
A Dynamic Logic for Symbolic Execution for the
Smart Contract Programming Language Michelson
Barnabas Arvay #

University of Freiburg, Germany

Thi Thu Ha Doan #

University of Freiburg, Germany

Peter Thiemann #

University of Freiburg, Germany

Abstract
Verification of smart contracts is an important topic in the context of blockchain technology. We
study an approach to verification that is based on symbolic execution.

As a formal basis for symbolic execution, we design a dynamic logic for Michelson, the smart
contract language of the Tezos blockchain, and prove its soundness in the proof assistant Agda.
Towards the soundness proof we formalize the concrete semantics as well as its symbolic counterpart
in a unified setting. The logic encompasses single contract runs as well as inter-contract runs chained
in a single transaction.

2012 ACM Subject Classification Software and its engineering → Automated static analysis

Keywords and phrases Smart Contract, Blockchain, Formal Verification, Symbolic Execution

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.3

Supplementary Material
Software (Source Code): https://freidok.uni-freiburg.de/data/255176 [6]

Funding Thi Thu Ha Doan: Supported by the Tezos Foundation, grant COOC.

1 Introduction

Blockchain technology and smart contracts provide decentralized and immutable systems
for secure transactions and automated agreements. Smart contracts have been targets of
spectacular and costly attacks as contracts are immutable and their source code is publicly
available on the blockchain. Hence, it is vital as well as challenging to ensure the correctness of
smart contracts before their deployment. Formal methods and various verification techniques
have been proposed to address this challenge.

The Tezos blockchain [14] and its smart contract language Michelson have been designed
from ground up with verification in mind. Several frameworks have been developed based
on, e.g., interactive theorem proving [10], refinement typing [27], and automated theorem
proving [5]. We are interested in automated verification of Michelson programs, which rules
out interactive approaches. Symbolic execution [20, 11] is one of the standard approaches to
automatically obtain verification conditions like weakest preconditions for failures as well
as normal termination from a program. Next, an SMT-solver discharges these verification
conditions. There is a wide range of approaches that apply symbolic execution combined
with SMT-solving to smart contracts, mostly for the Ethereum blockchain (see Section 6).

While there are many approaches to symbolic execution [12, 13, 30], we choose one based
on dynamic logic. Dynamic logic (DL) [16] is a modal logic for reasoning about programs.
Its signature features are modalities for program execution. These modalities enable the
expression of assertions about program behavior as logical formulas. For instance, the formula

© Barnabas Arvay, Thi Thu Ha Doan, and Peter Thiemann;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 3; pp. 3:1–3:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barnabasarvay@gmail.com
https://orcid.org/0009-0002-2720-7100
mailto:doanha@informatik.uni-freiburg.de
https://orcid.org/0000-0001-7524-4497
mailto:thiemann@informatik.uni-freiburg.de
https://orcid.org/0000-0002-9000-1239
https://doi.org/10.4230/LIPIcs.ECOOP.2024.3
https://freidok.uni-freiburg.de/data/255176
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Dynamic Logic for Symbolic Execution for Michelson

[p]Ψ states partial correctness: if program p terminates, then Ψ is true. That is, a Hoare
triple {Φ} p {Ψ} can be encoded by Φ → [p]Ψ. DL also provides a modality ⟨p⟩ for total
correctness, but we do not consider it in this work.

Dynamic logic comes with proof rules for the modality derived from the structure of
p. For example, if p; q stands for sequential execution of p and q, then the proof rule
[p; q]Ψ ↔ [p][q]Ψ states that execution of p enables execution of q such that Ψ holds in the
end. Similarly, the rule [ε]Ψ ↔ Ψ states that the empty program ε does not modify the
validity of Ψ.

In the past, dynamic logic has been used successfully for as a basis for symbolic execution
in the context of the verification of Java programs [9], as it is particularly well suited to keep
track of a changing environment (i.e., mutable objects on Java’s heap). We design a DL to
model Michelson execution because we want to reason about transactions that span several
contract runs. In Michelson terminology, these transactions are called chained contract
executions, where an externally started contract run initiates further internal contract runs.
Our DL design models the relevant parts of the blockchain run-time system on top of the
purely functional execution of Michelson programs. On the level of the run-time system
contracts are very similar to objects: they are identified by an address and they come with
mutable attributes (state and balance).

The DL treatment of the functional part of Michelson is quite intuitive: programs are
sequences of Michelson instructions, we model the execution state of a Michelson program
by a formula of the form Φ → [p]Ψ, and the proof rules for [i; p]Ψ (where i is a single
instruction) define the semantics of symbolic execution.

Gas is an important aspect of computation on the blockchain. The initial caller of a
contract has to pay for executing the transaction (consisting of one or more chained contract
runs) in terms of gas. A transaction that runs out of gas is rolled back by the run-time system
of the blockchain as if it never happened. As Michelson does not suffer from reentrancy
problems (cf. Section 2), gas does not affect reasoning about the functional correctness of
(chained) contract execution. For that reason, our DL design does not account for gas.

It is the sole goal of this paper to provide a machine verified specification of symbolic
execution for Michelson, rather than an efficient or otherwise realistic implementation.
For that reason, the paper does not cover all instructions, but rather a carefully chosen
representative subset. This is in contrast to related work [10, 27, 5] that describes actual
verification tools. To be useful for a wide range of programs, such a tool must support as
many Michelson instructions as possible1, it must be reasonably efficient, and it must deal
with loops and nontermination in an appropriate way. None of these issues are concerns for
our specification.

Contributions
1. We select a representative subset of Michelson instructions so as to provide proof templates

for all current and future instructions that work similarly.
2. We provide a parameterized semantics definition with instances for the concrete semantics

as well as for an abstract semantics, which implements the dynamic logic for Michelson.
3. We prove the soundness of this logic first for single programs, and then for several

programs chained in a transaction.

The Agda implementation of the contributions is available.2

1 Keeping up with the rapid evolution of the language is challenging for those tools. As of this writing,
most of them support the instruction set available in late 2022.

2 https://freidok.uni-freiburg.de/data/255176, development version https://github.com/
Tezos-Project-Uni-Freiburg/michelson-dynamic-logic.

https://freidok.uni-freiburg.de/data/255176
https://github.com/Tezos-Project-Uni-Freiburg/michelson-dynamic-logic
https://github.com/Tezos-Project-Uni-Freiburg/michelson-dynamic-logic

B. Arvay, T. T. H. Doan, and P. Thiemann 3:3

Overview
Section 2 gives an overview of Michelson, introduces its type system and our intrinsically
typed representation of the language. Section 3 defines the execution model of Michelson,
first for single contracts, and then for the chained execution of several contracts that call each
other. Section 4 introduces dynamic logic and its symbolic execution rules, again first for
single execution, and then for chained execution. Section 5 explains the major components of
the soundness proof of the dynamic logic. Section 6 discusses related work and conclusions.

The paper contains many excerpts from the live, type checked definitions and proofs in
Agda. In particular, all major definitions and statements of theorems are shown in Agda
notation to ensure consistency of the paper with the machine-checked proofs.

2 Michelson

Michelson [25, 28] is the native language for smart contracts on the Tezos blockchain. It is
a low level, stack-based, simply-typed, purely functional programming language. That is,
all computation is driven by transforming an input stack into an output stack. There are
no mutable data structures; blockchain transactions are handled outside of Michelson. All
contracts are statically typed to avoid run-time type errors.

Each Michelson instruction transforms a given input stack into an output stack where
some of its values have been changed, added, or removed. For example, the ADD instruction
accepts any stack whose two topmost elements are numbers, and returns a stack where these
two values have been replaced by their sum. The remaining stack is unchanged.

ADD ∶ 15 ∶∶ 27 ∶∶ remainingStack ↦ 42 ∶∶ remainingStack

2.1 Types
Michelson supports the usual data types like numbers, pairs, and lists as well as some
blockchain-specific types for tokens and contracts. Figure 1a contains Agda definitions for a
select subset of Michelson types Type. As some base types can be treated alike later on, we
represent them with a separate type BaseType.

Most types’ names are self explanatory. The base type ‘mutez stands for tokens, addr
stands for blockchain addresses in Tezos. We introduce shorthand patterns for base types for
readability. The type operation consists of blockchain operations that can be emitted during
contract execution. This mechanism implements token transfers from the current contract to
other accounts or contracts. The type contract P represents such a contract which accepts a
parameter of type ty represented by P: Passable ty. The type predicate Passable : Type →
Set originates from the Michelson specification and characterizes types that can be passed as
parameters to contracts. Its declaration is mutually recursive with Type.

The semantics of types is defined by a mapping to Agda types. Most Michelson types have
obvious Agda counterparts, except addr, contract, and operation. Addresses and contracts
are both represented by natural numbers. The difference is that a value of type contract is
known to be a valid address of a contract of suitable type. We only define one alternative of
the Operation datatype: transfer-tokens v m c, which models a token transfer to contract c

while passing the parameter value v and tokens m.3

3 At the time of writing this paper, full Michelson also supports the operations CREATE-CONTRACT, EMIT
(deliver an event to an external application), and SET-DELEGATE (delegate stakes to another account).

