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Abstract
Because of the probabilistic/nondeterministic behavior of quantum programs, it is highly advisable to
verify them formally to ensure that they correctly implement their specifications. Formal verification,
however, also traditionally requires significant effort. To address this challenge, we present Qafny,
an automated proof system based on the program verifier Dafny and designed for verifying quantum
programs. At its core, Qafny uses a type-guided quantum proof system that translates quantum
operations to classical array operations modeled within a classical separation logic framework. We
prove the soundness and completeness of our proof system and implement a prototype compiler
that transforms Qafny programs and specifications into Dafny for automated verification purposes.
We then illustrate the utility of Qafny’s automated capabilities in efficiently verifying important
quantum algorithms, including quantum-walk algorithms, Grover’s algorithm, and Shor’s algorithm.
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1 Introduction

Quantum computers can be used to program substantially faster algorithms compared
to those written for classical computers. For example, Shor’s algorithm [48] can factor
a number in polynomial time, which is not known to be polynomial-time-computable in
the classical setting. Developing more and more comprehensive quantum programs and
algorithms is essential for the continued practical development of quantum computing
[11, 49]. Unfortunately, because quantum systems are inherently probabilistic and must
obey quantum physics laws, traditional validation techniques based on run-time testing are
virtually impossible to develop for large quantum algorithms. This leaves formal methods as
a viable alternative for program checking, and yet these typically require a great effort; for
example, four experienced researchers needed two years to formally verify Shor’s algorithm
[38]. To alleviate the effort required for formal verification, many frameworks have been
proposed to verify quantum algorithms [26, 56, 3, 59, 20, 16] using interactive theorem
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Figure 1 Dafny Development Stages/Key Aspects.
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Figure 2 State Preparation Circuit.

provers, such as Isabelle, Coq, and Why3, by building quantum semantic interpretations and
libraries. Some attempts towards proof automation have been made by creating new proof
systems for quantum data structures such as Hilbert spaces; however, building and verifying
quantum algorithms in these frameworks are still time-consuming and require great human
effort. Meanwhile, automated verification is an active research field in classical computation
with many proposed frameworks [17, 42, 27, 39, 37, 18, 50, 31, 44, 45, 21, 6] showing strong
results in reducing programmer effort when verifying classical programs. None of the existing
quantum verification frameworks utilize these classical verification infrastructures, however.

We present Qafny, a framework that enables programmers to develop and verify quantum
programs based on quantum program semantics and classical automated verification infra-
structure. It has several elements (Figure 1). The core is a strongly typed, flow-sensitive
imperative quantum language Qafny, admitting a classical separation-logic-style proof sys-
tem, in which users specify quantum programs and input the properties to be verified as pre-
and post-conditions and loop invariants, such as GHZ, Quantum Walk, and Shor’s algorithm.
Qafny programs and specifications are verified via translation to a classical Hoare/separation
logic framework implemented in the Dafny program verifier [22]. Qafny programs may also
be compiled into quantum circuits and run on a quantum computer via the Qafny to SQIR
and SQIR to OpenQASM 2.0 [7] compilers in our technical report (TR) [24] C.6. Quantum
programs can be components of hybrid classical-quantum (HCQ) programs, so the compiled
Qafny code can also be a library function called by an HCQ program defined. For example,
one can extract the compiled Dafny program to a programming language, such as C#, PHP,
and Java, and utilize quantum programs compiled from Qafny to OpenQASM [21].

A key component of the design of Qafny is to encode quantum states as array-like
structures and quantum operations as aggregate array operations on the states. In Figure 2,
a quantum state in superposition ψ =

∑2n-1
j=0 1 |j⟩ is prepared by applying a Hadamard gate

to each qubit. Qafny treats ψ as an array containing 2n elements, one for each indexed basis
element in ψ. Each element is a pair of a complex and a natural number (computational
basis, essentially a bitstring). For example, Bell pair 1√

2 |00⟩+ 1√
2 |11⟩ can be thought of as a

two-element array, with two pairs: ( 1√
2 , |00⟩) and ( 1√

2 , |11⟩), where the first one is a complex
number and the second one is a bitstring that can be represented as a natural number.
Applying a quantum oracle (f(|j⟩) = (−i)j |j⟩) on ψ, which evolves each indexed element
1 |j⟩ to (−i)j |j⟩, is similar to an array map function that applies f ′(αj , j) = ((−1)jαj , j)
to each element j in the 2n-array. The design and analysis of many quantum algorithms
leverage the representation of different groups of qubits in terms of classical arrays [13, 35, 47].
Besides the opportunities for automated reasoning provided by representing quantum states
as arrays, Qafny also uses language abstractions such as quantum conditionals and loops,
which generalize quantum controlled gates to enable local reasoning in the presence of
quantum entanglement. In the prior works above, the usual approach in reasoning about
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quantum controlled gates such as CNOT and controlled-U gates is to transform these operations
into a monolithic representation, such as a unitary matrix, not scaling up well for automated
verification, because the relations among different entries, representing inductive relation
among program constructs, are largely omitted. In Qafny, reasoning about comprehensive
constructs, such as controlled gates, amount to building a structural inductive relation among
different parts, such as a quantum conditional and its subparts, through deliberately designed
proof rules in Sections 3.4 and 4.4; such design permits automated local reasoning.

These designs pose several challenges: 1) quantum operations can be performed on any
qubit positions, e.g., f above could apply on arbitrary bits in every bitstring j; 2) performing
automated local reasoning requires one to know which states and qubits can be excluded
locally, but qubits can form entangled groups that are typically viewed as not separable;
and 3) the Qafny proof system should obey quantum physical laws, such as no-cloning
and no quantum observer effects. To address these problems, we first introduce different
types of quantum-state representations and special data structures (loci in Section 3) to
partition qubits into disjoint entanglement groups for local reasoning. We then combine
a flow-sensitive type system (Section 4.3) with our proof system, capable of 1) statically
identifying the quantum state types and tracking entanglement group transformations and
2) performing type-guided quantum-state rewrites in the assertions and automated local
operation reasoning on canonicalized quantum states, without violating quantum laws.

The paper’s contributions are listed as follows.
We present the Qafny language, including a big-step semantics and flow-sensitive type
system, which provides a simple way of enforcing quantum program properties, such as
no-cloning and no observer breakdown. We also prove type soundness for Qafny in Coq.
The Qafny type-guided proof system permits classical-array-operation views of quantum
operations and captures the inductive behaviors of quantum conditionals and loops.
Soundness and relative completeness are also proved in Coq. To the best of our knowledge,
Qafny provides the first proof-rule definitions for quantum conditionals and for-loops.
We exhibit a prototype Qafny to Dafny compiler as evidence of connecting quantum-
program verification to classical Hoare/separation logic. We verify a number of quantum
algorithms (Figure 16) with a high degree of automation. Sections 5.2 and 7 compares
proof automation in Qafny with other frameworks.
We faithfully implement several algorithms, such as GHZ, Shor’s, and quantum walk, as
case studies in tje paper to demonstrate how Qafny can help programmers to efficiently
verify quantum-algorithm implementations. The program operations of these examples
are a high-level abstraction of the algorithms’ quantum circuit-based description, while
the Qafny program state specifications are directly based on the algorithms’ state
representations based on Dirac notations.

2 Background

Here, we provide background information on quantum computing.

Quantum Value States. A quantum value state1 consists of one or more quantum bits
(qubits), which can be expressed as a two-dimensional vector ( αβ ) where the amplitudes α
and β are complex numbers and |α|2 + |β|2 = 1. We frequently write the qubit vector

1 Most literature mentioned Quantum value states as quantum states. Here, we refer to them as quantum
value states or quantum values to avoid confusion between program and quantum states.
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24:4 Qafny: A Quantum-Program Verifier

as α |0⟩ + β |1⟩ (the Dirac notation [8]), where |0⟩ = ( 1
0 ) and |1⟩ = ( 0

1 ) are computational
basis-kets. When both α and β are non-zero, we can think of the qubit being “both 0 and 1
at once,” a.k.a. in a superposition [35], e.g., 1√

2 (|0⟩+ |1⟩) represents a superposition of |0⟩
and |1⟩. Larger quantum values can be formed by composing smaller ones with the tensor
product (⊗) from linear algebra, e.g., the two-qubit value |0⟩ ⊗ |1⟩ (also written as |01⟩)
corresponds to vector [ 0 1 0 0 ]T . However, many multi-qubit values cannot be separated
and expressed as the tensor product of smaller values; such inseparable value states are called
entangled, e.g. 1√

2 (|00⟩+ |11⟩), known as a Bell pair, which can be rewritten to
∑1
d=0

1√
2 |dd⟩,

where dd is a bit string consisting of two bits, each of which must be the same value (i.e.,
d = 0 or d = 1). Each term 1√

2 |dd⟩ is named a basis-ket [35], consisting an amplitude ( 1√
2 )

and a basis vector |dd⟩.

Quantum Computation and Measurement. Computation on a quantum value consists
of a series of quantum operations, each acting on a subset of qubits in the quantum value.
In the standard form, quantum computations are expressed as circuits, as in Figure 3a,
which depicts a circuit that prepares the Greenberger-Horne-Zeilinger (GHZ) state [12] – an
n-qubit entangled value of the form: |GHZn⟩ = 1√

2 (|0⟩⊗n + |1⟩⊗n), where |d⟩⊗n =
⊗n-1
d=0 |d⟩.

In these circuits, each horizontal wire represents a qubit, and boxes on these wires indicate
quantum operations, or gates. The circuit in Figure 3a uses n qubits and applies n gates: a
Hadamard (H) gate and n−1 controlled-not (CNOT) gates. Applying a gate to a quantum value
evolves it. Its traditional semantics is expressed by multiplying the value’s vector form by the
gate’s corresponding matrix representation: n-qubit gates are 2n-by-2n matrices. Except for
measurement gates, a gate’s matrix must be unitary and thus preserve appropriate invariants
of quantum values’ amplitudes. A measurement operation extracts classical information
from a quantum value. It collapses the value to a basis state with a probability related to
the value’s amplitudes (measurement probability), e.g., measuring 1√

2 (|0⟩ + |1⟩) collapses
the value to |0⟩ with probability 1

2 , and likewise for |1⟩, returning classical value 0 or 1,
respectively. A more general form of quantum measurement is partial measurement, which
measures a subset of qubits in a qubit array; such operations often have simultaneity effects
due to entanglement, i.e., in a Bell pair 1√

2 (|00⟩+ |11⟩), measuring one qubit guarantees the
same outcome for the other – if the first bit is measured as 0, the second bit is too.

Quantum Conditionals. Controlled quantum gates, such as controlled-not gates (CNOT),
can be thought of as quantum versions of classical operations, where we view a quantum
value as an array of basis-kets and apply an array map operation of the classical operation
to every basis-ket. This is evident when using Dirac notation. For example, in preparing
a two-qubit GHZ state (Figure 3a, also a Bell pair) for qubit array x, the H gate evolves
the value to 1√

2 |00⟩ + 1√
2 |10⟩ (same as 1√

2 (|0⟩ + |1⟩) ⊗ |0⟩). The quantum conditional
maps the classical conditional if (x[0]) {x[1]← x[1] + 1} onto the two basis-kets, where the
operation x[1] + 1 acts as a modulo 2 addition to flip x[1]’s bit. Here, we do not flip the
x[1] position in the first basis-ket ( 1√

2 |00⟩) due to x[0] = 0, and we flip x[1] in the second
basis-ket because of x[0] = 1. Such behaviors can be generalized to other controlled gates,
such as the controlled-U gate appearing in Shor’s algorithm (Figure 6), where U refers to a
modulo-multiplication operation. The controlled nodes (Boolean guards) in these quantum
conditionals can also be generalized to other types of Boolean expressions, e.g., it can be a
quantum inequality ((κ <n) @ x[i]) that compares every basis vector of qubit array κ’s value
state with the number n and stores the result in qubit x[i], and the controlled node queries
x[i] to determine if the conditional body is executed, more in Sections 4 and 6.2.
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|0⟩ H • . . .

|0⟩ • . . .

|0⟩ . . .
......

. . . •
|0⟩

(a) GHZ Circuit.

(b) GHZ For-loop Analogy.

1 { x[0, n) 7→ |0⟩ }
2 x[0] ← H;
3 { x[0, 1) 7→ 1√

2 (|0⟩+ |1⟩) ∗ x[1, n) 7→ |0⟩ }
4 for j ∈ [1, n) && x[j - 1]
5 { x[0, j) 7→

∑1
d=0

1√
2 |d⟩ ∗ x[j, n) 7→ |0⟩ ∗ j ≤ n }

6 x[j] ← x[j] + 1;
7 { x[0, n) 7→

∑1
d=0

1√
2 |d⟩ ∗ x[n, n) 7→ |0⟩ }

8 { x[0, n) 7→
∑1

d=0
1√
2 |d⟩ }

(c) Qafny GHZ Program and Proof.

Figure 3 GHZ Examples. x[t1, t2) 7→ |0⟩means 0 is a bitstring of length t2-t1. x[t1, t2) 7→
∑1

d=0 |d⟩
means d is a bitstring of length t2-t1 and d ∈ [0, 1] is a bit. ∗ is the separation conjunction. In (c),
black parts are Qafny programs, while blue and gray parts are Qafny state predicates.

