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Abstract
Supporting automatic type inference is in demand in modern language development. It is a
challenging task but without appropriate supporting toolkits. This paper presents InferType, a Java
library that helps implement constraint-based type inference. A compiler writer uses InferType’s
classes and methods to describe type constraints and typing rules for type inference. InferType then
performs constraint solving by translation to the Z3 SMT solver. InferType is equipped with our
developed optimization technique. It reduces the search space for type variables by pre-computing
the structures of those type variables for mitigating the performance bottleneck of constraint solving
with deeply nested types. We use InferType to implement type inference for a subset of Python,
and conduct experiments to evaluate how the developed optimization technique can affect the
performance of type inference. Our results show that InferType’s optimization can greatly mitigate
the performance bottleneck for programs with deeply nested types, and can potentially improve the
performance for large nested types.
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1 Introduction

The goal of this work is to provide an assisting tool for implementing compilers supporting
type inference, which is an in-demand task in modern language development but not well
supported by existing approaches. Several supporting toolkits for language development have
been proposed such as lexer and parser generators [22, 41], and type checker generators by
language workbenches [45, 18]. Since many modern languages support type inference that
automatically reconstruct types for programs without explicit type annotations, compiler
writers have to implement type inference when developing their own languages. Unfortunately,
there are no applicable toolkits for supporting this labor-intensive and also challenging task.

Major static languages support type inference that can be performed in a simple bottom-
up manner. It does not need a complex inference engine. However, in recent languages
like TypeScript, more aggressive type inference is supported. For example, they may allow
programmers to omit a type annotation for a function’s return type. A program in such
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23:2 InferType

languages may require complicated type inference when it includes mutually recursive
functions. Its compiler may contain an intricate type inference engine that solves type
constraints retrieved from a program.

One of the approaches to implementing such intricate type inference is utilizing modern
Satisfiability Modulo Theories (SMT) solvers. Several static analyses including automatic
type inference have been established based on SMT solving [4, 42, 44, 14]. However, it is not
simple to implement an efficient type inference engine for practical usage even when using a
powerful SMT solver. For example, we observe that the performance of type inference using
a SMT solver may drastically degrade when the source program contains nested types such
as function types that take other function types as arguments and list types that take other
list types as arguments. Such types are frequently used in real-world programs for describing
higher-order functions and data structures in hierarchy.

In this paper, we propose InferType, a domain-specific language embedded in Java for
implementing constraint-based type inference. A compiler writer implements a constraint-
based type inference engine for a target language by describing type constraints and encoding
typing rules using InferType’s classes and methods. She then calls an InferType’s method
to get a type inference result, which is a binding of type variables to concrete types that
satisfies the described type constraints and encoded typing rules. InferType uses the Z3 [7]
SMT solver to perform constraint solving for computing that binding by translating the
described type constraints and typing rules to Z3 formulae.

We develop an optimization technique for InferType to mitigate the performance bot-
tleneck for handling programs containing deeply nested types. InferType’s optimization is
based on the idea of reducing the search space of type variables in SMT solving. It first
pre-computes a structure of each type variable in the given type constraints described by the
compiler writer. It then generates extra Z3 formulae that explicitly list the possible types
each type variable ranges over based on the pre-computed structure for reducing the search
space.

We use InferType to implement type inference engines for a small demonstrative language
and a subset of Python. This Python subset does not allow explicit type annotations as type
annotations are ignored by the ordinary Python without an external type checker. We choose
this Python subset for evaluation since type inference for this subset requires complex typing
rules to reconstruct static types in dynamically typed programs. We conduct experiments over
a collected dataset to evaluate the performance of type inference by our implemented type
inference engine for the Python subset, and also to validate the effectiveness of our developed
optimization technique. Compared with an existing, manual type inference engine for Python
using Z3, the implemented type inference engine using InferType is able to infer types for
real-world programs with compatible performance. Furthermore, the experiment results show
that the implemented type inference engine can handle programs with deeply nested types
much more efficiently. We also observe that InferType’s optimization can potentially improve
the performance of type inference for programs containing nested types. Our findings support
the claim that InferType is pragmatically applicable of helping implement constraint-based
type inference in language development.

The rest of this paper is organized as follows. Section 2 motivates the reader by a scenario
of developing a small demonstrative language. Section 3 presents our proposal. Section 4
gives our experiment results by the implemented type inference engine using InferType.
Section 5 relates our work to preceding researches and a brief conclusion ends this paper.
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2 Implementing Type Inference in Language Development

Many modern languages have support for automatic type inference. Language developers, or
compiler writers have to implement type inference when designing a new language. However,
it is a challenging task without appropriate tool supports. Classical supporting tools for
language development include lex, yacc [22] and bison [41], which are lexer and parser
generators. There are also tool suites commonly called “language workbench”, which are
development environments for making domain-specific languages [45, 11]. The Spoofax [18]
language workbench, for instance, supports code generators that produce type checkers and
editor plugins from high-level language definitions. However, existing tools do not support
code generators for type inference.

For instance, let us consider implementing a type inference engine for a small language
called Mini-λ. It automatically reconstructs types for programs without explicit type
annotations. We use this language for demonstrative purposes because of its simplicity.
One of the common approaches to implementing such a type inference engine is to use a
constraint-based type inference. A number of existing type inference systems are formulated
into a constraint-based approach because of its extensibility and flexibility [31, 35, 39, 38, 19].
We below consider implementing a constraint-based type inference for Mini-λ.

The syntax of expressions and types of Mini-λ is given in Listing 1.
e := n | r | s | x | fun x. e | e(e) | e + e

t := int | float | str | arrow <t, t>

Listing 1 Syntax of Mini-λ expressions and types

n, r and s range over integer, real numbers and string literals. x ranges over variables. fun
x. e represents a function with parameter x and a body e. Mini-λ does not have explicit
type annotations. Literals can be regarded as type-annotated expressions. Functions or
function parameters do not have type annotations. e(e) represents a function application. e

+ e represents an addition of two sub-expressions. In Mini-λ, the plus operator can either
add numbers or concatenate strings. The type syntax of Mini-λ consists of primitive types
int, float and str, and the composite type arrow for describing function types.

Some of the typing rules in Mini-λ’s type system are given in Figure 1. T-App specifies
how a function application is typed so that the applied expression must be an arrow type
consistent with the argument type. The type constraint in the premises specifies the subtype
relation that the type variables must satisfy. T-Plus-Float and T-Plus-Str specify how
a plus expression is typed by overloading. The operand and resulting types should all be
consistent with either float or str. ST-Int-Float specifies that int is a subtype of float.
ST-Arrow specifies that two arrow types are subtype of one another if the parameter type is
contravariant and the return type is covariant.

An example program in Mini-λ is given in Listing 2. We will use this example program
for demonstration in the rest of the paper because of its simplicity although this program is
simple enough to be able to perform type inference in a bottom-up manner.
fun f. fun x. f(x)

(fun y. y + "a")

Listing 2 An example program in Mini-λ

This program first defines a function with parameter f; its body is another function with
parameter x. The body of the function with parameter x is a function application f(x).
After that, the function with parameter f is applied to a function with parameter y. The
resulting value of the whole expression is a function taking one argument, and its body
concatenates the passed argument to a string literal "a".

ECOOP 2024



23:4 InferType

Γ ⊢ e1: t1 Γ ⊢ e2: t2 t1 <: arrow<t2, t3>
(T-App)Γ ⊢ e1(e2): t3

Γ ⊢ e1: float Γ ⊢ e2: float
(T-Plus-Float)Γ ⊢ e1 + e2: float

Γ ⊢ e1: str Γ ⊢ e2: str
(T-Plus-Str)Γ ⊢ e1 + e2: str

(ST-Int-Float)int <: float

t21 <: t11 t12 <: t22 (ST-Arrow)arrow<t11, t12> <: arrow<t21, t22>

Figure 1 Part of the typing rules of Mini-λ.

