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Abstract
Tensors are multi-dimensional data structures that can represent the data processed by machine
learning tasks. Tensor programs tend to be short and readable, and they can leverage libraries and
frameworks such as TensorFlow and PyTorch, as well as modern hardware such as GPUs and TPUs.
However, tensor programs also tend to obscure shape information, which can cause shape errors
that are difficult to find. Such shape errors can be avoided by a combination of shape annotations
and shape analysis, but such annotations are burdensome to come up with manually.

In this paper, we use gradual typing to reduce the barrier of entry. Gradual typing offers a way
to incrementally introduce type annotations into programs. From there, we focus on tool support
for type migration, which is a concept that closely models code-annotation tasks and allows us to do
shape reasoning and utilize it for different purposes. We develop a comprehensive gradual typing
theory to reason about tensor shapes. We then ask three fundamental questions about a gradually
typed tensor program. (1) Does the program have a static migration? (2) Given a program and some
arithmetic constraints on shapes, can we migrate the program according to the constraints? (3) Can
we eliminate branches that depend on shapes? We develop novel tools to address the three problems.
For the third problem, there are currently two PyTorch tools that aim to eliminate branches. They
do so by eliminating them for just a single input. Our tool is the first to eliminate branches for
an infinite class of inputs, using static shape information. Our tools help prevent bugs, alleviate
the burden on the programmer of annotating the program, and improves the process of program
transformation.
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1 Introduction

Multidimensional data structures are a common abstraction in modern machine learning
frameworks such as PyTorch [13], TensorFlow [1], and JAX [5]. A significant portion of
programs written using these frameworks involve transformations on tensors. Tensors in this
setting are n-dimensional arrays. A tensor is characterized by its rank and shape. The rank
is the number of dimensions. For example, a matrix is two-dimensional; hence it is a rank-2
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29:2 Generalizing Shape Analysis with Gradual Types

tensor. The shape captures the lengths of all axes of the tensor. For example, in a 2 × 3
matrix, the length of the first axis is 2 and the length of the second axis is 3; hence its shape
is (2, 3).

Programming with tensors provides the programmer with high level and easy to understand
constructs. Furthermore, tensors can utilize modern hardware such as GPUs and TPUs for
parallelization. For those reasons, programming with tensors is preferred over programming
with scalars and nested loops.

Tensors in programming languages present the challenge that their shapes are hard to
track. Modern machine learning frameworks support a plethora of operations on tensors,
with complex shape rules. Addition for example, typically supports broadcasting, which is a
mechanism that allows us to add tensors of different shapes, which is not intuitive. Complex
shape rules make shapes hard to determine in programs, because shape information rarely
explicitly appears in them. As a result, shape errors occur frequently [31].

When not caught statically, shape errors will appear at runtime, which is undesirable
because we would only know about the error when the wrong operation is finally invoked on
concrete runtime values. Tensor computations are costly and a program may take a long
time to run before finally crashing with an error. Additionally, some shape errors occur only
for specific input shapes.

The ability to reason about shapes is useful in various contexts in the machine learning area.
It can prevent programmers from making mistakes and since programmers routinely transform
machine learning programs [17], shape reasoning can also help program transformation tools
to make valid program transformations because program transformations may depend on
shape information.

Users often add asserts or comments to help them reason about shapes. These tasks
have a high cognitive load on users, especially when they are dealing with complex tensor
operations. Shape asserts present even further challenges; they can manifest in the form of
branches on program shapes. We observed this pattern on various transformer benchmarks
[30]. Thus, in that pattern, the result of a branch depends on the shape of the program
input, so the branch result can vary over different inputs. In machine learning programs,
branches can be undesirable because they limit the back-ends a program can be run on, such
backends include TensorRT and XLA. The reason control-flow is undesirable is it complicates
fix-point analysis, particularly in shape propagation [17]. In practice, various tools handle
this challenge in different ways. Some tools reject such programs entirely while other tools
run the program on a single input to eliminate branches. Running a program on a single
input means that branch elimination is correct for just one input, which is an unsatisfactory
solution.

Aiming to prevent the need for ad-hoc shape asserts, entire systems have been build to
detect shape errors such as [15] and [24]. However, these systems are too specific. They
lack a general theoretical foundation that enables their solution to be adapted to a variety
of contexts, including incorporating their logic into compilers and program transformation
tools.

A fundamental approach towards shape analysis is designing a type system that supports
reasoning about shapes. In that approach, shapes are type annotations. Traditionally, types
have been used to solve similar problems in the area of programming languages. A fully
static type system with tensor shapes [20] has limitations. First, a static type system may
need to be elaborate in order to capture the complexities of machine learning programs,
which are typically written in permissive languages such as Python. As a result, refinement
or polymorphic types may be needed. Second, a static type system has a high barrier of entry
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because it requires the user to come up with non-trivial type annotations in advance. Third,
many machine learning programs are in Python, so they are usually only partially typed.
Therefore, fully typed programs are not readily available, which prevents this approach from
being backwards-compatible.

A common way to circumvent the requirement of having fully typed programs is to use
gradual types. In a gradually typed system, type annotations are not needed for the program
to compile, when a compiler does type erasure. However, for a gradually typed system to be
widely usable, it should enable principled yet practical tool support. Previous work such as
[9] designed a gradually typed system for shapes but it is so powerful that practical, elaborate
tool support may be hard to obtain. We believe that the key to shape analysis with gradual
types is to balance between (1) the expressiveness of a gradually typed system and (2) the
ease of tool support in that system.

We show that gradual types can help us tackle shape-related problems in a principled and
unified way. We introduce a gradual typing system that reasons about shapes and enables
tool support.

We distill the challenge of shape analysis into three key problems that we can ask of every
gradually typed tensor program, and we introduce a general theory to solve all of them:

Q(1): Static migration: Does the program have a static migration?
Q(2): Migration under arithmetic constraints: Given a program and some arithmetic
constraints on shapes, can we migrate the program according to the constraints?
Q(3): Branch elimination: Can we eliminate branches that depend on shapes?

We use PyTorch as the setting for our tool design and evaluation, though our approach
is more generally applicable. For Q(1) and Q(2), PyTorch does not currently have any
comparable tools, so our tools for those challenges do something new in the PyTorch setting.

For Q(3), we incorporate our shape reasoning into two existing PyTorch tools that aim
to eliminate branches from PyTorch programs. After augmenting both tools with our logic,
we are able to improve the performance and accuracy of both tools as we will describe below.
Our contributions can be summarized as follows:
1. A gradually typed tensor calculus that satisfies static gradual criteria [23].
2. A formal characterization of Q(1), Q(2) and Q(3) and their solutions.
3. A demonstration of how our approach works for Q(1) and Q(2) on four benchmarks.
4. For Q(3), a comparison on six benchmarks, against HuggingFace Tracer (HFTracer) [30],

a PyTorch tool. HFTracer eliminates all branches based on a single input, while we
eliminate all branches based on infinite classes of inputs. We use constraints to represent
infinite classes of inputs.

5. For Q(3), a comparison on five benchmarks against TorchDynamo [2], a PyTorch tool.
TorchDynamo eliminates 0% of the branches in these benchmarks, while we eliminate
branches by 40% to 100% on infinite classes of inputs.

The full version has Appendices A–F with definitions and proofs.

2 Three Migration Problems

In this section, we introduce our type system informally, and we postpone the formal details
to Section 3. A tensor type in our system is of the form TensorType(d1, . . . , dn) where
d1, . . . , dn are dimensions.

Every gradually typed system has a type Dyn, which represents the absence of static type
information. In our system, Dyn can appear as a dimension, in which case the dimension is
unknown. Dyn can also appear as a tensor annotation, in which case even the rank of the
tensor is unknown.

ECOOP 2024



29:4 Generalizing Shape Analysis with Gradual Types

In a gradual type system, a precision relation refers to the replacement of some of the
occurrences of Dyn with static types. Dyn is the least precise type because it contains no type
information. TensorType(1, 2, 3) and TensorType(1, 2) are unrelated by the precision relation
because we cannot go from one type to another by replacing Dyn occurrences with more
informative types, while TensorType(Dyn, 2) is less precise than TensorType(1, 2) because
we can replace the Dyn in
TensorType(Dyn, 2) with 1 to get TensorType(1, 2). This relation extends to programs.
Program A is less precise than program B if we can replace some occurrences of Dyn in
program A to get to program B. Intuitively, program B is more static than program A.
Precision gives rise to the migration space [12]. Given a well-typed program P , its migration
space is the set of well-typed programs that are at least as precise as P .

Intuitively, the migration space captures all ways of annotating a gradually typed program
more precisely. Those possibilities form a partially ordered set, and our goal is to help the
programmer find the migration paths they are looking for. With that in mind, let us look at
examples of how reasoning about the migration space is beneficial for solving key problems
about the shapes in a gradually typed program. Specifically, in Section 2, we will see two
examples about Q(1) and Q(2) respectively, and in Section 2, we will see an example about
Q(3).

For an example of static migration, consider Listing 1 which has a type error.

1 class ConvExample(torch.nn.Module):
2 def __init__(self):
3 super(BasicBlock, self).__init__()
4 self.conv1 = torch.nn.Conv2d(in_channels=2, ..)
5 self.conv2 = torch.nn.Conv2d(in_channels=4, ..)
6

7 def forward(self, x: TensorType([Dyn, Dyn])):
8 self.conv1(x)
9 return self.conv2(x)

Listing 1 Ill-typed convolution.