Quantum Oracles. Quantum algorithms manipulate input information encoded in “oracles,”
which are callable black-box circuits. Quantum oracles are usually quantum-reversible
implementations of classical operations, especially arithmetic operations. Their behavior
is defined in terms of transitions between single basis-kets. We can infer its global state
behavior based on the single basis-ket behavior through the quantum summation formula
below. This resembles an array map operation in Figure 2. oqasm [23] is a language that
permits the definitions of quantum oracles with efficient verification and testing facilities
using the summation formula.

∀j. |xj⟩ −→ f(|xj⟩)
Σjαj |xj⟩ −→ Σjαjf(|xj⟩)

No Cloning and Observer Effect. The no-cloning theorem suggests no general way of
copying a quantum value. In quantum circuits, this is related to ensuring the reversible
property of unitary gate applications. For example, the Boolean guard and body of a
quantum conditional cannot refer to the same qubits, e.g., if (x[1]) {x[1]← x[1] + 1} violates
the property as x[1] is mentioned in the guard and body. The quantum observer effect refers
to leaking information from a quantum value state. If a quantum conditional body contains
a measurement or classical variable updates, the quantum system breaks down due to the
observer effect. Qafny enforces no cloning and no observer breakdown through the syntax
and flow-sensitive type system.

3 Qafny Design Principles: Locus, Type, and State

Here, we show the Qafny fundamental design principles for quantum program verification.
We use the GHZ example in Figure 3a to highlight these principles, with a proof outline in
Figure 3c; x is initialized to an n-qubit Nor typed value |0⟩ (n number of |0⟩ qubits). After
preparing a superposition (x[0]← H) for a single qubit x[0] in line 2, we execute a quantum for-
loop that entangles each pair of adjacent qubits in x to prepare the GHZ state. We can unroll
each iteration of the loop as a quantum conditional (if (x[j-1]) {x[j]← x[j] + 1}). When
verifying the program in Qafny, it is only needed to provide the program and specifications
in blue, with the grayed out parts automatically inferred. We show critical features in our
type-guided proof system, making the above verification largely automatic.

ECOOP 2024



24:6 Qafny: A Quantum-Program Verifier

3.1 Loci, Types, and States

Figure 4 shows Qafny loci, types, and states, which are used for tracking possibly entangled
qubits. In GHZ (Figure 3c), each loop step in lines 4-6 entangles the qubit x[j] with
x[0, j), i.e., the entangled qubit group is expanded from x[0, j) to x[0, j + 1). However, the
entanglement here is implicit: the program syntax does not directly tell if x[j] is entangled
with x[0, j) but relies on an analysis to resolve the entanglement scopes, which is captured
by introducing
1) loci (κ) to group possibly entangled qubits,
2) standard kind environments (Ω) to record variable kinds (explained below), and
3) locus type environments (σ) to keep track of both loci and their quantum state types.

Qafny variables may represent one of three kinds 2 of values (Figure 4). C and M kinds
are scalars; the former is an integer3, and the latter is a measurement outcome (r, n) where
r is the probability of outcome n. Q m kind variables represent a physical m-length qubit
array conceptually living in a heap. For simplicity, we assume no aliasing in variable names,
no overlapping between qubit arrays referred to by any two different variables, and scalar
and qubit array variables are always distinct. Quantum values are categorized into three
different types: Nor, Had and EN. A normal value (Nor) is an array (tensor product) of
single-qubit values |0⟩ or |1⟩. Sometimes, a (Nor)-typed value is associated with an amplitude
z, representing an intermediate partial program state; an example is in Section 6.1. A
Hadamard (Had) typed value represents a collection of qubits in superposition but not
entangled, i.e., an n-qubit array 1√

2 (|0⟩ + α(r0) |1⟩) ⊗ ... ⊗ 1√
2 (|0⟩ + α(rn−1) |1⟩), can be

encoded as 1√
2n

⊗n-1
j=0 (|0⟩+ α(rj) |1⟩), with α(rj) = e2πirj (rj ∈ R) being the local phase, a

special amplitude whose norm is 1, i.e., |α(rj)| = 1. The most general form of n-qubit values
is the entanglement (EN) typed value, consisting of a linear combination (represented as an
array) of basis-kets, as

∑m
j=0 zjβjηj , where m is the number of elements in the array. In

Qafny, we extend traditional basis-ket structures in the Dirac notation to be the above form,
so each basis-ket of the above value contains not only an amplitude zj and a basis βj but also
a frozen basis stack ηj , storing bases not directly involved in the current computation. Here,
βj can always be represented as a single |cj⟩ by the equation in Figure 4. Every βj in the
array has the same cardinality, e.g., if |c0| = n (β0 = |c0⟩), then |ci| = n (βj = |cj⟩) for all j.

A Qafny quantum state (φ), representing a quantum heap, maps loci to quantum values.
Loci in a heap φ partition it into regions that contain possibly entangled qubits, with the
guarantee that cross-locus qubits are not entangled. Each locus is a list of disjoint ranges
(s), each represented by x[n,m) – an in-place array slice selected from n to m (exclusive)
in a physical qubit array x (always being Q kind). Ranges in a locus are pairwise disjoint,
written as s1 F s2. For conciseness, we abbreviate a singleton range x[j, j + 1) as x[j]. At
the type level, we maintain a locus type environment (σ) mapping loci to quantum types:
any quantum state φ always has an entry in σ, guaranteeing that dom(φ) = dom(σ), i.e., loci
mentioned in φ and σ are the same. Locus type environments are stateful, i.e., a statement
that starts with the environment σ could end up with a different one σ′ because a locus
could be modified during the execution. In addition to the locus type environment, we keep
a kind environment between variables and their kinds. However, it is scoped and immutable
as the kind of any scoped variable does not change.

2 C and M kinds are also used as context modes in type checking. See Figure 9.
3 Any classical values are permitted in our implementation. For simplicity, we only consider integers here.
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Basic Terms:
Nat. Num m,n ∈ N Real r ∈ R Amplitude z ∈ C Phase α(r) ::= e2πir

Variable x, y Bit d ::= 0 | 1 Bitstring c ∈ d+ Basis Vector β ::= (|c⟩)∗

Modes, Kinds, Types, and Classical/Quantum Values:
Mode g ::= C | M
Classical Scalar Value v ::= n | (r, n)
Kind gk ::= g | Q n
Frozen Basis Stack γ ::= (|β|)
Full Basis Vector η ::= βγ
Basic Ket w ::= zη
Quantum Type τ ::= Nor | Had | EN
Quantum Value (Forms) q ::= w | 1√

2n

⊗n-1
j=0 (|0⟩+ α(rj) |1⟩) |

∑m
j=0 wj

Quantum Loci, Environment, and States
Qubit Array Range s ::= x[n,m)
Locus κ ::= s concatenated op F

Kind Environment Ω ::= x→ gk

Type Environment σ ::= κ : τ concatenated op ⊎
Quantum State (Heap) φ ::= κ : q concatenated op ⊎

Syntax Abbreviations and Basis/Locus Equations∑0
j=0 wj ≃ w0

∑m
j=0 wj ≃

∑
j wj 1γ ≃ γ zβ(|∅|) ≃ zβ zβ(|β′|) ≃ zββ′

|c1⟩ |c2⟩ ≡ |c1c2⟩ x[n, n) ≡ ∅ ∅ F κ ≡ κ x[n,m) F κ ≡ x[n, j) F x[j,m) F κ where n ≤ j ≤ m

Figure 4 Qafny element syntax. Each range x[n, m) in a locus represents the number range
[n, m) in physical qubit array x. Loci are finite lists, while type environments and states are finite
sets. The operations after “concatenated op” are concatenations for loci, type environments, and
quantum states.

On the bottom of Figure 4, we show abbreviations (≃) rules for presentation purposes;
A ≃ B means we write B to mean A. The left-most rule shows that Nor typed value is a
singleton EN typed array; see the type-guided state rewrites in Section 3.3. We can also omit
the (||) in a basis-ket presentation and color the basis stack with a hat sign −, e.g., 1√

2 |0⟩ |1⟩
means 1√

2 |0⟩ (| |1⟩ |); additionally, 1√
2 |0⟩ |1⟩ means 1√

2 |0⟩ |1⟩ (|∅|). Below the ≃ rules in the
figure, we present structural equations (≡) among bases and loci: 1) the locus concatenation
F holds identity and associativity equational properties; 2) a range (x[n, n)) containing 0
qubit is empty; and 3) it is free to split a range (x[n,m)) into two (x[n, j) and x[j,m)),
preserving the disjointness of F.

3.2 Simultaneity for Tracking Qubit Positions and Entanglement Scopes
Qafny uses locus transformations, captured by the type inference on program operations,
to track entanglement scopes. Figure 5 describes the automated proof steps for verifying
a loop-step in Figure 3c. The bottom pre-condition contains the quantum values for the
two disjoint loci x[0, j) and x[j, n). The quantum conditional’s Boolean guard and body are
applied to the qubits x[j-1] and x[j], respectively, appearing in the above two loci. The
application entangles x[j] with the locus x[0, j) and transforms the locus to be x[0, j+1), by
appending x[j] to the end of x[0, j). The append, as the first (bottom) proof step in Figure 5,
happens automatically through rewrites guided by the locus transformations in the type
environment σ associated with each proof triple. After the rewrites, we preserve the property
of no entangled cross-locus qubits.

In the above example, the static rewrites of a locus in a type environment simultaneously
gear and change the rewrites of the locus value form in the associated state. We call this
manipulation mechanism simultaneity. As shown in Section 1, quantum operations can
apply on arbitrary qubit positions, which might seriously harm proof automation, based on
previous experiments [16, 3] (Section 5.2), even if they tried hard for automation tactics. It
is necessary to statically track qubit positions to permit the canonicalization of quantum
state rewrites, allowing a uniform way of defining proof rules for operations.

ECOOP 2024



24:8 Qafny: A Quantum-Program Verifier

Ω; {κ2 : EN} ⊢M

{
κ2 7→

1
√

2
|0⟩ |1⟩|1⟩

}
e
{
κ2 7→

1
√

2
|1⟩ |1⟩|1⟩

} P-Oracle

Ω; {κ1 : EN} ⊢M

{
κ1 7→

1
√

2
|1⟩ |0⟩|1⟩

}
e
{
κ1 7→

1
√

2
|1⟩ |1⟩|1⟩

} EQ

Ω; {κ1 : EN} ⊢M

{
F (x[j-1], κ1) 7→

1∑
d=0

1
√

2
|d⟩ |0⟩

}
e
{
κ1 7→

1
√

2
|1⟩ |1⟩|1⟩

} M-F

Ω; {κ : EN} ⊢C

{
κ 7→

1∑
d=0

1
√

2
|d⟩ |0⟩

}
if (x[j-1]) e

{
U(¬x[j-1]) 7→

1∑
d=0

1
√

2
|d⟩ |0⟩ ∗ U(x[j-1]) 7→

1
√

2
|1⟩ |1⟩|1⟩

} P-If

Ω;σ ⊢C

{
x[0, j) 7→

1∑
d=0

1
√

2
|d⟩ ∗ x[j, n) 7→ |0⟩

}
if (x[j-1]) e

{
x[0, j+1) 7→

1∑
d=0

1
√

2
|d⟩ ∗ x[j+1, n) 7→ |0⟩

}
κ = x[j-1] F κ1 κ1 = x[0, j-1) F x[j] κ2 = x[j] F x[0, j-1)
e = x[j] ← x[j] + 1; σ = {x[0, j) : EN , x[j, n) : Nor} U(b) = U(b , x[j-1] , κ)

Figure 5 Detailed automated proof for a loop-step in GHZ. Constructed from the bottom up.

To permit automated proof inference, we design the uniformity in Qafny proof rules
to require that the locus fragments for qubits that an operation is directly applied always
be prefixed. For example in Figure 5 P-If, instead of having locus x[0, j+1), we rewrite it
further to κ (x[j-1] F x[0, j-1) F x[j]), so the qubit x[j-1] that the Boolean guard is applied
to appears at the start position. These rewrites simultaneously and appropriately rearrange
the quantum value associated with the loci. In a Qafny quantum state, qubits in a locus are
arranged as a list of indices pointing to qubit positions. The locus indices point to particular
qubits in a Nor and Had typed value since they essentially represent an array of qubits. An
EN typed value consists of a list of basis-kets; the locus indices refer to the corresponding
bases appearing in each basis-ket.

x[j-1]F x[0, j-1) F x[j] 7→
∑1

d=0
1√
2
|d⟩ |d⟩ |0⟩ x[0, j-1)Fx[j] 7→ 1√

2
|1⟩|0⟩|1⟩ x[j]Fx[0, j-1) 7→ 1√

2
|0⟩|1⟩|1⟩

In the three example states above from Figure 5, the first maps the locus κ (x[j-1] F
x[0, j-1)Fx[j]) to the pre-state in the bottom of line P-If, where |d⟩ is expanded to |d⟩ |d⟩. In
each basis-ket (d is 0 or 1), the first qubit x[j-1] of the locus κ corresponds to the first basis
bit, while the last qubit x[j] corresponds to |0⟩, the last basis bit. Applying an operation on
x[j] performs the application on the last basis bit |0⟩ for every basis-ket. We can also refer a
consecutive fragment of a locus to its basis bits, e.g., range x[0, j-1) refers to |d⟩, the middle
portion of each basis-ket, provided that they have the same cardinality. In this paper, we call
the corresponding basis bits of qubits or locus fragments for a value (or a basis-ket set) as the
qubit’s/locus’s position bases of the value (or the basis-ket set). A locus’s position bases are
linked and moved according to the rewrites of the locus, e.g., the middle and right examples
above represent the rewrites from locus κ1 = x[0, j-1) F x[j] to κ2 = x[j] F x[0, j-1) in the
pre-states (bottom to upper) of Figure 5 line EQ.