ECOOP 2024

3:4 Dynamic Logic for Symbolic Execution for Michelson

(a) Syntax. (b) Semantics.

Figure 1 Michelson Types.

2.2 Programs and Instructions
Michelson programs are intrinsically typed, that is, only well-typed programs can be written.
Accordingly, they are represented in Agda by a datatype Program indexed by the types on
the input stack and the types on the output stack. We assume that Stack = List Type.

Instructions are indexed in the same way: If instruction inst maps an input stack of
type Si to an output stack of type So and prg maps that output stack So to the final stack
of type Se, then inst ; prg is a program that maps Si to Se. The empty program end
does not transform the stack.

We discuss a representative subset of Michelson instructions shown in Figure 2. The
definition of Instruction+ implements the pattern that most instructions only transform a
fixed number of elements on top of the input stack and are parametric in the rest.

The first group of instructions operates on a fixed number of values on the stack and pushes
the result. All arithmetic operations belong to this group and we just give two examples,
ADDnn and ADDm, which perform addition of natural numbers and tokens, respectively.
Michelson language overloads arithmetic operators, but as overloading is not supported by
Agda, we supply separate instructions. We come back to this issue at the end of this section.

B. Arvay, T. T. H. Doan, and P. Thiemann 3:5

Figure 2 Instructions of Core Michelson.

CAR, CDR, and PAIR are the standard operations on pairs. NONE and SOME are the
constructors for the option datatype, and NIL and CONS construct lists. The constructors
for “empty” containers, NONE and NIL are indexed by the element type, otherwise that type
can be inferred from the context.

The last instruction in this group is TRANSFER-TOKENS. Despite the name, this
instruction does not directly transfer tokens to another account. It rather constructs a value
transfer-tokens v m c of type operation from its arguments.

The instructions in the next group differ in that they push zero or more values on the
output stack. DROP pops the stack, DUP duplicates the top of the stack, SWAP swaps the
top entries, and UNPAIR eliminates a pair and pushes its contents. UNPAIR is a convenience
instruction as it is equivalent to the instruction sequence DUP; CDR; SWAP; CAR.

The next group contains instructions that are blockchain specific. AMOUNT returns the
tokens that were transferred with the currently running contract invocation and BALANCE
returns the tokens currently owned by it. The CONTRACT instruction is indexed by a type t

that must be Passable. It takes an address and checks on the blockchain whether this address
is associated with a contract that accepts arguments of type t. The result is communicated
as an option type. That is, the contract type carries a verified address.

The PUSH instruction pushes a value of type t on the stack. The value is encoded by a
type-indexed datatype Data for pushable values. We elide its straightforward definition.

ECOOP 2024

3:6 Dynamic Logic for Symbolic Execution for Michelson

The last group of instructions showcases control structures and an instruction that
operates in a non-uniform way on the stack. The instruction IF-NONE eliminates a value
of option type from the top of the stack. Its parameters are programs that implement the
branches for case None and Some. The latter takes the value wrapped in the Some constructor
as an argument on top of the stack.

The instruction ITER runs a sub-program on every element of its argument list. The
instruction DIP n runs a sub-program at depth n on the input stack, that is, it skips over
the first n elements of the stack, runs the sub-program, and reattaches those elements. The
extra machinery in the implicit argument of the instruction makes sure that there are at
least n elements on the stack. This mechanism is called reflection in the PLFA textbook [33].

Earlier, we remarked that Agda does not allow overloading of constructors in the same
datatype. However, we can use reflection to define a “smart constructor” that almost suits
the purpose.

The definition exploits the fact that the input stack of an instruction is always known in a
Michelson program. The same fact also enables overloading in Michelson’s implementation to
work. The function overADD specifies the resolution of overloading for the ADD instruction.
If the argument types are both nat, then the result type is nat and the chosen instruction is
ADDnn; and so on.4 If no overloading is known for a combination of arguments, the function
returns nothing. The smart constructor ADD takes a proof that the overloading is defined on
a given pair of input types. Then it extracts the selected instruction from the overloading.

Compared to “real” Michelson, the smart constructor requires an extra argument to work:

exnat : Program [(pair nat nat)] [(pair nat nat)]
exnat = DUP ; UNPAIR ; ADD refl ; DROP ; end

2.3 Blockchain Interface
A contract on the Tezos blockchain is indexed by a parameter type p and a store type s.
The type p must be Passable and the type s must be Storable. Moreover, each contract
comes with a current balance of tokens and a store of type s. The implementation of the
contract is a program that maps a pair p s to a pair (list operation) s, that is, it consumes
the parameter paired with the current store and produces a list of operations (e.g., to invoke
further contracts) paired with the updated store. The program itself is pure; any side effects,
i.e., store update and contract calls, are managed by the blockchain runtime.

4 The full Michelson language has ten different overloadings of ADD.

B. Arvay, T. T. H. Doan, and P. Thiemann 3:7

record Contract (Mode : MODE) (p s : Type) : Set where
constructor ctr
field Param : Passable p

Store : Storable s
balance : M Mode mutez
storage : M Mode s
program : Program [pair p s] [pair (list operation) s]

The Mode argument abstracts over the semantics of types. Its type has three components,
one M for the semantics and the others, F and G, are used by the abstract semantics in
Subsection 4.2.

record MODE : Set1 where
field M : Type → Set ; F : Set ; G : Set

Its instantiation for the concrete semantics installs the standard semantics of types from
Section 2.1. The remaining components are instantiated to the unit type ⊤.

CMode : MODE
CMode = record { M = J_K ; F = ⊤ ; G = ⊤}

With this definition, the contract store of the blockchain is just a partial mapping from
addresses to contracts.

Blockchain : (Mode : MODE) → Set
Blockchain Mode = Addr → Maybe (∃[p] ∃[s] Contract Mode p s)

To start executing a contract, we initiate a blockchain transaction to its address, i.e., we
ask the blockchain runtime to transfer tokens to its address along with its parameter. Once
a contract has terminated, the runtime updates the stored value and processes the list of
operations.

On the Tezos blockchain a normal account with deposit init corresponds to a contract
with a unit parameter, unit store, and a trivial program that issues no operations.

Account : Mutez → Contract CMode unit unit
Account init = ctr unit unit init tt (CDR ; NIL operation ; PAIR ; end)

3 Michelson Reference Implementation

Program execution is defined in a small-step manner by a function that maps the current
execution state of a program to a new state resulting from executing the first instruction:

prog-step : CProgState ro → CProgState ro

The type CProgState ro is a record that contains an input stack type ri, a program that
maps an ri stack to an ro stack, an input stack of type ri, and the execution environment.
prog-step executes the first instruction that must map an ri stack to an intermediate stack of
type re, say. Consequently, the program in the output CProgState maps an re stack to an
ro stack. As instructions as well as programs are intrinsically typed, the intermediate stack
type re is sure to match. Likewise, the typing of prog-step ensures type preservation.

ECOOP 2024

3:8 Dynamic Logic for Symbolic Execution for Michelson

record ProgState (Mode : MODE) (ro : Stack) : Set where
constructor state
field {ri} : Stack

en : Environment Mode
prg : ShadowProg{M Mode} ri ro
stk : All (M Mode) ri
Φ : F Mode

prog-step ρ | fct ft ; p
= record ρ { prg = p ; stk = app-fct ft (H.front (stk ρ)) H.++ H.rest (stk ρ) }

prog-step ρ | DROP ; p
= record ρ { prg = p ; stk = H.rest (stk ρ) }

Figure 3 Program state and single program step execution (excerpt).

3.1 Program Execution
So far we only concerned ourselves with the type of a Michelson stack. For program execution,
both the types and values of stack elements are relevant. To this end, we have to lift the
interpretation of a single type, i.e., a function from Type to Set, to the interpretation of a list
of types. The library predicate All does exactly that: it “maps” a Set-typed function over a
list, which yields (the type of) a heterogeneously typed list.

For example, the value interpretation of a type stack is a value stack where cor-
responding elements t and v are related by the type interpretation, that is, v ∶ JtK.

Int : Stack → Set
Int = All J_K

a-stack : Int (nat ∶∶ unit ∶∶ option addr ∶∶ [])
a-stack = 42 ∶∶ tt ∶∶ nothing ∶∶ []

The definition of a program state (see Figure 3) abstracts over a Mode which contains
a type interpretation that allows us reuse the same structure for concrete execution and
abstract execution. A program state contains the program that is currently executed, the
stack, and an environment which provides the context information to execute blockchain
instructions like AMOUNT and BALANCE. It is parameterized by the output stack type,
which does not change during execution. When executing more than one contract as we
demonstrate in Sec. 3.4, this parameterization ensures that the results from completed
contract executions are well typed.