To implement a constraint-based type inference for Mini-λ, a compiler writer first assigns
a type variable to every variable and expression in a program. Then the compiler writer
generates the relations between type variables by applying the typing rules while traversing
the abstract syntax tree (AST) of the program. A relation between type variables, which we
call a type constraint, is a logical assertion that describes how the type variables should be
constrained. In this paper, we consider those type constraints in Listing 3.
constraint := t <: t

| constraint ∧ constraint
| constraint ∨ constraint
| constraint → constraint
| ¬ constraint

Listing 3 Type constraints

<: represents the subtype relation between two types. ∧ and ∨ represent logical conjunction
and disjunction; → and ¬ represent logical implication and negation.

Type constraints are generated during AST traversal by applying part of the typing rules
in the target language, which we call syntax-related typing rules. A syntax-related typing rule
is a typing rule that includes program syntax symbols. For example, T-App, T-Plus-Float
and T-Plus-Str are syntax-related typing rules in Mini-λ. The compiler writer will generate
the type constraints in Listing 4 for the program in Listing 2 by traversing its AST.
(1) tf <: arrow <tx , tfx >
(2) arrow <tf , arrow <tx , tfx >> <: arrow <arrow <ty , tplus >, te >
(3) (ty <: float ∧ str <: float ∧ float <: tplus)

∨ (ty <: str ∧ str <: str ∧ str <: tplus)

Listing 4 Type constraints for the example program

t? represents the unique type variables assigned to the variables and expressions in the
program. tf, tx and ty are assigned to parameter f, x and y of the defined functions. tfx

and tplus are assigned to the resulting types of f(x) and y + "a". te is assigned to the
resulting type of the whole expression. Constraint (1) and (2) arise from T-App. For example,
in (1), tf is constrained to be a subtype of arrow<tx, tfx> generated from the application
f(x). Constraint (3) arises from T-Plus-Float and T-Plus-Str. This constraint must be
properly included in the generated set of type constraints to represent the overloading of
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the plus operator. It describes that the operand types, ty and str (type of the string literal
"a"), and the resulting type tplus must be subtype and supertype of either float or str,
represented using logical connectives.

After constraint generation, the compiler writer must then implement a constraint solver
considering the rest of the typing rules to solve the generated type constraints. The solver
must find a consistent binding of concrete types assigned to the type variables that satisfies all
the type constraints. The solver must consider the other typing rules from the applied typing
rules in AST traversal, which we call subtype-related typing rules, to find such a binding.
Unlike syntax-related typing rules applied during AST traversal, a subtype-related typing
rule derives a conclusion in the form of a subtype relation and a subtype-related typing rule
does not include syntax symbols of program expressions. For example, the implementing
solver for Mini-λ must consider ST-Int-Float and ST-Arrow in Figure 1 to solve the type
constraints in Listing 4. Although well-known algorithms such as unification [37] and closure
computation [33] have been developed, implementing these algorithms is technically labor-
intensive and error-prone. Furthermore, implementing an efficient solver becomes more
sophisticated especially for handling complex programs when developing real-world languages.
As we will show in 3.3, it would be time consuming for inferring types of programs with
nested types by a straightforward implementation of such a solver. Technical approaches are
needed to overcome those challenges considering practical usage.

3 InferType

InferType is an embedded domain-specific language that helps compiler writers implement
efficient constraint-based type inference. A compiler writer gives type constraints derived by
syntax-related typing rules and subtype-related typing rules to InferType by using InferType’s
classes and methods. InferType then solves the given type constraints based on the subtype-
related typing rules by invoking the Z3 SMT solver. To perform constraint solving efficiently,
InferType pre-computes structures for type variables involved in the given type constraints,
and then reduces the search space of the involved type variables in SMT solving.

InferType supports constraint-based type inference whose type system is expressed by
one single binary type relation, which is often called “subtype”. InferType assumes that
the supported binary type relations hold reflexivity and transitivity. InferType does not
support type systems expressed by more than one type relation. For example, InferType
could not support a gradual type system [40] which contains a subtype relation and also a
type consistency relation.

Below in this section, we first demonstrate how compiler writers can use InferType to
implement their type inference engines in Section 3.1. Then we show how InferType performs
type inference by translation to Z3 in Section 3.2. In Section 3.3, we present the pre-process
of InferType for mitigating the performance bottleneck in constraint solving, which is our
main scientific contribution in this paper.

3.1 Programming Interface
InferType is a Java library for implementing constraint-based type inference engines, which
are softwares that automatically infer types for programs without explicit type annotations
in the target languages. A compiler writer uses InferType’s classes and methods to describe
type constraints derived by syntax-related typing rules and encode subtype-related typing
rules. Constraint solving is then performed by calling an InferType’s method to get a type
inference result.

ECOOP 2024
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3.1.1 Describing types and type constraints

First, types in the target language must be described in InferType. In InferType, a type
is an object taking one string argument as the name of that type, and zero or more type
arguments.

type(typename , type , type , ...)

For instance, a primitive type int in Mini-λ is described as

InferType inf = new InferType ();
Type intTy = inf.type("int");

inf is an instance of InferType’s main class. The compiler writer declares this instance to
describe types, type constraints and encode subtype-related typing rules. Type is the class
representing types. Primitive types are described as types taking zero type argument in
InferType. A composite type arrow<int, str> is described as

inf.type("arrow", inf.type("int"), inf.type("str"))

InferType also deals with type variables. A type variable is an object taking one string
identifier.

typevar ( identifier )

A type variable tk is described as

inf. typevar ("t_k")

Type variables can also be used as type arguments to make a composite type. An arrow type
arrow<tk, int> is described as

inf.type("arrow", inf. typevar ("t_k"), inf.type("int"))

InferType can also help produce a type variable with a generated, unique string identifier by
calling inf.typevar without an argument.

inf. typevar () // a fresh generated type variable

Then, the compiler writer describes type constraints generated by applying syntax-related
typing rules during AST traversal, and gives the type constraints to InferType for type
inference. A compiler writer describes the type constraints using InferType’s methods:

inf. subtype (t1 , t2) // <:
inf.and(c1 , c2) // ∧
inf.or(c1 , c2) // ∨
inf. implies (c1 , c2) // →
inf.not(c) // ¬

t1, t2 represent types and c, c1, c2 represent type constraints. Each method corresponds
to each kind (comments on the right) of the type constraints in Listing 3. For example,
constraint (3) in Listing 4 is described as

Constraint cst3 = inf.or(
inf.and(inf. subtype (t_y , floatTy ), inf. subtype (strTy , floatTy ), inf.

subtype (floatTy , t_plus )),
inf.and(inf. subtype (t_y , strTy), inf. subtype (strTy , strTy), inf. subtype

(strTy , t_plus )));
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Constraint is the class representing type constraints. t_y and t_plus refer to type variables
ty and tplus created by inf.typevar. floatTy and strTy are primitive types created by
inf.type.

Finally, the described type constraint is given to InferType for type inference by
inf.add(cst3);

The other type constraints in Listing 4 can be described and given to InferType in a similar
manner.

3.1.2 Encoding subtype-related typing rules for constraint solving
The compiler writer encodes the rest of the typing rules, which are not used in Section 3.1.1
and are called subtype-related typing rules, and give them to InferType for type inference.
A subtype-related typing rule in InferType is an implication from zero or more premises to
one conclusion encoded as
inf. ruleBuilder . declare (conclusion).when(premise, premise, ...)

A premise or conclusion is one single subtype relation created by inf.subtype.
premise , conclusion := inf. subtype (t1 , t2)

Method declare specifies the conclusion; the following method when specifies the premises.
In InferType, all type variables involved in the premises must be included in the conclusion
of an encoded subtype-related typing rule. For example, ST-Arrow in Figure 1 is encoded as
inf. ruleBuilder

. declare (inf. subtype (inf.type("arrow", t11 , t12), inf.type("arrow", t21
, t22)))

.when(inf. subtype (t21 , t11), inf. subtype (t12 , t22));

t11, t12, ... are type variables created by inf.typevar.
A subtype-related typing rule without premises can also be encoded as

inf. ruleBuilder . declare (conclusion). always ()

Method always specifies that the conclusion holds without a condition, which is a syntax
sugar for method when without argument. For example, ST-Int-Float is encoded as
inf. ruleBuilder . declare (inf. subtype (intTy , floatTy )). always ();

Encoded subtype-related typing rules by inf.ruleBuilder are implicitly given to Infer-
Type for type inference.

