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Abstract
We present and verify template algorithms for lock-free concurrent search structures that cover a
broad range of existing implementations based on lists and skiplists. Our linearizability proofs are
fully mechanized in the concurrent separation logic Iris. The proofs are modular and cover the
broader design space of the underlying algorithms by parameterizing the verification over aspects
such as the low-level representation of nodes and the style of data structure maintenance. As
a further technical contribution, we present a mechanization of a recently proposed method for
reasoning about future-dependent linearization points using hindsight arguments. The mechanization
builds on Iris’ support for prophecy reasoning and user-defined ghost resources. We demonstrate
that the method can help to reduce the proof effort compared to direct prophecy-based proofs.
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1 Introduction

A search structure is a key-based store that implements a mutable map of keys to values
(or a mutable set of keys). It provides five basic operations: (i) create an empty structure,
(ii) insert a key-value pair, (iii) search for a key and return its value, (iv) delete the entry
associated with a key, and (v) update the value associated with a particular key. Because of
their general usefulness, search structures are ubiquitous in data-intensive workloads.

Earlier works [19, 34, 18] developed a framework to verify a wide range of lock-based
implementations of concurrent search structures. Specifically, they proved that these imple-
mentations are linearizable [11].

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Nisarg Patel, Dennis Shasha, and Thomas Wies;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 30; pp. 30:1–30:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0006-6859-2542
https://orcid.org/0000-0002-7036-3312
https://orcid.org/0000-0003-4051-5968
https://doi.org/10.4230/LIPIcs.ECOOP.2024.30
https://arxiv.org/abs/2405.13271
https://doi.org/10.4230/DARTS.10.2.15
https://doi.org/10.4230/DARTS.10.2.15
https://doi.org/10.5281/zenodo.11051385
https://doi.org/10.4230/DARTS.10.2.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


30:2 Verifying Lock-Free Search Structure Templates

A core ingredient of the framework is the idea of template algorithms [39]. A template
algorithm dictates how threads interact but abstracts away from the concrete layout of nodes
in memory. Once the template algorithm is verified, its proof can be instantiated on a variety
of search structures.

The template algorithms of [19, 34, 18] use locks as a synchronization technique. Locks
ensure non-interference on portions of memory to guarantee that certain needed constraints
hold in spite of concurrency.

The disadvantage of locks is that if a thread holding a lock on some portion of memory p

stops, then no other thread can get a conflicting lock on p. For that reason, some practical
implementations such as Java’s ConcurrentSkipListMap [33] use lock-free algorithms.

This paper shows how to capture multiple variants of concurrent lock-free skiplists and
linked lists in the form of template algorithms. Thus, proving the correctness of such a
template algorithm results in a proof that is applicable to many variants at once. Our
template algorithms are parametric in the skiplist height and allow variations along the
following three dimensions: (i) maintenance style (eager vs lazy) (ii) node implementations
and (iii) the order of maintenance operations on the higher levels of the skiplists.

By instantiating our template algorithm with appropriate maintenance operations and
node implementations we obtain verified versions of existing (skip)list algorithms from the
literature such as the Herlihy-Shavit skiplist algorithm [10, § 14], the Michael set [31], and
the Harris list algorithm [9]. We also obtain a new concurrent skiplist algorithm that has not
been considered before. The new algorithm is correct by construction thanks to our modular
verification framework.

We mechanize our development in the concurrent separation logic Iris [14, 16]. One
technical contribution of our work is a formalization of hindsight reasoning [32, 22, 6, 7, 26, 27]
in Iris. Hindsight reasoning has shown its usefulness in dealing with future-dependent and
external linearization points, a challenge that commonly arises in lock-free data structures.

Specifically, we build on the hindsight theory developed in [27], providing a mechanism
in Iris where one can establish that a linearization point has passed by inferring knowledge
about past states using a form of temporal interpolation.

To our knowledge, our development is the first formalization of hindsight theory in a
foundational program logic. The usefulness of the developed theory extends beyond our
lock-free template algorithms. In fact, we demonstrate that it can help to reduce the proof
effort compared to alternative proof techniques in Iris. To this end, we reverify the multicopy
template algorithms of [34] using our formalization of hindsight as opposed to our previous
tailor-made proof argument for dealing with future-dependent linearization points. The new
approach reduces the proof effort by 53%.

To summarize, our contributions are (i) template algorithms for a wide variety of lock-
free search structure algorithms, (ii) mechanized proofs of linearizability based on hindsight
reasoning in Iris. The result is, to our knowledge, the first formal verification of fully-functional
lock-free algorithms for skiplists of unbounded height.

2 The Skiplist Template Algorithm

A skiplist is a search structure over a totally ordered set of keys K. We focus our discussion
on skiplists that implement mutable sets rather than maps. The extension of the presented
algorithms to mutable maps is straightforward. The data structure is composed of sorted
lists at multiple levels, with the base list determining the actual contents of the structure,
while higher level lists are used to speed up the search. An example is shown in Figure 1. A
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Figure 1 Skiplist with four levels. A node that is marked (logically deleted) at a level is shaded
gray at that level. The red line indicates the path taken by a traversal searching for key 42.

skiplist node contains a key and has a height, determining how many higher level lists this
node is a part of. Each node has a next pointer for each of its levels. Two sentinel nodes
signify the head (hd with key −∞) and the tail (tl with key ∞) of the skiplist. Lock-free
linked lists often use the technique of logical deletion by marking a node before it is physically
unlinked from the list. This involves storing a mark bit together with the next pointer, so as
to allow reading and updating them together in a single (logically) atomic step. Lock-free
skiplist implementations also use this technique. Since a skiplist node can be part of multiple
lists, it has one mark bit per level.

The traversal for a key not only goes left to right as usual, but also top to bottom. The
red line in Figure 1 depicts a traversal searching for key 42. The traversal begins at the
highest level of the head node. At each non-base level, the traversal continues till it reaches
a node with a key greater than or equal to the search key. Thereafter, the traversal drops
down a level, and continues at the lower levels until it terminates on the bottom level at the
first node whose key is greater than or equal to the search key.

The traversals in a concurrent skiplist perform maintenance in the form of physically
unlinking encountered marked nodes. In Figure 1, node n5 has been unlinked at level 2,
thus the traversal does not visit it at that level. Operations that mark and change the next
pointers at the higher levels do not affect the actual contents of the structure. We therefore
consider them to be part of the maintenance.

Many variants of lock-free skiplist algorithms have been proposed in the literature and
implemented in practice. These variants differ in (i) their node implementations, (ii) the
styles of maintenance operations and/or (iii) the orders in which they perform maintenance
operations with regard to other operations.

For example, node implementations in low-level languages often use bit-stealing [10] (or
an equivalent of Java’s AtomicMarkableReference) so that both the next pointer and mark
bit can be atomically read or updated. Other implementations use more complex solutions.
For instance, the skiplists in [8] use nodes with back links to reduce traversal restarts due
to marked nodes. Java’s ConcurrentSkipListMap [33] implements each node as a list of
simpler nodes, one per level. The higher level nodes have both right pointers and down
pointers, while the base nodes only have right pointers. Java’s implementation also uses
marker nodes for marking, instead of bit-stealing.

In terms of style of maintenance, the traversal in the Michael Set [31] and Herlihy-Shavit
lock-free skiplist [10, § 14] unlinks one marked node at a time. By contrast, the traversal
in the Harris List [9] unlinks the entire sequence of marked nodes in one shot with a single
CAS operation. The variants also differ in the order of marking of a node at higher levels.
In the Herlihy-Shavit skiplist, the marking of a node goes from top level to the bottom level.
This differs from skiplists in [33] and [8], whose marking goes from bottom to top.

Despite the differences in the skiplist algorithms described above (and others to be
invented in the future), the bulk of their correctness reasoning remains the same. A goal of
this paper is to show how to exploit that fact.

ECOOP 2024



30:4 Verifying Lock-Free Search Structure Templates

Template algorithm. Our template algorithm for skiplists abstracts away from node-level
implementation details and the way in which traversals perform maintenance. As we shall see,
the particular details regarding how the data is stored internal to the node does not affect
the correctness of the core operations - search, insert and delete. Nor is the correctness
affected by whether the traversal unlinks one marked node at a time or an entire sequence of
marked nodes. We also show that the order in which maintenance operations are performed
on the higher levels of the list does not matter for correctness. In summary, the template
algorithm we present abstracts from: (i) node-level details; (ii) the style of unlinking marked
nodes and (iii) the order of maintenance operations on higher levels.

The template algorithm is assumed to be operating on a set of nodes N that contains
the two sentinel nodes head hd and tail tl. Let the maximum allowed height of a skiplist
node be L (> 1). Each node n is associated with (i) its key key(n) ∈ K = N ∪ {−∞, ∞},
(ii) its height height(n) ∈ [1, L) , (iii) the next pointers next(n, i) ∈ N for each i from 0 to
height(n) − 1, and (iv) its mark bits per level mark(n, i) ∈ {true, false} for each i from 0
to height(n) − 1. When discussing next(n, i) or mark(n, i), we implicitly assume that i lies
between 0 and height(n) − 1. We sometimes say a node n is unmarked to mean that it is
unmarked at the base level, i.e., mark(n, 0) = false. The structural invariant maintains the
following facts: key(hd) = −∞, key(tl) = ∞, height(hd) = height(tl) = L, next(tl, i) = tl for
all i, next(hd, L − 1) = tl, mark(hd, i) = mark(tl, i) = false for all i.