In line 7, x is annotated with TensorType([Dyn, Dyn]). This is a typical gradual typing
annotation which indicates that x is a rank-2 tensor. The annotation does not specify what
the dimensions are. In line 8, we are applying a convolution to x. Intuitively, convolution is
a variant of matrix multiplication; neural networks use it to extract features from images.
According to PyTorch’s documentation, for the convolution to succeed, x cannot be rank-2.
Thus, the type error stems from a wrong type annotation. The migration space of this
program can easily inform us that the program is ill-typed, because the space will be empty.
The reason for that is that the migration space of a well-typed program should contain at
least one element, which is the program itself. A tool that can reason about the migration
space can easily catch this bug in a single step.

Let us fix this bug by replacing the wrong type annotation with a correct one. In Listing 2,
we change x’s annotation from a rank-2 annotation to a rank-4 annotation: TensorType([Dyn,
Dyn, Dyn, Dyn], which is correct. This program compiles, but it contains a more subtle
bug. Let us look closely at the code to understand why.

In line 4, we initialize a field, self.conv1, representing a convolution, torch.nn.Conv2d,
which takes various parameters. The parameter that’s relevant to our point is called
in_channels and it is set to 2. In line 5, we are initializing another field, self.conv2, but
this time, we set the in_channels to 4. In line 7, we have a function that takes a variable x
and calls both convolutions on it in lines 8 and 9. To understand why this program contains
a bug, we must ask: how does the value of in_channels relate to x’s shape? PyTorch’s
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documentation [14] states that in the simplest case, the input to a convolution has the shape
(N, in_channels, H,W ). Indeed, in line 7, x is annotated with TensorType([Dyn, Dyn,
Dyn, Dyn], a typical gradual typing annotation indicating that x is a rank-4 tensor. The
annotation does not state what the dimensions are, but it is still consistent with the shape
stated in the documentation. Notice however that x’s second dimension should match the
value of in_channels, while we have two values for in_channels that do not match. This
mismatch will cause the program to crash if it ever receives any input, but not before. Our
key questions can help us discover the bug statically across all inputs.

1 class ConvExample(torch.nn.Module):
2 def __init__(self):
3 super(BasicBlock, self).__init__()
4 self.conv1 = torch.nn.Conv2d(in_channels=2, ...)
5 self.conv2 = torch.nn.Conv2d(in_channels=4, ...)
6

7 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):
8 self.conv1(x)
9 return self.conv2(x)

Listing 2 Gradually typed convolution.

By determining whether we can replace all the Dyn dimensions with numbers (which
is the answer to Q(1) from our key questions), we can discover that it is impossible to
assign a number to the second dimension of x and thus detect the error before running the
program. More generally, the absence of a static typing may reveal that a program cannot
run successfully on any input.

How can we benefit from the migration space to answer Q(1) and thus detect that this
program cannot be statically typed? The migration space for this program contains programs
where x is annotated to be a rank-4 tensor. A tool that can reason about the migration
space can then take an extra constraint on the second dimension of x. The constraint should
say that the second dimension must be a number. This constraint will narrow down the
migration space to an empty set. The reason is that there is no such well-typed program.
Therefore, we can conclude that the program cannot be statically typed because the second
dimension cannot be assigned a number.

Let us fix the bug. One way to fix the bug is by removing self.conv1 from the program.
We get the program in Listing 3.

1 class ConvExample(torch.nn.Module):
2 def __init__(self):
3 super(BasicBlock, self).__init__()
4 self.conv2 = torch.nn.Conv2d(in_channels=4, ..)
5 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):
6 return self.conv2(x)

Listing 3 Gradually typed convolution.

The program can run to completion and there can be various correct ways to annotate it.
The current annotation for the variable x is that it is a tensor with four dimensions, but
each dimension is denoted by Dyn, so the values of the dimensions are unknown. Suppose we
want to specify constraints on those dimensions and determine if there are valid migrations
that satisfy those constraints. This would be useful, not just for the user, but for compilers,
since they can use those constraints to optimize for resources.

We can require some of the dimensions of x to be static and then provide arithmetic
constraints on each of them. In this example, let us require all dimensions to be static. A
tool can accept four constraints indicating this requirement. Then it can accept constraints
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29:6 Generalizing Shape Analysis with Gradual Types

that specify ranges on those dimensions. For example, the first dimension could be between
5 and 20. The second dimension can only have one possible value, which is 4. So it is enough
to have a constraint requiring that dimension to be a number. The third dimension could
also be between 5 and 20, while the fourth dimension could be between 2 and 10.

By giving these constraints as input to a tool, we are constraining the space to only the
subspace that satisfies the constraints. A tool may find that this subspace indeed contains
programs and outputs one of them. As a result, we may get the program in Listing 4. As
shown, x has now been statically annotated with TensorType([19, 4, 19, 9]).

1 class ConvExample(torch.nn.Module):
2 def __init__(self):
3 super(BasicBlock, self).__init__()
4 self.conv2 = torch.nn.Conv2d(in_channels=4, ..)
5 def forward(self, x: TensorType([19, 4, 19, 9])):
6 return self.conv2(x)

Listing 4 Statically typed convolution.

1 class ConvControlFlow(torch.nn.Module):
2 def __init__(self):
3 super().__init__()
4 self.conv = torch.nn.Conv2d(
5 in_channels=512, out_channels=512, kernel_size=3)
6

7 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):
8 if self.conv(x).dim() == 4:
9 return torch.relu(x)

10 else:
11 return torch.nn.Dropout(x)

Listing 5 Branch elimination.

The program in Listing 5 can run to completion, and interestingly it contains control-flow
in the form of a branch. We want to eliminate this branch. We refer to eliminating branches
from a program by the term branch elimination. Eliminating branches enables programs to
run on back-ends where branches are undesirable. For example, HFTracer runs a program
on a single input and computes the result of the branch and eliminates it accordingly.
While the result of a branch could be fixed for all program inputs, the result may also vary.
Thus, running a program on just a single input to eliminate a branch yields unsatisfactory
branch elimination. We enable better branch elimination by finding all inputs for which a
branch evaluates to a given result by reasoning about the program statically. We provide
a mechanism to denote the set of inputs for which a branch evaluates to the given result.
Notice that we reason about the static information given. Thus, if a variable has type Dyn,
we optimistically assume that the program is well-typed and that the value for that variable
will have the appropriate type at runtime.

The program in Listing 5 contains a condition that depends on shape information. This
is a common situation, where ad-hoc shape-checks are inserted in a program to reason about
its shapes. Line 8 has function that takes a variable x and applies a convolution to it, with
self.conv(x), and a condition that checks if the rank of self.conv(x) is 4. Since x is
annotated as a rank-4 tensor on line 7, and convolution preserves the rank, self.conv(x)
must also be rank-4. So the condition must always be true under the information given by
x’s type annotation. We should be able to prove that the condition in line 8 always returns
true without receiving any input for the program, by inspecting all the valid types that
the program could possibly have. The migration space is useful for this analysis because it
captures all possible, valid type annotations for a program.
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Thus, under the convolution type rules, if self.conv(x).dim() == 4 evaluates to true,
then x is also rank-4, which is consistent with x’s current annotation.

In contrast, if self.conv(x).dim() == 4 evaluates to false, i.e self.conv(x).dim()
!= 4 is true, then this means that x is not rank-4. However, the migration space of a
program can never include inconsistent ranks for a variable. Therefore, it is impossible to
have self.conv(x).dim() != 4, while also having that x is rank-4. A tool that reasons
about the migration space as well as arbitrary predicates can make this conclusion. In this
example, we can make a definitive conclusion about the result of this condition and we can
re-write our program accordingly, as shown in Listing 6. We will expand on and formalize
this idea in Section 5. In particular, we will detail how we reason about the migration space
in the presence of branches, and explain why our approach works.

1 class ConvControlFlow(torch.nn.Module):
2 def __init__(self):
3 super().__init__()
4 self.conv = torch.nn.Conv2d(
5 in_channels=512, out_channels=512, kernel_size=3)
6

7 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):
8 return torch.relu(x)

Listing 6 Branch elimination.

3 The Gradual Tensor Calculus

In this section, we describe our design choices, core calculus, and type system, and we prove
that our type system satisfy gradual typing criteria.

Our design choices are guided by enabling four key requirements: (1) modularity and
backwards compatibility, (2) tool support, (3) expressiveness, and (4) minimality of our
language. We have made these four choices in the context of tool support for PyTorch, but
they can be extended to other frameworks. Here, we outline those design choices.

First, we require our system to support modularity and backwards compatibility for
programs. A gradually typed system suits our needs because it supports partial type
annotations. One of the implications of this support is that gradually typed programs can
compile with any amount of type annotations. In a gradually typed system, a missing type
is represented by the Dyn type.

The Dyn type can sometimes be assigned to a variable that has been used in different
parts of the program with different, possibly inconsistent types. This type is useful when the
underlying static type system is not flexible enough to fully type that program. For example,
we may have a program that takes a batch of images with a dynamic batch size, as well
as dynamic sizes, but with a fixed number of channels. In this case, a possible type would
be TensorType(Dyn, 3, Dyn, Dyn), which indicates a batch of images, where the batch size is
dynamic and the sizes are dynamic but the number of channels, which is 3, is fixed. Another
example is that a variable could be assigned a rank-2 tensor at one point in the program,
then a rank-3 tensor at a different point. A suitable type for that variable could simply
be Dyn. In both examples, if we did not have the Dyn type, we would need more complex
annotations. The Dyn type allows the gradual type checker to admit programs statically,
and determine how to handle variables with Dyn types at runtime. The flexibility of gradual
types stems from the consistency relation, which is symmetric and reflexive but not transitive.
This relation allows a gradual type checker to statically admit programs in the absence of
type information.