3.1.3 Solving type constraints based on the encoded subtype-related
typing rules

After describing type constraints and encoding subtype-related typing rules, the compiler
writer calls method solve to solve the given type constraints based on the given encoded
subtype-related typing rules.
Map <Typevar , Type > solution = inf.solve ();

Typevar is a subclass of Type representing only type variables. By calling this method,
InferType computes if there is a binding of the involved type variables in the given type
constraints to concrete types so that all type constraints are evaluated to be true under the

ECOOP 2024
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given encoded subtype-related typing rules by replacing the type variables with their concrete
types. If yes, InferType outputs that binding as the type inference results. For Listing 2, it
will output a Map object representing the following binding.

{tf 7→ arrow <str , str >, tx 7→ str , tfx 7→ str ,
ty 7→ str , tplus 7→ str , te 7→ arrow <str , str >}

Otherwise, it indicates that the constraint solving fails such that InferType could not find a
binding that makes all the given type constraints hold. InferType then can provide a set of
type variables appearing in the ill-typed constraints.

if (! inf. untypableTypevars . isEmpty ()){ // type error occurred
Set <Typevar > untvars = inf. untypableTypevars ();
// further locate type errors

}

The compiler writer can manually track the type variables to program expressions such as
recording them into a Map object during AST traversal:

locTrack .put(tv , String . format ("at file %s: line %s, column %s",
fileName , lineNum , columnNum ));

where locTrack is the Map object that associates a type variable tv to its program location.
Here, a value in the Map object is a string representation of a program location, where
fileName, lineNum and columnNum are managed by the compiler writer. Then she is expected
to use the untypable type variables returned by InferType to retrieve the expressions that
causes the type error, and further generate a type error message.

3.1.4 Declaring User-Defined Types
InferType also supports user-defined types such as struct in the C language and classes
in object-oriented languages. During AST traversal, a compiler write can declare subtype-
related typing rules for those user-defined types, and give those declarations to InferType. A
compiler writer can describe new types, encode new subtype-related typing rules and give
them to InferType at any phrase before calling inf.solve for constraint sovling.

For example, suppose that a compiler writer is implementing a type inference engine for
a language supporting class definitions. When traversing an AST node for a class definition
such as

class Car( Vehicle ):
...

which defines a class Car that inherits another class Vehicle, the compiler writer describes
a new type for that class as

Type carTy = inf.type("car");

She then encodes a new subtype-related typing rule specifying the inheritance as

inf. ruleBuilder . declare (inf. subtype (carTy , vehicleTy )). always ();

where vehicleTy is the type for class Vehicle described as inf.type("vehicle"). Like
other subtype-related typing rules, the encoded subtype-related typing rule here is also
implicitly given to InferType for type inference. InferType will perform constraint solving
considering this encoded subtype-related typing rule when method inf.solve is called.
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3.2 Translation to Z3
InferType performs constraint solving using the Z3 SMT solver. When method inf.solve is
called, it translates the type constraints and subtype-related typing rules given by the compiler
writer to Z3 formulae. The translated Z3 formulae are all asserted to check satisfaction by
invoking the Z3 SMT solver to find if there is an interpretation of variables that makes all
the asserted formulae true.

3.2.1 Translating types and type constraints
Types are translated to Z3 constants over a generated Z3 data type declaration. The data
type declaration is generated by accumulating all the Type objects created by method
inf.type included in the type constraints and encoded subtype-related typing rules given to
InferType. This generated data type declaration represents the type definition of the target
language. For Mini-λ, the data type declaration for ztype is generated as (represented using
the SMT-LIBv2 [3] syntax)

( declare-datatypes () (( ztype
(Int) (Float) (Str)
(Arrow ( ArrowP1 ztype) ( ArrowP2 ztype)))))

It corresponds to t in Listing 1. Int, Float and Str are translated Z3 constructors rep-
resenting the primitive types. Arrow represents the composite type arrow, where ArrowP1
and ArrowP2 are generated accessors for Arrow, which indicates that arrow types take two
arguments. A type variable tk is translated to a Z3 constant zk ranging over ztype.

( declare-constant zk ztype)

A composite type arrow<tk, int> is translated to an application of ztype constructors.

(Arrow zk Int)

The given type constraints are straightforwardly translated to Z3 boolean propositional
formulae by the following translation function.

trans{inf. subtype (t1 , t2)} = ( zsubtype z1 z2)
trans{inf.and(c1 , c2)} = (and trans{c1} trans{c2 })
trans{inf.or(c1 , c2)} = (or trans{c1} trans{c2 })
trans{inf. implies (c1 , c2)} = (=> trans{c1} trans{c2 })
trans{inf.not(c)} = (not trans{c})

c, c1 and c2 represent type constraints. The subtype relation <: is declared as zsubtype in
Z3.

( declare-fun zsubtype (ztype ztype) Bool)

It specifies that zsubtype is a Z3 function that takes two arguments of the data type ztype
and returns a boolean value. Logical connectives in type constraints are directly translated
to Z3 logical operators. => is the logical implication operator in Z3. For instance, cst3
in Section 3.1.1 is translated to

(or (and ( zsubtype z_y Float) ( zsubtype Str Float) ( zsubtype Float z_plus
))
(and ( zsubtype z_y Str) ( zsubtype Str Str) ( zsubtype Str z_plus )))

z_y and z_plus in Z3 refer to t_y and t_plus in Java.

ECOOP 2024
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3.2.2 Translating subtype-related typing rules
The encoded subtype-related typing rules are processed by InferType to compute subtype
relations, which are then translated into Z3 formulae. Since InferType implicitly assumes
the reflexivity and transitivity rules, it also considers these rules when computing subtype
relations. We borrow the idea of this process from Typette [14].

For each primitive type and composite type, InferType enumerates all its subtypes and
super types in accordance with given subtype-related typing rules. It may also generate
type constraints that those subtypes and super types must hold. We below mention how
InferType enumerates subtypes. InferType does the same for enumerating super types.

Suppose that InferType enumerates subtypes for a target type typeT . Since InferType
assumes the reflexivity rule, it first obtains this subtype relation: typeT is a subtype of typeT .
Next, suppose that the following subtype-related typing rule is given:

premise1
type1 <: type2

Here, typek is either a primitive type, a composite type, or a type variable. If type2 and
typeT can be unified, that is, they are lexically equivalent by replacing the type variables
in type2 and typeT with other type variables, primitive types, or composite types, then
InferType obtains the following subtype relation: type1 is a subtype of typeT when premise1
holds, where the occurrences of some type variables in type1 and premise1 are replaced
as they are for the unification between type2 and typeT . When enumerating subtypes and
super types for composite types, InferType only enumerates for the most generic forms
of composite types, where all type arguments are type variables. For example, InferType
computes subtypes and super types for arrow<t1, t2>, where t1 and t2 are type variables;
but it does not compute subtypes or super types for an individual type such as arrow<int,
int> or arrow<int, t1>. Besides, InferType does not consider the reflexivity rule when
enumerating subtypes and super types for composite types.

By this enumeration, in the case of Mini-λ, InferType enumerates float (by reflexivity)
and int (by ST-Int-Float) as subtypes of float. By ST-Arrow, InferType enumerates
arrow<t11, t12> as a subtype of arrow<t1, t2> under premises t1 <: t11 and t12 <: t2.

Furthermore, InferType considers the transitivity rule. Given the following rules, if type2
and type3 are unified,

premise1
type1 <: type2

premise2
type3 <: type4

InferType combines the two rules to derive the following new rule:
premise1 premise2

type1 <: type4

where the occurrences of some type variables in type1, type4 and premise1, premise2 are
replaced as they are for the unification between type2 and type3. They are replaced according
to the substitution for a most general unifier [20], which is a complete and minimal substitution.
Existential quantifiers are added1 to the type variables that are included in premise1 and
premise2 but not in type1 or type4. When premise1 and premise2 include typei <: typej

and typej <: typek, and all the type variables in typej are not included except typei, typej ,
and typek, InferType combines typei <: typej and typej <: typek and transforms them into
typei <: typek by the transitivity rule.

1 When an existential quantifier is included in the resulting Z3 formulae, Z3 might fail to correctly derive
types. This is a limitation of InferType but it is out of the scope of this paper.
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The derived new subtype-related typing rules are used to enumerate a subtype of the
target type typeT . Furthermore, it may be combined with another rule to derive another
new rule by the transitivity rule. InferType iterates this to enumerate all subtypes of typeT .
It tries all possible combinations between subtype-related typing rules including the derived
ones.