The rewrite moves x[j] in κ1 to the front in κ2; correspondingly, x[j]’s position basis
(|0⟩) is also moved to the front. These examples show the functionality of frozen basis stacks.
The two basis-kets’ frozen basis stacks both contain a basis |1⟩, which are not referenced
by any part of a locus and therefore unreachable qubits. As shown in Section 1, we want
local reasoning and preserving quantum theorems, i.e., a quantum state for a program piece
does not mention qubits that are not reachable in the piece, e.g., accessing x[j-1] above
inside the conditional body means a violation of no-cloning. However, quantum states can
be entangled, so unreachable qubits cannot be separated from the states. Instead, we hide



L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:9

the unreachable qubits, such as x[j-1], in the frozen stack and retrieve it after jumping out
of the conditional body. A comprehensive example is given in Section 6.2. We show how to
unfreeze the frozen bases and explain the motivation for having frozen bases shortly below.

3.3 Rewrites based on Locus Type and State Equivalence Relations
The Qafny type system maintains simultaneity through the type-guided state rewrites,
formalized as equivalence relations (Section 4.3). Other than the locus qubit position
permutation introduced above, the types associated with loci in the environment also play an
essential role in the rewrites. In Qafny, a locus represents a possibly entangled qubit group.
From the study of many quantum algorithms [2, 4, 35, 48, 1, 43, 30, 14], we found that the
establishment of an entanglement group can be viewed as a loop structure of incrementally
adding a qubit to the group at a time, representing the entanglement’s scope expansion; as
the analogy in Figure 3b, qubits in the blue part are added to the orange part one by one.
This behavior is similar to splits and joins of array elements if we view quantum states as
arrays. However, joining and splitting two EN-typed values are hard problems 4. Another
critical observation in studying many quantum algorithms is that the entanglement group
establishment usually involves splitting a qubit in a Nor/Had typed value and joining it to an
existing EN typed entanglement group. We manage these join and split patterns type-guided
equations in Qafny, suitable for automated verification. The GHZ example above (Figure 3c
line 5) is an example of Nor and an EN type state split and join, where in each loop-step
in Figure 3c, a Nor-typed qubit x[j] is split from locus x[j, n) and moved to the end of the
EN-typed locus x[0, j). Details are in Section 4.3.

3.4 The Qafny Proof System Glance Via Quantum Conditional Proofs
We integrate our type system with the Qafny proof system, where Qafny’s type-guided
proof triple (Ω;σ ⊢g

{
P

}
e

{
Q

}
) states that from a pre-condition P , executing e results in

a post-condition Q, provided that P and Q are resp. well-formed w.r.t σ and σ′, where
Ω, σ ⊢g e ▷ σ′ is a valid typing judgment (explained in Section 4.3).

A key design principle for proof automation rules is compositional and rule generalization,
i.e., automated proof steps should be compositional, where each proof step is localized
regarding a localized state, and the generalization means that automation should not depend
on the specific local states. The issue with quantum proof rule designs is entanglement, i.e., a
program execution on a local state might have global effects, which force the proof automation
system to perform case analyses on the local states to resolve the global effects. For example,
in verifying the conditional if (x[j-1]) e in the bottom of Figure 5, e can be applied to an
entangled qubit state outside the visibility of qubits mentioned in e. Since e can be arbitrarily
complicated, the prior work [56] handles the verification of the quantum conditional by
expanding it as a whole matrix applied to a whole quantum state and performing case
analyses. For proof automation, we need to design a uniform procedure, expressed as proof
rules, to derive the verification; such a task is handled by predicate transformers and frozen
stacks built on our locus structures.

An example is given at the line P-If in Figure 5, we utilize two locus predicate trans-
formers F and U to transform the pre- and post-conditions so that they focus on the loci
and basis-kets relevant to the current computation. In verifying the quantum conditional
(if (x[j-1]) {x[j]← x[j]+1}), we first apply F to transform the pre-condition. For the value

4 The former is a Cartesian product; the latter is ≥ NP-hard, both unsuitable for automated verification.
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1√
2 |0⟩ |0⟩+ 1√

2 |1⟩ |0⟩, we filter out the basis-ket 1√
2 |0⟩ |0⟩, as the Boolean guard (x[j-1]) is

not satisfiable for x[j-1]’s position basis (|0⟩) of the basis-ket. For the remaining basis-ket
1√
2 |1⟩ |0⟩, we freeze x[j-1]’s position basis (|1⟩), by pushing |1⟩ to the frozen stack as an

unreachable position, highlighted by |1⟩, since it represents the qubit appearing in the
Boolean guard that should not join any computation in e (x[j] ← x[j]+1). A frozen stack
represents the link between the local state and its entangled global state. Each basis-ket in a
superposition state can be associated with a single frozen stack, and we utilize a predicate
transformer to manipulate all these frozen stacks in a state, recording the side-effects of the
entangled global state caused by local state changes.

Notice that the locus is transformed from κ to κ1 by removing x[j-1] to preserve
simultaneity. The post-condition κ1 7→ 1√

2 |1⟩ |1⟩|1⟩ contains only the computation result
of the basis-ket 1√

2 |1⟩ |0⟩, and we want the final post-state to contain all other missing
pieces, which is the task of the two U transformers. U(b, x[j-1], κ) points to the basis-
ket satisfying the Boolean guard ( 1√

2 |1⟩ |0⟩), from the above result post-condition. The
transformer transforms x[j-1]’s position basis, currently in the stack, back to its normal
position. U(¬b, x[j-1], κ) represents the basis-ket not satisfying the guard ( 1√

2 |0⟩ |0⟩), where
we retrieve it from the pre-condition through the transformer. Finally, the two transformers
transform and assemble the two states into one as the post-condition at the bottom Figure 5.
Section 4.4 contains more details.

4 Qafny Formalism

This section formalizes Qafny’s syntax, semantics, type system, proof system, and the
corresponding soundness and completeness theorems. Running example in Figure 6 describes
quantum order finding, the core component of Shor’s algorithm (complete one in TR [24] C.5).
The program assumes that an n-qubit H gate and an addition (y[0, n)+1) respectively applied
to ranges x[0, n) and y[0, n) before line 3. The for-loop entangles range y[0, n) with every qubit
in x[0, n), one per loop step, and applies a modulo multiplication in each step. measure(y)
(partial measurement) in line 8 non-deterministically outputs a classical value at % N for y,
and interconnectively rearranges x[0, n)’s quantum state, with all basis kets’ bases related to
a period value p. We unveil the details along with the section.

4.1 Qafny Syntax
Qafny is a C-like flow-sensitive language equipped with quantum heap mutations, quantum
conditionals, and for-loops. We intend to provide users with a high-level view of quantum
operations, e.g., viewing H and QFT[−1] gates as state preparation, quantum oracles (µ in
[23]) as quantum arithmetic operations, and controlled gates as quantum conditionals and
loops. As in Figure 7, aside from standard forms such as sequence (e ; e) and SKIP ({}),
statements e also include let binding (let x = am in e), quantum heap mutations (_←− _),
quantum/classical conditionals (if (b) e), and loops (for j ∈ [a1, a2) && b {e}). The let
statement binds either the result of an arithmetic expression (a) or a computational basis
measurement operator (measure(y)) to an immutable C/M kind variable x in the body e. This
design ensures all classical variables are immutable and lexically scoped to avoid quantum
observer breakdown due to mutating a classical variable inside a quantum conditional body.

(1) int u = 0; if (x[0]) u = 1; ✗ (2) if (x[0]) let u = 1 in {}; ✓ (3) let u = 1 in if (x[0]) {}; ✓

Here, case (1) declares u as 0 and changes its value to 1 inside the quantum conditional,
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1 < a < N E(t) = x[t, n) 7→ 1√
2n - t

⊗n-t-1
i=0 (|0⟩+ |1⟩) ∗ x[0, t) F y[0, n) 7→

∑2t-1
i=0

1√
2t
|i⟩ |ai % N⟩

1 {x[0, n) 7→ 1√
2n

⊗n-1
j=0 (|0⟩+ |1⟩) ∗ y[0, n) 7→ |0⟩ |1⟩} { x[0, n) : Had , y[0, n) : Nor }

2 { E(0) } { x[0, n) : Had , x[0, 0) F y[0, n) : EN }
3 for j ∈ [0, n) && x[j]
4 { E(j) } { x[j, n) : Had , x[0, j) F y[0, n) : EN }
5 y[0, n) ← a2j

· y[0, n) % N ;
6 { E(n) } { x[0, 0) : Had , x[0, n) F y[0, n) : EN }
7 { x[0, n) F y[0, n) 7→

∑2n-1
i=0

1√
2n
|i⟩ |ai % N⟩ } { x[0, n) F y[0, n) : EN }

8 let u = measure(y) in ...

9
{

x[0, n) 7→ 1√
r

∑r-1
k=0 |t + kp⟩ ∗ p = ord(a, N)

∗ u = ( p
2n , at % N) ∗ r = rnd( 2n

p )

}
{ x[0, n) : EN }

Figure 6 Snippets from quantum order finding in Shor’s algorithm; full proof in TR [24] C.5.
ord(a, N) gets the order of a and N . rnd(r) rounds r to the nearest integer. We interpret integers
as bitstrings in |i⟩ and |ai % N⟩. The right column presents the types of all loci involved.

oqasm Expr µ

Arith Expr a ::= x | x[i, j) | v | a1 + a2 | a1 · a2 | ...
Bool Expr b ::= x[a] | (a1 = a2) @ x[a] | (a1 < a2) @ x[a] | ...
Predicate Locus K ::= κ | M (x, n, κ) | F (b, κ, κ) | U(b, κ, κ)
Predicate P, Q, R ::= a1 = a2 | a1 < a2 | K 7→ q | P ∧ P | P ∗ P | ...
Gate Expr op ::= H | QFT[−1]

C/M Kind Expr am ::= a | measure(y)
Statement e ::= {} | κ←− op | κ←− µ | let x = am in e

| e1 ; e2 | if (b) e | for j ∈ [a1, a2) && b {e}

Figure 7 Core Qafny syntax. Element syntax is in Figure 4 and oqasm is in [23]. QFT[−1] refers
to the QFT and reversed QFT. An arithmetic expression x is a C/M kind variable, x[i, j) is a quantum
array range, and v is a C/M kind value. x[a] is the a-th element of qubit array x.

which creates an observer effect because u’s value depends on qubit x[0]. Cases (2) and (3)
show that our immutable let binding can avoid the issue because the binding in (2) can be
compiled to (3) due to the immutability; thus, u’s value does not depend on the qubit.

A quantum heap mutation operation mutates qubit array data by applying to a locus
κ either a unitary state preparation operation (op) (one of Hadamard H, quantum Fourier
transformation QFT, and its inverse QFT−1) or a unitary oracle operation (µ). 5 Other unitary
operations, including quantum diffusion and amplification operations, are in TR [24] C.1.

Quantum reversible Boolean guards b are implemented as oqasm oracle operations,
expressed by one of (a1 = a2) @ x[a], (a1 < a2) @ x[a], and x[a], which intuitively amounts
to computing a1 = a2, a1 < a2 and false respectively as b0 and storing the result of
b0 ⊕ x[a] as a binary in qubit x[a].6 In both conditionals and loops, guards b are used to
represent the qubits that are controlling. In addition to the let bindings, the quantum
for-loop also introduces and enumerates C-kind value j over interval [a1, a2) with j visible
to both the guard b and the loop body e. As a result of immutability, loops in Qafny are
guaranteed to terminate. If all variables in the guard b are classical, the conditional or

5 µ can define all quantum arithmetics, e.g., x[j]+1 (Fig. 3c) & a2j

y[0, n) % N (Fig. 6). See [23].
6 a1 and a2 can possibly apply to a range, like y[0, n), in an entangled locus.
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S-ExpC
(φ, e[n/x]) ⇓ φ′

(φ, let x =n in e) ⇓ φ′

S-ExpM
(φ, e[(r, n)/x]) ⇓ φ′

(φ, let x = (r, n) in e) ⇓ φ′

S-OP
◦ = op ∨ ◦ = µ

(φ ⊎ {κ F κ′ : q}, κ←− ◦) ⇓ φ ⊎ {κ F κ′ : J◦K|κ|
q}

S-If
FV (Ω, b) = κ JbK|κ|

q = q⟨κ, b⟩+ q⟨κ,¬b⟩ (φ ⊎ {κ′ : S|κ|(q⟨κ, b⟩)}, e) ⇓ φ ⊎ {κ′ : q′}
(φ ⊎ {κ F κ′ : q}, if (b) e) ⇓ φ ⊎ {κ F κ′ : P (q′) + q⟨κ,¬b⟩}

S-Loop
n < n

′ (φ, if (b[n1/j]) e[n1/j]) ⇓ φ′ (φ′
, for j ∈ [n+1, n′) && b {e}) ⇓ φ′′

(φ, for j ∈ [n, n′) && b {e}) ⇓ φ′′

S-Loop1
n ≥ n′

(φ, for j ∈ [n, n′) && b {e}) ⇓ φ

S-Seq
(φ, e1) ⇓ φ′ (φ′

, e2) ⇓ φ′′

(φ, e1 ; e2) ⇓ φ′′

S-Mea
κ = y[0, n) r =

∑
j

|zj |2 (φ ⊎ {κ′ :
∑

j

zj√
r
ηj}, e[(r, {|c|})/x]) ⇓ φ′

(φ ⊎ {κ F κ′ :
∑

j

zj |c⟩ ηj + q⟨κ, c ̸= κ⟩}, let x = measure(y) in e) ⇓ φ′

J◦Kn(
∑

j
zj |cj⟩ ηj) ≜

∑
j zj(J◦K |cj⟩)ηj where (◦ = µ ∨ ◦ = op ∨ ◦ = b) ∧ ∀j |cj | = n

(
∑

i zi|ci⟩ηi + q)⟨κ, b⟩ ≜
∑

i zi|ci⟩ηi where ∀i. |ci| = |κ| ∧ Jb[ci/κ]K = true

Sn(
∑

j zj |cj⟩ βj(|β′
j |)) ≜

∑
j zjβj(| |cj⟩ β′

j |) where ∀j |cj | = n

P (
∑

j zjβj(| |cj⟩ β′
j |)) ≜

∑
j zj |cj⟩ βj(|β′

j |)

Figure 8 Selected semantic rules. {|c|} turns basis c to an integer.

loop becomes a standard classical one, which is differentiated and definable by our type
system, described in TR [24] C. Obviously, users can always view a Qafny program as a
quantum sub-component in a Dafny program, which provides better library support for
classical conditionals. Predicates and predicate loci in Figure 7 describe quantum state
properties in the Qafny proof system, explained in Section 4.4.

