagree on the values of view method terms, they
are clearly not indistinguishable. However, it is possible the objects agree on the values of
view method terms, but after applying some method, view methods of the resulting objects
will disagree. This can happen for arbitrarily long sequences of methods, motivating the
following definition:

▶ Definition 4 (Observable Indistinguishability). Two objects σ0
1 , σ0

2 are observably indistin-
guishable (OI) (σ1

4= σ2) with respect to view V if for all method terms τ1, . . . , τk, whenever:

σ0
1

σ0
2

σ1
1

σ1
2

· · ·

· · ·

σk
1

σk
2

τ1

τ1

τ2

τ2

τk

τk

it is the case that σk
1 , σk

2 agree on the values of all view methods from V .

Now, view immutability just means that method calls leave objects observably indistin-
guishable from their previous state:

▶ Definition 5 (View Immutability). A method m ∈ S is view-immutable with respect to the
view V if:

∀τ ∈ T ({m}). ∀σ, σ′ ∈ Σ. σ
τ
; σ′ → σ 4= σ′

A class C is view-immutable if all of its methods are view-immutable, including methods in
classes that inherit from C.

This definition is hard to check because observable indistinguishability requires checking
arbitrarily long sequences of method calls. However, since we expect the values of the view to
reflect the full abstract state of the object, we can consider the following, weaker definition:

▶ Definition 6 (View Equivalence). Instances σ1, σ2 of class C are view-equivalent (σ1 ≡V σ2)
if they agree on the values of all method terms of view methods:

∀τ ∈ T (V), (σ1.τ) = (σ2.τ)

For this to work, we expect views to be faithful in their representation of the abstract
state of the class. A problem arises if there exist two view-equivalent states, and some method
term from T , such that when applying the term on both states, the resulting states are no

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:11

σ σ′τ

4=

(a)

σ1

σ2

σ′
1

σ′
2

τ

τ

≡V ≡V

(b)

Figure 5 Illustrations of the definitions of (a) View Immutability (Definition 5) and (b) View
Fidelity (Definition 7).

longer equivalent. Conceptually, this means that the view must be missing some information,
because there exist two objects with the same view, but that are not interchangeable with
respect to their subsequent behavior through application of class methods.

This motivates the following definition:

▶ Definition 7 (View Fidelity). The view V is faithful (or exhibits view-fidelity) if for all
two objects σ1, σ2 and for all method terms τ :

(σ1 ≡V σ2 ∧ σ1
τ
; σ′

1 ∧ σ2
τ
; σ′

2)→ (σ′
1 ≡V σ′

2)

Actually, if the view is well-behaved (faithful), view equivalence between two objects
implies the stronger property of observable indistinguishability.

▶ Theorem 8 (Central Theorem). If V is a faithful view, and σ1 ≡V σ2, then σ1
4= σ2.

Proof. By induction on the length of the distinguishing method call sequence, and using
view fidelity for the induction step. ◀

Our algorithm will rely on this theorem: we will check view fidelity and the preservation
of view equivalence, and this will allow us to deduce observable indistinguishability.

4 Analysis

Our algorithm for checking if class C is view-immutable, shown in Algorithm 1, starts by
computing the immutable set and the view set for the class, by using the class annotations:

@immutable: A method labeled with @immutable must not affect the abstract state of the
object; a class labeled as @immutable is a shorthand for labeling all methods as @immutable

and all inheriting classes as @immutable.
@viewmethod: adds a method to the view set of the object: the set of methods that, if they
return the same values on two different objects, we consider them view-equivalent. A
@viewmethod annotation also implicitly adds a @immutable annotation to the method. The
user should aspire to providing the smallest view set.

These annotations are passed under inheritance.
In Algorithm 1, ImmutableSet(C) returns all methods annotated (directly or via

inheritance) as @immutable, and ViewSet(C) returns all methods annotated as @viewmethod.
For each method in the class, the transition relation is computed as a logical predicate

between two SMT variable vectors with the appropriate method store signature. The
method store signatures are a correspondence between names of memory locations used
in methods and their types. In addition, each method store signature contains the special
variable returned that represents the return value of the method. We denote this operation
GetTrOfMethod, and it is implemented using Py2Smt, as explained in Section 5.

ECOOP 2024

22:12 Constrictor: Immutability as a Design Concept

Algorithm 1 Immutability checking algorithm.
procedure CheckClass(C)

Input: A class C

Output: View unfaithful if the class view does not exhibit fidelity, and a mapping of methods
to either Violation or No-violation otherwise.

V ← ViewSet(C)
TRs← {m 7→ GetTrOfMethod(C, m) | m ∈ C}
if not CheckViewFaithful(V, TRs) then

return View unfaithful
Results← {}
for all m ∈ ImmutableSet(C) do

Σ = MethodStoreSignature(m) ▷ Collect types of fields and local variables
φ← ∀σ, σ′ : Σ. TRs[m](σ, σ′)→ Agree(V, TRs)(σ, σ′)
if CheckSat(¬φ) then

Results[m] = Violation
else

Results[m] = No-violation
return Results

Algorithm 2 View equivalence checking algorithm.
function Agree(V, TRs)

Input: A set of view methods V and their transition relations
Output: The set’s agreeV predicate

Σs← {f 7→MethodStoreSignature(f) | f ∈ V }
return λσ0, σ1.

∧
f∈V

(
∀σ′

1, σ′
2 : Σs[f]. (TRs[f](σ1, σ′

1) ∧ TRs[f](σ2, σ′
2)

)
→

σ′
1[returned] = σ′

2[returned])

Next, the view fidelity of the full class is checked: the TRs are used to create a formula
directly based on the definition of view fidelity, and its validity is checked. We denote this
CheckViewFaithful in Algorithm 1. If the view is unfaithful, a meta-warning is issued.

Then, for each method in the immutable set I, the algorithm constructs a formula that
searches for a counterexample to the immutability of the method. First, we compute a formula
that is satisfied between two states that are view equivalent by using the Agree(V, TRs)
function, shown in Algorithm 2, on the set of view methods and their transition relations.
Next, we use the result of Agree to construct a formula that is satisfied by states that are
not view-equivalent to their sequent states after application of the method. If the formula is
satisfiable, then the class is mutable, and this method is a mutator.

This is essentially a reduction of the problem to model checking. Advancements in SMT
solver technology can be applied to achieve better performance in our method as well (also
see Section 6.6).

Strengthening optimization. One optimization that we found useful in our implement-
ation is strengthening the claim and trying to prove TRs[m](σ, σ′) → (σ = σ′) instead of
TRs[m](σ, σ′) → (σ ≡V σ′) in cases where the SMT solver returned unknown. This is a
stronger property that is easier to check and holds in some cases. If that is the case, we can
consider the method as a non-violation.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:13

Correctness. The correctness of the algorithm relies on the following claim:

▶ Theorem 9 (Algorithm Correctness). If V is a faithful view, and for any method m of the
class C:

∀τ ∈ T ({m}). ∀σ, σ′. σ
τ
; σ′ → σ ≡V σ′

then the class C is view-immutable w.r.t. the view V .

Proof. Let σ, σ′ be states such that σ
m
; σ′. We can deduce that σ ≡V σ′. For view

immutability, we need to prove that σ 4= σ′. We use Theorem 8 and the fidelity of the view
V to deduce the desired property. ◀

5 Implementation

In this section we describe implementation details and design choices of Constrictor. Of
these, the lion’s share is our compiler, Py2Smt.

Py2Smt. Py2Smt computes the overapproximations of transition relations of functions and
the signatures of classes and functions for Constrictor. It is implemented using the Z3 [23]
Python API.