The function prog-step executes the first instruction of a program on the current state.
We explain two exemplary cases shown in Figure 3. To explain the first stanza of the code
we have to make a confession. As several instructions have very similar semantics, our
internal representation of instructions is a refinement of the datatype shown in Figure 2. For
example, all instructions that just apply a function to the top of the stack are grouped under
a constructor fct and func-type is the type defining these instructions.

fct : func-type args results → Instruction+ args [× results]

The function app-fct applies such a function to a concrete stack. Roughly speaking, if
the underlying function has type a1 → ⋅ ⋅ ⋅→ an → (r1 × ⋅ ⋅ ⋅ × rm) it gets transformed into
a function between heterogeneously typed lists [a1, . . . , an] → [r1, . . . , rm]. We elide the

B. Arvay, T. T. H. Doan, and P. Thiemann 3:9

definition and just remark that the function [×_] implements the transformation between
(r1 × ⋅ ⋅ ⋅ × rm) and [r1, . . . , rm]. The functions H.front and H.rest (in Fig. 3) split the
input stack according to the stack types expected by the function ft. The function H.++ is
concatenation of heterogeneous lists.

The DROP instruction drops the top of the stack.

3.2 Execution of Control Flow Instructions
We have chosen a small-step semantics because its stepwise progression matches the stepwise
proof rules of the dynamic logic. However, the Michelson specification defines the semantics
in terms of a big-step judgment.5

record Configuration (ri : Stack) : Set where
constructor Conf
field cenv : CEnvironment ; stk : Int ri

data [_,_]⇓_ : Configuration ri → Program ri ro → Int ro → Set

It relates a configuration (environment and input stack of type ri) and a program to an
output stack of type ro. The definition of the semantics in the Michelson specification takes
some liberties that require some extra machinery in a small-step execution model. We discuss
these issues with some representative instructions.

The instruction IF-NONE p-none p-some expects a value of type option on top of the
stack. If that value is nothing (the encoding of NONE), the p-none branch is executed on the
rest of the stack:

↓-IF-NONE : ∀ {p-none : Program txs tys} {p-some : Program (tx ∶∶ txs) tys}
→ [Conf ce xs , p-none]⇓ ys
––––––––––––––––––––––––––––
→ [Conf ce (nothing ∶∶ xs) , IF-NONE p-none p-some]↓ ys

If however the top of the stack is just x (encoding SOME x), the p-some branch is executed
on the stack where just x is replaced with x:

↓-IF-SOME : ∀ {p-none : Program txs tys} {p-some : Program (tx ∶∶ txs) tys}
→ [Conf ce (x ∶∶ xs) , p-some]⇓ ys
––––––––––––––––––––––––––––
→ [Conf ce (just x ∶∶ xs) , IF-NONE p-none p-some]↓ ys

To specify the corresponding small-step rule we introduce a type-respecting concatenation
operator ;• on programs. The program IF-NONE p-none p-some ; p-rest either transitions to
p-none ;• p-rest or to p-some ;• p-rest, depending on the value on top of the stack.

The instruction DIP n p executes program p on the stack that results from removing the
first n elements of the current stack and reattaches them afterwards.

↓-DIP : ∀ {n} {q : T (n ≤
b length txs)} {p-dip : Program (drop n txs) tys}

→ [Conf ce (H.drop n xs) , p-dip]⇓ ys
–––––––––––––––––––––––––––-
→ [Conf ce xs , DIP n {q} p-dip]↓ (H.take n xs H.++ ys)

5 For typing reasons the implementation splits it in four judgments for programs ⇓, instructions ↓, shadow
programs ⤋, and shadow instructions ↓

′.

ECOOP 2024

3:10 Dynamic Logic for Symbolic Execution for Michelson

In the small-step version, dropping the first n elements of the stack is easy, but reattaching
them requires extra machinery. Thus, a mechanism for holding on to the top of the stack
while executing the subprogram and retrieving it afterwards is necessary.

Execution of ITER requires the same feature in a slightly different way. It consumes the
list on top of the current stack. If the list is empty, it is dropped from the stack:

↓-ITER-NIL : ∀ {p-iter : Program (t ∶∶ txs) txs}
––––––––––––––––––––-
→ [Conf ce ([] ∶∶ xs) , ITER p-iter]↓ xs

Otherwise the subprogram is applied to the first list element v and then the ITER
instruction is reissued on the rest of the list vs and the current stack:

↓-ITER-CONS : ∀ {v : J t K}{vs : J list t K} {xs ys zs : Int txs} {p-iter : Program (t ∶∶ txs) txs}
→ [Conf ce (v ∶∶ xs) , p-iter]⇓ ys
→ [Conf ce (vs ∶∶ ys) , ITER p-iter]↓ zs
–––––––––––––––––––––––
→ [Conf ce ((v ∶∶ vs) ∶∶ xs) , ITER p-iter]↓ zs

The typing for ITER requires that the type of the underlying stack is preserved, but the
subprogram p-iter is entitled to access and modify the stack beyond the first element x.
Let’s now consider stepwise execution. If the list on top has the form v ∶∶ vs, we need to
stash the tail list vs somewhere while the subprogram processes the stack with v on top.
After execution of the subprogram, we have to recover vs and try again with ITER.

As subprograms can be arbitrarily complex, in particular, they may contain DIP and
ITER, we need a nestable solution. To this end, we add a single new instruction MPUSH1
that pushes a single value on the stack. This instruction is different from the normal PUSH
instruction, which is limited to Pushable values that have a textual representation.

data ShadowInst {M : Type → Set} : Stack → Stack → Set where
MPUSH1 : ∀{t : Type} → M t → ShadowInst rS (t ∶∶ rS)

We call the new instruction a shadow instruction because it does not appear in input
programs. It is indexed by two stack types like any other instruction. A shadow program
is defined like Program, but its first instruction can be a normal instruction or a shadow
instruction. Shadow programs only appear at the top-level, never as subprograms nested in
instructions. We elide the definition of ShadowProg as it is analogous to Program. Moreover,
we provide a utility function mpush to generate a sequence of MUSH1 instructions from a list
of values.

mpush : ∀ {M : Type → Set} {ri}{ro} {front : Stack}
→ All M front → ShadowProg{M} (front ++ ri) ro → ShadowProg{M} ri ro

mpush [] sp = sp
mpush (x ∶∶ xs) sp = mpush xs (MPUSH1 x • sp)

The small-step version of DIP n dp takes the top n elements from the stack and starts
executing the program dp followed by the new instruction mpush front where front is the list
of the n values that were removed from the stack.

prog-step ρ | DIP n dp ; p
= record ρ { prg = dp ;• mpush (H.take n (stk ρ)) p ; stk = H.drop n (stk ρ) }

B. Arvay, T. T. H. Doan, and P. Thiemann 3:11

example-ITER : Program [list nat ; nat] [nat]
example-ITER = ITER (ADDnn ; end) ; end

Figure 4 Simple program using ITER.

Table 1 Program states during execution of Figure 4.

rSI prg
--
[18 , 24] ∶∶ 0 ∶∶ [] ITER (ADD)

18 ∶∶ 0 ∶∶ [] ADD ; MPUSH [24]; ITER (ADD)
18 ∶∶ [] MPUSH [24]; ITER (ADD)

[24] ∶∶ 18 ∶∶ [] ITER (ADD)
24 ∶∶ 18 ∶∶ [] ADD ; MPUSH []; ITER (ADD)

42 ∶∶ [] MPUSH []; ITER (ADD)
[] ∶∶ 42 ∶∶ [] ITER (ADD)

42 ∶∶ [] end

The small-step version of ITER ip just pops the stack if the list is empty. Otherwise,
if the top contains v ∶∶ vs, it pops this value, puts v on top of the stack and executes ip

followed by mpush [vs] and then ITER ip and the rest of the program.

prog-step ρ | ITER ip ; p with stk ρ

... | [] ∶∶ rsi = record ρ { prg = p ; stk = rsi }

... | (v ∶∶ vs) ∶∶ rsi = record ρ { prg = ip ;• (MPUSH1 vs • (ITER ip ; p)) ; stk = v ∶∶ rsi }

For illustration, Table 1 gives the stacks and shadow program of each intermediate state
resulting from applying prog-step to the program in Figure 4 until program termination for
the given input stack interpretation (omitting end for readability). This program adds a list
of numbers on top of the stack to the number below.

