
Static Basic Block Versioning
Olivier Melançon #

Université de Montréal, Canada

Marc Feeley #Ñ

Université de Montréal, Canada

Manuel Serrano #Ñ

Inria/UCA, Inria Sophia Méditerranée, Sophia Antipolis, France

Abstract
Basic Block Versioning (BBV) is a compilation technique for optimizing program execution. It
consists in duplicating and specializing basic blocks of code according to the execution contexts of
the blocks, up to a version limit. BBV has been used in Just-In-Time (JIT) compilers for reducing
the dynamic type checks of dynamic languages. Our work revisits the BBV technique to adapt
it to Ahead-of-Time (AOT) compilation. This Static BBV (SBBV) raises new challenges, most
importantly how to ensure the convergence of the algorithm when the specializations of the basic
blocks are not based on profiled variable values and how to select the good specialization contexts.
SBBV opens new opportunities for more precise optimizations as the compiler can explore multiple
versions and only keep those within the version limit that yield better generated code.

In this paper, we present the main SBBV algorithm and its use to optimize the dynamic type
checks, array bound checks, and mixed-type arithmetic operators often found in dynamic languages.
We have implemented SBBV in two AOT compilers for the Scheme programming language that we
have used to evaluate the technique’s effectiveness. On a suite of benchmarks, we have observed that
even with a low limit of 2 versions, SBBV greatly reduces the number of dynamic type tests (by
54% and 62% on average) and accelerates the execution time (by about 10% on average). Previous
work has needed a higher version limit to achieve a similar level of optimization. We also observe a
small impact on compilation time and code size (a decrease in some cases).

2012 ACM Subject Classification Software and its engineering → Just-in-time compilers; Software
and its engineering → Source code generation; Software and its engineering → Object oriented
languages; Software and its engineering → Functional languages

Keywords and phrases Compiler, Ahead-of-Time Compilation, Optimization, Dynamic Languages

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.28

1 Introduction

Optimizing compilers perform various analyses to discover properties of the program that
are preconditions for performing optimizations. In a Just-In-Time (JIT) compiler, the cost
of these analyses and optimizations is a critical issue as the time they take becomes part of
the program’s execution time. The use of expensive analyses and optimizations incur a long
warm-up where the first part of a program’s execution is sluggish and the program may even
terminate before it has reached an optimization steady state.

Basic Block Versioning (BBV) is an optimization approach that strikes a balance between
the optimization cost and the speed of the generated code to achieve a fast warm-up time
and reasonably good execution speed. BBV has been used in JIT compilers for dynamically
typed programming languages; in research compilers for JavaScript [5, 6] and Scheme [27, 28],
and it is now used successfully in production in the official Ruby implementation [7, 8].

BBV uses the program’s Control Flow Graph (CFG) created by the compiler as a
template for creating a specialized CFG. For this, BBV traverses the CFG starting at its
entry point while keeping track of the context that contains program properties of relevance

© Olivier Melançon, Marc Feeley, and Manuel Serrano;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 28; pp. 28:1–28:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:olivier.melancon.1@umontreal.ca
https://orcid.org/0009-0007-7688-3208
mailto:feeley@iro.umontreal.ca
http://www.iro.umontreal.ca/~feeley/
https://orcid.org/0009-0005-5237-8712
mailto:Manuel.Serrano@inria.fr
http://www-sop.inria.fr/members/Manuel.Serrano/
https://orcid.org/0000-0002-5240-1610
https://doi.org/10.4230/LIPIcs.ECOOP.2024.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Static Basic Block Versioning

for specialization, such as the type of the values contained in the live variables. Each basic
block has a set of contexts. The information contained in this set is conservative: for each
possible program state when that basic block is reached during a program execution, there
must be at least one context consistent with that state. Due to its conservative nature, it is
allowed to have unreachable contexts in the set. In principle, each basic block of the original
CFG could be specialized to all contexts in its context set, including unreachable contexts.
The specialized versions of a basic block may contain optimizations that are valid in the
corresponding context, such as the elimination of type checks when the type of a value has
been determined at an earlier point in the execution.

An important concern is that multiple specialized copies of each basic block may be
created, leading to a larger amount of code (bloat) and a longer compile time, load time,
and execution time (due to the reduced performance of the instruction cache, among other
reasons). In theory the bloat can be exponential in the size of the program.

Previous works use the same approach to this issue: a cap is placed on the number of
versions for each basic block (i.e., the number of versions is no greater than N, typically a
small number like 5 or 10). In a JIT compiler the versions of a basic block are generated as
the program’s execution advances and reaches a basic block with a new context. This variant
of BBV is called lazy BBV. When a new context is encountered and this would cause the
version limit to be reached, a version specialized to that context must not be created because
it would prevent another specialization if one was needed later in the execution. Instead, a
fully generic version that covers all possible contexts is created as the last version and is
used whenever a new version would be needed. Lazy BBV is relatively simple to implement
but it has some important limitations:

Lazy BBV is a greedy algorithm. The versions that are generated before the
generic version, which are the first ones encountered at execution time, may not be the
versions that are part of hot code. For example, if some function is used both during the
initialization phase and in the main part of the program, then the specializations will be
focused on what happens in the initialization phase. This function may be hot code when
called from the main part of the program in a new context and, because the version limit
is reached, it will be using the generic version (likely the slowest of them all).
High specialization is hard to achieve reliably. The precision of the versioning
context, i.e., the number and information content of the program properties it tracks, has
a direct impact on how quickly the slow generic version is used. For example, a precise
versioning context that tracks not only the type but the range of values of an integer
loop iteration variable starting at 1 and incremented at each iteration, will be able to
create specialized versions of the first few iterations of the loop body (one version for each
specific value of the iteration variable below N). This will not work well for loops that
have a large number of iterations, because the iterations N and above will be handled by
a slow generic version of the loop body. On the other hand, a context of this precision will
work very well for programs where the loops have fewer than N iterations because BBV
will completely unroll these loops. The BBV implementer will have to choose a moderate
precision of the versioning context to avoid using the generic version too quickly, and
consequently this will miss optimizations in some cases, such as total loop unrolling.
It requires JIT compilation. The nature of a JIT compiler makes it easy to ensure
that versions for unreachable contexts are never created. Unfortunately, this entails a
warm-up time at execution, and in some use cases JIT compilation is not an option. In [5],
an eager variant of BBV suitable for an Ahead-of-Time (AOT) compiler was described
and compared to lazy BBV. That implementation of eager BBV yielded comparatively

O. Melançon, M. Feeley, and M. Serrano 28:3

poor speed and bloat because specialization is not guided by the actual need of a program
execution and parts of the CFG that are explored are not typically executed, such as
error cases and out-of-line handlers. Consequently, the specialized versions created before
the limit is reached are more likely to be irrelevant at improving execution speed.

In this paper we describe a new design for a BBV algorithm suitable for an AOT compiler
that mitigates these limitations. Our algorithm also traverses the CFG to determine which
contexts reach each basic block. The first main difference with previous work is the handling
of the version limit. When a new context is encountered and this would cause the version
limit to be exceeded, the algorithm heuristically chooses a pair of contexts reached for that
basic block and replaces them by a merged context that is more conservative than the
contexts in the pair (in other words, a more general context). The algorithm continues
traversing the CFG until a fixed-point is reached, i.e., no new versions need to be created.
The use of context merging allows contexts to be very precise at first, and it is the algorithm
that reduces the precision as needed to keep the number of versions within the limit. The
second main difference with previous work is the refinement of the notion of types to integer
intervals to allow the BBV optimization to remove integer arithmetic overflow checks and
array indexing bound checks.

In the next section, we present our algorithm and discuss its termination. In Section 3
we extend the algorithm with more precise contexts. The implementation in two mature
compilers is explained and evaluated in Section 4. Related work is given in Section 5.

2 The Static BBV Algorithm

In this section we present the Static BBV (SBBV) algorithm. We will start with an overview
by illustrating the algorithm’s behavior using the traditional find function that many
dynamic and functional languages provide.

2.1 SBBV by Example
The find function takes a predicate and a list of values and it returns the first element
of the list that satisfies the predicate or false if no such element is found. In the Scheme
programming language [17], which we use throughout this paper, it can be defined as:

1 (define (find p x) ;; p is the predicate and x is the list to search
2 (if (pair? x) ;; is the list non−empty?
3 (if (p (car x)) ;; call predicate on the first element
4 (car x) ;; return it if it satisfies the predicate
5 (find p (cdr x))) ;; otherwise, continue searching the rest of the list
6 #f)) ;; return false when no element in the list satisfies the predicate

The safety of this code is guaranteed by verifying the validity of the arguments of the
primitive operations at run time. In this example, the primitive operations for which a type
verification is needed are the car and cdr accessors (lines 3-5) and the function invocation
of the predicate (line 3). In safe mode, a Scheme compiler adds the required dynamic checks
to the code, making the possible points of failed safety checks explicit:

1 (define (find p x)
2 (if (pair? x)
3 (if ((if (procedure? p) p (fail)) (if (pair? x) (car x) (fail)))
4 (if (pair? x) (car x) (fail))
5 (find p (if (pair? x) (cdr x) (fail))))
6 #f))

Here we use calls to the fail function to indicate cases where execution cannot continue
due to a failed verification. The fail function is special in that it never returns.

