
Compiling with Arrays
David Richter #

Technische Universität Darmstadt, Germany

Timon Böhler #

Technische Universität Darmstadt, Germany

Pascal Weisenburger #

University of St. Gallen, Switzerland

Mira Mezini #

Technische Universität Darmstadt, Germany
The Hessian Center for Artificial Intelligence (hessian.AI), Darmstadt, Germany

Abstract
Linear algebra computations are foundational for neural networks and machine learning, often
handled through arrays. While many functional programming languages feature lists and recursion,
arrays in linear algebra demand constant-time access and bulk operations. To bridge this gap, some
languages represent arrays as (eager) functions instead of lists. In this paper, we connect this idea
to a formal logical foundation by interpreting functions as the usual negative types from polarized
type theory, and arrays as the corresponding dual positive version of the function type. Positive
types are defined to have a single elimination form whose computational interpretation is pattern
matching. Just like (positive) product types bind two variables during pattern matching, (positive)
array types bind variables with multiplicity during pattern matching. We follow a similar approach
for Booleans by introducing conditionally-defined variables.

The positive formulation for the array type enables us to combine typed partial evaluation and
common subexpression elimination into an elegant algorithm whose result enjoys a property we call
maximal fission, which we argue can be beneficial for further optimizations. For this purpose, we
present the novel intermediate representation indexed administrative normal form (AiNF), which
relies on the formal logical foundation of the positive formulation for the array type to facilitate
maximal loop fission and subsequent optimizations. AiNF is normal with regard to commuting
conversion for both let-bindings and for-loops, leading to flat and maximally fissioned terms. We
mechanize the translation and normalization from a simple surface language to AiNF, establishing
that the process terminates, preserves types, and produces maximally fissioned terms.

2012 ACM Subject Classification Software and its engineering → Domain specific languages

Keywords and phrases array languages, functional programming, domain-specific languages, normal-
ization by evaluation, common subexpression elimination, polarity, positive function type, intrinsic
types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.33

Related Version Full Version: https://arxiv.org/abs/2405.18242

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.18
Software: https://github.com/stg-tud/ainf-compiling-with-arrays [32]

archived at swh:1:dir:8e0e755d11e4e3e91fb05bf8df1a5c8bec0f553a

Funding Timon Böhler : LOEWE/4a//519/05/00.002(0013)/95.
Pascal Weisenburger : Swiss National Science Foundation (SNSF, No. 200429).
Mira Mezini: LOEWE/4a//519/05/00.002(0013)/95; HMWK cluster project The Third Wave of
Artificial Intelligence (3AI).

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 33; pp. 33:1–33:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.richter@tu-darmstadt.de
https://orcid.org/0000-0002-8672-0265
mailto:timon.boehler@tu-darmstadt.de
https://orcid.org/0009-0002-9964-7367
mailto:pascal.weisenburger@unisg.ch
https://orcid.org/0000-0003-1288-1485
mailto:mezini@informatik.tu-darmstadt.de
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/LIPIcs.ECOOP.2024.33
https://arxiv.org/abs/2405.18242
https://doi.org/10.4230/DARTS.10.2.18
https://doi.org/10.4230/DARTS.10.2.18
https://github.com/stg-tud/ainf-compiling-with-arrays
https://archive.softwareheritage.org/swh:1:dir:8e0e755d11e4e3e91fb05bf8df1a5c8bec0f553a;origin=https://github.com/stg-tud/ainf-compiling-with-arrays;visit=swh:1:snp:e92b86a1a72b7e96bb4c6207f6d6a157de14195f;anchor=swh:1:rev:a8a88bca53396f58df5ae5d1da0755f1b02b01b8
https://doi.org/10.4230/DARTS.10.2.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Compiling with Arrays

1 Introduction

Linear algebra computations are of rising importance due to their foundational role in neural
networks and other machine learning systems. The fundamental unit of computation in linear
algebra is the multidimensional array (or just array from now on). Linear algebra programs
are full of computations that construct arrays from other arrays, such as element-wise sum,
matrix multiplication, convolution, (transformer) attention, and more.

In functional programming we usually work with lists not arrays. Lists are inductively
defined data types, and processed using recursion. Even element access on lists is implemented
by recursion, so it has to traverse the list until the element is found, giving it running time1

linear in the size of the list. Arrays, on the other hand, should have constant-time access
and be processed using bulk operations. As such arrays do not fit into the usual pattern
of inductive data types. A number of functional programming languages that aim to
facilitate programming of array computations have been proposed [12, 37, 31]. Aiming for
high expressivity with few language constructs, they leverage the idea that arrays can be
represented as functions [12, 37, 31], or that arrays are eager functions [28].

Functions are lazy in the sense that a function definition does not perform any computation
and the function body is only executed when a function is applied. Arrays are eager in
the sense that all contents of an array are evaluated during construction, and array access
does not perform further computation. Prior work had this intuition on the duality between
arrays and functions, and here we ground that correspondence on proof-theoretic concepts,
which explain why arrays are eager and functions are lazy and yield further convenient
consequences.

A key insight of our work is that arrays can be interpreted as a positively polarized version
of the function type. The connection between the positive and negative formulation of data
types and the computational interpretation of elimination forms as pattern matching has been
developed in the context of polarized type theory and focused logic [39, 1, 9, 10, 8, 19, 40].
Thus, similarly to how pattern matching on a binary tuple introduces two variables, the
computational content of pattern matching on an array of size N is the introduction of
N -many variables. Further, we explore pattern matching on Booleans by introducing
conditional variables. This insight provides the foundation for the design of the indexed
administrative normal form (AiNF), an intermediate representation for array computations.
We also present a simple surface array language, called Polara, and show how these
changes together (the positive formulation for the array type and a negative presentation of
Booleans) enables us to combine typed partial evaluation (a.k.a normalization by evaluation)
and common subexpression eliminiation into an elegant optimization algorithm overcoming
some challenges usually associated to partial evaluation.

In particular, partial evaluation of let-binding is not safe in the sense of always resulting
in a better, or at least equal, performance than the original. This is because a variable may
appear multiple times, hence substituting it multiple times would duplicate code. Ideally,
common subexpression elimination (CSE) would remove redundancies introduced by partial
evaluation. But the presence of scopes, as e.g., introduced by functions, loops, and branches
– all constructs that prevail in array computations – can complicate CSE. While compilers
can rectify these issues by using additional rules often summarized under the general term of
code motion, this comes at the cost of having to decide in what order and how often to apply
these additional rules, i.e., it implies creating an optimization schedule, which complicates
the algorithm.

1 We distinguish run-time (as in run-time library) from running time as the time it takes to run something.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:3

let z =
let y1 = x + 1
2 * y1

let y2 = x + 1
...

(a) Nested lets.

let y1 = x + 1
let z = 2 * y1

let y2 = x + 1
...

(b) Flat let-bindings.

let f = fun i:nat.
let y1 = x + 1
2 * y1

let y2 = x + 1
...

(c) Functions.

let z = if c then
let y1 = x + 1
2 * y1

else
2 * x

let y2 = x + 1
...

(d) Branches.

Figure 1 Sample programs.

Instead of these complications, with AiNF, we propose a novel intermediate representation
for array programs based on logical foundations that avoids the complexity of optimization
schedules. Like ANF, which is normal with regard to commuting conversion of let-bindings
implying maximal flatness, AiNF is normal with regard to commuting conversions of for-loops,
thus enabling what we call maximal loop fission. Maximal loop fission is a fundamental prop-
erty to enable further optimizations such as dead code elimination or common subexpression
elimination. We provide a translation of Polara into AiNF, which performs maximal loop
fission and loop invariant code motion.

Contributions. In summary, this paper makes the following contributions:
We present AiNF, an intermediate representation that makes use of the unconventional
idea of treating arrays as positive types from polarized type theory. AiNF is normal with
regard to commuting conversion for both let-bindings and for-loops, leading to flat and
maximally fissioned terms.
We present Polara, a simple surface array language, along with a translation of Polara
to AiNF, for which we prove termination, type preservation, and maximal fission.
We present an optimization algorithm for AiNF based on normalization by evaluation and
common subexpression elimination, for which we prove termination and type preservation.

2 Problem Statement

Typed partial evaluation is a powerful optimization technique [17], which can reduce excessive
terms by applying computation laws. For example, it can reduce a projection on a pair
(a, b).1 ≡ a by applying β-reduction. Or, it can eliminate superfluous branches like in
if x then (if x then a else b) else c ≡ if x then a else c by applying uniqueness laws (e.g.,
η-expansion).

But, while shining on its logical foundation, partial evaluation is not a safe optimization.
A safe optimization has to either reduce the running time of a program or at least preserve it.
Partial evaluation of let-bindings is not safe because a variable may appear multiple times,
hence substituting it multiple times would duplicate code. Ideally, common subexpression
elimination (CSE) would remove all redundancies introduced by partial evaluation. But
scopes introduced by nested let-bindings, functions, and branches complicate CSE. For
illustration, below we consider a few examples of redundancies that can occur in programs
and how CSE handles them.

In Figure 1a, a program with nested let-bindings is shown. Here, the variable z is bound
to 2 * y1, where y1 is bound to the successor of x; and then the variable y2 is bound to the
successor of x as well. It is easy to see that y1 is redundant with y2, yet y1 is not in scope
at the definition of y2, so we cannot simply replace one by the other. The problem can be

ECOOP 2024

33:4 Compiling with Arrays

avoided by bringing the program into a form, where no let-binding is nested inside another
let-binding, such that all previously bound variables are in scope for the whole remaining
expression. Consider the program shown in Figure 1b, which is equivalent to the previous
program, but this time no expression has a subexpression. Now, the former definition is
in scope at the latter definition, and thus y2 can be replaced by y1, thereby eliminating a
duplicate subexpression.