For example, suppose that InferType is computing a subtype of intArray (which is
described as a primitive type inf.type("intArray")) and given two subtype-related typing
rules:

t1 <: t2 (a)list<t1> <: array<t2>
t <: int (b)array<t> <: intArray

InferType first unifies array<t2> and array<t>, and finds a substitution {t2 7→ t} for that
unification. Then it combines the rules and derives:

t1 <: t t <: int (a and b)list<t1> <: intArray

Furthermore, InferType implicitly applies the transitivity rule and obtains:
t1 <: int (a and b)list<t1> <: intArray

This new rule is considered for the subtype enumeration, and InferType obtains list<t1> as
a subtype of intArray under the premise t1 <: int.

The derived new rule may be combined with existing other rules, and another new
rule may be derived from that combination by the transitivity rule. The iteration of this
combining may not terminate within finite steps. For example, this iteration never terminates
if the given subtype-related typing rules include a self-recursive subtype relation such as:

t1 <: t2 (a)list<t1> <: array<t2>
(r)

t <: array<t>

Here, the conclusion of r includes a self-recursive subtype relation such that a type is a
subtype of an array type of itself. InferType combines a and r, and derives:

t1 <: t2 (a and r)list<t1> <: array<array<t2>>

InferType will further combine a and r and r. It will then infinitely combine and derive
new rules. It is the InferType users’ responsibility to ensure that the given subtype-related
typing rules do not cause infinite iteration.

After enumerating all subtypes and super types for each primitive and composite type,
InferType generates Z3 formulae representing type constraints for these subtype relations.
Suppose that, for a target type typeT , its subtypes are subtype1 when premise1 holds,
subtype2 when premise2 holds, ..., InferType then generates the following Z3 formula:
( forall ((z ztype) (z0 ztype) (z1 ztype) ...)

(=> ( zsubtype z typeT )
(or (and (= z subtype1) premise1)

(and (= z subtype2) premise2)
...)))

(z ztype) expresses that a Z3 variable z represents a type in the target language such as
Mini-λ. zsubtype is the Z3 function returning true if the first argument is a subtype of
the second argument. In the above formula, z0, z1, ... are Z3 variables representing type
variables appearing in typeT , subtype1, subtype2, ... and premise1, premise2, .... => is an
implication operator in Z3. For example, for the subtypes of arrow in Mini-λ, InferType
generates the following formula:
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( forall ((z ztype) (z21 ztype) (z22 ztype))
(=> ( zsubtype z (Arrow z21 z22))

(and (= z (Arrow ( ArrowP1 z) ( ArrowP2 z))
( zsubtype z21 ( ArrowP1 z))
( zsubtype ( ArrowP2 z) z22)))))

This reads as, for all z, z21 and z22, if z is a subtype of arrow<z21, z22>, then z is an
arrow type, z21 is a subtype of the first argument of z, and the second argument of z is a
subtype of z22. InferType also generates a Z3 formula for the super types of arrow.

Finally, all translated Z3 formulae are asserted to find if there is an interpretation of
variables that makes all the translated Z3 formulae true. If Z3 can find such an interpretation,
InferType retrieves and translates that interpretation back to a binding of type variables
to concrete types. This binding is returned to the compiler writer. Otherwise, InferType
uses the unsat core extraction feature of Z3 to obtain a list of unsat translated type
constraints. It then returns type variables in those unsat translated type constraints by
calling inf.untypableTypevars in Section 3.1.3.

3.3 Optimizing Constraint Solving for Deeply Nested Types
Using Z3 in a straightforward way as in Section 3.2 works with respect to performance
in common cases such as Listing 2. However, the constraint solving sometimes becomes
extremely slow: we observe that the constraint solving time increases exponentially when
the programs contain deeply nested types.

Consider another program in Mini-λ given in Listing 5.
fun f2. fun f. fun x. f2(f)(x)

(fun g. g)
(fun y. y + "a")

Listing 5 Another program with nested types in Mini-λ

This program extends Listing 2 by adding an outer function with parameter f2. The
body of the function with parameter x is a function application, whose argument is x and
the called function is another function application f2(f). The function with parameter
f2 is then applied to the function with parameter g; its resulting value is applied to
the function with parameter y. The type of parameter f2 is supposed to be inferred as
arrow<arrow<str, str>, arrow<str, str>>, which we call a nested type (arrow of arrow).
In this paper, a nested type is a composite type that takes composite types as arguments.
This program can be further modified by defining another outer function f3 to create a larger
nested type, where the type of f3 is supposed to be inferred as a nested arrow of arrow of
arrow type. We create the programs containing f4 and f5 by adding more outer functions
for larger nested types. By our testing, a straightforward translation to Z3 in Section 3.2
performed constraint solving for the programs with f3 in 0.18s, f4 in 14.07s and f5 in
179m15.35s!

We expect that this slow down arises from the increasing search space for SMT solving.
For example, when a type variable is constrained to be a subtype (or super type) of a
type taking arrow types as arguments in a given type constraint, that type variable ranges
over increasingly many possible types by the size of arrow types in the arguments. In
Mini-λ, such a type variable ranges over possible types int, float, str, arrow<int, int>,
arrow<arrow<int, ...>, int>, ... by the increasing size of the arrow types in the argu-
ments. When Z3 solves the given type constraints, it tries to search for a possible solution
by instantiating the type variables over their possible types.



S. Li, T. Yamazaki, and S. Chiba 23:13

To mitigate the performance bottleneck of constraint solving containing deeply nested
types in Z3, we develop a pre-process for InferType. It first computes structures for the type
variables involved in the given type constraints. We call these structures shapes. Then it
generates and asserts extra Z3 formulae based on the computed shapes. They reduce the
search space of the involved type variables since type variables range over only limited depth
of nested types (or primitive types) specified by the computed shapes.

A shape is either a shape variable, a symbol *, or a nested structure starting with a
symbol ?.
shape := shapevar | * | ?<shape , shape , ...>

* represents only primitive types; it can never be any composite type. ? represents composite-
type names such as “arrow” in Mini-λ, which constructs a nested structure for shapes by
taking other shapes as arguments. For example, suppose that the shape of a type variable in
Mini-λ is pre-computed as ?<*, *>, that type variable would range over only arrow types
with primitive types as arguments, which are arrow<int, int>, arrow<int, str>, ...

3.3.1 Pre-Computing Shapes
InferType’s pre-process first computes shapes for the type variables involved in the given type
constraints generated from syntax-related typing rules during AST traversal. Subtype-related
typing rules are not considered when computing shapes.

Given the type constraints from syntax-related typing rules, our pre-process first converts
the involved types to shapes by the following function:
shapeof {tk } = sk

shapeof {primT ype} = *
shapeof {compT ypeName<t1 , t2 , ...>} = ?< shapeof {t1}, shapeof {t2}, ...>

A type variable is converted to a shape variable. A primitive type is converted to *. A
composite type is converted to a nested structure with ?. For example, a type arrow<tk,
int> is converted to a shape ?<sk, *>.

Then, shape equations are derived from the given type constraints. A shape equation is
a logical assertion with conjunctions and disjunctions over a binary equality between two
shapes.
shape -eq := shape == shape

| shape -eq ∧ shape -eq
| shape -eq ∨ shape -eq

A binary equality shape1 == shape2 specifies that shape1 and shape2 are lexically identical.
Shape equations do not contain logical implication or negation. Shape equations are derived
by the following function:
derive {t1 <: t2} = shapeof {t1} == shapeof {t2}
derive {¬ t1 <: t2} = TRUE
derive {c1 ∧ c2} = derive {c1} ∧ derive {c2}
derive {c1 ∨ c2} = derive {c1} ∨ derive {c2}

The input is the Negation Normal Form (NNF) converted from the given type constraints in
the form of Listing 3. The NNF is converted to handle type constraints in logical implication
and negation. A subtype relation t1 <: t2 is derived to a binary equality s1 == s2 between
the converted two shapes. Note that no shape equations are derived from subtype relations
in logical negation (represented as returning a logical TRUE literal). For example, a shape
equation ¬ sh == * cannot be derived even if a type constraint ¬ th <: int is given. sh can
be arbitrary because th can be any type except a subtype of int.
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For instance, the shape equations in Listing 6 are derived from the given type constraints
in Listing 4.
(1’) sf == ?<sx , sfx >
(2’) ?<sf , ?<sx , sfx >> == ?<?<sy , splus >, se >
(3’) (sy == * ∧ * == * ∧ * == splus)

∨ (sy == * ∧ * == * ∧ * == splus)

Listing 6 Shape equations for the type constraints

Next, the derived shape equations are solved to find a binding of shape variables to shapes
so that all those shape equations are satisfied. A shape equation consists of conjunction,
disjunction, and equality. Disjunctions may make it time-consuming to solve shape equations.
An equality such as ?<s1> == ?<*> may need to run an expensive unification algorithm
when solving shape equations.