The core operations of the skiplist template are expressed using helper functions such
as findNext and markNode that abstract from the details of the node implementation. We
describe the behavior of these helper functions as and when we encounter them. The template
is instantiated by implementing these functions. The helper functions are assumed to be
logically atomic, i.e., appear to take effect in a single step during its execution.

Figure 2 shows the core operations of the skiplist template algorithm. (We omit the
code for the data structure initialization as it is straightforward.) All three operations begin
by allocating two arrays ps and cs via allocArr, each of size L and values initialized to
hd and tl respectively. These arrays are then populated by the traverse operation as it
computes the predecessor-successor pair for operation key k at each level. Intuitively, these
pairs indicate where k would be inserted at each level. The template algorithm here abstracts
away from the concrete traverse implementation. We later consider two implementations
of traverse that differ in the way that maintenance is performed, as discussed earlier.

As far as the core operations are concerned, they rely on traverse to satisfy the following
specification. First, it returns a triple (p, c, res) where p and c are nodes and res a Boolean
such that p = ps[0], c = cs[0] and res is true iff k is contained in c. Second, the node c must
have been unmarked at some point during the traversal; and third, for each 0 ⩽ i < L, the
traversal observes that key(ps[i]) < k ⩽ key(cs[i]).

Let us now describe the core operations, starting with the search operation. The
search operation simply invokes the traverse function, whose result establishes whether
k was in the structure. The delete operation starts similarly by invoking traverse and
checking if the key is present in the structure. If it is, then delete invokes the maintenance
operation maintainanceOp_del, which attempts to mark c at the higher levels (i.e. all levels
except 0). We provide the implementation of maintainanceOp_del in a moment. Once
maintainanceOp_del terminates, delete finally attempts to mark c via markNode at the
base level. If marking succeeds, it terminates by invoking traverse (which performs the
task of physically unlinking marked nodes at all levels) and returning true. Otherwise, a
concurrent thread must have already marked c, in which case delete returns false.
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1 let search k =
2 let ps = allocArr L hd in
3 let cs = allocArr L tl in
4 let _, _, res = traverse ps cs k in
5 res
6

7 let delete k =
8 let ps = allocArr L hd in
9 let cs = allocArr L tl in

10 let p, c, res = traverse ps cs k in
11 if not res then
12 false
13 else
14 maintainanceOp_del c;
15 match markNode 0 c with
16 | Success -> traverse ps cs k; true
17 | Failure -> false

18 let insert k =
19 let ps = allocArr L hd in
20 let cs = allocArr L tl in
21 let p, c, res = traverse ps cs k in
22 if res then
23 false
24 else
25 let h = randomNum L in
26 let e = createNode k h cs in
27 match changeNext 0 p c e with
28 | Success ->
29 maintainanceOp_ins k ps cs e; true
30 | Failure -> insert k

Figure 2 The template algorithm for lock-free skiplists. The template can be instantiated
by providing implementations of traverse and the helper functions markNode, createNode and
changeNext. The markNode i c attempts to mark node c at level i atomically, and fails if c has been
marked already. createNode k h cs creates a new node e of height h containing k, and whose next
pointers are set to nodes in array cs. Finally, changeNext i p c cn is a CAS operation attempting to
change the next pointer of p from c to cn. changeNext i p c cn succeeds only if mark(p, i) = false
and next(p, i) = c. Other functions used here include randomNum to generate a random number and
maintenance operations associated with insert and delete. maintainanceOp_del marks node c at
the higher levels, while maintainanceOp_ins inserts a new node e at the higher levels.

The insert operation also begins with traverse. If the traversal returns true, then the
key must already have been present. Hence, insert returns false in this case. Otherwise, a
new node e is created using createNode. The node’s height is determined randomly using
randomNum, which generates a random number h such that 0 < h < L. After creating a new
node, the algorithm attempts to insert it into the list by calling changeNext at the base level
(line 27). If the attempt succeeds, insert proceeds by invoking the maintenance operation
maintainanceOp_ins, which also inserts the new node into the list at all higher levels. The
insert then returns with true. If the changeNext operation fails, then the entire operation
is restarted.

We now describe the maintenance operations for insert and delete, shown in Figure 3.
The maintenance operations here differ from those in traditional skiplist implementations
in regards to the order in which maintenance is performed at higher levels. In traditional
implementations, the marking of a node goes from top to bottom, while insertion of a new
node goes from bottom to top. The skiplist template presented here makes sure that the
base level gets marked at the end and the insertion first happens at the base level, but it
imposes no order on how it proceeds at higher levels. That is, when marking a node, a
delete thread could for instance first mark odd levels, then even levels and finally the base
level 0. The maintenance operations in the skiplist template captures all such permutations.
As our proof shows later, the order of maintenance at higher levels has no bearing on the
correctness of the algorithm.

The maintainanceOp_del marks node c from levels 1 to height(c). It begins by reading
the height of c as h, and generating a permutation of [1 . . . (h − 1)] stored in array pm via
the permute function. The maintainanceOp_del_rec then recursively marks c in the order
prescribed by pm. Note that the maintenance continues regardless of whether markNode
succeeds or fails, because c will be marked at the end regardless.

ECOOP 2024



30:6 Verifying Lock-Free Search Structure Templates

1 let maintainanceOp_del_rec i h pm c =
2 if i < h-1 then
3 let idx = pm[i] in
4 markNode idx c;
5 maintainanceOp_del_rec (i+1) h pm c
6 else
7 ()
8
9 let maintainanceOp_del c =

10 let h = getHeight c in
11 let pm = permute h in
12 maintainanceOp_del 0 h pm c

13 let maintainanceOp_ins_rec i h pm ps cs e =
14 if i < h-1 then
15 let idx = pm[i] in
16 let p = ps[idx] in
17 let c = cs[idx] in
18 match changeNext idx p c e with
19 | Success ->
20 maintainanceOp_ins_rec (i+1) h pm ps cs e
21 | Failure ->
22 traverse ps cs k;
23 maintainanceOp_ins_rec i h pm ps cs e
24 else
25 ()
26
27 let maintainanceOp_ins k ps cs e =
28 let h = getHeight e in
29 let pm = permute h in
30 maintainanceOp_ins 0 h pm ps cs e

Figure 3 The maintenance operations for the skiplist. The getHeight c helper function returns
height(c). The permute function generates a permutation of [1 . . . (h − 1)] as an array.

The maintainanceOp_ins begins in the same way by reading the height, generating
the permutation and invoking maintainanceOp_ins_rec. The maintainanceOp_ins_rec
first collects the predecessor-successor pair at the current level from arrays ps and cs,
respectively. Then it tries to insert the new node e using changeNext on predecessor node p.
If changeNext succeeds, then the recursive operation continues. Otherwise, it recomputes
the predecessor-successor pairs using traverse. After the recomputation, the insertion is
retried at the same level.

We can now finally turn to the implementations of traverse. We consider two imple-
mentations that differ in their treatment of marked nodes. The eager traversal attempts
to unlink every marked node it encounters, while the lazy traversal simply walks over the
marked nodes till it reaches an unmarked node. The traversal then attempts to unlink the
entire marked segment at once. The two implementations are similar in other aspects, so we
discuss only the eager traversal in detail here.

The eager traversal is shown in Figure 4. The traverse function is implemented using
mutually-recursive functions eager_rec and eager_i1. The function eager_rec populates
the arrays ps and cs with the predecessor-successor pair at level i computed by eager_i.
The eager_i performs a traversal at level i by first reading the mark bit and next pointer of
c using findNext. If c is found to be marked, then eager_i attempts to physically unlink
the node using changeNext. In the case that changeNext fails (because either p is marked
or it does not point to c anymore), eager_i simply restarts the traverse function. In the
case of Success of changeNext, the traversal continues. If c is unmarked, then traverse_i
proceeds by comparing k to key(c). For key(c) < k, the traversal continues with c and cn.
Otherwise, eager_i ends at c, returning (p, c, true) if key(c) = k and (p, c, false) otherwise.
As mentioned before, eager_i attempts to unlink immediately whenever a marked node is
encountered.

1 For ease of exposition, the implementation of the eager traversal shown in Figure 4 differs slightly from
the version we have verified in Iris. The Iris version uses option return types instead of mutually-recursive
functions in order to obtain a more modular proof of the eager traversal. We use the mutually recursive
implementation here for clarity of exposition.
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1 let eager_i i k p c =
2 match findNext i c with
3 | cn, true ->
4 match changeNext i p c cn with
5 | Success -> eager_i i k p cn
6 | Failure -> traverse ps cs k
7 | cn, false ->
8 let kc = getKey c in
9 if kc < k then

10 eager_i i k c cn
11 else
12 let res = (kc = k ? true : false) in
13 (p, c, res)

14 let eager_rec i ps cs k =
15 let p = ps[i+1] in
16 let c, _ = findNext i p in
17 let p′, c′, res = eager_i i k p c in
18 ps[i] <- p′;
19 cs[i] <- c′;
20 if i = 0 then
21 (p′, c′, res)
22 else
23 eager_rec (i-1) ps cs k
24

25 let traverse ps cs k =
26 eager_rec (L - 2) ps cs k

Figure 4 The eager traversal for the skiplist template. findNext i k c returns a pair
(next(c, i), mark(c, i)). The getKey c helper function returns key(c).