ECOOP 2024



29:8 Generalizing Shape Analysis with Gradual Types

(Program) p ::= decl∗ return e

(Declaration) decl ::= x : τ
(Expression) e ::= x | reshape(e, τ) | Conv2D(cin, cout, κ, e) | add(e1, e2)

(Integer Tuple) κ ::= (c∗)
(Const) c ::= ⟨Nat⟩

(Tensor Type) t, τ ::= Dyn | TensorType([d1, . . . , dn])
(Static Tensor Type) S, T ::= TensorType([D1, . . . , Dn])

(Dimension Type) d, σ ::= Dyn | D
(Dimension) U,D ::= ⟨Nat⟩

x /∈ dom(Σ)
Σ, x →∗ Σ, 0, 1 (V ar Fail) x : R ∈ Σ

Σ, x →∗ Σ, R, 0 (V ar)

Σ, e →∗ Σ, R, 1
Σ, reshape(e, TensorType(d1, . . . , dn)) →∗ Σ, R, 1

(Reshape Fail)

Σ, e →∗ Σ, R, 1
Σ, Conv2D(cin, cout, κ, e) →∗ Σ, R, 1

(Conv2D Fail)

Σ, e1 →∗ Σ, R1, 1 ∨ Σ, e2 →∗ Σ, R2, 1
Σ, add(e1, e2) →∗ Σ, R2, 1

(Add Fail)

Σ, e →∗ σ,R, 0
Σ, reshape(e, TensorType(d1, . . . , dn)) →∗ Σ,Reshape(R, (d1, . . . , dn))

(Reshape)

Σ, e →∗ Σ, R, 0
Σ, Conv2D(cin, cout, κ, e) →∗ Σ,Conv2D(cin, cout, κ,R)

(Conv)

Σ, e1 →∗ Σ, R1, 0 Σ, e2 →∗ Σ, R2, 0
Σ, add(e1, e2) →∗ Σ,Add(R1, R2)

(Add)

Figure 1 Gradual tensor calculus, syntax and semantics.

Second, we require tool support. We design a simple type system for a core language to
enable us to define and solve problems for tool support in a tractable way. Tool support is
tractable because we define type migration syntactically. We base our approach on capturing
the migration space by extending the constraint-based approach of [12] to solve our three
key questions.

Third, we require our system to be expressive enough to capture non-trivial programs. Our
type system is more expressive than PyTorch’s existing type-system, which does not reason
about dimensions. Our language consists of a set of declarations followed by an expression.
This structure is a convenient representation for the PyTorch neural network models we
encountered, which mainly consisted of a function which takes a set of parameters. In the
function body are tensor operations applied on those parameters. This calculus structure is
inspired by the calculus from [18]. Rink highlighted that many DSLs can be mapped to their
language. Besides adapting the structure of that calculus, we choose three core operations
that present different challenges for tool support, and then extend our support to 50 PyTorch
operations.
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Fourth, we require our language to be minimal so we can focus on our core problems.
First, we do not introduce branches to our core grammar since, in practice, all tools on which
we ran our experiments either do not accept programs with branches or aim to eliminate
branches. As [17] noted, many non-trivial tensor programs do not contain branches or
statements. In Section 5 we extend the core language with branches and we show how to
eliminate them.

Second, we do not consider runtime checks to support gradual types. Those checks
are often a bottleneck for the performance of gradually typed programs [25, 8]. There
has been extensive research to alleviate performance issues by weakening these checks. As
shown by [7], the notion of soundness in gradual types is not an all-or-nothing concept. [7]
discuss three notions of soundness at different levels of strength and how they relate to
performance: higher-order embedding of [26], first-order embedding, as seen in Reticulated
Python [28] and erasure embedding, as seen in TypeScript [4]. Similar to [18] and [17],
we observe that a language free from higher-order constructs represents a large subset of
programs that are written in the machine learning area. As such, runtime errors are not as
interesting when compared to those that arise in languages with constructs such as branches
and lambda-abstraction. Furthermore, runtime checks impose a computation cost on already
costly tensor computations. A key goal of tensor programming is high performance so adding
run-time checks seems undesirable. Thus, we leave out runtime aspects in this paper.

Figure 1 shows our core calculus. A program consists of a list of declarations followed
by a return statement that evaluates an expression. We use ϵ to denote the empty list of
declarations. The program takes its input via those declarations. The dynamic type is
denoted by Dyn. A dimension can be Dyn, and a tensor can also be Dyn. A tensor is denoted
by the constructor TensorType(σ1, . . . , σn) where σ1, . . . , σn are dimensions. However, if we
denote a dimension by U or D, it means the dimension is a number and cannot be Dyn. Our
language has four kinds of expressions. A variable x refers to one of the declared variables.
The expression add(e1, e2) adds two tensors e1 and e2. The expression reshape(e, τ) takes an
expression e and a shape τ and reshapes e to a new tensor of shape τ if possible. Reshaping
can be thought of as a re-arrangement of a tensor’s elements. That requires the initial
tensor to have the same number of elements as the reshaped tensor. We require that τ
can have a maximum of one Dyn dimension. Finally the expression Conv2D(cin, cout, κ, e)
applies a convolution to e, given a number representing the input channel cin, a number
representing the output channel cout, and a pair of numbers representing the kernel κ. For
example, in Listing 2, we had self.conv1(x), which in our calculus can be expressed as
Conv2D(2, 2, (2, 2), x). The full version of convolution in PyTorch has more parameters. We
have accounted for those parameters in our implementation, but because they create no new
problems for us, our quest for minimality led us to leaving them out.

The operational semantics in Figure 1 evaluates an expression in an environment Σ that
maps each declared variable to a tensor constant. Specifically, if e is an expression, R is
a tensor constant, and E an error state (0 for success, 1 for failure), then the judgment
Σ, e →∗ R,E means that e evaluates to R in error state E.

The semantics uses the helper functions Add, Reshape, and Conv2D that each produces
both a tensor constant and an error state. In Appendix C, we give full details of those
functions and we state their key properties. Here we summarize what they do. The function
Add extracts shapes from T1 and T2 and pads them such that they match, and then checks if
the tensors are broadcastable based on the updated shapes. If they are not broadcastable, it
returns the empty tensor with E = 1. Otherwise, it expands the tensors T1 and T2 according
to the broadcasting rules of PyTorch that we omit here. It initializes a resulting tensor with
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Consistency
τ ∼ τ (c-refl-t) d ∼ d (c-refl-d) d ∼ Dyn (d-refl-dyn) τ ∼ Dyn (t-refl-dyn)

t ∼ τ
τ ∼ t

(c-sym-t) d ∼ σ
σ ∼ d

(c-sym-d)

∀i ∈ {1, . . . , n} : di ∼ d′
i

TensorType(d1, . . . , dn) ∼ TensorType(d′
1, . . . , d

′
n)

(c-tensor)

Type Precision

τ ⊑ τ (refl-t) d ⊑ d (c-refl-d) Dyn ⊑ d (refl-dyn-1) Dyn ⊑ τ (refl-dyn-2)
∀i ∈ {1, . . . , n} : di ⊑ d′

i

TensorType(d1, . . . , dn) ⊑ TensorType(d′
1, . . . , d

′
n)

(p-tensor)

Program and Expression Precision

∀i ∈ {1, . . . , n} : decl′
i ⊑ decli e′ ⊑ e

decl′
1, . . . , decl′

n return e′ ⊑ decl1, . . . , decln return e
(p-prog) τ ′ ⊑ τ

x : τ ′ ⊑ x : τ
(p-decl)

e ⊑ e (p-refl)
Matching

TensorType(τ1, . . . , τn) �n TensorType(τ1, . . . , τn)
Dyn �n TensorType(l) where l = [Dyn, . . . , Dyn] and |l| = n

Static context formation

ϵ ⊢ ∅
(s-empty) decl∗ ⊢ Γ x /∈ dom(Γ)

decl∗ x : τ ⊢ Γ, x : τ (s-var)

Figure 2 Auxiliary functions.

the broadcasted dimensions and perform element-wise addition between the broadcasted
tensors and return that tensor with E = 0. The function Reshape performs dimension
checks to ensure that reshaping is possible, returning the empty tensor and E = 1 if the
checks fails. Otherwise, it performs reshaping and returns the reshaped tensor with E = 0.
The function Conv2D extracts the dimensions of the input tensor I, as well the dimensions
for the kernel κ and uses them to determine the size of the output tensor. It then performs
convolution and populates the output tensor one element at a time and return the updated
tensor along with E = 0.

The semantics satisfies the following theorem, which says that in an environment, an
expression evaluates to a tensor but may end with failure.

▶ Theorem 1. ∀Σ, e : ∃ a tensor constant R : ∃E ∈ {0, 1} : Σ, e →∗ R,E.