3.3 Relation to Big-Step Semantics
Executing a program requires iterating the prog-step function. Our implementation drives
this iteration by a step counter that is counted down at each instruction.

prog-step* : N → CProgState ro → CProgState ro
prog-step* zero ρ = ρ

prog-step* (suc n) ρ = prog-step* n (prog-step ρ)

We prove that the original big-step semantics and our small-step semantics are equivalent
in the usual sense.

bigstep⇒smallstep : ∀ (prg : ShadowProg txs tys)
→ [Conf ce xs , prg]⤋ ys
→ ∃[n] prog-step* n (cstate ce prg xs) ≡ cstate ce end ys

smallstep⇒bigstep : ∀ n → (prg : ShadowProg txs tys) → {xs : Int txs} {ys : Int tys}
→ prog-step* n (cstate ce prg xs) ≡ cstate ce end ys
→ [Conf ce xs , prg]⤋ ys

ECOOP 2024

3:12 Dynamic Logic for Symbolic Execution for Michelson

record PrgRunning (Mode : MODE) : Set where
constructor pr
field {pp ss x y} : Type

self : Contract Mode pp ss
sender : Contract Mode x y
ρ : ProgState Mode [pair (list operation) ss]

record Transaction (Mode : MODE) : Set where
constructor _,_
field pops : (M Mode) (list operation)

psender : Addr

data RunMode (Mode : MODE) : Set where
Run : PrgRunning Mode → RunMode Mode
Cont : F Mode → RunMode Mode
Fail : G Mode → RunMode Mode

record ExecState (Mode : MODE) : Set where
constructor exc
field accounts : Blockchain Mode

MPstate : RunMode Mode
pending : List (Transaction Mode)

Figure 5 Contract execution state.

3.4 Contract Execution and Execution Chains

The prog-step function can execute any Michelson program, not only those that comply to
the typing restrictions of a contract. But it does not provide a mechanism to update the
blockchain after successful contract execution nor one to execute other blockchain operations
which might be emitted by a contract.

To implement these aspects of contract execution, the ProgState is augmented with further
information as shown in Figure 5. The record PrgRunning holds the contracts involved in
the current execution: self is the current contract and sender is the sender (the account that
started the current contract). The ExecState holds the Blockchain, where contract execution
results are saved, and a list of pending blockchain transactions to be executed. A value
of type Transaction comprises a list of operations and the address of the sender of these
operations. The field MPstate encodes the current mode of execution. Run indicates that a
contract is currently executing the program in PrgRunning where we can take a step. Cont
indicates the transition between one contract and the next; execution proceeds with the
next pending blockchain operation. The F argument is used by the abstract execution to
propagate information between contract invocations. Fail indicates a failure along with an
error code in its G argument.

B. Arvay, T. T. H. Doan, and P. Thiemann 3:13

exec-step σ@(exc accts (Run (pr self _ (state en end [new-ops , new-storage] _))) pend)
= record σ{ accounts = set (self-address en) (upd-storage self new-storage) accts

; MPstate = Cont tt
; pending = (new-ops , self-address en) ∶∶ pend }

exec-step σ@(exc _ (Run ρr@(pr _ _ ρ)) _)
= record σ{ MPstate = Run (record ρr{ ρ = prog-step ρ }) }

Figure 6 Program execution.

The function exec-step : CExecState → CExecState maps an execution state to its successor
state just like prog-step did for program states. It only implements the features mentioned
above that cannot be modeled by the program state alone. Its definition is too big to include
it in full; instead we briefly explain its implementation, giving each case in the same order as
in the implementation.

Figure 6 contains the cases when a contract is executing.
1. When execution of the current contract has terminated (i.e., MPstate is Run pr and

ProgState.prg matches end), then intrinsic typing ensures that the stack interpretation
contains the emitted blockchain operations new-ops paired with the new storage value
new-storage. We add the emitted operations to the pending field, update the terminated
contract’s storage on the blockchain, and switch to RunMode Cont.

2. In all other cases of a running program, its ProgState evolves using prog-step.
In the remaining cases MPstate is Cont tt which means that no contract is currently executed.
In this case pending is checked for other operations to be executed. Our model only implements
the TRANSFER-TOKENS operation that initiates a new contract execution. We perform the
following checks in this case:

we fail unless the operation was emitted from a valid account;
we fail unless the type of the parameter matches the input type of the called contract;
we fail unless the target is a valid account;
we fail unless the sender’s balance contains sufficient tokens to support the transfer.

The first three cases can never occur during an actual execution of a Michelson smart
contract execution chain: The TRANSFER-TOKENS instruction only works for values of
type contract t, which ensures validity of the target address and that the parameter type
is t. Moreover, operations can only be emitted by valid accounts. The checks are needed
in our model because it does not maintain information about which addresses are valid
contract addresses. We chose not to include this information as it adds complexity without
contributing to our goal of proving the soundness of symbolic execution.

4 Dynamic Logic for Michelson

To obtain a dynamic logic suitable for symbolic execution we follow the Key approach [9]
and extend first order logic with a modality [p], where p is a program state. The intuitive
meaning is that [p]Ψ holds for a formula Ψ, if running p terminates in a state such that Ψ
holds. That is, the formula Φ → [p]Ψ has a similar meaning as the Hoare triple {Φ} p {Ψ}.

In the following, we concentrate on the proof rules for the modality. For instance
(and ignoring the details of the program state for now), Φ → [end]Ψ ≡ Φ → Ψ if the
program is empty. Many simple proof rules have the form Φ → [i; p]Ψ ≡ Φi ∧ Φ → [p]Ψ
where the formula Φi describes the effect of instruction i. If the instruction is a branch
instruction on a predicate Q, like if Q p1 p2, the resulting formula is a disjunction as in
Φ → [(if Q p1 p2); p]Ψ ≡ Q ∧ Φ → [p1; p]Ψ ∨ ¬Q ∧ Φ → [p2; p]Ψ.

ECOOP 2024

3:14 Dynamic Logic for Symbolic Execution for Michelson

data _⊢_ (Γ : Context) : Type → Set where
var : t ∈ Γ → Γ ⊢ t
const : J base bt K → Γ ⊢ base bt
contr : ∀ {P : Passable t} → Addr → Γ ⊢ contract P
func : 1-func args result → Match Γ args → Γ ⊢ result

data Formula (Γ : Context) : Set where
‘false : Formula Γ
:= : t ∈ Γ → Γ ⊢ t → Formula Γ
<m : mutez ∈ Γ → mutez ∈ Γ → Formula Γ
≥m : mutez ∈ Γ → mutez ∈ Γ → Formula Γ

Figure 7 Terms and formulas.

We start by defining the formulas of the logic in Subsection 4.1.

4.1 Terms and Formulas
At the core of any symbolic execution there are symbolic (i.e., logical) variables representing
the unknown operands. We represent such variables by a typed deBruijn index into a given
Context = List Type. An abstract stack is then a list of typed variables:

Match : Context → Stack → Set
Match Γ = All (_∈ Γ)

Any knowledge that we have about the values on the stack is encoded in the list of
formulas (over the variables on the stack) that we maintain in the program state. Figure 7
shows the terms and formulas used for the logic. Term comprise variables, constants of base
type and of contract type, and simple functions. Here, “function” stands for proper functions
as well as data constructors. For convenience, we restrict function arguments to variables
and rely on variable equality in the formulas to specify complex terms.

As an example for the interplay between context, stack, and formulas, suppose the context
defines three variables of type nat like this Γ1 = nat ∶∶ nat ∶∶ nat ∶∶ []. An abstract stack for
this context might just contain a single variable x = 0∈, where the 0 ∈ refers to the first
variable in Γ1.

a-stack : Match Γ1 (nat ∶∶ [])
a-stack = [x]

If we further want to enforce that x = y + 3 (on natural numbers), then we have to encode
that in two simple formulas, one that associates 3 to variable v, and another that states
x = y + v. We do not impose a constraint on y, so it serves as an unconstrained symbolic
variable.

x=y+3 : List (Formula Γ1)
x=y+3 = x := func ‘ADDnn (y ∶∶ v ∶∶ [])

∶∶ v := const 3
∶∶ []

B. Arvay, T. T. H. Doan, and P. Thiemann 3:15

Formulas are mainly used to express equality of a variable with a term. The inequalities
express the ordering on tokens. The latter is used for token transfers where we have to know
that the sender has sufficiently many tokens to satisfy the requirements of the transfer. The
reader may wonder about conjunction and disjunction: the proof rules only generate them in
the form of a disjunction of conjunctions of simple formulas. We represent this structure as
a list of lists of simple formulas. Repetition does not matter in this representation for two
reasons: 1. disjunction and conjunction are both idempotent; 2. we are only interested in
validity of a formula, but do not transform it in any way.

4.2 Representing Michelson Program State in DL
We simplify the handling of formulas of the form Φ → [p]Ψ by reusing our previous definition
of the type ProgState in a different mode as an abstract state.

AMode : Context → MODE
AMode Γ = record { M = _∈ Γ

; F = List (Formula Γ)
; G = List (Formula Γ) ⊎ List (Formula Γ)
}

That is, we replace the normal representation of values in M by symbolic variables, in F we
maintain a list (i.e., conjunction) of formulas, and in G we maintain a tagged list of formulas
to represent different modes of failure.

The meaning of an abstract state is a conjunction that specifies the value for AMOUNT
and BALANCE in the environment, it specifies the size of the stack and all values on it, and
it collects further constraints generated by application of the proof rules.