Py2Smt creates a CFG for each Python function, and optimizes it in order to reduce
graph size and path length. Function calls that have no summary SMT encoding are inlined
into the graph, which means recursion is currently not supported. On the resulting graph,
each path from the start vertex to the end vertex represents a potential execution path of
the function. Py2Smt translates each operation to its SMT encoding, and all paths through
the function are joined by a logical OR operation.

This translation depends on finite paths, so loops require special care: when the number
of iterations is known at compile time, loops are completely unrolled. Unbounded loops, on
the other hand, are unrolled and truncated to a configurable maximum length of program
steps, rather than a fixed number of iterations – 100 steps in our evaluation – to create finite
paths. This creates an underapproximation of the program’s behavior [16].

Moreover, since precise encoding of loops as logical formulas in decidable fragments of
first-order logic is fundamentally impossible, Py2Smt currently supports for only in the cases
of range iterations and iterations over lists. These are implemented by (i) utilizing the theory
of sequences; and (ii) automatically converting for loops to a while-like form.

Py2Smt supports most built-in types: integers, floats, booleans, strings, lists, and
dictionaries. It also supports arbitrary data types represented by classes, as well as generic
classes using the bracket syntax from Python 3.12 [1]. Inheritance is also supported. Py2Smt
relies on type hints for method signature inference in some cases. These can be provided by
the user, or supplied by any type inference tool, such as Pytype [9].

Py2Smt supports reference types and treats class types in the same way as Python – all
arguments are passed by reference, except for primitive types.

Use of solvers. Because the formulas created by Constrictor are at times large and
complex, and SMT solvers may have different strengths, Constrictor first tries CVC5 [14]
and, if it returns unknown, also tries Z3 [23].

Constrictor has two different operation modes, that differ in their behavior in the
case that both solvers return unknown both for the original formula and for the heuristically
strengthened one. In “linter-mode”, unknown is treated as “no-violation”, while in “verifier-
mode”, unknown is treated as “violation”.

ECOOP 2024

22:14 Constrictor: Immutability as a Design Concept

Unknown view fidelity. Algorithm 1 starts by attempting to prove view fidelity. Con-
strictor gives a meta-warning if it detects the view is not faithful, and proceeds if the view
is faithful. If it cannot prove either (i.e., the solver returns unknown) it assumes the view is
faithful and proceeds. This does not necessarily mean that the algorithm will result in an
unknown, since the view fidelity check reasons about methods that the rest of the algorithm
disregards.

6 Evaluation

Our evaluation is guided by these research questions:
RQ1: Can Constrictor validate a plethora of hierarchy-related design violations, as well as

other cases involving immutability violations and non-violations?
RQ2: Can Constrictor validate realistic modules implementing data structures meant to

be used in a larger projects?
RQ3: What is the impact of certain types of annotation mistakes on Constrictor?

6.1 Benchmarks
We collected 51 benchmarks comprising two sets:

Inheritance: 24 examples of classes in four immutable class hierarchies, including both
design violations and non-violations. Violations in this set include adding mutators to an
immutable class, overriding immutable methods in a mutating way, defining a view of the
object that returns part of the class’s internal state, etc. Some are classic examples of
inheritance in object-oriented programming, and others are synthetic, created to measure
Constrictor’s performance for different sources of design-related immutability violations.
Non-inheritance: 19 examples of immutability violations and non-violations in cases
unrelated to immutable hierarchies. These exercise Constrictor on a wider array of
design issues, taken from online tutorials and the official language documentation for
C++ [10]. Benchmarks originally in C++ were manually translated to Python and
annotated such that every const C++ method is marked as @viewmethod.
Aspects & Limitations: 8 synthetic benchmarks crafted to demonstrate various aspects
and limitations of Constrictor’s technique. The four types of benchmarks in this set
explore: 1) loops are unrolled: violations hidden by the unrolling bound; 2) complicated
view fidelity checks: views that are not trivially faithful, and the fact that checking view
fidelity is separate from immutability violation checks, so the latter can succeed even
when the former fails; 3) state space is overapproximated: one benchmark showing how
unreachable code can cause a violation due to the overapproximation of object states; and
4) variable types must be explicitly specified: one benchmark showing cases where type
inference cannot give an unambiguous answer without user-provided type annotations.

The Inheritance set contains 24 benchmarks, together measuring 778 lines of code (avg
32.4LOC) across 70 methods. The set contains 32 loops. Three methods suffer from
intentional annotation mistakes. Six benchmarks contain lists and two contain dictionaries.

The Non-inheritance set contains 19 benchmarks, together measuring 806 lines of code (avg
39LOC) across 66 methods. The set contains 28 loops. One method suffers from intentional
annotation mistakes. Eight benchmarks contain lists and three contain dictionaries.

The Aspects & Limitations set contains eight benchmarks, together measuring 248 lines
of code and 20 methods.

Each @immutable and @viewmethod method is classified according whether its implementation
violates the annotation. Our benchmark suite contains the following composition:

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:15

Table 1 Constrictor results on the Inheritance benchmarks.

Fidelity Violations
Class |I| |V | exp/act Found Success Time (ms)

Li
st

s List 1 1 ✓ ✓ 0 ✓ 3107
MutableList 2 1 ✓ ✓ 1 ✓ 2571

Po
in

ts

AlrightPoint 3 2 ✓ ✓ 0 ✓ 366
EvilPoint 4 2 ✓ ✓ 2 ✓ 301
GoodPoint 3 3 ✓ ✓ 0 ✓ 267
InauspiciousPoint 4 3 ✓ ✓ 1 ✓ 275
MaliciousPoint 3 3 ✓ ✓ 1 ✓ 293
MutablePoint 2 2 ✓ ✓ 0 ✓ 169
Point 2 2 ✓ ✓ 0 ✓ 185
WrongfullyAnnotatedMutablePoint 3 3 ✓ ✓ 1 ✓ 300

Se
ts

EvilHashSet 1 1 ✓ ✓ 1 ✓ 3226
GenericSet 1 1 ✓ ✓ 0 ✓ 47
HashSet 1 1 ✓ ✓ 0 ✓ 10346
MoveToFrontListSet 2 1 ✓ ✓ 2 p 11268
WrongImplMoveFrontListSet 2 1 ✓ ✓ 0 p 2040

Sh
ap

es

ColoredShape 1 1 ✓ ✓ 0 ✓ 95
EvilMemoizedRectangle 4 4 ✓ ✓ 1 ✓ 669
EvilSquare 2 1 ✓ ✓ 1 ✓ 149
LeakyMemoizedRectangle 4 4 ✓ ✓ 1 ✓ 876
MemoizedRectangle 3 3 ✓ ✓ 0 ✓ 539
Rectangle 4 4 ✓ ✓ 0 ✓ 656
SimpleWrongImplRectangle 2 2 ✓ ✓ 1 ✓ 226
SizedShape 1 1 ✓ ✓ 0 ✓ 94
WrongfullyImplementedRectangle 4 4 ✓ ✓ 1 ✓ 841

Precision: 0.92 Recall: 0.92
exp: expected act: actual |I| and |V | include inherited annotations

non-violations violations total classes
Inheritance 12 12 24
Non-inheritance 10 9 19
Aspects & Limitations 5 3 8

For all experiments, we define precision as the percentage of no violation detections made
by the tool that were correct and recall as the percentage of actual non-violations that were
correctly flagged as no violation by Constrictor. All detections are at the function level.

All experiments ran on a 2022 MacBook Pro with an M2 processor and 16 GB of RAM.

6.2 RQ1: Design violations
To test RQ1, we ran Constrictor on all three benchmark sets. Constrictor ran on each
benchmark separately, without caching the compilation results of Py2Smt. The timeout for
Constrictor was set at 10 minutes. We recorded the full runtime of Constrictor for each
class, the result of testing view fidelity, and the result of Constrictor for each method in I.