4.2 Qafny Semantics
The Qafny semantics is formalized as a big-step transition relation (φ, e) ⇓ φ′, with φ / φ′
being quantum states as described in Figure 4. The judgment relation states that a program
e with the pre-state φ transitions to a post-state φ′. A selection of the rules defining ⇓ may
be found Figure 8, and the additional rules are in TR [24] C.2. FV (Ω,−) produces a locus
by unioning all qubits in − with the quantum variable kind information in Ω; its definition
is given in TR [24] A.

Assignment and Mutation Operations. Rules S-ExpC and S-ExpM define the behaviors
for C and M kind classical variable assignments, which perform variable-value substitutions.
Rule S-OP defines a quantum heap mutation applying a state preparation operation (op)
or an oracle expression (µ) to a locus κ for a EN-typed state. Here, the locus fragment κ to
which the operation is applied must be the very first one in the locus κ F κ′ that refers to the
entire quantum state q. If not, we will first apply equivalence rewrites to be explained in
Section 4.3 to move κ to the front. With κ preceding the rest fragment κ′, the operation’s
semantic function J◦Kn (◦ being H or µ) is then applied to κ’s position bases in the quantum
value q. More specifically, the function is only applied to the first n (equal to |κ|) basis bits
of each basis-ket in the value while leaving the rest unchanged. The semantic interpretations
of the op and µ operations are essentially the quantum gate semantics given in Li et al. [23].
For example, in Figure 5 line P-Oracle, we apply an oracle operation x[j]+1 to x[j], the
first position of the locus κ2 (i.e.,x[j] F x[0, j-1)), which transforms the first basis bit to |1⟩.
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Before the application, we rewrite the pre-state containing κ1 below the line EQ in Figure 5,
to the form corresponding to the locus κ2 above the line.

Quantum Conditionals. As in rule S-If, for a conditional if (b) e, we first evaluate the
Boolean guard b on κ’s position bases (FV (Ω, b) = κ) of the quantum value state q to
JbK|κ|q7 because b’s computation might have side-effects in changing κ’s position bases, as
the example in Section 6.2. The quantum value referred by κ F κ′ is further partitioned into
q⟨κ, b⟩+ q⟨κ,¬b⟩ where q⟨κ, b⟩ is a set of basis-kets whose κ’s position bases satisfying b and
q⟨κ,¬b⟩ is the rest. Since the body e only affects the basis-kets (q⟨κ, b⟩) satisfying the guard
b, we rule out the basis-kets q⟨κ,¬b⟩ (unsatisfying the guard) in e’s computation. We also
need to push κ’s position bases in q⟨κ, b⟩ to the frozen stacks through the Sn operation to
maintain the locus-state simultaneity in Section 3.2.

We describe rule S-If along with an example in Figure 6 line 3-5. Here, the j-th iteration is
unrolled to a quantum conditional if (x[j]) {y[0, n) ← a2j · y[0, n) %N}. The loci involved
in the computation are x[j] and x[0, j) F y[0, n), and their state transitions are given as:{

x[j] : 1√
2 (|0⟩+ |1⟩)

}
⊎

{
x[0, j) F y[0, n) :

∑2j -1
i=0

1√
2j
|i⟩ |ai % N⟩

}
≡

{
x[j] F x[0, j) F y[0, n) :

∑2j -1
i=0

1√
2j+1 |1⟩ |i⟩|a

i % N⟩+
∑2j -1

i=0
1√
2j+1 |0⟩ |i⟩|a

i % N⟩
}

S-If−−→
{

x[j] F x[0, j) F y[0, n) :
∑2j -1

i=0
1√
2j+1 |1⟩ |i⟩|(a

i · a2j

) % N⟩+
∑2j -1

i=0
1√
2j+1 |0⟩ |i⟩|a

i % N⟩
}

≡
{

x[0, j+1) F y[0, n) :
∑2j+1-1

i=0
1√
2j+1 |i⟩ |a

i % N⟩
}

The first equation transition (≡) merges the two locus states and turns the merged state
into two sets (separated by +), respectively representing basis-kets where x[j]’s position
bases are 1 and 0. Since the Boolean guard x[j] has no side-effects, the application JbK|κ| is
an identity. The S-If application performs a modulo multiplication oracle application on the
basis-ket set where x[j]’s position bases being 1, while the last equation merges the two sets
back to one summation formula. The S-If application above can be further decomposed into
two additional transitions in between:

−→
{

x[0, j) F y[0, n) :
∑2j -1

i=0
1√
2j+1 |i⟩|a

i % N⟩|1⟩
}

S-OP−−−→
{

x[0, j) F y[0, n) :
∑2j -1

i=0
1√
2j+1 |i⟩|(a

i · a2j

) % N⟩|1⟩
}

The first transition removes the q⟨κ,¬b⟩ part, e.g., the basis-ket set where x[j]’s position
bases are 0. Additionally, for every basis-ket in the q⟨κ, b⟩ set, e.g., the basis-ket set where
x[j]’s position bases being 1, we freeze κ’s position bases by pushing the bases into the
basis-ket’s stacks through the function application S|κ|(q⟨κ, b⟩), which finds the first |κ| bits
in every basis-ket and push them into the basis-ket’s stack so that e’s application targets locus
κ′ instead of κ F κ′. As the first transition above, for each basis-ket, we push x[j]’s position
basis (|1⟩) to the basis-ket’s stack, as the |1⟩ part and the pointed-to locus is rewritten
to x[0, j) F y[0, n). After applying the body e to the state, for every basis-ket, we pop κ’s
position bases (P (q′)) from the basis-ket’s stack and relabel the locus of the state to be
κFκ′; in doing so, we also need to add the unmodified basis-kets q⟨κ,¬b⟩ back into the whole
state. After applying S-OP on locus x[0, j) F y[0, n) above, we pop |1⟩ from every basis-ket’s
stack and assemble the unchanged part (

∑2j-1
i=0

1√
2j+1 |0⟩ |i⟩|ai % N⟩) back to the state of locus

x[j] F x[0, j) F y[0, n); the result is shown as the state after the S-If−−→ application above.

7 This is defined formally as an oracle, same as µ above.
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T-Par
σ ⪯ σ′ Ω;σ′ ⊢g e ▷ σ

′′

Ω;σ ⊢g e ▷ σ
′′

T-ExpC
x ̸∈ dom(Ω) Ω;σ ⊢g e[n/x] ▷ σ′

Ω;σ ⊢g let x =n in e ▷ σ′

T-ExpM
x ̸∈ dom(Ω) Ω ⊢ a : M Ω[x 7→ M];σ ⊢g e ▷ σ

′

Ω;σ ⊢g let x = a in e ▷ σ′

T-OP
◦ = op ∨ ◦ = µ

Ω;σ ⊎ {κ F κ′ : EN} ⊢g κ←− ◦ ▷ σ ⊎ {κ F κ′ : EN}

T-Mea
Ω(y) = Q n x ̸∈ dom(Ω)

Ω[x 7→ M];σ ⊎ {κ : EN} ⊢C e ▷ σ
′

Ω;σ ⊎ {y[0, n) F κ : τ} ⊢C let x = measure(y) in e ▷ σ′

T-If
FV (Ω, b) = κ FV (Ω, e) ⊆ κ′ Ω;σ ⊎ {κ′ : EN} ⊢M e ▷ σ ⊎ {κ′ : EN}

Ω;σ ⊎ {κ F κ′ : EN} ⊢g if (b) e ▷ σ ⊎ {κ F κ′ : EN}

T-Seq
Ω;σ ⊢g e1 ▷ σ1 Ω;σ1 ⊢g e2 ▷ σ2

Ω;σ ⊢g e1 ; e2 ▷ σ2

T-Loop
x ̸∈ dom(Ω) ∀j ∈ [n1, n2) .Ω;σ[j/x] ⊢g if (b[j/x]) e[j/x] ▷ σ[j+1/x]

Ω;σ[n1/x] ⊢g for x ∈ [n1, n2) && b {e} ▷ σ[n2/x]

Figure 9 Qafny type system. F V (Ω,−) gets a locus containing qubits in − w.r.t. Ω (TR [24] A).

Quantum Measurement. A measurement (let x = measure(y) in e) collapses a qubit array
y, binds a M-kind outcome to x, and restricts its usage in e. Rule S-Mea shows the partial
measurement behavior 8. Assume that the locus containing the qubit array y is y[0, n) F κ′,
the measurement is essentially a two-step array filter: (1) the basis-kets of the EN typed value
is partitioned into two sets (separated by +): (

∑m
j=0 zj |c⟩ |cj⟩) + q⟨κ, c ̸= κ⟩ with κ = y[0, n),

by randomly picking a |κ|-length basis c where every basis-ket in the first set have κ’s position
basis c; and (2) we create a new array value by removing all the basis-kets not having c as
prefixes (the q⟨κ, c ̸= κ⟩ part) and also removing the κ’s position basis in every remaining
basis-ket; thus, the quantum value becomes

∑m
j=0

zj√
r
ηj . Notice that the element size of the

post-state m+1 is smaller than the size of the pre-state before the measurement. Since the
amplitudes of basis-kets must satisfy

∑
i |zi|2 = 1, we need to normalize the amplitude of

each element in the post-state by multiplying a factor 1√
r
, with r =

∑m
j=0 |zj |2 as the sum

of the amplitude squares appearing in the post-state. When proving quantum program
properties, the amplitudes appearing in basis-kets usually follow a periodic pattern that
users can provide, so computing r will be relatively simple, see Section 4.4. In Figure 6, the
measurement (line 8) transitions the state from lines 7 to 9. Locus y[0, n)’s position basis is
|ai % N⟩ for each basis-ket in

∑2n-1
i=0

1√
2n
|i⟩ |ai % N⟩. We then randomly pick the basis value

at % N as a measurement result, stored in u, and the probability of the pick is p
2n where p is

the order of a and N . The probability is computed solely based on p because it represents
the period of the factorization in Shor’s algorithm. The number (r) of remaining basis-kets
in range x[0, n) is computed by rounding 2n

p .

4.3 Qafny Locus Type System
The Qafny typing judgment Ω;σ ⊢g e ▷ σ′ states that e is well-typed under the context
mode g (the syntax of kind g is reused as context modes) and environments Ω and σ. The
kind environment Ω is populated through let and for loops that introduce C and M kind
variables, while Q-kind variable mappings in Ω are given as a global environment. Selected
type rules are in Figure 9; the rules not mentioned are similar and given in TR [24] C.3. For
every type rule, well-formed domains (Ω ⊢ dom(σ)) are required but hidden from the rules,

8 A complete measurement is a special case of a partial measurement when κ′ is empty in S-Mea
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σ ⪯ σ

{∅ : τ} ⊎ σ ⪯ σ

{κ : τ} ⊎ σ ⪯ {κ : τ ′} ⊎ σ
where τ ⊑ τ ′

{κ1 F s1 F s2 F κ2 : τ} ⊎ σ ⪯ {κ1 F s2 F s1 F κ2 : τ} ⊎ σ

{κ1 : τ} ⊎ {κ2 : τ} ⊎ σ ⪯ {κ1 F κ2 : τ} ⊎ σ

{κ1 F κ2 : τ} ⊎ σ ⪯ {κ1 : τ} ⊎ {κ2 : τ} ⊎ σ

(a) Environment Equivalence.

