
Partial Redundancy Elimination
in Two Iterative Data Flow Analyses
Reshma Roy1 #

National Institute of Technology, Calicut, India

Sreekala S #

National Institute of Technology Calicut, India

Vineeth Paleri #

National Institute of Technology Calicut, India

Abstract
Partial Redundancy Elimination (PRE) is a powerful and well-known code optimization. The idea to
combine Common Subexpression Elimination and Loop Invariant Code Motion optimizations into a
single optimization was originally conceived by Morel and Renvoise. Their algorithm is bidirectional
in nature and was not complete and optimal. Later, Knoop et al. proposed the first complete and
optimal algorithm, Lazy Code Motion (LCM), which takes four unidirectional data flow analyses. In
a recent paper, Roy et al. proposed an algorithm for PRE that uses three iterative data flow analyses.
Here, we propose an efficient algorithm for PRE, which takes only two iterative data flow analyses
followed by two computation passes over the program. The algorithm is both computationally and
lifetime optimal. The proposed algorithm computes the information required for performing the
transformation in two passes over the program without considering safety. The two iterative data
flow analyses are required for making the transformation safe. The use of well-known data flow
analyses, i.e., available expressions analysis and anticipated expressions analysis, makes the algorithm
simple to understand and easy to prove its correctness. The proposed algorithm is more efficient
than the existing algorithms since it takes only two iterative data flow analyses. The efficiency of
the proposed algorithm is demonstrated by implementing it in LLVM Compiler Infrastructure and
comparing the time taken with other selected best-known algorithms.

2012 ACM Subject Classification Software and its engineering → Compilers

Keywords and phrases Static Analysis, Data Flow Analysis, Code Optimization, Partial Redundancy
Elimination

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.35

1 Introduction

Partial Redundancy Elimination (PRE) is a code optimization technique used in compiler
design to eliminate redundant computations in a program. It focuses on identifying and
eliminating computations that are partially redundant, i.e., the computations that occur
more than once in a path in the input program. PRE helps reduce the number of instructions
executed and can lead to significant performance improvements in a program. Partial
redundancy elimination involves the insertion and deletion of computations at appropriate
points in the program so that after the transformation, the program contains less than
or equal number of occurrences of the original computation in any path. To preserve the
semantics of the original program, the insertions of computations corresponding to the
transformation must be safe, i.e., the program must not introduce new computations along
any path in the original program.

1 corresponding author

© Reshma Roy , Sreekala S, and Vineeth Paleri;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 35; pp. 35:1–35:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:r.reshmaroy@gmail.com
https://orcid.org/0000-0003-3134-4079
mailto:sreekala.sks@gmail.com
https://orcid.org/0009-0007-0641-6399
mailto:vineethpaleri@gmail.com
https://orcid.org/0000-0002-3394-1558
https://doi.org/10.4230/LIPIcs.ECOOP.2024.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


35:2 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

PRE can be either lexical-based or value-based. Lexical-based PRE focuses on eliminating
lexically identical expressions on a path, while a value-based PRE eliminates expressions
with identical values on a path. In this work, we focus on lexical-based partial redundancy
elimination and anticipate that the insights from this work may find its application in the
value-based approach as well. Here, we propose an efficient algorithm for partial redundancy
elimination using two iterative data flow analyses followed by two computation passes
over the program. The data flow analyses used are the well-known classical analyses, i.e.,
available expressions analysis and anticipated expressions analysis. Unlike the existing works
[6, 9, 14, 16], the proposed algorithm requires only two iterative data flow analyses to perform
partial redundancy elimination resulting in a significant efficiency gain. The contributions of
our work are:
1. A new algorithm for lexical-based PRE, which takes only two iterative data flow analyses

compared to at least three analyses in the existing well-known algorithms [6, 9, 14, 16].
2. Correctness proof of the proposed algorithm.
3. An experimental comparison of the proposed algorithm with the selected existing al-

gorithms [9, 16] demonstrating its efficiency and precision.

1.1 Background
Morel and Renvoise, in their seminal work on partial redundancy elimination (PRE) [12],
observed that an algorithm for partial redundancy elimination could potentially address both
redundancy elimination and the loop invariant code motion simultaneously. Their approach
involved four bidirectional data flow analyses. Morel and Renvoise’s algorithm did not achieve
computational optimality, i.e., it could not eliminate all partially redundant expressions in a
program. Subsequently, Dhamdhere [5] improved upon Morel and Renvoise’s algorithm by
introducing the concept of edge placement, eliminating more partial redundancies. Another
challenge in Morel and Renvoise’s algorithm was the occurrence of redundant code motion,
an issue that Dhamdhere [5] and Drechsler et al. [7] tackled as they implemented various
improvements.

Knoop, Ruthing, and Steffen introduced the lazy code motion algorithm for partial
redundancy elimination (PRE) [9], incorporating four unidirectional data flow analyses. This
algorithm stands out for its computational and lifetime optimality, using a hoisting-followed-
by-sinking approach. Knoop et al. devised a method to identify the earliest and latest points
for performing the transformation. Another aspect of their algorithm is the preprocessing
step, which involves inserting dummy nodes at the edges of nodes with multiple predecessors.
Unfortunately, this step leads to unnecessary edge insertions, resulting in overhead. In
response to these considerations, Knoop et al. later refined the lazy code motion algorithm
to enhance its practical utility [10]. Additionally, Drechsler and Stadel [8] proposed a variant
of the lazy code motion algorithm with a primary focus on practical applicability.