Figure 2 contains gradual typing relations that are used in our gradual typechecking, as
well as the static context formation rules. Those relations allow the typechecker to reason
about the Dyn type. Matching, denoted by �, and consistency, denoted by ∼, are standard
in gradual typing and are lifted from equality in the static counter part of the system.
Matching and consistency are both weaker than equality because they account for absent
type information. Thus, if some type information is missing, matching and consistency
apply. Matching is a relation that pattern-matches two types. It is useful for arrow types
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decl∗ ⊢ Γ Γ ⊢ e : τ
⊢ decl∗ return e ok

(ok-prog) x : τ ∈ Γ
Γ ⊢ x : τ (t-var)

Γ ⊢ e : TensorType(D1, . . . , Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢ reshape(e, TensorType(U1, . . . , Um)) : TensorType(U1, . . . , Um)
(t-reshape-s)

Γ ⊢ e : TensorType(σ1, . . . , σm)
m∏
1
σi mod

n∏
1
di = 0 ∨

n∏
1
di mod

m∏
1
σi = 0 ∀di, σi ̸= Dyn and

Dyn occurs exactly once in d1, . . . ., dm, σ1, . . . , σn, or
Dyn occurs more than once in d1, . . . ., dm,

Γ ⊢ reshape(e, TensorType(d1, . . . , dn)) : TensorType(d1, . . . , dn)
(t-reshape-g)

Γ ⊢ e : τ where either τ = Dyn, or τ = TensorType(σ1 . . . σn) and
Dyn occurs more than once with at least one occurrence in δ and σ1, . . . ., σm,

Γ ⊢ reshape(e, δ) : δ
(t-reshape)

Γ ⊢ e : t t�4 TensorType(σ1, σ2, σ3, σ4) τ = calc-conv(t, cout, κ) cin ∼ σ2

Γ ⊢ Conv2D(cin, cout, κ, e) : τ
(t-conv)

Γ ⊢ e1 : t1 Γ ⊢ e2 : t2 (τ1, τ2) = apply-broadcasting(t1, t2) τ1 ∼ τ2

Γ ⊢ add(e1, e2) : τ1 ⊔∗ τ2
(t-add)

Figure 3 Type rules.

in traditional type systems. Specifically, an arrow type t1 → t2 matches itself. Type Dyn
matches Dyn → Dyn. The ability to expand Dyn to become a function type Dyn → Dyn is
valid in gradual types because it allows the system to optimistically consider the type Dyn
to be Dyn → Dyn. We have adapted this definition to our system. First, we annotated
matching with a number n to denote the number of dimensions involved. So we have that
TensorType(τ1, . . . , τn) �n TensorType(τ1, . . . , τn) because any type matches itself. Similar
to how traditionally, Dyn�Dyn → Dyn, we have that Dyn�n TensorType(Dyn, . . . , Dyn), where
Dyn, . . . , Dyn are exactly n dimensions. Throughout this paper, we will only use matching
with i = 4 so we may use matching as � instead of �4. Consistency is a symmetric, reflexive,
and non-transitive relation that checks that two types are equal, up to the known parts
of the types. For example, the type Dyn contains no information, so it is consistent with
any type, while the dimensions 3 and 4 are inconsistent because they are unequal. Figure 2
contains the formal definitions for matching and consistency. The judgment decl∗ ⊢ Γ says
that from the declarations decl∗ we get the environment Γ. We do static context formation
with the rules (s-empty) and (s-var).

Figure 3 shows our type rules. We use shorthands that are defined in Appendix B. Let
us go over each type rule in detail. ok-prog and t-var are standard.

t-reshape-s is the static type rule for reshape. It models that for reshape to succeed, the
product of the dimensions of the input tensor shape must equal the product of dimensions of
the desired shape. t-reshape-g assumes we have one missing dimension. Here we are modeling
that PyTorch allows a programmer to leave one dimension as unknown (denoted by -1)
because the system can deduce the dimension at runtime, see https://pytorch.org/docs/
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stable/generated/torch.reshape.html. We can still determine if reshaping is possible
using the modulo operation instead of multiplication. In this approach, we admit a program
if we cannot prove it is ill-typed statically. t-reshape admits the expression if too many
dimensions are missing.

To maintain minimality, t-conv deals with only the rank-4 case of convolution. t-conv
expects a rank-4 tensor, so it uses matching (�4) to check the rank. Next, cin should be
equal to the second dimension of the input, so the rule uses a consistency (∼) check. Since
the output of a convolution should also be rank-4, then apply calc-conv which, given a
rank-4 input and the convolution parameters, computes the dimensions of the output shape.
If a dimension is Dyn, then the corresponding output dimension will also be Dyn.

Finally, t-add adds two dimensions. Unlike scalar addition, the types of the operands do
not have to be consistent. The reason is that broadcasting may take place. Broadcasting
is a mechanism that considers two tensors and matches their dimensions. Two tensors are
broadcastable if the following rules hold:
1. Each tensor has at least one dimension
2. When iterating over the dimension sizes, starting at the trailing dimension, the dimension

sizes must either be equal, one of them is 1, or one of them does not exist
That tensors involved in broadcasting do not actually get modified to represent the mod-
ified shapes. This implies that the input shapes are not always consistent. Instead, the
broadcasted result is only reflected in the output of the operation. Therefore, we have
defined apply-broadcasting to simulate broadcasting on the inputs and consider what the
types for these inputs would be, if broadcasting was to actually modify the inputs. In a
static type system, the types of the modified inputs should be equal for addition to succeed.
In gradual types, the types of the modified inputs should be consistent because equality
lifts to consistency. We accomplish these requirements in our type rule. In particular,
apply-broadcasting takes care of broadcasting the dimensions. Suppose that we are adding
a tensor of shape TensorType(Dyn, 2, Dyn) to a tensor of size TensorType(1, 2, 2). Then the
output must be TensorType(Dyn, 2, 2). The reason is that the first Dyn could be any number
as per the broadcasting rules. So we cannot assume its value. The last dimension; however,
must be 2 according to the rules. We have that:

apply-broadcasting(TensorType(Dyn, 2, Dyn), TensorType(1, 2, 2)) =
(TensorType(Dyn, 2, Dyn), TensorType(Dyn, 2, 2))

After simulating broadcasting, we may proceed as if we are dealing with regular addition.
In other words, we check that the modified dimensions are consistent and get the least upper
bound: TensorType(Dyn, 2, Dyn) ⊔ TensorType(Dyn, 2, 2) = TensorType(Dyn, 2, 2).

We will cover one last special case for addition. Simply applying the least upper bound
to the modified input types of addition is not general enough to cover the following case.
Suppose we are adding a tensor of shape Dyn to a tensor of shape TensorType(1, 2), then
we must output Dyn because the output type could be a range of possibilities. In this case,
apply-broadcasting does not modify the types because the tensor of shape Dyn could range
over many possibilities. We then apply our modified version of the least upper bound denoted
by ⊔∗, which behaves exactly like ⊔ except when one of the inputs is Dyn, where it returns
Dyn to get that: TensorType(1, 2) ⊔∗ Dyn = Dyn.

We prove that our type system satisfies the static criteria from [23]. First, we prove the
static gradual guarantee, which describes the structure of the migration space. Second, we
prove the conservative extension theorem, which shows that our gradual calculus subsumes
its static counter-part in Appendix A. This result is no coincidence: we first designed the

https://pytorch.org/docs/stable/generated/torch.reshape.html
https://pytorch.org/docs/stable/generated/torch.reshape.html
https://pytorch.org/docs/stable/generated/torch.reshape.html
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statically typed calculus in Appendix A and then we gradualized it according to [6]. We
denote a well-typed program in the statically typed tensor calculus by ⊢st p : ok. The full
definitions and proofs can be found in Appendix D.

▶ Theorem 2 (Monotonicity w.r.t precision). ∀p, p′ : if ⊢ p : ok ∧ p′ ⊑ p then ⊢ p′ : ok.

▶ Theorem 3 (Conservative Extension). For all static p, we have: ⊢st p : ok iff ⊢ p : ok

4 The Migration Problem as a constraint satisfiability problem

A migration is a more static, well-typed version of a program. We can define that P ′ is
a migration of P (which we write P ≤ P ′) iff (P ⊑ P ′ ∧ ⊢ P ′ : ok). Given P , we define
the set of migrations of P : Mig(P ) = {P ′ | P ≤ P ′}. Our goal is to use constraints to
capture the migration space. Every solution to our constraints for a program must map to a
corresponding migration for the same program. In other words, one satisfying assignment to
the constraints results in one migration.

Our approach involves defining constraints whose solutions are order-isomorphic with
the migration space. However, due to the arithmetic nature of our constraints, our solution
procedure uses an SMT solver to find a satisfying assignment, which would equate to finding
a migration. Later in this paper, we will show how to use this framework to answer our three
key questions.

We have two grammars of constraints, see Figure 4: one for source constraints and one
for target constraints. We will generate source constraints and then map them to target
constraints (as explained in Appendix E), and finally process the target constraints by an
SMT solver. Having two grammars is not strictly necessary, but it makes the constraint
generation process more tractable and simplifies the presentation. We can view the source
grammar as syntactic sugar for the target grammar.

Our source constraint grammar has fourteen forms of constraints, the most interesting
of which we will introduce here. A precision constraint is of the form τ ⊑ x. Here, x
indicates a type variable for the variable x from the program. Thus, x in the constraint
τ ⊑ x captures all types that are more precise than τ . Because we prioritize tractability of
the migration space, we set the upper bound of tensor ranks to 4, via a constraint of the form
|[[e]]| ≤ 4. We make this decision because all benchmarks we considered had only tensors with
ranks that are upper-bounded by this number. We also have consistency constraints of the
form D ∼ δ, ⟨e⟩ ∼ ⟨e⟩, matching constraints of the form [[e]] � TensorType(δ1, δ2, δ3, δ4), and
least upper bound constraints of the form ⟨e⟩ ⊔∗ ⟨e⟩. Those are gradual typing constraints
that we use to faithfully model our gradual typing rules. Our constraint grammar also
contains short-hands such as can-reshape([[e]], δ) and apply-broadcasting([[e]], [[e]]). Those
short-hands are good for representing the type rules as well. can-reshape expands to further
constraints which evaluate to true if [[e]] can be reshaped to δ. Similarly, when expanded,
apply-broadcasting([[e]], [[e]]) captures all possible ways to broadcast two types.