Informally, an abstract program state represents Θ ⟹ [prg]Ψ where

Θ ≡ state of environment = en ∧ state of stack = stk ∧ ⋀
ϕ∈Φ

ϕ

The encoding of the implication in the abstract program state corresponds exactly to
the abstract instance of the ProgState type (see Figure 3). Reusing the type in this way
makes the formalization of symbolic execution very similar to the concrete execution model
presented in Section 3. This similarity in turn makes the soundness proof easier and more
concise. All constructs for concrete execution are reused in the abstract by instantiating
their MODE parameter. Thus, they are automatically parameterized by a Context Γ and
the names of the structures are the same as for concrete execution but prefixed with an α

(only the abstract blockchain is called βlockchain).
Symbolic execution of control flow can lead to disjunctions over such states, which is

represented using a list of abstract program states. Each of the branch comes with its own
state, which requires existential quantification over the types of the variables in Γ.

⊎Prog-state : Stack → Set
⊎Prog-state ro = List (∃[Γ] αProg-state Γ ro)

Using Agda lists to represent conjunctions and disjunctions is convenient for two reasons.
1. Conjunctions and disjunctions do not mix: Φ always represents a conjunction over its

elements and disjunctions can only occur as a result of some symbolic execution rules
that implement control flow. In this case, the disjunction always affects every aspect of
the abstract program state (i.e., the remaining programs will always differ).

2. Agda’s “element of” relation for lists makes the implementation of the rules of the calculus
simple and efficient.

ECOOP 2024

3:16 Dynamic Logic for Symbolic Execution for Michelson

4.3 Proof Rules for Michelson
The rules for symbolic execution are formalized by a function that maps an abstract program
state into a set (list) of abstract program states.

αprog-step : ∀ {Γ ro} → αProg-state Γ ro → ⊎Prog-state ro

It mimics prog-step and gives a deterministic way of symbolic execution. Every (non-
environmental) functional instruction can be executed concretely with a single rule as shown
in Figure 6. During symbolic execution, the only thing that is guaranteed is that the stacks
contain values of the expected type. For example, if the next instruction is ADDnn, we can
conclude that there are two values of type nat on top of the stack before the instruction and
one value of type nat afterwards. Moreover, we can say that this value is the sum of the two
values that were on top of the stack before, but we have to express that with a constraint,
i.e., a logical formula.

That is, symbolic execution of ADDnn introduces a new variable vr that replaces the
variables vx and vy from the top of the stack, and adds a clause that equates this new variable
with the sum of the former two:

vr ∶= ADDnn vx vy

In this way, we can give a single symbolic execution rule for all functional instructions
that return a single result.

αprog-step {Γ} (state αen (fct (D1 {result = result} f) ; prg) αst Φ)
= [(result ∶∶ Γ)

, state (wkαE αen) (wkSP prg) (0∈ ∶∶ wkM (H.rest αst))
(0∈ := wk⊢ (func f (H.front αst)) ∶∶ wkΦ Φ)]

Let’s decompress this definition. We pattern match against the current (abstract) state
to obtain the environment αen, the current instruction, the rest of the program prg, the
stack αst, and the formula Φ. The constructor fct indicates a functional instruction and the
constructor D1 indicates that f returns a single result of type result.

As the instruction does not implement any control flow, there is only a single next state.
Its description starts with the extended context result ∶∶ Γ, which introduces a new variable
of type result for the result. The name, rather the deBruijn address, of this variable is 0∈,
which denotes the first entry in the context. The second component describes the new state,
which (ignoring the wk functions for the moment) keeps the environment, moves to the rest
of the program, pushes the result on the stack after removing the arguments using H.rest,
and pushes a new equation that defines the value of 0∈ as the result of applying f to the
front of the stack. The functions H.front and H.rest operate on heterogenous lists and are
defined such that αst ≡ H.front αst H.++ H.rest αst where the actual division is driven by
the type of f . The operation H.++ is concatenation of heterogenous lists. The wk functions
are a consequence of using deBruijn indices for variables: if we introduce new variables, all
existing variables have to be incremented by the number of new variables (i.e., weakened).
We do not show their definition, as this manipulation of deBruijn indices is standard.

We do not have a general mechanism for the other functional instructions (see Figure 8),
as they behave very differently in a symbolic context: UNPAIR requires two new variables
and clauses, while SWAP only changes the position of two stack values. No new variables or
clauses are necessary because SWAP only reconfigures the stack.

The instruction PUSH needs special treatment because it can handle arbitrarily complex
compound values. When pushing a value x of primitive type, it is sufficient to add a new
variable and a clause which sets this variable equal to the term const x. But if x has a list

B. Arvay, T. T. H. Doan, and P. Thiemann 3:17

αprog-step {Γ} (state αen (fct (Dm (‘UNPAIR {t1} {t2})) ; prg) (p∈ ∶∶ αst) Φ)
= [(t1 ∶∶ t2 ∶∶ Γ)

, state (wkαE αen) (wkSP prg) (0∈ ∶∶ 1∈ ∶∶ wkM αst)
(0∈ := func ‘CAR [wk∈ p∈] ∶∶ 1∈ := func ‘CDR [wk∈ p∈] ∶∶ wkΦ Φ)]

αprog-step α@(state αen (fct (Dm ‘SWAP) ; prg) (x∈ ∶∶ y∈ ∶∶ αst) Φ)
= [-, record α{ prg = prg ; stk = y∈ ∶∶ x∈ ∶∶ αst }]

αprog-step {Γ} (state αen (fct (‘PUSH P x) ; prg) αst Φ)
= [(expandΓ P x ++ Γ)

, state (wkαE αen) (wkSP prg) ((∈wk (0∈exΓ P)) ∶∶ wkM αst)
(Φwk (unfold P x) ++ wkΦ Φ)]

Figure 8 Functional instructions (excerpt).

type or an option type, its value cannot be expressed with a const term. In general, the
symbolic execution of a single PUSH instruction may create arbitrarily many (but linear in
the size of the pushed value) new variables and clauses.

To this end, the function unfold P x creates all clauses required to express the value x.
This process defines a list of new variables of types defined by expandΓ P x.6 For example,
PUSH {list ty} P (y ∶∶ ys) gives rise to two new variables ry of type ty for y and rys of
type list ty for ys and an equation r ∶= func (CONS [ry, rys]), where r is the variable for
the result. The function unfold proceeds recursively: if ys = [], its variable can be set to
func (NIL ty) [], otherwise it will be further decomposed. Similarly for y: if ty is a primitive
type, it can be set to const y, otherwise it must be further decomposed as well.

As an example, we show the result of unfolding the list [0, 1] ∶ list nat. The generated
context is Γ2 = list nat ∶∶ list nat ∶∶ list nat ∶∶ nat ∶∶ nat ∶∶ [] and the generated list of equations
to represent the list is as follows.

eqn : List (Formula Γ2)
eqn = c1 := func ‘CONS (x0 ∶∶ c2 ∶∶ [])

∶∶ c2 := func ‘CONS (x1 ∶∶ c3 ∶∶ [])
∶∶ c3 := func (‘NIL nat) []
∶∶ x0 := const 0
∶∶ x1 := const 1
∶∶ []

We finish with the abstract execution of the conditional instruction IF-NONE (see Figure 9).
This instruction expects a value of type option t on top of the stack. Here we have two
possible next states, depending on whether the value is present. The first disjunct deals with
the case where the value is NONE. In this case, the stack is popped, the thn branch is taken,
and the equation enforcing the value to be NONE is added. There are no new variables, so
there is no weakening in this disjunct.

6 We do not include the tedious definitions of these auxiliary functions here, but encourage the interested
reader to check the supplementary material.

ECOOP 2024

3:18 Dynamic Logic for Symbolic Execution for Michelson

αprog-step {Γ} (state αen (IF-NONE {t = t} thn els ; prg) (o∈ ∶∶ αst) Φ)
= [Γ , state αen (thn ;• prg) αst (o∈ := func (‘NONE t) [] ∶∶ Φ)

; (t ∶∶ Γ) , state (wkαE αen) (els ;• wkSP prg) (0∈ ∶∶ wkM αst)
(wk∈ o∈ := func ‘SOME [0∈] ∶∶ wkΦ Φ)]

Figure 9 Symbolic execution of IF-NONE.

The second disjunct models the case where the value on top of the stack is SOME y. Here
we need a new variable of type t for y, pop the stack and push the new variable, we take the
els branch, and add an equation that forces the value to be SOME y.

4.4 Proof Rules for the Blockchain Run-time
Just like the symbolic execution rules for the Michelson DL, those for the DL on blockchain
operations are given analogously.

⊎ExecState : Set
⊎ExecState = List (∃[Γ] αExecState Γ)

αexec-step : ∀ {Γ} → αExecState Γ → ⊎ExecState

The switch from concrete to abstract execution state is achieve by changing the Mode

parameter of the ExecState (see Figure 5). Its F field replaces concrete semantics by abstract
semantics throughout all state components.

