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Abstract
The use of function specifications to reason about function calls and the manipulation of user-defined
predicates are two essential ingredients of modern compositional verification tools based on separation
logic. To execute these operations successfully, these tools must be able to solve the frame inference
problem, that is, to understand which parts of the state are relevant for the operation at hand. We
introduce matching plans, a concept that is used in the Gillian verification platform to automate
frame inference efficiently. We extract matching plans and their automation machinery from the
Gillian implementation and present them in a tool-agnostic way, making the Gillian approach
available to the broader verification community as a verification-tool design pattern.
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1 Introduction

Separation logic [18, 21] has enabled the verification community to develop analyses and
tools that are compositional in the sense that they are able to analyse parts of the program
in isolation and reuse the obtained results in broader contexts. Currently, some of the most
prominent such tools are VeriFast [7], Viper [16], Gillian [13], and CN [20]. These tools
achieve compositionality by being able to use function specifications at call sites instead of
executing function bodies. In addition, to be able to reason about data structures such as
lists and trees, the tools include support for user-defined inductive predicates that describe
these data structures. When using function specifications and manipulating predicates, the
tools have to be able to solve the frame inference problem [3], that is, understand which part
of the state is relevant for the operation that is being performed. The ability to handle this
problem efficiently is essential for their scalability and usability.
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26:2 Matching Plans for Frame Inference in Compositional Reasoning

As part of building tools for compositional analysis, it is up to the tool designers to
choose how to tackle frame inference, and the implications of the associated decisions
should be understood closely as they affect both the tool implementation and the user
experience. For example, two important tool-design questions are: “Which specification
language should the tool use?” and “Is there a particular style in which the specifications
should be written?”. Expectedly, the approaches in the literature are many and varied (which
we discuss further in §7).

In this paper, we present the approach of the Gillian verification tool to the frame inference
problem and show how the choices made allow for efficient and predictable automation. The
approach captures and automates the assertion-adaptation workflow that users must follow
to facilitate frame inference when working with tools that offer less automation, such as
VeriFast and Viper. In more detail, for the assertions of function specifications and predicate
definitions, Gillian automatically constructs a matching plan (MP), which provides:
1. (efficiency) an ordering of the subcomponents of each assertion (technically: the simple

assertions) that guarantees that the associated frame inference will not backtrack, together
with a description of how all associated free and existentially quantified variables can
be learnt; and

2. (predictability) a clean separation between the structural and computational portions of
frame inference.

MPs and their construction have not been described in depth before; we formalise both in
a tool-agnostic way, thereby making the Gillian approach available to the broader verification
community as a verification-tool design pattern.

The paper is structured as follows. We first introduce MPs informally using examples and
discuss the key insights in §2. We then establish the required preliminaries in §3 and introduce
MPs formally in §4, focusing on a core illustrative fragment of MPs as implemented in Gillian.
Next, in §5, we show how to extend the MPs of §4 with more complex features that are
available in Gillian. Finally, we conclude by evaluating the scalability and performance of the
MP-based automation of Gillian (§6) and giving a detailed comparison with related work (§7).

2 Overview

We give an informal overview of matching plans (MPs), the key new concept we introduce in
this paper. We first introduce the required background, which is the consume/produce engine
architecture utilised by modern compositional symbolic execution tools, including VeriFast,
Viper, and Gillian. Then, with the background in place, we introduce MPs using examples.

2.1 Background: Symbolic Execution Based on Consume and Produce
We place ourselves in the setting of semi-automated compositional verification tools based on
symbolic execution [1] and separation logic (SL) and are underpinned by SMT solvers. In this
context, the frame inference problem amounts to, given an assertion and a symbolic state,
understanding which part of the symbolic state corresponds to the assertion. In particular,
we are interested in tools such as VeriFast, Viper, and Gillian, implemented using consumers
and producers, which are spatial variants of the, possibly more familiar, assert and assume,
respectively. To consume/produce an assertion is to remove/add the corresponding spatial
state from/to the current symbolic state and to assert/assume the pure constraints of the as-
sertion. Our presentation focuses on consumption, as production does not require performing
frame inference, and is therefore not of immediate interest. The two main use cases for frame
inference in our setting are the following:



A. Lööw, D. Nantes-Sobrinho, S.-É. Ayoun, P. Maksimović, and P. Gardner 26:3

Use of function specifications to reason about function calls. Given a function specifica-
tion

{
P

}
f( #»x )

{
Q

}
, the verification tool consumes the part of the symbolic state that

corresponds to the function pre-condition P (performing frame inference for P ) and in
its place produces a symbolic state that corresponds to the function post-condition Q.

Folding user-defined predicates. Given a predicate definition, folding a predicate consists of
consuming the part of the symbolic state that corresponds to (a disjunct of) the definition
and in its place producing the folded predicate, as discussed in more detail shortly.

Other use cases are similar. For example, reasoning about loops using loop invariants is
largely similar to reasoning about function calls using function specifications.

2.2 Running Example: Folding a List Predicate
MPs help address two problems that arise during consumption and are related to frame
inference: the order of consumption and the learning of variables not given by context, which
we also refer to as learning unknown variables. We illustrate these problems using the
example of folding the standard list(x, vs) predicate that describes a singly-linked list starting
at address x and carrying values vs. It is defined as follows, using standard SL notation,
where “⋆” denotes the separating conjunction and “7→” denotes the cell assertion:

list(x, vs) ≜ (x = null ⋆ vs = [ ]) ∨
(∃v, x′, vs′. x 7→ v ⋆ x + 1 7→ x′ ⋆ list(x′, vs′) ⋆ vs = v : vs′)

This predicate has two disjuncts. The first disjunct states that the list is empty (x = null)
and carries no values (vs = [ ]). The second disjunct states that the list is non-empty,
consisting of the list head node (x 7→ v ⋆ x + 1 7→ x′), which contains the node value, v, and
the pointer to the next node, x′, and the tail of the list (list(x′, vs′)), while connecting the
values appropriately (vs = v : vs′, meaning that vs is the result of prepending v to vs′).

Let us now attempt to fold the predicate list(x, vs) in the symbolic heap {1 7→ 1, 2 7→
3, 3 7→ 2, 4 7→ null, 5 7→ 0, 6 7→ 1, 7 7→ 42}, knowing that x = 5.1 As mentioned above, folding
this list means performing frame inference by pinpointing a part of the symbolic state that
corresponds to one of the predicate disjuncts. In consume/produce-based tools, this is done
one simple assertion at a time, where an assertion is defined to be simple iff it does not
contain the separating conjunction. Carving off the existential quantifiers, the first and
second disjunct of the definition of list(x, vs), respectively, have the following simple assertions:

(A1) x = null
(A2) vs = [ ]

(B1) x 7→ v

(B2) x + 1 7→ x′

(B3) list(x′, vs′)
(B4) vs = v : vs′

The first disjunct is relatively straightforward: to consume it means to check if it is possible
for x to equal null and for vs to equal the empty list, which it is not since we know that
x = 5. For the second disjunct, we additionally have to learn the values of the existentially
quantified variables v, x′, and vs′. This can be more or less complex, depending on the
order in which we process the assertions. For example, if we start with (B3), we will have to
perform proof search, trying to guess the values of x′ and vs′ as they are not known, likely
needing to backtrack and make different choices, which can be computationally expensive.