3 Proof Intuition

Our goal is to show that the skiplist template is linearizable. That is, we must prove that
each of the core operations take effect in a single atomic step during its execution, the
linearization point, and satisfies the sequential specification shown in Figure 5. For the
skiplist template, we define the abstract state C(N) to be the union of the logical contents
C(n) of all nodes in N , where C(n) := (mark(n, 0) ? ∅ : {key(n)}). In other words, the
abstract state of the structure is a collection of keys contained in unmarked nodes at the
base level. There are existing techniques from the literature that help us analyze the skiplist

Ψop(k, C, C ′, res) :=


C ′ = C ∧ (res ⇔ k ∈ C) op = search

C ′ = C ∪ {k} ∧ (res ⇔ k ̸∈ C) op = insert

C ′ = C \ {k} ∧ (res ⇔ k ∈ C) op = delete

Figure 5 Sequential specification of a search structure. k refers to the operation key, C and C′

to the abstract state before and after operation op, respectively, and res is the return value of op.

template. The two main techniques that we rely on are the Edgeset Framework [39] and
Hindsight Reasoning [32, 22, 6, 7, 26, 27]. We begin by giving a brief overview of the two
techniques, proceeded by the analysis of the skiplist template using these techniques.

3.1 The Edgeset Framework
The Edgeset Framework provides a common terminology to capture how search operations
navigate in a variety of search structures. We view each search structure as a mathematical
graph whose edges are associated with an edgeset, a label that is a set of keys. We denote
the edgeset from n to n′ by es(n, n′), and k ∈ es(n, n′) signifies that a search for key k

will proceed from node n to n′. In the context of the skiplist template, we define the
edgeset leaving n to be all values greater than the key in n if n is unmarked. If node
n is marked, then the edgeset leaving n is the entire keyspace. Formally: es(n, n′) :=
(n′ = next(n, 0) ∧ mark(n, 0) = false ? (key(n), ∞) : K). Note that, our definition of edgesets
in the skiplist template depends only on the base list, and not on higher level mark bits and
next pointers.

ECOOP 2024



30:8 Verifying Lock-Free Search Structure Templates

A notion defined in terms of edgesets is the inset of a node, denoted by inset(n), signifying
a set of keys for which a search will arrive at n. In order to understand the concept of inset
intuitively, consider Figure 6. The inset of node n4 is (2, ∞), because, for all keys greater
than 2, the search will enter n4. We say node n1 is the logical predecessor of n4 if it is
the first unmarked predecessor of n4. The inset of the root is K and the inset of n is the
intersection of K with the edgesets of all nodes between the root and n. For sorted linked
lists in general, a more local notion gives the same result: the inset of an unmarked node n

is (key(n′), ∞), where n′ is the logical predecessor of n.
In contrast to inset, we define the outset as the union of all its outgoing edgesets:

outset(n) :=
⋃

n′∈N es(n, n′).
We can now define the keyset of a node n as keyset(n) := inset(n)\outset(n), i.e. intuitively,

the set of keys for which a search enters n but never leaves. The importance of keysets is
that if k is in keyset(n), then k is either in the contents of n or is nowhere in the structure.
In Figure 6, the keyset of n4 is (2, 9] and in general, the keyset of an unmarked node n

is (keyset(n′), key(n)] where n′ is its logical predecessor. The keyset of a marked node is ∅
because its outset is the set of all keys K.

The technical definition of inset relies on the global data structure graph, defined as a
solution to the following fixpoint equation

∀n ∈ N. inset(n) = in(n) ∪
⋃

n′∈N

es(n′, n) ∩ inset(n′)

where in(n) := (n = hd ? K : ∅). Thus, the inset is a global quantity and hence difficult to
reason about. Fortunately, this is where the Flow Framework [20, 21, 28] comes in handy.
It allows us to reason about quantities that can be expressed as a solution to a fixpoint
equation (like inset) in a local manner by attaching flow values to the node. The framework
then provides tools to track changes to the flow values that are induced by changes to the
underlying graph. Our approach to encoding keysets in Iris using the Flow Framework is
borrowed from [18]. We defer further details on this matter to the later sections.

As mentioned above, keyset(n) intuitively is the set of all keys that n is responsible for.
Consider Figure 6 again, a thread executing search(6) without any interference will reach
node n4 and terminate, concluding that 6 is not present in the structure. In this sense, we
say n4 is responsible for key 6 and therefore 6 is part of n4’s keyset. The keysets of all nodes
partition the set of all keys and provide the crucial Keyset Property:

∀ n ∈ N, k ∈ K. k ∈ keyset(n) ⇒ (k ∈ C(N) ⇔ k ∈ C(n)) (KeysetPr)

This property enables one to lift a proof of the specification at the node level to a proof of
the sequential specification Ψop. A particular situation where (KeysetPr) proves indispensable
is when search fails to find the search key. Note that search observes only the nodes it
visited, and hence has only a partial view of the structure. When search fails to find the
key, the proof has to reconcile this partial view of the structure with the global view. In
essence, if a concurrent invocation of search on key k fails to find the key, can we conclude
that there was a point in time during its execution when k was in fact not present in the
structure? Here, the property (KeysetPr) helps us reconcile facts gathered by search with
the global state of the structure. Specifically, if search can determine a node n such that
k ∈ keyset(n) and k /∈ C(n), then we can immediately infer that k was not present in the
structure at that point in time.
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Figure 6 Possible state of the base list in the skiplist template. Nodes are labeled with the value
of their key field. Edges indicate next pointers. Marked (logically deleted) nodes are shaded gray.
keyset(hd) = {0}, keyset(n1) = (0, 2], keyset(n4) = (2, 9] and keyset(tl) = (9, ∞). The keyset of a
marked node is always ∅.
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Figure 7 Possible states of search(7) on the base level in presence of interference from concurrent
delete(7) and insert(7).

3.2 Hindsight Reasoning
Lock-free structures often exhibit future-dependent linearization points. That is, the lineariz-
ation point of an operation cannot be determined at any fixed moment, but only at the end
of the execution, once any interference of other concurrent operations has been accounted for.
To understand the interference issue, consider the search operation. Since, search returns
the result of traverse, let us look at the eager traversal implementation. To simplify the
explanation further, let us assume that the maximum height allowed for every non-sentinel
node is one. Then, we can ignore the eager_rec function and focus on eager_i called at
the base level.

Let there be a thread T executing search(7). Concurrently, there is a thread Td executing
delete(7) and a thread Ti executing insert(7). Figure 7 shows interesting scenarios that
thread T might potentially observe. Box (a) captures the state of the structure at the
beginning of the eager_i call processing n2. Let Scenario 1 be the situation when thread
T faces no interference from Td and Ti. Here, thread T finds the key 7 in n2 and eager_i
returns true. The point when eager_i finds n2 to be unmarked becomes the linearization
point for this scenario.

Now consider Scenario 2 to be the situation where thread Td marks n2 before eager_i
processes it, as shown in Box (b). Thread T will attempt to unlink n2, and assuming no
further interference, the unlink will result in the structure in Box (c). Thread T will process
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n3 next, finding n3 to be unmarked with key greater than 7, and will terminate with result
false. So when is the linearization point in this scenario? It cannot be when T finds n3
unmarked when processing it. Because there could be further interference from thread Ti

which inserts key 7 in a new node as shown in Box (d). The new node could be added right
before T reads the mark bit of n3. Thus, when eager_i finds n3 unmarked and returns false,
key 7 could actually be present in the structure at that point in time.

The linearization point is actually the point in time shown in Box (c), i.e., right after n2 is
unlinked. However, thread T cannot confirm this when n2 is unlinked because eager_i may
not terminate at n3 with false as the result. The reason is that by the time T processes n3, it
could get marked in a manner similar to n2 in Box (b), resulting in the unlinking of n3 and
potentially a restart. That Box (c) is the linearization point is confirmed when T has found
n3 to be unmarked later. The structure maintains the invariant that once a node is marked,
it remains marked. Using this invariant, an analysis of thread T ’s history concludes that n3
must have been unmarked at the point when n2 was unlinked. Once eager_i terminates at
n3 with false, an analysis can establish in hindsight that Box (c) indeed was the linearization
point.

Hindsight reasoning as formalized in [26, 27] is designed to deal with situations like the
search in Figure 7. It enables temporal reasoning about computations using a past predicate
⟐q, which expresses that proposition q held true at some prior state in the computation
(up to the current state). For instance, ⟐(next(n1, 0) = n2) holds in Box (c) even though
next(n1, 0) = n3 at that point. The reason is that next(n1, 0) = n2 was true at an earlier
point in time, namely in Box (b). Note that the past operator ⟐ abstracts away the exact
time point when the predicate held true. Note also that a past predicate is not affected by
concurrent interferences, as it merely records some fact about a past state.