φ ≡ φ

{∅ : q} ⊎ φ ≡ φ

{κ : q} ⊎ φ ≡ {κ : q′} ⊎ φ
where q ≡|κ| q′

{κ1 F s1 F s2 F κ2 : q} ⊎ φ ≡ {κ1 F s2 F s1 F κ2 : q′} ⊎ φ
where q′ = q|κ1|⟨|s1| ≍ |s2|⟩

{κ1 : q1} ⊎ {κ2 : q2} ⊎ φ ≡ {κ1 F κ2 : q′} ⊎ φ
where q′ = q1 ▷◁ q2

{κ1 F κ2 : φ} ⊎ σ ≡ {κ1 : φ1} ⊎ {κ2 : φ2} ⊎ σ
where φ1 ▷◁ φ2 = φ ∧ |φ1| = |κ1|

(b) State Equivalence.

Permutation:

(q1
⊗

q2
⊗

q3
⊗

q4)n⟨i ≍ k⟩ ≜ q1
⊗

q3
⊗

q2
⊗

q4 where |q1| = n ∧ |q2| = i ∧ |q3| = k

(
∑

j zj |cj⟩ |c′
j⟩ |c

′′
j ⟩ ηj)n⟨i ≍ k⟩ ≜

∑
j zj |cj⟩ |c′′

j ⟩ |c
′
j⟩ ηj where |cj | = n ∧ |c′

j | = i ∧ |c′′
j | = k

Join Product:
z1 |c1⟩ ▷◁ z2 |c2⟩ ≜ (z1 · z2) |c1⟩ |c2⟩

∑n
j=0 zj |cj⟩ ▷◁

∑m
k=0 zk |ck⟩ ≜

∑n·m
zj · zk |cj⟩ |ck⟩

|c1⟩ ▷◁
∑

j zjηj ≜
∑

j zj |c1⟩ ηj (|0⟩+ α(r) |1⟩) ▷◁
∑

j zjηj ≜
∑

j zj |0⟩ ηj +
∑

j (α(r) · zj) |1⟩ ηj

Figure 10 Qafny type/state relations. · is math mult. Term
∑n·m P is a summation omitting the

indexing details.
⊗

expands a Had array, as 1√
2n+m

⊗n+m-2
j=0 qj = ( 1√

2n

⊗n-1
j=0 qj)

⊗
( 1√

2m

⊗m-1
j=0 qj).

such that every variable used in all loci of σ must appear in Ω, while Ω ⊢ a : M judges that
the expression a is well-formed and returns an M kind; see TR [24] A and B. The type system
enforces three properties below.

No Cloning and Observer Breakdown. We enforce no cloning by disjointing qubits men-
tioned in a quantum conditional Boolean guard and its body. In rule T-If, κ and κ′ are
disjoint unioned, and the two FV side-conditions ensure that the qubits mentioned in the
Boolean guard and conditional body are respectively within κ and κ′; thus, they do not
overlap. Qafny is a flow-sensitive language, as we enforce no observer breakdown by ensuring
no classical variable assignments through the Qafny syntax and no measurements inside a
quantum conditional through context restrictions. Each program begins with the context
mode C, which permits all Qafny operations. Once a type rule switches the mode to M, as
in T-If, measurement operations are suspended in this scope, as T-Mea is valid only if
the context mode is C. For instance, let’s imagine that the measurement in Figure 6 line 8
lives inside the for-loop in line 5, which our type system would forbid because type checking
through T-Loop calls rule T-If that marks the context mode to M, while the application of
rule T-Mea requires a C mode context to begin with.

Guiding Locus Equivalence and Rewriting. The semantics in Section 4.2 assumes that the
loci in quantum states can be in ideal forms, e.g., rule S-OP assumes that the target locus
κ are always prefixed. This step is valid if we can rewrite (type environment partial order
⪯) the locus to the ideal form through rule T-Par, which interconnectively rewrites the
locus appearing in the state, through our state equivalence relation (≡), as the locus state
simultaneity enforcement (Section 3.2). The state equivalence rewrites have two components.

First, the type and quantum value forms have simultaneity, i.e., given a type τ1 for
a locus κ in a type environment (σ), if it is a subtype (⊑) of another type τ2, κ’s value
q1 in a state (φ) can be rewritten to q2 that has the type τ2 through state equivalence
rewrites (≡n) where n is the number of qubits in q1 and q2. Both ⊑ and ≡n are reflexive and
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types Nor and Had are subtypes of EN, which means that a Nor typed value (|c⟩) and a Had
typed value ( 1√

2n

⊗n-1
j=0 (|0⟩+ α(rj) |1⟩)) can be rewritten to an EN typed value (TR [24] C.3).

For example, range x[0, n)’s Had typed value 1√
2n

⊗n-1
j=0 (|0⟩+ |1⟩) in Figure 6 line 1 can be

rewritten to an EN type as
∑2n-1
i=0

1√
2n
|i⟩. If such a rewrite happens, we correspondingly

transform x[0, n)’s type to EN in the type environment.
Second, type environment partial order (⪯) and state equivalence (≡) also have sim-

ultaneity – in a proof judgment, we associate the state predicate, representing a state φ,
with the type environment σ by sharing the same domain, i.e., dom(φ) = dom(σ). Thus, the
environment rewrites (⪯) happening in σ gear the state rewrites in φ, e.g., the bottom proof
step of Figure 5 transforms locus x[0, j) in σ to locus κ (x[j-1] F x[0, j-1) F x[j]) above it,
and the state rewrites in the pre-condition predicate happen accordingly as (left to right):

{x[0, j) :
∑1

d=0
1√
2 |d⟩} ⊎ {x[j] : |0⟩} ≡ {x[0, j + 1) :

∑1
d=0

1√
2 |d⟩ |0⟩} ≡ {κ :

∑1
d=0

1√
2 |d⟩ |0⟩}

{x[0, j) : EN} ⊎ {x[j] : Nor} ⪯ {x[0, j + 1) : EN} ⪯ {κ : EN}

Here, we add qubit x[j] (|0⟩) to the end of locus x[0, j) and transform locus x[0, j + 1) to
κ, so the upper proof step (P-If) in Figure 5 can proceed. The above rewrites are derived by
the rules in Figure 10, where the rules in environment partial order and state equivalence are
one-to-one corresponding. The first three lines describe the properties of reflective, identity,
and subtyping equivalence. The fourth line enforces that the environment and state are close
under locus permutation. After the equivalence rewrite, the position bases of ranges s1 and
s2 are mutated by applying the function q|κ1|⟨|s1| ≍ |s2|⟩. One example is the locus rewrite
in Figure 6 line 7 from left to right, as:{

x[0, n) F y[0, n) : EN
}

⪯
{

y[0, n) F x[0, n) : EN
}{

x[0, n) F y[0, n) :
∑2n-1

i=0
1√
2n
|i⟩ |ai % N⟩

}
≡

{
y[0, n) F x[0, n) :

∑2n-1
i=0

1√
2n
|ai % N⟩ |i⟩

}
The last two lines in Figures 10a and 10b describe locus joins and splits, where the latter

is an inverse of the former but much harder to perform practically. In the most general
form, joining two EN-type states computes the Cartesian product of their basis-kets, shown
in the bottom of Figure 10, which is practically hard for proof automation. Fortunately, the
join operations in most quantum algorithms are between a Nor/Had typed and an EN-typed
state, Joining a Nor-typed and EN-typed state puts extra qubits in the right location in
every basis-ket of the EN-typed state as discussed in Section 3.3. Joining a Had-typed qubit
(single qubit state) and EN-typed state duplicates the EN-typed basis-kets. In every loop
step in Figure 6 line 3-5, we add a Had-typed qubit x[j] to the middle of an EN-typed locus
x[0, j) F y[0, n), transform the state to:

{
x[0, j+1) F y[0, n) :

2j -1∑
i=0

1√
2j
|i⟩ |0⟩ |ai % N⟩+

2j∑
j=0

1√
2j-1

|i⟩ |1⟩ |ai % N⟩
}

The state can be further rewritten to the one in Figure 6 by merging the above two parts
(separated by +). Notice that the basis-kets are still all distinct because the two parts are
distinguished by x[j]’s position basis, i.e., |0⟩ and |1⟩. TR [24] F shows practical ways to
perform additional state joins and splits, including an upgraded dependent type system to
permit a few cases of splitting EN typed values.

Approximating Locus Scope. The type system approximates locus scopes. In rule T-If, we
use κ F κ′ as the approximate locus large enough to describe all possible qubits directly and
indirectly mentioned in b and e. Such scope approximation might be over-approximated, which
does not cause incorrectness in our proof system, while under-approximation is forbidden.
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P-Frame
dom(σ) ∩ FV (Ω, R) = ∅

FV (Ω, e) ⊆ dom(σ) Ω;σ ⊢g

{
P

}
e
{
Q

}
Ω;σ ⊎ σ′ ⊢g

{
P ∗ R

}
e
{
Q ∗ R

} P-Con
σ ⪯ σ′

P ⇒ P
′ Ω;σ′ ⊢g

{
P

′
}
e
{
Q

′
}

Q
′ ⇒ Q

Ω;σ ⊢g

{
P

}
e
{
Q

}
P-OP

◦ = op ∨ ◦ = µ

Ω; {κ F κ′ : EN} ⊢g

{
κ F κ

′ 7→ q
}
κ←− ◦

{
κ F κ

′ 7→ J◦K|κ|
q
} P-ExpC

Ω;σ ⊢g

{
P

}
e[n/x]

{
Q

}
Ω;σ ⊢g

{
P

}
let x =n in e

{
Q

}
P-Mea
x ̸∈ dom(Ω) Ω[x 7→ M];σ ⊎ {κ : EN} ⊢C

{
P [M (x, n, κ)/y[0, n) F κ]

}
e
{
Q

}
Ω;σ ⊎ {y[0, n) F κ : EN} ⊢C

{
P

}
let x = measure(y) in e

{
Q

}
P-If

FV (Ω, b) = κ Ω; {κ′ : EN} ⊢M

{
P [F (b, κ, κ′)/κ F κ′]

}
e
{
Q

}
Ω; {κ F κ′ : EN} ⊢g

{
P

}
if (b) e

{
P [U(¬b, κ, κ F κ′)/κ F κ′] ∗Q[U(b, κ, κ F κ′)/κ′]

}
P-Loop
n < n

′ Ω;σ ⊢g

{
P (j) ∧ j <n′

}
if (b) e

{
P (j+1)

}
Ω;σ[n/j] ⊢g

{
P (n)

}
for j ∈ [n, n′) && b {e}

{
P (n′)

}
P-Seq

Ω;σ ⊢g e1 ▷ σ1

Ω;σ ⊢g

{
P

}
e1

{
P

′
}

Ω;σ1 ⊢g

{
P

′
}
e2

{
Q

}
Ω;σ ⊢g

{
P

}
e1 ; e2

{
Q

}
Figure 11 Select proof rules.

For example, if we combine two Had-typed qubits in our system and transform the value to
EN-type as 1

2 (|00⟩+ |01⟩+ |10⟩+ |11⟩), this is an over-approximation since the two qubits are
not entangled. Partially measuring the first qubit leaves the second qubit’s value unchanged
as 1√

2 (|0⟩+ |1⟩).
In addition to the above properties, we allow C-kind classical variables introduced by let

to be evaluated in the type checking stage 9, while tracks M variables in Ω. Rule T-ExpC
enforces that a classical variable x is replaced with its assigned value n in e, and classical
expressions in e containing x are evaluated, so the proof system can avoid handling constants.