ECOOP 2024

28:4 Static Basic Block Versioning

One might expect a smart compiler, such as one implementing occurrence typing [32], to
discover that the type tests on x are redundant, but let us assume that no such optimization
is applied. This is done for illustrative purpose and because one of our objectives is to show
that SBBV subsumes other optimization techniques, such as occurrence typing.

The unoptimized CFG of find is displayed in Figure 1a. SBBV will produce an optimized
version of that CFG with fewer dynamic checks. For that, it propagates the information
about variables in order to produce specialized versions of the basic blocks. For instance,
block #12 (Figure 1a) checks that the end of the list is not yet reached by testing if x is a
pair. In the positive branch, that is the path starting at block #4, it is known to be a pair
and no further type tests are needed to ensure the correct execution until an assignment to x
occurs (i.e., the other tests that x is a pair are redundant).

The CFG produced by SBBV is shown in Figure 1b. We observe that SBBV has isolated
the first iteration of the loop of the find function and the other iterations are handled by
the loop formed by the subgraph { #23, #25, #27, #29, #31, #32 }. In that loop the type of
p is never tested because it has been tested in the first iteration before entering the loop
handling the other iterations, and the argument x is only tested once per iteration, which is
a necessary part of the loop termination logic. We also observe that for this simple example,
SBBV has produced an optimal CFG in the sense that in a dynamic context with no global
knowledge about the variable types and the data structure types, it executes the minimum
number of dynamic checks required to ensure a safe execution. In Section 4.2 we evaluate
the number of type tests SBBV is able to remove on more realistic programs.

In the rest of this section, we present and explain the algorithm that transforms the
graph of Figure 1a into that of Figure 1b.

2.2 The Algorithm
SBBV specializes a CFG, which might either denote the whole program to be compiled or
only a fragment of it. For instance, it can be decided to use SBBV for specializing each
function in isolation or to specialize the whole program at a time. The main function of the
algorithm (Algorithm 1) takes a basic block to specialize and the initial context used for that
specialization as parameters. The data structures it uses are presented in Figure 2. A context
is a mapping of variable names to value information. In this section these mappings associate
variables to types. We will see in Section 3.2 that contexts can contain more precise type
information. The algorithm specializes each instruction of the basic block and it recursively
specializes the blocks that follow the basic block currently under specialization.

The algorithm performs a breadth-first traversal of the CFG. For that, it uses a work queue
where it pushes the basic blocks and contexts that need further specializations. Specializing
a block may cause the algorithm to specialize new blocks. For instance, when the algorithm
scans the block #12 of Figure 1a, it discovers that in the positive branch the variable x is
known to be a pair and then, it pushes onto the work queue the demand of a new specialization
of the block #4 for the context { x 7→ pair }.

If the block extracted from the queue has not been merged (we explain in a moment what
it means for a block to be merged), then it is specialized (line 10). This, in turn, can add
new pending specializations to the queue. The algorithm proceeds until the queue is empty.

To ensure the convergence of the algorithm, it is enough to ensure that the function
BlockNewVersion (Algorithm 2) pushes a new block onto the queue if and only if no such
block has already been specialized for the requested context as the contexts contain a finite
number of variable to value mappings. However, this convergence criteria is not enough in
practice, the code size expansion of the specialization should also be controlled. This is the

O. Melançon, M. Feeley, and M. Serrano 28:5

(a) Original unspecialized CFG. (b) Specialized CFG.

Figure 1 The original and specialized CFGs of the find function. Basic blocks have a numeric
label for easy reference. In the specialized CFG, basic blocks have the same color as the original
block they were specialized from (whose label is in square brackets). For instance, block #19 is a
specialized version of block #4 of the original CFG. In the specialized CFG, the contexts of the
specializations are displayed in blue. It can be observed that a given block can be specialized
multiple times. For instance, block #12 has been specialized twice (blocks #18 and #31) and block
#4 has been specialized twice (blocks #19 and #32). Blocks #7, #10, and #16 have no version in the
specialized CFG because they do not have a reachable specialized context. Blocks #9 and #15 have
been specialized to an unconditional jump because the ($pair? x) test is known to be true.

context: ctx, ctx0, ...
types: a list of mappings of variable to type information

basic block: bb, bb0, ...
instrs: a list of instructions
versions: a list of specialized basic blocks

specialized basic block: bs, bs0, ...
bb: the corresponding basic block
merge: a specialized basic block into which it has been merged or false
ctx: a context

Figure 2 The data structures used in the SBBV algorithm.

ECOOP 2024

28:6 Static Basic Block Versioning

Algorithm 1 Main algorithm.

1: function SBBV(bb0, ctx0) ▷ specialize a CFG starting with the block bb0
2: wq ← empty_queue ▷ create a fresh queue used for this specialization
3: bs0 ← BlockNewVersion(bb0, ctx0, wq) ▷ push the request for specialization of bb0
4: while ¬wq.isempty() do
5: bs← wq.pop() ▷ fetch the first bb of the queue
6: bb← bs.bb ▷ get the original unspecialized bb
7: if |{∀b ∈ bb.versions,¬b.merge}| > VERSION_LIMIT(bb) then
8: BlockMergeSome(bb, wq) ▷ too many specializations, merge
9: if ¬bs.merge then

10: BlockSpecialize(bs, wq) ▷ specialize the block only if not already merged
11: return bs0 ▷ return the specialization of the initial block

purpose of the test at line 7 of Algorithm 1. If the number of specialized versions of a single
block exceeds a threshold, which is a parameter of the algorithm, some specializations of
that block must be merged (see line 8).

The ancillary function BlockNewVersion is responsible for creating new blocks to be
specialized. First, it checks if the requested block already exists, in which case it returns
it. Otherwise, it creates a fresh version and pushes it onto the queue (line 9). Note that at
this stage the instructions of the block are not scanned nor specialized. Pushing the block
onto the queue is a mere request for specialization. It might be the case that at the moment
where the block will be popped from the queue that this block has been merged into a less
specialized version. This happens to prevent code size explosion.

Algorithm 2 Create or fetch a specialized version.

1: function BlockNewVersion(bb, ctx, wq)
2: if ctx ∈ bb.versions then
3: return BlockLive(bb.versions[ctx]) ▷ return the already specialized block
4: else
5: bs← new basic block ▷ create a fresh empty basic block
6: bb.versions[ctx] = bs ▷ connect the new block and the parent block
7: bs.bb = bb ▷ initialize the new block
8: bs.ctx = ctx

9: wq.push(bs) ▷ push it onto the queue for future specialization
10: return bs

The utility function BlockLive returns the first specialized version of a block that has
not been merged into a more general version.

Algorithm 3 Follow a chain of merged blocks.

1: function BlockLive(bs)
2: if bs.merge then
3: return BlockLive(bs.merge)
4: else
5: return bs

When the number of specializations of a basic block bb exceeds VERSION_LIMIT(bb),
some contexts need to be merged. Note that we express the version limit as a function of the
basic block to allow the algorithm to adapt the limit to different types of basic blocks, such as

O. Melançon, M. Feeley, and M. Serrano 28:7

those marked by the compiler front-end as probably benefiting from more specialization. This
function could simply return a constant value, as we have done in our experiments. Context
merging is done by the function BlockMergeSome (Algorithm 4). It selects two versions
not already merged (line 2), computes the union of the two corresponding contexts (line 3),
and then replaces the merged blocks in the CFG (line 14). Merging is only triggered when a
version is removed from the work queue (Algorithm 1, line 5). This allows the number of
versions to temporarily exceed the version limit. This delayed merging increases the choices
available to the selection heuristic and possibly leads to better merges.

Merging a block in the CFG entails deleting all incoming edges of the merged blocks to
redirect them to the block resulting from the merge. Any deletion of an edge may render
some specialized block unreachable from the CFG’s entry point. Similarly, an added edge
can make some previously unreachable block reachable anew. Keeping track of unreachable
blocks is required since those no longer have to be traversed and must not be considered
when selecting versions to merge in BlockMergeSome (line 2). This can be done efficiently
by maintaining an Even-Shiloach tree [14] of the CFG to help the SBBV algorithm detect
whenever the reachability of a specialized block changes. Any block made unreachable by a
merge is marked so that it is no longer considered in the merge selection and CFG traversal.

Algorithm 4 Merge blocks.

1: function BlockMergeSome(bb, wq)
2: bs1, bs2 ← Θ2{ ∀b ∈ bb.versions,¬b.merge } ▷ select two versions to merge
3: ctx← bs1.ctx

⋃
△ bs2.ctx ▷ merge the two corresponding contexts

4: bs← BlockNewVersion(bb, ctx, wq) ▷ create a new block for the merge
5: if bs1 ≡ bs then ▷ replace the merged blocks
6: BlockMergeAndReplace(bs2, bs)
7: else if bs2 ≡ bs then
8: BlockMergeAndReplace(bs1, bs)
9: else

10: BlockMergeAndReplace(bs1, bs)
11: BlockMergeAndReplace(bs2, bs)
12: function BlockMergeAndReplace(obs, mbs)
13: obs.merge ← mbs ▷ mark that obs is merged into mbs

14: replace obs with mbs in the CFG ▷ patch the CFG

The operator Θ2 selects two unmerged specializations for the block bb. For the sake of
the correctness of the algorithm, this operator might select any two versions. For instance, it
could select two random versions. Of course, a better operator would positively impact the
result of the compilation. In Section 4.3 we present the operator we have used so far.

