
Pipit on the Post: Proving Pre- and
Post-Conditions of Reactive Systems
Amos Robinson #

Sydney, Australia

Alex Potanin #

Australian National University, Canberra, Australia

Abstract
Synchronous languages such as Lustre and Scade are used to implement safety-critical control
systems; proving such programs correct and having the proved properties apply to the compiled
code is therefore equally critical. We introduce Pipit, a small synchronous language embedded
in F⋆, designed for verifying control systems and executing them in real-time. Pipit includes a
verified translation to transition systems; by reusing F⋆’s existing proof automation, certain safety
properties can be automatically proved by k-induction on the transition system. Pipit can also
generate executable code in a subset of F⋆ which is suitable for compilation and real-time execution
on embedded devices. The executable code is deterministic and total and preserves the semantics of
the original program.

2012 ACM Subject Classification Computer systems organization → Real-time languages; Theory
of computation → Program verification; Software and its engineering → Specialized application
languages

Keywords and phrases Lustre, streaming, reactive, verification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.34

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.19
Software (source code and mechanised proofs): https://github.com/songlarknet/pipit

archived at swh:1:dir:8839600ca8830ab20681ed03760f642bf877b77e

1 Introduction

Safety-critical control systems, such as the anti-lock braking systems that are present in
most cars today, need to be correct and execute in real-time. One approach, favoured by
parts of the aerospace industry, is to implement the controllers in a high-level language
such as Lustre [10] or Scade [13], and verify that the implementations satisfy the high-level
specification using a model-checker, such as Kind2 [11]. These model-checkers can prove
many interesting safety properties automatically, but do not provide many options for manual
proofs when the automated proof techniques fail. Additionally, the semantics used by the
model-checker may not match the semantics of the compiled code, in which case properties
proved do not necessarily hold on the real system. This mismatch may occur even when the
compiler has been verified to be correct, as in the case of Vélus [5]. For example, in Vélus,
integer division rounds towards zero, matching the semantics of C; however, integer division
in Kind2 rounds to negative infinity, matching SMT-lib [2, 25].

To be confident that our proofs hold on the real system, we need a single shared semantics
for the compiler and the prover. In this paper we introduce Pipit1, an embedded domain-
specific language for implementing and verifying controllers in F⋆. Pipit aims to provide a

1 Implementation available at https://github.com/songlarknet/pipit

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Amos Robinson and Alex Potanin;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 34; pp. 34:1–34:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amos@songlark.net
https://orcid.org/0009-0004-4837-4981
mailto:alex.potanin@anu.edu.au
https://orcid.org/0000-0002-4242-2725
https://doi.org/10.4230/LIPIcs.ECOOP.2024.34
https://doi.org/10.4230/DARTS.10.2.19
https://doi.org/10.4230/DARTS.10.2.19
https://github.com/songlarknet/pipit
https://archive.softwareheritage.org/swh:1:dir:8839600ca8830ab20681ed03760f642bf877b77e;origin=https://github.com/songlarknet/pipit;visit=swh:1:snp:2ea5f2e7754dca34989ad7d07c6d2ba6fb9626f0;anchor=swh:1:rev:305bf5a39996269dfecce598aa7aac42ba893a88
https://github.com/songlarknet/pipit
https://doi.org/10.4230/DARTS.10.2.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

high-level language based on Lustre, while reusing F⋆’s proof automation and manual proofs
for verifying controllers [31], and using Low⋆’s C-code generation for real-time execution [34].
To verify programs, Pipit translates its expression language to a transition system for k-
inductive proofs, which is verified to be an abstraction of the original semantics. To execute
programs, Pipit can generate executable code, which is total and semantics-preserving.

In this paper, we make the following contributions:
we motivate the need to combine manual and automated proofs of reactive systems with
a strong specification language (Section 2);
we introduce Pipit, a minimal synchronous language that supports rely-guarantee contracts
and properties; crucially, proof obligations are annotated with a status – valid or deferred
– allowing proofs to be delayed until more is known of the program context (Section 3);
we describe a checked semantics for Pipit; after checking deferred properties, programs
are blessed, which marks their properties as valid (Subsection 3.2);
we describe an encoding of transition systems that can express under-specified rely-
guarantee contracts as functions rather than relations; composing functions results in
simpler transition systems (Section 4);
we identify the invariants and lemmas required to prove that the abstract transition
system is an abstraction of the original semantics (Subsection 3.3, Subsection 4.3);
similarly, we offer a mechanised proof that the executable transition system preserves the
original semantics (Section 5);
finally, we evaluate Pipit by implementing the high-level logic of a Time-Triggered
Controller Area Network (TTCAN) bus driver and verifying an abstract model of a key
component (Section 6).

2 Pipit for time-triggered networks

To introduce Pipit, we consider a time-triggered network driver, which has a static schedule
dictating the network traffic, and which all nodes on the network must adhere to. This
driver is a simplification of the Time-Triggered Controller Area Network (TTCAN) bus
specification [15] which we will discuss further in Section 6.

At a high level, the network schedule is described by a system matrix which consists of
rows of basic cycles. Each basic cycle consists of a sequence of actions to be performed at
specific time-marks. Actions in the schedule may not be relevant to all nodes; the node’s node
matrix contains only the relevant actions. The node matrix is represented in memory by a
triggers array containing triggers sorted by their time-marks; trigger actions include sending
and receiving application-specific messages, sending reference messages, and triggering “watch”
alerts. Reference messages start a new basic cycle; a subset of nodes, designated as leaders,
send reference messages to synchronise the network. Watch alerts are generally placed after
an expected reference message to signal an error if no reference message is received.

Figure 1 (left) shows an example node matrix for a non-leader node. The matrix consists
of two basic cycles C0 and C1 with messages sent at time-marks 0, 1 and 2. The node
expects to receive a reference message at time-mark 7; the watch at time-mark 9 allows a
grace period before triggering an error if the reference message is not received. Figure 1
(right) shows the corresponding triggers array.

The network has strict timing requirements which prohibit the driver from looping through
the entire triggers array at each time-mark. Instead, the driver maintains an index that
refers to the current trigger. At each time-mark, the driver checks if the current trigger has
expired or is inactive, and if so, it increments the index.

A. Robinson and A. Potanin 34:3

TM0 TM1 TM2 · · · TM9
C0 SEND A SEND B - · · · WATCH
C1 SEND A - SEND C · · · WATCH

0:{ time = 0; enabled = {C0,C1}; action = SEND(A); }
1:{ time = 1; enabled = {C0}; action = SEND(B); }
2:{ time = 2; enabled = {C1}; action = SEND(C); }
3:{ time = 9; enabled = {C0,C1}; action = WATCH; }

Figure 1 Left: node matrix; right: corresponding triggers array configuration.

2.1 Deferring and proving properties
We implement a streaming function count_when to maintain the index into the triggers
array; the function takes a constant natural number max and a stream of booleans inc. At
each step, count_when checks whether the current increment flag is true; if so, it increments
the previous counter, saturating at the maximum; otherwise, it leaves the counter as-is.

let count_when (max: N) (inc: stream B): stream N =
rec count.

check□? (0 ≤ count ≤ max);
let count’ = (0 fby count) + (if inc then 1 else 0) in
if count’ ≥ max then max else count’

The implementation of count_when first defines a recursive stream, count, which states
an invariant about the count before defining the incremented stream count’. Inside count’,
the syntax 0 fby count is read as “the initial value of zero followed by the previous count”.

The syntax check□? (0 ≤ count ≤ max) asserts that the count is within the range [0, max].
The subscript □? on the check is the property status, which in this case denotes that the
assertion has been stated, but it is not yet known whether it holds. A property status of
□✓ , on the other hand, denotes that a property has been proved to hold. These property
statuses are used to defer checking properties until enough is known about the environment,
and to avoid rechecking properties that have already been proven. In practice, the user
does not explicitly specify property statuses in the source language. The stated property
(0 ≤ count ≤ max) is a stream of booleans which must always be true. Non-streaming
operations such as ≤ are implicitly lifted to streaming operations, and non-streaming values
such as 0 and max are implicitly lifted to constant streams.

We defer the proof of the property here because, at the point of stating the property
inside the rec combinator, we don’t yet have a concrete definition for the count variable.
In this case, we could have instead deferred the statement of the property by introducing
a let-binding for the recursive count and putting the check outside of the rec combinator.
However, it is not always possible to defer property statements: for example, when calling
other streaming functions that have their own preconditions, it may not be possible to move
the function call outside of its enclosing rec.

Pipit is an embedded domain-specific language. The program above is really syntactic
sugar for an F⋆ program that takes a natural number and constructs a Pipit core expression
with a free boolean variable. We will discuss the details of the core language in Section 3,
but for now we focus on the source program with some minor embedding details omitted.

To actually prove the property above, we use the meta-language F⋆’s tactics to translate
the program into a transition system and prove the property inductively on the system.
Finally, we bless the expression, which marks the properties as valid ([□? := □✓]). Blessing is
an intensional operation that traverses the expression and updates the internal metadata,
but does not affect the runtime semantics.

let count_when□✓ (max: N): stream B → stream N =
let system = System.translate1(count_when max) in
assert (System.inductive_check system) by (pipit_simplify ());
bless1 (count_when max)

ECOOP 2024

34:4 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

The subscript 1 in the translation to transition system and blessing operations refers
to the fact that the stream function has one stream parameter. The pipit_simplify tactic
in the assertion performs normalisation-by-evaluation to simplify away the translation to a
first-order transition system; F⋆’s proof-by-SMT can then solve the inductive check directly.

Callers of count_when can now use the validated variant without needing to re-prove
the count-range property. In a dedicated model-checker such as Kind2 [11] or Lesar [35],
this kind of bookkeeping would all be performed under-the-hood. By embedding Pipit in a
general-purpose theorem prover, we move some of the bookkeeping burden onto the user;
however, we have increased confidence that the compiled code matches the verified code and,
as we shall see, we also have access to a rich specification language.

2.2 Restrictions on the triggers array
Our driver may fall behind when trying to execute certain schedules, as the driver only
processes one trigger per time-mark. To ensure that the schedule can be executed on time,
the triggers array must allow sufficient time for the driver to skip over any disabled triggers
before the next enabled trigger starts.