4.4 The Qafny Proof System
Every valid proof judgment Ω;σ ⊢g

{
P

}
e

{
Q

}
, shown in Figure 11, contains a pre- and

post-condition predicates P and Q (syntax in Figure 7) for the statement e, satisfying the
type restriction that Ω;σ ⊢g e ▷ σ′; we also enforce that the predicate well-typed restrictions
Ω;σ ⊢ P and Ω;σ′ ⊢ Q, meaning that all loci mentioned in P must be in the right forms and
as elements in dom(σ), introduced in TR [24] B. We state the restrictions as the typechecking
constraint (TC ) below:

TC(σ, P,Q) ≜ Ω;σ ⊢g e ▷ σ1 ∧ Ω;σ ⊢ P ∧ Ω;σ1 ⊢ Q

Rule P-Con describes the consequence rule where a well-formed pre- and post-conditions P
and Q under σ is replaced by P ′ and Q′, well-formed under σ′. Under the new conditions, we
enforce a new type constraint TC (σ′, P ′, Q′). Rule P-Frame is a specialized separation logic
frame rule that separates the locus type environment and the quantum value to support local
reasoning on quantum states. Rule M-Frame in Figure 12 describes the predicate semantics

9 We consider all computation that only needs classical computers is done in the compilation time.
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Predicate Model Rules:
M-Map Ω;ψ;σ;φ ⊎ {κ :

∑
j zj |cj⟩(|βj |)} |=g κ 7→

∑
j zj |cj⟩(|β′

j |)
M-Local Ω[x 7→ M];ψ[x 7→ (r, v)];σ;φ |=g P if Ω;ψ;σ;φ |=g P [(r, v)/x]
M-Frame Ω;ψ;σ ⊎ σ′;φ ⊎ φ′ |=g P ∗Q if Ω;ψ;σ;φ |=g P and Ω;ψ;σ′;φ′ |=g Q

Transformation Rules:
M-F F (b, κ, κ′) 7→ q = κ′ 7→

∑
j zjβj(| |cj⟩ β′

j |)
where JbK|κ|q = q⟨κ, b⟩+ q⟨κ,¬b⟩ ∧ q⟨κ, b⟩ =

∑
j zj |cj⟩βj(|β′

j |) ∧ ∀j. |cj | = |κ|

M-U
U(¬b, κ, κ′) 7→

∑
j zj |cj⟩ηj + q⟨κ,¬b⟩

∗U(b, κ, κ′) 7→
∑

j z
′
jβj(| |cj⟩ β′

j |)
= κ′ 7→

∑
j z

′
j |cj⟩βj(|β′

j |) + q⟨κ,¬b⟩ where ∀j. |κ| = |cj |

M-M M (x, n, κ) 7→
∑

j zj |c⟩ηj + q⟨κ, c ̸= κ⟩ = κ 7→
∑

j

zj√
r
ηj ∗ x = (r, {|c|}) where n = |c|

Figure 12 Predicate semantics.

of the separating conjunction ∗, where ψ is a local store mapping from M-kind variables to
M-kind values (r, n); we require dom(ψ) ⊆ dom(Ω) and M-kind variables modeled by M-Local.
Besides predicate well-formedness, the predicate semantic judgment (Ω;ψ;σ;φ |=g P ) also
ensures the states (φ) being well-formed (Ω;σ ⊢g φ), defined as follows:

▶ Definition 1 (Well-formed Qafny state). A state φ is well-formed, written as Ω;σ ⊢g φ, iff
dom(σ) = dom(φ), Ω ⊢ dom(σ) (all variables in φ are in Ω), and:

For every κ ∈ dom(σ), s.t. σ(κ) = Nor, φ(κ) = z |c⟩ (|β|) and |κ| = |c| and |z| ≤ 1;
specifically, if g = C, β = ∅ and |z| = 1. 10

For every κ ∈ dom(σ), s.t. σ(κ) = Had, φ(κ) = 1√
2n

⊗n-1
j=0 (|0⟩+ α(rj) |1⟩) and |κ| = n.

For every κ ∈ dom(σ), s.t. σ(κ) = EN, φ(κ) =
∑m
j=0 zj |cj⟩(|βj |), and for all j, |κ| = |cj |

and
∑m
j=0 |z|2 ≤ 1; specifically, if g = C, for all j, βj = ∅ and

∑m
j=0 |z|2 = 1.

Here, an M mode state, representing a computation living in an M mode context, has a
relaxed well-formedness, where

∑m
j=0 |z|2 ≤ 1 and βj ̸= ∅. This is needed for describing the

state inside the execution of a conditional body in rule S-If in Section 4.2, where unmodified
basis-kets are removed before the execution. There is a trick to utilizing the frozen stacks for
promoting proof automation, as the modeling rule M-Map equates two quantum values by
discarding the frozen stack qubits, and we will see an example in Section 6.1.

The predicate syntax (Figure 7) introduces three locus predicate transformers F , U,
and M in the locus syntax category, but their semantics (Figure 12) essentially transform
quantum states in the predicates, as we define them in equational style, explained below.

Assignment and Heap Mutation Operations. Rule P-ExpC describes C-kind variable
substitutions. Rule P-OP is a classical separation logic style heap mutation rule for state
preparations κ←− op and oracles κ←− µ, which analogize such operations as classical array
map operations mentioned in Figure 2. Here, we discuss the cases when the state of the
target loci κ F κ′ is of type EN, while some other cases are introduced in TR [24] C.4. Each
element in the array style pre-state q, for locus κ F κ′, represents a basis-ket zj |cj⟩ ηj , with
|κ| = |cj |. Here, we first locate κ’s position basis |cj⟩ in each basis-ket of q, and then apply
the operations op or µ to |cj⟩.

Quantum Conditionals. As in Section 3.4 and Figure 5, the key in designing a proof rule for
a quantum conditional if (b) {e} with its locus scope κFκ′, is to encode two transformers: F
and U. In rule P-If (Figure 11), we require the σ only contains locus κFκ′, which can be done

10 |κ| and |c| are the lengths of κ and c, and |z| is the norm.
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through P-Frame. We then utilize F (b, κ, κ′) to finish two tasks: (1) it computes b’s side-
effects on the κ’s position bases (JbK|κ|q), and (2) it freezes all basis-kets that are irrelevant
when reasoning about the body e. This freezing mechanism modeled by the equation M-F
(Figure 12) is accomplished at two levels: stashing all kets unsatisfying b (q⟨κ,¬b⟩) and
moving κ’s position bases to basis stacks for the rest of basis-kets. After substituting κ F κ′
for F (b, κ, κ′), besides expelling the parts not satisfying b, we also shrink the locus κ F κ′ to
κ′, which in turn marked the κ’s position basis in every basis-ket inaccessible as κ is now
invisible in the locus type environment.

After the body e’s proof steps, the post-state Q describes the computation result for κ′
without the frozen parts. To reinstate the state for κ F κ′ by retrieving the frozen parts,
we first substitute locus κ F κ′ for U(¬b, κ, κ F κ′) in P , which represents the unmodified
part, unsatisfying b, in the pre-state. We also substitute κ′ for U(b, κ, κ F κ′) in Q, which
represents the part satisfying b, evolved due to the execution of e. Rule M-U (Figure 12)
describes the predicate transformation, empowered by the locus construct U, that utilizes the
innate relation of separating conjunction and logical complement to assemble the previously
unmodified and the evolved parts. Rule P-Loop proves a for loop where P (j) is the loop
invariant parameterized over the loop counter j. Other rules are introduced in TR [24] C.4.

Measurement. A measurement (let x = measure(y) in e) collapses a qubit array y, binds
an M kind outcome to x and restricts its usage in e. These statements usually appear in
periodical patterns in many quantum algorithms, which users formalize as predicates to help
verify algorithm properties. In rule P-Mea, we first select an n-length prefix bitstring c from
one of range y[0, n)’s position bases; it then computes the probability r and assigns (r, {|c|})
to variable x. We then replace the locus y[0, n) F κ in P with a locus predicate transformer
M (x, n, κ) and update the type state Ω and σ by replacing y[0, n) F κ with κ. The construct
M (x, n, κ), with its transformation rule M-M (Figure 12), is introduced to do exactly the
two steps in Section 4.2 for describing measurement operations, i.e., we remove basis-kets
not having c as y[0, n)’s position bases (q⟨κ, c ̸= κ⟩) and truncate y[0, n)’s position bases in
the rest basis-kets.

Ω[u 7→ M]; {x[0, n) : EN} ⊢C
{

M (u, n, x[0, n)) 7→ C
}
{}

{
x[0, n) 7→ D ∗ E

}
Ω; {y[0, n) F x[0, n) : EN} ⊢C

{
y[0, n) F x[0, n) 7→ C

}
let u = measure(y) in {}

{
x[0, n) 7→ D ∗ E

}
C ≜

∑2n-1
j=0

1√
2n
|aj % N⟩ |j⟩ D ≜ 1√

r

∑r-1
k=0 |t + kp⟩ E ≜ p = ord(a, N) ∗ u = ( p

2n , at % N) ∗ r = rnd( 2n

p )

We show a proof fragment above for the partial measurement in Figure 6 line 8. The proof
applies rule P-Mea by replacing locus y[0, n) F x[0, n) with M (u, n, x[0, n)). On the top, the
pre- and post-conditions are equivalent, as explained below. In locus y[0, n) F x[0, n)’s state,
for every basis-ket, range y[0, n)’s position basis is |aj % N⟩; the value j is range x[0, n)’s
position basis for the same basis-ket. Randomly picking a basis value at % N also filters a
specific j in range x[0, n), i.e., we collect any j having the relation aj % N = at % N . Notice
that modulo multiplication is a periodic function, which means that the relation can be
rewritten at+kp % N = at % N , and p is the period order. Thus, the post-measurement state
for range x[0, n) can be rewritten as a summation of k: 1√

r

∑r-1
k=0 |t + kp⟩. The probability

of selecting |aj % N⟩ is r
2n . In the Qafny implementation, we include additional axioms for

these periodical theorems to grant this pre- and post-condition equivalence so that we can
utilize Qafny to verify Shor’s algorithm.
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4.5 Qafny Metatheory
We now present Qafny’s type soundness and its proof system’s soundness and relative
completeness. These results have all been verified in Coq. We prove our type system’s
soundness with respect to the semantics, assuming well-formedness (TR [24] Definition 5 and
Definition 1). The type soundness shows that our type system ensures the three properties in
Section 4.3 and that the “in-place” style Qafny semantics can describe all different quantum
operations without losing generality because we can always use the equivalence rewrites to
rewrite the locus state in ideal forms.

▶ Theorem 2 (Qafny type soundness). If Ω;σ ⊢g e ▷ σ′ and Ω;σ ⊢g φ, then there exists φ′
such that (φ, e) ⇓ φ′ and Ω;σ′ ⊢g φ′.

Our proof system is sound and relatively complete w.r.t. its semantics for well-typed
Qafny programs. Our system utilizes a subset of separation logic admitting completeness
by excluding qubit array allocation and pointer aliasing. Since every quantum program in
Qafny converges, the soundness and completeness refer to the total correctness of the Qafny
proof system. ψ(e) refers to that we substitute every variable x ∈ dom(ψ) in e with ψ(x).

▶ Theorem 3 (proof system soundness). For any program e, such that Ω;σ ⊢g e ▷ σ′ and
Ω;σ ⊢g

{
P

}
e

{
Q

}
, and for every ψ and φ, such that Ω;σ ⊢g φ and Ω;ψ;σ;φ |=g P , there

exists a state φ′, such that (φ,ψ(e)) ⇓ φ′ and Ω;σ′ ⊢g φ′ and Ω;ψ;σ′;φ′ |=g Q.

▶ Theorem 4 (proof system relative completeness). For a well-typed program e, such that
Ω;σ ⊢g e ▷ σ′, (φ, e) ⇓ φ′ and Ω;σ ⊢g φ, and for all predicates P and Q such that
Ω; ∅;σ;φ |=g P and Ω; ∅;σ′;φ′ |= Q, we have Ω;σ ⊢g

{
P

}
e

{
Q

}
.

5 Qafny Compilation and Implementation Evaluation

Here, we focus on the Qafny proof system compilation to a subset of separation logic.

5.1 Translation from Qafny to Separation Logic
The Qafny types and loci are extra annotations associated with Qafny programs and
predicates for proof automation. In the Qafny implementation in Dafny, these annotations
are not present – qubits are arranged as simple array structures without extra metadata
such as locus types. This section shows how Qafny annotations can be safely erased with no
loss of expressiveness, e.g., loci are represented as virtual-level dynamic sequences without
types, and equational rewrites are compiled with extra operations in the compiled language.
We present a compilation algorithm that converts from Qafny to Sep, a C-like language
admitting a subset of an array separation logic proof system.

Target Compilation Language. Sep is based on a variant of the separation logic introduced
by Yang and O’Hearn [55], which is sound and complete. Mainly, we utilize the allocation
(alloc), heap lookup and mutation operations (mutate) in the work, with three additional
operations (marked red in Figure 13). In Sep, program states are divided into virtual and
physical levels in Figure 14. Every Sep program starts with a physical qubit array, analogous
to physical heap structures. The program operations are applied to qubit sequences of array
indices (A), representing a collection of physical qubit locations that live at the virtual level.
Sep permits immutable program variables (x) representing these sequences.
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A, B ::= n
õp ::= µ | op
ẽ ::= x = alloc(A)

| mutate(n, õp, x)
| (r, n) = pick(x, m)
| filter(x, b)
| amp(x, r)
| ...

Figure 13 Sep Syntax.

  

Sequence Variable
(Stack)

Sequence Indices
(Virtual Heap)

Qubit Array
(Physical Heap)

Figure 14 Heap Layout.

  

⇓e ⊧e

→ȇ ⊧ȇ

≫

☑

☑

⚙

Figure 15 Compilation Proof Dia-
gram.

An allocation x = alloc(A) allocates a new array x that copies A’s content and has the
same length as A, while a heap mutation mutate(n, õp, x) mutates the first n elements of the
array pointed to by x, by applying the operation õp. Operations pick, filter, and amp are
variations of heap lookups and mutations. (r, n) = pick(x,m) measures the first m qubits
in x, with the outcome n = {|c|} and its probability r, similar to the computation in S-Mea
(Figure 8). filter(x, b) mutates x’s pointed-to quantum value by filtering out basis-kets
that are not satisfying b, and amp(x, r) multiples r to every basis-kets in x’s quantum value.
Yang and O’Hearn maintain completeness by carefully designing the proof rules so heap
mutations do not modify pointer references. Sep ensures the same property by immutable
variables, i.e., if a sequence changes, we allocate a new array and a new variable pointing to
the array. For example, to join two loci represented by two sequences A and B, respectively
pointed to by variables x and y, we allocate a new space for the two sequences’ concatenation
(A@B); so we compile the join to u = alloc(A@B). We must abandon using x and y after
the join and only refer to u in the following computation.