The results for Inheritance are shown in Table 1 and Non-inheritance and Aspects &
Limitations in Table 2. The aspect/limitation of each Aspects & Limitations benchmark
is denoted by a superscript. Displayed times are an average over 10 runs. The repeated
runs did not differ significantly, except for the Graph benchmark (marked with an asterisk in
Table 2), which is discussed below. We computed the precision and recall of Constrictor
on the Inheritance and Non-inheritance benchmark sets: since many Aspects & Limitations
benchmarks are designed to fail, including them does not make sense.

ECOOP 2024

22:16 Constrictor: Immutability as a Design Concept

Table 2 Constrictor results on the Non-inheritance and Aspects & Limitations benchmarks.

Fidelity Violations
Class |I| |V | exp/act Found Success Time (ms)

N
on

-in
he

ri
ta

nc
e

BiCounterFirst 2 1 ✓ ✓ 0 ✓ 225
BiCounterSecond 2 1 ✓ ✓ 0 ✓ 304
BinarySearchTree 2 1 ✓ ✓ 1 ✓ 9459
CachedList 1 1 ✓ ✓ 1 p 292
CounterWithAccessCount 2 1 ✓ ✓ 0 ✓ 225
DefaultDict 2 1 ✓ ✓ 0 ✓ 261
EvilBinarySearchTree 2 2 ✓ ✓ 2 p† 17346
EvilUnionFind 1 1 ✓ ✓ 1 ✓ 857
Graph∗ 2 1 ✓ ✓ 1 ✓ 2762
ImmutablePerson 3 3 ✓ ✓ 0 ✓ 205
ImmutableRgb 3 2 ✓ ✓ 1 ✓ 9823
ListWithAccessCount 1 1 ✓ ✓ 0 ✓ 12379
MultiplyingDictionary 1 1 ✓ ✓ 0 ✓ 6151
MutablePerson 4 3 ✓ ✓ 1 ✓ 381
NumberShuffler 6 1 ✓ ✓ 2 ✓ 477
StringShuffler 2 1 ✓ ✓ 0 ✓ 237
UnionFind 1 1 ✓ ✓ 0 ✓ 774
WrongfullyAnnotatedCachedList 2 2 ✓ ✓ 2 ✓ 403
WrongfullyImplementedCollatz 2 1 ✓ ✓ 1 ✓ 6823

Precision: 1.00 Recall: 0.90

A
sp

ec
ts

&
Li

m
ita

tio
ns Collatz1 2 1 ✓ ✓ 0 ✓ 5914

FaithfulClass2 1 1 ✓ ✓ 0 ✓ 138
FlaggedValue2 1 1 p p 0 ✓ 103
LongLoopMutator1 2 2 ✓ ✓ 0 p timeout
UnreachablyMutating3 2 2 ✓ ✓ 1 p 170
VariableTypesMatter4 4 2 ✓ ✓ 1 ✓ 394
ViewMutatingButFaithful2 2 2 ✓ ✓ 1 ✓ 160
ViewNonMutatingButUnfaithful2 2 1 p p 0 ✓ 77

1loops are unrolled 2complicated view fidelity checks 3state space is overapproximated
4variable types must be explicitly specified
exp: expected act: actual †unknown

Constrictor checks all benchmarks but one in under 13 seconds, and all but 8 of the
benchmarks (84.3%) in under 5 seconds. 46 benchmarks successfully flag all violations and
find no spurious violations. One benchmark was marked as unknown by the SMT solver.
Constrictor succeeds in checking view fidelity for all benchmarks: all unfaithful views in
Table 2 are accurately reported.

Graph is the only benchmark whose runtimes differed significantly across its 10 runs: two
runs completed in under 3 seconds, two more runs completed in about 4 seconds, while the
other six completed in about 12 seconds. This discrepancy is due to variations in solver run
times; other components of the benchmark’s run time did not change between runs.

Six of 51 benchmarks fail. Of these, 2 are Aspects & Limitations benchmarks de-
signed to fail (of which, one times out), two benchmarks from the Non-inheritance set, and
two benchmarks from the Inheritance set. Benchmarks CachedList (Non-inheritance) and
MoveToFrontListSet (Inheritance) find a spurious violation by starting at an unreachable state
of the object. Benchmark WrongImplMoveFrontListSet (Inheritance) misses a violation because
the mutation occurs after the bound for loop unrolling. Benchmark EvilBinarySearchTree

(Non-inheritance) was marked as unknown by the SMT solver.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:17

Iterable

Collection

MutableIterable

MutableCollection

ListMutableList

SmallPersistentVectorArrayList

(a) The Kotlin standard library interface inheritance
hierarchy along with two implementations.3

Iterable

Collection

MutableIterable

MutableCollection

List

ImmutableListMutableList

ArrayList SmallPersistentVector

(b) The Kotlin standard library interface inheritance
hierarchy after being fixed as described.

Figure 6 Inheritance hierarchies used in the first RQ2 case study.

We conclude that Constrictor verifies designs that are view-immutable but do not pass
simple C++-style const-checking, and finds design violations where mutation of the abstract
state occurs.

6.3 RQ2 – Case Study 1: Kotlin lists
As our first case study, we consider the Kotlin standard library list hierarchy discussed
in Section 1, with two implementing classes: the mutation-supporting ArrayList from the
standard library, and the fully immutable SmallPersistentVector from the extension library
kotlinx.collections.immutable [6]. Figure 6a summarizes the module’s initial hierarchy.

The library’s developer wants to annotate their code for Constrictor. This involves:
1. Declaring for each class and interface a set of view methods,
2. Annotating some interface with @immutable, which will be inherited, and
3. Running Constrictor on the classes in the hierarchy.

Technical setup. This case study is comprised of three copies of the eight classes in Figure 6a
in three copies that are identical except for the location of the @immutable annotation, and a
fourth version with the nine classes in Figure 6b. The interfaces were taken from the Kotlin
standard library and translated verbatim, modeling abstract methods as empty methods
(this makes no difference for Constrictor).

Kotlin uses Java’s ArrayList, which we translated to Python as faithfully as possible: arrays
were converted to lists which are used like arrays. Overloaded methods in Java were translated
with different method names as Python does not support overloading. We attempted to
model as many methods as possible: trim_to_size, ensure_capacity, grow, get_size, is_empty,
contains, index_of, last_index_of, to_array, get_element_data, get, set, add, remove, remove_at,
__hash__, clear, add_all, remove_all, retain_all, iterator, and contains_all are all modeled.
Two subsets of its public methods were not modeled: (i) listIterator, iterator, sublist,
spliterator because Py2Smt does not support internal classes, and (ii) forEach, removeIf, sort,
replaceAll because Py2Smt does not support function objects. SmallPersistentVector was
similarly translated as faithfully as possible, implementing _presized_buffer_with, get_size,
add, get, contains and index_of.

3 Kotlin’s original hierarchy is taken from https://kotlinlang.org/docs/collections-overview.html#
collection-types

ECOOP 2024

https://kotlinlang.org/docs/collections-overview.html#collection-types
https://kotlinlang.org/docs/collections-overview.html#collection-types

22:18 Constrictor: Immutability as a Design Concept

Table 3 Run times for the case study in Section 6.3.

Time (ms) for Time (ms) for
@immutable on @immutable on

Class Iterable Collection List Result ImmutableList Result
ArrayList 11762 11902 12067 Viol. 5994 No viol.
SmallPersistentVector 2069 2443 2018 No viol. 2060 No viol.