As mentioned, functions and branches introduce scope as well, and therefore complicate
CSE. Yet, the solution of flattening the code is not as straightforward to apply. To illustrate
the problem with functions, consider the program shown in Figure 1c, which defines a function
f. Inside the function the successor of x is bound to y1, and outside the function it is bound
redundantly to y2. To share the expressions, we could consider moving the definition of y1
out of the functions. But moving an expression out of a function is not safe, as long as we
do not know whether the function will be called at all.

To illustrate the problem with branches, consider the program shown in Figure 1d. Here,
the result of a conditional expression is bound to the variable z, in one branch the successor
of x is bound to y1, and after the conditional expression the successor of x is bound to the
variable y2. Similar to the function case, to share the expressions, we could consider moving
the definition of y1 out of the branch, but that is again not a safe optimization, as long as
we do not know that this branch is taken.

To rectify the issues outlined above compilers use additional rules often summarized
under the general term of code motion. But this comes at the cost of introducing the problem
of having to decide in what order and how often to apply these additional rules (i.e., creating
an optimization schedule).

Our work avoids the complexity of optimization schedules. We argue that – instead of
complicating the CSE algorithm with optimization schedules – a better approach is to design
an intermediate representation for array programs, which like ANF bans nested expressions.
This simplifies the optimization of array programs, which now can safely rely on algorithms
based on logical foundations such as partial evaluation and CSE. The novel intermediate
representation, called AiNF, is informally presented in the following along with a simple
surface arrays language and the optimized translation of the latter to the former.

3 AiNF, Polara, and Simplified Optimizations

We describe the two key insights on which our approach is based (Sections 3.1 and 3.2),
introduce Polara and AiNF by example (Section 3.3), and explain how AiNF simplifies
optimizations (Section 3.4).

3.1 The Duality of Functions and Arrays
The list type is an inductive datatype defined by its constructors nil for the empty list
and cons for constructing a list from another list with an additional element. Accordingly,
algorithms over lists work by recursion, expressed with functions and branches. As element
access on lists is implemented by recursion, it has to traverse the list until the element is
found, giving it running time linear in the size of the list. Arrays, on the other hand, enjoy
constant-time access and feature bulk operations. The consequence is that arrays do not to
fit into the usual pattern of inductive data types. Nevertheless, because custom semantics
would require further proofs to ensure soundness, arrays are occasionally modelled as lists,
with the hint that the actual running time can differ (in Lean for example2).

2 https://lean-lang.org/lean4/doc/array.html

https://lean-lang.org/lean4/doc/array.html

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:5

In functional array languages, we exploit the equivalence of an array of type X and
length n with a function from a natural number below n to a value of type X. Forward, this
equivalence allow us to access (get) elements of an array by its index. Backward, we create
(tabulate) an array from a function describing each individual element based on their index.
The forward direction is indeed already very much ingrained in everyday programming, as
array access a[i] and function application a(i) look very much alike in many languages, and
even share identical syntax in some.

Arrayn X ↔ (Finn → X)

get : Arrayn X → (Finn → X)
tabulate : (Finn → X) → Arrayn X

But something important changes in the conversion from a function to an array, and vice
versa. Functions are lazy, in the sense that the evaluation of a function is delayed until it is
applied, while arrays are eager, in the sense that all elements of an array have already been
evaluated and on array access only need to be looked up. Also, in a language with (side)
effects, the two types can be distinguished in that a function application can trigger effects,
while an array access cannot trigger effects. Dually, constructing a function cannot trigger
effects, while constructing an array can trigger effects.

We can put the relationship between functions and arrays on a logical foundation by
considering the difference between positive and negative types [39]. A positive type is
defined by a set of constructors (introduction forms), and we get a single corresponding
destructor (elimination form) for it with one continuation for the content of each possible
constructor (pattern matching). A negative type is defined by a set of destructors, and we get
a single corresponding constructor for it that has to provide one value for each destructor to
extract (copattern matching). Positive types are usually associated with eager (call-by-value)
evaluation, and negative types with lazy (call-by-name) evaluation. Many types can be
defined either as a positive or as a negative type. For illustration, we consider the positive
and the negative formulations of the product type below.

Products as Positive and as Negative Types. The product type as a positive type × has a
single constructor (a, b) (Intro). A corresponding destructor (Elim) can be systematically
derived as pattern matching on the constructor. Reduction (Beta) occurs when a destructor
is applied to a constructor, and they eliminate each other.

Intro
Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ (a, b) : A × B

Elim
Γ ⊢ p : A × B Γ, a : A, b : B ⊢ c : C

Γ ⊢ let (a, b) = p; c : C

Beta
Γ ⊢ a : A Γ ⊢ b : B Γ, x : A, y : B ⊢ c : C

Γ ⊢ (let (x, y) = (a, b); c) ≡ c[x := a, y := b]

Alternatively, products can also be defined as negatives types ⊗. In this case, we give primacy
to a set of destructors, namely the projections p.fst and p.snd (Elim1, Elim) to access the
individual elements of a tuple p, and derive systematically the corresponding constructor
(Intro) providing one value for each destructor to extract. Beta reduction occurs (Beta1,
Beta1) when a destructor is applied to a constructor by extracting the corresponding value.

ECOOP 2024

33:6 Compiling with Arrays

Elim1
Γ ⊢ p : A ⊗ B

Γ ⊢ p.fst : A

Elim2
Γ ⊢ p : A ⊗ B

Γ ⊢ p.snd : B

Intro
Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ (fst = a; snd = b) : A ⊗ B

Beta1
Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ (fst = a, snd = b).fst = a

Beta2
Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ (fst = a, snd = b).snd = b

Functions as Negative and Positive Types. Usually, the function type is considered a
negative type. It has a single destructor – function application f a (Elim) – and the
corresponding constructor is systematically derived by copattern matching on the possible
destructors (Intro). When a destructor is applied to the constructor, we extract the value
provided as the body of the function, and substitute the variable with the argument (Beta).

Elim
Γ ⊢ f : A → B Γ ⊢ a : A

Γ ⊢ f a : B

Intro
Γ, a : A ⊢ b : B

Γ ⊢ fun a. b : A → B

Beta
Γ, x : A ⊢ b : B Γ ⊢ a : A

Γ ⊢ (fun x. b) a ≡ b[x := a]

The function type can also be represented as a positive type. In this case, the function
is primarily defined through its constructor, and the destructor is systematically derived
from pattern matching on the constructor. But the interpretation of positive function types
comes with some challenges for the metatheory. The introduction form of a function turns
a term-in-the-context-of-a-variable a : A ⊢ b : B into a function (fun a. b) : A → B. Thus,
the corresponding elimination form of a function (fun a. b) : A → B should introduce
a variable of type term-in-the-context-of-a-variable a : A ⊢ b : B into the context. But
to properly model that, we need a judgment where we have a context in the context,
in other words a “higher-order judgment” [26, 25]. A judgment is higher-order when an
entailment ⊢ occurs inside the context of another entailment An implementation of higher-
order judgments needs to ensure that a variable which has such a judgment as a type
is only used in larger contexts, where all required variables are available. For example,
b : (a : A ⊢ B) ⊢ b : B is invalid, given that b must occur in a context where an a : A is
available; while b : (a : A ⊢ B) ⊢ (fun a:A. b) : A → B is valid, because a variable a : A has
been introduced such that the use of b afterwards is safe.

Intro
Γ, a : A ⊢ b : B

Γ ⊢ (fun a. b) : A → B

Elim
Γ ⊢ f : A → B Γ, x : (a : A ⊢ B) ⊢ c : C

Γ ⊢ let (fun a. x) = f ; c : C

Beta
Γ, a : A ⊢ b : B Γ, x : (a : A ⊢ B) ⊢ c : C

Γ ⊢ let (fun a. x) = (fun a. b); c ≡ c[x := b]

Interpreting positive function types as arrays. We avoid the challenges of interpreting
functions as positive types by proposing to interpret positive function types as arrays,
re-interpreting the rules of the positive function type as the rules of the array type. We
require the argument type to be the type of natural numbers below some number n, which
corresponds to the index type of an array. Traditionally, functional programming works with
lists and not arrays, therefore the constant-time access of arrays is not accurately represented
by the model; in functional array languages [15, 37], arrays tend to live in the shadow of the

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:7

function type, as their introduction and elimination forms depend on (higher-order) functions.
Interpreting the array as a positive function type makes them independent and puts them
on an equal footing to the other types with regard to their logical foundation.

We distinguish positive functions, i.e., arrays, from normal functions by using ⇒ for the
type, writing (for a. b) as the introduction form for arrays, while the elimination form is
given, as always, by pattern matching on all possible introduction forms:

Intro
Γ, x : A ⊢ b : B

Γ ⊢ (for x. b) : A ⇒ B
A = Finn

Elim
Γ ⊢ f : A ⇒ B Γ, x : (a : A ⊢ B) ⊢ c : C

Γ ⊢ let (for a. x) = f ; c : C
A = Finn

Beta
Γ, a : A ⊢ b : B Γ, x : (a : A ⊢ B) ⊢ c : C

Γ ⊢ let (for a. x) = (for a. b); c ≡ c[x := b]

Intuitively, analogously to how pattern matching on a product introduces two variables (one for
each projection of the product), pattern matching on an array introduces a family of variables,
one for each element. For illustration, consider b[a := 2] as b2, and (let (for a. b) = f ; c) as
(let (b0, b1, ..., bn−1) = f ; c).