There are two ways to establish a past predicate that are relevant for our proofs. The
first is to establish the predicate in the current state directly. That is, ⟐q holds if q holds
in the current state. As an example, we obtain (next(n1, 0) = n2) when findNext on n1
returned n2 in Box (a). Thus, for all subsequent states including Box (b) and (c), we get
⟐(next(n1, 0) = n2). The second way to establish a past predicate is through the use of
temporal interpolation [27]. That is, one proves a lemma of the form: if there existed a past
state that satisfied property q and the current state satisfies r , then there must have existed
an intermediate state that satisfied o. Such lemmas can then be applied, e.g., to prove that
if thread T finds n3 to be unmarked in Scenario 2, then it must have been unmarked when
n2 was unlinked in Box (c).

Equipped with the Edgeset Framework and hindsight reasoning, we are now ready to
analyze the core operations of the skiplist template.

3.3 Proof Outline for Core Operations
We refer to a linearization point as modifying if the operation changes the abstract state of
the data structure (like in the case of a succeeding delete and insert) and otherwise refer to
it as unmodifying (like search and in the case of a failing delete or insert). The modifying
linearization points of the skiplist template are easier to reason about because they are not
future-dependent. For delete, the linearization point occurs when markNode succeeds, and
similarly, for insert the linearization point occurs when the call to changeNext on line 27
succeeds. The proof strategy for unmodifying linearization points is to combine (KeysetPr)
with the ⟐ operator from hindsight reasoning. Let us expand on this proof strategy in detail
and show why the skiplist template is linearizable.
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We begin by describing the specification for traverse that is assumed for analyzing the
core operations of the template. Then, we analyze each of the operations in detail. Finally,
we show how the eager implementations of traverse satisfies the specification that was
assumed in the beginning. Along the way, we introduce (as and when necessary) invariants
maintained by the skiplist template that are crucial for proving linearizability.

Specification of traverse. The function traverse ps cs k updates arrays ps and cs with
predecessor-successor pairs for each level and returns a triple (p, c, res) that satisfies the
following past predicate regarding node c: ⟐(k ∈ keyset(c) ∧ (res ⇔ k ∈ C(c))). Recall that
our definition of edgesets in Section 3.1 implies the following invariant:

Invariant 1 For all nodes n, if mark(n, 0) is set to true then keyset(n) = ∅.

Using Invariant 1, we can establish that c is unmarked at the base level at the time point
when k ∈ keyset(c) holds. Note that traverse may physically unlink marked nodes. However,
this step does not change the abstract state of the structure. Hence, the specification for
traverse involves no change of the abstract state.

We now consider each of the core operations in detail.

Proof of search. Function search returns res out of the triple (p, c, res) returned by
traverse. The specification of traverse says res ⇔ k ∈ C(c) at some point, say t, during
its execution. The specification additionally guarantees k ∈ keyset(c) at time t. These two
facts, combined with the (KeysetPr) at time point t, allow us to immediately infer that res is
true iff k was in the structure at that point. Hence, we can establish that (res ⇔ k ∈ C(c))
was true at some point during the execution of search.

Proof of delete. We analyze delete by case analysis on the value res returned by traverse.
If res is false, then again we can establish that k was not in the structure at some point during
traverse’s execution by the same reasoning used in the proof of search. So let us consider
the case that res is true. By the specification of traverse, we can establish a time point when
c was unmarked and contained k. The delete operation then calls maintainanceOp_del
which marks c at all the higher levels. Finally, the markNode on Line 15 attempts to mark c
at the base level. If markNode succeeds, then this step becomes the linearization point of
delete and k can be considered to be deleted from the structure. But if markNode fails,
then we gain the knowledge that mark(c, 0) = true. Hindsight reasoning allows us to infer
that c was marked at the base level by a concurrent thread between the end of traverse
and the invocation of markNode. The point right after c was marked by a concurrent thread
becomes the linearization point of delete in this case, as we can determine that k was not
present in the structure at that point.

This hindsight reasoning relies on two facts: first, the key of a node never changes and
second, once a mark bit is set to true by a successful markNode operation (at line 15 in
delete or line 4 in maintainanceOp_del), no other operation will set it back to false. In
fact, these two facts are invariant for the skiplist template:

Invariant 2 For all nodes n and level i, once mark(n, i) is set to true, it remains true.
Invariant 3 For all nodes n, key(n) remains constant.
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Proof of insert. Similar to delete, we begin by case analysis on res returned by traverse.
If res is true, then we can establish that k was already present in the structure at some point.
Otherwise, res is false and insert creates a new node e with key k. Using changeNext, an
attempt is made to insert node e between nodes p and c. If the attempt succeeds, then
k is now part of the structure and this becomes the linearization point. The following
maintainanceOp_ins operation does not change the abstract state of the structure, and
thus, has no effect in terms of linearizability. If the changeNext fails, then insert simply
restarts.

As is evident with the proof outline for the core operations, the specification assumed for
traverse plays a critical role in case the operation exhibits an unmodifying linearization
point. Let us now turn to traverse and show how its specification can be proved. We
analyze the eager traversal in detail in the following section. The proof argument for the
lazy version is similar.

3.4 Proof Outline for Eager Traversal

As stated earlier, traverse returns (p, c, res) such that ⟐(k ∈ keyset(c) ∧ (res ⇔ k ∈ C(c))).
Since the returned triple is the result of a call to eager_i at the base level, let us begin by
analyzing the behavior of this call.

In the sequential setting, the traversal in a search structure maintains the invariant that
the search key is always in the inset of the current node. This invariant holds by the design
of the Edgeset Framework. Unfortunately, this invariant no longer holds for the skiplist
template in the concurrent setting as evidenced by Box (c) in Figure 7. However, we argue
first that eager_i does maintain the invariant that the search key was in the inset of the
current node c between the start of the traversal and the point at which the eager_i accesses
c. We call this the inset in hindsight invariant.

We prove this invariant inductively. We make use of the following locally maintained
invariants: (i) At all times, there is one list, denoted the reachable list, from the head node
that includes all unmarked and some marked nodes. (This list is characterized by the set of
nodes with non-empty inset, see Figure 6 for intuition). (ii) The keys in the reachable list
are sorted. A consequence of these two invariants is that if a node n is in the reachable list
(whether n is marked or not) and has a key less than k, then k is in the inset of n.

To prove that inset in hindsight is an invariant, we have to show that (a) it is an invariant
when eager_i takes a step (Line 2) when traversing the base level, and (b) that we can
establish inset in hindsight when eager_rec initiates eager_i (Line 17) at the base level.

To show (a), observe that if a node n becomes unlinked from the reachable list, then it
will never again be part of the reachable list. Hence, if n is not in the reachable list when
eager_i begins executing at the base list, then eager_i will never visit n. The contrapositive
of this statement allows us to say that if eager_i reaches some node c, then it must have
been part of the reachable list at some point during the execution of eager_i. Additionally,
eager_i proceeds to the node following c only when key(c) < k. With the help of invariants
(i) and (ii) above, we can thus establish that k was in the inset of n at some point.

To show (b), we must do a case analysis on whether node p (Line 16) is marked. If it is
unmarked, then it is straightforward to establish that k is in the inset of c currently. However,
if p is marked, then we require temporal interpolation based on the following invariant:

Invariant 4 For all nodes n and level i, once mark(n, i) is set to true, next(n, i) does not
change.
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This invariant tells us that if p was known to be unmarked in the past, and it is marked
currently, then p must have been pointing to c right before it got marked. At that point in
time, we can establish that k must have been in the inset of c.

This completes the inductive proof that inset in hindsight is indeed an invariant maintained
by the traversal. The inset in hindsight invariant is sufficient to prove the traverse
specification by the following simple argument. If the traverse encounters k in an unmarked
node n, then traverse will return true as it should. If, by contrast, traverse encounters an
unmarked node n such that key(n) > k, then by the inset in hindsight invariant, k must have
been in the inset of n at some point t in the past and k cannot be in the outset of n (because
key(n) > k and n is unmarked), so therefore k must have been in the keyset of n at time t.

4 Hindsight Reasoning in Iris

Linearizability in Iris is defined via (logically) atomic triples [4, 16]. Intuitively, an atomic
triple

〈
x. P

〉
e

〈
v. Q

〉
says that at some point during the execution of e, the resources

described by the precondition P will be updated to satisfy the postcondition Q for return
value v in one atomic step. The variable x can be thought of as the abstract state of the data
structure before the update at the linearization point.

Linearizability of a search structure operation op can be expressed by an atomic triple of
the form

Inv(r) −∗
〈

C. CSS(r, C)
〉

op r k
〈

res. ∃ C ′. CSS(r, C ′) ∗ Ψop(k, C, C ′, res)
〉
. (ClientSpec)

Here, r is the pointer to the head of the data structure. The predicate CSS(r, C) is the
representation predicate that relates the head pointer with the contents C of the structure.
The predicate Inv(r) is the shared data structure invariant. It can be thought of as a
thread-local precondition of the atomic triple, which we express using separating implication.
The invariant ties CSS(r, C) to the data structure’s physical representation and may contain
other resources necessary for proving the atomic triple. The predicate Ψop(k, C, C ′, res)
captures the sequential specification of the structure. The specification essentially says there
is a single atomic step in op where the abstract state changes from C to C ′ according to the
sequential specification Ψop(k, C, C ′, res) (Figure 5). This step is op’s linearization point.
We call (ClientSpec) the client-level atomic specification for the data structure under proof.