The behavior of the merge operator
⋃
△ is independent of the SBBV algorithm but it must

produce a new context that at least encompasses the contexts of the merged blocks. The
natural solution is to use a lattice for organizing the information associated with variables
and to go up some level for each merge. We will use the following lattice:

fixnum flonum bignum pair string bool vector . . . procedure

any

⊥

ECOOP 2024

28:8 Static Basic Block Versioning

Note that a number can be a flonum (floating point numbers), a fixnum (small integers
that fit in a machine word), or a bignum (integers that don’t fit in a machine word). While
this would be a good match for JavaScript numerical types, for a full Scheme, or Python,
implementation there would also be a representation for rational and complex numbers, but
we will ignore them to simplify the discussion.

Consider the merge of two contexts mapping a variable v respectively to the types fixnum
and flonum. The merge operation should produce a context mapping v to any. In Section 3.2
we show the use of a more precise lattice for representing properties.

The last part of the SBBV algorithm is in charge of specializing blocks. It merely creates
a new block where the instructions have been specialized one by one.

Algorithm 5 Specialize a block and its instructions.

1: procedure BlockSpecialize(bs, wq)
2: bb← bs.bb
3: ctx← bs.ctx
4: for all i ∈ bb.instrs do
5: (ni, nctx) ← InsSpecialize(i, ctx, wq)
6: bs.instrs ← bs.instrs + ni

7: ctx← nctx

Specializing an instruction that implements a type test produces a new context. For
instance, when specializing the block #12 of Figure 1a, in the positive branch, the argument
x is known to be a pair. The block #4 is then specialized with a context that reflects that
information, which is then propagated to following blocks. Conversely, on the negative branch,
the argument x is known not to be a pair. This information too, is propagated to following
blocks. To handle these evolutions of the contexts, the procedure BlockSpecialize updates
the context it uses for specializing the instructions after each iteration (Algorithm 5, line 7).

The function InsSpecialize selects a specializer appropriate for the instruction.

Algorithm 6 Specialization of an instruction.

1: function InsSpecialize(i, ctx, wq)
2: if i.kind is “goto” then return InsSpecializeGoto(i, ctx, wq)
3: else if i.kind is “if” then return InsSpecializeIf(i, ctx, wq)
4: else if i.kind is ... then ...
5: else return (i, ctx)

The specialization of a goto instruction mostly consists in forwarding the specialization
context ctx to the target of the instruction. For instance, when specializing the goto in block
#1 of Figure 1a with the context {x 7→ pair, p 7→ procedure} the goto instruction triggers
the specialization of the block #12 with the same context. The instruction brings no new
knowledge about the variables types so it returns an unmodified context.

Algorithm 7 Specialization of goto instructions.

1: function InsSpecializeGoto(i, ctx, wq)
2: ni← i.dup()
3: ni.target ← BlockNewVersion(i.target, ctx, wq)
4: return (ni, ctx)

O. Melançon, M. Feeley, and M. Serrano 28:9

The specialization of an if is more involved because this is where new knowledge is
acquired and where requests for new specializations are emitted. If the test of the expression
is not a type test, the specialization behaves as the specialization of a goto instruction
(Algorithm 8, line 2). If the instruction implements a type check and if the context is such
that the test always succeeds, then the instruction is replaced with a goto instruction which
directly branches to the positive block (line 6). This is illustrated by the specialization of
the block #6 of Figure 1a into the block #23 of Figure 1b. Conversely, if the test is known to
evaluate to false, the instruction is replaced with a nop instruction.

Algorithm 8 Specialization of if instructions.

1: function InsSpecializeIf(i, ctx, wq)
2: if ¬ i.test is a typecheck then
3: ni← i.dup()
4: ni.target ← BlockNewVersion(i.target, ctx, wq)
5: return (ni, ctx)
6: else if ctx.types.isTrue(i.test) then
7: ni ← new insGoto(i.target)
8: return InsSpecialize(ni, ctx, wq)
9: else if ctx.types.isFalse(i.test) then

10: ni← new insNop()
11: return (ni, ctx)
12: else
13: ni ← i.dup()
14: ctx+ ← ctx ∪ { i.test.var 7→ i.test.type }
15: ctx− ← ctx ∪ { i.test.var 7→ ¬ i.test.type }
16: ni.target ← BlockNewVersion(i.target, ctx+, wq)
17: return (ni, ctx−)

The most interesting situation is when the result of the type test cannot be inferred from
the current context (line 12). In that case, two new contexts are created, in accordance to
the narrowing rules for that test. The positive branch of the test will be specialized with a
context reflecting the success of the type test and the context reflecting a negative result is
returned to the procedure BlockSpecialize (for instance, see the block #12 of Figure 1a
that creates the context of the block #19 of Figure 1b).

3 Improved Specializations

In Section 2 we have presented the general SBBV algorithm. We have exposed its principles
that we have illustrated with a simple type analysis that maps variable usages to types. In
this section, we show how the algorithm can be extended to specialize the blocks according
to more fine-grained information.

3.1 Variable Aliasing
The contexts used in the example in Figure 2 enables SBBV to specialize blocks according
to the type of the variables. However, it does not keep track of variable aliases, which
jeopardizes the benefit of the optimization. Compilers tend to introduce many temporaries
for evaluating expressions and if these aliases are not handled efficiently by the SBBV
specialization, what is learned about a variable’s value will not be propagated to the other

ECOOP 2024

28:10 Static Basic Block Versioning

context: ctx, ctx0, ...
types: a list of mappings of variable to type information
equiv: a list of equivalence classes

Figure 3 Extended specialization contexts with variable class equivalence.

variables containing the same value. Thankfully, handling aliases merely requires extending
the definition of the contexts and to handle the specialization of the mov instruction, which
assigns a value to a variable. The new definition of the contexts is extended into that of
Figure 3. The specialization of the mov instruction, that copies a variable into another and
that is represented by the ← operator in the CFGs, is given in Algorithm 9. For the sake of
simplicity, this extension keeps track of aliasing of read-only variables only. Assigned variables
are never treated as aliases of other variables. Also, not presented here, the specialization of
the if instruction (Algorithm 8) is modified so that it also propagates the gathered type
information to the variable’s aliases.

Algorithm 9 Specialization of mov instructions.

1: function InsSpecializeMov(i, ctx, wq)
2: nctx← ctx

3: nctx.equiv[i.target]← ∅
4: if i.source is a read-only variable then
5: nctx.equiv[i.target]← {i.source}
6: return (i, nctx)

3.2 Specialization of Arithmetic Operations
The SBBV algorithm is general-purpose and it can be applied to other properties of the
variables and values to go beyond type check removal. In this section we show how to leverage
this flexibility to also specialize the basic blocks according to fixnum integer intervals lo..hi,
where lo and hi are values in the fixnum range. This will allow the compiler to generate
code using fixnum arithmetic operators that are fast (because they directly map to machine
instructions) and removing overflow checks and bound checks.

The benefits of this extension can be illustrated on the expression (+ x 1), which adds 1
to x, a very common operation in most programs. The specific operation executed depends
on the type of x. The result could be a fixnum, a flonum, a bignum, or the operation could
raise an exception if x is not a numerical type. Moreover, the result of (+ x 1) will be a
bignum if x is maxfix, the largest fixnum value. A similar dispatch is part of the semantics
of most arithmetic operators (-, *, . . .) and comparison operators (=, <, . . .), and in the
general case, such as (+ x y), the dispatch is on the combination of types of x and y .

Optimizing compilers usually inline the handling of the most common cases, such as
all operands being fixnums, and all operands being flonums, and defer the handling of the
remaining cases to an out-of-line function. For example, the expression (+ x 1) could be
expanded by the compiler to this code:

(if ($fixnum? x)
(or ($fx+? x 1) ;; fixnum add 1 with overflow check (#f returned on overflow)

($+ x 1)) ;; call $+ function to handle bignum result case
(if ($flonum? x)

($fl+ x 1.0) ;; flonum add 1
($+ x 1))) ;; call $+ function to handle other cases including errors

O. Melançon, M. Feeley, and M. Serrano 28:11

Here we use names prefixed with ‘$’ to indicate internal operations of the system:
($fixnum? x) and ($flonum? x) test to see if x is a fixnum, or a flonum respectively.
($+ x y) is an addition function in the runtime system that handles all possible type
combinations for x and y , including those that raise an exception.
($fl+ x y) adds two flonums to give a flonum result.
($fx+? x y) adds two fixnums to give a fixnum result or false in the case of an overflow.
This operation includes an overflow check that makes it somewhat more expensive than
($fx+ x y) that does not check for overflow (note the absence of the trailing ‘?’).