To make the shape computation fast, InferType adopts an approximate approach. Each
shape equation is first transformed into a disjunctive normal form (DNF). Then, each clause
in the DNF is separately solved; a set of substitutions for shape variables is found so that
the left and right operands of every == operator included in that clause will be lexically
identical after the substitutions are applied to the operands. These substituions are found
by unification, which we implement by the disjoint-set (union-find) algorithm. For example,
when a clause of DNF is ?<s1> == ?<*> ∧ s2 == s1, a set of substitutions {s1 7→ *, s2
7→ s1} is found. Note that one arbitrary set of substitutions is found when there exists
multiple valid sets of substitutions.

After the unification, the resulting set of substitutions are compared with the sets of
substitutions for the other clauses of the shape equation. If all the sets of substitutions are
identical, the first clause of the shape equation, which is a conjunction of equalities, is used
in the next step. Otherwise, the whole shape equation is excluded in the next step. This
makes our shape computation approximate. When valid sets of substitutions are not found
for some clauses, the shape equation is also excluded.

Finally, the remaining clauses, which are not excluded in the previous step, are combined
by conjunction, and they are solved. The substitutions for shape variables are found by
unification as in the previous step. A shape variable is bound to a shape obtained by applying
those substitutions to that shape variable. If a shape is not obtained, the shape variable
does not have a binding.

For example, our approximate shape computation computes the following binding for List-
ing 6:
{sf 7→ ?<*, *>, sx 7→ *, sfx 7→ *,

sy 7→ *, splus 7→ *, se 7→ ?<*, *>}

Note that some shape variables do not have a binding. For the type variables corresponding
to those shape variables, InferType does not generate extra Z3 formulae in the next step
in Section 3.3.2. Those type variables are not optimized for constraint solving. For example,
in a target language, suppose that a composite type arrow is a subtype of a primitive type
object, and an operator != takes operands of object type. Then, suppose that a variable
vk is initialized with a value of an arrow type and vk appears as an operand for !=. This
will generate a shape equation sk == ?<*, *> ∧ sk == *, where sk corresponds to a type
variable tk for the variable vk. The initialization of vk generates sk == ?<*, *>, but the
!= operator generates sk == *. sk does not have a binding since there is no concrete shape
for sk to satisfy that shape equation. Note that not all shape variables sk lose a binding
when an arrow type is a subtype of a primitive type object. They lose a binding only when
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the type variables tk corresponding to sk appears in an expression where a syntax-related
typing rule specifies that tk is a subtype of object. Recall that shape computation does not
consider subtype-related typing rules.

3.3.2 Reducing Search Space
After solving shape equations, InferType generates extra Z3 formulae that explicitly represent
what types the involved type variables range over regarding the computed shapes for reducing
the search space. If a shape is *, its type variable ranges over only all primitive types. If
a shape is ? with n arguments, its type variable ranges over all composite types with n

arguments.
Given a type variable tk and the computed shape ?<shape1, shape2, ..., shapen> for its

corresponding shape variable sk, where shapei represents some computed shapes, InferType
generates extra Z3 formulae for tk as
(or (= zk (cn

1 shape1 shape2 ... shapen))
(= zk (cn

2 shape1 shape2 ... shapen))
...)

(or (= shape1 (cm
1 shape11 shape12 ... shape1m))

(= shape1 (cm
2 shape11 shape12 ... shape1m))

...)
(or (= shape2 p1) (= shape2 p2) ...)
...
(or (= shapen ...) ...)
...

zk is the translated Z3 constant for tk. cn
i represents all composite types that take n arguments

in the target language. The possible types for zk are explicitly listed by logical disjunction.
If shapej is a nested structure with ? that takes m arguments, InferType will then generate
extra Z3 formulae for shapej similar to the extra Z3 formulae for zk. An example is shape1
in the above code. shape1i represents its arguments. If shapej is *, InferType will then
generate extra Z3 formulae specifying that shapej ranges over only primitive types. An
example is shape2 in the above code. pi represents all primitive types in the target language.

For example, by the computed shape ?<*, *> for tf in Listing 4, the extra Z3 formulae
are generated as
(or (= z_f (Arrow sh_1 , sh_2)))
(or (= sh_1 Int) (= sh_1 Float) (= sh_1 Str))
(or (= sh_2 Int) (= sh_2 Float) (= sh_2 Str))

They specify that zf ranges over only arrow types with arguments of primitive types. ? here
corresponds to composite type names that take two arguments, which only “arrow” matches
in Mini-λ. The arguments sh_1 and sh_2 are generated Z3 constants.

Suppose that Mini-λ defined list types list<t> and array types array<t>, and also that
the shape of a type variable th were computed as ?<?<*>>. Then InferType would generate
the extra Z3 formulae as:
(or (= z_h (List sh_4)) (= z_h (Array sh_4)))
(or (= sh_4 (List sh_5)) (= sh_4 (Array sh_5)))
(or (= sh_5 Int) (= sh_5 Float) (= sh_5 Str))

z_h is the translated Z3 constant for th. sh_4 and sh_5 are generated Z3 constants for the
arguments. ? here corresponds to composite type names that take one argument, which
“list” or “array” matches.

Note that asserting extra Z3 formulae generated from some approximately computed
shapes in our shape computation might cause type inference failure, that is, the constraint
solving would result in unsat even though the types in the given type constraints could be
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inferred. When our shape computation approximately computes some shapes by excluding
some shape equations, InferType would encounter this limitation if that type variable in the
given type constraints does not have an inferred type with that approximately computed
shape.

For example, consider the following type constraints in the Mini-λ extended with type
object where an arrow type is a subtype of the object type:
(21) arrow <int , int > <: tc
(22) object <: tc ∨ td <: tc
(23) object <: td

The (only) valid binding that satisfies the type constraints is {tc 7→ object, td 7→ object}.
The shape equations are derived as:
(21 ’) ?<*, *> == sc
(22 ’) * == sc ∨ sd == sc
(23 ’) * == sd

By applying the approximate shape computation, (22’) will be excluded because it finds two
different substitutions {sc 7→ *} and {sd 7→ sc} by unification over the clauses of DNF. The
approximate shape computation then only computes (21’) and (23’), and outputs {sc 7→ ?<*,
*>, sd 7→ *}. The constraint solving will then fail because tc will be restricted to range
over only arrow types by the extra Z3 formulae generated from the approximately computed
shape ?<*, *> for sc. On the other hand, a precise shape computation by considering (22’)
would discard the shapes for sc and sd, and then the type constraints can be correctly solved.

To handle this limitation for InferType producing correct type inference, in our imple-
mentation, when InferType cannot infer the types with the pre-process, it will recover the
constraint solving once again without the pre-process. In the second run of the recovery,
there is no extra Z3 formula from the computed shapes and all the constraint solving is not
optimized. Note that if the given type constraints contain type errors, both the first and
second run will result in unsat. InferType can produce correct type inference instead of
producing some wrongly inferred types, though it will take extra time by running 2 times
when our approximate shape computation encounters this limitation.

3.3.3 Discussion
InferType’s shape computation is sound, that is: If InferType can compute a binding that
satisfies the given type constraints with the asserted extra Z3 formulae from the shape
computation, then that binding must be one of the bindings that satisfies the original type
constraints. Since InferType asserts the extra Z3 formulae by conjunction with the given
original type constraints, if InferType computes a binding for satisfaction, then that binding
must also satisfy the original type constraints. Although InferType might not be able to
compute some of the bindings that satisfy the original type constraints because the possible
inferred types for the type variables are restricted by the computed shapes, a computed
binding by InferType must be a valid solution. InferType is guaranteed to never produce a
wrongly inferred type if a program is ill-typed.