Arrays Enable CSE. Flattening let-bindings usually helps CSE. More precisely the rule
that is used to create the ANF representation is the let-let commuting conversion:

(let y = (let x = e1; e2); e3) ≡
(let x = e1; let y = e2; e3)

Note that the following let-fun commuting conversion is not safe because on the left-hand
side e1 is evaluated at most once, even if it was used multiple times in e2; but on the
right-hand side it will be evaluated once for each usage in e2.

(let y = (fun i. let x = e1; e2); e3) ≡
(let (fun i. x) = (fun i. e1); let y = (fun i. e2); e3)

On the other hand, the let-for commuting conversion that we use in AiNF below is safe
and states that the following two lines are equivalent. As array construction is evaluated
eagerly, the expression e1 is evaluated just once for each iteration, on both sides of the
equation.

(let y = (for i. let x = e1; e2); e3) ≡
(let (for i. x) = (for i. e1); let y = (for i. e2); e3)

Intuitively, this rule allows us to split a complex loop into multiple simpler loops, hence
it is closely connected to loop fission. If we use this rule to split every loop as much as
possible, then we end up with a normal form in which every loop only contains a single
operation. First performing loop fission as much as possible helps with implementing other
optimizations, for example allows CSE to remove redundancies that it could not otherwise
eliminate.

The use of this rule means that frequently both the left side and the right side of a variable
definition are surrounded by the same form (on the left as a pattern form, on the right as a
term form), so we will introduce some syntactic sugar and write let for i. (x = e1); e2 to
mean let (for i. x) = (for i. e1); e2 in the following.

ECOOP 2024

33:8 Compiling with Arrays

3.2 Lifting Branching into the Context
A different problem arises with values of the Boolean type, Booleans have two constructors,
true and false (Intro1, Intro2). They have one destructor, the conditional expression
(Elim), where one continuation is provided for each constructor, the consequent and the
alternative. A conditional reduces to the consequent when the condition is true (Beta1),
and to the alternative when the condition is false (Beta2).

Intro1

Γ ⊢ true : bool

Intro2

Γ ⊢ false : bool

Elim
Γ ⊢ p : bool Γ ⊢ e : C Γ ⊢ f : C

Γ ⊢ if p then e else f

Beta1
Γ ⊢ e : C Γ ⊢ f : C

Γ ⊢ if true then e else f ≡ e

Beta2
Γ ⊢ e : C Γ ⊢ f : C

Γ ⊢ if false then e else f ≡ f

The let-if commuting conversion below is safe with regard to running time. But applying the
commuting conversion duplicates the expression e3. If e3 is a big expression, then even if
duplicating it in different branches may not impact the running time, having nested branches
will lead to a blow-up of the code size exponential in the number of branches (which is also
bad for the compiling time).

(let z = (if e0 then e1 else e2); e3) ≡
(if e0 then (let z=e1; e3) else (let z=e2; e3))

Essentially, the above rule bubbles up conditionals to the top of the expression. Instead,
we propose to trickle down the conditionals using conditionally defined variables and state a
new let-if commuting conversion that does not duplicate the branches. To avoid duplicating
branches, we introduce a syntactically single-branch if. A single-branch if produces a
conditional value, i.e., a value that can only be accessed if the condition is true, and the
single-branch if! produces a value that can only be accessed if the condition is false.

Analogously, we have let-bindings for conditional variables let (if e. x) := ... (or let
(if! e. x) := ...), which define a variable x that can only be accessed if the condition e is
true (or false, respectively). Two simple syntactical conditions can be used to check whether a
conditional variable is accessible: First, a conditional variable is accessible on the right-hand
side of the definition of another conditional variable that has the same condition. In other
words, a conditional variable can be used to define the value of another conditional variable
with the same condition. Second, a conditional variable is accessible in one of the branches
of a standard two-branched if condition. In other words, two mutually exclusive conditional
variables can be combined with an if to define a non-conditional variable.

Using the single-branch if, we can now express a let-if commuting conversion, that does
duplicate e3. Here the double-branched if is seperated into two single-branch ifs and e3
remains to be executed once afterwards:

(let z = (if e0 then e1 else e2);
e3)

≡
(let (if e0. z1) = (if e0. e1);
let (if! e0. z2) = (if! e0. e2);
let z = (if e0 then z1 else z2);
e3)

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:9

Table 1 Common linear algebra operations in Polara; NumPy for reference.

Name NumPy Polara

Vector addition v + w for i. v[i] + w[i]

Matrix addition A + B for i j. A[i,j] + B[i,j]

Element-wise product (vector) v * w for i. v[i] * w[i]

Element-wise product (matrix) A * B for i j. A[i,j] * B[i,j]

Outer product np.multiply.outer(A, B) for i j k l. A[i,j] * B[k,l]

Trace A.trace() sum i. A[i, i]

Transpose A.transpose() for i j. A[j, i]

Matrix multiplication A @ B for i k. sum j. A[i,j] * A[j,k]

Matrix-vector multiplication A @ v for i. sum j. A[i,j] * v[j]

Correct use of conditional values will thus frequently lead to the use of the same condition
on the variable bound by a let and in a single-branched if in the bound expression. We will
thus make use of syntactic sugar writing let if e0. (x1 = e1); e2 to mean let (if e0.
x1) = (if e0. e1); e2.

3.3 Polara and AiNF by Example
In this section, we informally introduce both Polara and AiNF. We do so by giving examples
of array operations and programs in Polara and showing the result of compiling them to
AiNF. Just for reference, we will also provide versions of the Polara examples written in
the widely-adopted array programming library NumPy [14]. Please note that the focus of
this paper lies in the exploration of AiNF, rather than Polara. The latter serves merely as
a vehicle to elucidate how AiNF effectively facilitates optimizations during the translation
process from a surface array language. Hence, compared to NumPy, we have purposely kept
it closer to low-level imperative code.

In Polara, an expression e is either a constant c, or an arithmetic operator e + e,
function application e e, array access a[i], array construction for i:n. e, or summation
sum i:n. e, as well as pairs (e, e) and projection e.1, e.2. The array construction for
i:n. e constructs an array of length n by repeatedly evaluating e, with i bound to the values
from 0 to n-1. For example, for i:3. 10*i evaluates to [0, 10, 20]. We will write for i. e
if the size of the array can be inferred from the context. Summation is syntactic sugar for
constructing an array and then summing it, so sum i.e ≡ sum (for i. e).

In Table 1, we list several common linear algebra operations and compare how they can
be expressed using the linear algebra library NumPy and Polara. We assume as given that
the vectors v, w and matrices A, B are of appropriate sizes.

Dense Layer. As a slightly more involved example, we show how a dense neural network
layer can be implemented in NumPy, Polara, and AiNF, respectively. The NumPy example
makes use of the built-in matrix multiplication operator @. While such an operation can
be implemented as function in Polara, we show an example that only relies on the few
Polara primitives, using the for looping construct and indexing. Likewise, while the
NumPy definition uses the built-in maximum function and addition, the Polara version uses
an explicit loop that performs element-wise multiplication and additions across the vectors.

Compared to the untyped NumPy program, we also declare the types of the arguments.
A type n⇒flt describes an array of floating point numbers with size n.

Obviously, the corresponding AiNF program (Figure 2a) is rather lengthy, as every
intermediate result gets assigned to a variable, just like in ANF.

ECOOP 2024

33:10 Compiling with Arrays

def dense(b, W, x):
return np.maximum(0, W @ x + b)

NumPy

dense(b:n⇒flt, W:n⇒m⇒flt, x:m⇒flt): n⇒flt :=
for i. max(0, (sum j. W[i][j] * x[j]) + b[i])

Polara

Convolution. We now describe how to express convolution in Polara. Convolution involves
moving a vector, called the kernel, across another vector while repeatedly calculating the
dot product. For this example, we need to subtract two indices to indicate that we shift
one array while keeping the other as it is. In the AiNF example (Figure 2b), we create a
two-dimensional array x10 containing all the possibilities for shifting the array y. For example
if y = [1,2,3], then x10 is a matrix of size 3×3 so that tmp1 = [[1,2,3], [2,3,1], [3,1,2]].
We then form the dot product of each entry with x.

def conv(x, y):
return np.convolve(x, y, 'same') NumPy

conv(x: n⇒flt, y: (n+m-1)⇒flt): m⇒flt :=
for i. sum j. x[j] * y[j+i]

Polara

Black-Scholes. Black-Scholes is a simplified mathematical model for the dynamics of
derivative investments in financial markets. The Black-Scholes formula provides an estimate
for the price of the call option (buying) and the put option (selling) of a European-style
option given the original price S, the strike price K, the expiration time T , the force-of-risk
r and the standard deviation σ. The interesting part, from an array programming language’s
perspective, is that with a naive implementation of the calls and puts as separate functions,
common subexpression elimination is not able to identify the redundant computation across
these functions over two separate loops.