Recall our concrete triggers array from Figure 1, which contained trigger 1 (SEND B at
time-mark 1 on cycle C0), and trigger 2 (SEND C at time-mark 2 on cycle C1). We could
postpone trigger 1 to send B at time-mark 2, as the corresponding cell in the node matrix
is empty. However, we cannot bring the trigger at index 2 forward to send message C at
time-mark 1, as it takes two steps to reach trigger 2 from the start of the array.

We impose three restrictions on valid triggers arrays: the time-marks must be sorted;
there must be an adequate time-gap between any two triggers that are enabled on the same
cycle index; and each trigger’s time-mark must be greater-than-or-equal to its index, so that
it is reachable in time from the start of the array.

With these restrictions in place, we prove a lemma lemma_can_reach_next, which states
that for all valid cycle indices and trigger indices, if the current trigger is enabled in the
current cycle and there is another enabled trigger scheduled to occur somewhere in the array
after the current one, then there is an adequate time-gap to allow the driver to skip over any
disabled triggers in-between. These properties are straightforward in a theorem prover, but
are difficult to state in a model-checker with a limited specification language.

2.3 Instantiating lemmas and defining contracts
We can now implement the trigger-fetch logic, which keeps track of the current trigger. We
use the count_when streaming function to define the index of the current trigger; we tell
count_when to increment the index whenever the previous index has expired or is inactive
in the current basic cycle. We simplify our presentation here and only consider a constant
cycle: the real system presented in Section 6 has some extra complexity such as resetting the
index, incrementing the cycle index at the start of a new cycle, and using machine integers.

let trigger_fetch (cycle: N) (time: stream N): stream N =
rec index.

let inc = false fby ((time_mark index) ≤ time ∨ ¬(enabled index cycle)) in
let index = count_when□✓ trigger_count inc in
pose (lemma_can_reach_next cycle index);
check□? (can_reach_next_active cycle time index);
index

A. Robinson and A. Potanin 34:5

The trigger_fetch function takes a static cycle index and a stream denoting the current
time. The increment flag and the index are mutually dependent – the increment flag depends
on the previous value of the index, while the index depends on the current value of the
increment flag – so we introduce a recursive stream for the index. We allow the index to go
one past the end of the array to denote that there are no more triggers.

We use the pose helper function to lift the lemma_can_reach_next lemma to a streaming
context and instantiate it. We then state an invariant as a deferred property. Informally, the
invariant states that, either the current active trigger is not late, or the next active trigger
after the current index is in the future and we can reach it in time.

With the explicitly instantiated lemma, we can prove the streaming invariant by straight-
forward induction on the transition system. To help compose this function with the rest of
the system, we also abstract over the details of the trigger-fetch mechanism by introducing a
rely-guarantee contract for trigger_fetch. The contract we state is that if we are called once
per time-mark then we guarantee that we never encounter a late trigger.

let trigger_fetch□✓ (cycle: N): stream N → stream N =
let contract = Contract.contract_of_stream1 {

rely = (λtime. time = 0 fby (time + 1));
guar = (λtime index. (index_valid index ∧ enabled index cycle)

=⇒ (time_mark index) ≥ time);
body = (λtime. trigger_fetch cycle time);

} in
assert (Contract.inductive_check contract) by (pipit_simplify ());
Contract.stream_of_contract1 contract

In the implementation of the validated variant of trigger_fetch, we first construct the
contract from streaming functions. The Contract.contract_of_stream1 combinator describes
a contract with one input (the time stream), and takes stream transformers for each of the
rely, guarantee and body. The combinator transforms the surface syntax into core expressions.
The assertion (Contract.inductive_check contract) then translates the expressions into a
transition system, and checks that if the rely always holds then the guarantee always holds,
and that the as-yet-unchecked subproperties hold. Finally, Contract.stream_of_contract1
blesses the core expression and converts it back to a stream transformer, so it can be easily
used by other parts of the program.

The key distinction between our streaming rely-guarantee contracts and imperative
pre-post contracts is that the rely and guarantee are both streams of booleans, rather than
instantaneous predicates. In this case, the rely (time = 0 fby (time + 1)) checks that the
current time is exactly one time-mark after the time at the previous tick of computation.
Expressing such a rely in an imperative setting would require extra encoding, as preconditions
in imperative languages do not generally have an innate notion of the previous value with
respect to a global shared clock.

When trigger_fetch is used in other parts of the program, the caller must ensure that
the environment satisfies the rely clause. In the core language, this is tracked by another
deferred property status attached to the contract; we will discuss this further in Section 3.

3 Pipit core language

We now introduce the core Pipit language. Note that this form differs slightly from the
surface syntax presented earlier in Section 2, which used the syntax of the metalanguage F⋆,
as well as including proofs in F⋆ itself.

ECOOP 2024

34:6 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

F* embedded
source

Core Pipit
(Section 3)

Executable System
(Section 5)

Abstract System
(Section 4)

Low* C

⊆ ⊢
= =

Figure 2 Architecture of Pipit. The gray boxes and solid arrows are defined in this paper. The
white boxes and dashed arrows are trusted components. The labels denote verified properties of the
translation: abstraction (⊆), entailment of proof obligations (⊢), and equivalence (=).

e, e′ := v | x | p(e) (values, variables and operations)
| v fby e | rec x. e[x] (delayed and recursive streams)
| let x = e in e′[x] (let-expressions)
| checkπ eprop (checked properties)
| contractπ {erely} ebody {x. eguar[x]} (rely-guarantee contracts)

v := n ∈ N | b ∈ B | r ∈ R | . . . (values)
p := (+) | (−) | (×) | if-then-else | . . . (primitives)

π := □✓ | □? (property statuses: valid or unknown)

V := · | V ; v (streams of values)
σ := {x 7→ v} (heaps)
Σ := · | Σ; σ (streaming history environments)
τ, τ ′ := N | B | τ × τ | . . . (value types)
Γ := · | x : τ, Γ (type environments)

Figure 3 Core grammar: expressions e, values v, primitive operations p, and property statuses π.

Figure 2 shows the high-level architecture of Pipit. On the left-hand-side, the surface
syntax embedded in F⋆ is shown; this includes some Pipit-specific syntactic sugar. The
translation from the surface syntax to the core language is trusted. There are two targets
from the core language: abstract transition systems for verification, and executable transition
systems for extraction to C. The translation to abstract systems is verified to be an abstraction
according to the dynamic semantics (Subsection 3.1). The translation to abstract systems
also generates proof obligations, which are verified to correspond to the proof obligations
on the original program. The translation to executable transition systems is proven to be
semantics-preserving, as is the subsequent translation to Low⋆. The translation from Low⋆

to C is external to this paper and forms part of our trusted computing base.
Figure 3 defines the grammar of Pipit. The expression form e includes standard syntax for

values (v), variables (x) and primitive applications (p(e)). Most of the expression forms were
introduced informally in Section 2 and correspond to the clock-free expressions of Lustre [10].

The expression syntax for delayed streams (v fby e) denotes the previous value of the
stream e, with an initial value of v when there is no previous value.

A. Robinson and A. Potanin 34:7

Recursive streams are defined using the fixpoint operator (rec x. e[x]); the syntax e[x]
means that the variable x can occur in e. As in Lustre, recursive streams can only refer to
their previous values and must be guarded by a delay: the stream (rec x. 0 fby (x + 1)) is
well-defined and counts from zero up, but the stream (rec x. x + 1) is invalid and has no
computational interpretation. This form of recursion differs slightly from standard Lustre,
which uses a set of mutually-recursive bindings. Although we cannot express mutually-
recursive bindings in the core syntax here, we can express them as a notation on the surface
syntax by combining the bindings together into a record or tuple.

Checked properties and contracts are annotated with their property status π, which can
either be valid (□✓) or unknown (□?). For checked properies checkπ e, the property status
denotes whether the property has been proved to be valid.

Contracts contractπ {erely} ebody {x. eguar[x]} allow modular reasoning by replacing the
implementation with an abstract specification. Contracts involve two verification conditions.
Firstly, when a contract is defined, the definer must prove that the body satisfies the contract:
roughly, if erely is always true, then eguar[x := ebody] is always true. Secondly, when a contract
is instantiated, the caller must prove that the environment satisfies the precondition: that is,
erely is always true. Conceptually, then, a contract could have two property statuses: one for
the definition and one for the instantiation. However, in practice, it is not useful to defer the
proof of a contract definition – one could achieve a similar effect by replacing the contract
with its implementation. For this reason, we only annotate contracts with one property
status, which denotes whether the instantiation has been proved to satisfy the precondition.

For example, the core expression (rec sum. (0 fby sum) + ints) computes the sum of
values from a stream of integers ints by defining a recursive stream sum, which is delayed
and given an initial value of zero. If we were to use this sum in a context that required a
strictly positive integer, we could give it a contract that states that if the input stream is
always positive, then the resulting sum is also positive:

contract□? {ints > 0} (rec sum. (0 fby sum) + ints) {sum. sum > 0}

To be considered a valid program, we must prove that the contract definition itself holds, as
with our earlier contract (Subsection 2.3). The unknown property status here allows us to
defer the caller’s proof that the input stream is always positive until the contract is used.

The remaining grammatical constructs of Figure 3 describe streams, value environments,
types and type environments. Streams V are represented as a sequence of values; streaming
history environments Σ are streams of heaps. Types τ and type environments Γ are standard.
For the presentation of the formal grammar here, we consider only a fixed set of values and
primitives; in practice, the implementation is parameterised by a primitive table which we
extend with immutable array operations for the TTCAN driver logic in Section 6.

We define the typing judgments for Pipit in Figure 4. Most of the typing rules are standard
for an unclocked Lustre. The typing judgment Γ ⊢ e : τ denotes that, in an environment
of streams Γ, expression e denotes a stream of type τ . This core typing judgment differs
from the surface syntax used in Section 2, which used an explicit stream type; for the core
language, we instead assume that everything is a stream.

We use an auxiliary function prim-value-type(v) = τ to denote that value v has type τ ;
for primitives prim-type(p) = (τ1 × · · · . . . × τn) → τ ′ denotes that p takes arguments of type
τi and returns a result of type τ ′. Primitives are pure, non-streaming functions.

Rules TValue, TVar, TPrim and TLet are standard.
Rule TFby states that expression v fby e requires both v and e to have equal types.
Rule TRec states that a recursive stream rec x. e has the recursive stream bound inside e.

The recursion must also be guarded, in that any recursive references to x are delayed, but
this requirement is performed as a separate syntactic check described in Subsection 3.3.