1 For simplicity, in this example we describe symbolic heaps using cell assertions. In practice, one could
choose to represent symbolic heaps differently for the purpose of, for example, efficient symbolic reasoning.
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26:4 Matching Plans for Frame Inference in Compositional Reasoning

On the other hand, if we choose (B1) and (B2) first, given that we know x = 5, we could
learn that v = 0 and x′ = 1 trivially by inspecting the heap. From there, we can tackle
(B3) by recursively folding the list list(x′, vs′), ultimately learning vs′ = [1, 2], from which
we can then process (B4), learning that vs = [0, 1, 2]. After having folded the predicate, the
remaining frame is only the single heap cell {7 7→ 42}.

2.3 MPs for Predicate Folding and Function Calls
MPs provide a solution to the two problems illustrated in the previous section: given an
assertion P , an MP for P provides an ordering of the simple assertions of P so that the
consumption of P is guaranteed to not backtrack, as well as a description of how free and
existentially quantified variables of P can be learnt during this consumption.

MPs are based on dividing parameters of assertions and predicates into input parameters
(ins) and output parameters (outs). Intuitively, the ins of an assertion/predicate are the
parameters that are sufficient to be provided so that the rest of the parameters, the outs,
can be learned. For example, for the cell assertion x 7→ y, if we know x we can learn y by
looking it up in the heap: therefore, the in of the cell assertion is x and the out is y. For the
list(x, vs) predicate, on the other hand, the in is x and the out is vs.

Folding predicate example (running example). To give an example of an MP, consider
again the second disjunct of the definition of the list(x, vs) predicate:

x 7→ v ⋆ x + 1 7→ x′ ⋆ list(x′, vs′) ⋆ vs = v : vs′

Assuming that only x is known before consumption, the MP for this disjunct is as follows
(we give a formal definition of MPs in §4):

[ (x 7→ v , [(v, O1)] ),
(x + 1 7→ x′ , [(x′, O1)] ),
(list(x′, vs′) , [(vs′, O1)] ),
(vs = v : vs′, [(vs, v : vs′)] ) ]

which captures the following order of the simple assertions and ways of learning variables:
1. x 7→ v comes first, and from it we learn v as the cell assertion out by looking up the value

corresponding to address x (which we know) in the heap, which is expressed using the
placeholder variable O1;

2. x + 1 7→ x′ comes next, and from it we learn x′ again as the cell assertion out, noting
that we know the assertion in x + 1 given that we know x;

3. list(x′, vs′) comes next, and from it we learn vs′ as the predicate out, which can be done
either by recursively folding as described above, or by matching against a predicate
already existing in the symbolic state; and

4. vs = v : vs′ comes last, and from it we learn that vs equals v : vs′.

Function call example. We have exemplified MPs for folding predicate definitions. MPs are
equally useful to handle function specifications. Creating an MP for a function specification
amounts to creating an MP for the function pre-condition, which is effectively the same as
creating an MP for a disjunct of a predicate. Interestingly, the use of ins and outs has as a
consequence that MPs can be created only for function pre-conditions P in which all of the
variables of P can be learnt if the function parameters are known. We have observed that
this is not a restriction in practice, as the parameters are the only means that a function
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can use to access or modify the state. In fact, a specification not obeying this property is
likely either incorrect or contains resources not relevant for the function, which we can easily
signal to the tool user.

2.4 MP-based Automation for Frame Inference
Gillian provides predictable automation for frame inference by providing machinery for
automatically constructing MPs. This automation works by splitting the consumption
process into two phases: a planning phase and a consumption phase – i.e., what we in the
introduction of the paper referred to as “the structural and computational portions of frame
inference” before having introduced consumption. An MP is automatically constructed in
the planning phase. The consumption phase then follows the plan provided by the MP,
which dictates consumption order and how variables are learnt. Because the planning phase
is separate from the rest of consumption, planning is predictable. In particular, whereas the
consumption phase relies on an unpredictable underlying SMT solver, the planning phase
does not. The construction of MPs can therefore be understood (and, in particular, debugged)
without having to take into consideration the more complicated consumption phase.

To compare Gillian with verification tools with no or little automation support for frame
inference, e.g., the VeriFast tool: MPs can be said to capture the assertion-adaptation
workflow tool users must follow when adapting assertions for such tools. Specifically, MPs
capture this workflow by making clear the relationship between ins and outs. E.g., in VeriFast,
the tool essentially requires that the MP can be directly “read off” assertions: the tool leaves
it to the tool user to find both the consumption order and to “factor out” the outs, i.e., the
parameters that will be learned during consumption given the ins. To exemplify, consider
the simple assertion x = 5. Say x is unknown, an MP for this assertion can be directly read
off the assertion: [(x = 5, [(x, 5)])]. Now, consider instead the simple assertion y = x + z and
say that y and z are known. An MP for this assertion is [(y = x + z, [(x, y − z)])]. In a tool
without automation, the assertion would have to be adapted to x = y − z such that how to
learn the unknown variable x could be read off directly from the assertion. A slightly more
complicated example is given by the simple assertion x 7→ x′ + 1 where x is known and x′ is
unknown. An MP for this assertion is [(x 7→ x′ + 1, [(x′, O1 − 1)])], meaning that to adapt
the assertion to a tool without automation, a user would have to introduce an intermediate
variable as follows: x 7→ x′′ ⋆ x′ = x′′ − 1. Similarly, in tools without automation, the
consumption order must be specified by the user as well. E.g., in VeriFast assertions are
consumed in left-to-right order. For example, consider the (contrived but simple) assertion
x > 5 ⋆ x = 6. Say that x is unknown, then there is no MP where x > 5 is consumed
first, because x cannot be learnt from x > 5 without guessing. Instead, the only MP for
the assertion is [(x = 6, [(x, 6)]), (x > 5, [])]. That is, without automation support, the user
would have to switch the order of the simple assertions.