Proving atomic triples. The proof of establishing an atomic triple involves a linearizability
obligation that must be discharged directly at the linearization point. However, it can be
challenging to determine the linearization point precisely and to discharge the linearizability
obligation exactly at that point. When the program execution reaches a potential linearization
point that depends on future interferences by other threads, then the proof will fail if it is
unable to determine whether the linearizability obligation should be discharged now or later.
In Iris, this challenge is overcome using prophecy variables [15], which enable the proof to
reason about the remainder of the computation that has not yet been executed.

Another challenge is that the linearization point of an operation may be an atomic step
of another operation that is executed by a different thread (like in Scenario 2 discussed in
Section 3.2). Data structures that demonstrate such behavior are said to deploy helping. This
behavior complicates thread modular reasoning. The conventional solution to this challenge
in Iris is to use a helping protocol [15, 34, 13]. The helping protocol is specified as part
of the shared data structure invariant and consists of a registry that tracks which threads
are expected to be linearized by other threads as well as conditional logic that governs the
correct transfer and discharge of the associated linearizability obligations.
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Both the use of prophecy variables and the helping protocol need to be tailored to the
specific data structure at hand, which adds considerable overhead to the proof. To reduce this
overhead, we present an alternative proof method that enables linearizability proofs based
on hindsight arguments in Iris. Rather than identifying the linearization point precisely, the
proof can establish linearizability in hindsight using temporal interpolation in the style of
the intuitive proof argument for the skiplist template presented in Section 3.2.

Hindsight specification. Our proof method offers an intermediate specification, a Hoare
triple specification, which in essence expresses that linearizability has been established in
hindsight. In our Iris formalization, we show that any data structure whose operations satisfy
the hindsight specification also satisfy the client-level atomic specification. This proof relates
the two specifications via prophecy variables and a helping protocol. However, the helping
protocol is data structure agnostic, making our proof method applicable to a broad class of
structures exhibiting future-dependent unmodifying linearization points.

From the perspective of a proof author using our method to prove linearizability of some
structure, one has to only establish the hindsight specification to obtain the proof of the
client-level atomic specification. To this end, our method provides further guidance to the
proof author.

In order to use hindsight reasoning, one has to have the history of computation at hand.
Here, we offer a shared state invariant with a mechanism to store the history. The shared
state invariant has three main components: a mechanism to store the history, the helping
protocol, and finally, an abstract predicate that can be instantiated with invariants specific
to the structure at hand. The first two components are data structure agnostic. The proof
author only needs to specify the data structure-specific invariant and what information about
the data structure state should be tracked by the history.

In the rest of this section, we discuss our method in detail. We begin with the hindsight
specification, followed by a discussion of the shared state invariant and how to use it.

4.1 Linearizability in Hindsight
We motivate the hindsight specification using the challenges we face when proving the client-
level atomic specification for the delete operation of the skiplist template. Let us recall the
intuitive proof argument for delete from Section 3.3. As per the observation regarding the
modifying and unmodifying linearization points, a delete thread with modifying linearization
point can fulfill the obligation at the point when the structure is modified. However, a
delete thread with an unmodifying linearization point requires helping.

Prophecy reasoning. An important detail of our proof method is how it determines whether
a thread requires helping. In the following, we refer to the operation that a thread performs
at its linearization point as its decisive operation. In delete, the traversal observes node
c to be unmarked at some point during execution. In the case where c is marked by the
time that the thread calls its decisive operation markNode (in Line 15), the thread requires
helping from the thread that marks c.

In order to determine in advance whether a thread requires helping, our proof method
attaches a prophecy to each thread. A prophecy in Iris can predict a sequence of values
and is treated as a resource that can be owned by a thread. Ownership of a prophecy p

is captured by the predicate Proph(p, pvs), where pvs is the list of predicted values. The
predicate signifies the right to resolve p when the thread makes a physical step that produces
some result value v. The resolution of p establishes equality between v and the head of the
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list pvs (i.e., the next value predicted by p). The resolution step yields the updated predicate
Proph(p, pvs′) where pvs′ is the tail of pvs. This mechanism enables the proof to do a case
analysis on the predicted values pvs before these values have been observed in the program
execution2.

The prophecy attached to a thread predicts the results of the thread’s decisive operation.
In case of delete, the decisive operation is the call to markNode in the base list, while for
insert, it is the call to changeNext in the base list. Note that a thread may restart if its
decisive operation fails (like in the case of insert). Therefore, the prophecy needs to predict
a sequence of result values, one for each attempted call to the thread’s decisive operation.

For the purpose of this discussion, we assume that the prophecy predicts a sequence of
Success or Failure values. If the sequence contains a Success value, then the decisive
operation will succeed and the thread will modify the structure. Otherwise, the thread’s
linearization point is unmodifying. Let predicate Upd(pvs) hold when pvs contains at least
one Success value.

The proof author only needs to identify the decisive operations that potentially change the
abstract state of the structure (like markNode as discussed above) by resolving the prophecy
around these decisive calls.

Hindsight specification. Before we can present the hindsight specification, we need
to provide necessary details regarding the atomic triples in Iris. An atomic
triple

〈
x. P

〉
e

〈
v. Q

〉
is defined in terms of standard Hoare triples of the form

∀ Φ.
{

AUx.P,Q(Φ)
}

e
{

v. Φ(v)
}

. The predicate AUx.P,Q(Φ) is the atomic update token
and represents the linearizability obligation of the atomic triple. At the beginning of each
atomic step that the thread takes up to its linearization point, the token offers the resources
in P and the token itself transforms into a choice. That is, at the end of the atomic step,
the prover has to chose to either commit the linearization or abort. When committing, the
prover has to show that the thread’s atomic step transforms the resources in P to those in Q,
receiving Φ(v) from the update token in return, which serves as the receipt of linearization
of the atomic triple. In case of an abort, the prover needs to show that the thread’s atomic
step reestablishes P .

We also need to introduce two more auxiliary predicates:

Thread(tid, t0): this predicate is used to register the thread with identifier tid in the
shared invariant. The argument t0 denotes the time when thread tid began its execution.
PastLin(op, k, res, t0): this predicate holds if there was a past state in the history between
time t0 and the point when this predicate is evaluated for which the sequential specification
Ψop held with result res. It essentially captures whether the sequential specification was
true for any point after time t0.

We now have all the ingredients to present the hindsight specification:

∀ tid t0 pvs. Inv(r) −∗ Thread(tid, t0) −∗{
Proph(p, pvs) ∗ (Upd(pvs) −∗ AUop(Φ))

}
op r k

res. ∃pvs′. Proph(p, pvs′) ∗ pvs = (_ @ pvs′)
∗ (Upd(pvs) −∗ Φ(res))

∗ (¬Upd(pvs) −∗ PastLin(op, k, res, t0))


(HindSpec)

2 For further details on prophecies in Iris, we refer to [15].
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We explain it piece by piece. The local precondition Thread(tid, t0) ties the thread to its
identifier tid and provides knowledge that tid begins executing at time t0. The Hoare
triple can be best understood by observing how prophecy resources are allowed to change
(highlighted in brown) and what are the obligations when Upd(pvs) holds (in teal) versus
when it does not hold (in magenta). Let us look at each of these in detail. First, the prophecy
resource Proph(p, pvs) in the precondition changes to Proph(p, pvs′) in the postcondition
where pvs′ is a suffix of pvs. It basically says that operation op is allowed to resolve the
prophecy p as many times as it needs and then return the remaining resource at the end.

Now let us consider the case when Upd(pvs) holds. The precondition here provides the
atomic update token AUop(Φ) to op, expecting the receipt of linearization Φ(res) in return.
Thus, the responsibility of linearization is delegated to op when Upd(pvs) holds. We can gain
better insight by relating this situation to the delete operation from the skiplist template as
before. This case corresponds to when markNode (from line 15) succeeds as Upd(pvs) holds
here. The point when markNode succeeds becomes the linearization point and so the thread
does not require help from other threads to linearize. The hindsight specification simply asks
for the receipt from linearization Φ(res) at the end.

Finally, let us consider the case when Upd(pvs) does not hold. The precondition provides no
additional resources here, while the postcondition requires the predicate PastLin(op, k, res, t0).
In simple terms, this means that if Upd(pvs) is not true, i.e., the prophecy says the thread
is not going to modify the structure, then the hindsight specification allows exhibiting a
past state from history when the sequential specification was true. Relating again to delete,
if the markNode fails, then the thread can look at the history of the structure and exhibit
precisely the point when the decisive node got marked.

The proof argument for establishing the hindsight specification is significantly simpler
than if one were to attempt a direct proof of the client-level atomic specification. In particular,
the proof author does not need to reason about helping and atomic update tokens in last
case discussed above. Instead, they only need to reason about the structure-specific history
invariant.

Soundness of the hindsight specification. Our proof that relates the hindsight specification
for op to the atomic triple specification involves a helping protocol. The details of the helping
protocol and the soundness proof for the hindsight specification are similar to those of the
proofs presented in [15, 34]. We therefore provide only a brief summary here. Additional
details regarding the proof and the helping protocol can be found in [36].