In particular, note the redundant definition of d1 and d2 in the calls and the puts
function. This code gets inlined into the blackScholes function, but the two function calls
land in separate loops. Nevertheless, using loop fission the output can be reduced to just 22
lines of AiNF (see Figure 2c); without fission and CSE the generated code would have 54
lines.

calls(S: flt, K: flt, T: flt: r: flt: sigma: flt): flt :=
let d1 := (log (S / K) + (r + sigma * sigma / 2) * T) / (sigma * sqrt T)
let d2 := d1 - sigma * sqrt T
S * normCdf d1 - K * exp (0 - var r * var T) * normCdf d2

puts(S: flt, K: flt, T: flt: r: flt: sigma: flt): flt :=
let d1 := (log (S / K) + (r + sigma * sigma / 2) * T) / (sigma * sqrt T)
let d2 := d1 - sigma * sqrt T
K * exp (0 - r * T) * normCdf (0 - d2) - S * normCdf (0 - d1)

blackScholes(arr: (n ⇒ flt)): n ⇒ (flt × flt) :=
let S := 1; let K := 1; let r := 1; let sigma := 1
let Calls: (n ⇒ flt) := for i. calls(S, K, arr[i], r, sigma)
let Puts: (n ⇒ flt) := for i. puts(S, K, arr[i], r, sigma)
for i. (Calls[i], Puts[i])

Polara

3.4 Simplifying Optimizations with AiNF
This section provides an overview showing how some classical optimizations can be applied
to AiNF and illustrates why our novel normal form simplifies their implementation.

To improve readability, we will sometimes present AiNF code in a way that deviates
from the actual representation by putting multiple operations in one line, when this does not
affect the optimization.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:11

dense(b: n ⇒ flt, W: n ⇒ m ⇒ flt,
x: m ⇒ flt): n ⇒ flt :=

let for i:n, (x0 : flt := 0)
let for i:n, j:m, (x1 : m ⇒ flt := W[i])
let for i:n, j:m, (x2 : flt := x1[j])
let for i:n, j:m, (x3 : flt := x[j])
let for i:n, j:m, (x4 : flt := x2 * x3)
let for i:n, (x5 : m ⇒ flt := for j:m, x4)
let for i:n, (x6 : flt := sum x5)
let for i:n, (x7 : flt := b[i])
let for i:n, (x8 : flt := x6 + x7)
let for i:n, (x9 : flt := max x0 x8)
let (x10: n ⇒ flt := for i:n, x9)
x10 AiNF

(a) AiNF for a dense layer.

conv(x: n ⇒ flt, y: p ⇒ flt): m ⇒ flt :=
let for i:m, j:n, (x0 : flt := x[j])
let for i:m, j:n, (x1 : fin p := j + i)
let for i:m, j:n, (x2 : flt := y[x1])
let for i:m, j:n, (x3 : flt := x0 * x2)
let for i:m, (x4 : n ⇒ flt := for j:n, x3)
let for i:m, (x5 : flt := sum x4)
let (x6 : m ⇒ flt := for i:m. x5)
x6

where p = n+m-1 AiNF

(b) AiNF for convolution.

blackScholes(arr: n ⇒ flt): n ⇒ flt × flt :=
let for i1:n, (x0 : flt := 1.500000)
let for i1:n, (x1 : flt := i0[i1])
let for i1:n, (x2 : flt := x0 * x1)
let for i1:n, (x4 : flt := sqrt x1)
let for i1:n, (x5 : flt := x2 / x4)
let for i1:n, (x6 : flt := normCdf x5)
let for i1:n, (x7 : flt := 0.000000)
let for i1:n, (x9 : flt := x7 - x1)
let for i1:n, (x10 : flt := exp x9)
let for i1:n, (x19 : flt := x5 - x4)
let for i1:n, (x20 : flt := normCdf x19)
let for i1:n, (x21 : flt := x10 * x20)
let for i1:n, (x22 : flt := x6 - x21)
let for i1:n, (x37 : flt := x7 - x19)
let for i1:n, (x38 : flt := normCdf x37)
let for i1:n, (x39 : flt := x10 * x38)
let for i1:n, (x47 : flt := x7 - x5)
let for i1:n, (x48 : flt := normCdf x47)
let for i1:n, (x49 : flt := x39 - x48)
let for i1:n, (x50 : (flt × flt) := (x22, x49))
let (x51 : (n ⇒ flt × flt) := for i1:1, x50)
x51 AiNF

(c) AiNF for a Black-Scholes.

Figure 2 Generated AiNF.

Loop Fission. Loop fission is an optimization pass that prepares code to improve the
effectiveness of dead code elimination. Standard dead code elimination can only delete whole
loops. Loop fission splits a loop into parts, so that individual parts that are not used can be
removed. In AiNF, the body of each loop is a single operation, which means that any AiNF
program is necessarily as fissioned as possible. A simple partial evaluation pass on AiNF can
then perform dead-code elimination.

Below, the left side shows an array computation in Polara. On the right, that same
computation has been transformed to AiNF, which implies loop fission. The code follows
the principle from ANF that expressions should be atomic, i.e., only have one operation. In
terms of array programming, this leads to the first loop being split into three loops. Partial
evaluation could then reduce the full program to just for i. f(xs[i]).

let x = for i.
let ys = f(xs[i])
let zs = f(xs[i])
(ys, zs)

for i.
fst x[i]

Polara

let for i. (ys = f(xs[i]))
let for i. (zs = f(xs[i]))
let for i. (x = (ys, zs))
let for i. (y = fst x)
let z = for i. y
z

AiNF

A further advantage of loop fission is that it improves loop fusion: Splitting a program
into as many loops as possible, gives more freedom to the algorithm for combining loops
again.

ECOOP 2024

33:12 Compiling with Arrays

n ∈ N f ∈ F x ∈ Var i ∈ Idx

Types t ::= fin n | flt | t ×̂ t | t →̂ t | n ⇒̂ t

Constants c ::= n | f | +̂ | ·̂ | −̂ | /̂ | app | get | pair | fst | snd | sum
Polara e ::= c e | x | fun x:t. e | for x:n. e | ite e e e | let e; e

AiNF a ::= let C[x = p]; a | x

Primitives p ::= c x | i | fun i:t. x | for i:n. x | ite x x x

Scope Contexts C[·] ::= · | C[fun i:t. ·] | C[for i:n. ·] | C[if x ̸=0. ·] | C[if x=0. ·]

Figure 3 Polara and AiNF.

Common subexpression elimination. We can now see how AiNF helps with CSE. On the
left, we recapitulate the example from above; on the right, we can see the same program in
AiNF.

let f = for i.
let y = x+1
let y' = 2*y
y'

let z = x+1
...

Polara

let for i. (y = x + 1)
let for i. (y' = 2 * y)
let for i. (f = y')

let for i. (z = x + 1)
...

AiNF

The loop computing f has been broken down into two loops. As a result, z is clearly
redundant, as it performs the same computation in the same scope as y. Therefore, compared
to array languages using higher-order functions, AiNF allows us to use the simple, standard
approach to CSE, and nonetheless remove redundancies between expressions inside and
outside of loops.

Loop invariant code motion. Loop invariant code motion (LICM), which moves constants
out of a loop, is another optimization that benefits from AiNF. In AiNF, this would correspond
to dropping an unused index; hence, the implementation of LICM is very simple. On the
left, we generate an array ys, in which every element is the constant 1. We then compute
an array zs that makes use of ys. Notice that the index i that is bound in the creation of
ys is not used. We can therefore eliminate that loop, adjusting uses of ys accordingly from
ys[i:=j] to ys, as seen on the right.

let for i. (ys = 1)
let zs = for i. f(xs[i], ys)
...

AiNF

let ys = 1
let zs = for i. f(xs[i], ys)
...

AiNF

4 Mechanization

We mechanized Polara, partial evaluation of Polara, AiNF, the translation from Polara
to AiNF, and common subexpression elimination over AiNF, using the dependently typed
programming language Lean 4 [7].

4.1 Polara and Partial Evaluation
Polara. The Polara grammar uses the set of natural numbers, floating point numbers,
variables and indices (Figure 3), but the distinction between variables and indices is only
relevant for AiNF. Types are floating point numbers, products, functions, and arrays, as well
as bounded natural numbers, i.e. fin n is the type of numbers smaller than n. Constants are

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:13

n < m

⊢ n : fin m
⊢ f : flt ⊢ app : (t1→̂t2) → t1 → t2 ⊢ get : (n⇒̂t1) → fin n → t1

⊢ pair : t1 → t2 → (t1×̂t2) ⊢ fst : (t1×̂t2) → t1 ⊢ snd : (t1×̂t2) → t2

⊢ +̂ : fin n → fin m → fin (n + m − 1) ⊢ +̂ : flt → flt → flt ⊢ sum : (n⇒̂flt) → flt

Var
x:t ∈ Γ
Γ ⊢ x : t

Const
⊢ c : ti → t′ Γ ⊢ ei : ti

Γ ⊢ c ei : t′

Fun
Γ, x:t1 ⊢ e : t2

Γ ⊢ fun x:t1. e : t1 → t2

For
Γ, i:fin n ⊢ e2 : t

Γ ⊢ for i:n. e2 : n⇒̂t

Let
Γ ⊢ e1 : t1 Γ, x:t1 ⊢ e2 : t2

Γ ⊢ let x = e1; e2 : t2

Ite
Γ ⊢ e1 : fin 2 Γ ⊢ e2 : t Γ ⊢ e3 : t

Γ ⊢ ite e1 e2 e3 : t

Figure 4 Polara’s type system.

natural number and floating point literals, arithmetic symbols, function application (app),
array access (get), pair construction (pair), first and second projection (fst, snd), and array
summation (sum). Polara terms are variable access, n-ary constant application, function
abstraction, array construction, branching (ite), and let-binding. We decided to put first-order
syntax forms such as function application, array access, pairing, and the product projections
into the constants, because they are all handled uniformly by the following algorithms, while
the higher-order syntax forms, i.e., the ones that bind variables, such as function abstraction,
array construction, branching, and let-binding are kept in the terms because they are all
treated differently.