Each of the three copies of the hierarchy in Figure 6a is about 290 lines of code overall.
Specifically, our ArrayList is 150 lines of code compared to 511 lines of Java, excluding
comments and internal classes. The hierarchy in Figure 6b is 296 lines of code and 51
methods overall. Times for all runs of Constrictor in this case study are shown in Table 3.

First attempt. The programmer declares get_size on Collection and get on List (which
inherits the annotation on get_size) as view methods. They then try annotating List

with @immutable. After running Constrictor on the classes in the hierarchy, ArrayList and
SmallPersistentVector, Constrictor will issue a warning on ArrayList, which inherits List’s
@immutable annotation but is mutable. Constrictor flags ArrayList’s add method as an
immutability violation. Since SmallPersistentVector does uphold its inherited @immutable

annotation, it is not flagged as a violation. The programmer then tries moving the @immutable

annotation to either the Iterable or Collection interfaces, getting the same result.
In fact, the only class in Figure 6(a) on which the @immutable annotation would not cause

a violation flag by Constrictor is SmallPersistentVector, on which it is useless. Overall, no
interface in the hierarchy represents the immutability properties we expect, and Constrictor
can detect this problem in the hierarchy.

The fix. To fix this issue, the programmer now separates the mutable and immutable
hierarchies by creating a new interface: ImmutableList, which extends the List interface (as
seen in Figure 6b). Now there is a clear separation between definitely-mutable classes and
definitely-immutable classes. The programmer does not need to change the @viewmethod

definitions to do so.
The programmer reruns Constrictor on the class hierarchy as previously described and

gets no violation flags. This case study shows how Constrictor can help developers uphold
immutable hierarchy constraints and declare them to their users.

6.4 RQ2 – Case Study 2: Red-Green trees
For our second case study, consider immutable trees with bidirectional references, i.e., both
children and parent references. Smith [52] describes the problem: due to the immutability,
we need to set the parent and children fields during initialization. However, initializing the
tree with a parent field requires building it top-down, and initializing the tree with a children
field requires building it bottom-up. These two requirements are contradictory.

Technical setup. We begin with a naïve implementation: a Node class with parent, children,
and data fields. The class has get_data, get_parent, get_children and add_child as its methods,
and is meant to be constructed top-down, setting the parent field upon construction. After
construction, it is now possible to traverse the structure bottom-up and call the add_child

method to initialize the children field.
We implemented this class in Python in 14 non-empty lines. We annotated the class as

@immutable and annotated the get_data, get_children and get_parent methods as @viewmethod.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:19

Table 4 Run times for Constrictor on implementations of a bidirectional tree in Section 6.4.

Implementation Run time (ms) Result
Naive 322 Violation
Original Red-Green Tree 413 No violation
Memoized Red-Green Tree 582 No violation

As expected, Constrictor returns a violation on this class, pointing out that add_child

visibly mutates the class. The run time of Constrictor can be found in Table 4.

First attempt. Red-Green trees [38] are a data structure used in the Roslyn compiler
for the .NET framework [3]. Red-Green trees solve the problem of bidirectional references
by using two separate node objects to represent each tree node: an internal (and possibly
mutable) green node and an immutable red node. The red tree serves as an immutable façade;
the user never sees the green nodes. A green tree is constructed bottom-up, initializing each
green node with its children. The red tree never exists as a tree, but rather red nodes are
created on the fly to match each green node whenever the children of a red node are accessed.
Since get_children is a computation instead of a getter, a red node can be initialized with
just its parent and internal green node and remain entirely immutable.

We translated the version by Smith, converting 38 lines of C# code to 50 lines of Python
code. We marked the RedNode class as @immutable, with get_data, get_value, get_children

and get_parent as its view. As expected, Constrictor did not detect a violation in this
implementation since it stores nothing and mutates no field, even in a non-observable way.

However, this implementation is very inefficient, as it creates new red nodes representing
the children of a given node in every call to get_children. This can cause both direct run
time overhead, and indirect GC overhead caused by the allocation of many small objects, as
noted by Lippert [38]. We would like to improve the performance of our implementation.

The fix. We now add memoization to our Red-Green tree: the result of the get_children

method is stored when first called. Since red trees are immutable there is no reason
to recompute this field. The new implementation now measures 55 lines. We then ran
Constrictor again: Constrictor still did not report a violation, because the mutation of a
field within get_children is non-visible, preserving view immutability.

This case study shows Constrictor’s utility not in a class hierarchy but rather on
validating the implementation of an immutable data structure. Unlike the previous case
study, since Red-Green Trees are used an internal data structure, the @immutable annotation
would serve the project developers to ensure no changes made to the red trees break their
immutability. The classes from both case studies are part of our artifact [36].

6.5 RQ3: Impact of incorrect annotations
In the following small case studies, we set out to explore Constrictor’s behavior in the
presence of incorrect annotation by the user. We examined four types of annotation mistakes,
relating to the @immutable and @viewmethod annotations: (i) incorrect specification of the
class view, (ii) not marking all relevant methods as @immutable, (iii) marking a method as
@immutable instead of @viewmethod and vice versa, and (iv) inheritance causing a non-faithful
view. Technically, using the correct annotations is the user’s responsibility. We expect
Constrictor to behave under incorrect annotation as if the given annotations reflect the
user intention. The purpose of this research question is to explore the results in cases that
can be a little more error-prone.

ECOOP 2024

22:20 Constrictor: Immutability as a Design Concept

class ListWithAccessCount [E]:
arr: List[E]
size: int
access_count : int

@viewmethod
def get(self , idx: int):

self. access_count += 1
return self.arr[idx]

@immutable
def get_size (self):

self. access_count += 1
return self.size

def get_access_count (self):
self. access_count += 1
return self. access_count

def add(self , elem: E):
self. access_count += 1
self.size += 1
if len(self.arr) == self.size:

self.arr. append (elem)
else:

self.arr[self.size] = elem

def remove_last (self):
self. access_count += 1
self.size -= 1

truncated

Figure 7 A class with an incorrectly annotated view.

Incorrect annotation of the view. Precise view annotations are required to meet the criteria
for Theorem 9. Consider the class ListWithAccessCount in Figure 7. The view annotations on
this class may seem correct to a novice, but the view is too small. The behavior of get is
undefined for idx > self.get_size(), so two List objects may agree on the values of get for
all indices for which it is defined, while still not representing the same list, because they have
different sizes. Also, Constrictor issues a fidelity meta-warning on the view in Figure 7.

The user can also incorrectly select a view for ListWithAccessCount that is too large:
e.g., by adding get_access_count to the view. This is wrong for two reasons: (i) marking
get_access_count as a view method exposes self.access_count, which means get is now
considered to be mutating, and (ii) the @viewmethod annotation also denotes get_access_count

itself as immutable, but it also mutates access_count before returning it. This means it cannot
be both immutable and part of the view. Running Constrictor on ListWithAccessCount after
denoting get_access_count as @viewmethod the class is flagged as a violation (time: 404ms). We
recall that not all “public” methods are expected to be view methods, only those that define
the abstract state of the object – the guarantees mentioned in Section 1 for view-immutability
only require that the class is seen as immutable through the view, but return values for other
methods may be affected.

Not marking a method or class as @immutable. In this case, Constrictor will simply not
check the method or class. Because it only impacts what is checked, not the view that
Constrictor uses, this does not affect Constrictor’s performance on other methods/classes.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:21

class SettableList [E]:
arr: List[E]

@immutable
def get(self , idx: int):

return self.arr[idx]

@viewmethod
def get_size (self):

return len(self.arr)

@immutable
def set(self , idx: int , elem: E):

self.arr[idx] = elem

@immutable
def add(self , elem: E):

self.arr. append (elem)
truncated

Figure 8 A class with @viewmethod and @immutable swapped.

class Collection [E]:
@viewmethod
def contains (self , elem: E) -> bool:

pass
truncated

class MyCoolCollection [E](Collection):
def remove_first (self , elem: E):

n = self. get_size ()
for i in range(n):

if self.get(i) == elem:
self. remove_at (i)

truncated

Figure 9 An example where annotation inheritance may cause a view to become unfaithful.