Gillian automates this workflow by automatically constructing MPs, thereby automating
away assertion adaptations such as the adaptations exemplified above. Moreover, the
automation helps in using assertions generated by other tools (which do not necessarily
generate assertions in the style verification tools expect). In §4, we provide a formal
description of a simple planning algorithm that is able to construct MPs for assertions with
unknown variables embedded inside simple arithmetic expressions. This simple planning
algorithm is the theoretical core of the MPs and the MP-based automation of Gillian. This
simple core provides a foundation that can be extended in multiple directions. We discuss
some of those extensions in §5, including an example of extending the learning algorithm to
handle an instance of list-based learning, which originates from a large verification case study
that has been carried out in Gillian where the automation eased the amount of assertion
adaptation needed.
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26:6 Matching Plans for Frame Inference in Compositional Reasoning

3 Preliminaries: Assertion Language

As mentioned in the introduction, we introduce the formal description of MPs in two steps.
First, in §4, we formalise a simple version of MPs, which we call core MPs. Second, in §5,
we discuss extensions of core MPs that widen their applicability. In this section, we formally
define the simple assertion language we use to formalise core MPs. In particular, the simple
assertion language we introduce here is for the simple memory model commonly used in
theoretical investigations into separation logic. When we discuss extensions of core MPs
in §5, we show that core MPs are easily extended to other memory models.

Given a set of logical variables x, y, z, . . . ∈ LVar, the syntax of our assertion language is
as follows:

▶ Definition 1 (Syntax of Assertions).

v ∈ Val ≜ n ∈ Int | b ∈ Bool | null | [ #»v ]
E ∈ Exp ≜ v | x | ¬E | E1 ∧ E2 | E1 + E2 | E1 − E2 | E1 : E2 | E1 < E2 | E1 = E2
P ∈ Asrt ≜ E | emp | E1 7→ E2 | P1 ⋆ P2 | p( # »E1; # »E2)

The values, Val, consist of integers, Booleans, null values, and lists of values. (Note that
we will use the notation [x] to denote both lists with elements x and the type of lists with
elements of type x. E.g., [LVar] denotes the type of lists of LVars.) The expressions, Exp,
are standard, including a representative selection of operators. We do not include program
variables, as they are not needed for our discussion here; they can be treated straightforwardly.
The assertions, Asrt, are also standard, except that predicate assertions, p( # »E1; # »E2), have their
arguments separated into ins and outs, which are used to construct MPs for predicates.

Definitions of predicates (e.g., list from the overview section) come from a set Preds:

▶ Definition 2 (Syntax of Predicates). We describe the predicate definitions of Preds using
the following syntax:

p( #»x in; #»x out) =
n∨

i=1
(∃ #»xi. Pi)

where p ∈ Str (strings), #»x in, #»x out,
#»xi ∈ [LVar], and Pi ∈ Asrt.2 Predicates abide by the

following restrictions: #»x in and #»x out have no duplicates; #»x in and #»x out are disjoint and
for every i ∈ [1, n], #»x in ∪ #»x out and #»xi are disjoint; and Pi only has logical variables from
#»x in ∪ #»x out ∪ #»xi.

The semantics of assertions is standard. Let h : Nat ⇀fin Val (with Nat ⊂ Int) denote a
heap and θ : LVar ⇀fin Val a logical interpretation, and let JEKθ be the standard expression
evaluation function. With these in place, the semantics of assertions is as follows:

▶ Definition 3 (Semantics of Assertions). The satisfaction relation for assertions, denoted by
θ, h |= P , is defined as follows:

θ, h |= E ⇔ JEKθ = true ∧ h = ∅
emp ⇔ h = ∅
E1 7→ E2 ⇔ h = {JE1Kθ 7→ JE2Kθ}
P1 ⋆ P2 ⇔ ∃h1, h2. h = h1 ⊎ h2 ∧ θ, h1 |= P1 ∧ θ, h2 |= P2
p( # »E1; # »E2) ⇔ ∃i. ∃ #»vi. θ[ #»x in 7→ J

# »E1Kθ, #»x out 7→ J
# »E2Kθ, #»xi 7→ #»vi], h |= Pi

for p( #»x in; #»x out) =
∨n

i=1(∃ #»xi. Pi) ∈ Preds

2 Formally, Preds is a set with elements of type (Str, [LVar], [LVar], [([LVar], Asrt)]), but this is not important
for our development.
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We need the following definitions in our discussion on MPs. As discussed in the overview,
MPs are defined over collections of simple assertions:

▶ Definition 4 (Simple Assertion). An assertion P is simple iff it syntactically contains no
separating conjunction: e.g., x 7→ 5 is simple, and so is foo(x; y, z) regardless of how foo is
defined, but x 7→ 0 ⋆ y 7→ 0 is not simple.

We will also need to talk about the free logical variables of expressions and assertions:

▶ Definition 5 (Free Logical Variables of Expressions and Assertions). We write lv(E) to denote
the free logical variables of an expression E and extend this notation to lists of expressions,
writing lv( #»E ). The function lv naturally extends to assertions.

4 Formalisation of Core MPs

We now formally describe a simple version of MPs, which we call core MPs, for the assertion
language introduced in the previous section. We discuss extensions of core MPs in the
next section.

4.1 Formal Definition of MPs
MPs are defined w.r.t. a given knowledge base KB and an assertion P . A knowledge base is
a set of the currently known logical variables, which grows during planning. MPs have type
[(Asrt, [(LVar, Exp)])] and are defined as follows:

▶ Definition 6 (Matching Plans (MPs)). Given a knowledge base KB and an assertion P of
the form P1 ⋆ · · · ⋆ Pn where Pi|ni=1 are simple assertions, MP is a matching plan for P with
respect to KB iff plan(KB, [P1, . . . , Pn], MP), as per the rules in Fig. 1 and Fig. 2.

As a shorthand, we sometimes say that an assertion that has an MP is “plannable” (where
the KB is usually left to be implied by context).

The rules in Fig. 1 and Fig. 2 are designed to ensure that if the simple assertions of P

are consumed in the order specified by an MP of P , then the ins of each simple assertion
P will be known before the simple assertion is consumed. To say this more formally, let
us denote by ins(KB, P ) the ins of the assertion P under the knowledge base KB. Now, if
plan(KB, [P1, . . . , Pn], [(Pmi

, _)|ni=1]) holds, then [Pmi
|ni=1] is a permutation of [Pi|ni=1], and

if we let KBi denote the knowledge base before the i-th iteration of the planning, then for
every 1 ≤ i ≤ n, it holds that ins(KBi, Pmi

) ⊆ KBi.
We now explain the rules in Fig. 1 and Fig. 2. We go by bottom-up order, starting with

the rules for expressions.