Unfortunately αexec-step cannot represent exec-step exactly, if MPstate is Cont Φ, that
is: a contract has terminated and we need to check the pending field for further operations
to be executed. At this point, the predicate Φ has to supply sufficient information about
the values of the variables representing the pending operations to proceed in a meaningful
way. The pending list contains pairs of a list of operations and a sender address. While
the latter is a concrete address, the former is a variable of type list operation ∈ Γ. To
proceed, we have to know if the list is empty (so that we can proceed to the next block of
pending operations) or not. In the latter case, we need to ensure that the first element of
the operation list is a TRANSFER-TOKENS, and so on.

To this end, we defined several auxiliary functions to inspect the constraints in Φ for
patterns that restrict the models sufficiently. For example, the function find-tt-list takes a
conjunction of formulas and a variable of type list t and tries to find a formula that restricts
this variable to NIL or CONS:

find-tt-list : ∀ {Γ}{t} → List (Formula Γ) → list t ∈ Γ
→ Maybe (Match Γ [] ⊎ Match Γ [t ; list t])

find-tt-list-soundness : ∀ {Γ}{t} → (Φ : List (Formula Γ)) → (l∈ : list t ∈ Γ)
→ find-tt-list Φ l∈ ≡ just (inj1 [])
→ ∀ (γ : Int Γ) → γ ⊧Φ Φ
→ lookup γ l∈ ≡ []

B. Arvay, T. T. H. Doan, and P. Thiemann 3:19

val⊢ : ∀ {ty Γ} → Int Γ → Γ ⊢ ty → J ty K
val⊢ γ (var v∈) = lookup γ v∈
val⊢ γ (const b) = b
val⊢ γ (contr adr) = adr
val⊢ γ (func f args) = appD1 f (map (lookup γ) args)

⊧φ : ∀ {Γ} → Int Γ → Formula Γ → Set
γ ⊧φ ‘false = ⊥

γ ⊧φ (v∈ := trm) = lookup γ v∈ ≡ val⊢ γ trm
γ ⊧φ (x <m x1) = lookup γ x < lookup γ x1

γ ⊧φ (x ≥m x1) = lookup γ x ≥ lookup γ x1

Figure 10 Semantics of terms and formulas.

We only show the soundness lemma for NIL, as the one for CONS is analogous. This
approach is not complete as the implementation of find-tt-list is tailored to the constraints as
they are produced by symbolic execution.

The full implementation is quite involved and relies on several further lemmas that
examine constraints (for example if the current balance of a sender is sufficient for a token
transfer) in a similar way. We refer the interested reader to the supplement.

The remaining cases deal with a terminated contract execution where the new state
is written back to the blockchain or the execution of an abstract program step for the
contract under execution. The first case is similar to the concrete implementation where
new variables are introduced for the updated values. The second case is more complicated
because the context extensions from the abstract program step are encoded in the list of
resulting disjunctions, so an additional term has to be supplied proving that these contexts
are actually an extension of the original context.

5 Semantics and Soundness

5.1 Values and Models
As a context is just a list of types like a stack, its interpretation is also a heterogeneous list
of values as defined by Int. For a given context interpretation γ, the semantics of a term and
a formula is defined as usual (see Figure 10).

For a given context interpretation γ and abstract and concrete (program or execution)
states, the predicates modρ and modσ express that under this interpretation the given
abstract state models the concrete state. This is the case when the formulas in Φ are true
under γ and the real and variable values are the same for the stacks and every other element.

MODELING : Context → (MODE → Set) → Set1

MODELING Γ F = Abstract F Γ → Concrete F → Set

modρ : ∀ {Γ} → Int Γ → MODELING Γ λ M → Prog-state M ro
modρ γ (state {ri = αri} αen αprg rVM Φ)

(state {ri} en prg stk tt)
= Σ (αri ≡ ri) λ{ refl →

modE γ αen en × modprg γ αprg prg × modS γ rVM stk × modΦ γ Φ}

ECOOP 2024

3:20 Dynamic Logic for Symbolic Execution for Michelson

soundness γ (state αen (IF-NONE thn els ; aprg) (o∈ ∶∶ rVM) Φ)
(state en (.IF-NONE thn els ; cprg) (just x ∶∶ stk) tt)
(modρ〈 mE , (o≡ , mrS) , (refl , refl , mPRG) , mΦ 〉)

= _ , [x] , _ , 1∈ , (refl , wkmodE mE , modprg-extend els (wkmodprg mPRG) ,
(refl , wkmodS mrS) , (o≡ , wkmodΦ mΦ))

soundness γ (state αen (IF-NONE thn els ; aprg) (o∈ ∶∶ rVM) Φ)
(state en (.IF-NONE thn els ; cprg) (nothing ∶∶ stk) tt)
(modρ〈 mE , (o≡ , mrS) , (refl , refl , mPRG) , mΦ 〉)

= _ , [] , _ , 0∈ , (refl , mE , modprg-extend thn mPRG , mrS , (o≡ , mΦ))

Figure 11 Prog-step soundness for IF-NONE (excerpt).

They all have a similar structure expressed by the MODELING function as they relate
an abstract thing with a concrete thing. They are implemented by several auxiliary modX

predicates for every subcomponent of program and execution states. For example, ModE
relates execution environments, modprg relates shadow programs, modS relates stacks, and
modΦ checks that the formulas are all true. The definition of modσ is similar.

To show that a disjunction of abstract states models a concrete state, we show that one
of the states in the disjunction models the state:

mod⊎σ : ∀ {Γ} → Int Γ → ⊎ExecState → CExecState → Set
mod⊎σ {Γ} γ ⊎σ σ = ∃[ασ] (Γ , ασ) ∈ ⊎σ × modσ γ ασ σ

5.2 Soundness of the DL
We prove the soundness of the logic by showing that when an abstract state models a concrete
one, the result of one-step symbolic execution models the result from concrete execution of
the same step. Here are the types of the proof terms for program steps and execution steps.

soundness : ∀ {Γ ro} γ αρ ρ → modρ {ro} {Γ} γ αρ ρ

→ ∃[Γ‘] ∃[γ‘] mod⊎ρ {Γ = Γ‘ ++ Γ} (γ‘ H.++ γ) (αprog-step αρ) (prog-step ρ)

soundness : ∀ {Γ} (γ : Int Γ) → ∀ ασ σ → modσ γ ασ σ

→ ∃[Φ] ExecState.MPstate ασ ≡ APanic Φ
⊎ ∃[Γ‘] ∃[γ‘] mod⊎σ {Γ‘ ++ Γ} (γ‘ H.++ γ) (αexec-step ασ) (exec-step σ)

The first soundness statement addresses soundness of αprog-step. As the modeling
relation is mostly composed of equalities, the proof gets accepted by Agda, once we supply
sufficiently precise arguments to match the cases in the definition of αprog-step. We pattern
match against refl and parts of the arguments, as well as we show that the weakened parts of
the formula are still modeled with the extended context (if new variables were introduced in
the case).

Figure 11 shows the case for the IF-NONE instruction. Without going into details, it is
easy to spot the handling of the concrete and abstract stack and that the outcome of the
test determines which of the possibilities of the abstract outcome is chosen (cf. 0 ∈ and 1 ∈).

The most complicated case of this proof establishes soundness for any scalar function (see
Figure 12). It works by showing that applying the front of the previous stack interpretation
to the given function yields the same result as applying the extended interpretation of the
top of the previous stack matching to it.

B. Arvay, T. T. H. Doan, and P. Thiemann 3:21

soundness γ (state αen (fct (D1 f) ; aprg) rVM Φ)
(state en (.fct (D1 f) ; cprg) stk tt)
(modρ〈 mE , mrS , (refl , refl , mPRG) , mΦ 〉)

with modS++ rVM stk mrS
... | mfront , mrest =

let result = appD1 f (H.front stk) in
_ , [result] , _ , 0∈ , (refl ,
wkmodE mE , wkmodprg mPRG , (refl , wkmodS mrest) ,
(cong (appD1 f) (trans (sym (modIMI mfront)) (wkIMI {γ‘ = [result]})) , wkmodΦ mΦ))

Figure 12 Prog-step soundness for scalar functions (excerpt).

The second soundness statement establishes soundness for those cases of αexec-step where
a contract execution is active. This part appears simple because it only covers two cases:
Either we are in the middle of running a contract, in which case we reuse the soundness
proof for program state execution, or the current contract execution has terminated and we
have to prove that the blockchain and the pending list are updated correctly. The first case
is straightforward, but tedious because we need to copy parts of the previous proof. The
second case is fairly technical as it involves getting the proof in sync with the definitions of
concrete and abstract execution.

6 Related Work

Research on formal verification of blockchain-based applications has experienced rapid growth
in the last decade. Various techniques and frameworks have been applied to enhance the
safety of smart contracts. In this section, we discuss some key approaches, particularly those
employing symbolic execution in the context of smart contracts.