ECOOP 2024

34:8 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

Γ ⊢ e : τ

prim-value-type(v) = τ

Γ ⊢ v : τ
(TValue)

Γ, x : τ, Γ′ ⊢ x : τ
(TVar)

prim-type(p) = (τ1 × · · · × τn) → τ ′ Γ ⊢ e1 : τ1 . . . Γ ⊢ en : τn

Γ ⊢ p(e) : τ ′ (TPrim)

prim-value-type(v) = τ Γ ⊢ e′ : τ

Γ ⊢ v fby e′ : τ
(TFby) Γ, x : τ ⊢ e : τ

Γ ⊢ rec x. e[x] : τ
(TRec)

Γ ⊢ e : τ Γ, x : τ ⊢ e′ : τ ′

Γ ⊢ let x = e in e′[x] : τ ′ (TLet) Γ ⊢ e : B
Γ ⊢ checkπ e : unit

(TCheck)

Γ ⊢ erely : B Γ ⊢ ebody : τ Γ, x : τ ⊢ eguar : B
Γ ⊢ contractπ {erely} ebody {x. eguar[x]} : τ

(TContract)

Figure 4 Typing rules for Pipit; the judgment Γ ⊢ e : τ denotes that expression e describes a
stream of values of type τ . Auxiliary functions are used for values and primitive operations.

Rule TCheck states that checked properties checkπ e require a boolean property e.
Finally, rule TContract applies for a contract contractπ {erely} ebody {x. eguar[x]}

with a body expression of type τ . The overall expression has result type τ . Both rely and
guarantee must be boolean expressions, and the guarantee can refer to the result as x.

3.1 Dynamic semantics
The dynamic semantics of Pipit are defined in Figure 5. We present our semantics in a
big-step form. This differs somewhat from traditional reactive semantics of Lustre [10]. Our
big-step semantics emphasises the equational nature of Pipit, as it is substitution-based and
syntax-directed, while the reactive semantics emphasises the finite-state streaming execution
of the system. We use transition systems for reasoning about the finite-state execution
(Section 4), which is fairly standard [9, 11, 35]. Previous work on the W-calculus [17] for
linear digital-signal-processing filters makes a similar distinction and provides a non-streaming
semantics for reasoning about programs and a streaming semantics for executing programs.

The judgment form Σ ⊢ e ⇓ v denotes that expression e evaluates to value v under
streaming history Σ. The streaming history is a stream of heaps; in practice, we only evaluate
expressions with a non-empty streaming history.

At a high level, evaluation unfolds recursive streams to determine a value. For example,
to evaluate the earlier sum example with input ints = [1; 2], we start with the judgment:

{ints 7→ 1}; {ints 7→ 2} ⊢ (rec sum. (0 fby sum) + ints) ⇓ v

First, we unfold the recursive stream one step to get (0 fby (rec sum. (0 fby sum) +
ints)) + ints. Evaluation of primitives is standard. To evaluate variables, we look for the
variable in the current (rightmost) heap:

{ints 7→ 1}; {ints 7→ 2} ⊢ ints ⇓ 2 (Var)

A. Robinson and A. Potanin 34:9

Σ ⊢ e ⇓ v

Σ; σ ⊢ x ⇓ σ(x) (Var) Σ ⊢ v ⇓ v
(Value) Σ ⊢ e′[x := e] ⇓ v

Σ ⊢ let x = e in e′[x] ⇓ v
(Let)

Σ ⊢ e1 ⇓ v1 . . . Σ ⊢ en ⇓ vn

Σ ⊢ p(e) ⇓ prim-sem(p, v) (Prim)

σ ⊢ v fby e′ ⇓ v
(Fby1) length(Σ) > 0 Σ ⊢ e′ ⇓ v′

Σ; σ ⊢ v fby e′ ⇓ v′ (FbyS)

Σ ⊢ e[x := rec x. e] ⇓ v

Σ ⊢ rec x. e[x] ⇓ v
(Rec) Σ ⊢ checkπ e ⇓ () (Check)

Σ ⊢ ebody ⇓ v

Σ ⊢ contractπ {erely} ebody {x. eguar[x]} ⇓ v
(Contract)

Σ ⊢ e ⇓∗ V Σ ⊢ e ⇓2 ⊤

· ⊢ e ⇓∗ ·
(Steps0) Σ ⊢ e ⇓ V Σ; σ ⊢ e ⇓ v

Σ; σ ⊢ e ⇓ V ; v
(StepsS)

Σ ⊢ e ⇓∗ ⊤; . . .

Σ ⊢ e ⇓2 ⊤
(Always)

Figure 5 Dynamic semantics for Pipit; the judgment form Σ ⊢ e ⇓ v denotes that evaluating
expression e under streaming history Σ results in value v.

For delays, we discard the current heap and continue evaluation with the history prefix:

{ints 7→ 1} ⊢ (rec sum. (0 fby sum) + ints) ⇓ 1
{ints 7→ 1}; {ints 7→ 2} ⊢ 0 fby (rec sum. (0 fby sum) + ints) ⇓ 1 (FbyS)

Returning to Figure 5, rule Var evalutes a variable x under some non-empty stream
history Σ; σ, where σ is the most recent heap. Rules Value and Let are standard. Rule Prim
evaluates a primitive p applied to many arguments e1 to en by evaluating each argument
separately; we then apply the primitive with prim-sem metafunction.

For delay expressions v fby e, we have two cases depending on whether there is a previous
value. When there is no previous value – the streaming history only contains the current
heap – rule Fby1 evaluates to the default value v. Otherwise, rule FbyS applies; we evaluate
the previous value of e by discarding the most recent entry from the streaming history.

Rule Rec evaluates a recursive stream rec x. e by unfolding the recursion one step. For
causal expressions (Subsection 3.3), where each recursive occurrence of x is guarded by a
followed-by, this unfolding eventually terminates as each followed-by shortens the history.

Rule Check ignores the property when evaluating check expressions. We do not dynam-
ically check the property here; this is done in the checked semantics (Subsection 3.2).

Similarly, rule Contract ignores preconditions and postconditions when evaluating
contracts. From an abstraction perspective, it would be valid to return an arbitrary value that
satisfies the contract. However, such an abstraction would make evaluation non-deterministic
and, for contracts with unsatisfiable postconditions, non-total. The deterministic and total
nature of evaluation is key to our proofs and metatheory.

ECOOP 2024

34:10 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

We also define two auxiliary judgment forms: Σ ⊢ e ⇓∗ V and Σ ⊢ e ⇓2 ⊤.
Judgment form Σ ⊢ e ⇓∗ V denotes that, under history Σ, expression e evaluates to the

stream V . This judgment performs iterated application of single-value evaluation.
Judgment form Σ ⊢ e ⇓2 ⊤ denotes that a boolean expression e evaluates to the stream

of trues under history Σ. Informally, it can be read as “e is always true in history Σ”.

3.2 Checked semantics
In addition to the big-step semantics above, we also define a judgment form for checking
that the properties and contracts of a program hold for a particular streaming history. We
call these the checked semantics; they are comparable to checking runtime assertions.

The checked semantics have the judgment form Σ ⊢π e valid, which denotes that under
streaming history Σ, the properties and contracts of e with status π hold. The property
status dictates which properties should be checked and which should be ignored.

We consider a program to be valid if its checks hold for all histories (∀Σ. Σ ⊢□✓ e valid).
The checked semantics are a specification describing what it means to be a valid program. We
do not generally verify programs directly using the checked semantics; instead, we translate
to an abstract transition system and construct the proofs there (Section 4).

To check a property (checkπ e) in history Σ, we check that e is always true (Σ ⊢ e ⇓2 ⊤).
Checking contracts is more involved. For whole-program correctness, it would suffice to

check that a contract’s rely and guarantee both hold. However, the purpose of contracts is to
enable modular reasoning about parts of the program: we need to be able to check contracts
independently of their context. Conceptually, then, contracts involve two kinds of checks:
one for the definition and one for the call-site. To check a contract definition, we check that
the body satisfies the guarantee for all valid contexts – that is, those where the rely holds.
Then, to check a contract instance, we just need to check that the call-site satisfies the rely.

For example, recall our earlier contract that the sum of strictly positive integers is positive:

let sum i = contract□? {i > 0} (rec sum. (0 fby sum) + i) {sum. sum > 0}

To check the contract definition on a concrete input i = [1; 2], we first evaluate the body:

{i 7→ 1}; {i 7→ 2} ⊢ (rec sum. (0 fby sum) + i) ⇓∗ [1; 3]

We then check that, assuming all inputs are positive, then all results are positive:

{i 7→ 1}; {i 7→ 2} ⊢ i > 0 ⇓2 ⊤ =⇒ {i 7→ 1, sum 7→ 1}; {i 7→ 2, sum 7→ 3} ⊢ sum > 0 ⇓2 ⊤

It is critical that the rely is true at all points in the stream. Consider if we had instead
used the input stream i = [−10; 1]; the rely is false at the first step, but is instantaneously
true at the second step. In this case, the sum is −10 at the first step, and −9 at the second
step. At both steps the output is negative and the guarantee is false, even though the
rely becomes true at the second step. The contract itself remains valid, however, as the
assumption is invalid: the input did not satisfy the rely at all steps.

The checked semantics of Pipit is defined in Figure 6.
Rules ChkValue and ChkVar state that values and variables are always valid.
Rule ChkPrim checks a primitive application by descending into the subexpressions.

Similarly, rule ChkFby descends into followed-by expressions.
Rule ChkRec checks a recursive-expression rec x. e by evaluating the overall expression

to a stream of values V . The rule then extends the streaming environment Σ with x bound to
the values from V ; this extended environment is used to descend into the recursive expression.