Before op begins executing, the proof creates the prophecy resource Proph(p, pvs) assumed
in the precondition of the hindsight specification. If the prophecy determines that the thread
requires helping, then its client-level atomic triple is registered to a predicate which encodes
the helping protocol as part of the shared state invariant Inv(r). The registered atomic triple
serves as an obligation for the helping thread to commit the atomic triple. This obligation
will be discharged by the appropriate concurrent operation determined by the op’s sequential
specification Ψop. The proof then uses the hindsight specification to conclude that it can
collect the committed triple from the shared predicate. The committed triple serves as a
receipt that the obligation to linearize has been fulfilled.

To govern the transfer of linearizability obligations and fulfillment receipts between
threads via the shared invariant, the helping protocol tracks a registry of thread IDs with
unmodifying linearization points that require helping from other concurrent threads. Each
thread registered for helping is in either pending state or done state, depending on whether
the thread has already been linearized. A thread registered for helping must be able to
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determine its current protocol state in order to be able to extract its committed atomic triple
from the registry. For this purpose, the helping protocol includes a linearization condition
that holds iff a registered thread tid has linearized (and is, hence, in done state).

From the point of view of a thread which does the helping, the linearization condition
forces its proof to scan over the pool of uncommitted triples registered in the helping protocol
and identify those that need to be linearized at its linearization point, changing their protocol
state from pending to done. This step involves a proof obligation for the helping thread to
show that the sequential specification of tid’s operation is indeed satisfied at the linearization
point.

One crucial innovation in our helping protocol is that we have formulated a linearization
condition that is parametric in the sequential specification of the data structure operations,
making the soundness proof for the hindsight specification applicable to many structures
at once. In particular, we deal with the aspect of scanning and updating the registry in
the proof of the helping thread, the proof author simply invokes a lemma provided by our
method at the identified linearization points. Therefore, the helping protocol mechanism
remains fully opaque to the proof author.

4.2 Invariant for Hindsight Reasoning
Hindsight arguments involve reasoning about past program states. Our encoding therefore
tracks information about past states using computation histories. We define computation
histories as finite partial maps from timestamps, N, to snapshots, S. A snapshot describes an
abstract view of a program state. It is a parameter of our method. For instance, a snapshot
may capture the physical memory representation of the data structure under proof, while
abstracting from the remainder of the program state. Another parameter is a function | · |
that computes the abstract state of the data structure from a given snapshot.

Inv(r) := ∃ H T C. CSS(r, C) ∗ |H(T )| = C

∗ Hist(H, T ) ∗ Invhelp(H, T ) ∗ Invtpl(r, H, T )
Invtpl(r, H, T ) := resources(r, H(T ))

∗ (∀t, 0 ⩽ t ⩽ T ⇒ per_snapshot(H(t)))
∗ (∀t, 0 ⩽ t < T ⇒ transition_inv(H(t), H(t + 1)))

Figure 8 Definition of the shared state invariant encoding the hindsight reasoning. Variable H

represents the history, T the current timestamp in use and C the abstract state of the structure.

Figure 8 shows a simplified definition of the invariant that encodes the hindsight reasoning.
For sake of brevity, we provide only a high-level overview of the predicates used in the invariant.
The predicate Hist(H, T ) contains the mechanism to track the history of snapshots. That
is, H denotes the history that has been observed so far and T is the current time stamp.
Using appropriate ghost resources, it ensures that the timestamps are non-decreasing and
past states recorded in H are preserved by future updates to the history. This allows us to
define a past predicate ⟐s,t0(q) with the intuitive meaning that the history contains state
s recorded after (or at) time t0 for which proposition q holds true. The exact definition of
the past predicate uses the ghost resources used to preserve the past states. The predicate
Hist(H, T ) also guarantees that dom(H) = {0 . . . T }, ensuring that there are no gaps in the
history.
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The conjunct |H(T )| = C and the predicate CSS(r, C) together tie the abstract state C

of the data structure to the latest snapshot in the history. The predicate CSS(r, C) is the
dual of the representation predicate CSS(r, C) used in the client-level atomic specification.
Both represent one half of an ownership over the abstract state of the structure, keeping the
abstract state defined by Inv(r) synchronized with the representation predicate CSS(r, C).

The helping protocol predicate Invhelp(M, T ) contains a registry of thread IDs with
unmodifying linearization points that require helping from other concurrent threads. For
each thread ID tid in the registry, the protocol stores information such as the start time of
the thread, whether it has been linearized or not, etc.

The predicate Invtpl(r, H, T ) captures invariants particular to the data structure under
proof. It is further composed of three abstract predicates that are meant to be instantiated
with the structure specific invariants. The three predicates serve the following purpose. The
first predicate resources(r, H(T )) ties the current snapshot to the physical representation of
the structure. The predicate Hist(H, T ) contains a conjunct (∀t, t < T ⇒ H(t) ̸= H(t + 1)).
Together with the predicate resources, this conjunct forces a thread to update the history
whenever the structure is modified.

The predicate per_snapshot(H(T )) captures the structural invariants that hold for any
given snapshot. For instance, when proving the skiplist template, this predicate holds facts
about the nodes hd and tl having maximum height, etc. The predicate transition_inv(s, s′)
captures a transition invariant on snapshots observed in the history. That is, it constrains
how certain quantities evolve over time. Again as an example from the skiplist template
proof, the fact that a node marked in s remains marked in s′ is included here. Crucially, the
facts in transition_inv(s, s′) allow temporal interpolation required to establish facts about
past states in the history (like in Section 3.2).

To summarize, the proof author defines the snapshot of the structure, the function | · |,
and instantiates the three abstract predicates in Invtpl appropriately. The resulting shared
state invariant then tracks the history and handles the helping protocol without requiring
further fine-tuning to the data structure at hand.

5 Verifying the Skiplist Template

We relate the intuitive proof argument from Section 3 to the development on hindsight
reasoning in Iris in Section 4 to obtain a complete proof of the skiplist template. To achieve
this, we must perform three tasks required by the proof method in Section 4. The first
task is to determine the decisive operations that potentially alter the structure, and resolve
the prophecy around those operations. As discussed previously, the decisive operations are
markNode for delete and changeNext for insert. The search operation does not modify
the abstract state and hence, it has no decisive operation.

The second task is to define a snapshot in the context of the skiplist template and
instantiate Invtpl appropriately. This includes the predicate resources that ties the concrete
state of the structure to the latest snapshot, as well as invariants that allow temporal
interpolation. The third and the final task is to prove the hindsight specification for the core
operations.

In this section we focus on the second task of defining the snapshot and providing
invariants necessary to formalize the intuitive proof argument. Once, we have set up the
right invariants, the formalized proof follows the intuitive proof very closely. We explain this
with delete as an example.
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Invtpl(r, H, T ) := resources(r, H(T ))
∗ (∀t, 0 ⩽ t ⩽ T ⇒ per_snapshot(H(t)))
∗ (∀t, 0 ⩽ t < T ⇒ transition_inv(H(t), H(t + 1)))

resources(s) := ∗
n∈FP(s)

Node(n, mark(s, n), next(s, n), key(s, n), height(s, n))

∗ resources_keyset(s)
transition_inv(s, s′) := (FP(s) ⊆ FP(s′))

∗ (∀n, key(s′, n) = key(s, n) ∧ height(s′, n) = height(s, n))
∗ (∀n i, mark(s, n, i) = true ⇒ mark(s′, n, i) = true)
∗ (∀n i, mark(s, n, i) = true ⇒ next(s′, n, i) = next(s, n, i))

Figure 9 Instantiating Invtpl with invariants of the skiplist template.

5.1 Snapshot and the Skiplist Template Invariant
Recall that the notion of keysets are central to the intuitive proof argument for the core
operations of the skiplist template. Hence, a snapshot of the structure must contain
information about the keysets. For encoding keysets in Iris, we borrow heavily from [18],
especially the keyset camera and the representation of keysets via the Flow Framework.

We define the snapshot of the skiplist template as a tuple containing the following
components:

the set of nodes N comprising the structure (also referred to as the footprint below)
the abstract state of the structure (a set of keys)
the mark bits (a map from N to N → Bool, i.e., a Boolean per level)
the next pointers (a map from N to N → N)
the keys (a map from N to K)
the height of nodes (a map from N to N)
the representation of flow values

We reparameterize the mark(n, i) function introduced earlier to take the snapshot as an
argument. Thus, we use mark(s, n, i) to mean the mark bit of node n at level i in snapshot
s. We redefine next(·), key(·), keyset(·) and other such functions similarly by adding the
snapshot s as an additional parameter. We also use FP(s) to represent the footprint of the
snapshot s.

We now present the skiplist template invariant in Figure 9. The resources predic-
ate ties the snapshot to the concrete state through an intermediary node-level predicate
Node(n, k, h, mk, nx). This predicate actually ties the physical representation of a node in
the heap to the abstract quantities (key(·), height(·), mark(·) and next(·), respectively) that
the skiplist template relies on. The Node predicate also owns all the resources needed to
execute the helper functions. The skiplist template proof is parametric in the definition of
Node. Thus, we achieve proof reuse across skiplist variants that follow the same high-level
skiplist algorithm, but implement the node differently. We provide more details on this
matter later. We discuss some concrete node implementations in Section 6.