When the CFG of the above expansion of (+ x 1) is processed by the SBBV algorithm
various optimizations can happen. If the context indicates that x is a fixnum then the
($fixnum? x) test in the specialized basic block is an unconditional jump to the CFG of (or
($fx+? x 1) ($+ x 1)), effectively removing the code that handles flonums, bignums, and
other types. Moreover, if it is known that x is in the interval lo..hi where hi < maxfix, then
the result of ($fx+? x 1) is in the fixnum interval lo+1..hi+1, so an overflow is impossible,
i.e., ($fx+? x 1) is necessarily a fixnum. Consequently the CFG can be specialized to ($fx+
x 1), which is a machine integer addition with no overflow check.

Other languages, such as Ruby, support similar generic arithmetic, but more importantly,
languages such as JavaScript [16] and Python that do not expose small integers require that
the compiler be able to detect when operations can be implemented as fixnum operations.
Hence, these fast implementations must be able to detect when an operation overflows and,
exactly as Scheme does, promote the number in such a case (JavaScript promotes them to
IEEE floating point numbers, Python to bignums).

To extend the analysis, we refine the definition of specialization contexts (Figure 4) and
we refine the lattice of values (Figure 5). Fixnum values are now represented with intervals.

Handling numerical values requires us to modify the specialization of the if and the
fixnum arithmetic with overflow instructions, such as $fx+?. The first one must compute
new interval approximations to be propagated in the positive and negative branches by using
interval narrowing techniques [11]. The second one must implement arithmetic operations
over intervals [23], such as xlo..xhi + ylo..yhi = (xlo + ylo)..(xhi + yhi).

Algorithm 10 Specialization of if instructions with numerical values.

1: function InsSpecializeIf(i, ctx, wq)
2: if i is an integer comparison then
3: (ctx+, ctx−) ← intervalNarrowing(i, ctx)
4: ni ← i.dup()
5: ni.target ← BlockNewVersion(i.target, ctx+, wq)
6: return (ni, ctx−)
7: else
8: as in algorithm 8

For instance, let us assume the specialization of the instruction “if ($fx> i 3)” in a
context {i 7→ minfix..10}. The new InsSpecializeIf will generate the two new contexts
{i 7→ 4..10} and {i 7→ minfix..3} for the positive and negative outcomes respectively.

The numerical operation specialization replaces a numerical operator, such as $fx+?,
whose result is known not to overflow with a faster operator that does not check for overflow,
such as $fx+. It must also implement some widening operation [10] in order to hasten the
convergence of the algorithm. Without widening the algorithm would require a number
of iterations proportional to the size of the interval representing numbers, which would be
prohibitive. The widening is handled by the

⋃
△ operator of the Algorithm 4 (see Section 2.2).

ECOOP 2024

28:12 Static Basic Block Versioning

context: ctx, ctx0, ...
types: a list of mappings of variable to type information
equiv: a list of equivalence classes
range: a list of mappings of variable to integer intervals

Figure 4 Specialization contexts extended with integer intervals.

fixnum flonum bignum pair string bool vector . . . procedure

any

interval

⊥

(a) extended lattice.

. . . 1..3 . . .

fixnum = minfix..maxfix

1..2. . . 2..3 . . .

1..1. . . 2..2 3..3 . . .

⊥

(b) interval lattice.

Figure 5 Extending the lattice used for variable values to handle integer intervals.

3.3 Vector Support

The previous section showed how to extend SBBV to approximate integer values as intervals
described with two integer bounds. While this enables the compiler to remove overflow
checks, it is insufficient to remove bound checks of vector accesses as the length of a vector is
generally unknown statically and cannot be represented with an exact integer value.

To handle vectors we introduce a refined representation of intervals. With this extension
interval bounds can be represented with integers as before, but also with the symbolic value
[[v]]−i that is equal to the length of vector v minus the integer offset i ⩾ 0. Here we assume
that the length of a vector is always a nonnegative fixnum. For instance, the interval 0..[[v]]−1
denotes all the nonnegative fixnums that are lower than the length of the vector v, in other
words, the valid indexes of vector v. The upper bound of that interval, i.e., [[v]]−1, itself
denotes a fixnum in the interval −1..maxfix−1.

We illustrate the benefit of this extension to SBBV with a variant of the find function
presented in Section 2 that operates on vectors and lists:

1 (define (findv p x)
2 (if (vector? x)
3 (let ((len (vector-length x)))
4 (let loop ((i 0))
5 (if (< i len)
6 (let ((e (vector-ref x i)))
7 (if (p e)
8 e
9 (loop (+ i 1))))

10 #f)))
11 (find p x)))

O. Melançon, M. Feeley, and M. Serrano 28:13

1 (define (findv p x)
2 (if ($vector? x)
3 (let ((len (if ($vector? x) ($vector-length x) ($fail))))
4 (let loop ((i 0))
5 (if (if (and ($fixnum? i) ($fixnum? len))
6 ($fx< i len)
7 (if (and ($flonum? i) ($flonum? len))
8 ($fl< i len)
9 ($< i len)))

10 (let ((e (if (and ($vector? x) ($fixnum? i)
11 ($fx>= i 0) ($fx< i ($vector-length x)))
12 ($vector-ref x i)
13 ($fail))))
14 (if ((if ($procedure? p) p ($fail)) e)
15 e
16 (loop (if (and ($fixnum? i) ($fixnum? 1))
17 (or ($fx+? i 1) ($+ i 1))
18 (if (and ($flonum? i) ($flonum? 1))
19 ($fl+ i 1)
20 ($+ i 1))))))
21 #f)))
22 (find p x)))

Figure 6 The code of the findv function where all dynamic checks are explicit.

Figure 7 The specialized CFG of the findv function showing that the index calculations are
done entirely with fixnums with no overflow checks and no vector bound checks. For brevity, we
write [[x]] instead of [[x]]−0, and the interval [[x]]..[[x]] is abbreviated to [[x]].

ECOOP 2024

28:14 Static Basic Block Versioning

Figure 6 shows the code after the compiler has blindly expanded each operation to include
all required dynamic checks. The refinements of SBBV presented in this section enables the
compiler to create the specialized CFG shown in Figure 7, which is optimal (all bound checks
and overflow checks have been removed). There is only a procedure check for parameter p in
the first iteration of the loop, and only if parameter x is a non-empty vector.

This refinement does not impact the SBBV algorithm nor does it demand to change the
specialization of the arithmetic instructions but it requires us to extend the interval operators
to treat cases where at least one bound is a symbolic value. For example, in the case of the
interval addition xlo..xhi + ylo..yhi = (xlo + ylo)..(xhi + yhi), the addition of the lower bounds
(xlo + ylo) is computed from the following rules, where i and j denote integer values, and v

and w denote vector identifiers:

i +lo j 7→ i + j

([[v]]−i) +lo j 7→ j − i

j +lo ([[v]]−i) 7→ ([[v]]−i) +lo j

([[v]]−i) +lo ([[w]]−j) 7→ −i − j

and the addition of the upper bounds (xhi + yhi) is computed from the following rules, where
overflow denotes an upper bound that is not a fixnum:

i +hi j 7→ i + j

([[v]]−i) +hi j 7→ [[v]]−(i − j) if i ⩾ j

([[v]]−i) +hi j 7→ overflow if i < j

j +hi ([[v]]−i) 7→ ([[v]]−i) +hi j

([[v]]−i) +hi ([[w]]−j) 7→ overflow

The narrowing operations for comparisons are similar to that of regular intervals, considering
that vector lengths are themselves modelled as intervals from 0..maxfix. Below are the rules
for the narrowing of x < y from which the rules for the other comparisons can be derived:

Narrowing rule for: x < y with {x 7→ xlo..xhi, y 7→ ylo..yhi}

Positive outcome: {x 7→ xlo.. minhi(xhi, yhi − 1), y 7→ maxlo(xlo + 1, ylo)..yhi}
Negative outcome: {x 7→ maxlo(xlo, ylo)..xhi, y 7→ ylo.. minhi(xhi, yhi)}

maxlo(x, y) 7→ x if vallo(x) > vallo(y) else y

minhi(x, y) 7→ x if valhi(x) < valhi(y) else y

vallo(i) 7→ i

vallo([[v]]−i) 7→ i

valhi(i) 7→ i

valhi([[v]]−i) 7→ maxfix - i

It is noteworthy that, as a result of the interval widening, some of the inferred intervals are
somewhat conservative (for example at block #28 the interval for len could have been 1..[[v]]).
The widening loses some information but makes computing a fix-point faster.

4 Experiments

In this section we demonstrate the practicality of SBBV through experiments. To ensure
that our results are not overly system specific, we have integrated an SBBV pass in the
compilation pipeline of two existing Scheme compilers, Bigloo [19] and Gambit [20]. Both

O. Melançon, M. Feeley, and M. Serrano 28:15

of these are independently developed mature optimizing AOT Scheme to C compilers that
use a CFG representation of the compiled program. Moreover these compilers are used
as back-ends of optimizing compilers for JavaScript [31, 30] and Python [22]. Bigloo and
Gambit implement a slew of features and classical optimizations such as constant-folding,
function inlining, flat closures, and lambda-lifting. Any performance improvements would
constitute a notable achievement given the many years of fine-tuning that went into their
development. We put this in perspective in Section 4.5.