Marking a method or class as @immutable instead of @viewmethod and vice versa. This is
analogous to a view that is too large (using @viewmethod instead of @immutable) or too small
(vice versa). For instance, consider the class SettableList in Figure 8, whose view is only the
get_size method. The method get is marked as @immutable even though the user probably
intended for it to be a part of the view. The result only partially captures the class’s abstract
state. In the current state, Constrictor will not flag a violation for set that is marked as
@immutable, because the size of the list does not change.

View fidelity under inheritance. The class Collection in Figure 9 represents a collection
interface similar to Kotlin’s. By itself, the class and its view, contains, have no issues.
However, a programmer extending it may not be aware that adding methods to an inherited
class may cause the view inherited from the parent to be unfaithful. When extended,
MyCoolCollection’s view is the contains method inherited from Collection.

The programmer adds to MyCoolCollection the method remove_first, which removes one
instance of an element given as a parameter to the method. This method causes the view of
MyCoolCollection to be unfaithful, despite there being no change in the view set itself: two
collections with the same distinct elements would agree on the return value of contains for
all arguments, but after running remove_first, a collection with one instance of each element
would become empty, while a collection with multiple instances of some elements would
remain non-empty.

ECOOP 2024

22:22 Constrictor: Immutability as a Design Concept

The solution in this case is to add a get_element_multiplicity method, which would make
the view faithful again.

6.6 Discussion
Our results explore the bounds of Constrictor’s implementation. In this subsection we tie
them back to the theoretical aspects of the technique.

Overapproximation and underapproximation. Constrictor can find spurious violations
because we are overapproximating the TR in multiple ways, most importantly by considering
all possible states of an object, including unreachable states. This means Constrictor can
(and does) flag an illegal mutation or leaking of internal state in a benign method when the
model found by the solver has an object in such a state.

Constrictor can also miss violations because of its handling of loops via unrolling. Since
the loop is unrolled to a fixed, finite depth, it may be truncated too soon, making a real
mutation invisible to Constrictor. Additional optimizations to Constrictor, particularly
to Py2Smt, or improvements in the SMT solver could allow loops to be unrolled to a greater
depth while preserving a reasonable run time. The introduction of loop invariants could
help Constrictor find these violations, but annotating loops with invariants would be an
unreasonable burden to the user. Integrating loop invariant inference tools [27] may be a
reasonable compromise, but is outside the scope of this work.

View Fidelity. The correctness of Algorithm 1 fundamentally relies on the class being
checked having a faithful view. Constrictor can try to return a result even when the view
fidelity check fails, but this result is potentially incorrect. Moreover, view fidelity takes into
account all class methods, not only those checked by Constrictor, causing its check to
take a significant portion of Constrictor’s runtime. In large projects, it may be useful to
manually check view fidelity and configure Constrictor to not check fidelity by itself.

View equivalence is a bisimulation. View fidelity essentially means that view equivalence
forms a bisimulation between two traces representing the sequence of method calls on an
object. Checking view immutability then means checking whether the view equivalence
bisimulation holds between two traces that are identical except for a single point where
they diverge: one trace performs a step and the other performs a no-op. Our algorithm for
checking view immutability can then be seen as a special case of the symbolic model checking
algorithm for checking bisimulation between the two traces, with view equivalence as the
candidate bisimulation relation. Indeed, one modern algorithm for bisimulation checking for
infinite state spaces is based on SMT [55]. This increases our confidence in the ability of our
method to generalize, and implies that future improvements in bisimulation checking can
also be applied to our technique.

Reliance on type hints. Some type hints are fundamental to Constrictor’s approach, and
cannot be fully replaced with type inference. This is because some logical claims are valid in
some theories and invalid in others. For example, the benchmark VariableTypesMatter from
the Aspects & Limitations set contains two methods with the syntactically identical code
segment if self.some == a1 + a2: self.some = a2 + a1, which is non-mutating if a1 and a2

are integers but mutating if they are strings, because integer addition is commutative and
string concatenation is not. Type inference is performed in most cases where it is possible.
However, as in the above example, the types of parameters cannot be precisely inferred, so
type hints are required for function parameters and field types.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:23

Py2Smt. Py2Smt is expressive, but it has two sets of limitations: (i) unimplemented Python
language constructs, e.g., tuples, format strings, and list-, set-, and dictionary-comprehensions,
and (ii) language constructs that are not symbolically expressible in SMT, e.g., general
for loops and full polymorphism. We still support many common special cases, including
iteration over lists and range objects, which we consider to be the most important cases for
for loops. Additional work on Py2Smt can extend the scope of Constrictor.

Reliance on SMT solvers. Even when the formula Py2Smt encodes is accurate, there is no
guarantee an SMT solver will be able to decide it. Some theories, e.g., arrays in cases where
the domains and ranges are not disjoint, are simply undecidable. In Py2Smt, reference types
are represented by using a heap “array”, which is why complex heap-based structures may
yield formulas that return unknown. Performance on other theories may vary from solver to
solver, which is why Constrictor tries both CVC5 and Z3. For example, certain formulas
in the theory of sequences, which Py2Smt uses to encode lists, are not decidable by Z3 but
can be decided correctly by CVC5. This affects performance on benchmarks involving lists.

Solvers are not only limited in the types they can represent, but also in the operations on
those types. However, in our search for benchmarks we found that most design violations do
not involve complex logic as part of the mutation. Therefore, despite the relatively limited
expressiveness of SMT solvers, Constrictor can be useful in finding design violations.

Solvers are also not a great burden on the performance of Constrictor: across all
benchmarks from all three sets, the wait for solver calls is on average 78ms, with the vast
majority finishing in under 110ms. This is a small percentage of the runtime of many of the
benchmarks, and of it, the majority of the time is spent in proving view fidelity, rather than
on the main proof. The rest of Constrictor’s run time is spent on compilation, as well as
other tasks (e.g., building the formulas). Only one benchmark (WrongfullyImplementedCollatz

from the Non-inheritance set) causes a solver call that takes over 1 second (1.71 seconds). In
general, no benchmark reaches the timeout set to the solver (3 seconds). The one timeout in
Table 2 times out before the solver is called. Across all benchmarks in all benchmark sets,
all solver calls take 13.06 seconds in total.

6.7 Threats to validity
The main threat to validity of this work is that complex, real-world code can be less
straightforward to annotate. There may be more than one way to annotate a class, and
deciding on its view can itself be a design decision. We attempt to mitigate this threat
by introducing RQ3 to demonstrate the effect of using less precise annotations, as an
inexperienced programmer might. There are still other ways in which a programmer can
incorrectly annotate their code, and they may affect our results.

Moreover, in large, logic-heavy classes, proving view fidelity is more likely to fail because
it needs to reason about all methods in the class, not only the @immutable ones. When the
solvers return unknown on the fidelity formula, the result of Constrictor may be unsound,
requiring user intervention. This may be unsustainable in a large project setting.

7 Related work

Alternate definitions of immutability. The type of immutability most discussed in the
literature is reference immutability – non-mutation of an object’s fields through a specific
reference [17, 29, 34, 54]. Mutation can also be allowed only in certain contexts [31, 45, 51].