Explanation of expression planning rules. Fig. 1 contains the rules for expression planning.
The entry point into expression planning is the planExps relation. Here we discuss planning
of a single expression, that is, the relation planExp, and return to the non-single case when
discussing assertion planning. For core MPs, we only include a few basic learning rules
for planExp to illustrate the basic idea. The rule (pure) state that expressions where all
variables are known are trivially plannable. The rule (pure-eq) is more interesting. It says,
given an equality expression where all variables of one side are known, the expression is
plannable if the unknown variables of the other side of the expression can be factored out.
The factoring is done by the learnEq(KB, Ek, Eu) function, where Ek is known and Eu is
unknown. This function, at a high level, tries to move known parts of Eu to Ek until only a
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26:8 Matching Plans for Frame Inference in Compositional Reasoning

(list-base)
planExps(KB, [ ], [ ])

(list-ind)

1 ≤ i ≤ n planExp(KB, Ei, [(xj , Eij )|kj=1])
KB′ ≜ KB ∪ {xj |kj=1} planExps(KB′, [E1, . . . , Ei−1, Ei+1, . . . , En], res′)

planExps(KB, [E1, . . . , En], [(xj , Eij )|kj=1] ++ res′)

(pure)
lv(E) ⊆ KB

planExp(KB, E , [ ])
(pure-eq)

lv(Ei) ⊆ KB lv(Ej) ̸⊆ KB
{i, j} = {1, 2} learnEq(KB, Ei, Ej) = res

planExp(KB, E1 = E2, res)

learnEq(KB, Ek, x) ≜ [(x, Ek)]

learnEq(KB, Ek, ¬E) ≜ learnEq(KB, ¬Ek, E)

learnEq(KB, Ek, E1 + E2) ≜

{
learnEq(KB, Ek − E1, E2), if lv(E1) ⊆ KB, lv(E2) ̸⊆ KB
learnEq(KB, Ek − E2, E1), if lv(E1) ̸⊆ KB, lv(E2) ⊆ KB

learnEq(KB, Ek, E1 − E2) ≜

{
learnEq(KB, E1 − Ek, E2), if lv(E1) ⊆ KB, lv(E2) ̸⊆ KB
learnEq(KB, Ek + E2, E1), if lv(E1) ̸⊆ KB, lv(E2) ⊆ KB

Figure 1 Rules: planExps, planExp, and learnEq for expressions.

logical variable is left, which can then be learnt. The function learnEq returns a list since
with support for lists in the expression language it is possible to learn multiple variables
from one expression. We do not include learning rules for lists here but discuss a list-related
extension in §5. Note that including learning rules for different operators is always optional:
learning rules are only required to use operators in learning (i.e., to enable more automation),
operators without special learning rules can still be planned as long as all unknown variables
of the input assertion can be learnt elsewhere.

▶ Example 7. Say, KB = {x, y}. Some simple examples include
learnEq(KB, x, z) = [(z, x)],
learnEq(KB, x, z + 5) = learnEq(KB, x − 5, z) = [(z, x − 5)],
planExp(KB, x = z, [(z, x)]),
planExp(KB, x = ¬z, [(z, ¬x)]), and
planExp(KB, x = z + 5 − y, [(z, x + y − 5)]).

Explanation of assertion planning rules. Fig. 2 contains the rules for assertion planning.
We first discuss planSimple, which is the planning relation for simple assertions. Pure simple
assertions are handled by the (conj) rule. The rule takes a list of expressions formed by the
conjuncts of the input expression. It does so by relying on the planExps relation for planning
of lists of expressions: the relation specifies expression orders for which all outs can be learned
(its definition is similar to the definition of plan, which we discuss shortly). Non-conjunct
pure simple assertions are covered by the degenerate case of the (conj) rule when n = 1.
The (emp) rule is trivial since emp is always plannable. The (heap) rule for cell assertions
E1 7→ E2 states that a cell assertion is plannable if we (at least) to know its ins, that is, the
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(plan-base)
plan(KB, [ ], [ ])

(plan-ind)

1 ≤ i ≤ n planSimple(KB, Pi, [(xj , Ej)|kj=1])
KB′ ≜ KB ∪ {xj |kj=1} plan(KB′, [P1, . . . , Pi−1, Pi+1, . . . , Pn], MP)

plan(KB, [P1, . . . , Pn], (Pi, [(xj , Ej)|kj=1]) : MP)

(conj)
n ≥ 1 planExps(KB, [E1, . . . , En], res)

planSimple(KB, ∧n
i=1Ei, res)

(emp)
planSimple(KB, emp, [ ])

(heap)

lv(E1) ⊆ KB
planExps(KB ∪ {O1}, [E2 = O1], res)

planSimple(KB, E1 7→ E2, res)

(pred)

lv( # »E1) ⊆ KB #»E 2 = [E2i |ni=1]
planExps(KB ∪ {O1, . . . , On}, [E21 = O1, . . . , E2n = On], res)

planSimple(KB, p( # »E1; # »E2), res)

Figure 2 Rules: plan and planSimple for assertions.

logical variables of E1, and E2 is plannable according to planExps. We also need to record
that the out of the cell assertion, that is, E2, equals the contents of the cell at E1 in memory,
and from this equality we may be able to learn further information. Note, however, that
the heap is not available during the planning process, and we therefore use a placeholder
variable O1, which is a reserved logical variable that is not allowed to occur in assertions,
that will be instantiated to the actual heap contents at runtime (see Ex. 8). Finally, the
(Pred) rule generalises the planning of cell assertions to predicates by abstracting all of the
predicate outs using placeholder variables O1, . . . , On to then be instantiated and linked to
E2i

|ni=1 appropriately.

▶ Example 8. To illustrate how placeholder variables work in practice, consider consuming
x 7→ y knowing that x = 41. An MP for this assertion, by (heap), is [(x 7→ y, [(y, O1)])]. Say
the current heap has a cell 41 7→ 42. In this case, at the time of consumption the placeholder
variable O1 will be instantiated with the contents of the cell at x, which equals 42, yielding
y = 42.

We now turn to the main entry point: the plan relation. The main rule of plan, the
(plan-ind) rule, specifies valid orders of the simple assertions of P that guarantee the
learning of all their outs, extending the knowledge base as the outs of each simple assertion
are learnt. At each choice point, the rule is applicable for a simple assertion Pi whose ins are
all known using the planSimple relation, together with all the logical variables xj |kj=1 that
can be learnt from Pi and expressions Ej |kj=1 describing how they can be learnt. The rule
then extends the knowledge base with learnt variables, inductively repeats the planning for
the remaining simple assertions, and finally adds the result of planSimple, (Pi, [(xj , Ej)|kj=1]),
to the full MP.

▶ Example 9. Let P = list(w; vs) ⋆ x 7→ y ⋆ z 7→ w ⋆ z = y + 21 and KB = {x}, and let us
use the provided rules to construct an MP for P. Branching on the (plan-ind) rule, we have
that for i = 1 and i = 3 we cannot apply (pred) and (heap) as we do not know all the
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corresponding ins (in particular, w and z), and for i = 4 we cannot apply (pure-eq) as we do
not know all of the variables on either side of the equality. For i = 2, however, we can apply
(heap) as we know x and we have planExps(KB∪{O1}, [y = O1], [(y, O1)]), which follows from
planExp(KB∪{O1}, y = O1, [(y, O1)]), which in turn follows from learnEq(KB∪{O1}, O1, y) =
[(y, O1)]. Returning to (plan-ind) and continuing until the end, we obtain the following
MP for P :

[(x 7→ y, [(y, O1)]), (z = y + 21, [(z, y + 21)]), (z 7→ w, [(w, O1)]), (list(w; vs), [(vs, O1)])]

4.2 Computing MPs
Given the inference-rule formalisation of MPs in the previous section, it is easy to construct an
algorithm for automatically constructing MPs: a simple greedy algorithm searching through
the plan relation is sufficient to find an MP for a given assertion. We can greedily pick the
first valid choice we find at each choice point of the rules of the plan relation and its auxiliary
relations. That is, no backtracking is needed to explore multiple choice points (note that
here we are referring to backtracking during the construction of MPs, not the backtracking
during consumption that MPs help to avoid as discussed earlier). This is because outs are
only learnt by equality reasoning and therefore learning only happens when forced, so the
order in which outs are learnt does not matter. In §6, we report performance numbers of
this simple greedy algorithm as implemented in Gillian.