Adding SBBV to these compilers allows them to use the type, range and value of variables
to perform flow sensitive code specialization that is tailored to the program logic, with low code
bloat. The experiments have been designed to demonstrate further performance improvements
by SBBV than by other optimization techniques implemented by these compilers.

We evaluate the impact of SBBV by applying it to a suite of benchmarks. Each benchmark
is compiled with and without SBBV to measure its impact on the number of dynamic checks,
program size, execution time, and compilation time. Section 4.1 provides a brief description
of the benchmark suite. Benchmarks were executed on a machine with an Intel Core i7-7700K,
48 GB of RAM, and under Debian 10.13 with kernel version SMP Debian 4.19.269-1.

In order to measure SBBV’s impact on the number of dynamic checks, both compilers
have been instrumented to count the number of dynamic checks during a program execution.
Executions for measuring time and dynamic checks are done separately to ensure that
counting checks does not affect the measured execution time. Execution time is measured
by profiling each executable with “perf stat” to measure its execution real-time. Each
benchmark is parameterized such that its execution lasts at least five seconds on our machine,
and is repeated 50 times, removing the top and bottom 5 outliers. The parameters of
each benchmark are provided as command-line arguments to ensure that the compiler does
not optimize for specific values or types. All timing results in this section are the average
execution time of each benchmark. The relative standard deviation of the execution time
never exceeds 0.24% on macrobenchmarks, and 2.20% on microbenchmarks; consequently we
omit standard deviations in figures to improve readability.

4.1 Benchmark Programs
Our benchmark suite combines programs from two sources: the R7RS benchmark suite [1]
that is commonly used for evaluating the performance of Scheme systems, and benchmark
programs used in [30] that have Scheme and JavaScript versions.

We use both macrobenchmarks and microbenchmarks, which we classify according to their
size (fewer than 150 lines of code is a microbenchmark). These two classes are distinguished
because microbenchmarks stress a narrow set of features and consequently are poor predictors
of the overall performance of a system. We only use microbenchmarks as instruments for
shedding light on specific behaviors of the SBBV algorithm.

Here is a brief description of the benchmark programs:
Macrobenchmarks:

almabench (430 LOC): Compute the celestial coordinates of the sun at noon. Uses
floating point numbers, vectors, and assignments.
boyer (610 LOC): Prolog-like rule-directed rewriting engine. Uses pairs and symbols.
compiler (11,740 LOC): Old version of the Gambit Scheme compiler generating
M68000 code. Uses pairs, symbols, vectors, and strings.
conform (490 LOC): Graph type checker using equivalence classes. Uses lists and
strings.

ECOOP 2024

28:16 Static Basic Block Versioning

dynamic (2,350 LOC): Dynamic type inference for Scheme. Uses lists, symbols, and
higher-order functions.
earley (660 LOC): Earley parser parsing an ambiguous grammar. Uses vectors, lists,
small integers and symbols.
leval (560 LOC): Scheme interpreter based on closures. Uses lists, symbols, and
higher-order functions.
maze (740 LOC): Hexagonal grid maze generator. Uses vectors and small integers.
nucleic (3,510 LOC): 3D structure determination of a nucleic acid. Uses vectors and
floating point numbers.
peval (630 LOC): Partial evaluator for Scheme. Uses lists, symbols, and higher-order
functions.
scheme (1,090 LOC): Other Scheme interpreter based on closures. Uses lists, symbols,
and higher-order functions.
slatex (2,470 LOC): Scheme to Latex processor. Uses characters, strings, lists, vectors,
and small integers.

Microbenchmarks:
ack (10 LOC): Ackermann function. Uses small integers and recursion.
bague (110 LOC): Solver of the baguenaudier puzzle. Uses small integers and vectors.
fib (20 LOC): Fibonacci function. Uses small integers and recursion.
fibfp (20 LOC): Fibonacci function. Uses floating point numbers and recursion.
nqueens (40 LOC): Solver of the N-queens puzzle. Uses lists, small integers, and
recursion.
primes (40 LOC): Sieve algorithm for finding primes. Uses lists and small integers.
tak (20 LOC): Takeuchi function. Uses small integers and recursion.

4.2 Counting Dynamic Checks
In the Bigloo and Gambit implementations, many built-in procedures implicitly check the
type of their arguments and signal an error if they are invalid, such as arithmetic on non-
number types or index out of bound when indexing a vector. Polymorphic operators also use
implicit dynamic type checks to dispatch computation to specialized primitives.

To measure dynamic checks, all built-in procedures used in our benchmarks are redefined
with macros that use inline checks. This is semantically equivalent to operations that apply
checks and dispatch to specialized primitives implicitly. For instance, the BBVvector-ref
and BBV+ macros implement the vector-ref and + operations respectively:

1 (define-macro (BBVvector-ref v i)
2 ‘(let ((v ,v) (i ,i))
3 (if (and ($vector? v) ($fixnum? i)
4 ($fx>= i 0) ($fx< i ($vector-length v)))
5 ($vector-ref v i)
6 (error "vector-ref error")))))
7

8 (define-macro (BBV+ x y)
9 ‘(let ((x ,x) (y ,y))

10 (if (and ($fixnum? x) ($fixnum? y))
11 (or ($fx+? x y) ($+ x y))
12 (if (and ($flonum? x) ($flonum y))
13 ($fl+ x y)
14 ($+ x y)))))

The macros use specialized operators (prefixed with $ in the example), making all checks
explicit (type checks, array bound checks, and integer overflow checks) and ensuring that
both compilers perform the same set of checks and in the same order (see Section 3.2 for the
definitions of $fx+?, $+, and the other primitive operations).

O. Melançon, M. Feeley, and M. Serrano 28:17

When SBBV has determined the type of a value, the type tests that are in the expansion of
these macros ($fixnum?, $flonum?, etc) are effectively removed. Similarly, SBBV’s interval
analysis may determine the range of possible integer values, allowing comparisons such as
($fx>= i 0) to be removed, and calls to overflow checking operators such as ($fx+? x y)
to be replaced by the non-overflow checking ($fx+ x y) when the result cannot overflow.

However, not all dynamic checks originate from safe operators since programmers can add
type tests and bound checks as part of their program’s logic. For this reason, we distinguish
between checks introduced by safe operators, which we call safety checks in the context of
this experiment, and those introduced by the programmer. The number of safety checks is
computed by replacing all operators, such as BBVvector-ref and BBV+, by unsafe ones that
execute no type tests, overflow checks or array bound checks. By subtracting the number of
checks executed by the unsafe version of a program from the number of checks of its safe
version, we obtain the number of safety checks.

4.3 Merge Selection
Applying SBBV requires a heuristic for selecting which versions of a block to merge when that
block’s version limit is exceeded. This corresponds to choosing a concrete implementation for
the Θ2 operator from Algorithm 4. The quality of the selection function impacts the general
performance of the SBBV algorithm. The current Bigloo and Gambit implementations use a
merge heuristic that is rudimentary but still sufficient to establish the benefit of the approach.

In our implementations, when the version limit of a basic block is exceeded, versions that
are the most similar are merged first. The similarity of two versions is computed by counting
how many variables have the same type when entering the block. While both Bigloo and
Gambit implement a selection by similarity, the exact implementations of their selection
functions differ slightly due to how they represent types internally.

Given that the versions selected depend solely on the contexts when entering a block,
this is a local merge heuristic. It requires no usage analysis of each variable in the block and
its successors. A nonlocal merge heuristic could lead to better results if it prioritizes some
versions over others with the objective of maximizing the benefits for the whole program.
The space of possible merge heuristics is large and we intend to explore it in future work.

4.4 Results
We first present broad results before diving into a deeper analysis in the subsequent sections.

SBBV permits a trade-off between code size and dynamic checks removal. As the version
limit increases, more blocks are duplicated and more dynamic checks are removed. This
comes at the cost of increased executable size and compilation time. We found a limit
of 2 versions to offer a good trade-off between checks removal, size, and compilation time.

Figure 8 shows the proportion of safety checks removed by SBBV, such as type, overflow,
and array bound checks. In all benchmarks, the number of checks decreases when compared
to the executable without SBBV. This indicates that SBBV can remove dynamic checks that
the existing optimizations of Bigloo and Gambit could not remove.

The proportion of checks removed varies between Bigloo and Gambit, despite both
compilers applying the same SBBV algorithm. Bigloo removes more checks without applying
SBBV, thus leaving fewer checks to be removed by SBBV. However, the absolute number of
remaining checks is similar between both implementations. To a lesser extent, differences in
the implementations of the heuristic for selecting versions to merge also influence the number
of removed checks by each compiler.