ECOOP 2024

22:24 Constrictor: Immutability as a Design Concept

This contrasts with object immutability [13], objects whose fields cannot be mutated via
any reference. Object immutability requires more complex analyses to enforce [42]. Both
definitions may or may not be transitive [46,48,49].

Potanin et al. define abstract immutability [19, Section 2.4] that permits “benevolent”
side effects, but do not define what these effects can be or how this property is enforced.
Eyolfson elaborates on this definition [26], roughly describing a desired solution which does
not exist and is similar to view immutability.

Pure functions are functions that do not have any side effects, and only depend on their
parameters. This is a very strong form of non-mutability, uncommon in OOP. A less strict
form is defined by the JetBrains @Contract(pure) annotation, which indicates that a method
does not “affect program state and change the semantics” (but can itself be affected by the
state) [2]. Helm et al. [32] and Stewart et al. [53] unify different flavors of side-effect freedom
by representing different definitions as a lattice.

Observational purity is a form of purity in which classes can keep and mutate state for
their own use, but the mutated state may not leak out of the class. This similar notion
to view immutability was introduced by Naumann et al. [43] for the purpose of formal
specifications, as (observationally-) pure functions can be used in logical assertions. A
method for checking observational purity was introduced in [12], and requires the user to
manually supply invariants and specifications for all methods, which is sensible for settings
in which writing specifications for all methods is common practice. This is not suitable for
software engineering, because programmers typically do not write logical specifications for
their classes. Constrictor implicitly defines an invariant by using view methods, which is
slightly less expressive but very lightweight in terms of annotation burden.

Coblenz et al. have compiled a comprehensive classification of immutability types [21],
which includes most systems mentioned in this section.

Tools. A well-known work on enforcing reference immutability is Javari [35, 41, 47, 54].
Javari’s type system distinguishes unassignable variables and read-only references. The
former is more similar to Java’s final keyword, while the latter is introduced as part of
the type system similar to C++. Another type system is introduced by Milanova [42] and
allows distinguishing “maybe mutable” values from “definitely mutable” values, but makes no
distinction between a variable and the value it stores, which may be a reference itself. Zibin
et al. introduced a method to enforce object or reference immutability without changing
Java’s grammar by using generic type parameters [56]. They allow excluding fields from the
abstract state, much like C++’s mutable keyword. There is some work on automatic inference
of immutability qualifiers. Eyolfson [26, Chapter 4] introduced Immutablility Check, which
automatically infers const qualifiers. Eyolfson also introduced a system that automatically
checks and sanitizes writes through const references [25].

Applications of immutability. Immutability can be part of the specification of a method [45].
Even if it is not necessarily part of the required semantics, it can be proven as a lemma in
order to support analyses such as alias analysis [22] or flow analysis [50].

In concurrency, immutability is often proved as an auxiliary property to show commut-
ativity of actions [18] (employing a similar SMT-based technique). This is because calling
non-mutating operations in any order should result in the same results for each respective
called method. Gordon et al. [30] pursue this in the context of reference immutability.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:25

8 Conclusion

Objects whose values remain constant are desirable in software design. Current verification
solutions are either too restrictive, barring all changes to the object and not just ones reflected
in the object’s abstract state, or too permissive, allowing mutations that can be observed.
In this work, we presented a new approachcentering around the view of an object, which
represents its abstract state, and whose values are expected to remain constant.

We introduced the new concept of view-immutability which expresses that the object’s
view does not change in a abstract sense. This solution is implemented as a linter/verifier,
Constrictor, using an SMT-based method, which checks that method bodies adhere to
denoted immutability constraints.

Constrictor successfully detects a variety of design violations, with precision and recall
both over 85%. We explored two large realistic case studies of data structures for which we
found immutability to be useful, and Constrictor is able to validate immutability or report
violations. We also explore a set of smaller case studies for Constrictor’s behavior with
imprecise annotations.

References
1 8. Compound statements – Python 3.12.1 documentation. https://docs.python.org/3/

reference/compound_stmts.html#type-params. [Accessed 12-Jan-2024].
2 Contract (java8 17.0.0 API) – javadoc.io. https://www.javadoc.io/doc/org.jetbrains/

annotations/17.0.0/org/jetbrains/annotations/Contract.html. [Accessed 27-Apr-2023].
3 dotnet/roslyn: The Roslyn .NET compiler provides C# and Visual Basic languages with rich

code analysis APIs. https://github.com/dotnet/roslyn. [Accessed 14-Apr-2024].
4 freeze (Object) – APIdock. https://apidock.com/ruby/Object/freeze. [Accessed 14-Jan-

2024].
5 ImmutableCollectionsExplained · google/guava wiki. URL: https://github.com/google/

guava/wiki/ImmutableCollectionsExplained.
6 Kotlin/kotlinx.collections.immutable: immutable persistent collections for Kotlin. https:

//github.com/Kotlin/kotlinx.collections.immutable. [Accessed 13-Jan-2024].
7 Mutable and Immutable Collections | Collections | Scala Documentation. URL: https:

//docs.scala-lang.org/overviews/collections-2.13/overview.html.
8 Object.freeze – JavaScript | MDN. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Object/freeze. [Accessed 14-Jan-2024].
9 pytype – google.github.io. https://google.github.io/pytype/. [Accessed 12-Apr-2023].

10 Standard C++ const correctness FAQ – isocpp.org. https://isocpp.org/wiki/faq/
const-correctness. [Accessed 27-Apr-2023].

11 String.Intern(String) Method (System) | Microsoft Learn. URL: https://learn.microsoft.
com/en-us/dotnet/api/system.string.intern.

12 Himanshu Arora, Raghavan Komondoor, and G. Ramalingam. Checking observational purity
of procedures. In Reiner Hähnle and Wil M. P. van der Aalst, editors, Fundamental Approaches
to Software Engineering - 22nd International Conference, FASE 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, volume 11424 of Lecture Notes in Computer Science,
pages 228–243, Cham, 2019. Springer. doi:10.1007/978-3-030-16722-6_13.

13 Shay Artzi, Adam Kiezun, Jaime Quinonez, and Michael D. Ernst. Parameter reference
immutability: formal definition, inference tool, and comparison. Autom. Softw. Eng., 16(1):145–
192, March 2009. doi:10.1007/s10515-008-0043-7.

ECOOP 2024

https://docs.python.org/3/reference/compound_stmts.html#type-params
https://docs.python.org/3/reference/compound_stmts.html#type-params
https://www.javadoc.io/doc/org.jetbrains/annotations/17.0.0/org/jetbrains/annotations/Contract.html
https://www.javadoc.io/doc/org.jetbrains/annotations/17.0.0/org/jetbrains/annotations/Contract.html
https://github.com/dotnet/roslyn
https://apidock.com/ruby/Object/freeze
https://github.com/google/guava/wiki/ImmutableCollectionsExplained
https://github.com/google/guava/wiki/ImmutableCollectionsExplained
https://github.com/Kotlin/kotlinx.collections.immutable
https://github.com/Kotlin/kotlinx.collections.immutable
https://docs.scala-lang.org/overviews/collections-2.13/overview.html
https://docs.scala-lang.org/overviews/collections-2.13/overview.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://google.github.io/pytype/
https://isocpp.org/wiki/faq/const-correctness
https://isocpp.org/wiki/faq/const-correctness
https://learn.microsoft.com/en-us/dotnet/api/system.string.intern
https://learn.microsoft.com/en-us/dotnet/api/system.string.intern
https://doi.org/10.1007/978-3-030-16722-6_13
https://doi.org/10.1007/s10515-008-0043-7

22:26 Constrictor: Immutability as a Design Concept

14 Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai
Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex
Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar.
cvc5: A versatile and industrial-strength SMT solver. In Dana Fisman and Grigore Rosu,
editors, Tools and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I, volume 13243 of Lecture Notes in Computer Science, pages 415–442. Springer, 2022. doi:
10.1007/978-3-030-99524-9_24.