A. Robinson and A. Potanin 34:11

Σ ⊢π e valid

Σ ⊢π v valid (ChkValue) Σ ⊢π x valid (ChkVar)

Σ ⊢π e1 valid . . . Σ ⊢π en valid
Σ ⊢π p(e) valid (ChkPrim) Σ ⊢π e′ valid

Σ ⊢π v fby e′ valid
(ChkFby)

Σ ⊢ rec x. e ⇓∗ V Σ[x 7→ V] ⊢π e valid
Σ ⊢π rec x. e[x] valid (ChkRec)

Σ ⊢π e valid Σ ⊢ e ⇓∗ V Σ[x 7→ V] ⊢π e′ valid
Σ ⊢π let x = e in e′[x] valid

(ChkLet)

(π = π′ =⇒ Σ ⊢ e ⇓2 ⊤) Σ ⊢π e valid
Σ ⊢π checkπ′ e valid (ChkCheck)

Σ ⊢ ebody ⇓∗ V

(π = π′ =⇒ Σ ⊢ erely ⇓2 ⊤)
(π = □✓ =⇒ Σ ⊢ erely ⇓2 ⊤ =⇒ Σ[x 7→ V] ⊢ eguar ⇓2 ⊤)

Σ ⊢π erely valid
(Σ ⊢ erely ⇓2 ⊤ =⇒ Σ ⊢π ebody valid ∧ Σ[x 7→ V] ⊢π eguar valid)

Σ ⊢π contractπ′ {erely} ebody {x. eguar[x]} valid
(ChkContract)

Figure 6 Checked semantics for Pipit; the judgment form Σ ⊢π e valid denotes that evaluating
expression e under streaming history Σ satisfies the checks and rely-guarantee contract requirements
that are labelled with property status π.

Rule ChkLet checks a let-expression let x = e in e′ descends into both sub-expressions.
To check the body e′, the rule first evaluates e and extends the streaming environment.

Finally, the heavy lifting is performed by rules ChkCheck and ChkContract.

Rule ChkCheck checks the properties marked π in an expression checkπ′ e. If the
check-expression has the same status as what we are checking (π = π′), then we evaluate
the expression e and require it to be true at all steps. We then unconditionally descend into
the subexpression to check any nested properties. Such nested properties are unlikely to be
written directly by the user, but might occur after inlining.

Rule ChkContract applies when checking property status π of a contract with expression
contractπ′ {erely} ebody {x. eguar[x]}. This rule checks both the contract definition and the
call-site. We evaluate the body to a stream V ; these values are used to check that the body
satisfies guarantee. Although the contract only has one property status, conceptually there
are two distinct properties: one for the caller (π′) and one for the definition (assumed to
be □✓). To check the caller property when π = π′, we evaluate the rely erely and require it
to hold. To check the definition property when π = □✓ , we assume that the rely holds, and
check that the body satisfies the guarantee. We also descend into the subexpressions to check
them; when checking the body and guarantee, we can assume that the rely holds.

ECOOP 2024

34:12 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

3.2.1 Blessing expressions and contracts
Blessing is a meta-operation that replaces the property statuses in an expression so that all
checks and contracts are marked as valid (□✓). Blessing an expression requires a proof that,
for all input streams, assuming the valid checks hold, then the unknown checks hold:

∀Σ. Σ ⊢□✓ e valid =⇒ Σ ⊢□? e valid
bless e

(BlessExpression)

We generally prove the required properties by first translating the program to an abstract
transition system, as described in Section 4.

Blessing is different for contract definitions, as we need to separate the definition of the
contract from the instantiation. To check that a contract definition is valid, we show that if
the rely clause is always true for a particular input, then the body satisfies the guarantee for
the same inputs. We also assume that the valid properties in the rely, body and guarantee
hold, and show the corresponding unknown properties:

let contract_valid {erely} ebody {eguar} : prop =
∀Σ. (Σ ⊢□✓ (erely, ebody, eguar[x := ebody]) valid ∧ Σ ⊢ erely ⇓2 ⊤)
=⇒ (Σ ⊢□? (erely, ebody, eguar[x := ebody]) valid ∧ Σ ⊢ eguar[x := ebody] ⇓2 ⊤)

After proving that the contract is valid for all inputs, we can bless the contract definition.
Blessing the contract definition blesses the subexpressions for the rely, body and guarantee,
but leaves the contract’s instantiation property status as unknown:

contract_valid {erely} ebody {eguar}
bless_contract {erely} ebody {eguar}

(BlessContract)

3.3 Causality and metatheory
To ensure that recursive streams have a computational interpretation, we implement a
causality restriction, similar to standard Lustre [10]. This restriction checks that all recursive
streams are guarded by a followed-by delay. We implement this as a simple syntactic check:
each rec x. e can only mention x inside a followed-by. This check ensures productivity
of recursive streams, but can be too strict: for example, the expression rec x. (let x′ =
x + 1 in 0 fby x′) mentions the recursive stream x outside of the delay and is outlawed, but
after inlining the let, it would be causal. We hope to relax this restriction in future work.

The causality restriction gives us some important properties about the metatheory. The
most important property is that the dynamic semantics form a total function: given a
streaming history and a causal expression, we can evaluate the expression to a value. These
properties are mechanised in F⋆.

▶ Theorem 1 (bigstep-is-total). For any non-empty streaming history Σ and causal expression
e, there exists some value v such that e evaluates to v (Σ ⊢ e ⇓ v).

The relationship between substitution and the streaming history is also important. In
general, we have a substitution property that states that evaluating a substituted expression
e[x := e′] under some context Σ is equivalent to evaluating e′ and adding it to the context Σ:

▶ Theorem 2 (bigstep-substitute). For a streaming history Σ and causal expressions e

and e′, if e[x := e′] evaluates to a value v (Σ ⊢ e ⇓ v), then we can evaluate e′ to some
stream V (Σ ⊢ e′ ⇓∗ V) and extend the streaming history to evaluate e to the original value
(Σ[x 7→ V] ⊢ e ⇓ v). The converse is also true.

A. Robinson and A. Potanin 34:13

type system (input: Γ) (result: τ) = {
state: Γ;
free: Γ;
init: heap state;
step: heap input → heap free → heap state → step_result state result;

}

type step_result (state: Γ) (result: τ) = {
update: heap state;
value: result;
rely: prop;
guar: prop;

}

Figure 7 Abstract transition system type definitions.

The big-step semantics in Figure 5 for a recursive expression rec x. e performs one step of
recursion by substituting x for the recursive expression. An alternative non-syntax-directed
semantics would be to have the environment outside the semantics supply a stream V such
that if we extend the streaming history with x 7→ V , then e evaluates to V itself. The above
substitution theorem can be used to show that, for causal expressions, these two semantics
are equivalent. We can additionally show that, when evaluating e with x 7→ V , the most
recent value in V does not affect the result. This fact can be used to “seed” evaluation by
starting with an arbitrary value:

▶ Theorem 3 (bigstep-rec-causal). For a streaming history Σ; σ and a causal recursive
expression rec x. e, if (Σ; σ ⊢ e ⇓ v), then updating σ[x] with any value v′ results in the
same value: (Σ; σ[x 7→ v′] ⊢ e ⇓ v).

4 Abstract transition systems

To prove properties about Pipit programs, we translate to an abstract transition system,
so-called because it abstracts away the implementation details of contract instantiations. For
extraction we also translate to executable transition systems, which we discuss in Section 5.

Figure 7 shows the types of transition systems. A transition system is parameterised
by its input context and the result type. It also contains two internal contexts: firstly, the
state context describes the private state required to execute the machine; secondly, the free
context contains any extra input values that the transition system would like to existentially
quantify over. The free context is used to allow the system to ask for arbitrary values from
the environment, when it would not otherwise be able to return a concrete value.

For recursive streams and contract instantiations, which hide their implementation, the
natural translation to a transition system would involve existentially quantifying a result
that satisfies the specification. Unfortunately, using an existential quantifier requires a step
relation rather than a step function. Using a step relation complicates the resulting transition
system, as other operations such as primitive application must also introduce existential
quantifiers; such quantifiers block simplifications such as partial-evaluation and result in a
more complex transition system. Instead, the free context provides the step function with a
fresh unconstrained value of the desired type, which the step function can then constrain.

ECOOP 2024

34:14 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

Back to Figure 7, the step-result contains the updated state for the transition system, as
well as the result value. The step-result additionally contains two propositions; one for the
“rely”, or assumptions about the execution environment, and another for the “guarantee”, or
obligations that the transition system must show. For the transition system corresponding
to an expression e, these propositions are roughly analogous to the known checked semantics
Σ ⊢□✓ e valid and unknown checks Σ ⊢□? e valid respectively.

For example, recall again the sum contract:

let sum ints = contract□? {ints > 0} (rec sum. (0 fby sum) + ints) {sum. sum > 0}

To verify the contract definition, we first translate it to an abstract transition system
whose input environment contains an integer ints, and whose result type is also an integer.
The followed-by delay results in a local state variable called sum_fby, and we encode the
existentially-quantified recursive stream as a free context variable called sum:

let sum_def: system (ints: Z) Z = {
state = (sum_fby: Z);
free = (sum: Z);
init = { sum_fby = 0 };
step = λi f s. {

update = { sum_fby = f.sum };
value = f.sum;
rely = (f.sum = s.sum_fby + i.ints) ∧ i.ints > 0;
guar = f.sum > 0; } }

The initial state of 0 corresponds to the initial value of the followed-by. In the step
function, argument i refers to the input heap containing i.ints, f refers to the free heap
containing the recursive stream f.sum, and s refers to the state heap containing s.sum_fby.
In the rely of the step result, f.sum is constrained to be the translated body of the recursive
stream. The translated rely also includes the contract’s rely that the input integer is positive.
Finally, the translated guarantee includes the contract’s guarantee that the output is positive.

To verify the transition system, we prove inductively that if the rely always holds, then
the guarantee holds; we discuss proofs of system validity further in Subsection 4.2.

The translation for contract instantiations is similar, except that the contract body is
replaced by an arbitrary value from the free context. For example, we can use the sum
contract to implement the Fibonacci sequence with rec fib. sum (1 fby fib). This program
does not require any input values, so we leave the input context empty. The state context
includes an entry for the 1 fby fib followed-by expression, but does not include the followed-by
expressions inside the contract definition. Similarly, the free context includes an entry for
the recursive stream, and an entry for the abstract, underspecified value of the contract:

let fib_def: system () Z = {
state = (fib_fby: Z);
free = (fib: Z; sum_contract: Z);
init = { fib_fby = 1 };
step = λi f s. {

update = { fib_fby = f.fib };
value = f.fib;
rely = (f.fib = f.sum_contract)

∧ (s.fib_fby > 0 =⇒ f.sum_contract > 0);
guar = s.fib_fby > 0; } }

A. Robinson and A. Potanin 34:15

JvKstate = ·
JxKstate = ·

Jp(e)Kstate =
⋃

i
JeiKstate

Jv fby eKstate = xfby(e) : τ, JeKstate (fresh xfby(e))
Jrec x. eKstate = JeKstate

Jlet x = e in e′Kstate = JeKstate ∪ Je′Kstate

Jcheckπ eKstate = JeKstate

Jcontractπ {er} eb {x. eg}Kstate = JerKstate ∪ JebKstate

JvKfree = ·
JxKfree = ·

Jp(e)Kfree =
⋃

i
JeiKfree

Jv fby eKfree = JeKfree

Jrec x. eKfree = x : τ, JeKfree

Jlet x = e in e′Kfree = JeKfree ∪ Je′Kstate

Jcheckπ eKfree = JeKfree

Jcontractπ {er} eb {x. eg}Kfree = x : τ, JerKfree ∪ JebKstate

Figure 8 Transition system typing contexts of expressions; for an expression e, JeKstate : Γ and
JeKfree : Γ describe the heaps used to store the expression’s internal state and extra inputs.