Intrinsic Types. The typing rules for Polara are given in Figure 4. First, we give the
types for constants. Note that we use the → symbol for the typing judgement of constants
that take arguments. This is not to be confused with the type constructor →̂. The typing
rules for variables (Var), function abstractions (Fun), and let-bindings (Let) are standard.
The rule Const allows one to apply a constant to a number (possibly zero) of arguments.
For example, as app has type (t1→̂t2) → t1 → t2, the expression app e1 e2 has type t2 when
e1 : t1→̂t2 and e2 : t1. The For rule shows that constructing an array with for requires an
expression of type nat for the size and another expression, which can use the (numerical)
index i and whose type gives the element type of the array. The Ite rule states that the
condition has to be of type nat and the two branches have to be of the same type (the
condition is considered true if nonzero).

PHOAS. Our formal development uses parametric higher-order abstract syntax
(PHOAS) [29, 5], allowing us to leverage the binders of the host language as binders for
the guest language. Terms are parametrized by an abstract denotation of types Γ, and
variables contain a value of that type. By using PHOAS, we can avoid certain technicalities
relating to variable binding such as capture-avoiding substitution, thereby streamlining the
implementation.

ECOOP 2024

33:14 Compiling with Arrays

Static Size. As mentioned above, our array types have the form n ⇒ a, where n is the size
of the array. The fact that the size of an array is always part of its static type, implies that
the sizes of all arrays are known at compile time. This guarantees that indexing can be
statically checked for out-of-bounds array accesses, ensuring the absence of run time errors
without requiring run time checks.

Because Polara is not polymorphic, expressions operating on arrays are fixed to specific
array sizes. For example, there is no single expression in Polara that can map a function
over an array of arbitrary size. This restriction is alleviated because our language is embedded,
allowing us to reuse polymorphism from the host language. More concretely, we can define a
function in the host language that for each number n returns a Polara term implementing
map on an array of size n (here, λ belongs to the host language and fun belongs to Polara):

map : (n : N) → (Γ ⊢ (t1→̂t2) →̂ (n⇒̂t1) →̂ (n⇒̂t2))
map := λn. fun f a. for i. f a[i]

Termination. The use of static array sizes ensures that array indexing is total. In fact,
every language construct in Polara is deterministic and terminating, making the language
total; hence it is not Turing-complete. Most notably, we eschew general recursion in favor of
the more well-behaved looping construct for. The lack of non-termination allows us to give a
simple denotational semantics and guarantees termination of normalization, as described
next.

Normalization by Evaluation (NbE). Normalization is defined in Figure 5 by a denotation
for types (JtKΓ : Type), a corresponding denotation for terms and constants (such that when
e has type t, then (JeKΓ : JtKΓ)), as well as functions quote (η), splice (η′), and norm. Note
the additional argument Γ – this is a peculiarity of the PHOAS representation, where Γ
determines the denotation of variables. This argument can take different values, depending on
which information we want to extract from a term. For example, when pretty-printing a term
we want to produce a string, so we associate every variable also with a string (Γ t := String).
For NbE, every term should be translated to the denotation of their type, so we associate
every variable to the denotation J·KΓ of its type using Γ. The function norm takes a value
of type (∀Γ. Γ ⊢ t) and returns one of the same type. The quantification means that we
can only use variables that were created by the language’s binding constructs, so the type
represents closed terms.

The denotation of a bounded natural number is a bounded natural number term, the
denotation of a floating point number is a floating point number term, the denotation of a
product is a product of the denotations, the denotation of a function is a function of the
denotations, the denotation of an array is a function from a bounded natural number term
to a denotation of the array’s content. Later, for code generation, we will again distinguish
functions and arrays. But for the purpose of normalization by partial evaluation (NbE), we
model arrays as functions so as to reduce the need for rules for both of them.

The quote η and splice η′ functions perform eta-expansion of terms by recursion over the
types. Quote turns denotations into terms, and splice turns terms back into denotations.
The denotation of a Polara term is a corresponding host-language value of that term (i.e., a
Lean value in our mechanization). NbE then evaluates terms in the environment of splicing,
followed by quoting the denotation back into a term.

Constants denote functions that check for whether their argument is known, and the
partial evaluation of their argument; otherwise, they quote/splice the term into a denotation
of the type.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:15

J·KΓ : Ty → Type
Jfin nKΓ = Γ ⊢ fin n

JfltKΓ = Γ ⊢ flt
Jt1 ×̂ t2KΓ = Jt1KΓ × Jt2KΓ
Jt1 →̂ t2KΓ = Jt1KΓ → Jt2KΓ
Jn ⇒̂ tKΓ = (Γ ⊢ fin n) → JtKΓ

(a) Denotation of types.

Jite e1 e2 e3K =
Je2K if Je1K = 1
Je3K if Je1K = 0
η′(ite Je1K (ηJe2K) (ηJe3K)) otherwise

(b) Denotation of ite.

J·K : (J·KΓ ⊢ t) → JtKΓ
JxK = x

Jfun i. eK = λi. Je iK
Jfor i. eK = λi. Je iK
Jc eK = JcK JeK
Jlet e1; e2K = Je2K Je1K

JappK e1 e2 = e1 e2
JgetK e1 e2 = e1 e2
JpairK e1 e2 = (e1, e2)
JfstK e = e.1
JsndK e = e.2
JsumK e = η′ (sum (η e))
J+̂K n1 n2 = n1 + n2
J+̂K e1 e2 = e1 +̂ e2

(c) Denotation of terms and constants.

η : ∀t. JtKΓ → (Γ ⊢ t)
η (t1 →̂ t2) e = fun i : t1. η t2 (e (η′ t1 i))
η (n1 ⇒̂ t2) e = for i : n1. η t2 (e (η′ t1 i))
η (t1 ×̂ t2) e = tup (η t1 e.1) (η t2 e.2)
η (fin n) e = e

η flt e = e

η′ : ∀t. (Γ ⊢ t) → JtKΓ
η′ (t1 →̂ t2) e = λi. app (η′ t2 e) (η t1 i)
η′ (n1 ⇒̂ t2) e = λi. get (η′ t2 e) (η t1 i)
η′ (t1 ×̂ t2) e = (η′ t1 (fst e), η′ t2 (snd e))
η′ (fin n) e = e

η′ flt e = e

norm : (∀Γ. Γ ⊢ t) → (∀Γ. Γ ⊢ t)
norm e = η JeK

(d) Quote η, splice η′, and normalization norm.

Figure 5 Typed partial evaluation.

4.2 AiNF and Common Subexpression Elimination

FOAS. An essential component for implementing common subexpression elimination is the
ability to compare to terms for equality. As we cannot decide equality over functions, we
have to convert from parametric higher-order abstract syntax (PHOAS) to first-order syntax
(FOAS) to get decidable equality for identifiers and terms containing variables.

AiNF. In AiNF, we distinguish between variables x and indices i (Figure 3). Variables are
introduced by let-binding, while indices are introduced by functions and loops. An AiNF
term is a sequence of pattern-matching let-bindings of primitives, ending in a final variable
(Figure 3, AiNF). An essential property of AiNF is thus, that it is both maximally fissioned
(each for loop just has a single operation as a body) and maximally flat (an AiNF term is a
single list of terms without subterms, executed one after another). Pattern matching contexts
C have one hole for the variable, and one form for each higher-order argument to any term
former, namely array construction, function abstraction, if-consequence, and if-alternative.
Primitives are constant application, indices, variable access, function abstraction, and array
construction.

ECOOP 2024

33:16 Compiling with Arrays

CJ · K · : (⊢ t1) → (Var t1 → AiNF t2) → AiNF t2

CJ x K k = L x M k

CJ i K k = L i M k

CJ c e1 e2 K k = CJe1K λ x1. CJe2K λ x2. L c x1 x2 M k

CJfun i:t. eK k = C[fun i:t. ·]JeK λ x. L fun i:t. x M k

CJfor i:e1. e2K k = CJe1K λ x1. C[for i:x1. ·]Je2K λ x2. L for i:x1. x2 M k

CJite e1 e2 e3K k = CJe1K λ x1. C[if x1=0. ·]Je2K λ x2. C[if x2 ̸=0. ·]Je3K λ x3. Lite x1 x2 x3M k

CJlet e1; e2K k = CJe1K λ x1. CJe2 x1K k

(a) Fission.

L · M : Prim t1 → (Var t1 → AiNF t2) → AiNF t2
L x M k = k x

L p M k = let x = p; k x where x unique

(b) Smart binding.

Figure 6 Fission with smart binding.

Conversion to AiNF (Figure 6) exploits the fact that continuation-passing-style auto-
matically flattens code. The function CJ e K k takes as inputs a Polara term e, a pattern
matching context C, and a continuation k, and returns an AiNF term. In the mechanization
the function uses a reader monad as well to generate unique variable names. The function
is initialized with the empty pattern matching context, and the identity continuation; the
variable counter is initialized with zero.