Note that no soundness result is needed for MPs to ensure soundness for the verification
tool as a whole: as long as no simple assertions are dropped from a given input assertion,
it is not possible to construct an “incorrect” MP that leads to an unsoundness bug in
the verification tool. This is because an incorrectly constructed MP will simply make the
consumption following the MP to fail and force the verification process to abort. To exemplify,
consider the assertion x = 1 with an empty knowledge base. Say we construct the incorrect
MP [(x = 1, [(x, 0)])], suggesting to instantiate x to 0. During consumption, this MP will
lead to 0 = 1 being consumed, which will of course fail. Similarly, an MP missing one or
more outs will cause the consumption to fail as well. E.g., an incorrect MP [(x = 1, [])] for
the same assertion, where the x variable is missing, will be caught during consumption as
well since x will be left uninstantiated.

4.3 MPs for Function Specifications and Predicates
Given the definition of an MP for an assertion, we can easily define MPs for function
specifications and predicates, as we now explain and exemplify.

MPs for function specifications are defined as follows:

▶ Definition 10 (Matching Plans: Function Specification). An MP for a function specification{
#»x = #»x ⋆ P

}
f( #»x )

{
Q

}
is an MP for P with knowledge base { #»x}.

For function specifications of the above form, where the function parameters #»x are bound to
logical variables #»x , when symbolically executing a function call, the values of #»x are given
by the arguments provided in the call, and #»x can therefore be assumed to be known at the
start of the planning.3

MPs for predicates are defined as follows:

3 As we do not include program variables in assertions, pre-conditions are formally pairs of the form
( #»x, P ), but we stylise them to remain in line with the usual SL syntax.
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▶ Definition 11 (Matching Plans: Predicates). An MP for a predicate
p( #»x in; #»x out) =

∨n
i=1(∃ #»xi. Pi), is a list of MPs, [mpi|ni=1], such that mpi is an MP for

Pi with knowledge base { #»x in}.

Recall that the use case for MPs for predicates is predicate folding: to fold a predicate
p( #»x in; #»x out) we have to know its ins #»x in, whereas the existentials from the predicate body
disjuncts need to be inferable from these ins and the outs #»x out can be either provided
or optionally left to be inferred from the ins. Also note that how MPs are defined for
predicates does not depend on how much folding automation the verification tool provides:
from the perspective of planning, it does not matter if the fold was requested manually or
automatically. Lastly note that because the ins and outs of a predicate are given at the time
of definition, failure to construct an MP can be reported early, i.e., at the time of definition,
rather than when the predicate is used in folding.

Examples of plannable predicates include all predicates for standard data structures. We
discuss some data-structure examples in more detail below.

▶ Example 12. We return to the standard SL predicate list(x; vs) from our running example,
where we now have separated the ins and outs. Recall, the predicate is defined as follows:

list(x; vs) ≜ (x = null ⋆ vs = [ ]) ∨
(∃v, x′, vs′. list(x′; vs′) ⋆ x 7→ v ⋆ x + 1 7→ x′ ⋆ vs = v : vs′)

Importantly, despite the fact that the definition of the list predicate is recursive, no recursion
is needed to express (or compute) the MP for the predicate. Per Def. 11, the predicate is
plannable since the following is an MP for the predicate:

[[(x = null, [(x, null)]),
(vs = [ ], [(vs, [ ])])],

[(x 7→ v, [(v, O1)]),
(x + 1 7→ x′, [(x′, O1)]),
(list(x′; vs′), [(vs′, O1)]),
(vs = v : vs′, [(vs, v : vs′)])]]

where the first element of the list is an MP for the first disjunct of the predicate body (the
null disjunct) and the second element of the list is an MP for the second disjunct of the
predicate body (the non-null disjunct).

▶ Example 13. We easily see that the following two variants of the singly-linked list predicate
list and the doubly-linked list predicate dlist are plannable:

list(x) ≜ (x = null) ∨ (∃v, x′. x 7→ v, x′ ⋆ list(x′))
list(x; n) ≜ (x = null ⋆ n = 0) ∨ (∃v, x′. x 7→ v, x′ ⋆ list(x′; n − 1))

dlseg(x, x′, y, y′; vs) ≜ (vs = [ ] ⋆ x = x′ ⋆ y = y′) ∨
(∃x′′, v, vs′. vs = v : vs′ ⋆ x 7→ v, x′′, y′ ⋆ dlseg(x′′, x′, y, x; vs′))

dlist(x, y; vs) ≜ dlseg(x, null, y, null; vs)

▶ Example 14. For a non-list example of a plannable data-structure predicate, we turn to
binary search trees (extending our simple assertion language’s values and expressions with
support for sets):

bst(x; vs) ≜ (x = null ⋆ vs = ∅) ∨
(∃v, l, r, vsl, vsr. x 7→ v, l, r ⋆ bst(r; vsr) ⋆ bst(l; vsl) ⋆

vs = vsl ⊎ {v} ⊎ vsr ⋆ vsl < v ⋆ v < vsr)
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▶ Example 15. Finally, we highlight that is up to the tool user to make sensible choices
for ins and outs, as not all plannable choices need be equally useful in practice. Note that
this is not a requirement introduced by MPs, rather, MPs simply make this requirement
explicit by separating ins from outs. To illustrate, consider the standard acyclic- and
cyclic-list-segment predicates:

lseg(x, y, vs) ≜ (x = y ⋆ vs = [ ]) ∨
(∃x′, v, vs′. x ̸= y ⋆ x 7→ v, x′ ⋆ vs = v : vs′ ⋆ lseg(x′, y, vs′))

clseg(x, y, vs) ≜ (x = y ⋆ vs = [ ]) ∨
(∃x′, v, vs′. x 7→ v, x′ ⋆ vs = v : vs′ ⋆ clseg(x′, y, vs′))

where the only difference between the two is in that the former does not allow the start and
the end pointers to be equal in the second disjunct of its definition (specified by x ̸= y) and
the latter does not have this constraint, and consider the various choices of ins and outs,
with the goal being that the ins should uniquely determine the outs, minimising potential
branching coming from folding. For both lseg and clseg, x has to be an in, as otherwise, given
that the list is singly-linked (forward-pointing), we would have no way of determining where
the list segment starts. Observe that only having x as an in is enough for both disjuncts
in both predicate definitions to be plannable. However, without additional ins, we do not
know where the list segment ends, and folding the predicate would yield up to n branches,
where n is the length of the maximal list segment in the heap starting from x. Adding y as
an in solves this issue for lseg, since then we fix the list segment by knowing both the start
and its end; similarly, we could add vs as an in and then we would know the length of the
list segment, which, together with its start, would also uniquely determine it. Interestingly,
adding y as an in for clseg still does not uniquely determine the cyclic list segment, as its
two disjuncts are not disjoint: for example, in the heap {42 7→ 0, 42}, we could fold both
clseg(42, 42; [ ]) and clseg(42, 42; [0]). Adding vs as an in of clseg, however, does solve the
issue, as the length of the list segment then becomes unambiguous. The same situation
would come up with any predicate whose disjuncts are not disjoint.