The predicate resources_keyset(s) capture the ownership resources required for keyset
reasoning. Using the ghost resources in Iris and the keyset camera from [18], it ensures that
the keysets and the logical contents of nodes in s satisfy (KeysetPr).
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1
〈

k h mk nx. Node(n, k, h, mk, nx)
〉

getKey n
〈

k. Node(n, k, h, mk, nx)
〉

2
〈

k h mk nx. Node(n, k, h, mk, nx)
〉

getHeight n
〈

h. Node(n, k, h, mk, nx)
〉

3
〈

k h mk nx. Node(n, k, h, mk, nx) ∗ (i < h)
〉

findNext i n
〈

n′. Node(n, k, h, mk, nx) ∗ (nx(i) = n′)
〉

4

5
〈

k h mk nx. Node(n, k, h, mk, nx) ∗ (i < h)
〉

markNode i n

6

〈
x. Node(n, k, h, mk′, nx) ∗ (mk(i) = true ⇒ x = Failure ∗ mk′ = mk)

∗(mk(i) = false ⇒ x = Success ∗ mk′ = mk[i↣ true])

〉
7

8
〈

k h mk nx. Node(n, k, h, mk, nx) ∗ (i < h)
〉

changeNext i n n′ e

9

〈
x. Node(n, k, h, mk, nx ′) ∗ ((mk(i) = true ∨ nx(i) ̸= n′) ⇒ x = Failure ∗ nx ′ = nx)

∗((mk(i) = false ∧ nx(i) = n′) ⇒ x = Success ∗ nx ′ = nx[i↣ e])

〉

Figure 10 Specifications of the helper functions used by the skiplist template.

The predicate per_snapshot captures structural invariants that hold for all snapshots
recorded in the history. This includes invariants of three kinds: first, invariants to ensure that
each component of the snapshot is of the correct type and the maps (from nodes to mark bits,
next pointers, etc.) are defined for all nodes in the footprint; second, the node-level invariants
relating the node’s inset, outset, mark bit, etc (like Invariant 1); and third, invariants about
the hd and tl nodes, such as key(s, hd) = −∞, height(tl) = L, etc.

The predicate transition_inv(s, s′) captures invariants about how certain quantities evolve
over time, such as that mark bits once set to true remain true. The invariants 2, 3, and
4 presented in Section 3 are part of this predicate. These invariants form the crux of the
hindsight reasoning, as they enable temporal interpolation.

Before we go into the formal proof argument for delete, we must discuss how to reason
about the node-level helper functions. Figure 10 shows the specification for the helper
functions assumed by the skiplist template. The specifications are logically atomic, i.e., they
behave like a single atomic step in the template. The preconditions for all of the functions
rely solely on the predicate Node. The functions getKey, getHeight and findNext read
various components of the node. Note that findNext reads both the mark bit and the next
pointer together.

The specification for functions markNode and changeNext is slightly more complex because
they potentially change the structure. Let us explain them briefly. For markNode on node
n at level i, the return value (Success or Failure) is determined by whether n is already
marked at i. If it is, then the function returns Failure without modifying the node. If it
is unmarked, then markNode successfully marks it, and updates the node accordingly. The
specification for changeNext can be interpreted similarly. Here, the return value hinges upon
the mark bit being false and the next pointer of n pointing to n′ at i.

5.2 Proof of delete

We now have all the ingredients to show that delete satisfies (HindSpec). We provide only
a high-level summary of the proof here. Please see [36] for more details.

The precondition provides access to the invariant Inv(r) and knowledge that the thread ID
is tid with start time t0. Additionally, the thread has the right to resolve prophecy p around
the decisive operations, and if the thread observes a successful decisive operation, then the
atomic update AU(Φ) is available to help with the linearization. The delete operation begins
with traverse. Using the ⟐ operator defined in Section 4.2, we express the postcondition of
traverse as
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⟐s,t0(k ∈ keyset(s, c) ∧ (res ⇔ k ∈ C(s, c))).

Intuitively, this assertion captures that there is a past state s in the history (after time point
t0) in which k is in the keyset of c and res is true iff k is in the logical contents of c.

The argument here proceeds by case analysis on res. Let us first consider the case that
res is false. The delete operation also terminates with false. Since the thread terminates
without any calls to the decisive operations, this case corresponds to the ¬Upd(pvs) case
in the postcondition of (HindSpec). The postcondition requires delete to establish the
predicate PastLin(del, k, false, t0). In this context, establishing this predicate amounts to
identifying a witness past state in which k was not part of the abstract state. Clearly, this is
witnessed by state s from the specification of traverse. Applying (KeysetPr) in state s, we
can establish the predicate PastLin(del, k, false, t0).

Now, let us consider the case that res is true. The maintainanceOp_del marks node c at
the higher level, but the interesting part of the proof is when the decisive operation markNode
is called at the base level (Line 15). Again there are two cases to consider, depending on
whether markNode succeeds. If markNode succeeds, then we can establish Upd(pvs) as we
see a Success value being resolved. In this case, the precondition of (HindSpec) provides the
atomic update AU(Φ). Since, the thread has modified the abstract state, this becomes the
linearization point. The thread can linearize with AU(Φ) to obtain the receipt Φ and satisfy
its postcondition. The proof also has to update the history with the new snapshot of the
structure, as c goes from being unmarked to marked.

The final (and most interesting) case is when markNode fails. Here again, we must establish
PastLin(del, k, false, t0) to complete the proof of (HindSpec). Two facts are useful: (i) in
the past state s referred to in the traverse spec, we can establish that mark(s, c) = false;
and (ii) since the markNode has failed, in the current state say s0, mark(s0, c) = true.
Hence, by using the second conjunct of transition_inv in Figure 9 and temporal interpolation
on the two facts above, we can infer the existence of two consecutive states s1 and s2,
such that mark(s1, c) = false and mark(s2, c) = true. Clearly, a concurrent delete thread
marked c in state s2. Hence, this state becomes the witness to establish the predicate
PastLin(del, k, false, t0). This completes the proof that delete satisfies (HindSpec).

6 Proof Mechanization and Evaluation

We now shed light on the mechanization of the hindsight methodology, as well as its application
to the skiplist template. We additionally reverify the multicopy template from [34] using
our new hindsight specification to modularize the proof effort. Although the multicopy
algorithms are lock-based, hindsight reasoning is helpful in their verification. The case study
demonstrates a substantial reduction in proof size due to the encoding of hindsight reasoning
in Iris, illustrating the generality of our contribution. Our development is available as a
VM and docker image on Zenodo [37].

All of the proofs we discuss below are mechanized in Iris/Coq. The templates, traversals
and the node implementations are written in Iris’s default programming language Hea-
pLang. In order to correctly capture the dependence between different layers of the proofs
(such as hindsight specification and the templates, the templates and the traverse/node
implementations), we heavily make use of Coq’s module system.

The organization of our proofs is shown in Figure 11. Going from left to right, the
first column relates to the formalization of hindsight reasoning in Iris. The box “Hindsight”
captures the assumptions regarding the hindsight specification from Section 4. These
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−→ 99K
satisfies assumes

Hindsight

Client-level Spec

Node

Traverse

Skiplist Template

Multicopy Template

Node Impl. 1

Node Impl. 2

Eager Traversal

Lazy Traversal

Figure 11 The structure of our proofs. Each box represents a collection of modules relevant to
the label. The dashed arrows represent module dependence, i.e., assumption of specifications. The
normal arrows represent implementation of the target module (fulfillment of the assumptions).

assumptions not only include the hindsight specification itself but also the relevant definitions
of snapshots, histories, etc. The module “Client-level Spec” relates the client-level specification
expressed in terms of atomic triples to the hindsight specification used for the template-level
proofs. The corresponding proof involves the reasoning about prophecies and the helping
protocol, which is done once and for all and applicable to all data structures that fulfill the
assumptions made in the “Hindsight” module.

The middle column consists of modules for the two verified templates (skiplist and
multicopy) and the associated proofs verifying the template operations against the hindsight
specification. We discuss them in turn.

Skiplist template case study. The skiplist template, as described in Figure 2, abstracts from
the concrete implementations of nodes and the traverse operation. Hence, we package their
specifications into separate modules. To ensure that the specified data structure invariant
for the skiplist template is not vacuous, we also verified an init routine that initializes the
data structure and establishes the invariant.

The final column shows modules for the two node implementations of the skiplist template,
as well as the eager and lazy traversal discussed in Section 2. The helper functions markNode
and changeNext are implemented using an atomic CAS operation in both of the node
implementations. The crux of the node implementation for the skiplist template is to
determine a memory representation of the mark bit and the next pointer (at some level)
such that both values can be read or written together with one atomic CAS operation. The
first node implementation does this by using a sum type. The second node implementation
is conceptually similar but uses more low-level data types instead of a sum type.

The traversal and node implementations above correspond to several existing lock-free
(skip)list algorithms from the literature. The Herlihy-Shavit skiplist algorithm [10, § 14] is
obtained by instantiating our template with the eager traversal, the node implementation
2, and maintenance operations that link higher-level nodes in increasing order of level and
unlink nodes in the opposite order. The Michael set [31] is obtained as a degenerate case of
the Herlihy-Shavit template instantiation where the skiplist is restricted to L = 2 (For L = 2,
Level 1 consists of only a fixed single edge between the sentinel nodes. So, conceptually,
Level 1 can be ignored in this case.)