InferType’s shape computation is not complete in general, where the completeness of
the shape computation is defined as: InferType can compute a binding that satisfies the
type constraints with the asserted extra Z3 formulae if the original type constraints can be
satisfied. InferType’s shape computation would be complete under the following assumption:
all subtype relations hold only between types with the same structure. In such a target
language, if a type variable is constrained to be a subtype or super type of a type, then the
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structure of the inferred type for that type variable must be lexically identical to the structure
of that type. For instance, the shape computation for Mini-λ is complete. InferType’s shape
computation is not complete when the target language supports subtype relations between
types with different structures. In practical cases, such languages often support a type called
object which is a super type of any type. For example, suppose that the following type
constraints are given in a target language where the only common super type of arrow and
map types is a primitive type object:
arrow <int , int > <: ta
map <int , int > <: ta

The type variable ta can be only inferred as object for satisfaction. The shape computation
will compute the shape for ta as ?<*, *> from the derived shape equations:
?<*, *> == sa
?<*, *> == sa

However, InferType then could not find a binding for ta with the asserted extra Z3 formulae
because ta cannot be inferred as a type with that computed shape.

InferType incorporates a workaround to avoid its failure of computing shapes when the
target language supports subtype relations between types with different structures. Some
shape variables lose their bindings in our shape computation if part of the shape equations
cannot be solved by unification, while the other shape variables can still be computed and
the constraint solving for those corresponding type variables can still be optimized. For the
previous example containing arrow and map types, a common practice for InferType correctly
computing shapes and further computing types is by programmers’ type annotations. If a
programmer annotates the expression for ta as type object, a type constraint ta <: object
will be collected by AST traversal and given to InferType together with the other type
constraints. As we discussed in the last paragraph in Section 3.3.1, sa will lose a binding in
the shape computation because the derived shape equations including sa cannot be solved by
unification. InferType would then correctly perform type inference although the constraint
solving for ta would not be optimized.

When InferType wrongly computes some shapes and cannot infer types because of the
incompleteness of the shape computation, InferType would encounter a fallback to recover
the constraint solving as we mentioned in Section 3.3.2. Although the constraint solving is
entirely unoptimized in such cases, InferType would be able to correctly compute a binding
as the type inference result.

4 Experiment

We implemented a type inference engine for Mini-λ using InferType. We include it in our
artifact on Zenodo 2. The source code contains 291 LOC in Java with (manually counted) 48
LOC using InferType. Owing to InferType’s optimization, the implemented engine performed
type inference within around 0.18s for each program with nested types f3, f4 and f5 as
shown in Listing 5, which is way faster than a straightforward translation to Z3.

To further demonstrate the usage of InferType and the effectiveness of InferType’s
optimization, we conduct several experiments by implementing a type inference engine using
InferType for a subset of Python. We choose Python as the target language because we

2 https://zenodo.org/records/10981733
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Table 1 Dataset overview. Each value is the average number per program/project in each set.

set1-Typpete set2-fs set3-CodeNet set4-large set5-ill

LOC 37 17 29 490 18
def 3 5 0.4 45 0.3
typevar 61 29 175 745 35
constraint 45 12 79 613 32

suppose that it is a good testbed for evaluating the usage capability of InferType when
implementing a type inference engine with complex typing rules for a dynamic language like
Python. Another concern of choosing Python is being aware of an existing work Typpete [14].
Typpete is one of the state-of-the-art type inference engines for Python using the Z3 SMT
solver. Comparing a type inference engine by InferType with generated Z3 code with a
manually written one would be a valuable evaluation for the usage of InferType.

Subpet is a re-implementation of a subset of Typpete using InferType. Typpete performs
type inference by a manual encoding of type constraints and subtype-related typing rules to
Z3 formulae while Subpet does it by using InferType. Subpet adopts a similar type system
to Typpete. The main differences between Subpet’s and Typpete’s type systems are: The
type system of Subpet is flow-insensitive; Subpet does not support some container types
such as sequence types sequence<t>. Subpet contains 2,892 LOC in Java with (manually
counted) 226 LOC using InferType. It uses the Python ast module to parse the source
programs. The other code mainly consists of AST traversal and typing environment, class
table definitions. Typpete encodes the type inference of Python programs into a MaxSMT
problem by a manual encoding of type constraints and typing rules to Z3 formulae. It outputs
type annotations for an input Python program. Typpete contains 6,189 LOC implemented in
Python. Subpet is not so powerful as Typpete because Subpet is limited by the amount of our
implementation resource. Besides, InferType encodes the type inference for a target language
as a SMT problem while Typpete encodes it for Python into a MaxSMT problem. Typpete
could possibly infer some principle types by manually encoding soft and hard constraints in
syntax-related typing rules, while principle typing is generally not considered by InferType.
Nevertheless, Subpet could be able to infer types for the programs in our dataset including
real-world programs.

For the experiments, we build a dataset. It is publicly available in our artifact. The
dataset contains five sets of Python programs including no type annotations:

The first set (set1-Typpete) contains 44 Python benchmark programs obtained from
Typpete’s artifact 3. A few innocuous code modifications are made to overcome the imple-
mentation limitations of Subpet such as using explicit arguments instead of implicit ones.
These modifications do not impact the functionality of the code.

The second set (set2-fs) is a series of 7 artificial Python programs containing larger nested
types. One of these programs, for example, is manually created as
def f0(x):

return x + x
def f1(f0 , x):

return f0(x)

f1(f0 , 42)

3 https://zenodo.org/records/3996670

https://zenodo.org/records/3996670
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f1 is a function taking functions as parameter. Its type is assumed to be inferred as a nested
type. This Python program can be considered as a similar correspondence to Listing 5 in
Mini-λ. The program can be further extended with more function definitions f2, f3, ... for
larger nested types similar to what we showed in Mini-λ. We created the cases up to f7.

The third set (set3-CodeNet) contains 30 programs obtained from Project CodeNet [36].
Project CodeNet is a open-source, large-scale dataset containing solution programs to coding
problems from online judge websites. It is expected to be diverse and representative for
real-world programs. We downloaded its Python benchmarks, Version 1 at Sep. 6, 2023.
We used the grep command to search programs containing keywords graph and dijkstra.
Then we obtained 12 problem sets that had more than 10 hits of the two keywords. We used
such keyword searching because we expect that there is a high potential of programmers
defining data of nested types to solve graph coding tasks using the Dijkstra’s algorithm [16].
Then 5 programs were randomly picked up from each problem set (each problem set contains
100 ∼ 300 solution programs), resulting in 60 programs. 30 of the 60 programs were filtered
by the implementation limitation of Subpet (mostly because of unknown library usage with
respect to types). The remaining 30 programs were finally included in the third set.

The fourth set (set4-large) contains 4 larger programs/projects. The programs in this
set are aimed to estimate the scalability of the shape computation in InferType. Two of the
larger programs with 358 and 445 LOC were collected from the MOPSA project 4. A few
code modifications were made to overcome the implementation limitations of Subpet. The
other two projects were collected from Typpete’s artifact. One project includes 5 Python
files with 312 LOC. The other project includes 9 Python files with 846 LOC. Although these
programs and projects are not exceedingly large, each of them is more than 10 times larger
than the average of the programs in the other sets by LOC.

The fifth set (set5-ill) contains 4 ill-typed programs. These programs are used to
demonstrate the behaviour of handling type errors in InferType. Two of the ill-typed
programs are benchmark programs collected from MOPSA. The other two ill-typed programs
are from set1-Typpete. We manually modified the programs to make them become ill-typed.
A complete list of all the code changes in the dataset is included in our artifact.

Table 1 gives an overview of our dataset. Each value represents the average number per
program/project in each set. LOC shows the average number of line of code. def shows the
average number of function and method definitions. typevar and constraint show the average
number of generated type variables and type constraints derived by syntax-related typing
rules during Subpet’s AST traversal.