Another important helper function is smart binding L p M k, which takes a primitive p

and a continuation k. Smart binding ensures that every primitive term passed to it is bound
to a variable name, and that variable name is passed to the continuation. If the primitive
term is a variable already, this variable name is passed to the continuation; otherwise the
term is bound to a unique variable name, incrementing the counter.

Translation to AiNF by CJ e K k recurses structurally over the term e. In the case of
a variable or an index, the term is forwarded to smart binding. In the case of a constant
application (exemplary shown for binary constant application), first the first subterm is
translated, then in the continuation the second subterm is translated, and in the continuation
the term is reconstructed as a primitive with variable referencing the name of the translated
subterms, which is passed to smart binding to generate a new name for this term, passing the
continuation along. In the case of function abstraction, array construction, and conditional
expressions, the subterms are translated as well, but in adapted contexts, and the final term
is passed as well to smart binding to generate a name for it, and the continuation is passed
along. Concretely, in the case of function abstraction, the function body is translated in a
context which includes the function argument. In the case of array construction, the array
body is translated in a context which includes the iteration variable. In the case of conditional
expressions, the consequence is translated in a context which includes the condition, and the
alternative is translated in a context which includes the negation of the condition. Finally,
in the case of let-binding, first the right-hand side of the binding is translated, and then the
body of the binding.

CSE. In addition to deciding equality for terms, a further complication with common
subexpression elimination is that we also need to decide equality in the presence of already
established equalities. For example consider the term x=v, y=v, z=(x+y), q=(y+x), t=z+1,

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:17

Ren = [(t1 : Ty) × Var t1 × Var t1]
Nam = [(t1 : Ty) × Prim t1 × Var t1]
CSE : Ren → Nam → AiNF t2 → AiNF t2
CSE r σ x = (σ, renr x)

CSE r σ (let C[x = p]; a) =

CSE r (let C ′[x = p′]; σ) a

if lookup σ C ′ x p′ = none

CSE ([x := x′] :: r) σ′ a

if lookup σ C ′ x p′ = some (x′, σ′)
where p′ = renr p

where C ′ = renr C

Figure 7 Common subexpression elimination.

r=q+1, Correct CSE should eliminate it to x=v, z=(x+x); t=z+1; rename [y→x; q→z;
r→t], Notice how the later eliminations are dependent on the earlier ones. If we simply
rename the remaining term every time we detect a variable to be redundant, then this
algorithm would perform exponentially worse, because every renaming is a traversal over
the whole remaining term, and CSE itself is already a traversal over the whole term. To
keep everything with a single traversal, we adapt CSE to carry a renaming with it, which is
applied just before a term is checked for redundancy.

CSE (Figure 7) takes a renaming, a naming, and an AiNF term, and returns a new
AiNF term of the same type. A renaming is a list of pairs of variables of the same type,
representing that the first variable is to be replaced by the second. A naming is a list of pairs
of a primitive and a variable of the same type, representing that the primitive term has been
previously bound to that variable. CSE works by structural recursion over the term. When
the input term is just a variable, it simply applies the renaming. When the input term is a
let-binding, then the renaming is applied to the term as well. The renamed term is looked
up in the list of previously defined terms. If the term has not been bound to a variable
name already (none), then the term is now let-bound to a variable, inside a renamed pattern
matching context C. CSE proceeds with the remaining terms a, remembering that the term
p′ has been bound to σ, so that future redundant occurrences of p′ can be eliminated. If the
term has already been bound to a variable name (some x′), then no let-binding is produced,
but only the renaming is extended to replace future references to x to the already existing x′

instead. CSE proceeds with the remaining terms a, remembering that the term p′ has been
bound to σ, so that future redundant occurrences of p′ can be eliminated.

4.3 Mechanization in Lean

In this section, we present excerpts from the Lean mechanization and relate them to the
paper formalization. The type of terms Tm corresponds to (Γ ⊢ t) and features constructors
for variables and constants (var, cst0 etc.). In the paper, we do not write these constructors
explicitly, so we would write x rather than var x. We define the following types corresponding
to the above definitions of syntax (Figure 3) in Lean.

ECOOP 2024

33:18 Compiling with Arrays

inductive Var : Ty) Type -- Variables Var
inductive Par : Ty) Type -- Indices Idx

inductive Ty -- Types t
inductive Const0 : Ty) Type -- Constants c (nullary)
inductive Const1 : Ty) Ty) Type -- Constants c (unary)
inductive Const2 : Ty) Ty) Ty) Type -- Constants c (ternary)
inductive Tm (Γ: Ty) Type): Ty) Type -- Terms e

inductive Prim : Ty) Type -- Primitives p
inductive Env : Type -- Scoped Contexts C
inductive AINF : Ty) Type -- AINF a

Lean

In particular, we define the following functions in Lean. The function Ty.de corresponding
to denotation of types J·KΓ, quote to η and splice to η′, Const0.de, Const1.de, Const2.de
and Tm.de were shown as term, constant, and its denotations J·K. Finally, norm is defined
using term denotations and quote.

def Ty.de (Γ : Ty) Type): Ty) Type

def quote {Γ} : {α : Ty}) Ty.de Γ α) Tm Γ α

def splice {Γ} : {α : Ty}) Tm Γ α) Ty.de Γ α

def Const0.de : Const0 α) Ty.de Γ α

def Const1.de : Const1 β α) Ty.de Γ β) Ty.de Γ α

def Const2.de : Const2 γ β α) Ty.de Γ γ) Ty.de Γ β) Ty.de Γ α

def Tm.de : Tm (Ty.de Γ) α) Ty.de Γ α

def Tm.norm : (∀ Γ, Tm Γ α)) Tm Γ α

| e ⇒ quote (Tm.de (e _))
Lean

The smart_bnd function takes an additional number argument, wrapped inside a reader
monad, which is used for creating fresh variables. In the paper, we leave this out and just
stipulate that the variable is fresh. The same applies to toAINF. When discussing CSE in
the paper, we describe renamings. The rename functions define how a renaming is applied.
CSE also requires us to check equality of expressions, which is done with the beq functions.
The CSE function in the paper also calls lookup, which is not defined there. It corresponds
to the built-in ListMap.lookup. Our code also contains a function Env.or, which merges two
environments. This is used to allow CSE to remove redundancies which appear in different,
but compatible, environments.

In particular, we define the following functions in Lean, corresponding to the functions
above:

def Prim.beq : Prim α) Prim α) Bool
def AINF.beq : AINF α) AINF α) Bool
def AINF.smart_bnd : Env) Prim α) (VPar α) Counter (AINF β))) Counter (AINF β)
def Tm.toAINF (e : Tm VPar α) : AINF α

def Var.rename : Ren) Var α) Var α

def VPar.rename (r: Ren): VPar α) VPar α

def Env.rename (r: Ren): Env) Env
def Prim.rename (r: Ren): Prim α) Prim α

def AINF.rename (r: Ren): AINF α) AINF α

def AINF.rename (r: Ren): AINF α) AINF α

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:19

def Env.or (Γ: Env) (∆: Env): Tern) Option Env := fun t ⇒ match Γ, ∆ with
def RAINF.upgrade : RAINF) Var b) Env) Option RAINF
def AINF.cse' : Ren) RAINF) AINF α) (RAINF × VPar α)
def merge: RAINF) VPar α) AINF α

def AINF.cse : Ren) RAINF) AINF α) AINF α

| r, σ, a ⇒ let (b, c) := a.cse' r σ; merge b.reverse c
Lean

4.4 Proofs
In this section, we show that normalization and translation to AiNF are type-preserving, i.e.
given a well-typed term, they always produce a valid term of the same type. We also show
that translation to AiNF produces maximally fissioned terms.

We use an intrinsically typed approach where the type system of the object language is
included in the encoding of the data type for the language’s syntax. Therefore, the host
languages type system ensures only well-typed terms can be constructed.

Following an intrinsically typed approach means that the soundness properties hold
simply because our (appropriately typed) definitions type check. We do not have to state
and prove explicit, separate theorems, because the types of the functions already carry the
necessary information.

▶ Theorem 1 (Well-typedness of Optimization).
Our optimization procedure is terminating and type preserving.

Proof. Termination is ensured by Lean’s built-in termination check. The fact that normal-
ization terminates relies on Polara being a total language. In particular, the absence of
unbounded recursion and the combination of static array sizes with intrinsic typing avoids
infinite loops and out-of-bounds accesses, ensuring that our normalization function always
successfully terminates. Type preservation is ensured by intrinsically-typed mechanization;
consider the types of normalization and CSE in Lean:

def Tm.norm : (∀ Γ, Tm Γ α)) Tm Γ α

| e ⇒ quote (Tm.de (e _))
def AINF.cse : Ren) RAINF) AINF α) AINF α

| r, σ, a ⇒ let (b, c) := a.cse' r σ; merge b.reverse c
Lean

Intrinsic typing defines the typing of the object language (here, Polara) using the typing of
the host language (here, Lean), so the host language’s type checker prevents the creation
of ill-typed object language programs. This means that an element of (∀ Γ, Tm Γ α) is a
well-typed Polara program and an element of AINF α is a well-typed AiNF term. Further,
given a well-typed term, each function returns a well-typed term, which is what we mean by
soundness with regard to the type system. ◀

▶ Theorem 2 (Well-typedness of Translation).
Our translation procedure is terminating and type preserving.