We obtain a novel variant of a skiplist by replacing the eager traversal in the Herlihy-
Shavit instantiation with the lazy traversal. The lazy traversal is inspired by the Harris list
algorithm [9], which is obtained as a degenerate case of this new lazy skiplist algorithm by
restricting it to L = 2.
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Table 1 Summary of the proof effort. For each module, we show the number of lines of program
code, lines of proof, total number of lines, and the proof-checking time in seconds. The code for the
initialization and the core operations of the skiplist (entries with (∗)) is technically defined in the
“Skiplist” module, however here we present them separately for each operation to provide a better
picture. The count for Herlihy-Shavit is the summation of rows “Hindsight”, “Client-level Spec”, all
“Skiplist” modules, “Node Impl. 2” and “Eager Traversal”.

Skiplist Template (Iris/Coq)
Module Code Proof Total Time
Flow Library 0 5330 5330 33
Hindsight 0 950 950 11
Client-level Spec 9 329 338 18
Skiplist 12 1693 1705 26
Skiplist Init(∗) 6 319 325 15
Skiplist Search(∗) 7 62 69 6
Skiplist Insert(∗) 37 3457 3494 111
Skiplist Delete(∗) 28 2401 2429 72
Node Impl. 1 118 908 1026 35
Node Impl. 2 106 836 942 35
Eager Traversal 38 1165 1203 96
Lazy Traversal 47 2063 2110 145
Total 408 19513 19921 603

Herlihy-Shavit 243 11212 11455 390

We present a summary of the proof effort for the skiplist template in Table 1. The
proof-checking time was measured on the Docker image running on an Apple M1 Pro chip
with 16GB RAM. The flow library contains the Iris formalization of the Flow Framework
developed in [18, 34]. As a minor contribution, we extend this library with general lemmas for
reasoning about graph updates that have an affect on an unbounded number of nodes. These
lemmas are useful for the proofs of insert, delete and lazy traverse. The unbounded
updates, as well as the maintenance operations, are the reason for the relatively high number
of proof lines for the insert and delete operations.

Multicopy template case study. The multicopy template from [34] generalizes search
structures such as the lock-based Log-Structured Merge (LSM) tree used widely in modern
database systems. It satisfies the Map ADT specification, with search and upsert (for
insert/update) as its core operations. To deal with the complexity of future-dependent
external linearization points, the original proof relies on an intermediate template-level
specification based on the concept of search recency.

Table 2 presents a detailed comparison of the multicopy template proofs from [34] versus
the new proof based on the hindsight framework. The original proof consists of a total
of 2779 lines. By contrast, the definitions (“Defs”) and “Client-level Spec” proofs can be
factored out of the total cost of the hindsight-based proof, because it is part of the hindsight
library itself. Hence, the new proof based on hindsight reasoning consists of only 1310 lines,
which is a reduction of 53%. To summarize, the improvement stems from the fact that the
original proof relies on an intermediate specification and a helping protocol that is tailored
to multicopy structures, while our new proof uses a helping protocol that is shared among
all proofs that build on the new hindsight proof method.
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Table 2 Comparison of multicopy template proofs. The column “Original” shows the number
of lines from the proofs in [34], while “Hindsight” shows them for our new proof effort. Module
“Defs” represents definitions required for proving the client-level specification (helping invariant,
history predicate, etc). Module “Client-level Spec” contains the proof relating the intermediate
specification (Search Recency Specification from [34] and Hindsight Specification in our paper) to the
client specification. Module “LSM” contains definitions required to instantiate the frameworks for
LSM trees. Modules “Search” and “Upsert” refer to the proofs for the search and upsert operations,
respectively. Entries in “()” for the “Hindsight” column are not included in the total due to being
part of the hindsight library.

Multicopy Template (Iris/Coq)
Module Original Hindsight
Defs 866 (950)
Client-level Spec 434 (338)
LSM 741 540
Search 411 399
Upsert 327 371
Total 2779 1310

While the majority of the reduction in the proof size stems from the elimination of
structure-specific specifications and helping protocol proofs, we also saw a minor reduction in
the size of the remainder of the proof. One outlier is the proof of upsert. Here, the increase
is attributed to the fact that the proof has to construct a fresh snapshot when the operation
succeeds. However, this construction is conceptually simple and could be factored out into
more abstract lemmas that are provided directly by the hindsight library.

7 Related Work

The formal verification of linearizability has received much attention in recent years. We
refer to [5] for a survey of relevant techniques and focus our discussion to the most closely
related works.

Our work builds on the idea of template algorithms for lock-based concurrent search
structures of [19, 34, 18], which we extend to the setting of lock-free implementations. A
common challenge when verifying linearizability of lock-free data structures is the prevalence
of future-dependent and external linearization points. Hindsight theory [32, 22, 6, 7, 26, 27]
has emerged as a suitable technique to address this challenge in the context of concurrent
search structures. To our knowledge, we are the first to formalize hindsight reasoning within a
foundational program logic. Tools like Poling [40], plankton [26, 27], and nekton [25] automate
hindsight reasoning at the expense of an increased trusted code base. However, these tools
currently cannot handle complex data structures with unbounded outdegree like skiplists.
Also, they do not aim to characterize the design space of related concurrent data structures
like our template algorithms do.

Other techniques for dealing with future-dependent linearization points include argu-
ments based on forward simulation (e.g., by tracking all possible linearizations of ongoing
operations [12], tracking a partial order [17], or using commit points [3]) and backward
simulation (e.g., using prophecy variables [1, 23, 15]). Our encoding of hindsight reasoning
in Iris combines forward reasoning (by tracking the history of the data structure state) and
backward reasoning (by using prophecies). However, the details of this encoding are for the
most part hidden from the proof engineer by providing a higher-level reasoning interface



N. Patel, D. Shasha, and T. Wies 30:25

based on past predicates and temporal interpolation as proposed in [27]. Our comparison
with a prior proof of multicopy structure templates [34] suggests that this abstraction helps
to reduce the proof complexity.

Several works propose techniques for automatically verifying concurrent skiplists. Abdulla
et al. [2] propose a technique for verifying linearizability of lock-free list-based data structures
using forest automata. The evaluation considers bounded skiplists with up to 3 levels.
However, the implementation does not scale to larger bounds and the unbounded case is
outside the scope of the technique. We note that the height of the skiplist is tied to the
expected runtime of the skiplist operations. To guarantee the expected worst-case runtime
bounds, the skiplist’s height must be of order O(log(n)) where n is the expected maximal
number of entries in the list. For this reason, real-world skiplist implementations are also
parametric in the height. Heights up to 63 levels are feasible in deployed skiplists [24], so the
restriction to height 3 in [2] is unrealistic. By contrast, our proofs cover skiplists of arbitrary
height.

Sánchez and Sánchez [38] present an SMT-based approach towards an automated veri-
fication of concurrent lock-based skiplists. The approach is based on a decidable theory of
unbounded skiplists. However, it does not consider lock-free implementations and focuses on
establishing shape invariants preserved by the structure instead of proving linearizability.

Unlike these automated tools, our approach does not rely on data-structure specific
decidable theories for reasoning about inductive properties of heap graphs. Instead, we build
on the Flow Framework [20, 21, 28], which enables local reasoning about such properties over
general graphs in separation logic. As a minor contribution, we extend the mechanization
of the Flow Framework from [19] with lemmas to reason about graph updates that affect
properties of an unbounded number of nodes.

There are some skiplist algorithms that are not immediately covered by our template
algorithm. For example, skiplists based on the algorithm presented in [8] such as Java’s
ConcurrentSkipListMap [33] use backlinks to avoid restarts when a traversal fails. However,
we believe that our template algorithm can be extended to subsume such algorithms by
abstracting from the restart policy, similarly to how the present template abstracts from the
maintenance policy.

In this paper, we assume a programming language with a garbage collected semantics.
The rationale for this assumption is that issues arising from manual memory reclamation can
be addressed by orthogonal means. For instance, [29, 30] propose a technique that decouples
the proof of data structure correctness from that of the underlying memory reclamation
algorithm, allowing the correctness proof of the data structure to be carried out under the
assumption of garbage collection. Recent work also showed how to carry out such modular
proofs in program logics like Iris [13].

8 Conclusions and Future Work

This paper shows how to verify some of the most challenging concurrent data structure
algorithms in existence. The accompanying proofs are fully mechanized in the foundational
program logic Iris. The proofs are modular and cover the broader design space of the
underlying algorithms by parameterizing the verification over aspects such as the low-level
representation of nodes and the style of data structure maintenance.

Besides being the first work to verify unbounded lock-free skiplists, the work has developed
technologies for Iris, particularly hindsight reasoning, that can be useful in many applications.
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Our proofs guarantee safety but not liveness. This limitation is shared by the algorithms
they verify: in any highly concurrent (minimal or no locking) setting, a thread t may never
complete because of other threads that overtake it. Fortunately, this never happens in
practice where threads all advance more or less at the same pace. Verifying liveness under
such fairness assumptions remains an interesting direction for future work.

Another area of future work is to verify algorithms that mix locking parts with lock-free
parts both for single copy and multicopy search structures. We believe that the present
framework will be a good basis for that effort.
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