5 Extensions

Having formalised core MPs in the previous section, we now discuss important MP extensions
that widen the applicability and usefulness of MPs. The extensions we discuss here are from
the implementation of MPs in the Gillian tool.

Parametric matching plans. To support multiple programming languages (e.g., C and
JavaScript), Gillian is parametric on the memory model used for analysis. In supporting
parametricity, Gillian’s implementation of MPs is parametric as well, which we now show is
a simple extension of core MPs.

Memory models in Gillian are described in terms of core predicates, which represent the
fundamental units of the memory model. Core predicates are described using core-predicate
assertions with syntax c( # »E1; # »E2), where c ∈ Str is the name of the core predicate and # »E1 and
# »E2 are the ins and outs of the core predicate. Each memory model instance must provide a
set of core predicates and the ins and outs of each core predicate. For example, for the simple
memory model we used for core MPs, the only core predicate is the cell assertion, E1 7→ E2,
which has E1 as an in and E2 as an out – or, more formally: 7→(E1; E2). Another example is
given by the Gillian C memory model, whose core predicates include a cell core predicate of
the form (Eb, Eo) 7→ Ev, which states that the cell at offset Eo in the block at location Eb

has contents Ev, where Eb and Eo are the ins and Ev is an out, and a block-bound predicate
bound(Eb; n), which states that the block at location Eb has length n.
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From the discussion above, it is straightforward to generalise planning to parametric
planning since core-predicate assertions c( # »E1; # »E2) share syntax with user-defined-predicate
assertions p( # »E1; # »E2) and therefore for the purpose of planning are the same. That is, the
(pred) rule of Fig. 2 can be used to plan core-predicate assertions. Indeed, recall that for
the simple memory model we used for core MPs, the (heap) rule is indeed a special case of
the (pred) rule (see Fig. 2).

Extending learning capabilities. In some large verification projects, it might be desirable
to extend the learning capabilities of the core MP algorithm with project-custom learning
rules: for example, to avoid repetitive manual project-specific massage of assertions to make
them plannable with respect to the simple learning rules of core MPs.

We discuss one such learning extension that has been implemented in Gillian, specifically,
a list-related extension that was added for the largest case study carried out in Gillian:
the verification of C and JavaScript implementations of the deserialisation module of the
AWS Encryption SDK message header [13]. To illustrate, consider the assertion P ≜ a =
al ++ar ⋆ len(al) = l with KB = {a, l}, where ++ denotes list concatenation and len denotes
list length. P is not plannable using the core MP algorithm, because the algorithm can
only learn logical variables: as list length is not injective, al cannot be learned from l and
planning is stuck. However, P becomes plannable if knowledge bases are allowed to also
contain expressions of the form len(x): len(al) can then be learnt from len(al) = l, and both
al and ar can be learnt, respectively, as al = a[0 : len(al)] and ar = a[len(al) : len(a)] from
a = al ++ ar, where E1[E2 : E3] denotes list slicing from index E2 inclusive to index E3
exclusive.

The above example may look simple but was essential for creating MPs of predicates
describing the data structures used in the AWS case study. At a high level, AWS Encryption
SDK message headers are buffers (arrays of bytes) that comprise a number of sections, with
each section having either a static length described by the standard or a dynamic length
derived from content appearing in the earlier sections of the buffer. In that context, the
list-length extension allowed for clear definitions that follow the descriptions in their official
documentation. Otherwise, the predicates would have to be stated using more complex
operators. Specifically, using Gillian notation, (part of) the predicate describing the message
header is as follows:4

pred Header(+rawHeader, ver, type, sId, msgId, ECLen, ECKs, ...) :
rawHeader == ([ ver, type ] ++ #rawSId ++ msgId ++ #rawECLen ++ #EC ++ ...) *
len(#rawSId) == 2 * UInt16(#rawSId, suiteId) * len(msgId) == 16 *
len(#rawECLen) == 2 * UInt16(#rawECLen, ECLen) *
len(#EC) == ECLen * EncryptionContext(#EC, ECKs) * ...

while without the list-length extension its definition would be as follows:

pred Header(+rawHeader, ver, type, sId, msgId, ECLen, ECKs, ...) :
[ ver, type ] == rawHeader[0, 2] * #rawSId == rawHeader[2, 4] *
UInt16(#rawSId, suiteId) * msgId == rawHeader[4, 16] *
#rawECLen = rawHeader[20, 22] * UInt16(#rawECLen, ECLen) *
#EC == rawHeader[22, 22 + ECLen] * EncryptionContext(#EC, ECKs) * ...

4 In Gillian notation, the + symbol denotes a predicate in, and the # symbol denotes existential quantific-
ation. The UInt16(+x, y) predicate states that the two bytes given by x can be viewed as an unsigned
16-bit integer y, while the EncryptionContext predicates is specific to the AWS case study and its
meaning is not relevant here.
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By comparing these two definitions, we can see that not only is the latter more difficult to
read and understand, but is also more error-prone, as the list-slicing indices get progressively
more complicated.

This extension approach is not limited to the above list-length example and can be
applied for other expressions: e.g., we might choose to keep a + b in the KB if we know it
but do not know either a or b. These further extensions can be added on an as-needed basis
straightforwardly by modifying the OCaml code of Gillian. An interesting direction for the
future is to develop a small domain-specific language for MP rules (i.e., rules like those in e.g.
Fig. 1) to simplify extending Gillian’s MP algorithm with new rules for extended learning
capabilities.

Support for magic wands. MPs can easily be extended to support the magic wand operator
−−⋆ . Formally, θ, h |= P1 −−⋆ P2 ⇔ (∀h′. h′#h ∧ θ, h′ |= P1 ⇒ θ, (h′ ⊎ h) |= P2) where h′#h

denotes that the heaps are disjoint. Practically, magic wands are helpful to reason about “the
rest” of a structure. For example, iterating over a linked list often requires the introduction
of the list-segment predicate lseg, presented in Ex. 15, in order to specify the beginning of
the list that has already been visited. Instead, the list segment lseg(x, y, vs) can be replaced
by the magic wand list(y, vs′) −−⋆ list(x, vs ++ vs′), meaning that the total list can be
recovered by combining this resource with the rest of the list.