4.1 Comparing Subpet with Typpete
Firstly, we show the performance of type inference by Subpet and Typpete. Table 2 shows
the time results by running the two engines over set1-Typpete and set2-fs in our dataset. We
selected and included some of the larger programs by LOC in set1-Typpete in Table 2a. The
experiments were conducted on a Ubuntu 19.10 machine with 2.8 GHz Intel(R) Core(TM)
i7-6700T CPU and 32GB RAM, equipped with OpenJDK 14, Python 3.9.6, Z3 4.12.2 and
Typpete 0.1. The results from Subpet were the average elapsed time of the later 10 runs by
looping Subpet 20 times within the same JVM execution for each input Python program.
This is in the interest of the slow JVM startup time. For fair comparison, we also modified
Typpete to loop 20 times for each input Python program and then took the average of the
later 10 runs.

4 https://mopsa.lip6.fr
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Table 2 Time for Type Inference by Typpete and Subpet. †timeout (after 1,000s)

(a) set1-Typpete.

Name(.py) LOC Typpete Subpet

bellman_ford 61 2.54s 0.23s
crafting_challenge 132 3.32s 0.27s
deceitful 36 1.41s 0.12s
disjoint_sets 45 2.20s 0.20s
lattice 81 2.50s 0.16s
rockpaperscissor 79 2.87s 0.13s
vehicle 92 2.65s 0.14s

(b) set2-fs.

Name(.py) LOC Typpete Subpet

prog_f1 8 0.85s 0.09s
prog_f2 11 1.17s 0.11s
prog_f3 15 1.51s 0.11s
prog_f4 17 6.52s 0.17s
prog_f5 20 101.4s 0.28s
prog_f6 23 † 1.04s
prog_f7 27 † 3.08s

Both Subpet and Typpete could infer the types for normal programs without nested types
or with smaller nested types (programs in set1-Typpete and prog_f1 to prog_f3 in set2-fs)
within a reasonable time period. Subpet was faster than Typpete mainly because of the
language advantage: Subpet is implemented in Java and Typpete is implemented in Python.
However, Typpete exposed its performance downside for prog_f4 to prog_f7 in set2-fs with
deeply nested types. Subpet could finish their type inference much faster. Typpete ran
prog_f5 within 101.4s; it ran into timeout (†) for prog_f6 and prog_f7 after 1,000s. The
performance advantage is not simply because Subpet is implemented in Java rather than
Python. It mainly comes from InferType’s optimization. We will show our findings in the
later subsection.

We also demonstrate the behaviour of handling type errors by Subpet. It can detect
the type errors for all the ill-typed programs in set5-ill. Subpet tracks the types and type
variables to program locations (including the file name, line number and column number)
in a Map object during constraint generation in the AST traversal methods. By invoking
InferType for type inference, Subpet uses the untypable type variables returned by InferType
to retrieve the program locations and report them to the programmer, though a better
readable text message is not given due to our limited implementation resource. For example,
one of the ill-typed programs in set5-ill is written as

0 # arg_mismatch .py
1 def f(x):
2 return x
3

4 f()

This program is ill-typed because function f is called without argument but it is defined as
taking one argument. Subpet reports the type error message as

type inference failed .
type error location :
arg_mismatch .py: line 4, column 0

Typpete would report a similar type error message to the above by Subpet. Note that
InferType can detect and help report type errors whenever the optimization is disabled or
enabled. InferType would not wrongly infer types with our shape computation if the program
is ill-typed.
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(a) set1-Typpete (no extra formula). (b) set1-Typpete.

(c) set2-fs. (d) set3-CodeNet.

(e) set4-large. (f) set5-ill.

Figure 2 Time for Type Inference by disabling and enabling InferType’s shape computation. off
columns are results by disabling shape computation. on columns are results by enabling shape computation. y-axes
are the elapsed time in second. x-axes are program names. Figure 2a gives the results where the shape computation
is enabled in on but extra Z3 formulae are not added in constraint solving. The other subfigures gives the results
where extra Z3 formulae are added in on. †timeout (after 1,000s)

4.2 Validating the Effectiveness of InferType’s Optimization
We measure and compare the elapsed time of Subpet by disabling and enabling InferType’s
shape computation in Section 3.3 to validate how our shape computation can affect the
performance of type inference. Figure 2 shows the elapsed time for the programs in our
dataset by disabling and enabling InferType’s shape computation. Each data column is the
average elapsed time of the later 10 runs by looping Subpet 20 times. Column off and on
show the elapsed time when InferType disables and enables the shape computation. When
the shape computation is disabled, InferType performs type inference by a straightforward
translation to Z3 shown in Section 3.2.

The results from Figure 2a show that InferType gives a small performance overhead by
the shape computation. Figure 2a gives the results for part of the programs in set1-Typpete.
Particularly, extra Z3 formulae were not asserted in the constraint solving when the shape
computation was enabled in the programs in Figure 2a for evaluating the overhead of the
shape computation. Extra Z3 formulae were asserted for all the other programs when the
shape computation was enabled in the other subfigures in Figure 2. In average, Subpet
degraded the performance of type inference by 0.23% with the shape computation than
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without the shape computation among all the programs in Figure 2a. Here and below, the
performance rate is calculated as (toff - ton) / toff for each program, where toff and ton

are the elapsed time when the shape computation is disabled and enabled. This 0.23% was
the overhead of InferType’s shape computation for computing the shapes.

The results from Figure 2c show that InferType’s optimization can greatly mitigate the
performance bottleneck for constraint solving containing deeply nested types. When the
shape computation was enabled, Subpet performed type inference for all the programs in
set2-fs within a reasonable time period. When the shape computation was disabled, Subpet
performed much slower for prog_f5; it could not finish prog_f6 or prog_f7 within a time limit.
These results were similar to those obtained by Typpete given in Table 2b. It indicates that
the better performance by Subpet against Typpete was not simply because of the language
advantage, but because of InferType’s optimization.

Our results demonstrate a tendency that InferType’s optimization has a higher potential
to improve the performance of type inference for programs containing larger nested types.
Subpet with the shape computation outperformed that without the shape computation in
8/29 (27.6%) programs among Figure 2b (set1-Typpete). Among these 8 programs that
Subpet with the shape computation gave a better performance, it outperformed by an
average of 8.87%. For example, program bellman_ford (containing a nested list of list type)
and crafting_challenge (containing a nested dict of dict type) in Figure 2b had a better
performance by 16.7% and 15.1%. Subpet with the shape computation outperformed that
without shape computation in 11/30 (36.7%) programs among Figure 2d (set3-CodeNet).
Among these 11 programs, it outperformed by an average of 40.9%. In the best case
(s631647985), it accelerated the performance of type inference by 108.2%. The programs in
set3-CodeNet have more nested types than programs in set1-Typpte because set3-CodeNet
was collected on purpose by specific keyword search. Since set3-CodeNet has bias collected by
specific keyword searching, we could not clearly show how frequently nested types are used
in real-world Python programs. However, our results provide evidence that at least there are
programs using nested types in wild Python programs. InferType is practically useful to
help implement type inference engines such as Subpet to potentially handle such programs
more efficiently. It is also observable that InferType’s optimization would not always give
a better performance for the constraint solving with nested types. It sometimes degrades
the performance even if the programs contain nested types. For example, the optimization
degraded the performance of the two programs s177586793 and s560922578 by 49.6% and
51.6% in Figure 2d.

Our experiments empirically show the scalability of the shape computation to larger
programs. Figure 2e presents the time results of type inference for the collected programs/-
projects in set4-large. Subpet took around 2 seconds for type inference in average, which
is 10 times longer than the average elapsed time for the programs in set1-Typpte and
set3-CodeNet. InferType’s shape computation does not significantly boost or degrade the
performance of type inference. These results show that it is practically feasible to apply our
shape computation to larger real-world programs.