6.1 Verification of Smart Contracts
Symbolic execution is a powerful technique for systematically exploring program paths and
identifying potential vulnerabilities in smart contracts. Most of the existing tools focus on the
Ethereum platform. Tsankov et al. introduced SECURIFY [32], a tool that utilizes symbolic
execution to perform practical security analysis on Ethereum smart contracts. It targets
common vulnerability security patterns specified in a designated domain-specific language.
SECURIFY symbolically encodes the dependence graph of the contract in stratified Datalog
to extract semantic information from the code. After obtaining semantic facts, it checks
whether the security patterns hold or not. Similarly, Manticore [26] and KEVM [18] use
symbolic execution to analyze Ethereum smart contracts. KEVM is an executable formal
specification built with the K Framework for the Ethereum virtual machine’s bytecode (EVM),
a stack-based and low-level smart contract language for the Ethereum blockchain. Since
tokens can hold a significant amount of value, they are often targeted for attacks. Therefore,
several tools [18, 29] conduct case studies for the implementations of token standards.

Several approaches use existing formal verification frameworks to ensure the correctness
and security of smart contracts. Amani et al. [3] proposed the formal verification of Ethereum
smart contracts in Isabelle/HOL. Hirai [19] formalizes the EVM using Lem, a language to
specify semantic definitions. The formal verification of smart contracts is achieved using

ECOOP 2024

3:22 Dynamic Logic for Symbolic Execution for Michelson

the Isabelle proof assistant. Mi-cho-Coq [10] is a framework for the proof assistant Coq to
verify functional correctness of Michelson smart contracts. They formalize the semantics of
a Michelson in Coq using a weakest precondition calculus and verify several contracts. It
provides full coverage of the language whereas our goal is to give a blueprint for a soundness
proof of symbolic execution.

There are several tools for automated verification including solc-verify [15], VerX [4],
and Oyente [22]. solc-verify processes smart contracts written in Solidity and discharges
verification conditions using modular program analysis and SMT solving. It operates at
the level of the contract source code, with properties specified as contract invariants and
function pre- and post-conditions provided as annotations in the code by the developer.
This approach offers a scalable, automated, and user-friendly formal verification solution for
Solidity smart contracts. The core of solc-verify involves translating Solidity contracts to
Boogie IVL (Intermediate Verification Language), a language designed for verification.

Nishida et al. [27] developed HELMHOLTZ, an automated verification tool for Michelson.
While both research efforts aim to build a verification tool for smart contracts written
in Michelson, HELMHOLTZ is based on refinement types, whereas we consider symbolic
execution. HELMHOLTZ has better coverage of Michelson instructions than we currently
have, but it can only verify a single contract whereas our model and soundness proof covers
full inter-contract verification. The HELMHOLTZ developers plan to extend Helmholtz with
inter-contract behavior.

Bau et al. [8] implement a static analyzer for Michelson within the modular static analyser
MOPSA that is based on abstract interpretation. It is able to infer invariants on a contract’s
storage over several calls and it can prove the absence of errors at run time.

Da Horta et al. [5] aim at automating as much of the verification process as possible by
automatically translating a Michelson contract into an equivalent program for the deductive
program verification platform WHY3. However, they found that sometimes user intervention
was required, and their tool can only verify single contracts individually.

6.2 Symbolic Execution for Bytecode Interpretation
As there are some parallels between Michelson and bytecode languages, we discuss symbolic
execution methods for some seleted bytecode languages.

Albert et al. [2] transform Java bytecode into a logic program to utilize analysis techniques
from logic programming, specifically symbolic semantics, for the formal verification of the
bytecode. They verify properties such as termination and run-time error freeness and infer
resource bounds. The dynamic aspects of bytecode, such as control flow and data flow, are
effectively handled through the analysis performed on the logic program. Balasubramanian,
Daniel et al. [7] include dynamic symbolic execution tailored for Java-based web server
environments. Their tool analyzes the bytecode interactions within the Java Virtual Machine
and focuses on bytecode instructions, method calls, object manipulations and memory
interactions to detect vulnerabilities and bugs.

Several approaches address formal semantics and analysis for WebAssembly (Wasm) [24,
21, 34]. Watt, Conrad et al. [34] present Wasm Logic, a formal program logic for WebAssembly.
The authors mechanize Wasm logic and its proof of correctness in Isabelle/HOL. To this
end, they propose an alternative semantics. Just like our work (we propose a logic on an
alternative semantics, mechanize it, and prove its soundness in Agda), their aim is to provide
a logical basis for static analysis tools.

Marques et al. [24] present a concolic execution engine that systematically explores
different program paths by combining concrete and symbolic execution to enable automated
testing and fault detection. It models execution behavior and uses constraint solvers to

B. Arvay, T. T. H. Doan, and P. Thiemann 3:23

generate inputs and explore paths, taking into account the complexity of Wasm’s stack-based
execution and binary format. Unlike our work, their work is geared towards implementing a
realistic tool.

6.3 Related Uses of Dynamic Logic

The idea of using dynamic logic for symbolic execution can be traced back to Heisel et al. [17].
They formalize Burstall’s verification method [11] using symbolic execution and induction in
the framework of dynamic logic.

Maingaud et al. [23] define a program logic for imperative ML programs based on dynamic
logic and prove its soundness. Their goal is to use this logic as a basis for symbolic execution.

Similar to our approach, the research of Ahrendt et al. [1] emphasizes data integrity in
Solidity smart contracts. This framework verifies smart contracts and ensures strong data
integrity and functional correctness under various conditions. It introduces a specification
language for defining contract properties and behaviors that are critical for security and
reliability. Similar approaches to ours aim to verify the correctness and security of smart
contracts, but differ in methodology and target languages. Their approach uses dynamic
logic for invariant-based specifications with prototype-based tools, while our approach uses
dynamic logic for symbolic execution and focuses on formal proofs.

Abstract execution [31] is a static verification framework based on symbolic execution. It
is geared at schematic programs, i.e., programs with placeholders for program fragments,
so that it can be used to prove certain program transformations correct. Its logical basis is
dynamic logic extending earlier work for Java [9].

7 Conclusion

We presented a dynamic logic for Michelson as well as its extension to blockchain operations
on a small but representative subset of Michelson. The goal was to create a core model
that covers instances of all kinds of operations and that can be easily extended with further
Michelson instructions. We achieved full coverage of scalar functional instructions, the
majority of Michelson instructions. To include any further scalar instruction, one only has to
specify its typing rule and its implementation in Agda. The symbolic execution rule and
the soundness proof for that rule is already provided by our model. Further instructions
that retrieve information from the execution environment can be added easily as well by
extending the Environment record and its subcomponents to include such information.

We cover three exemplary instructions for control flow, because most other conditional
and looping instructions are either very similar or very simple and thus easy to include in
the presented model. One aspect of Michelson that is not covered is first-class functions.
Including them might require some reworking of the current model to store such values on
the stack.

Efficient symbolic execution is not a goal of this work: Agda can normalize a concrete or
symbolic execution state to enable inspection of the state after one or more execution steps,
but in our experiments normalization was sometimes infeasible after less than ten symbolic
execution steps. Nevertheless, we plan to use our soundness proof as the basis for an efficient
symbolic interpreter for Michelson in ongoing work.

ECOOP 2024

3:24 Dynamic Logic for Symbolic Execution for Michelson

References
1 Wolfgang Ahrendt and Richard Bubel. Functional verification of smart contracts via strong

data integrity. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of
Formal Methods, Verification and Validation: Applications, pages 9–24, Cham, 2020. Springer
International Publishing.

2 Elvira Albert, Miguel Gómez-Zamalloa, Laurent Hubert, and Germán Puebla. Verification of
java bytecode using analysis and transformation of logic programs. In Michael Hanus, editor,
Practical Aspects of Declarative Languages, pages 124–139, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

3 Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. Towards verifying Ethereum
smart contract bytecode in Isabelle/HOL. In Proceedings of the 7th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs (CPP), pages 66–77, January 2018.
doi:10.1145/3167084.

4 Permenev Anton, Dimitrov Dimitar, Tsankov Petar, Dana Drachsler-Cohen, and Martin
Vechev. Verx: Safety verification of smart contracts. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1661–1677, 2020. doi:10.1109/SP40000.2020.00024.

5 Luís Pedro Arrojado da Horta, João Santos Reis, Simão Melo de Sousa, and Mário Pereira. A
tool for proving michelson smart contracts in why3. In 2020 IEEE International Conference on
Blockchain (Blockchain), pages 409–414, 2020. doi:10.1109/Blockchain50366.2020.00059.

6 Barnabas Arvay, Thi Thu Ha Doan, and Peter Thiemann. Contract Orchestration for Michelson.
Software, version 0.5 (visited on 2024-08-29). URL: https://freidok.uni-freiburg.de/
data/255176.

7 Daniel Balasubramanian, Zhenkai Zhang, Dan McDermet, and Gabor Karsai. Dynamic
symbolic execution for the analysis of web server applications in java. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing, SAC ’19, pages 2178–2185, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3297280.3297494.