Proof. Again, termination is guaranteed by Lean’s termination checker. The argument for
type preservation is similar to the one above: As both Polara and AiNF are defined using
intrinsic typing, we can only construct well-typed programs. Consider the type of toAINF
(we omit the definition):

def Tm.toAINF (e : Tm VPar α) : AINF α
Lean

If one tried to define toAINF in a way that produces an ill-typed program, the definition
would be rejected by the type checker. ◀

ECOOP 2024

33:20 Compiling with Arrays

Finally, AiNF is inductively defined to be maximally fissioned, i.e., as a list of primitives
without subterms, therefore the act of translating Polara terms into AiNF in a total
programming language performs loop fission by definition.

▶ Theorem 3 (Maximal Fission).
Our translation into AiNF produces terms with maximal fission.

Proof. Consider the definition of AiNF terms:

inductive AINF : Ty) Type
| ret : VPar α) AINF α

| bnd : Env) Var α) Prim α) AINF β) AINF β
Lean

Here, a value of type VPar α can be a variable or a parameter. A value of type Prim α is
a primitive (not nested) operation. The constructor bnd represents a variable assignment
while ret returns a variable or parameter and represents the end of the program. From this
inductive definition, it is apparent that all AiNF terms have a flat structure where nested
expressions are impossible. Recall that, in AiNF, each assignment is considered its own
separate loop. Because the body of each assignment only contains a single primitive, each
loop has a body only consisting of one operation and hence an AiNF term is guaranteed
to be maximally fissioned. Because the translation function toAINF has output type AINF α,
it can only produce such maximally fissioned terms. Further, Lean’s termination checker
ensures that toAINF is total, and so always returns an AiNF term in finite time. ◀

5 Related Work

5.1 Intermediate Languages
Early work by Steele [38] implemented a continuation-passing-style (CPS) IR in a functional
compiler, stressing the suitability of CPS for compilation, as it closely mimics how control
flow is expressed with jumps in hardware instructions, and makes evaluation order explicit in
the syntax. Appel [2] observed that beta-reductions in the lambda calculus are unsound in the
presence of side effects as they could duplicate the effect. Yet, CPS, which makes evaluation
order explicit, enables to perform certain optimizations, such as dead code elimination (DCE),
and common subexpression elimination (CSE), by exploiting that in CPS every subterm is
referenced by a unique name.

Sabry and Felleisen [34] identified that additional power of compiling in CPS [30] corre-
sponds to the additional rules of the monadic computational language [24]. Of particular
importance is the so-called associativity law of the monad, i.e., the let-let commuting conver-
sion, enabling the flattening of code. Then, Flanagan [11] coined the name “A-normal form
(ANF)” for the now popular IR, which in contrast to CPS, expresses sequential execution by
simple let-binding rather than continuations. The difference between ANF and the monadic
language is that ANF forbids nested let-bindings, i.e., code must be normal with regard to
the associativity rule of the monad.

However, Kennedy [18] showed that moving from CPS to ANF did not take into account
branching. More precisely, while the let-let commuting conversion enables the flattening of
code, the let-if commuting conversion duplicates code into each branch, in the worst case
leading to blow-up of code size exponential in the number of branches. Given that recursion
always includes a branch for base case(s) and step case(s), the same problem appears with
recursion. Kennedy therefore argued for a return to CPS.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:21

The issue was resolved by Maurer et al. [22], who provided an implementation of ANF
for use in the Glasgow Haskell Compiler (GHC), and further simplified by Cong et al. [6]
who provided implementations for MiniScala and Lightweight-Modular-Staging (LMS). Cong
showed that it is possible to combine the simplicity of let-bindings for sequential execution
and the power of continuations for further control flow, by adding control operators to ANF,
which enable to capture the current continuation.

In our work, we highlight the importance of commuting conversions, and extend the idea
of having an intermediate language that intrinsically encodes maximal let-let conversion to
an intermediate language that also intrinsically encodes maximal let-for and let-if commuting
conversion, without exponential blow-up of code size. Further, as this work lies in the context
of array programming, recursion is not often necessary, and can thus be avoided.

The logical connection between polarity and common subexpression elimination has also
been explored by Miller and Wu [23].

5.2 Array Programming

Shaikhha et al. [37] present a differentiable programming language which is an extension of
the lambda calculus. For array computations, they use an approach based on higher-order
functions. It directly represents the duality of functions and arrays through built-in functions
build for creating an array from a function and get for turning an array into a function.
The fact that get is a left inverse of build leads to the equivalence get (build n e) i ≡ e i,
which can be used for optimization. Another strand of research makes use of the standard
technique of rewriting strategies to optimize functional array programs [13, 4], suggesting the
viability of standard techniques from term rewriting for optimizing array programs. Liu et
al. [20] present a framework that can express a variety of optimizations through formally
verified term rewriting, achieving competitive performance; however, CSE is not addressed.
Their representation is first-order and features an array generation construct similar to the
one in Polara. Optimization in Polara is not based on rewriting, but instead uses partial
evaluation.

Feldspar [3] is a DSL for array computations in Haskell. It features a parallel construct
similar to our for constructor, as well as while loops. Feldspar is compiled to C and performs
standard optimizations like fusion, as well as copy propagation and loop unrolling. Feldspar’s
backend uses a dataflow graph and an imperative intermediate representation, whereas our
intermediate representation is functional and specifically designed to support optimizations
on array programs.

SaC [35] is a functional first-order array language. Array computations are expressed
using with-loops, which consist of at least one generator and one operator. Each generator
consists of an index range and an expression giving the value of the output array at a given
index in the range. The operator can provide default values for indices not included in any
generator, a base array that should be modified by the generators, or it can describe an
aggregation. More recently, SaC has added support for tensor comprehensions [36], which
drop the operator part and add pattern matching on indices as well as bound and shape
inference, making the notation more lightweight. Similar to our approach, their tensor
comprehensions do not support summation, which is added in the form of a built-in function.
SaC’s optimizations are not based on a logical foundation, but consist of a pipeline of
optimization algorithms. In Polara we derive our syntax form for pattern matching on
arrays from polarization type theory, enabling additional commuting conversions and thus
grounding our optimization algorithm on a logical foundation.

ECOOP 2024

33:22 Compiling with Arrays

6 Conclusion

This paper introduced AiNF, a novel intermediate representation for array computations,
and Polara, a surface array language. The proposed optimization algorithm for AiNF,
based on typed partial evaluation and common subexpression elimination, simplifies program
optimization by interpreting arrays as positively polarized types. This approach avoids com-
plexities associated with optimization schedules for conventional ANF. We formalized AiNF
and Polara. We proved sound the translation from Polara to AiNF and optimization.

For future work, we are working on extending the language with automatic differentiation
and probabilistic primitives, and proving these extensions correct as well. We are inter-
ested in applying our optimization to redundancies generated by automatic differentiation.
Further, given that AiNF, based on ANF, is related to monadic notation, it would be
interesting to investigate whether Applicative notation [21, 33], Arrow notation [16], and
Comonad Notation [27] provide similar insights for normalization by evaluation approach to
optimization.

References
1 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput.,

2(3):297–347, 1992. doi:10.1093/LOGCOM/2.3.297.
2 Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
3 Emil Axelsson, Koen Claessen, Gergely Dévai, Zoltán Horváth, Karin Keijzer, Bo Lyckegård,

Anders Persson, Mary Sheeran, Josef Svenningsson, and András Vajda. Feldspar: A domain
specific language for digital signal processing algorithms. In 8th ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEMOCODE 2010), Grenoble,
France, 26-28 July 2010, pages 169–178. IEEE Computer Society, 2010. doi:10.1109/MEMCOD.
2010.5558637.

4 Timon Böhler, David Richter, and Mira Mezini. Using rewrite strategies for efficient functional
automatic differentiation. In Aaron Tomb, editor, Proceedings of the 25th ACM International
Workshop on Formal Techniques for Java-like Programs, FTfJP 2023, Seattle, WA, USA, 18
July 2023, pages 51–57. ACM, 2023. doi:10.1145/3605156.3606456.

5 Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In James
Hook and Peter Thiemann, editors, Proceeding of the 13th ACM SIGPLAN international
conference on Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28,
2008, pages 143–156. ACM, 2008. doi:10.1145/1411204.1411226.

6 Youyou Cong, Leo Osvald, Grégory M. Essertel, and Tiark Rompf. Compiling with con-
tinuations, or without? whatever. Proceedings of the ACM on Programming Languages,
3(ICFP):79:1–79:28, 2019. doi:10.1145/3341643.

7 Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming
language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28
- 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021,
Proceedings, volume 12699 of Lecture Notes in Computer Science, pages 625–635. Springer,
2021. doi:10.1007/978-3-030-79876-5_37.

8 Paul Downen and Zena M. Ariola. The duality of construction. In Zhong Shao, editor,
Programming Languages and Systems - 23rd European Symposium on Programming, ESOP
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes
in Computer Science, pages 249–269. Springer, 2014. doi:10.1007/978-3-642-54833-8_14.

9 Paul Downen and Zena M. Ariola. Compiling with classical connectives. Log. Methods Comput.
Sci., 16(3), 2020. URL: https://lmcs.episciences.org/6740.