In our target constraint grammar, we use n to range over integer constants. We use v as a
meta variable that ranges over variables that, in turn, range over TensorType(list(ζ))∪{Dyn}
and we use ζ as a meta variable that ranges over variables that range over IntConst∪{Dyn}.
This grammar is useful for our constraint resolution process. In particular, the first step of
solving our constraints is to translate them to low-level constraints, drawn from our target
grammar, before feeding them to an SMT solver.

Since our constraints involve gradual types, let us describe how we encoded types so that
they can be understood by an SMT solver. Because we fixed the upper bound for tensor
ranks to be 4, we chose to encode tensor types as uninterpreted functions, which means
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(Source Constraints) ψ ::= ψ ∧ ψ | ψ ∨ ψ | True | [[x]] = x | [[e]] = τ | τ ⊑ x |
|[[e]]| ≤ 4 | D ∼ δ | ⟨e⟩ ∼ ⟨e⟩ |
[[e]] � TensorType(ζ1, ζ2, ζ3, ζ4) |
[[e]] = ⟨e⟩ ⊔∗ ⟨e⟩ | can-reshape([[e]], δ) |
[[e]] = calc-conv([[e]], cout, κ) |
⟨e⟩, ⟨e⟩ = apply-broadcasting([[e]], [[e]])

(Target Constraints) ψ ::= ψ ∧ ψ | ψ ∨ ψ | ¬ψ | True |
v = TensorType(ζ, . . . , ζ) |
v = Dyn | v = v | ζ = n | ζ = Dyn | ζ = ζ |
ζ = ζ · n+ n | (ζ1 · . . . · ζm) mod (ζ ′

1 · . . . · ζ ′
n) = 0

Figure 4 Source constraints and target constraints.

that we have a constructor for each of our ranks, of the form TensorType1, TensorType2,
TensorType3, and TensorType4. Each of the functions take a list of dimensions. Moving
on to the dimensions, we have that dimensions are either Dyn or natural numbers. We can
easily represent natural numbers in an SMT solver but we must also represent Dyn. One way
to encode a Dyn dimension d is as a pair (d1, d2). If d1 = 0, then d = Dyn. Otherwise, d is a
number, and its value is in d2. Let us formalize the constraint generation process next.

From p, we generate constraints Gen(p) as follows. Let p have the form decl∗ return e.
Let X be the set of declaration-variables x occurring in e, and let Y be a set of variables
disjoint from X consisting of a variable [[e′]] for every occurrence of the subterm e′ in e. Let
Z be a set of variables disjoint from X and Y consisting of a variable ⟨e1⟩, ⟨e2⟩ for every
occurrence of the subterm add(e1, e2) in e. Finally, let V be a set of variables disjoint from
X, Y , and Z consisting of dimension variables ζ. The notations [[e]] and ⟨e⟩ are ambiguous
because there may be more than one occurrence of some subterm e′ in e or some subterm e′′

in e. However, it will always be clear from context which occurrence is meant. For every
occurrence of ζ, it is implicit that we have a constraint 0 ≤ ζ to ensure that the solver assigns
a dimension in N. We omit writing this explicitly for simplicity. With that in mind, we
generate the constraints in Figure 5. Let us go over the rules in Figure 5. The rules use
judgments of the form ⊢ x : τ : ψ for declarations, and it uses judgments of the form ⊢ e : ψ
for expressions. In both cases, ψ is the generated constraint.

t-decl uses the precision relation ⊑ to insure that a migration will have a more precise
type, while t-var propagates the type information from declarations to the program.

t-reshape considers all possibilities of reshaping any tensor e with rank, at most 4, via
the constraint [[e]] ≤ 4. This restriction constraint captures all rank possibilities for [[e]] in
addition to [[e]] being Dyn. For each possibility, the number of occurrences of Dyn in δ and
[[e]] varies. This impacts the arithmetic constraints that make reshaping possible, as we can
see from the typing rules. As such, can-reshape simulates all such possibilities and generates
the appropriate constraints.

t-conv contains matching and consistency constraints, to model matching and consistency
in convolution’s typing rule. We have a constraint calc-conv, which generates the appropriate
arithmetic constraints for the output of the convolution, based on the convolution typing
rule, again accounting for the possibility of the input e having a gradual type.
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⊢ x : τ : τ ⊑ x ∧ |x| ≤ 4
(t-decl)

⊢ x : x = [[x]]
(t-var)

⊢ e : ψ

⊢ reshape(e, δ) : ψ ∧ [[reshape(e, δ)]] = δ ∧ can-reshape([[e]], δ) ∧ |[[e]]| ≤ 4
(t-reshape)

⊢ e : ψ
⊢ Conv2D(cin, cout, κ, e) : ψ ∧ [[e]] � TensorType(ζ1, ζ2, ζ3, ζ4) ∧ cin ∼ ζ2 ∧

[[Conv2D(cin, cout, κ, e)]] = calc-conv([[e]], cout, κ)

(t-conv)

⊢ e1 : ψ1 ⊢ e2 : ψ2

⊢ add(e1, e2) : ψ1 ∧ ψ2 ∧ [[add(e1, e2)]] = ⟨e1⟩ ⊔∗ ⟨e2⟩ ∧
(⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]]) ∧ ⟨e1⟩ ∼ ⟨e2⟩ ∧

|[[e1]]| ≤ 4 ∧ |[[e2]]| ≤ 4 ∧ |[[add(e1, e2)]]| ≤ 4

(t-add)

Figure 5 Constraint generation.

t-add contains least upper bound constraints and consistency constraints, similar to the
add typing rule. We constrain the inputs e1 and e2, as well as the expression itself, add(e1, e2)
to all be either Dyn or tensor of at most rank-4, via a ≤ constraint. We use the function
apply-broadcasting, which simulates broadcasting on the shapes, on dummy variables ⟨e1⟩
and ⟨e2⟩ (notice that the real shapes of e1 and e2 are represented by [[e1]] and [[e2]]). We
check ⟨e1⟩ and ⟨e2⟩ for consistency and obtain the least upper bound.

Let φ be a mapping from tensor-type variables to TensorType(list(ζ)) ∪ {Dyn}, and also
from dimension-type variables to IntConst ∪ {Dyn}. We define that a target constraint ψ
has solution φ, written φ |= ψ, in the following way:

The following is true: Provided:
φ |= ψ ∧ ψ′ φ |= ψ and φ |= ψ′

φ |= ψ ∨ ψ′ φ |= ψ or φ |= ψ′

φ |= ¬ψ not (φ |= ψ)
φ |= True always
φ |= v = TensorType(ζ1, . . . ζn) φ(v) = TensorType(φ(ζ1), . . . φ(ζn))
φ |= v = Dyn φ(v) = Dyn
φ |= v = v′ φ(v) = φ(v′)
φ |= ζ = n φ(ζ) = n

φ |= ζ = Dyn φ(ζ) = Dyn
φ |= ζ = ζ ′ φ(ζ) = φ(ζ ′)
φ |= ζ = ζ · n+ n′ φ(ζ) = φ(ζ ′) · n+ n′

φ |= (ζ1 · . . . · ζm)mod (ζ ′
1 · . . . · ζ ′

n) = 0 (φ(ζ1) · . . . · φ(ζm))mod (φ(ζ ′
1) · . . . · φ(ζ ′

n)) = 0

▶ Definition 4. φ ≤ φ′ iff dom(φ) = dom(φ′) ∧ ∀x ∈ dom(φ) : φ(x) ⊑ φ′(x)

Let Gen(P ) be the constraint generation function and Sol(C) be the set of solutions to
constraints C. Then we can state the order-isomorphism theorem as follows:

▶ Theorem 5 (Order-Isomorphism).
∀P : (Mig(P ),⊑) and (Sol(Gen(P )),≤) are order-isomorphic.
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The order-isomorphism theorem states that we have captured the migration-space with
our constraints such that, for a given program, the solution space and the migration-space
are order-isomorphic. For the proof, see Appendix F.

Our algorithm for code annotation is shown in Algorithm 1.

Algorithm 1 Code annotation.

Input: Program P

Output: Annotated program P ′

1: Constraint Generation. Generate constraints C = Gen(P ).
2: Constraint Solving. Solve C and get a solution φ that maps variables to types.
3: Program Annotation. In P , replace each declaration x : τ with x : φ(x), to get P ′.

Let us now revisit Listing 1 but this time with variable x annotated by Dyn. We will
show how to migrate a calculus version of the program by generating constraints and passing
them to an SMT solver. Let us recall that this listing had two expressions that map to the
following expressions in our calculus: Conv2D(2, 2, (2, 2), x) and Conv2D(4, 2, (2, 2), x).

The first step is to generate high-level constraints:

Dyn ⊑ v1 (1)
v1 ≤ 4 (2)

v1 � TensorType(ζ3, ζ4, ζ5, ζ6) (3)
2 ∼ ζ4 (4)

v2 = calc-conv(v1, 2, (2, 2), (2, 2), (2, 2), (2, 2)) (5)
v1 � TensorType(ζ9, ζ10, ζ11, ζ12) (6)

4 ∼ ζ10 (7)
v8 = calc-conv(v1, 2, (2, 2), (2, 2), (2, 2), (2, 2)) (8)

Let us go over what each equation is for. Constraint (1) denotes that the type annotation
for the variable x must be as precise or more precise than Dyn. Constraint (2) denotes that
the type annotation for x could either be Dyn or a tensor with at most four dimensions. We
use the ≤ notation to denote this. Notice that the type variable for x is v1. Constraints
(3), (4), and (5) are for Conv2D(2, 2, (2, 2), x), while constraints (6), (7), and (8) are for
Conv2D(4, 2, (2, 2), x). More specifically, constraints (3) and (6) determine the input shape of
a convolution while constraints (5) and (8) determine the output shape of a convolution.