15 Michael Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants. J. Object Technol., 3(6):27–56, 2004.
doi:10.5381/jot.2004.3.6.a2.

16 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking. Adv. Comput., 58(99):117–148, 2003. doi:10.1016/S0065-2458(03)
58003-2.

17 Adrian Birka and Michael D. Ernst. A practical type system and language for reference
immutability. In John M. Vlissides and Douglas C. Schmidt, editors, Proceedings of the 19th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver, BC, Canada, pages 35–49,
Vancouver, BC, Canada, October 2004. ACM. doi:10.1145/1028976.1028980.

18 Adam Chen, Parisa Fathololumi, Eric Koskinen, and Jared Pincus. Veracity: declarative
multicore programming with commutativity. Proc. ACM Program. Lang., 6(OOPSLA2):1726–
1756, October 2022. doi:10.1145/3563349.

19 Dave Clarke, James Noble, and Tobias Wrigstad, editors. Aliasing in Object-Oriented Program-
ming. Types, Analysis and Verification, volume 7850 of Lecture Notes in Computer Science.
Springer, 2013. doi:10.1007/978-3-642-36946-9.

20 Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled, and Helmut Veith.
Model checking, 2nd Edition. Cyber Physical Systems Series. MIT Press, 2018. URL: https:
//mitpress.mit.edu/books/model-checking-second-edition.

21 Michael J. Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad A. Myers, Sam Weber, and
Forrest Shull. Exploring language support for immutability. In Laura K. Dillon, Willem Visser,
and Laurie A. Williams, editors, Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, ICSE ’16, pages 736–747, New
York, NY, USA, 2016. ACM. doi:10.1145/2884781.2884798.

22 Cristina David and Wei-Ngan Chin. Immutable specifications for more concise and precise
verification. In Cristina Videira Lopes and Kathleen Fisher, editors, Proceedings of the 26th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22
- 27, 2011, OOPSLA ’11, pages 359–374, New York, NY, USA, 2011. ACM. doi:10.1145/
2048066.2048096.

23 Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, March 2008. doi:10.1007/978-3-540-78800-3_24.

24 José Javier Dolado, Mark Harman, Mari Carmen Otero, and Lin Hu. An empirical investigation
of the influence of a type of side effects on program comprehension. IEEE Trans. Software
Eng., 29(7):665–670, 2003. doi:10.1109/TSE.2003.1214329.

25 Jon Eyolfson and Patrick Lam. C++ const and immutability: An empirical study of writes-
through-const. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th European
Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy,
volume 56 of LIPIcs, pages 8:1–8:25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ECOOP.2016.8.

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.5381/jot.2004.3.6.a2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1145/1028976.1028980
https://doi.org/10.1145/3563349
https://doi.org/10.1007/978-3-642-36946-9
https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
https://doi.org/10.1145/2884781.2884798
https://doi.org/10.1145/2048066.2048096
https://doi.org/10.1145/2048066.2048096
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/TSE.2003.1214329
https://doi.org/10.4230/LIPIcs.ECOOP.2016.8

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:27

26 Jonathan Eyolfson. Enforcing Abstract Immutability. PhD thesis, University of Waterloo,
Ontario, Canada, 2018. URL: https://hdl.handle.net/10012/13507.

27 Carlo A. Furia, Bertrand Meyer, and Sergey Velder. Loop invariants: Analysis, classification,
and examples. ACM Comput. Surv., 46(3):34:1–34:51, January 2014. doi:10.1145/2506375.

28 Juan P. Galeotti, Nicolás Rosner, Carlos López Pombo, and Marcelo F. Frias. Analysis of
invariants for efficient bounded verification. In Paolo Tonella and Alessandro Orso, editors,
Proceedings of the Nineteenth International Symposium on Software Testing and Analysis,
ISSTA 2010, Trento, Italy, July 12-16, 2010, ISSTA ’10, pages 25–36, New York, NY, USA,
2010. ACM. doi:10.1145/1831708.1831712.

29 Paola Giannini, Marco Servetto, and Elena Zucca. Types for immutability and aliasing control.
In Vittorio Bilò and Antonio Caruso, editors, Proceedings of the 17th Italian Conference
on Theoretical Computer Science, Lecce, Italy, September 7-9, 2016, volume 1720 of CEUR
Workshop Proceedings, pages 62–74. DEU, CEUR-WS.org, 2016. URL: https://ceur-ws.org/
Vol-1720/full5.pdf.

30 Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and reference immutability for safe parallelism. In Gary T. Leavens and Matthew B.
Dwyer, editors, Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012,
Tucson, AZ, USA, October 21-25, 2012, OOPSLA ’12, pages 21–40, New York, NY, USA,
2012. ACM. doi:10.1145/2384616.2384619.

31 Christian Haack and Erik Poll. Type-based object immutability with flexible initialization. In
Sophia Drossopoulou, editor, ECOOP 2009 - Object-Oriented Programming, 23rd European
Conference, Genoa, Italy, July 6-10, 2009. Proceedings, volume 5653 of Lecture Notes in Com-
puter Science, pages 520–545. Springer, Springer, 2009. doi:10.1007/978-3-642-03013-0_24.

32 Dominik Helm, Florian Kübler, Michael Eichberg, Michael Reif, and Mira Mezini. A unified
lattice model and framework for purity analyses. In Marianne Huchard, Christian Kästner,
and Gordon Fraser, editors, Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, pages
340–350. ACM, 2018. doi:10.1145/3238147.3238226.

33 John E. Hopcroft and Jeffrey D. Ullman. Set merging algorithms. SIAM J. Comput., 2(4):294–
303, 1973. doi:10.1137/0202024.

34 Wei Huang, Ana L. Milanova, Werner Dietl, and Michael D. Ernst. Reim & reiminfer: checking
and inference of reference immutability and method purity. In Gary T. Leavens and Matthew B.
Dwyer, editors, Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012,
Tucson, AZ, USA, October 21-25, 2012, OOPSLA ’12, pages 879–896, New York, NY, USA,
2012. ACM. doi:10.1145/2384616.2384680.

35 Telmo Luis Correa Jr., Jaime Quinonez, and Michael D. Ernst. Tools for enforcing and inferring
reference immutability in java. In Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes,
and Guy L. Steele Jr., editors, Companion to the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2007, October
21-25, 2007, Montreal, Quebec, Canada, OOPSLA ’07, pages 866–867, New York, NY, USA,
2007. ACM. doi:10.1145/1297846.1297929.

36 Elad Kinsbruner, Shachar Itzhaky, and Hila Peleg. Constrictor: Immutability as a Design
Concept (Artifact). Dagstuhl Artifacts Series, 10(2), 2024. doi:10.4230/DARTS.10.2.9.

37 Zach Klippenstein. Two mutables don’t make a right. https://dev.to/zachklipp/
two-mutables-dont-make-a-right-2kgp, 2021. [Accessed 08-Jan-2024].

38 Eric Lippert. Persistence, façades and Roslyn’s red-green trees | Fabulous adventures in coding.
https://ericlippert.com/2012/06/08/red-green-trees/. [Accessed 14-Apr-2024].

39 Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811–1841, November 1994. doi:10.1145/197320.197383.