ECOOP 2024

28:18 Static Basic Block Versioning

Benchmark

S
el

f R
el

at
iv

e
D

yn
am

ic
 C

he
ck

0.00

0.20

0.40

0.60

0.80

1.00

alm
ab

en
ch

bo
ye

r

co
mpil

er

co
nfo

rm

dy
na

mic
ea

rle
y

lev
al

maz
e

nu
cle

ic
pe

va
l

sc
he

me
sla

tex ac
k

ba
gu

e fib fib
fp

nq
ue

en
s

pri
mes tak

Bigloo Gambit

Figure 8 Relative number of safety checks executed for benchmarks compiled with and without
SBBV (limit of 2 versions), separately for Bigloo and Gambit. 1.0 corresponds to compilation
without SBBV. Lower values indicate fewer dynamic checks with SBBV.

Benchmark

S
el

f R
el

at
iv

e
E

xe
cu

tio
n

Ti
m

e

0.00

0.20

0.40

0.60

0.80

1.00

almabench boyer compiler conform dynamic earley leval maze nucleic peval scheme slatex

Bigloo Gambit

Figure 9 Relative execution time of macrobenchmarks compiled with and without SBBV (limit
of 2 versions), separately for Bigloo and Gambit. 1.0 corresponds to compilation without SBBV.
Lower values indicate better performance with SBBV.

Although the number of dynamic checks decreases with higher version limits, it does
not always lead to a similar reduction of the execution time. Figure 9 shows that all
macrobenchmarks execute faster with SBBV and a limit of 2 version (by 10% on average).
However, no significant speedup is observed by further increasing the version limit. The
relation between the version limit and execution time is discussed further in Section 4.4.3.

Increasing the version limit allows for more specialized versions. In the following sections,
we take into account the impact of the version limit on the removal of dynamic checks,
program size, execution speed, and compilation time. Each benchmark is compiled with
version limits ranging from 1 to 5, as well as with limits of 10 and 20 versions, and it is
compared to a compilation without SBBV. Limits higher than 5 are probably not very
practical due to diminishing returns for the added compilation time. We tested with limits
of 10 and 20 versions mostly to check the performance in extreme cases.

4.4.1 Dynamic Checks
Figure 10 shows the proportion of safety checks remaining after SBBV with increasing version
limits. We estimate the number of remaining safety checks by subtracting checks in the unsafe
version of a benchmark from those in the benchmark compiled with SBBV. To compute the
total number of safety checks without SBBV, we apply the same formula to each benchmark
compiled with no optimization, which effectively preserves all checks.

O. Melançon, M. Feeley, and M. Serrano 28:19

(a) Gambit.

(b) Bigloo.

Figure 10 Effect of SBBV on the removal of dynamic checks (type, overflow, and array bound
checks) with increasing version limits. Each cell shows the proportion of safety checks remaining
for a given version limit and benchmark when compared to an unoptimized execution. The first
row shows checks when SBBV is not applied and only existing optimization techniques are used. A
ratio of 1 means that no dynamic checks were removed. Lower values indicate that more checks
were removed.

Figures 10a and 10b show, on the first row, the proportion of remaining checks after
applying the standard Gambit and Bigloo optimization techniques (No SBBV). The following
rows display results with SBBV and specific version limits. For all benchmarks, SBBV removes
more checks than the standard optimizations. As the version limit increases, more specialized
versions are generated, allowing removal of additional checks.

For low version limits, the number of dynamic checks steeply decreases as the limit
increases. However, beyond a version limit of about 4, there is a diminishing return for
almost all benchmarks. In some benchmarks, an upper bound is rapidly reached beyond
which almost no more checks are removed (such as boyer at 1 version). In these cases,
further increasing the limit contributes to the generation of relatively unimportant versions.
Conversely, new useful versions are still discovered when increasing the version limit beyond
10 for some benchmarks (such as tak with Gambit).

Increasing the version limit sometimes increases the number of dynamic checks. For
instance, in Figure 10a, the number of dynamic checks increases when incrementing the
version limit from 2 to 3 in the nqueens benchmark with Bigloo. Increasing the version limit
delays the merge of excess versions until more candidates are discovered. Given additional
choices, the selection function may choose differently, merging a useful version that would
have been kept otherwise. This highlights the room for improvement of our selection function.

ECOOP 2024

28:20 Static Basic Block Versioning

(a) Gambit.

(b) Bigloo.

Figure 11 Program size with increasing version limits, relative to using the standard optimizations
(No SBBV). Each cell shows the ratio between the program size with and without SBBV for a given
version limit and benchmark. Lower values are better.

4.4.2 Program Size

We measured the program size of benchmarks compiled with SBBV. The size in bytes of
each benchmark is obtained by disassembling its executable and subtracting the position of
compiler specific labels. Hence, only the size of the code corresponding to each benchmark,
excluding any runtime procedures, is considered.

Since SBBV applies code duplication, higher version limits generally generate larger
programs. Yet, low version limits may result in smaller executables. In the case of a limit of
a single version, this is to be expected because SBBV becomes akin to a static type inference
analysis without code duplication, which removes some unnecessary checks. However, for
low enough version limits higher than one, SBBV can still reduce program size. In these
cases, the removal of dynamic checks outweighs the duplication of basic blocks.

Figure 11b shows the relation between the size of a benchmark and the allotted version
limit in Bigloo. On average, macrobenchmarks are smaller up to a limit of 5 versions. In
general, the size increases with the version limit, but remains reasonably low with an average
growth of about 1.7× on macrobenchmarks with a limit as high as 20 versions.

Figure 11a shows a similar pattern in Gambit, but with a higher growth rate. In the
worst case, a growth of about 10× is observed (boyer, limit of 20 versions), highlighting
the need to select a low enough version limit to curb code bloat. We found a version limit
ranging from 2 to 4 to be a good compromise between removed dynamic checks and size.

O. Melançon, M. Feeley, and M. Serrano 28:21

(a) Gambit.

(b) Bigloo.

Figure 12 Execution time with SBBV and increasing version limits, relative to the standard
optimizations (No SBBV). Each cell shows the ratio between the execution time with and without
SBBV for a given version limit and benchmark. Lower values are better.

4.4.3 Execution Time

Figure 12 shows how the execution time of each benchmark varies with the version limit.
Comparing performance to the number of dynamic checks from Figure 10 shows that a
lower number of checks is not correlated to a faster execution in general. With Bigloo
(Figure 12b), macrobenchmarks compiled with SBBV execute, on average, about 10% faster
than without SBBV regardless of the version limit. With Gambit (Figure 12a), a similar
speedup is observed for version limits below 4. Beyond this limit, execution speed still
benefits, albeit to a lesser extent. We suspect that this discrepancy is caused by the increased
code bloat observed with Gambit for high version limits, which reduces the performance of
the instruction cache.

While some benchmarks benefit from a high version limit, the code speed and version
limit is only vaguely correlated and contains noise. When optimizing for code speed, using a
default version limit for all programs is suboptimal and it is good to give the programmer a
manual control over the limit to explore the tradeoffs.

We explain this in part by hard-to-predict hardware optimizations by modern processor
architectures. In particular, branch prediction makes dynamic type checking extremely cheap
in typical code where a type check frequently returns the same result. Moreover, Bigloo
and Gambit implement inexpensive type checks using pointer tagging. We hypothesize that
SBBV would have a higher performance impact in implementations with more costly dynamic
checks, such as NaN tagging, or object representations that need a memory access to check
the type, such as BiBOP and object-oriented languages such as Java, Python, and Ruby.

ECOOP 2024

28:22 Static Basic Block Versioning

(a) Gambit.

(b) Bigloo.

Figure 13 Compilation time with increasing version limits, relative to using the standard
optimizations (No SBBV). Each cell shows the ratio between the compilation time with and without
SBBV for a given version limit and benchmark. Lower values are better.

This highlights the need to refine the merge selection function. In the future, we intend
to explore the space of possible merge heuristics, including nonlocal heuristics. We also wish
to explore dynamic version limits, for instance by increasing the version limit of basic blocks
that are likely to be in megamorphic code, as is done by YJIT [7, 8]

4.4.4 Compilation Time
We measured the compilation time for each benchmark and version limit and compared it
to the compilation time without SBBV. Figure 13 shows the effect of the version limit on
compilation time. In general, compilation time increases with the version limit. The reasons
for this increase are twofold: firstly a higher version limit leads to more specialized versions of
basic blocks within a control flow graph, secondly the increased size of the C code generated
by Bigloo and Gambit leads to increased compilation time by the C compiler. Consequently,
a lower program size is correlated to a shorter compilation time.

In the extreme case of a limit of 20 versions, compilation time increased by about 22× in
the worst case (almabench with Gambit). However, in Section 4.4.1 we showed that there is
a diminishing return from increasing the limit beyond about 4 versions. Choosing a limit of 2
caps the worst observed compilation time increase to about 1.5× with Gambit (almabench)
while reaping most of the benefit of SBBV. On the same benchmark, Bigloo has a large
compilation time increase starting at a limit of 1. This is due to the combined effect of a
large function with multiple dispatch points and a live variable recalculation by the compiler
that is not done by Gambit (register allocation is done before SBBV in the case of Gambit,
and after SBBV in the case of Bigloo).