As before, the translated rely includes the assumption that the recursive stream’s value
(f.fib) agrees with its body (f.sum_contract). Additionally, the rely includes the assumption
that the contract’s rely implies the guarantee: if sum’s input (s.fib_fby) is positive, then
its output (f.sum_contract) is positive too. Finally, the translated guarantee encodes the
obligation that the environment satisfies the contract’s rely – the input to sum is positive.

Note that the transition system requires the rely to hold at the current step, while the
“true” semantics of contracts requires the rely to hold at every step so far. This minor
optimisation is sound, as we define system validity to require all steps to satisfy the rely.

4.1 Translation
We now present the details of the translation. For causal expressions, the translated transition
system is verified to be an abstraction of the original expression’s dynamic semantics, and the
generated proof obligations imply that the original expression satisfies the checked semantics.

Figure 8 defines the internal state and free contexts required for an expression. For
most expression forms, the state and free contexts are defined by taking the union of the
contexts of subexpressions. Followed-by delays introduce a local state variable xfby(e) in
which to store the most recent stream value. We generate a fresh variable here, although the
implementation uses de Bruijn indices. Recursive streams and contracts both introduce new
bindings into the free context; we assume that their binders x are unique.

Figure 9 defines the translation for expressions. Values and variables have no internal
state. For variables, we look for the variable binding in either of the input or free heaps;
bindings are unique and cannot occur in both. We omit the rely and guarantee definitions
here; both are trivially true.

To translate primitives, we union together the initial states of the subexpressions; updating
the state is similar. For the rely and guarantee definitions, we take the conjunction: we can
assume that all subexpressions rely clauses hold, and must show that all guarantees hold.

ECOOP 2024

34:16 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

JvKinit = ()
JvKvalue(i, f, s) = v

JxKinit = ()
JxKvalue(i, f, s) = (i ∪ f).x

Jp(e)Kinit =
⋃

i
JeiKinit

Jp(e)Kvalue(i, f, s) = prim-sem(p, JeKvalue(i, f, s))
Jp(e)Kupdate(i, f, s) =

⋃
i
JeiKupdate(i, f, s)

Jp(e)Krely(i, f, s) =
∧

i
JeiKrely(i, f, s)

Jp(e)Kguar(i, f, s) =
∧

i
JeiKguar(i, f, s)

Jv fby eKinit = JeKinit ∪ {xfby(e) 7→ v}
Jv fby eKvalue(i, f, s) = s.xfby(e)
Jv fby eKupdate(i, f, s) = JeKupdate(i, f, s) ∪ {xfby(e) 7→ JeKvalue(i, f, s)}
Jv fby eKrely(i, f, s) = JeKrely(i, f, s)
Jv fby eKguar(i, f, s) = JeKguar(i, f, s)

Jrec x. eKinit = JeKinit
Jrec x. eKvalue(i, f, s) = f.x
Jrec x. eKupdate(i, f, s) = JeKupdate(i, f, s)
Jrec x. eKrely(i, f, s) = JeKrely(i, f, s)

∧ f.x = JeKvalue(i, f, s)
Jrec x. eKguar(i, f, s) = JeKguar(i, f, s)

Jlet x = e in e′Kinit = JeKinit ∪ Je′Kinit
Jlet x = e in e′Kvalue(i, f, s) = Je′Kvalue(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)
Jlet x = e in e′Kupdate(i, f, s) = Je′Kupdate(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)

∪ JeKupdate(i, f, s)
Jlet x = e in e′Krely(i, f, s) = Je′Krely(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)

∧ JeKrely(i, f, s)
Jlet x = e in e′Kguar(i, f, s) = Je′Kguar(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)

∧ JeKguar(i, f, s)

Jcheckπ eKinit = JeKinit
Jcheckπ eKvalue(i, f, s) = ()
Jcheckπ eKupdate(i, f, s) = JeKupdate(i, f, s)
Jcheckπ eKrely(i, f, s) = (π = □✓ =⇒ JeKvalue(i, f, s)) ∧ JeKrely(i, f, s)
Jcheckπ eKguar(i, f, s) = (π = □? =⇒ JeKvalue(i, f, s)) ∧ JeKguar(i, f, s)

Jcontractπ {er} eb {x. eg}Kinit = JerKinit ∪ JegKinit
Jcontractπ {er} eb {x. eg}Kvalue(i, f, s) = f.x
Jcontractπ {er} eb {x. eg}Kupdate(i, f, s) = JerKupdate(i, f, s) ∪ JegKupdate(i, f, s)
Jcontractπ {er} eb {x. eg}Krely(i, f, s) = (JerKvalue(i, f, s) =⇒ JegKvalue(i, f, s))

∧ (π = □✓ =⇒ JerKvalue(i, f, s))
∧ JerKrely(i, f, s)
∧ (JerKvalue(i, f, s) =⇒ JegKrely(i, f, s)

Jcontractπ {er} eb {x. eg}Kguar(i, f, s) = (π = □? =⇒ JerKvalue(i, f, s))
∧ JerKguar(i, f, s) ∧ JegKguar(i, f, s)

Figure 9 Transition system semantics; for an expression Γ ⊢ e : τ , JeKinit : heap JeKstate is
the initial state. For each field of the step-result type, we define a translation function that
takes the input, free and state heaps: for example, we define the value-result of a step with type
JeKvalue : heap Γ → heap JeKfree → heap JeKstate → τ .

A. Robinson and A. Potanin 34:17

To translate a followed-by v fby e, we initialise the followed-by’s unique binder xfby(e)
to the followed-by’s default value v. At each step, we return the value in the local state
before updating the local state to the subexpression’s new value.

To translate a recursive expression rec x. e of type τ , we require an arbitrary value
x : τ in the free heap. The rely proposition constrains the free variable x to be the result of
evaluating e with the binding for x passed along, thus closing the recursive loop.

To translate let-expressions let x = e in e′, we extend the input heap with the value of
e before evaluating e′. The presentation here duplicates the computation of the value of e,
but the actual implementation introduces a single binding.

To translate a check property, we inspect the property status. If the property is known to
be valid, then we can assume the property is true in the rely clause. Otherwise, we include
the property as an obligation in the guarantee clause. In either case, we also include the
subexpression’s rely and guarantee clauses.

Finally, to translate contract instantiations, we use the contract’s rely and guarantee and
ignore the body. As with recursive expressions, we require an arbitrary value x : τ in the
free heap. The translation’s rely allows us to assume that the contract definition holds: that
is, the contract’s rely implies the contract’s guarantee. If the contract instantiation is known
to be valid, we can also assume that the contract’s rely holds. Otherwise, we include the
contract’s rely as an obligation by putting it in the translation’s guarantee.

4.2 Proof obligations and induction
To verify that the translated system satisfies its proof obligations – that is, the checked
properties and contract relies hold – we can perform induction on the system’s sequence of
steps. A system satisfies its proof obligations if, for any sequence of steps that all satisfy its
rely or assumptions, the system’s guarantee also holds for all of the steps.

Inductive proofs on Lustre programs generally use a non-standard definition of induction,
as the property we wish to show is a function of the step result, rather than being a function
of the state. This means that the base case must take a single step from the initial state to
be able to state the property that, if the step result’s rely holds, then its guarantee holds:
let inductive_check_base (sys : system input τ) : prop =

∀(i : heap input)(f : heap sys.free).
let stp = sys.step i f sys.init in
stp.rely =⇒ stp.guar
For the inductive step case, we allow the system to take two steps from an arbitrary state,

assuming that both steps satisfy the rely and the first step satisfied the inductive property:
let inductive_check_step (sys : system input τ) : prop =

∀(i0 i1 : heap input)(f0 f1 : heap sys.free)(s0 : heap sys.state).
let stp1 = sys.step i0 f0 s0 in
let stp2 = sys.step i1 f1 stp1.state in
stp1.rely =⇒ stp1.guar =⇒ stp2.rely =⇒ stp2.guar
This inductive scheme also generalises to k-induction, which allows the inductive case to

assume the previous k steps satisfied the inductive property, rather than just assuming that
the one previous step holds. K-induction is a fairly standard invariant strengthening technique;
intuitively, it allows the proof to use more context of the history of execution [21, 11, 16].

To reason about system validity in general, we define a predicate system_holds_all that
formally defines a valid system as: for all sequences of inputs and their corresponding steps, if
all of the steps’ relies hold, then the guarantees also hold. Validity is implied by (k-)induction.

ECOOP 2024

34:18 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

Σ ⊢ e ∼ s

Σ ⊢ v ∼ s
(IValue) Σ ⊢ x ∼ s

(IVar)

Σ ⊢ e1 ∼ s . . . Σ ⊢ en ∼ s

Σ ⊢ p(e) ∼ s
(IPrim)

s.xfby(e′) = v · ⊢ e′ ∼ s

· ⊢ v fby e′ ∼ s
(IFby0)

Σ; σ ⊢ e′ ⇓ s.xfby(e′) Σ; σ ⊢ e′ ∼ s

Σ; σ ⊢ v fby e′ ∼ s
(IFbyS)

Σ ⊢ rec x. e ⇓∗ V Σ[x 7→ V] ⊢ e ∼ s

Σ ⊢ rec x. e[x] ∼ s
(IRec)

Σ ⊢ e ⇓∗ V Σ ⊢ e ∼ s Σ[x 7→ V] ⊢ e′ ∼ s

Σ ⊢ let x = e in e′[x] ∼ s
(ILet)

Σ ⊢ e ∼ s

Σ ⊢ checkπ e ∼ s
(ICheck)

Σ ⊢ ebody ⇓∗ V Σ ⊢ erely ∼ s Σ[x 7→ V] ⊢ eguar ∼ s

Σ ⊢ contractπ {erely} ebody {x. eguar[x]} ∼ s
(IContract)

Figure 10 Transition system state invariant.