Compilation Procedure. As shown in Figure 15, we compile the Qafny language to Sep
and achieve the proof system compilation through the proof system completeness in Qafny
and Sep. For every Qafny program, we translate the program and states to Sep. Then, every
provable triple in Qafny can be translated to a provable Sep triple through the language
translation from Qafny to Sep as the diagram (Figure 15). The compilation is defined
by extending Qafny’s typing judgment thusly: Ω;σ ⊢g (θ, φ, e) ≫ (θ, ψ̃, φ̃, ẽ). We include
an initial Qafny state φ, the output local store (ψ̃), mapping variables to qubit location
sequences, and state (φ̃), mapping from locations to quantum values. θ and θ′ are maps
from locus locations in φ to Sep qubit locations in φ̃.

Here, we explain the rules for compilation by examples of compiling the Qafny operations
to Sep. The locus rewrites (Section 4.3) are compiled to the array allocations, such as
the join operation above. Additionally, the split of a locus is compiled to two consecutive
allocations of two sequences, respectively representing the two split result loci. In compiling a
measurement statement (let x = measure(y) in ...), where y locates in the locus y[0, n) F κ,
let’s assume that the locus is mapped in θ by sequence [0, n+m), pointed to by u in ψ̃, while
the range y[0, n) is mapped by the sequence [0, n); the operation is compiled to:

(r, p) = pick(u, m) ; filter(u, u[0, n) = p) ; amp(u,
∑

j

zj√
r

) ; t = alloc([n, n+m))

We first pick a key p, filter out the basis-kets whose u[0, n)’s position bases are not p,
normalize the amplitudes of the remaining basis-kets (Section 4.4), and allocate a new space t
for the quantum residue after the measurement. We also update κ in θ to map to the newly al-
located space of t instead of [n, n+m). We compile an operation x[0, n) F y[0]← (x < 5) @ y[0]
with its initial state φ (C = 1√

2n

⊗n-1
j=0 (|0⟩+ |1⟩)) to Sep, with D =

∑2n-1
j=0 |j⟩ |j < 5⟩. Such

an operation computes the Boolean comparison of x < 5 and stores the value to y[0].

ECOOP 2024



24:22 Qafny: A Quantum-Program Verifier

Algorithm Qafny QBricks SQIR
Runtime
(sec) LOC Runtime

(sec) LOC Runtime
(sec) LOC

GHZ 14.2 16 - - 141 119
Deutsch–Jozsa 8.3 13 74 108 163 408
Grover’s search 26.7 27 253 233 148 1018
Shor’s algorithm 36.3 36 1328 1163 1244 8464

Figure 16 Running time (include theory loading) & LOC
comparison, in an i7 Ubuntu Mach. 8G RAM; -: no data.

Algorithm Runtime
(sec) LOC

Controlled GHZ 6.4 12
Quantum Walk 43.1 49

Figure 17 Qafny data for
case studies in Section 6.

φ =
{
x[0, n) : C, y[0] : |0⟩

}
x[0, n) F y[0] ← (x < 5) @ y[0]

φ′ =
{
x[0, n) F y[0] : D

} ≫
ψ̃ =

{
p : [0, n), t : {n}

}
, φ̃ =

{
[0, n) : C ∗ {n} : |0⟩

}
u = alloc([0, n+1)) ; mutate(n+1, u[0, n) < 5@u[n], u)

ψ̃′ = ψ̃ ∪
{
u : [n + 1 , 2n + 2)

}
, φ̃′ = φ̃ ∪

{
[n + 1 , 2n + 2) : D

}
After the compilation, we create two local variables p and t to represent the loci x and y,
mapping to sequences [0, n) and {n}. We then add u = alloc([0, n + 1)) allocating a new
space [n+1, 2n + 2) to join the two loci. The post-state contains a new variable u, pointing
to the concatenated new sequence [n + 1 , 2n + 2). The old arrays p and t are still in the
stores, but we refer to the locus x[0, n) F y[0] as the newly allocated space in the following
computation by mapping the locus to the new space in θ′. As a future work, we will prove
the proof system compilation correctness from Qafny to Sep, proof strategy in Figure 15.

5.2 Implementation and Comparison to Existing Quantum Verifications
We have implemented a prototype Qafny to Dafny compiler, which faithfully respects the
presented Qafny to Sep compilation algorithm. To validate the soundness of the compiler
implementation, we create many test cases for the compiler. We then insert a number of
bugs in these test cases; Qafny has been able to detect all of them. Dafny’s proof engine
cannot be used to verify arbitrary separation-logic assertions because it only has an implicit
frame rule implementation that allows users to set up variables that can be modified in a
function. However, Qafny only requires a subset of separation logic, and the Qafny loci
disjoint property and non-aliasing guarantee ensures that the Qafny separation conjunctions
are captured by Dafny’s implicit frames when we compile Qafny to Dafny. We utilize the
Qafny to Dafny compiler as an automated verification framework to verify six quantum
programs, shown in Section 6 and Figure 17.

There were two main approaches to verifying quantum programs: program and measurement-
based. The former views quantum program transitions as a state machine and verifies the
inductive relations among transitions, while the latter focuses on the relations between
quantum program measurements and the post-processing classical components – they typic-
ally view quantum components as black boxes with specifications.

Qafny is program-based and other program-based mechanized frameworks for formally
verifying quantum programs, including Qwire [41], SQIR [16, 15] (an upgrade of Qwire), and
QBricks [3], provide libraries in an interactive proof assistant to guide users for building
inductive proofs for quantum programs; each has verified 7-10 quantum programs. The
core of SQIR and QBricks, as well as other executable quantum verification platforms, is a
circuit-description language. Verifying a program in these frameworks inductively builds a
unitary or density matrix as the program’s quantum circuit semantic interpretation. For
example, to verify Shor’s algorithm, both QBricks and SQIR require inductive proofs based
on elementary circuit gates to derive the unitary or density matrix semantics of different sub-
components, including state preparations, oracles, and QFT−1 gates. Additionally, program
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verification in these frameworks requires the development of theories and tactics to capture
program properties, which usually involves the proof of additional theorems. This approach is
qualitatively different from Qafny, where program verification involves embedding assertions
in a program for completing a proof. Qafny identifies a few program structures, such as
oracles and quantum conditionals, and formulates inductive patterns involving these quantum
components as proof rules. These rules interact with quantum program operations and states
for deriving verification proofs, so proofs are largely automated based on this small set of
structures.

Figure 16 shows a quantitative comparison of Qafny, regarding theory/proof statement
running time and numbers of lines (LOC), with respect to QBricks and SQIR for verifying
several quantum programs. The results show that Qafny has the shortest running time and
LOCs for verifying programs with our automated proof engine. The QBricks verification
has better LOCs but a similar running time compared to SQIR. SQIR provides a complete
verification [38] by proving every mathematical theorem involved in the verification, so its
verification proofs are longer than QBricks; QBricks performs better by providing some auto-
matic tactics for sequence operations (e ; e) and taking many math theorems as assumptions
without proof. In testing the two frameworks, we found that the previous claim [16, 15]
that rigorous quantum proofs are one-time cost is problematic because inductive theorem
provers update constantly. Once an update happens, users might need to fix the proofs
(not programs or specifications) in their history code, e.g., our researcher spent three days
fixing minor bugs in the proofs in SQIR and QBricks due to Coq and Why3 version issues.
Moreover, a new program verification in SQIR typically required detailed proofs of additional
theorems beyond the program specifications.

Qafny provides fast prototyping, where we apply the automated verification mechanisms
in many classical systems [40, 22] to verify quantum programs and save programmers’ effort.
Verifying programs in many inductive theorem provers takes weeks and months to finish, while
the same tasks in Qafny cost researchers a few days due to the Qafny features mentioned
above. The fast prototyping in Qafny can also help users to explore and understand new
quantum program patterns such as the two case studies in Section 6, whose running time and
LOCs are shown in Figure 17. Compared to the data of well-known algorithms in Figure 16,
the data for verifying the new programs do not show a significant difference, showing Qafny’s
ability to explore new algorithm behaviors without proving many new theories, which usually
appears in the above quantum verification frameworks.

6 Case Studies

With two examples, we show Qafny as a rapid prototyping tool for quantum programs.

6.1 Controlled GHZ: Composing Quantum Algorithms from Others

|0⟩ H •
|0⟩

GHZ
......

. . .
|0⟩

1
{

x[0] 7→ |0⟩ , y[0, n) 7→ |0⟩
}

2 x[0] ← H;
3

{
x[0] 7→ 1√

2 (|0⟩+ |1⟩) ∗ y[0, n) 7→ |0⟩
}

4 ⇒
{

x[0] F y[0, n) 7→
∑1

d=0 |d⟩|0⟩
}

5 if (x[0]) ghz(y);
6

{
x[0] F y[0, n) 7→ 1√

2 |0⟩+ 1
2 |1⟩ |0⟩+ 1

2 |1⟩
}

Figure 18 Controlled GHZ circuit and proof. ghz(y) is in Fig. 3. Lines 3-4 automatically inferred.
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Automated verification frameworks such as Dafny encourage programmers to build
program proofs based on the reuse of subprogram proofs. However, this perspective is more
or less overlooked in previous quantum proof systems. In SQIR, for example, verifying the
correctness of a controlled GHZ, a simple circuit constructed by extending GHZ with an
extra control qubit, requires generalizing the GHZ circuit to any arbitrary inputs. In Qafny,
users do not need to do this, as shown here.

Figure 18 provides a proof of the Controlled GHZ algorithm based on a proven GHZ
method in Figure 3c. The focal point is the quantum conditional on line 5. For verifying a
GHZ circuit, its input is an n-qubit Nor-typed value of all |0⟩, but the given value, in line
4, is an EN-typed entanglement

∑1
d=0 |d⟩|0⟩. Here is where SQIR gets stuck. In Qafny, we

automatically verify the proof by rule P-If and the equivalence relation to rewrite a singleton
EN value to a Nor one, as

∑0
j=0 zj |cj⟩ ≡ z0 |c0⟩. The detailed proof for the conditional is

given below, where U(b) = U(b, x[0], κ) and κ = x[0] F y[0, n).

Ω; {y[0, n) : Nor} ⊢M

{
y[0, n) 7→ |0⟩|1⟩

}
ghz(y)

{
y[0, n) 7→

1∑
d=0

1
√

2
|d⟩|1⟩

}
Ω; {y[0, n) : EN} ⊢M

{
F (x[0], y[0, n)) 7→

1∑
d=0

|d⟩|0⟩
}

ghz(y)
{
y[0, n) 7→

1∑
d=0

1
√

2
|d⟩|1⟩

} EQ

Ω; {κ : EN} ⊢C

{
κ 7→

1∑
d=0

|d⟩|0⟩
}

if (x[0]) ghz(y)
{
U(¬x[0]) 7→

1∑
d=0

|d⟩|0⟩ ∗ U(x[0]) 7→
1∑

d=0

1
√

2
|d⟩|1⟩

}
Ω; {κ : EN} ⊢C

{
κ 7→

1∑
d=0

|d⟩|0⟩
}

if (x[0]) ghz(y)
{
κ 7→

1
√

2
|0⟩+

1
2
|1⟩ |0⟩+

1
2
|1⟩

}
P-If

After rule P-If is applied, locus y[0, n)’s value is rewritten to a Nor type value on the top
as |0⟩|1⟩, where |0⟩ is n qubits and |1⟩ is frozen in the stack. Since two values are equivalent
as Qafny discards stacks, |0⟩|1⟩ is equivalent to |0⟩, which satisfies the input condition for
GHZ, so all proof obligations introduced to invoke the ghz method are discharged.

6.2 Case Study: Understanding Quantum Walk

  

0

1 2

3 4 5 6

left right

Figure 19 Tree Structure.

Quantum walk [54, 4, 53] is a quantum version of the classical random walk [36] and an
important framework for developing quantum algorithms. However, most quantum walk
analyses are based on Hamiltonian simulation, which deters many computer programmers
from the quantum walk framework. Here, we show that the discrete-time quantum walk,
at its very least, is a quantum version of breadth-first search; thus, many algorithms [4]
based on Quantum walk can be understood as performing search algorithms in the quantum
setting.

Figure 20 lists the proof outline for the core loop of a discrete-time quantum walk
algorithm to traverse a complete binary tree (structure in Figure 19); each node has a unique
key. The m-depth nodes in the tree have keys j ∈ [2m - 1, 2m+1 - 2), which form a sequence
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q(j) ≜
∑2(j+1) - 3

i=0 zi |⌊log (i+1)⌋⟩ |pat(i, j)⟩ |i+1⟩ |di⟩ where pat(i, j) ≜ |0⟩⊗⌊log (i+1)⌋ |1⟩⊗(j - ⌊log (i+1)⌋)

1
{

x[0, t) 7→ 1√
2t

⊗t-1
i=0 (|0⟩+ |1⟩) ∗ y[0, m) 7→ |0⟩ ∗ h[0, n) 7→ |0⟩ ∗ u[0] 7→ |0⟩ ∗m = 2t ·m < n

}
2 ⇒

{
x[0, t) F y[0, 0) F h[0, n) F u[0] 7→

∑2t-1
k=0

1√
2t
|k⟩ |0⟩ |0⟩ ∗ y[0, m) 7→ |0⟩ ∗m = 2t ·m < n

}
3 for j ∈ [0, m) && (x[0, t) < j + 1) @ y[j]

4
{

x[0, t) F y[0, j) F h[0, n) F u[0] 7→ q(j) +
∑2t-1

k=j
1√
2t
|k⟩ |0⟩ |0⟩ |0⟩ ∗ y[j, m) 7→ |0⟩

}
5 { u[0] ← H;
6 if (u[0]) left(⌊log (j+1)⌋ , h[0, n));
7 if (¬u[0]) right(⌊log (j+1)⌋ , h[0, n)); }
8

{
x[0, t) F y[0, m) F h[0, n) F u[0] 7→ q(m)

}
Figure 20 Quantum walk reachable node verification for a complete binary tree. left and right

reach corresponding children. q(j) is a quantum value with var j. i + 1 is a node key in a tree.

from left to right in depth m-th, such as the sequence 3, 4, 5, 6 in depth 2 in Figure 19. Thus,
a node (key j) has a depth m = ⌊log (j+1)⌋, and its left and right children have keys
2 · j + 1 and 2 · j + 2, respectively representing the left and right operation semantics in
Figure 20, i.e., for any basis |j⟩, with m being the depth and j a node key, the outputs of
applying left and right are |2 · j + 1⟩ and |2 · j + 2⟩, respectively 11.