Figure 2f gives the elapsed time of type inference for the ill-typed programs in our dataset.
Subpet took a longer time to find the type error in type inference when the shape computation
was enabled. This is because InferType launches a second run of constraint solving if it
cannot find a binding to satisfy the given type constraints in the first run for handling the
limitation of our shape computation. Yet, Subpet could detect the type errors in all the
ill-typed programs whenever the shape computation was disabled or enabled.
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Table 3 Average number of computed shapes and average shape computation time. Each data cell
shows the results by Approximate / Precise shape computation.

set1-Typpete set2-fs set3-CodeNet set4-large set5-ill

shape 23 / 35 17 / 28 41 / 69 370 / 443 17 / 25
time 0.91ms / 74.3ms 0.71ms / 30.4ms 1.75ms / 434ms 68.7ms / 2.58s 0.69ms / 38.9ms

4.3 Assessing the Precision of the Approximate Shape Computation
We assess the precision of our approximate shape computation by counting the number
of computed shapes for type variables, compared with an implemented, precise shape
computation. Instead of computing only part of the shape equations in the approximate
shape computation, the precise shape computation processes all the derived shape equations
including disjunctions. It is implemented using Z3 by a straightforward translation from
shape equations to Z3 formulae. For example, the shape equations in Listing 6 (which are
derived from Listing 4) are translated to the following Z3 formulae to compute the shapes in
the precise shape computation.
(= s_f (Q2 s_x s_fx))
(= (Q2 s_f (Q2 s_x s_fx)) (Q2 (Q2 s_y s_plus ) s_e))
(or (and (= s_y Star) (= Star Star) (= Star s_plus ))

(and (= s_y Star) (= Star Star) (= Star s_plus )))

s_? represents translated Z3 constants for shape variables, which ranges over a Z3 datatype
declaration zshape for shapes generated as
( declare-datatypes () (( zshape

(Star)
(Q2 (Q2P1 zshape ) (Q2P2 zshape )))))

Star represents the symbol *. Q2 represents the symbol ? that takes two arguments, where
Q2P1 and Q2P2 are generated accessors. The precise shape computation outputs a binding of
shape variables to shapes by invoking Z3. InferType then generates and asserts extra Z3
formulae for type variables regarding the computed shapes to optimize constraint solving
same as in Section 3.3.2. Our approximate shape computation is implemented in Java.

The approximate shape computation computes more than half of the shapes that the
precise shape computation computes in average among all the programs in the dataset.
The first row in Table 3 shows the average number of computed shapes of all programs in
each dataset by the approximate and precise shape computation. The approximate shape
computation computed 70.3%, 55.5%, 60.4%, 83.6% and 68.0% shapes of those by the precise
one in each set of programs.

The approximate shape computation is much faster than the precise shape computation.
The second row in Table 3 lists the average elapsed time of the two shape computations for
all programs in each dataset. Same as the measuring before, the elapsed time of the shape
computation for each program was the average of the later 10 runs by looping 20 times. The
elapsed time of the approximate and precise shape computation differed in scale.

In our dataset, we did not find a program that had a faster elapsed time for type inference
with the precise shape computation than approximate by Subpet, though the precise shape
computation could compute more shapes in average and reduce the search space of more type
variables for expected, faster constraint solving. This might suggest that our approximate
shape computation is practically useful enough with respect to the performance, or the
programs in our dataset are relatively small so that the precise shape computation could
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not show its advantage. We could not show clear evidence to support these claims. Besides,
we did not find a case such that Subpet performed a type inference failure caused by the
limitation of the approximate shape computation as we discussed in Section 3.3.2. This is
because Subpet’s syntax-related typing rules during AST traversal do not generate a type
constraint like (22) given in Section 3.3.2, by excluding whose derived shape equation the
approximate shape computation would imprecisely compute a shape. However, it is possible
that our approximate shape computation encounters this limitation when developing other
languages whose syntax-related typing rules generate such type constraints.

5 Related Work

Language development is enjoying significant growth in number and diversity both by
academia and industry. Language workbenches such as MPS [45] and Xtext [11] are develop-
ment environments that provide high-level mechanisms for implementing domain-specific
languages [12]. Spoofax [18] allows language developers to write declarative specifications
of language definitions to produce parsers, interpreters and editor plugins. Efftinge [10]
presented a Java framework, Xbase, for implementing DSLs based on Xtext. Recent studies
proposed a standardization of name resolution and type checking with a constraint-based
approach integrated in Spoofax [1, 43]. Unlike existing language development toolkits such
as Spoofax, our proposed tool produces constraint-based type inference.

Specifying and implementing type inference using constraints is an established approach.
A number of existing type inference systems adopt constraint-based approaches because of
the modularity of separating constraint generation and solving for providing high flexibility
and extensibility [31, 35, 39, 38, 19, 27]. Our proposed tool adopts the constraint-based type
inference for similar reasons to support various type systems of handling type inequalities
such as subtyping. Besides the constraint-based approaches, one of the most traditional
and influential type inference approaches is the Hindley-Milner type inference [15, 23, 6].
The Hindley-Milner type inference targets one particular type system and infers types
by unification as the heart of its algorithm. Another approach is the bidirectional type
checking [32, 26], which is regarded as local type inference, developed by carefully controlling
the introduction and elimination of type variables for inferring parameter types. Turnstile [5]
is a meta-language for creating typed languages supporting bidirectional type checking.
Compared with Turnstile, InferType is designed for languages supporting global type inference
by the constraint-based approach. Jones introduced wobbly types [30] to distribute over type
constructors for handling GADT type inference using type annotations. Later, Pottier [34]
proposed a stratified type inference with a pre-process of inferring shapes for propagating
type annotations by local type inference. The idea of a two-strata type inference and the
computation for shapes in this research are similar to those in [34, 46]. However, our shapes
are automatically computed from the given type constraints without extra information like
type annotations, and the computed shapes are used for optimizing constraint solving.

Satisfiability Modulo Theories (SMT) is an area of automated deduction for checking the
satisfiability of first-order formulae with respect to logical theories [4, 3]. State-of-the-art
SMT solvers include Yices [9], CVC5 [2], and Z3 [7]. InferType currently relies on Z3 for
performing constraint solving. Translating InferType expressions to a higher-level language
such as JavaSMT [17] can be a possible extension for enabling different SMT solvers. There
have been works on improving the performance of SMT solvers in general such as pruning the
search space by detecting symmetries in the input formulae [8]. Later, Niemetz [25] presented
an approach for accelerating quantified constraint solving. The developed optimization in our
proposal is rather a domain-specific approach to reducing the search space of type variables
in SMT solving based on InferType’s shape computation.
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SMT solving has been a critical part of several static analyses including automatic type
inference. Swamy [42] presented the language F* with a dependent type and effect system
using a combination of SMT solving and manual proofs. Vazou and Jhala [44] introduced
LiquidHaskell, which is a refinement type-based verifier for Haskell using SMT solvers.
InferType does not directly support such type systems. However, a compiler writer can
handle complex types such as generics by manually resolving them (instantiating fresh type
variables) before encoding them into InferType, though InferType would compute a concrete
type instead of a generic type as the inferred type. Pavlinovic [28] presented an encoding
of the OCaml type system to a weighted MaxSMT problem for localizing type errors when
the type inference fails. InferType considers type errors by providing the type variables in a
minimal set of unsat type constraints for helping locate ill-typed program expressions, while
the generation of a text message is left to the compiler writer. Generating and customizing
type error messages by InferType is treated as our future work. Hassan [14] proposed a
type inference engine, Typpete, that generates Python 3 type annotations by encoding type
constraints as a MaxSMT problem using Z3. In this paper, we implemented a subset of
Typpete by using the proposed tool for the experiments. There are also emerging studies of
statically typing Python programs based on other techniques [21, 13, 24, 29].

6 Conclusion

We presented InferType, a Java library for implementing constraint-based type inference.
InferType performs constraint solving by translation to the Z3 SMT solver. Because the
constraint solving in SMT may be exponentially slow by the increasing search space for
large nested types, we developed an optimization technique for InferType to relieve the
performance bottleneck for better practical usage. InferType pre-computes a structure of a
type variable and reduces the search space of that type variable based on the pre-computed
structure.

We demonstrated the usage of InferType and experimented the effectiveness of its
optimization by implementing a type inference engine for a Python subset using InferType.
We found that, the implemented engine had compatible performance of type inference
compared with a state-of-the-art type inference engine for Python using Z3 with a manual
encoding of Z3 formulae. InferType’s optimization could greatly improve the performance
for programs with deeply nested types. We also observed that InferType could potentially
improve the performance of type inference for programs containing nested types. We believe
that InferType is practically useful to help implement constraint-based type inference for
language development.
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