4.3 Translation correctness proofs

We prove that the transition system is an abstraction of the dynamic semantics: that is, if
the expression evaluates to v under some context, then there exists some execution of the
transition system that also results in v. The transition system itself is deterministic, but the
free context provides the non-determinism which may occur from underspecified contracts;
our theorem statement existentially quantifies the free heap.

The results presented here rely heavily on the totality and substitution metaproperties
described in Subsection 3.3. Figure 10 defines the invariant for the abstraction proof; the
judgment form Σ ⊢ e ∼ s checks that s is a valid state heap. We use the invariant to state
that, if executing the transition system for e on the entire streaming history Σ results in
state heap s, then s is a valid state.

As most expressions do not modify the state heap, the invariant for most expressions
simply descends into the subexpressions. Where new bindings are added, we use the dynamic
semantics to extend the context with the new values. The invariant for followed-by expressions
asserts that the initial state of the followed-by is the default value; on subsequent steps, the
state corresponds to the dynamic semantics. With this invariant, we can prove abstraction:

▶ Theorem 4 (translation-abstraction). For a well-typed causal expression e and streaming
history Σ, if e evaluates to stream V (Σ ⊢ e ⇓∗ V), then there exists a sequence of free heaps
ΣF such that repeated application of the transition system’s step results in V .

Finally, we can show the main entailment result that if the proof obligations hold on the
system, then the original program is valid according to the checked semantics:

A. Robinson and A. Potanin 34:19

▶ Theorem 5 (translation-entailment). For a well-typed causal expression e and its translated
system s, if the system holds (system_holds_all s), and the checked properties in e hold
(∀Σ. Σ ⊢□✓ e valid), then the unknown properties in e also hold (∀Σ. Σ ⊢□? e valid)

The above theorem allows us to bless the expression and mark all properties as valid
(Subsubsection 3.2.1). Importantly, the assumption that the checked properties hold lets us
re-use previously-verified properties without re-proving them, allowing for modular proofs.

5 Extraction

Pipit can generate executable code which is suitable for real-time execution on embedded
devices. The code extraction uses a variation of the abstract transition system described in
Section 4, with two main differences to ensure that the result is executable without relying
on the environment to provide values for the free context. Contracts are straightforward to
execute by using the body of the contract rather than abstracting over the implementation.

To execute recursive expressions rec x. e : τ , we require an arbitrary value of type τ to
seed the fixpoint, as described in Subsection 3.3. We first call the step function to evaluate e

with x bound to ⊥τ . This step call returns the correct value, but the updated state is invalid,
as it may refer to the bottom value. To get the correct state, we call the step function again,
this time with x bound to the correct value, v.

For example, for the sum contract with body (rec sum. (0 fby sum) + ints), we generate
an executable system that takes an input context containing integer variable ints, with a
single state variable for the followed-by, and returning an integer:

let sum_def: system (ints: Z) Z = {
state = (sum_fby: Z);
init = { sum_fby = 0; };
step = λi s.

let (fby0, s0) = (s.sum_fby, s {sum_fby = ⊥Z}) in
let (sum0, s0) = (fby0 + i.ints, s0) in
let (fby1, s1) = (s.sum_fby, s {sum_fby = sum0}) in
let (sum1, s1) = (fby1 + i.ints, s1) in
(sum0, s1) }

Here, the step function takes heaps of the input and state contexts, and returns a pair
of the result value and the updated state. The first two bindings correspond to the seeded
evaluation with the recursive value for the sum set to ⊥Z; as such, the resulting state s0
is invalid. The last two bindings recompute the state, this time with the correct recursive
value sum0 used in the state. This duplication of work can often be removed by the partial
evaluation and dead-code-elimination which we perform during code extraction.

This translation to transition systems is verified to preserve the original semantics. The
invariant is very similar to that of Subsection 4.3, except that the invariant descends into the
implementations of contracts. For the abstract systems we only showed abstraction; to prove
that executable systems are equivalent to the original semantics, we use the fact that the
original semantics and transition systems are both deterministic and total (Subsection 3.3).

▶ Theorem 6 (execution-equivalence). For a well-typed causal expression e and streaming
history Σ, e evaluates to stream V (Σ ⊢ e ⇓∗ V) if-and-only-if repeated application of the
transition system’s step on Σ also results in V .

ECOOP 2024

34:20 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

To extract the program, we use a hybrid embedding as described in [23], which is similar
to staged-compilation. The hybrid embedding involves a deep embedding of the Pipit
core language, while the translation to executable transition systems produces a shallow
embedding. We use the F⋆ host language’s normalisation-by-evaluation and tactic support [31]
to partially-evaluate the application of the translation to a particular input program. This
partial-evaluation results in a concrete transition system that fits in the Low⋆ subset of F⋆,
which can then be extracted to statically-allocated C code [34].

The generated C code for sum2 includes a struct type to hold the state information, as
well as reset and step functions:

struct sum_state { uint32_t sum_fby; }
void sum_reset(struct sum_state* state);
int sum_step(struct sum_state* state, uint32_t ints);

The reset function takes the pointer to the state struct and sets it to its initial values.
The step function takes the pointer to the state struct and the inputs, and returns the result
integer. The state struct is updated in-place. The implementations of these functions avoid
dynamic (heap) allocation and are suitable for embedded systems. This interface is standard
for Lustre compilers [5, 19] and other synchronous languages.

Unfortunately, our current approach is unsuitable for generating imperative array code,
as our pure transition system only supports pure arrays. In the future, we intend to support
efficient array computations and fix the above work duplication by introducing an intermediate
imperative language such as Obc [3], a static object-based language suitable for synchronous
systems. Even with an added intermediate language, we believe that a variant of our current
translation and proof-of-correctness will remain useful as an intermediate semantics.

6 Evaluation

To evaluate Pipit, we have implemented the high-level logic of a Time-Triggered Controller
Area Network (TTCAN) bus driver [1], described earlier in Section 2. The CAN bus is
common in safety-critical automotive and industrial settings. The time-triggered network
architecture defines a static schedule of network traffic; by having all nodes on the network
adhere to the schedule, the reliability of periodic messages is significantly increased [15].

The TTCAN protocol can be implemented in two levels of increasing complexity. In the
first level, reference messages, which perform synchronisation between nodes, contain the
index of the newly-started cycle. In the second level, the reference messages also contain the
value of a global fractional clock and whether any gaps have occurred in the global clock,
which allows other nodes to calibrate their own clocks. We implement the first level as it is
more amenable to software implementation [22].

The implementation defines a streaming function that takes a stream describing the current
time, the state of the hardware, and any received messages. It returns a stream of commands
to be performed, such as sending a particular reference message. The implementation defines
a pure streaming function. To actually interact with the hardware we assume a small
hardware-interop layer that reads from the hardware registers and translates the commands
to hardware-register writes, but we have not yet implemented this. We package the driver’s
inputs into a record for convenience:

2 This interface is for a variant of the sum contract with 32-bit integers instead of unbounded integers.

A. Robinson and A. Potanin 34:21

type driver_input = {
local_time: network_time_unit;
mode_cmd: option mode;
tx_status: tx_status;
bus_status: bus_status;
rx_ref: option ref_message;
rx_app: option app_message_index;

}

Here, the local-time field denotes the time-since-boot in network time units, which are
based on the bitrate of the underlying network bus. The mode-command is an optional field
which indicates requests from the application to enter configuration or execution mode. The
transmission-status describes the status of the last transmission request and may be none,
success, or various error conditions. The bus-status describes whether the bus is currently
idle, busy, or in an error state. The two receive fields denote messages received from the bus;
for application-specific messages the time-triggered logic only needs the message identifier.

The driver-logic returns a stream of commands for the hardware-interop layer to perform:

type commands = {
enable_acks: bool;
tx_ref: option ref_message;
tx_app: option app_message_index;
tx_delay: network_time_unit;

}

The enable-acknowledgements field denotes whether the hardware should respond to
messages from other nodes with an acknowledgement bit; in the case of a severe error
acknowledgements are disabled, as the node must not write to the bus at all. The transmit
fields denote whether to send a reference message or an application-specific message. For
application-specific messages, the hardware-interop layer maintains the transmission buffers
containing the actual message payload. To meet the schedule as closely as possible, the driver
anticipates the next transmission and includes a transmission delay to tell the hardware
exactly when to send the next message.

6.1 Runtime
The implementation includes an extension of the trigger-fetch logic described in Section 2, as
well as state machines for tracking node synchronisation, master status and fault handling.
We generate real-time C code as described in Section 5. We evaluated the generated C code
by executing with randomised inputs and measuring the worst-case-execution-time on a
Raspberry Pi Pico (RP2040) microcontroller. The runtime of the driver logic is fairly stable:
over 5,000 executions, the measured worst-case execution time was 140µs, while the average
was 90µs with a standard deviation of 1.5µs. Earlier work on fault-tolerant TTCAN [41]
describes the required slot sizes – the minimum time between triggers – to achieve bus
utilisation at different bus rates. For a 125Kbit/s bus, a slot size of approximately 1,500µs

is required to achieve utilisation above 85 per cent. For the maximum CAN bus rate of
1Mbit/s, the required slot size is 184µs. Further evaluation is required to ensure that the
complete runtime including the hardware-interop layer is sufficient for full-speed CAN.

Our code generation can be improved in a few ways. A common optimisation in Lustre is
to fuse consecutive if-statements with the same condition [5]; such an optimisation seems
useful here, as our treatment of optional values introduces repeated unpacking and repacking.

ECOOP 2024

34:22 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

let rec next (i: int) (c: cycle):
Tot (option int)

(decreases (count - i)) =
if trigger_enabled i c

then Some i

else if i ≥ count − 1
then None
else next (i + 1) c

function next(index: int; c: cycle)
returns (result: int)

var next_array: int ^ COUNT;
let

next_array[i] =
if trigger_enabled(COUNT - 1 - i, c)
then COUNT - 1 - i
else if i <= 0
then NO_NEXT_TRIGGER
else next_array[i - 1];

result =
next_array[COUNT - 1 - index];

tel

Figure 11 Left: next-trigger logic in F⋆; right: Kind2 encoding as array scan. In F⋆, the Tot τ

(decreases . . .) syntax declares a total function with the given termination measure. In Kind2, the
intˆCOUNT syntax denotes the type of an array of integers of length COUNT, while the next_array[i]
declaration defines the elements of the array as a function of the index i.