The algorithm in Figure 20 requires four quantum ranges: a t-qubit range x in superposi-
tion, an m-qubit range where y[j]’s position bases keep the result of evaluating x[0, t) < j + 1
for j-th loop step, an n-qubit node register h storing the node keys, and a single qubit u
acting as the random walk coin and determining the moving direction of the next step (1
for the left and 0 for the right). In line 2, we merge the ranges x, u, and h as the locus
x[0, t) F y[0, 0) F h[0, n) F u[0] (y[0, 0) is empty); at each loop step (lines 3-7), we entangle a
qubit in the range y into the locus. Finally, at line 8, the loop program entangles all these
ranges together as a locus x[0, t) F y[0,m) F h[0, n) F u[0].

In the j-th loop step, we abbreviate locus x[0, t)F y[0, j)Fh[0, n)Fu[0] as κ⟨j⟩, and locus
κ⟨j⟩’s state value is split into two basis-ket sets, separated by + in Figure 20 line 4. To verify
a step, we first split the y[j] qubit, having position basis |0⟩, from range y[j,m), and merge
the qubit into κ⟨j⟩. The split rewrites are given as:

{
κ⟨j⟩ 7→

∑2(j+1) - 3
i=0 zi |⌊log (i+1)⌋⟩ |pat(i, j)⟩ |i+1⟩ |di⟩+

∑2t-1
k=j

1√
2t
|k⟩ |0⟩ |0⟩ |0⟩ ∗ y[j,m) 7→ |0⟩

}
≡

{
κ⟨j+1⟩ 7→

∑2(j+1) - 3
i=0 zi |⌊log (i+1)⌋⟩ |pat(i, j)⟩ |0⟩ |i+1⟩ |di⟩+

∑2t-1
k=j

1√
2t
|k⟩ |0⟩ |0⟩ |0⟩ |0⟩ ∗ y[j+1,m) 7→ |0⟩

}
≡

{
κ⟨j+1⟩ 7→ q′(|0⟩) +

∑2t-1
k=j

1√
2t
δ⟨k, 0⟩ ∗ y[j+1,m) 7→ |0⟩

}
At the last rewrite above, we abbreviate the first part of κ⟨j+1⟩’s value to be q′(|0⟩), and

the second part to be
∑2t-1
k=j

1√
2t
δ⟨k, 0⟩ where δ⟨k, c⟩ = |k⟩ |0⟩ |c⟩ |0⟩ |0⟩. Below, we show the

proof steps (only the pre-condition transitions) for a conditional step in Figure 20 line 3,
which can be divided into two small steps. Here, e is the conditional body in lines 5-7, and
we apply P-Frame to frame out locus y[j+1,m) from the states, so the bottom state only
refers to the locus κ⟨j+1⟩. We further split the second part above (

∑2t-1
k=j

1√
2t
δ⟨k, 0⟩) into two

basis-ket sets: 1√
2t
δ⟨j, 0⟩ and

∑2t-1
k=j+1

1√
2t
δ⟨k, 0⟩.

11 The tree structure is a simplification; comprehensive implementations use Szegedy walk encoding [30].
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Ω; {h[0, n) F u[0] : EN} ⊢M

{
h[0, n) F u[0] 7→

∑2(j+1) - 3
i=0 zi |i+1⟩ |di⟩ β +

1
√

2t
|0⟩ |0⟩ β′

}
e
{
...

}
Ω; {κ⟨j+1⟩ : EN} ⊢M

{
κ⟨j+1⟩ 7→ q′(|1⟩) + 1√

2t
δ⟨j, 1⟩+

∑2t-1
k=j+1

1√
2t
δ⟨k, 0⟩

}
if ((x[0, t) < j + 1) @ y[j]) e

{
...

}
Ω; {κ⟨j+1⟩ : EN} ⊢M

{
κ⟨j+1⟩ 7→ q′(|0⟩) + 1√

2t
δ⟨j, 0⟩+

∑2t-1
k=j+1

1√
2t
δ⟨k, 0⟩

}
if ((x[0, t) < j + 1) @ y[j]) e

{
...

}
We split the P-If proof step (Line 3 in Figure 20) into two small steps above. The bottom

step represents the first half of the F transformer application (Figure 11) in P-If. It views
the Boolean guard (x[0, t) < j + 1) @ y[j] as an oracle application and for every basis-ket in the
locus κ⟨j+1⟩, we compute the Boolean value x[0, t) < j + 1 and store it to y[j]’s position bases.
Unlike the simple Boolean guards appearing in Figures 3c and 6, the Boolean guard here
has side-effects that modify y[j]’s position bases. κ⟨j+1⟩’s value is split into three basis-ket
sets separated by +. In the set q⟨0⟩, range x[0, t)’s position bases have the form |⌊log (i+1)⌋⟩
(the depth of a node key i+1) and the bases’ natural number interpretations are smaller than
j+1; in the sets 1√

2t
δ⟨j, 0⟩ and

∑2t-1
k=j+1

1√
2t
δ⟨k, 0⟩, range x[0, t)’s position bases are |j⟩ and

|k⟩ (j < k). The former’s natural number interpretation is less than j+1, while the latter is
not. Thus, we flip y[j]’s position bases of the two sets after applying the bottom rule above
while leaving the third set unchanged.

The middle step in the above P-If proof step rules out the basis-ket set
∑2t-1
k=j+1

1√
2t
δ⟨k, 0⟩,

because the y[j]’s position bases are all 0; then, we push bases |⌊log (i+1)⌋⟩ |pat(i, j)⟩ |0⟩ and
|k⟩ |0⟩ |0⟩ to the frozen stacks as β and β′ , respectively for the remaining two sets.

Ω; {u[0] F h[0, n) : EN} ⊢M{
u[0] F h[0, n) 7→

∑2(j+1) - 3
i=0 zi |di⟩ |i+1⟩ β + 1√

2t
|0⟩ |0⟩ β′

}
u[0] ← H{
u[0] F h[0, n) 7→

∑2(j+1) - 3
i=0

1√
2zi |di⟩ |i+1⟩ β +

∑2(j+1) - 3
i=0

1√
2zi |di+1⟩ |i+1⟩ β + 1√

2t+1 |0⟩ |0⟩ β′ + 1√
2t+1 |1⟩ |0⟩ β′

}
For the H application in line 5 (Figure 20), we first rewrite the locus, in the pre- and

post-states, from h[0, n) F u[0] to u[0] F h[0, n); shown as the proof triple above. There is
a hidden uniqueness assumption 12 for all basis-kets in q(j) (Figure 20): ∀zβ |di⟩ ∈ q(j)⇒
∀z′ . z′β |di+1⟩ ̸∈ q(j), i.e., if we truncate the u[0] qubit, every basis is still unique in q(j). For
each basis-ket, the H application duplicates the non-u[0] part, with the flip of u[0]’s position
bases. During the process, the amplitude of each basis-ket is reduced by 1√

2 . The left
and right in lines 6 and 7 then move the node key (range h[0, n)’s position basis) of each
basis-ket to its left and right child, depending on the coin bit stored as u[0]’s position
basis; thus, the uniqueness property is preserved (left and right children always have different
keys). Remember that the number of basis-kets is doubled in the H gate application; after the
j-th loop step, all (j-1)-th depth nodes become j-th depth and the two root node basis-kets
( 1√

2t+1 |0⟩ |0⟩β′ and 1√
2t+1 |1⟩ |0⟩β′) become 1-st depth nodes; thus, the state, after j-th loop

step, is in superposition containing all nodes up to j-th depth, except the root node.
The above applications also show the necessity of frozen basis stacks. When applying

the conditional, we hide x[0, t)’s position bases to frozen basis stacks, and there are 2(j+1)-3
different such stacks. We need to record the position bases in the frozen basis stacks; so, 1)
when we apply the H gate, we know which basis-kets are associated with a specific position
basis; 2) once the conditional is over, the position bases can be retrieved.

The verification in Figure 20 describes the basic property of the quantum walk algorithm
framework. The biggest advantage of the framework is to permit the manipulation of different
quantum applications on different tree nodes in each loop step, which is why many algorithms
[5, 4, 28, 1] have been developed based on it.

12 In the Dafny implementation, this needs to be an explicit assumption given by the users.
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7 Related Work

This section gives related work beyond the discussion in Section 5.2.

Measurement-based Quantum Proof Systems. Except for the works in Section 5.2,
previous quantum proof systems are measurement-based, including quantum Hoare logic
[56, 26, 10, 57], quantum separation logic (QSL) [20, 59], quantum relational logic [25, 52],
and probabilistic Hoare logic for quantum programs [19], informed the Qafny development.
They differ from Qafny in three main respects, however: 1) their conditionals are solely
classical, while Qafny has quantum conditionals; 2) they mainly focus on the probabilistic
relations between the quantum measurement results and classical components and view
quantum program components as black boxes specified by Hilbert spaces or density matrices;
and 3) most of them have no mechanized implementations, and they do not have a quantum
program compiler. The verification procedure in these frameworks, to some extent, shows
the possibility of verifying mainly hybrid classical-quantum (HCQ) programs by requiring
the input of black-boxed and verified quantum program components.

QSL [20] develops a new separation logic theory (with no executable proof examples,
however) for Hilbert spaces and classical controls, mainly for verifying HCQ programs by
black-boxing quantum components. This differs from the Qafny system, based on classical
separation logic for classical array operations. QSL is based on a notion of frame rules that
split a tensor product state into two parts, similar to our Had typed state split equation.
However, they do not specify when and how a quantum state separation may happen. As
in Section 3, in many cases, quantum state separation is not trivial and might not be
automatically inferred by a proof engine.

Liu et al. [26] contains an example verification for Grover’s search algorithm based on the
SQIR inductive verification style, albeit with worse proof automation (3184 LOC vs. 1018
LOC in Figure 16). CoqQ [60] provides a mechanized automated verification framework
for HCQ programs. However, their proof automation is to connect quantum and classical
components, i.e., they view quantum circuit components as black-boxes. By giving pre-
and post-conditions, they perform proof automation on verifying HCQ programs that view
the quantum components as sub-procedures. There are some examples in CoqQ to verify
quantum components, but they are handled in the same style as SQIR and QBricks above.
See TR [24] D.

Classical Proof Systems. We are informed by separation logic, as articulated in the
classic paper [42], and other papers as well [18, 50, 34, 58, 27, 46]. Primarily, we show a
compilation from Qafny to Sep, representing a subset of separation logic admitting sound
and completeness [55], which was also studied by [51, 9]. The Qafny implementation is
compiled to Dafny [21], a language designed to simplify writing correct code. The natural
proof methodology [27, 37, 29] informs the Qafny development, where it embeds the proofs
of data-structures to a recursive search problem.

8 Conclusion and Future Work

We present Qafny, a system for expressing and automatically verifying quantum programs
that can be compiled into quantum circuits. We develop a proof system that views quantum
operations as classical array aggregate operations, e.g., viewing quantum measurements as
array filters, so that we can map the proof system, which is sound and complete with respect

ECOOP 2024
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to the Qafny semantics for well-typed programs, to classical verification infrastructure. We
implement a prototype compiler in Dafny and use it to verify several quantum programs.
We believe that programmers can utilize Qafny to develop quantum algorithms and verify
them through our automated verification engine with a significant saving of human effort,
as demonstrated in Section 6. The Qafny language is universal in terms of the power of
expressing quantum programs since all gates in the universal RzQ gate set {H, X, RZ, CNOT}
[33] are definable. However, being able to define all possible quantum programs does not
mean that we can utilize Qafny to verify all quantum programs, especially HCQ programs,
automatically. Verifying HCQ programs requires the full power of quantum mixed states,
i.e., users might want to know the probabilistic output of executing a quantum program
with a quantum input state being associated with a probability. Verifying all such programs
requires a powerful classical probability distribution library beyond the current scope of
Qafny, although the existing Qafny implementation does include a restricted library for
reasoning about probability distributions [32] that can verify some HCQ programs.

In future work, we plan to build and verify a complete Qafny implementation in Dafny;
especially, we intend to enhance the probability distribution libraries to automatically verify
more HCQ programs. We also want to show the soundness proof of the implementation
as well as the circuit compilation correctness from Qafny to SQIR (TR [24] C.6). We will
further investigate integrating Qafny with other tools, such as CoqQ [60], to verify HCQ
programs automatically.
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