8 Guillaume Bau, Antoine Miné, Vincent Botbol, and Mehdi Bouaziz. Abstract interpretation of
michelson smart-contracts. In Proceedings of the 11th ACM SIGPLAN International Workshop
on the State Of the Art in Program Analysis, SOAP 2022, pages 36–43, New York, NY, USA,
2022. Association for Computing Machinery. doi:10.1145/3520313.3534660.

9 Bernhard Beckert, Vladimir Klebanov, and Benjamin Weiß. Dynamic logic for java. In
Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and
Mattias Ulbrich, editors, Deductive Software Verification – The KeY Book: From Theory
to Practice, pages 49–106. Springer International Publishing, Cham, 2016. doi:10.1007/
978-3-319-49812-6_3.

10 B. Bernardo, R. Cauderlier, Z. Hu, B. Pesin, and J. Tesson. Mi-Cho-Coq, a framework for
certifying Tezos smart contracts. In Formal Methods. FM 2019 International Workshops - Porto,
Portugal, October 7-11, 2019, Revised Selected Papers, Part I, volume 12232 of Lecture Notes
in Computer Science, pages 368–379. Springer, 2019. doi:10.1007/978-3-030-54994-7_28.

11 Rod M. Burstall. Program proving as hand simulation with a little induction. In Jack L. Rosen-
feld, editor, Information Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm,
Sweden, August 5-10, 1974, pages 308–312. North-Holland, 1974.

12 Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In Richard Draves and
Robbert van Renesse, editors, 8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings,
pages 209–224. USENIX Association, 2008. URL: http://www.usenix.org/events/osdi08/
tech/full_papers/cadar/cadar.pdf.

13 Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy: dynamic symbolic
execution for invariant inference. In Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn,
editors, 30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, pages 281–290. ACM, 2008. doi:10.1145/1368088.1368127.

https://doi.org/10.1145/3167084
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1109/Blockchain50366.2020.00059
https://freidok.uni-freiburg.de/data/255176
https://freidok.uni-freiburg.de/data/255176
https://doi.org/10.1145/3297280.3297494
https://doi.org/10.1145/3520313.3534660
https://doi.org/10.1007/978-3-319-49812-6_3
https://doi.org/10.1007/978-3-319-49812-6_3
https://doi.org/10.1007/978-3-030-54994-7_28
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/1368088.1368127

B. Arvay, T. T. H. Doan, and P. Thiemann 3:25

14 L. Goodman. Tezos-a self-amending crypto-ledger, 2014. URL: https://www.tezos.com/
static/papers/white-paper.pdf.

15 Á. Hajdu and D. Jovanović. solc-verify: A modular verifier for solidity smart contracts. In
S. Chakraborty and J. A. Navas, editors, Verified Software. Theories, Tools, and Experiments,
pages 161–179. Springer International Publishing, 2020.

16 David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cambridge, MA,
USA, 2000.

17 Maritta Heisel, Wolfgang Reif, and Werner Stephan. Program verification by symbolic execution
and induction. In Katharina Morik, editor, GWAI-87, 11th German Workshop on Artificial
Intelligence, Geseke, Germany, September 28 - October 2, 1987, Proceedings, volume 152 of
Informatik-Fachberichte, pages 201–210. Springer, 1987. doi:10.1007/978-3-642-73005-4_
22.

18 Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip Daian, Dwight
Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei Stefanescu, and Grigore Rosu. KEVM:
A complete formal semantics of the Ethereum virtual machine. In 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), pages 204–217, 2018. doi:10.1109/CSF.2018.00022.

19 Y. Hirai. Defining the Ethereum virtual machine for interactive theorem provers. In Financial
Cryptography and Data Security, pages 520–535. Springer International Publishing, 2017.

20 James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,
1976. doi:10.1145/360248.360252.

21 Daniel Lehmann and Michael Pradel. Wasabi: A framework for dynamically analyzing
webassembly. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’19, pages 1045–1058,
New York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3297858.
3304068.

22 Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 254–269, 2016.

23 Séverine Maingaud, Vincent Balat, Richard Bubel, Reiner Hähnle, and Alexandre Miquel.
Specifying imperative ML-like programs using dynamic logic. In Bernhard Beckert and
Claude Marché, editors, Formal Verification of Object-Oriented Software - International
Conference, FoVeOOS 2010, Paris, France, June 28-30, 2010, Revised Selected Papers, volume
6528 of Lecture Notes in Computer Science, pages 122–137. Springer, 2010. doi:10.1007/
978-3-642-18070-5_9.

24 Filipe Marques, José Fragoso Santos, Nuno Santos, and Pedro Adão. Concolic Execution for
WebAssembly. In Karim Ali and Jan Vitek, editors, 36th European Conference on Object-
Oriented Programming (ECOOP 2022), volume 222 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 11:1–11:29, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2022.11.

25 Michelson: The language of smart contracts in Tezos. URL: https://tezos.gitlab.io/
alpha/michelson.html.

26 Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco, Josselin
Feist, Trent Brunson, and Artem Dinaburg. Manticore: A user-friendly symbolic execution
framework for binaries and smart contracts. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 1186–1189, 2019. doi:10.1109/ASE.2019.
00133.

27 Yuki Nishida, Hiromasa Saito, Ran Chen, Akira Kawata, Jun Furuse, Kohei Suenaga, and
Atsushi Igarashi. HELMHOLTZ: A verifier for Tezos smart contracts based on refinement
types. New Generation Computing, 40:507–540, 2022. doi:10.1007/s00354-022-00167-1.

28 Nomadic Lab. Michelson: the language of smart contracts in tezos, 2018-2023. Last accessed
17 October 2023. URL: https://tezos.gitlab.io/michelson-reference/.

29 Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Ros,u. A formal verification
tool for Ethereum VM bytecode. In Proceedings of the 2018 26th ACM Joint Meeting on

ECOOP 2024

https://www.tezos.com/static/papers/white-paper.pdf
https://www.tezos.com/static/papers/white-paper.pdf
https://doi.org/10.1007/978-3-642-73005-4_22
https://doi.org/10.1007/978-3-642-73005-4_22
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1007/978-3-642-18070-5_9
https://doi.org/10.1007/978-3-642-18070-5_9
https://doi.org/10.4230/LIPIcs.ECOOP.2022.11
https://tezos.gitlab.io/alpha/michelson.html
https://tezos.gitlab.io/alpha/michelson.html
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1007/s00354-022-00167-1
https://tezos.gitlab.io/michelson-reference/

3:26 Dynamic Logic for Symbolic Execution for Michelson

European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 912–915, October 2018. doi:10.1145/3236024.3264591.

30 Corina S. Pasareanu. Symbolic Execution: The Basics, pages 5–20. Springer International
Publishing, Cham, 2020. doi:10.1007/978-3-031-02551-8_2.

31 Dominic Steinhöfel and Reiner Hähnle. Abstract execution. In Maurice H. ter Beek, Annabelle
McIver, and José N. Oliveira, editors, Formal Methods - The Next 30 Years - Third World
Congress, FM 2019, Porto, Portugal, October 7-11, 2019, Proceedings, volume 11800 of Lecture
Notes in Computer Science, pages 319–336. Springer, 2019. doi:10.1007/978-3-030-30942-8_
20.

32 Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, and
Martin Vechev. Securify: Practical security analysis of smart contracts. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pages 67–82,
October 2018. doi:10.1145/3243734.3243780.

33 Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming language foundations in Agda,
August 2022. URL: https://plfa.inf.ed.ac.uk/22.08/.

34 Conrad Watt, Petar Maksimović, Neelakantan R. Krishnaswami, and Philippa Gardner. A
Program Logic for First-Order Encapsulated WebAssembly. In Alastair F. Donaldson, editor,
33rd European Conference on Object-Oriented Programming (ECOOP 2019), volume 134 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:30, Dagstuhl, Germany,
2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2019.
9.

https://doi.org/10.1145/3236024.3264591
https://doi.org/10.1007/978-3-031-02551-8_2
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1145/3243734.3243780
https://plfa.inf.ed.ac.uk/22.08/
https://doi.org/10.4230/LIPIcs.ECOOP.2019.9
https://doi.org/10.4230/LIPIcs.ECOOP.2019.9

	1 Introduction
	2 Michelson
	2.1 Types
	2.2 Programs and Instructions
	2.3 Blockchain Interface

	3 Michelson Reference Implementation
	3.1 Program Execution
	3.2 Execution of Control Flow Instructions
	3.3 Relation to Big-Step Semantics
	3.4 Contract Execution and Execution Chains

	4 Dynamic Logic for Michelson
	4.1 Terms and Formulas
	4.2 Representing Michelson Program State in DL
	4.3 Proof Rules for Michelson
	4.4 Proof Rules for the Blockchain Run-time

	5 Semantics and Soundness
	5.1 Values and Models
	5.2 Soundness of the DL

	6 Related Work
	6.1 Verification of Smart Contracts
	6.2 Symbolic Execution for Bytecode Interpretation
	6.3 Related Uses of Dynamic Logic

	7 Conclusion