The main differences between the constraints for our core calculus and the ones in our
implementation is that calc-conv takes some additional parameters in our implementation
because we have implemented the full version of convolution.

The constraints above are high-level constraints which are yet to be expanded. For
example, � and ≤ constraints get transformed to equality constraints. We will skip writing
out the resulting constraints for simplicity. After expanding these constraints and running
them through an SMT solver, we get a satisfying assignment. In case multiple satisfying
assignments exist, we use the one that the SMT solver picks. The fact that we got a satisfying
assignment lets us know that the migration space is non-empty, which means that the
program is well-typed. Let us go through some of relevant assignments:

φ(v1) = Dyn

φ(v2) = TensorType(Dyn, 2, Dyn, Dyn)
φ(v8) = TensorType(Dyn, 2, Dyn, Dyn))
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Here, v1 is the type of x, v2 is the type of the first convolution and v8 is the type of the second
convolution. We can see that these assignments are a valid typing to the program because
the outputs of both convolutions should be 4-dimensional tensors with the second dimension
being 2, which stands for the output channel. And since the input x has been assigned Dyn
by our SMT solver, we cannot determine the last two dimensions of a convolution output.
While this is a reasonable output, it may not be helpful to the programmer. Furthermore,
this program would not accept any concrete output. We know this from our constraints.
From constraints (3) and (7), we have that ζ4 = ζ10. Then from (4), (8), which are 2 ∼
ζ4 and 4 ∼ ζ10, we can see that the only satisfying solution is Dyn. This means that the
program cannot be statically typed. Next, we will see how to prove this formally.

Let us discuss how to extend our approach to solve Q(1) and Q(2). In the example above,
the migration space is non-empty and we may want to know if we can statically type the
program. We have established that we cannot. As a first step, we may want to take our
core constraints above, which we will call C, and restrict the input to a rank-4 tensor. So
we can consider the constraint C ∧ x = TensorType(ζ ′

1, ζ
′
2, ζ

′
3, ζ

′
4) where ζ ′

1, . . . , ζ
′
4 are fresh

variables. We can begin to impose restrictions on ζ ′
1, . . . , ζ

′
4 to make them concrete variables.

For example, if we restrict the last dimension to be a number, we can add the constraint
ζ ′

4 ̸= Dyn. After running our constraints through the solver, we get the following assignments:

φ(v1) = TensorType(Dyn, Dyn, Dyn, 28470)
φ(v2) = TensorType(Dyn, 2, Dyn, 14236)
φ(v8) = TensorType(Dyn, 2, Dyn, 14236)

To prove that no concrete assignment to the second dimension of x is possible, we simply
add ζ ′

2 ̸= Dyn to our original constraints and the constraints will be unsatisfiable, so we
conclude that the second dimension of x can only be Dyn.

We can also answer Q(2) by feeding the solver additional arithmetic constraints about
dimensions. In our example, if we want the first dimension of x to be between 3 and 10, we
can add the constraint ζ ′

1 <= 3 ∧ ζ ′
1 >= 10 to C ∧ x = TensorType(ζ ′

1, ζ
′
2, ζ

′
3, ζ

′
4) and rerun

our solver.
Our migration solution is based on a satisfiability problem: is our migration problem

decidable? If so, what is the time complexity? The migration problem is decidable if the
underlying constraints are drawn from a decidable theory. Those underlying constraints
are the ones given by the grammar in Section 4. Let us for a moment ignore constraints of
the form (ζ1 · . . . · ζm) mod (ζ ′

1 · . . . · ζ ′
n) = 0. We observe that all the other constraints are

drawn from a well-known decidable theory. Specifically, the other constraints are drawn from
quantifier-free Presburger arithmetic extended with uninterpreted functions and equality.
The satisfiability problem for this theory is NP-complete [21]. Once we add constraints
of the form (ζ1 · . . . · ζm) mod (ζ ′

1 · . . . · ζ ′
n) = 0, the decidability-status of the satisfiability

problem is unknown, to the best of our knowledge. Fortunately, only three operations
need this additional constraint: Reshape, View, or Flatten. All the other 47 operations
that our implementation supports need only constraints in the NP-complete subset. Our
implementation translates all of the constraints to Z3 format, and while our benchmarks do
need constraints outside the NP-complete subset, our experiments terminated. In every case,
Z3 terminated with either sat or unsat. Thus, the generated constraints are simple enough
for Z3 to solve, even if the general case is undecidable.

The complexity of migration depends on the size of the constraint we generate. The
bottleneck is the ≤ constraint; let us see how to expand it.

From: |[[e]]| ≤ 4
To: [[e]] = Dyn ∨ [[e]] = TensorType(ζ1) ∨ . . . ∨ [[e]] = TensorType(ζ1, ζ2, ζ3, ζ4)
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where ζ1, . . . , ζ4 are fresh variables. This yields a complexity of 4n in the number of ≤
constraints. So assuming that any additional constraints are drawn from the NP-complete
subset, the problem will still be decidable. Note that if we are working with a fixed rank,
then these constraints will be generated in polynomial time in the size of the program. Below
we will see how solving the problem for a fixed rank has practical benefits.

5 Extending our approach to do Branch Elimination

We introduce our approach to branch elimination via the following example.
1 class ReshapeControlFlow(torch.nn.Module):
2 def __init__(self):
3 super().__init__()
4

5 def forward(self, x: Dyn):
6 if x.reshape(100).size()[0] < 100:
7 return torch.dropout(x, p=0.5, train=False)
8 else:
9 return torch.relu(x)

Listing 7 An example of graph-break elimination

In contrast to listing 5, where the conditional depends of the rank of the input, listing 7 has
a conditional that depends on the value of one of the dimensions in the input shape. Listing
7 uses the reshape function, which takes a tensor and re-arranges its elements according
to the desired shape. In this case, we reshape x to have the shape TensorType([100]). For
reshaping to succeed, the initial tensor must contain the same number of elements as the
reshaped tensor. Notice that since x is typed as Dyn, the program will type check. In
the expression x.reshape(100).size(), the expression size() will return the shape of
x.reshape(100), which is [100]. We are then getting the first dimension of the shape in the
expression x.reshape(100).size()[0], which is 100. Thus, by inspecting the conditional if
x.reshape(100).size()[0] < 100, we can see that the conditional should always evaluate
to false. Thus, we can remove the true branch from the program and produce listing 8.
In contrast, TorchDynamo breaks Listing 7 into two different programs: one for when the
condition evaluates to true, and another for when the condition evaluates to false.

1 class ReshapeControlFlow(torch.nn.Module):
2 def __init__(self):
3 super().__init__()
4

5 def forward(self, x: Dyn):
6 return torch.relu(x)

Listing 8 An example of graph-break elimination

Let us see an example of how to extend our constraint-based solution to eliminate the
extra branch. For listing 7, here are the constraints for x.reshape(100).size()[0] in line
6. The variable ζ4 is for the result of the entire expression. Note that the PyTorch expression
x.reshape(100) is the same as the calculus expression reshape(x, TensorType(100)).

Dyn ⊑ v1 ∧ v1 ≤ 4 (1)
v2 = TensorType(100) ∧ can-reshape(v1, TensorType(100)) (2)
v2 = v3 (3)
(v3 = Dyn ∧ ζ4 = Dyn) ∨ ((ζ4 = GetItem(v3, 1, 0) ∨ ζ4 = GetItem(v3, 2, 0) ∨

ζ4 = GetItem(v3, 3, 0) ∨ ζ4 = GetItem(v3, 4, 0)) (4)
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Above, the constraint (1) is for x. Notice that v1 is the type variable for x. Constraint
(2) is for reshape(x, TensorType(100)). Next, when encountering the size function in
a program, we simply propagate the shape at hand with an equality constraint, which is
seen in equation (3). If we are indexing into a shape, we consider all the possibilities for
the sizes of that shape and generate constraints accordingly. In particular, we have that
(v3 = Dyn ∧ ζ4 = Dyn) because a shape could be dynamic, which means that if we index
into it, we get a Dyn dimension. But since we restricted our rank to 4, we can consider the
possibilities of the index being 1, 2, 3 or 4, which is what the remaining constraints do.

We extend our constraint grammar with constructs that enable us to represent size()
and indexing into shapes. This includes constraints of the form ζ = GetItem(v, c, i), where v
is the shape we are indexing into, c is the assumed tensor rank, and i is the index of the
element we want to get. We can map the new constraints to Z3 constraints easily.

Next we generate a constraint (ζ4 < 100) for the condition and a constraint ¬(ζ4 < 100)
for its negation. If C are the constraints for the program up to the point of encountering a
branch, then we generate both C ∧ ζ4 < 100 and C ∧ ¬(ζ4 < 100).

We evaluate both sets of constraints. One set must be satisfiable while the other must be
unsatisfiable for us to remove the branch. If we are unable to remove the branch. this means
that the input set is still too general such that for some inputs, the branch may evaluate to
true and for other inputs, the branch may evaluate to false. In such case, we can ask the user
to capture a stricter subset of the input by further constraining it. We can then re-evaluate
our constraints again to see if we are able to remove the branch.

We extend our grammar with conditional expressions if cond then e1 else e2. Algorithm 2
describes how to eliminate a single branch.