Some form of array fusion [37] may also be useful for removing redundant array operations.
Our current extraction generates a transition-system with a step function which returns
a tuple of the updated state and result. Composing these step functions together results
in repeated boxing and unboxing of this tuple; we currently rely on the F⋆ normaliser to
remove this boxing. In the future, we plan to build on the current proofs to implement a
more-sophisticated encoding that introduces less overhead.

6.2 Verification

We have verified a simplified trigger-fetch mechanism, as presented earlier (Section 2). For
comparison, we implemented the same logic in the Kind2 model-checker [11]. The restrictions
placed on the triggers array – that triggers are sorted by time-mark, that there must be an
adequate time-gap between a trigger and its next-enabled, and that a trigger’s time-mark
must be greater-than-or-equal-to its index – are naturally expressed with quantifiers. The
Kind2 model-checker includes experimental array and quantifier support [26]. Due to the
experimental nature of these features, we had to work around some limitations: for example,
the use of arrays and quantifiers disables IC3-based invariant generation; quantified variables
cannot be used in function calls; and the use of top-level constant arrays caused runtime
errors that rendered most properties invalid [27].

We were able to express equivalent properties in Kind2 and in Pipit, aside from some
encoding issues. For example, the specification-only function that finds the next trigger
is naturally recursive. Kind2 does not support recursive functions, but we were able to
encode it by introducing a temporary array and using Kind2’s array comprehension syntax
for scanning over arrays. Additionally, while the recursive call increases the index, the array
scan can only depend on values with lower indices. Figure 11 illustrates this encoding with a
simplified version of the next-trigger logic.

We compare against two Kind2 implementations: one corresponds closely to the Pipit
development, while the other includes a critical simplification to modify the trigger-enabled
set to be a single cycle index. In TTCAN proper, the enabled set is implemented as a
cycle-offset and repeat-factor. Checking if a trigger is enabled in the current cycle requires

A. Robinson and A. Potanin 34:23

Kind2 Pipit
simple enable-set full enable-set

size wall-clock CPU time wall-clock CPU time wall-clock CPU time
1 1.48s 1.06s 1.57s 2.26s 5.25s 5.03s
2 1.51s 1.26s 1.71s 2.93s 5.25s 5.03s
4 1.57s 1.62s 2.08s 4.78s 5.25s 5.03s
8 1.76s 3.07s 4.21s 16.98s 5.25s 5.03s

16 3.36s 11.91s 13.82s 65.57s 5.25s 5.03s
32 12.15s 62.38s 269.14s 1230.05s 5.25s 5.03s
64 1701.01s 9096.99s (timeout) 5.25s 5.03s

128 (timeout) (timeout) 5.25s 5.03s

Figure 12 Verification time for trigger-fetch; simple enable-set uses a simplified version of the
enable-set, while full enable-set uses bitwise arithmetic as in the TTCAN specification. The wall-clock
time denotes the elapsed time that an engineer must spend waiting for the result; the CPU time
denotes the total time spent computing by all of the CPU cores. The verification time for Pipit is a
once-and-for-all proof that is parametric in the size of the array. The time limit was one hour.

nonlinear arithmetic, which is difficult for SMT solvers. In our Pipit development, we can
treat the definition of the cycle set abstractly. However, in the Kind2 development, quantified
formulas cannot contain function calls, which means that we cannot hide the implementation
of the enabled-set check by providing an abstract contract. This limitation also makes the
specification quite unwieldy, as we must manually inline any functions in quantified formulas.

Figure 12 shows the verification runtime for different sizes of arrays; the Pipit version
is parametric in the array size, and is thus verified for all sizes of arrays. We ran these
experiments in Docker on an Intel i5-12500 with 32GB of RAM. Both Kind2 and Pipit
developments of the trigger-fetch logic are roughly the same size, on the order of two-
hundred lines of code including comments. Ignoring whitespace and comments, the Pipit
implementation of trigger-fetch has 26 lines of actual executable code, while the Kind2 code
has 32. The majority of the remaining code comprises the definition of valid schedules (34 for
Pipit, 28 for Kind2), and the lemma statements and invariants (12 for Pipit, 31 for Kind2),
as well as contract statements and boilerplate.

We were able to verify the Kind2 implementation of the complete trigger-fetch mechanism
for up to 32 triggers; above that, our verification timed out after one hour. For the simplified
trigger-fetch mechanism, we were able to verify up to 64 triggers. For reference, hardware
implementations of TTCAN such as M_TTCAN support up to 64 triggers [36].

We plan to verify the remainder of the TTCAN implementation and publish it separately.
Prior work formalising TTCAN has variously modeled the protocol itself [39, 33, 30], instances
of the protocol [20], and abstract models of TTCAN implementations [29], but we are unaware
of any prior work that has verified an executable implementation of TTCAN.

Separately, Pipit has also been used to implement and verify a real-time controller for a
coffee machine reservoir control system [38]. The reservoir has a float switch to sense the
water level and a solenoid to allow the intake of water. The specification includes a simple
model of the water reservoir and shows that the reservoir does not exceed the maximum
level under different failure-mode assumptions.

ECOOP 2024

34:24 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

7 Related work

Using existing Lustre tools to verify and execute the time-triggered CAN driver from Section 2
is nontrivial. Compiling the triggers array with an unverified compiler such as Lustre V6 [24]
or Heptagon [19] is straightforward; however, the verified Lustre compiler Vélus [7] does not
support arrays, records, or a foreign-function interface. Recent work on translation validation
for LustreC [9] also does not yet support arrays.

Verifying the time-triggered CAN driver is trickier, as the restrictions placed on the
triggers array – that triggers are sorted by time-mark, there must be an adequate time-gap
between a trigger and its next-enabled, and a trigger’s time-mark must be greater-than-or-
equal-to its index – naturally require quantifiers. As described in Section 6, Kind2 does
include experimental array and quantifier support, but in our experiments was unable to
verify the full logic for arrays up to the 64 triggers, which is the size supported by hardware
implementations of TTCAN. Additionally, due to the limitations that require the constant
triggers array to be passed as an argument, compiling the program with Lustre V6 would
result in the entire triggers array being copied to the stack each iteration, which is unlikely
to result in acceptable performance.

Other model-checkers for Lustre such as Lesar [35], JKind [16] and the original Kind [21]
do not support quantifiers. It may be possible to encode the quantifiers as fixed-size loops
in those that support arrays, but ensuring that these loops do not affect the execution or
runtime complexity of the generated code does not appear to be straightforward.

These model-checkers have definite usability advantages over the general-purpose-prover
approach offered here: they can often generate concrete counterexamples and implement
counterexample-based invariant-generation techniques such as ICE [18] and PDR [8, 14].
However, even when the problem can be expressed, these model-checkers do not provide much
assurance that the semantics they use for proofs matches the compiled code. In the future, we
would like to investigate integrating Pipit with a model-checker via an unverified extraction:
such an extraction may allow some of the usability benefits such as counterexamples and
invariant generation. If this integration were used solely for debugging and suggesting
candidate invariants, then such a change would not necessarily expand the trusted computing
base – that is, we could augment our end-to-end verified workflow with unverified but validated
invariant generation.

Recent work has also introduced a form of refinement types for Lustre [12]. Rather
than using transition systems, this work generates self-contained verification conditions
based on the types of streams. Such a type-based approach promises to allow abstraction
of the implementation details. However, for general-purpose functions such as count_when
from Section 2, it is not clear how to give it a specification that actually abstracts the
implementation: a simple specification that the result is within some range would hide too
much and be insufficient for verifying the rest of the system. For such functions, the best
specification is likely to include a re-statement of the implementation itself.

The embedded language Copilot generates real-time C code for runtime monitoring [28].
Recent work has used translation validation to show that the generated C code matches
the high-level semantics [40]. Copilot supports model-checking via Kind2; however, the
model-checking has a limited specification language and does not support contracts.

Early work embedding a denotational semantics of Lucid Synchrone in an interactive
theorem prover focussed on the semantics itself, rather than proving programs [4]. There is
ongoing work to construct a denotational semantics of Vélus for program verification [6]. We
believe that the hybrid SMT approach of F⋆ will allow for a better mixture of automated

A. Robinson and A. Potanin 34:25

proofs with manual proofs. Compared to Vélus alone, the trusted computing base of Pipit is
larger: we depend on all of F⋆, Low⋆’s unverified C code extraction and the Z3 SMT solver;
in comparison, Vélus’ C code generation is verified and does not depend on any SMT solver.

The deferred aspect of our proofs is similar to the deferred proofs of verification conditions
for imperative programs, such as [32]. However, such verification conditions are syntactically
deferred so that the verification condition can be proved later; in our case, the verification
conditions are semantically deferred, so that more knowledge of the enclosing program
can be exploited in the proof. In imperative programs, this sort of extra knowledge is
generally provided explicitly as loop invariants, and non-looping statements have their
weakest precondition computed automatically. In Lustre-style synchronous languages such
as ours, programs tend to be composed of many nested recursive streams, which perform a
similar function to loops. Explicitly specifying an invariant for each recursive stream would
be cumbersome; deferring the proof allows such invariants to be implicit.

8 Conclusion

We have presented Pipit, a verified compiler and proof system for reactive systems. Our
implementation of the TTCAN driver logic shows that, by embedding pure F⋆ functions
for array operations, Pipit can express programs which are currently unsupported by other
verified Lustre compilers. Pipit can also verify high-level program properties which are
difficult to express and prove in existing Lustre model-checkers. Our development includes
verified translations to both abstract and executable transition systems; both are shown to
preserve the dynamic semantics. We also introduced a checked semantics, which describes
the semantics of checked properties and contracts; proof obligations generated by translation
to abstract transition system are verified to correspond to these semantics.

In the future, we intend to verify the remainder of the TTCAN driver logic. We also
intend to increase the expressivity of Pipit by adding clocks, which are used to describe
partially-defined streams [10]. Clocks are important for composing complex systems together
and avoiding unnecessary computation; they may be useful if it becomes necessary to optimise
the runtime of the TTCAN driver.