O. Melançon, M. Feeley, and M. Serrano 28:23

Program Node.js Bigloo 4.6a Gambit 4.9.4-377 Chez Racket
21.7.1 No SBBV SBBV No SBBV SBBV 9.5.1 7.2

almabench 6.31 15.68 14.46 14.64 13.86 17.69 19.30
boyer 40.31 7.40 7.22 8.21 6.49 8.09 12.38
earley 56.75 14.90 13.83 10.87 10.34 9.53 24.73
leval 18.42 7.53 6.47 12.03 9.74 7.16 16.96
maze 10.07 7.47 6.70 6.75 5.73 12.01 12.12
bague 305.04 12.90 11.19 15.54 12.93 21.01 19.33

Figure 14 Average execution times of the benchmarks from [30] in seconds. Bold numbers
indicate the fastest execution time for each benchmark. Lower is better.

4.5 Putting the Results in Context
The significance of the above results can be best appreciated through a comparison with
other systems whose performance is more widely known. Our goal is to show that both
Gambit and Bigloo are competitive with some of the leading implementations of dynamically
typed languages, and thus that using SBBV is attractive in the context of high-performance
implementations to increase performance further.

The Node.js system is a good comparable given that the JavaScript V8 JIT compiler
on which it is based has been extensively engineered and it executes a dynamically typed
programming language with similar core constructs as Scheme, to which prototype object-
oriented features are added. The Chez Scheme [26] and Racket [25] systems are also interesting
as high-performance representatives of the Lisp/Scheme family.

In order to do a fair comparison of systems for different languages, we use benchmark
programs that have been translated to both Scheme and JavaScript in previous work [30].
Those programs are a subset of those used in the previous sections. Because of the similarity
of JavaScript and Scheme, a systematic translation of the constructs is possible while avoiding
important stylistic changes that would compromise the validity of the comparison. We have
used the latest versions of those systems available at the time of writing through the Debian
package manager (Node.js 21.7.1, Chez Scheme 9.5.1, and Racket 7.2). We measure the
program execution time and, for Gambit and Bigloo, we compile the program without SBBV
and with SBBV and a limit of 2 versions. Figure 14 gives the execution times in seconds.

The execution time for Gambit and Bigloo without SBBV is faster than Node.js on all
the benchmarks except almabench, up to 24× faster for bague. Node.js does better on
almabench than any other system because V8 has special optimizations for floating point
numbers and arrays that are used by almabench. Gambit and Bigloo without SBBV are
in the same ballpark as Chez Scheme, faster on roughly half the benchmarks. Racket is
typically slower than Chez Scheme, on which it is built internally. When SBBV is used, both
Bigloo and Gambit are consistently faster than without SBBV, including on benchmarks
on which they already outperformed other compilers. This reinforces our belief that SBBV
allows some optimizing compilers for dynamically typed programming language to generate
even better code.

5 Related Work

Basic Block Versioning (BBV) was introduced by Chevalier-Boisvert and Feeley [5] as a
technique for type check removal in JavaScript. The lazy BBV variant, suitable for JIT
compilers, only generates versions that are executed, so it limits code bloat. On the other

ECOOP 2024

28:24 Static Basic Block Versioning

hand, when the version limit is reached a fully generic version must be used, which negatively
impacts type check reduction. SBBV avoids falling back on a generic version by selecting
a set of versions that cover all cases but that are at least somewhat specialized. As shown
in their Figure 7, a version limit of 2, which is their setting maxvers=1, shows a modest
reduction of type checks for many benchmarks when compared to maxvers=5 because the
fallback on the fully generic version is reached too quickly. SBBV achieves good performance
with lower version limits. A variant of lazy BBV is used in production in the YJIT compiler
inside CRuby [7, 8], also falling back on a fully generic version upon reaching the version
limit (which can be 4, 10, or 20 depending on the situation).

The eager BBV variant described in [5] is suitable for AOT compilers, like SBBV, but
suffers from large code bloat so it was deemed impractical and not explored further [5]. In
comparison, SBBV with a version limit of 2, which achieves a comparable level of dynamic
check removal, causes an average code size increase of 9% for Gambit and a decrease of 19%
for Bigloo.

SBBV can be explained by the theory of abstract interpretation introduced by Cousot
and Cousot [10]. The authors presented a theoretical framework for building lattice-based
fixed point algorithms. Their work ensures that the SBBV algorithm converges. Furthermore,
their seminal paper introduced union with widening. Widening not only ensures that the
algorithm converges, but also that it converges fast enough to be practical.

SBBV generalizes well-known optimization techniques such as loop-unrolling [2], constant-
folding [2], and tail duplication [24]. Tail duplication replicates the code after conditional
branches instead of merging the control flow to a single basic block. This permits propagating
the information acquired from a condition beyond the body of each branch, allowing further
optimizations.

Determining when to apply tail duplication remains a challenge. Leopoldseder et al.
proposed a simulation-based approach to determine which duplications are the most promising
in term of optimization opportunities while minimizing code size [18]. This is analogous to
how the choice of a selection function impacts the efficiency of SBBV.

More recently, D’Souza et al. applied tail duplication in TASTyTruffle, a Scala JIT
compiler using Truffle. TASTyTruffle performs tail duplication at the AST level to generate
guarded versions of polymorphic functions that are then specialized by the Graal compiler [13].

Our work is related to occurrence typing that is in particular used in Racket [33].
Occurrence typing is a type system that allows a context-sensitive refinement of variable
types during static analysis, for instance by typing a variable differently in each branch of a
conditional statement. In the context of our work, occurrence typing synergizes well with
tail duplication to further propagate context-sensitive type information.

Partial function inlining can also be done if SBBV is applied interprocedurally. We have
not done this in the current work because it is tricky to extend the versioning contexts to
track code pointers for function entry and return points. This will require future work.

Code optimization by duplication and specialization has been extensively studied and
used for various programming languages [12, 3, 29, 4, 9]. Recently Flückiger et al. [15]
optimized the compilation of R programs by function specialization. They show that this
technique makes programs run 1.7× faster on average. Subsequently a study by Mehta et
al. [21] has used a mechanism that keeps multiple versions of a given function specialized for
contexts encountered at runtime by JIT compilers. Specialized versions of a function are
stored in an external repository, allowing switching between versions when de-optimization
occurs and to reuse versions of functions across executions and programs. SBBV is related
to these techniques but the granularity of cloning is finer as it clones basic blocks while all

O. Melançon, M. Feeley, and M. Serrano 28:25

those previous works clone whole function bodies. This enables SBBV to better control the
code expansion and to spend the cloning budget on relevant specializations without falling
back on a fully generic version or using de-optimization, which is not an option in an AOT
context. This sort of fine optimization tuning is out of reach for techniques that specialize at
the level of whole function bodies.

6 Conclusion

Previous work has shown that the lazy variant of Basic Block Versioning (BBV) is effective in
practice for optimizing dynamic checks in JIT compilers for dynamic languages [5, 27, 7, 8].
The static BBV (SBBV) approach that we have described in this paper is a variant of BBV
that determines, through a fix-point program analysis, a set of basic block versions that are
appropriate for the program and that covers all possible contexts without exceeding some
versioning limit. This gives control over the code bloat induced by the multiple specializations
of individual basic blocks in a way that avoids falling back on an unoptimized generic version
of the basic block when the versioning limit is reached. SBBV is thus particularly interesting
for use in AOT compilers and consequently it does not suffer from a warmup time.

At the core of the SBBV algorithm is a heuristic to drive the merging of previously
generated versions to keep the number of versions within the allowed limit. We have shown
through experiments that even a simple merge heuristic removes dynamic checks effectively
in practice.

As a second contribution, we have shown in this paper how to extend the BBV approach
to implement optimizations that go beyond the elimination of dynamic type checks. We
have shown how to use it to remove integer overflow checks and bound checks effectively. By
doing so, we have shown that the BBV approach can be viewed as a general programming
analysis methodology that can be used to implement various optimizations that otherwise
are implemented in isolation using dedicated techniques.

References
1 R7RS benchmarks. https://github.com/ecraven/r7rs-benchmarks, April 2024.
2 David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for high-

performance computing. ACM Comput. Surv., 26(4):345–420, 1994. doi:10.1145/197405.
197406.

3 Jeff Bezanson, Jiahao Chen, Benjamin Chung, Stefan Karpinski, Viral B. Shah, Jan Vitek,
and Lionel Zoubritzky. Julia: dynamism and performance reconciled by design. Proc. ACM
Program. Lang., 2(OOPSLA):120:1–120:23, 2018. doi:10.1145/3276490.

4 Craig Chambers and David M. Ungar. Customization: optimizing compiler technology for
SELF, a dynamically-typed object-oriented programming language. In Richard L. Wexelblat,
editor, Proceedings of the ACM SIGPLAN’89 Conference on Programming Language Design
and Implementation (PLDI), Portland, Oregon, USA, June 21-23, 1989, pages 146–160. ACM,
1989. doi:10.1145/73141.74831.

5 Maxime Chevalier-Boisvert and Marc Feeley. Simple and effective type check removal through
lazy basic block versioning. In John Tang Boyland, editor, 29th European Conference on Object-
Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic, volume 37
of LIPIcs, pages 101–123. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:
10.4230/LIPICS.ECOOP.2015.101.