10 Paul Downen and Zena M. Ariola. Duality in action (invited talk). In Naoki Kobayashi,
editor, 6th International Conference on Formal Structures for Computation and Deduction,
FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference), volume 195
of LIPIcs, pages 1:1–1:32. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPICS.FSCD.2021.1.

https://doi.org/10.1093/LOGCOM/2.3.297
https://doi.org/10.1109/MEMCOD.2010.5558637
https://doi.org/10.1109/MEMCOD.2010.5558637
https://doi.org/10.1145/3605156.3606456
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/3341643
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-642-54833-8_14
https://lmcs.episciences.org/6740
https://doi.org/10.4230/LIPICS.FSCD.2021.1
https://doi.org/10.4230/LIPICS.FSCD.2021.1

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:23

11 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling
with continuations. In Robert Cartwright, editor, Proceedings of the ACM SIGPLAN’93
Conference on Programming Language Design and Implementation (PLDI), Albuquerque, New
Mexico, USA, June 23-25, 1993, pages 237–247. ACM, 1993. doi:10.1145/155090.155113.

12 Jeremy Gibbons. APLicative programming with Naperian functors. In Hongseok Yang, editor,
Programming Languages and Systems - 26th European Symposium on Programming, ESOP
2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10201 of Lecture Notes
in Computer Science, pages 556–583. Springer, 2017. doi:10.1007/978-3-662-54434-1_21.

13 Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and
Michel Steuwer. Achieving high performance the functional way: Expressing high-performance
optimizations as rewrite strategies. Commun. ACM, 66(3):89–97, 2023. doi:10.1145/3580371.

14 Charles R. Harris, K. Jarrod Millman, Stéfan van der Walt, Ralf Gommers, Pauli Virta-
nen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett,
Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nat., 585:357–362, 2020.
doi:10.1038/S41586-020-2649-2.

15 Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E. Oancea.
Futhark: purely functional GPU-programming with nested parallelism and in-place array
updates. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, pages 556–571. ACM, 2017. doi:10.1145/3062341.
3062354.

16 John Hughes. Generalising monads to arrows. Science of Computer Programming, 37(1-3):67–
111, 2000. doi:10.1016/S0167-6423(99)00023-4.

17 Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and automatic
program generation. Prentice Hall international series in computer science. Prentice Hall, 1993.

18 Andrew Kennedy. Compiling with continuations, continued. In Ralf Hinze and Norman Ramsey,
editors, Proceedings of the 12th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007, pages 177–190. ACM, 2007.
doi:10.1145/1291151.1291179.

19 Neelakantan R. Krishnaswami. Focusing on pattern matching. In Zhong Shao and Benjamin C.
Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages
366–378. ACM, 2009. doi:10.1145/1480881.1480927.

20 Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley. Verified
tensor-program optimization via high-level scheduling rewrites. Proc. ACM Program. Lang.,
6(POPL):1–28, 2022. doi:10.1145/3498717.

21 Simon Marlow, Simon Peyton Jones, Edward Kmett, and Andrey Mokhov. Desugaring
Haskell’s do-notation into applicative operations. In Geoffrey Mainland, editor, Proceedings of
the 9th International Symposium on Haskell, Haskell 2016, Nara, Japan, September 22-23,
2016, pages 92–104. ACM, 2016. doi:10.1145/2976002.2976007.

22 Luke Maurer, Paul Downen, Zena M. Ariola, and Simon L. Peyton Jones. Compiling without
continuations. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, pages 482–494. ACM, 2017. doi:10.1145/3062341.
3062380.

23 Dale Miller and Jui-Hsuan Wu. A positive perspective on term representation (invited talk). In
Bartek Klin and Elaine Pimentel, editors, 31st EACSL Annual Conference on Computer Science
Logic, CSL 2023, February 13-16, 2023, Warsaw, Poland, volume 252 of LIPIcs, pages 3:1–3:21.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.CSL.2023.3.

ECOOP 2024

https://doi.org/10.1145/155090.155113
https://doi.org/10.1007/978-3-662-54434-1_21
https://doi.org/10.1145/3580371
https://doi.org/10.1038/S41586-020-2649-2
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1145/1480881.1480927
https://doi.org/10.1145/3498717
https://doi.org/10.1145/2976002.2976007
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.4230/LIPICS.CSL.2023.3

33:24 Compiling with Arrays

24 Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth
Annual Symposium on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA,
June 5-8, 1989, pages 14–23. IEEE Computer Society, 1989. doi:10.1109/LICS.1989.39155.

25 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
ACM Trans. Comput. Log., 9(3):23:1–23:49, 2008. doi:10.1145/1352582.1352591.

26 nLab authors. function type. https://ncatlab.org/nlab/show/function+type, January
2024. Revision 33.

27 Dominic A. Orchard and Alan Mycroft. A notation for comonads. In Ralf Hinze, editor,
Implementation and Application of Functional Languages - 24th International Symposium,
IFL 2012, Oxford, UK, August 30 - September 1, 2012, Revised Selected Papers, volume
8241 of Lecture Notes in Computer Science, pages 1–17. Springer, 2012. doi:10.1007/
978-3-642-41582-1_1.

28 Adam Paszke, Daniel D. Johnson, David Duvenaud, Dimitrios Vytiniotis, Alexey Radul,
Matthew J. Johnson, Jonathan Ragan-Kelley, and Dougal Maclaurin. Getting to the point:
index sets and parallelism-preserving autodiff for pointful array programming. Proc. ACM
Program. Lang., 5(ICFP):1–29, 2021. doi:10.1145/3473593.

29 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Richard L. Wexelblat,
editor, Proceedings of the ACM SIGPLAN’88 Conference on Programming Language Design
and Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988, pages 199–208. ACM,
1988. doi:10.1145/53990.54010.

30 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

31 Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes, Sylvain Paris,
Marc Levoy, Saman P. Amarasinghe, and Frédo Durand. Halide: decoupling algorithms
from schedules for high-performance image processing. Commun. ACM, 61(1):106–115, 2018.
doi:10.1145/3150211.

32 David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini. stg-tud/ainf-compiling-
with-arrays. Software, swhId: swh:1:dir:8e0e755d11e4e3e91fb05bf8df1a5c8bec0f553a (vis-
ited on 2024-09-02). URL: https://github.com/stg-tud/ainf-compiling-with-arrays.

33 David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini. A direct-style effect
notation for sequential and parallel programs. In Karim Ali and Guido Salvaneschi, editors,
37th European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023,
Seattle, Washington, United States, volume 263 of LIPIcs, pages 25:1–25:22. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ECOOP.2023.25.

34 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.
LISP Symb. Comput., 6(3-4):289–360, 1993.

35 Sven-Bodo Scholz. Single Assignment C: efficient support for high-level array opera-
tions in a functional setting. J. Funct. Program., 13(6):1005–1059, 2003. doi:10.1017/
S0956796802004458.

36 Sven-Bodo Scholz and Artjoms Sinkarovs. Tensor comprehensions in SaC. In Jurriën
Stutterheim and Wei-Ngan Chin, editors, IFL ’19: Implementation and Application of
Functional Languages, Singapore, September 25-27, 2019, pages 15:1–15:13. ACM, 2019.
doi:10.1145/3412932.3412947.

37 Amir Shaikhha, Andrew W. Fitzgibbon, Dimitrios Vytiniotis, and Simon Peyton Jones.
Efficient differentiable programming in a functional array-processing language. Proc. ACM
Program. Lang., 3(ICFP):97:1–97:30, 2019. doi:10.1145/3341701.

38 Guy L. Steele. Rabbit: A compiler for Scheme. Technical report, Massachusetts Institute of
Technology, USA, 1978.

39 Noam Zeilberger. On the unity of duality. Ann. Pure Appl. Log., 153(1-3):66–96, 2008.
doi:10.1016/J.APAL.2008.01.001.

40 Noam Zeilberger. The logical basis of evaluation order and pattern-matching. PhD thesis,
Carnegie Mellon University, USA, 2009. AAI3358066.

https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1145/1352582.1352591
https://ncatlab.org/nlab/show/function+type
https://ncatlab.org/nlab/revision/function+type/33
https://doi.org/10.1007/978-3-642-41582-1_1
https://doi.org/10.1007/978-3-642-41582-1_1
https://doi.org/10.1145/3473593
https://doi.org/10.1145/53990.54010
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/3150211
https://archive.softwareheritage.org/swh:1:dir:8e0e755d11e4e3e91fb05bf8df1a5c8bec0f553a;origin=https://github.com/stg-tud/ainf-compiling-with-arrays;visit=swh:1:snp:e92b86a1a72b7e96bb4c6207f6d6a157de14195f;anchor=swh:1:rev:a8a88bca53396f58df5ae5d1da0755f1b02b01b8
https://github.com/stg-tud/ainf-compiling-with-arrays
https://doi.org/10.4230/LIPICS.ECOOP.2023.25
https://doi.org/10.1017/S0956796802004458
https://doi.org/10.1017/S0956796802004458
https://doi.org/10.1145/3412932.3412947
https://doi.org/10.1145/3341701
https://doi.org/10.1016/J.APAL.2008.01.001

	1 Introduction
	2 Problem Statement
	3 AiNF, Polara, and Simplified Optimizations
	3.1 The Duality of Functions and Arrays
	3.2 Lifting Branching into the Context
	3.3 Polara and AiNF by Example
	3.4 Simplifying Optimizations with AiNF

	4 Mechanization
	4.1 Polara and Partial Evaluation
	4.2 AiNF and Common Subexpression Elimination
	4.3 Mechanization in Lean
	4.4 Proofs

	5 Related Work
	5.1 Intermediate Languages
	5.2 Array Programming

	6 Conclusion