Algorithm 2 Branch elimination.

Input: Program p.
Output: A possibly modified p with a branch eliminated.

1: Let C = the constraints for p up to encountering a branch if cond then e1 else e2.
2: Let ccond = the constraints for cond.
3: if (C ∧ ccond) is satisfiable and (C ∧ ¬ccond) is unsatisfiable then
4: Rewrite the branch to e1
5: else if (C ∧ ccond) is unsatisfiable and (C ∧ ¬ccond) is satisfiable then
6: Rewrite the branch to e2
7: else
8: Require the user to change the shape information
9: end if

6 Implementation

PyTorch has three tool-kits that rely on symbolic tracers [3]. Let us go over each one. First,
torch.fx [17] is a common PyTorch tool-kit and has a symbolic tracer. Symbolic tracing
is a process of extracting a more specialized program representation from a program, for
the purpose of analysis, optimization, serialization, etc. torch.fx does not accept programs
containing branches and the torch.fx authors emphasize that “most neural networks are
expressible as flat sequences of tensor operations without control flow such as if-statements
or loops [17]”. HFtracer [29] eliminates branches by symbolically executing on a single input.
Finally, TorchDynamo [2] handles dynamic shapes by dividing the program into fragments.

ECOOP 2024



29:20 Generalizing Shape Analysis with Gradual Types

Figure 6 Our core tool and the three tracers.

This process is called a graph-break. Specifically, when encountering a condition that depends
on shape information and where shape information is unknown, the program is broken into
two parts. One fragment is for when the result of the condition is true, and another is for
when the result of the condition is false. Graph-breaks result in multiple programs with no
branches.

As a technical detail, code annotation for the purpose of program understanding and
better documentation is meant to be performed on a source language; branch elimination is
done at trace-time, on an intermediate representation. For the purpose of better readability,
we presented all the examples in Section 2 in source code syntax. In some of our larger
benchmarks, the source code is different from the intermediate representation because more
high-level constructs were used, such as statements. However, statements do not influence
our theoretical results. We did not include sequences in our theory because they did not
introduce additional challenges to our problem. Finally, there are some constructs in PyTorch
that propagate variable shapes, such as dim() and size(). There are also getters which index
into shapes. Those constructs were used to write ad-hoc shape-checks. We dealt with them
in our implementation by propagating shape information accordingly.

We have implemented approximately 6000 LOC across three different tracers. Figure 6
summarizes how our implementation works. First, we implement a core constraint generator.
This generator takes a program (in our benchmarks case, a program is generated via
torch.fx), and generates core, source constraints for it. Next is the constraint translator
which consists of two phases. In the first phase, it encodes the gradual types found in the
program then translates the source constraints into target constraints. Note that a program
is annotated, possibly with a Dyn type for every variable. In the second phase, it translates
the target constraints into Z3 constraints, which is a 1:1 translation.

Next, we modify each of TorchDynamo and HFtracer to incorporate our reasoning and
use it for branch elimination. We must incorporate our logic into the tracers because branch
elimination happens at trace-time, unlike program migration which requires a whole program.

Our implementation faithfully follows our core logic, although we have made some practical
simplifications. First, our implementation focuses on supporting 50 PyTorch operations that
our benchmarks use. Each of those operations has its own constraints and supporting all 50
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was multiple months of effort. Second, for the view operation (which is similar to reshape in
terms of types, see https://pytorch.org/docs/stable/generated/torch.Tensor.view.
html), we have skipped implementing dynamism and required the solver to provide concrete
dimensions. This allowed us to carry out branch elimination without requiring an additional
constraint that disables dynamism, although the same effect can be accomplished in this
manner as well. Third, Conv2D may accept rank-3 or rank-4 inputs, but we have limited
our implementation to the rank-4 case, since this is the case that is relevant to most of our
benchmarks.

We ran our experiments on a MacBook Pro with an 8-Core CPU, 14-Core GPU and
512GB DRAM.

7 Experimental Results

We answer the following three questions.

Q(1): Can our tool determine if the migration space is non-empty? If so, can it determine
if the migration space contains a static migration and if so, can it find one? Yes. Our
tool is the first to affirmatively answer all three questions.
Q(2): Given an arithmetic constraint on a dimension, can our tool determine if there is a
migration that satisfies it and if so, can it find one? Yes. Our tool is the first to retrieve
migrations that provably satisfy arbitrary arithmetic constraints.
Q(3): Can our tool prove that branch elimination is valid for an infinite set of inputs,
not just for a single input? If so, does it allow us to represent the set of inputs for which
a branch evaluates to true or false? Yes. We incorporate our logic into two different
tools and eliminate branches in all benchmarks we considered for infinite classes of input,
characterized via constraints. Neither tool was able to achieve this without our logic.

Figure 7 contains our benchmark names, the source of the benchmark, lines of code,
and the number of flatten and reshape operations in each benchmark. The flatten and
reshape operations are special because our analysis of them involves multiplication and
modulo constraints. Our benchmarks are drawn from two well-known libraries, TorchVision
and Transformers [30, 29], with the exception of two microbenchmarks that we use as
examples in Section 2. We used different benchmarks for different experiments. The first
four models do not contain branches, making them suitable for Q(1) and Q(2). They are
interesting because BmmExample has a shape mismatch, ConvExample cannot be statically
migrated, and AlexNet and ResNet50 are well-known neural-network models. Our experience
is that tensor programs are tricky to type, and that our tool offers feedback that helps
the user narrow down the migration space by adding constraints. The next six models are
suitable for our HFTracer experiments. Those experiments required reasoning about whole
programs and our tool was able to reason about them in under two minutes. The final four
benchmarks are of a larger size. We do not support all the operations in those benchmarks.
However, this did not pose a problem because in TorchDynamo, we were not required to
reason about entire programs. Instead, we were required to reason about program fragments,
which made our tool terminate in under three minutes.

We ran our tool in the following way to answer Q(1).
1. Generate the core constraints and check if they are satisfiable. If not, stop right away;

The program is ill-typed.
2. Determine if the input variable can have a concrete rank by asking the solver for migrations

of concrete ranks from one to four. If none exist, the input variable was used at different
ranks throughout the program.
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Benchmark Source LOC Flatten Reshape Used for
BmmExample this paper 4 0 0 Q(1)
ConvExample this paper 6 0 0 Q(1)

AlexNet TorchVision 24 1 0 Q(1)
ResNet50 TorchVision 177 1 0 Q(1)
Electra Transformers 525 0 48 Q(2)
Roberta Transformers 533 0 48 Q(2)

MobileBert Transformers 2103 0 96 Q(2)
Bert Transformers 528 0 48 Q(2)

MegatronBert Transformers 1018 0 96 Q(2)
XGLM Transformers 104 0 14 Q(2) and Q(3)
Marian Transformers 1733 0 315 Q(3)

MarianMT Transformers 1735 0 315 Q(3)
M2M100 Transformers 1762 0 319 Q(3)

BlenderBot Transformers 2380 0 451 Q(3)

Figure 7 Benchmark information.

Q(1) Q(2)
Benchmark Static migration? Time(s) Arithmetic constraints? Time(s)

BmmExample No 0.03 No 0.03
ConvExample No 0.05 Yes 0.08

AlexNet Yes 2 Yes 2
ResNet50 Yes 5 Yes 347

Figure 8 Q(1) and Q(2): static migration and migration under arithmetic constraints.

3. If the input variable can be assigned concrete ranks, pick one of them and ask the tool to
statically annotate all dimensions.

4. If the solver cannot statically annotate all dimensions, relax this requirement for each
dimension to determine which one cannot be statically annotated.

We first traced our benchmarks using torch.fx, then ran the above steps on the output.
The first step simply involves running our tool, while the second and third steps require the
user to pass constraints to the tool and rerun it. Determining if a variable has a certain
rank requires a single run with our tool. Determining if a dimension can be static requires a
single run with our tool. The final step involves removing constraints. Each time we remove
a constraint from a dimension, we can run our tool once to determine a result.

The first part of Figure 8 summarizes our results. The first column in the figure is the
benchmark name. The second column asks if the benchmark has a static migration and
the third column measures the time it took to answer this question and retrieve a static
migration. For ConvExample, the input can only be rank-4 and the second dimension can
only be Dyn. BmmExample has a type error. Finally, ResNet50 and AlexNet can be fully
typed and the inputs can only be rank-4 in both cases.

We ran our tool in the following way to answer Q(2). First we follow the steps for
answering Q(1), and if any dimensions can be static, then we apply further arithmetic
constraints on some of those dimensions and ask for a migration that satisfies them. We ran
the steps above in our extension of torch.fx. The second part of Figure 8 summarizes our
results. The fourth column asks if arithmetic constraints can be imposed on at least one
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of the dimensions and the fifth column measures the time it took to answer this question
and retrieve a migration that satisfies an arithmetic constraint. For ResNet50 and AlexNet,
we added arithmetic constraints. For ConvExample, we fixed the example like we did in
Section 2 then added arithmetic constraints. We obtained valid migrations that satisfy our
constraints for all benchmarks, except for BmmExample which is ill-typed and thus has an
empty migration space.

We ran our tool in the following way to answer Q(3). We ran our extension of HFtracer,
starting with annotating the input with Dyn and then gradually increasing the precision of
our constraints to provide the solver with more information to eliminate more branches. The
number of times we run our tool here depends on how much information the user gives the
tool about the input. If the tool receives static input dimensions, then this will be enough to
eliminate all branches that depend on shapes. But since we aim to relax this requirement, we
could start with a Dyn shape then gradually impose constraints, first with rank information,
then with dimension information.