6 Maxime Chevalier-Boisvert and Marc Feeley. Interprocedural type specialization of JavaScript
programs without type analysis. In Shriram Krishnamurthi and Benjamin S. Lerner, editors,
30th European Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016,
Rome, Italy, volume 56 of LIPIcs, pages 7:1–7:24. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPICS.ECOOP.2016.7.

ECOOP 2024

https://github.com/ecraven/r7rs-benchmarks
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/3276490
https://doi.org/10.1145/73141.74831
https://doi.org/10.4230/LIPICS.ECOOP.2015.101
https://doi.org/10.4230/LIPICS.ECOOP.2015.101
https://doi.org/10.4230/LIPICS.ECOOP.2016.7

28:26 Static Basic Block Versioning

7 Maxime Chevalier-Boisvert, Noah Gibbs, Jean Boussier, Si Xing (Alan) Wu, Aaron Patterson,
Kevin Newton, and John Hawthorn. YJIT: a basic block versioning JIT compiler for CRuby,
pages 25–32. ACM, 2021. doi:10.1145/3486606.3486781.

8 Maxime Chevalier-Boisvert, Takashi Kokubun, Noah Gibbs, Si Xing (Alan) Wu, Aaron
Patterson, and Jemma Issroff. Evaluating YJIT’s performance in a production context: a
pragmatic approach. In Rodrigo Bruno and Eliot Moss, editors, Proceedings of the 20th
ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes,
MPLR 2023, Cascais, Portugal, 22 October 2023, pages 20–33. ACM, 2023. doi:10.1145/
3617651.3622982.

9 Keith D. Cooper, Mary W. Hall, and Ken Kennedy. A methodology for procedure cloning.
Comput. Lang., 19(2):105–117, 1993. doi:10.1016/0096-0551(93)90005-L.

10 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Robert M.
Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California, USA, January
1977, pages 238–252. ACM, 1977. doi:10.1145/512950.512973.

11 Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of generalized
type unions. In David B. Wortman, editor, Proceedings of an ACM Conference on Language
Design for Reliable Software (LDRS), Raleigh, North Carolina, USA, March 28-30, 1977,
pages 77–94. ACM, 1977. doi:10.1145/800022.808314.

12 Iulian Dragos and Martin Odersky. Compiling generics through user-directed type specialization.
In Ian Rogers, editor, Proceedings of the 4th workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems, ICOOOLPS 2009,
Genova, Italy, July 6, 2009, pages 42–47. ACM, 2009. doi:10.1145/1565824.1565830.

13 Matt D’Souza, James You, Ondrej Lhoták, and Aleksandar Prokopec. TASTyTruffle:
Just-in-time specialization of parametric polymorphism. Proc. ACM Program. Lang.,
7(OOPSLA2):1561–1588, 2023. doi:10.1145/3622853.

14 Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–4, 1981.
doi:10.1145/322234.322235.

15 Olivier Flückiger, Guido Chari, Ming-Ho Yee, Jan Jecmen, Jakob Hain, and Jan Vitek.
Contextual dispatch for function specialization. Proc. ACM Program. Lang., 4(OOPSLA):220:1–
220:24, 2020. doi:10.1145/3428288.

16 ECMA International. Standard ECMA-262 - ECMAScript language specification, June 2015.
6th edition. URL: http://www.ecma-international.org/ecma-262/6.0/.

17 Richard Kelsey, William D. Clinger, and Jonathan Rees. Revised5 report on the algorithmic
language Scheme. ACM SIGPLAN Notices, 33(9):26–76, 1998. doi:10.1145/290229.290234.

18 David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon, and Hans-
peter Mössenböck. Dominance-based duplication simulation (DBDS): code duplication to
enable compiler optimizations. In Jens Knoop, Markus Schordan, Teresa Johnson, and Michael
F. P. O’Boyle, editors, Proceedings of the 2018 International Symposium on Code Generation
and Optimization, CGO 2018, Vösendorf / Vienna, Austria, February 24-28, 2018, pages
126–137. ACM, 2018. doi:10.1145/3168811.

19 Manuel Serrano. Bigloo. http://www-sop.inria.fr/indes/fp/Bigloo/, 2024.
20 Marc Feeley. Gambit. https://gambitscheme.org, 2024.
21 Meetesh Kalpesh Mehta, Sebastián Krynski, Hugo Musso Gualandi, Manas Thakur, and Jan

Vitek. Reusing just-in-time compiled code. Proc. ACM Program. Lang., 7(OOPSLA2):1176–
1197, 2023. doi:10.1145/3622839.

22 Olivier Melançon, Marc Feeley, and Manuel Serrano. An executable semantics for faster
development of optimizing Python compilers. In João Saraiva, Thomas Degueule, and
Elizabeth Scott, editors, Proceedings of the 16th ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2023, Cascais, Portugal, October 23-24, 2023, pages
15–28. ACM, 2023. doi:10.1145/3623476.3623529.

https://doi.org/10.1145/3486606.3486781
https://doi.org/10.1145/3617651.3622982
https://doi.org/10.1145/3617651.3622982
https://doi.org/10.1016/0096-0551(93)90005-L
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/1565824.1565830
https://doi.org/10.1145/3622853
https://doi.org/10.1145/322234.322235
https://doi.org/10.1145/3428288
http://www.ecma-international.org/ecma-262/6.0/
https://doi.org/10.1145/290229.290234
https://doi.org/10.1145/3168811
http://www-sop.inria.fr/indes/fp/Bigloo/
https://gambitscheme.org
https://doi.org/10.1145/3622839
https://doi.org/10.1145/3623476.3623529

O. Melançon, M. Feeley, and M. Serrano 28:27

23 Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to Interval Analysis.
SIAM, 2009. doi:10.1137/1.9780898717716.

24 Frank Mueller and David B. Whalley. Avoiding conditional branches by code replication. In
David W. Wall, editor, Proceedings of the ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation (PLDI), La Jolla, California, USA, June 18-21, 1995,
pages 56–66. ACM, 1995. doi:10.1145/207110.207116.

25 PLT Inc. Racket. https://racket-lang.org/, 2024.
26 R. Kent Dybvig. Chez Scheme. https://www.scheme.com/, 2024.
27 Baptiste Saleil and Marc Feeley. Interprocedural specialization of higher-order dynamic

languages without static analysis. In Peter Müller, editor, 31st European Conference on
Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain, volume 74
of LIPIcs, pages 23:1–23:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPICS.ECOOP.2017.23.

28 Baptiste Saleil and Marc Feeley. Building JIT compilers for dynamic languages with low
development effort. In Stephen Kell and Stefan Marr, editors, Proceedings of the 10th
ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages,
VMIL@SPLASH 2018, Boston, MA, USA, November 4, 2018, pages 36–46. ACM, 2018.
doi:10.1145/3281287.3281294.

29 Manuel Serrano. JavaScript AOT compilation. In Tim Felgentreff, editor, Proceedings of the
14th ACM SIGPLAN International Symposium on Dynamic Languages, DLS 2018, Boston,
MA, USA, November 6, 2018, pages 50–63. ACM, 2018. doi:10.1145/3276945.3276950.

30 Manuel Serrano. Of JavaScript AOT compilation performance. Proc. ACM Program. Lang.,
5(ICFP):1–30, 2021. doi:10.1145/3473575.

31 Manuel Serrano and Marc Feeley. Property caches revisited. In José Nelson Amaral and
Milind Kulkarni, editors, Proceedings of the 28th International Conference on Compiler
Construction, CC 2019, Washington, DC, USA, February 16-17, 2019, pages 99–110. ACM,
2019. doi:10.1145/3302516.3307344.

32 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of Typed
Scheme. In George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San
Francisco, California, USA, January 7-12, 2008, pages 395–406. ACM, 2008. doi:10.1145/
1328438.1328486.

33 Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In Paul
Hudak and Stephanie Weirich, editors, Proceeding of the 15th ACM SIGPLAN international
conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA, September
27-29, 2010, pages 117–128. ACM, 2010. doi:10.1145/1863543.1863561.

ECOOP 2024

https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1145/207110.207116
https://racket-lang.org/
https://www.scheme.com/
https://doi.org/10.4230/LIPICS.ECOOP.2017.23
https://doi.org/10.4230/LIPICS.ECOOP.2017.23
https://doi.org/10.1145/3281287.3281294
https://doi.org/10.1145/3276945.3276950
https://doi.org/10.1145/3473575
https://doi.org/10.1145/3302516.3307344
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1863543.1863561

	1 Introduction
	2 The Static BBV Algorithm
	2.1 SBBV by Example
	2.2 The Algorithm

	3 Improved Specializations
	3.1 Variable Aliasing
	3.2 Specialization of Arithmetic Operations
	3.3 Vector Support

	4 Experiments
	4.1 Benchmark Programs
	4.2 Counting Dynamic Checks
	4.3 Merge Selection
	4.4 Results
	4.4.1 Dynamic Checks
	4.4.2 Program Size
	4.4.3 Execution Time
	4.4.4 Compilation Time

	4.5 Putting the Results in Context

	5 Related Work
	6 Conclusion