ECOOP 2024

https://hdl.handle.net/10012/13507
https://doi.org/10.1145/2506375
https://doi.org/10.1145/1831708.1831712
https://ceur-ws.org/Vol-1720/full5.pdf
https://ceur-ws.org/Vol-1720/full5.pdf
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1007/978-3-642-03013-0_24
https://doi.org/10.1145/3238147.3238226
https://doi.org/10.1137/0202024
https://doi.org/10.1145/2384616.2384680
https://doi.org/10.1145/1297846.1297929
https://doi.org/10.4230/DARTS.10.2.9
https://dev.to/zachklipp/two-mutables-dont-make-a-right-2kgp
https://dev.to/zachklipp/two-mutables-dont-make-a-right-2kgp
https://ericlippert.com/2012/06/08/red-green-trees/
https://doi.org/10.1145/197320.197383

22:28 Constrictor: Immutability as a Design Concept

40 Nicholas D. Matsakis and Felix S. Klock II. The rust language. In Michael B. Feldman
and S. Tucker Taft, editors, Proceedings of the 2014 ACM SIGAda annual conference on
High integrity language technology, HILT 2014, Portland, Oregon, USA, October 18-21, 2014,
volume 34(3), pages 103–104. ACM, 2014. doi:10.1145/2663171.2663188.

41 Matt McCutchen and Dr. Michael Ernst. Putting Javari into Practice, 2006. URL: https:
//api.semanticscholar.org/CorpusID:242697933.

42 Ana L. Milanova. Definite reference mutability. In Todd D. Millstein, editor, 32nd European
Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam,
The Netherlands, volume 109 of LIPIcs, pages 25:1–25:30, Dagstuhl, Germany, 2018. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2018.25.

43 David A. Naumann. Observational purity and encapsulation. Theor. Comput. Sci., 376(3):205–
224, 2007. Fundamental Aspects of Software Engineering. doi:10.1016/j.tcs.2007.02.004.

44 Stephen Nelson, David J. Pearce, and James Noble. Understanding the impact of collection
contracts on design. In Jan Vitek, editor, Objects, Models, Components, Patterns, 48th
International Conference, TOOLS 2010, Málaga, Spain, June 28 - July 2, 2010. Proceedings,
volume 6141 of Lecture Notes in Computer Science, pages 61–78. Springer, Springer, 2010.
doi:10.1007/978-3-642-13953-6_4.

45 Igor Pechtchanski and Vivek Sarkar. Immutability specification and its applications. In
José E. Moreira, Geoffrey C. Fox, and Vladimir Getov, editors, Proceedings of the 2002 Joint
ACM-ISCOPE Conference on Java Grande 2002, Seattle, Washington, USA, November 3-5,
2002, JGI ’02, pages 202–211, New York, NY, USA, 2002. ACM. doi:10.1145/583810.583833.

46 Sara Porat, Marina Biberstein, Larry Koved, and Bilha Mendelson. Automatic detection of
immutable fields in java. In Stephen A. MacKay and J. Howard Johnson, editors, Proceedings
of the 2000 conference of the Centre for Advanced Studies on Collaborative Research, November
13-16, 2000, Mississauga, Ontario, Canada, CASCON ’00, page 10. IBM, 2000. URL:
https://dl.acm.org/citation.cfm?id=782044.

47 Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. Inference of reference im-
mutability. In Jan Vitek, editor, ECOOP 2008 - Object-Oriented Programming, 22nd
European Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings, volume 5142 of
Lecture Notes in Computer Science, pages 616–641, Berlin, Heidelberg, 2008. Springer.
doi:10.1007/978-3-540-70592-5_26.

48 Tobias Roth, Dominik Helm, Michael Reif, and Mira Mezini. Cifi: Versatile analysis of class
and field immutability. In 36th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021, pages 979–990. IEEE,
2021. doi:10.1109/ASE51524.2021.9678903.

49 Atanas Rountev. Precise identification of side-effect-free methods in java. In 20th International
Conference on Software Maintenance (ICSM 2004), 11-17 September 2004, Chicago, IL, USA,
pages 82–91. IEEE Computer Society, 2004. doi:10.1109/ICSM.2004.1357793.

50 Tobias Runge, Marco Servetto, Alex Potanin, and Ina Schaefer. Immutability and encapsulation
for sound OO information flow control. ACM Trans. Program. Lang. Syst., 45(1):3:1–3:35,
2023. doi:10.1145/3573270.

51 Marco Servetto, Julian Mackay, Alex Potanin, and James Noble. The billion-dollar fix - safe
modular circular initialisation with placeholders and placeholder types. In Giuseppe Castagna,
editor, ECOOP 2013 - Object-Oriented Programming - 27th European Conference, Montpellier,
France, July 1-5, 2013. Proceedings, volume 7920 of Lecture Notes in Computer Science, pages
205–229, Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-39038-8_9.

52 Yaakov Smith. Red-Green Trees. https://blog.yaakov.online/red-green-trees/. [Ac-
cessed 14-Apr-2024].

53 Arran Stewart, Rachel Cardell-Oliver, and Rowan Davies. Fine-grained classification of side-
effect free methods in real-world java code and applications to software security. In Proceedings
of the Australasian Computer Science Week Multiconference, Canberra, Australia, February 2-5,
2016, ACSW ’16, page 37, New York, NY, USA, 2016. ACM. doi:10.1145/2843043.2843354.

https://doi.org/10.1145/2663171.2663188
https://api.semanticscholar.org/CorpusID:242697933
https://api.semanticscholar.org/CorpusID:242697933
https://doi.org/10.4230/LIPIcs.ECOOP.2018.25
https://doi.org/10.1016/j.tcs.2007.02.004
https://doi.org/10.1007/978-3-642-13953-6_4
https://doi.org/10.1145/583810.583833
https://dl.acm.org/citation.cfm?id=782044
https://doi.org/10.1007/978-3-540-70592-5_26
https://doi.org/10.1109/ASE51524.2021.9678903
https://doi.org/10.1109/ICSM.2004.1357793
https://doi.org/10.1145/3573270
https://doi.org/10.1007/978-3-642-39038-8_9
https://blog.yaakov.online/red-green-trees/
https://doi.org/10.1145/2843043.2843354

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:29

54 Matthew S. Tschantz and Michael D. Ernst. Javari: adding reference immutability to java.
In Ralph E. Johnson and Richard P. Gabriel, editors, Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, pages 211–230. ACM, 2005.
doi:10.1145/1094811.1094828.

55 Yunfan Zhang, Ruidong Zhu, Yingfei Xiong, and Tao Xie. Efficient synthesis of method call
sequences for test generation and bounded verification. In 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2022, Rochester, MI, USA, October
10-14, 2022, ASE ’22, pages 38:1–38:12, New York, NY, USA, 2022. ACM. doi:10.1145/
3551349.3556951.

56 Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kiezun, and Michael D. Ernst.
Object and reference immutability using java generics. In Ivica Crnkovic and Antonia Bertolino,
editors, Proceedings of the 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2007, Dubrovnik, Croatia, September 3-7, 2007, ESEC-FSE ’07, pages 75–84, New York, NY,
USA, 2007. ACM. doi:10.1145/1287624.1287637.

ECOOP 2024

https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/3551349.3556951
https://doi.org/10.1145/3551349.3556951
https://doi.org/10.1145/1287624.1287637

	1 Introduction
	1.1 Our approach: views and view immutability

	2 Overview
	2.1 Reasoning about view-immutability
	2.2 Validation steps

	3 Definitions
	4 Analysis
	5 Implementation
	6 Evaluation
	6.1 Benchmarks
	6.2 RQ1: Design violations
	6.3 RQ2 – Case Study 1: Kotlin lists
	6.4 RQ2 – Case Study 2: Red-Green trees
	6.5 RQ3: Impact of incorrect annotations
	6.6 Discussion
	6.7 Threats to validity

	7 Related work
	8 Conclusion