To add support for magic wands, we extend the assertion language with magic wand
assertions of the form p( # »E1; # »E2) −−⋆ q( # »E3; # »E4), where p and q are user-defined predicates. We
chose this syntax as to syntactically capture the in-parameters and out-parameters for each
side of the operator. Such a magic wand assertion forms a simple assertion with # »E1, # »E2 and
# »E3 as in-parameters, and # »E4 as outs-parameters. To explain the division of in-parameters and
out-parameters, we give a summary of the underlying algorithm for performing consumption
of magic wands as implemented in Gillian. The algorithm is originally from Viper [23, 5]:5

To consume a magic wand assertion p( # »E1; # »E2) −−⋆ q( # »E3; # »E4) from state σ:
1. Create a state σp by producing the definition of p( # »E1; # »E2) in the empty state.
2. For each simple assertion Q in the definition of q( # »E3; # »E4):

a. Try consuming Q in σp, if it succeeds continue to the next simple assertion;
b. If it fails, try consuming Q in σ instead, if it succeeds, continue to the next simple

assertion;
c. If both fail, abort the consumption.

Step 1 produces the left-hand side of wand, which requires knowing all its parameters.
Therefore, all parameters in # »E1 and # »E2 must be in-parameters of the wand assertion. Then,
step 2 consumes the right-hand side of the wand, which requires knowing all its in-parameters,
but learns its out-parameters in the process. Therefore, # »E3 are in-parameters of the wand
assertion and # »E4 are out-parameters.

To exemplify, say p1(x; y) = x 7→ y and q1(x; y, z) = x 7→ y ⋆ y 7→ z. Further, say we
know x = 1 and y = 2 and are in a state with a heap {2 7→ 3}. The heap satisfies the wand
assertion ∃z. p1(x; y) −−⋆ q1(x; y, z). Indeed, by the above algorithm, the assertion can be
consumed starting from the given heap, learning that z = 3 in the process.

5 For simplicity of presentation, the algorithm presented here assumes the absence of disjunction in the
definitions of p and q.
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6 Scalability and Performance

We now discuss the scalability and performance of MPs. We base our discussion on the MP
implementation in Gillian, specifically, our discussion builds on the largest case study carried
out in Gillian, i.e., the verification of C and JavaScript implementations of the deserialisation
module of the AWS Encryption SDK message header [13]. First, we report MP-related
scale and performance data for the AWS case study. Second, we report on a new MP-based
optimisation we have implemented in Gillian for this paper, which allows for the creation
of aggregate matching plans (AMPs). We show that this optimisation improves the total
verification time of the AWS case study.

AWS case study. To measure the scale and performance of MPs, we have instrumented
Gillian with data-and-performance counters and re-run the verification of the code from
the AWS case study. From this experiment, we have found the cost of building MPs to
be negligible compared to the total verification time. For the C/JS implementation of the
AWS case study, building all MPs takes a total of 0.35s/0.096s, constituting 0.16%/0.25%
of the total verification time. Over that time, MPs are built for 1073/378 assertions that
consist of 41/28 simple assertions on average and 156/272 assertions at most. The creation
of a single MP takes 0.33ms/0.26ms on average and 2.5ms/6.5ms at most. Note that MPs
do not affect the verification time beyond the time it takes to create them; this is because
MPs are separated from the consumption phase: the consumptions that take place during
verification would be the same if the input assertions had instead been manually adopted
(e.g., as illustrated in the discussion on VeriFast in §2).

Aggregate matching plans (AMPs). We discuss and evaluate aggregate matching plans
(AMPs), a new performance optimisation we have implemented in Gillian for this paper.
To illustrate AMPs, recall that an MP for a predicate is a list of MPs for the disjuncts of
the body of the predicate (Def. 11), and that each disjunct is treated independently. AMPs
identify and leverage simple assertions that are shared between disjuncts and represent this
sharing within a tree structure.

To better understand how AMPs work, consider the following predicate:

OptBox(x) ≜ (∃y. x 7→ y ⋆ y = null) ∨ (∃y, z. x 7→ y ⋆ y 7→ z)

and the MPs and AMP for this predicate in Fig. 3.

OptBox(x) (x 7→ y, [(y, O1)]) (y = null, [ ])

(x 7→ y, [(y, O1)]) (y 7→ z, [(z, O1)])

(a) The matching plans.

OptBox(x) (x 7→ y, [(y, O1)]) (y = null, [ ])

(y 7→ z, [(z, O1)])

(b) The aggregate matching plan.

Figure 3 Matching plans and aggregate matching plan for OptBox(x).

Without AMPs, Gillian would create 2 MPs, one per disjunct of the predicate, which both
have the same first step (x 7→ y, [(y, O1)]). However, when folding a predicate, Gillian tries
to consume each disjunct of the predicate body in order until one succeeds to completion.
Without AMPs, when the definition that could be folded was the second one, the first step
would be consumed twice in the same symbolic state, duplicating the work. In contrast,
using AMPs it is consumed only once, factoring out such duplicated work.
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In our implementation of AMPs in Gillian, MPs are built for each disjunct of a predicate,
and then aggregated into a single AMP. Before building the individual MPs, simple assertions
within a single disjunct are sorted using a simple sort algorithm, maximising the chance of
the existence of a shared root. A similar process is also performed for function specifications,
as each function can have multiple specifications in Gillian.

Our evaluation of this new optimisation shows that utilising AMPs instead of lists of
MPs in large verification projects leads to substantial performance improvements. For the C
implementation of the AWS case study, AMPs made the total verification time drop from
240s to 211s, that is, a speedup of 12%. AMPs are especially effective when assertions
are obtained from and/or augmented by a compilation process which often adds the same
contextual information, such as type information, to all cases (which is the case for the
Gillian assertion compiler for C).

7 Related Work

We place matching plans in the context of previous work on automated frame inference.
Specifically, we compare matching plans with the approaches of three modern SL-adjacent
and SMT-based semi-automated verification tools: VeriFast [7], Viper [16], and CN [20].