We are interested in further pursuing the intersection of model-checking with interactive
theorem proving. A smart-contract called Djed [42] currently uses a mixture of Kind2 [11]
and manual Isabelle/HOL proofs to show that the contract is well-behaved. In future work,
we would like to further investigate whether Pipit’s integration of streaming proofs with F⋆’s
automated proof system would be able to provide similar proofs, without introducing any
semantic gap between the two systems.

References
1 ISO/CD 11898-4. Road vehicles - Controller area network (CAN) - Part 4: Time triggered

communication. Standard, International Organization for Standardization, 2000.
2 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library

(SMT-LIB). www.SMT-LIB.org, 2016.
3 Dariusz Biernacki, Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. Clock-directed

modular code generation for synchronous data-flow languages. In Proceedings of the 2008
ACM SIGPLAN-SIGBED conference on Languages, compilers, and tools for embedded systems,
pages 121–130, 2008.

4 Sylvain Boulmé and Grégoire Hamon. A clocked denotational semantics for Lucid-Synchrone
in Coq. Rap. tech., LIP6, 2001.

ECOOP 2024

34:26 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

5 Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel
Rieg. A formally verified compiler for Lustre. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2017.

6 Timothy Bourke, Paul Jeanmaire, and Marc Pouzet. Towards a denotational semantics of
streams for a verified Lustre compiler, 2022. URL: https://types22.inria.fr/files/2022/
06/TYPES_2022_slides_28.pdf.

7 Timothy Bourke, Basile Pesin, and Marc Pouzet. Verified compilation of synchronous dataflow
with state machines. ACM Transactions on Embedded Computing Systems, 22(5s):1–26, 2023.

8 Aaron R Bradley. SAT-based model checking without unrolling. In Verification, Model
Checking, and Abstract Interpretation: 12th International Conference, VMCAI 2011, Austin,
TX, USA, January 23-25, 2011. Proceedings 12. Springer, 2011.

9 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux. Equation-directed
axiomatization of Lustre semantics to enable optimized code validation. ACM Transactions
on Embedded Computing Systems, 22(5s):1–24, 2023.

10 Paul Caspi and Marc Pouzet. A functional extension to Lustre. Intensional Programming I,
1995.

11 Adrian Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli. The Kind 2 model
checker. In Computer Aided Verification, 2016.

12 Jiawei Chen, José Luiz Vargas de Mendonça, Shayan Jalili, Bereket Ayele, Bereket Ngussie
Bekele, Zhemin Qu, Pranjal Sharma, Tigist Shiferaw, Yicheng Zhang, and Jean-Baptiste
Jeannin. Synchronous programming and refinement types in robotics: From verification to
implementation. In Proceedings of the 8th ACM SIGPLAN International Workshop on Formal
Techniques for Safety-Critical Systems, 2022.

13 Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. Scade 6: A formal language for embedded
critical software development. In 2017 International Symposium on Theoretical Aspects of
Software Engineering (TASE), pages 1–11. IEEE, 2017.

14 Niklas Eén, Alan Mishchenko, and Robert Brayton. Efficient implementation of property
directed reachability. In 2011 Formal Methods in Computer-Aided Design (FMCAD). IEEE,
2011.

15 Thomas Fuehrer, Bernd Mueller, Florian Hartwich, and Robert Hugel. Time triggered CAN
(TTCAN). SAE transactions, pages 143–149, 2001.

16 Andrew Gacek, John Backes, Mike Whalen, Lucas Wagner, and Elaheh Ghassabani. The
JKind model checker. In Computer Aided Verification: 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part II 30, pages 20–27. Springer, 2018.

17 Emilio Jesús Gallego Arias, Pierre Jouvelot, Sylvain Ribstein, and Dorian Desblancs. The
W-calculus: a synchronous framework for the verified modelling of digital signal processing
algorithms. In Proceedings of the 9th ACM SIGPLAN International Workshop on Functional
Art, Music, Modelling, and Design, pages 35–46, 2021.

18 Pranav Garg, Christof Löding, Parthasarathy Madhusudan, and Daniel Neider. ICE: A
robust framework for learning invariants. In Computer Aided Verification: 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings 26. Springer, 2014.

19 Léonard Gérard, Adrien Guatto, Cédric Pasteur, and Marc Pouzet. A modular memory
optimization for synchronous data-flow languages: application to arrays in a Lustre compiler.
ACM SIGPLAN Notices, 47(5), 2012.

20 Xiaoyun Guo, Toshiaki Aoki, and Hsin-Hung Lin. Model checking of in-vehicle networking
systems with CAN and FlexRay. Journal of Systems and Software, 161:110461, 2020.

21 George Hagen and Cesare Tinelli. Scaling up the formal verification of Lustre programs with
SMT-based techniques. In 2008 Formal Methods in Computer-Aided Design. IEEE, 2008.

22 Florian Hartwich, Thomas Führer, Bernd Müller, and Robert Hugel. Integration of time
triggered CAN (TTCAN_TC). SAE Transactions, pages 112–119, 2002.

https://types22.inria.fr/files/2022/06/TYPES_2022_slides_28.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_slides_28.pdf

A. Robinson and A. Potanin 34:27

23 Son Ho, Jonathan Protzenko, Abhishek Bichhawat, and Karthikeyan Bhargavan. Noise*: A
library of verified high-performance secure channel protocol implementations. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 107–124. IEEE, 2022.

24 Erwan Jahier, Pascal Raymond, and Nicolas Halbwachs. The Lustre V6 reference manual.
Verimag, Grenoble, Dec, 2016.

25 Kind2. Integer division rounds to negative infinite. Github issues, 2023. URL: https:
//github.com/kind2-mc/kind2/issues/978.

26 Kind2. Kind2 user documentation, 2.1.1 edition, 2023. URL: https://kind.cs.uiowa.edu/
kind2_user_doc/doc.pdf.

27 Kind2. Top-level array definition causes runtime failures. Github issues, 2024. URL: https:
//github.com/kind2-mc/kind2/issues/1043.

28 Jonathan Laurent, Alwyn Goodloe, and Lee Pike. Assuring the guardians. In Runtime
Verification: 6th International Conference, RV 2015, Vienna, Austria, September 22-25, 2015.
Proceedings. Springer, 2015.

29 Gabriel Leen and Donal Heffernan. Modeling and verification of a time-triggered networking
protocol. In International Conference on Networking, International Conference on Systems
and International Conference on Mobile Communications and Learning Technologies (IC-
NICONSMCL’06), pages 178–178. IEEE, 2006.

30 Xin Li, Jian Guo, Yongxin Zhao, and Xiaoran Zhu. Formal modeling and verifying the
TTCAN protocol from a probabilistic perspective. Journal of Circuits, Systems and Computers,
28(10):1950177, 2018.

31 Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel,
Cătălin Hriţcu, Monal Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan
Protzenko, et al. Meta-F⋆: Proof automation with SMT, tactics, and metaprograms. In
Programming Languages and Systems: 28th European Symposium on Programming, ESOP
2019, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6–11, 2019, Proceedings. Springer International
Publishing Cham, 2019.

32 Liam O’Connor. Deferring the details and deriving programs. In Proceedings of the 4th ACM
SIGPLAN International Workshop on Type-Driven Development, pages 27–39, 2019.

33 Can Pan, Jian Guo, Longfei Zhu, Jianqi Shi, Huibiao Zhu, and Xinyun Zhou. Modeling and
verification of CAN bus with application layer using UPPAAL. Electronic Notes in Theoretical
Computer Science, 309:31–49, 2014.

34 Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng
Wang, Santiago Zanella Béguelin, Antoine Delignat-Lavaud, Catalin Hritcu, Karthikeyan
Bhargavan, Cédric Fournet, et al. Verified low-level programming embedded in F⋆. Proc.
ACM program. lang., 1(ICFP), 2017.

35 Pascal Raymond. Synchronous program verification with Lustre/Lesar. Modeling and Verific-
ation of Real-Time Systems, 2008.

36 Robert Bosch GmbH. M_TTCAN Time-triggered Controller Area Network User’s Manual,
3.3.0 edition, 2019. URL: https://www.bosch-semiconductors.com/media/ip_modules/pdf_
2/m_can/mttcan_users_manual_v330.pdf.

37 Amos Robinson and Ben Lippmeier. Machine fusion: merging merges, more or less. In
Proceedings of the 19th International Symposium on Principles and Practice of Declarative
Programming, pages 139–150, 2017.

38 Amos Robinson and Alex Potanin. Pipit: Reactive systems in F⋆(extended abstract). In
Proceedings of the 8th ACM SIGPLAN International Workshop on Type-Driven Development,
2023.

39 Indranil Saha and Suman Roy. A finite state analysis of time-triggered CAN (TTCAN)
protocol using Spin. In 2007 International Conference on Computing: Theory and Applications
(ICCTA’07), pages 77–81. IEEE, 2007.

ECOOP 2024

https://github.com/kind2-mc/kind2/issues/978
https://github.com/kind2-mc/kind2/issues/978
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf
https://github.com/kind2-mc/kind2/issues/1043
https://github.com/kind2-mc/kind2/issues/1043
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/m_can/mttcan_users_manual_v330.pdf
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/m_can/mttcan_users_manual_v330.pdf

34:28 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

40 Ryan G Scott, Mike Dodds, Ivan Perez, Alwyn E Goodloe, and Robert Dockins. Trust-
worthy runtime verification via bisimulation (experience report). Proceedings of the ACM on
Programming Languages, 7(ICFP):305–321, 2023.

41 Michael Short and Michael J Pont. Fault-tolerant time-triggered communication using CAN.
IEEE transactions on Industrial Informatics, 3(2):131–142, 2007.

42 Joachim Zahnentferner, Dmytro Kaidalov, Jean-Frédéric Etienne, and Javier Díaz. Djed: a
formally verified crypto-backed autonomous stablecoin protocol. In 2023 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), pages 1–9. IEEE, 2023.

	1 Introduction
	2 Pipit for time-triggered networks
	2.1 Deferring and proving properties
	2.2 Restrictions on the triggers array
	2.3 Instantiating lemmas and defining contracts

	3 Pipit core language
	3.1 Dynamic semantics
	3.2 Checked semantics
	3.2.1 Blessing expressions and contracts

	3.3 Causality and metatheory

	4 Abstract transition systems
	4.1 Translation
	4.2 Proof obligations and induction
	4.3 Translation correctness proofs

	5 Extraction
	6 Evaluation
	6.1 Runtime
	6.2 Verification

	7 Related work
	8 Conclusion