We were able to eliminate all branches this way. We followed similar steps in our
TorchDynamo extension but we faced some practical concerns because TorchDynamo currently
does not carry parameter information between program fragments. We had to resolve this
issue manually by passing additional constraints at every new program fragment.

Figure 9 details our HFtracer experiments on 6 workloads. Figure 9 contains the original
number of branches in the program, the remaining branches after running our extension,
without imposing any constraints on the input, and the number of remaining branches after
running our extension, with the constraints in Figure 9 on the input. The second-to-last
column of the figure is the time it takes to perform branch elimination with constraints.

HFtracer also eliminates all branches from the 6 workloads. However, it does this by
running the program on an input. We can obtain a similar result by giving a constraint
describing the shape of the input because we observed that for all benchmarks we considered,
an actual input is not needed to eliminate all branches, and we can relax this requirement
much further. Specifically, for some benchmarks, no constraints are needed at all to eliminate
all branches, while for others, it is enough to specify rank information. For one of the
benchmarks, we can specify a range of dimensions for which branches can be eliminated.
Figure 9 details the constraints.

Finally figure 10 represents branch elimination for TorchDynamo. There are two modes
of operation in TorchDynamo called static and dynamic. In the static mode, the tracer
traces the program with one input which is provided by the user. Branch elimination is
therefore valid for a single input. In Dynamic mode, the tracer also takes an input but
it only records rank information and ignores the values of the dimensions. So if a branch
depends on dimension information, a graph-break will occur. We focused on benchmarks
where branches depend on dimension information. In figure 10, we impose constraints on the
dimensions and eliminate branches which decreases the number of times TorchDynamo breaks
the program when tracing. The first column in the figure indicates the benchmark names.
Next is the original number of branches with TorchDynamo. Then we have the remaining
number of branches after incorporating our reasoning. Finally, we measure time in seconds.
The input constraints are range and rank constraints, as exemplified by the constraints for
XGLM shown in Figure 9.

From our experiments, we observed that slowdowns can be due to the kind of constraints
involved and the number of constraints to solve. Our tool typically handles benchmarks
that are under 1000 lines of code easily. However, range constraints impose overhead. For
example, ResNet50 and XGLM contain such constraints and they were the slowest in Figure
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# remaining branches
without with Time

Benchmark original constr. constr. (s) our constraints
Electra 3 3 0 1 T ensor(x, y)
Roberta 3 0 0 3 none

MobileBert 3 3 0 1 T ensor(x, y)
Bert 3 0 0 3 none

MegatronBert 3 0 0 5 none
XGLM 5 4 0 22 T ensor(x, y) ∧ x > 0 ∧ 1 < y < 2000

Figure 9 Q(3): HFtracer number of remaining branches.

Benchmark original with constraints Time(s)
XGLM 5 0 45
Marian 44 26 70

MarianMT 44 26 75
M2M100 47 22 130

BlenderBot 35 19 40

Figure 10 Q(3): TorchDynamo number of remaining branches.

9. For the experiments under Q(1) and Q(2), we let the tools run more than 5 minutes, but
for Q(3) we limit to 5 minutes. The benchmarks in figure 10 are over 1000 lines, and for
some branches, branch elimination with TorchDynamo times out after 5 minutes.

There are two limitations to our TorchDynamo experiments. First, since PyTorch has
various operations with many layers of abstractions and edge cases, not every edge case was
implemented. Given that this only affected a few branches, we chose to skip those branches.
This did not affect our experiments because TorchDynamo does not require all branches to
be removed. Each branch removed will result in one less graph-break. TorchDynamo induces
graph-breaks for reasons other than control flow. When graph-breaks happen, we have to
re-write an input constraint for the resulting fragments because there is currently no clear
mechanism in passing parameter information from one fragment to another. We manually
passed input constraints to program fragments until eliminating at least 40% of branches
and have stopped after that due to the large size of the benchmarks and program fragments.
We leave parameter preservation during graph-breaks to the TorchDynamo developers.

8 Related work

We first discuss related work about shapes in tensor programs.
[15] show how to do shape checking based on assertions written by programmers. Their

assertions can reason about tensor ranks and dimensions, with arithmetic constraints. Our
work also supports such constraints. Their tool executes a program symbolically and looks for
assertion violations. The more assertions programmers write, the more shape errors their tool
can report. Their tool uses Z3 to solve constraints of a size that can be up to exponential in
the size of the program. Our approach is similar in that it enables programmers to annotate a
program with types and to type check the program and thereby catch shape errors. Another
similarity is that we use Z3 to solve constraints of exponential size. Our approach differs by
going further: we have tool support for annotating any program with types and for removing
unnecessary runtime shape checks. Additionally, we have proved that our type system has
key correctness properties.
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[9] define a gradually typed system for tensor computations and, like us, they prove that
it has key correctness properties. They use refinement types to represent tensor shapes, they
enable programmers to write type annotations, and they do best-effort shape inference. Their
refinements share some characteristics with the assertions used by [15], as well as with our
constraints. They found that, for each of their benchmarks, few annotations are sufficient to
statically type check the entire program. They focus on shape checking and shape inference,
while we focus on generalizing shape analysis for various tasks including program migration
and branch elimination. Their approach adds the traditional gradual runtime checks [22] in
cases where annotations and shape inference fall short. Our work differs by enabling program
optimizations through removing runtime checks, while we leave out gradual runtime checks.
Conceptually, our approach and the one from [9] differ in that we define type migration
syntactically, while they follow a semantic interpretation of gradual types. It is unclear how
migration would be defined in their context. Another difference is that we have demonstrated
scalability: their benchmark programs are up to 258 lines of code, while our benchmark
programs are up to 2,380 lines of code. We were unable to do an experimental comparison
because our tool works with PyTorch, while their tool works with OCaml-Torch.

[31] analyzed the root causes of bugs in TensorFlow programs by scanning StackOverFlow
and GitHub. They identified four symptoms and seven root causes for such bugs. The
most common symptoms are functional errors, crashes, and build failure, while common
root causes are data processing errors, type confusion, and dimension mismatches. Our type
system can help spot those root causes because key parts of such code will have type Dyn,
even after migration.

[11] use static analysis to detect shape errors in TensorFlow. Their approach statically
detects 11 of the 14 TensorFlow bugs reported by [31], but has no proof of correctness. Our
approach differs from [11] by being able to annotate a program with types and being able to
remove unnecessary runtime checks. Our work can reason about programs without requiring
any type annotations and only taking into account the shape information from the operations
used in the program, while [11] requires a degree of type information. In contrast, we have
proved that our type system has key migratory properties, such as that our constraints
represent the entire migration space for a program, allowing us to extract and reason about
all existing shape information from the program according to the programmer’s needs.

[10] is a static analysis tool that detects shape errors in PyTorch programs. Their
approach is different than ours in that it detects errors via symbolic execution. It considers
all possible execution paths for a program to reason about shapes. The number of execution
paths can be large. In contrast, our approach reasons about shapes which can be given in
the form of type annotations or can be detected from the program.

[27] consider a dynamic analysis tool for TensorFlow, called ShapeFlow, to detect shape
errors. The advantage of this approach is that, like our approach, it does not require type
annotations, but their analysis holds for only particular inputs, in contrast to our approach,
which reasons about programs across all possible inputs. Unlike our work, their approach
has not been formalized, but there is empirical evidence to support that it detects shape
errors in most cases. Because we reason about programs statically, our work is more suitable
for compiler optimizations and program understanding. Our shape analysis approach can be
used to annotate programs. In contrast, ShapeFlow is more suitable if a programmer desires
a light-weight form for error detection that works in most cases.

[20] designed an intermediate representation called Relay. It is functional, like our calculus,
but is statically-typed, unlike our gradual type system. Its goals are similar to ours in that it
aims to balance expressiveness, portability, and compilation. Unlike our system, as a static
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type system, Relay requires type annotations for every function parameter. Similar to our
approach, their work focuses on the static aspect of the problem and has left the runtime
aspect to future work.

[19] extends [20] by using a static polymorphic type system for shapes, which we leave
to future work. This system has a type named Any, which enables partial annotations, but
which appears to provide less flexibility than our Dyn type because of the absence of type
consistency.

Next we discuss two closely related papers on migratory typing.
[12] defined the migration space for a gradually typed program as the set of all well-

typed, more-precise programs. They represented the migration space for a given program
by generating constraints where each solution represents a migration. The constraint-based
approach enables them to solve migration problems for a λ-calculus. We adapted their
definition of type migration and migration space to our context of a tensor calculus and
rather different types. We use their idea of a migration space and constraints to give an
algorithm that annotates a program with types and an algorithm that removes unnecessary
runtime checks. In contrast to their approach, we use an SMT solver (Z3) because it can
deal with the arithmetic nature of tensor constraints.

[16] build a tool which extends [12], by providing several criteria for choosing migrations
from the migration space. Their work is about simple types, while our work is about tensor
shapes. While their work is specifically focused on reasoning about the migration space for
program annotation, we reason about the migration space more generally, by using it for
general tensor reasoning tasks including program annotation and branch elimination. Their
gradual language contains traditional gradual runtime checks, while we leave out runtime
aspects.

9 Conclusion

We have presented a method that reasons about tensor shapes in a general way. Our method
involves a gradual tensor calculus with key properties and support for decidable shape
analysis for a large set of operations. Our algorithm is practical because it works on 14
non-trivial benchmarks across three different tracers. We expect that our approach to branch
elimination can be extended to handle other forms of shape-based optimization.
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