VeriFast. VeriFast [7], whose approach is closest to our work, is a verification tool for C and
Java. It is based on consumers and producers, and its assertion language is the traditional
SL assertion language. Given the similarities between VeriFast and our work, in particular
the shared assertion language, we expect it would be straightforward to adapt our work on
MPs for VeriFast. Currently, the approach of VeriFast offers less automation than MPs, as
it leaves the responsibility of constructing MPs to the tool user, who has to provide the
MP implicitly when providing assertions, e.g., as part of predicate definitions. To illustrate,
consider again the singly-linked list predicate from our running example, now in VeriFast’s
syntax for C:
struct node { int entry; struct node* next; };

predicate list(struct node* x, list<int> vs) =
x == NULL
? vs == nil
: malloc_block_node(x) &*& x->entry |-> ?v &*&

x->next |-> ?x’ &*& list(x’, ?vs’) &*& vs == cons(v, vs’);

Note that this list predicate is defined using the ternary conditional operator rather than
disjunction, and that existentially quantified variables are annotated with a question mark
at first use. In VeriFast, simple assertions are consumed in the order given by the tool
user: e.g., in the non-NULL case of the list predicate, malloc_block_node(x) is consumed before
x->entry |-> ?v, which in turn is consumed before x->next |-> ?x’, and so on. This means
that if the user does not arrange the simple assertions appropriately, the verification will fail
even though there might exist an MP. Further, VeriFast offers less automation than MPs
w.r.t. learning variables: it can only learn a variable if that variable is the single occupant of
an out or the left-hand side of an equality: for example, assuming x is known, VeriFast can
learn y from y == x but not from x == y or x == y + 1.

Another difference between our approach and that of VeriFast is that in our approach ins
and outs are checked at definition time whereas in VeriFast they are checked at use time,
leading to less local/precise error reporting. For example, if we tried to fold a list in VeriFast
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using close list(_, _), where _ denotes that VeriFast should infer the argument, we would
get the error message “Unbound variable ‘x’ ”, referring to the x variable in the list predicate
definition, instead of an error saying that it is not possible to infer an in of a predicate.6

Viper. Viper [16] is a platform for building verification tools. It has been instantiated,
among other languages, to Java and Rust. It is based on consumers and producers, but also
on an alternative assertion language known as implicit dynamic frame theory (IDF) [24],
which combines SL with dynamic frame theory [10].7 Tool users familiar with SL but not
IDF must therefore learn IDF before they can start using Viper. This difference also means
that both consumption and learning outs from ins look different than in our setting, making
a detailed comparison complex. We illustrate this using our linked-list running example, now
in Viper’s IDF syntax:

field entry : Int
field next : Ref

predicate list(this : Ref) {
acc(this.entry) && acc(this.next) &&
(this.next != null ==> list(this.next))

}

function elems(this : Ref) : Seq[Int]
requires list(this) {

unfolding list(this) in
this.next == null ? Seq(this.entry)

: Seq(this.entry) ++ elems(this.next)
}

The above list predicate captures the shape, but not the contents, of lists. The predicate
is expressed using acc, a construct called accessibility predicate, closely resembling the
cell assertions in SL. The contents of lists are specified using a heap-dependent function
elems. Such functions, as their name suggests, are functions over the heap of the current
symbolic state. In the setting of accessibility predicates and heap-dependent functions,
the ins look similar to ins in our setting, but the outs become the return values of heap-
dependent functions. Assertions must be self-framing, in the sense that assertions must ensure
accessibility to at least the locations they read. Self-framedness is checked in a left-to-right
manner in Viper, meaning that the assertion acc(x.f) && 0 < x.f is considered self-framing,
whereas 0 < x.f && acc(x.f) is not. That is, like VeriFast, Viper is sensitive to the order of
simple assertions. Quantifiers, e.g., over array indices, are more prominent in IDF than in
SL, and variables, quantified or otherwise, that cannot be inferred are instantiated by giving
the underlying SMT solver trigger hints [14], in the style of, e.g., Boogie [12].

CN. CN [20] is a verification tool for C, and is designed for, what its authors call, “predictable
proof automation”. One means employed towards this goal is that CN is based on a new
tool-specific assertion language, which uses variable scoping to ensure that outs can always
be learnt. In other words, the limitations of CN’s learning algorithm are reflected directly in

6 VeriFast has support for checking “preciseness of predicates”, which allows for definition-time checking
of their ins and outs. However, this feature does not affect the error reporting at use sites of predicates,
i.e., errors remain nonlocal. The rules are the same as for the run-time check and are described by
inference rules by Jacobs et al. [7] and by prose text by Jacobs et al. [8].

7 Parkinson and Summers [19] establish a formal connection between SL and IDF, and Jost and Summers [9]
(partially) extend the result to include predicates as well.
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syntax of assertions, ensuring that tool users do not accidentally fall out of the plannable
subset of the assertion language. To exemplify, in CN syntax, the singly-linked list predicate
for the same node data type as in the above discussion on VeriFast becomes:8

predicate { list<integer> l } List (pointer p) {
if (p == NULL) {

return { l = nil<integer> };
} else {

let Head = Owned<struct node>(p);
let Tail = List(Head.value.next);
return { l = cons(Head.value.entry, Tail.l) };

}
}

Since new variables, including outs, must be the output of functions, they are necessarily
learnable. The downside of this approach is that tool users have to learn a new specification
language.

Another feature aimed at predictable proof automation is that CN targets a decidable
SMT fragment, disallowing, e.g., nonlinear arithmetic in SMT queries. Instead, these must
be handled manually by tool users, by proving lemmas in, e.g., Coq, and then manually
applying them in CN. This trade-off is not CN-specific and could also be done in an MP-based
approach. Similarly, manual fallbacks for complex quantifiers are required as well.

Other related work. Many other SL and SL-adjacent verification tools share similarities
with the work presented here, all the way back from Smallfoot [2, 3], the very first such
tool. Important differences between our work and Smallfoot include that Smallfoot is not
SMT-based and that its frame inference procedure is more akin to proof search than the
approach presented here, as is the case for its most well-known descendant Infer [4]. Another
important approach to semi-automating SL is embedding one’s verification tool inside an
interactive theorem prover (ITP). A recent example of this approach is RefinedC [22]. Such
tools do not reduce the verification problem to a series of SMT queries but instead to a series
of proof obligations that tool users must then discharge within the ITP by the usual means
available, including various proof automation machinery.

There are also important connections to be highlighted between the work presented
here and logic programming. The above-mentioned work on RefinedC [22] highlights this
connection, as the tool is implemented in the “separation logic programming language”
Lithium (which, in turn, is implemented in Coq), which is introduced in the same paper.
Diaframe [15] is based on similar ideas. Nguyen et al. [17] highlight the connection between
what we call ins and outs and argument modes in logic programming. Lastly, some logic
programming languages contain features that address some of the problems of the traditional
left-to-right evaluation order of logic programming, such as constraint logic programming
and co-routining (e.g., dif/2) (cf. the recent survey by Körner et al. [11]).

Finally, an earlier version of MPs, dubbed unification plans (UPs), was briefly outlined by
Fragoso Santos et al. [6] in the context of the JavaScript analysis tool JaVerT, the forefather
of the Gillian platform. UPs featured a more limited form of learning than our MPs and were
constructed purely syntactically: ins and outs were computed independently of a knowledge
base, which meant that, for example, while it was possible to learn b from b = a or list(a; b)
knowing a, it was not possible to learn c from a = b + c or learn list lengths. No paper has
covered UPs in the same depth we have covered MPs in this paper.

8 The definition is taken from the CN paper, where the authors add: “Note that CN does not currently
support logical functions on lists; this example is for illustration only.”
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