In the realm of partial redundancy elimination (PRE), Paleri et al. presented an algorithm
utilizing classical data flow analyses, i.e., availability, anticipability, partial availability, and
partial anticipability [14]. Notably, the introduction of the path concept in their paper
enhances the algorithm’s comprehensibility. Furthermore, this algorithm is both computa-
tionally and lifetime optimal. Originally designed for nodes containing single statements,
Paleri et al. later modified their algorithm to nodes containing multiple instructions, such as
the standard basic block [15]. In a work akin to the approach by Paleri et al., Dhamdhere
introduced the concept of eliminatability paths to address the optimal placement of computa-
tions [6]. Like those of prior researchers, Dhamdhere’s approach relies on four unidirectional



R. Roy, S. S, and V. Paleri 35:3

analyses to eliminate partial redundancies. Recent work by Roy et al. [16] describes an
algorithm for PRE that is more efficient than the other computationally optimal algorithms
available in the literature since it takes only three iterative data flow analyses - anticipated
expressions, safe partially available expressions, and safe redundancy path - compared to four
analyses taken by the other algorithms.

One limitation of the presented PRE algorithm is its exclusive focus on lexically equivalent
expressions. In contrast, a value-based PRE approach can potentially uncover a greater
number of redundancies. The value-based method identifies equivalent expressions based on
their actual values rather than relying solely on lexical equivalence. This distinction makes it
a more powerful optimization technique for effectively eliminating redundant expressions,
reported in the literature [4, 11, 13, 17].

2 Notations and Definitions

We found the formal definitions and notations from [14] appropriate for the proposed
algorithm. In this section, we give an informal description of the terms used in the algorithm.

2.1 Control Flow graph

We represent a program as a Control Flow Graph (CFG) G = (N, E, entry, exit) where N

represents the set of nodes in the graph and E is the set of edges in the graph. We assume
that the CFG has two empty basic blocks, an entry node which represents the starting point
of the graph and an exit node to which all exits of the graph go. An entry is the unique
entry node with no predecessor nodes, and exit is the unique exit node without any successor
nodes. Each node in the CFG contains at most one statement in the three-address code
form. The assignment statement is of the form x = e, where x is a variable, and e is an
expression built of variables, constants, and operators. The edge from node i to node j is
represented as (i, j). The sets of immediate predecessors and immediate successors of a node
n are denoted as pred(n) and succ(n), respectively, where pred(n) = {m|(m, n) ∈ E} and
succ(n) = {m|(n, m) ∈ E}.

2.1.1 Annotated Control Flow Graph

An annotated control flow graph (ACFG) is a CFG annotated with the information obtained
from a data flow analysis at every program point in the CFG, i.e., the input and output
points of the basic blocks in the CFG.

2.2 Boolean Properties Associated with the Expressions

An expression e is said to be locally available from node i, i.e., available at the output point
of node i (AvLoci), if e appears in node i, and the statement in node i does not modify the
operands in e. An expression e is said to be locally anticipated from node i (AntLoci), i.e.,
anticipated at the input point of node i if e appears in node i. An expression e is said to be
transparent in node i (Transpi), if the execution of the statement in node i does not modify
the operands in e.

ECOOP 2024



35:4 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

An expression is available at a point if it has been computed along all paths reaching this
point with no changes to its operands since the computation. An expression is said to be
anticipated at a point if every path from this point has a computation of that expression
with no changes to its operands in between. An expression e is partially available at point
p if there is at least one path from entry to p which computes e, and after the last such
computation before reaching p there is no modification to its operands. An expression e,
occurring at a point p, is partially redundant if e is partially available at p. An expression e

is partially anticipated at p if there is at least one path from p to exit which computes e with
no changes to its operands in between p and the point of occurrence of e. A point is safe for
insertion of an expression e if the expression is either available or anticipated at that point.
An expression is safe partially available at a point p if the expression is partially available at p

and the path from point k to p is safe, where k is the point from which expression is partially
available at p. The path formed by connecting adjacent program points where the expression
is safe partially available is known as safe partially available path. An expression is said to
be safe partially anticipated at a point p if the expression is partially anticipated at p and
the path from point p to k is safe, where k is the point from which e is partially anticipated
at p. A path is said to be a safe redundancy path for an expression if the expression is both
safe partially available and safe partially anticipated at all points on the path.

The notations used for the properties defined in this section, corresponding to an expression
e are described below:

Notations Data flow properties

AvLoci : Locally Available at the output point of node i

AntLoci : Locally Anticipated at the input point of node i

Transpi : Transparent in node i

AvIni/AvOuti : Available at input/output point of node i

AntIni/AntOuti : Anticipated at input/output point of node i

SpavPathIni/SpavPathOuti : Input/output point of node i is on Safe Partially Available Path
SredPathIni/SredPathOuti : Input/output point of node i is on Safe Redundancy Path

The properties for all the nodes in the CFG are expressed in terms of Boolean equations.
We used the symbols summation/product (i.e.,

∑
/

∏
) for the confluence operator, + and .

for Boolean connectives or and and, and ¬ for Boolean negation.

3 Basic Concept

We build on the basic concepts from [14]. The basic idea in [14] is briefly outlined below.
Partial Redundancy Elimination consists of two stages: detection and elimination. An

expression e at a point p is said to be partially redundant if the expression is partially available
at p. Thus, to detect partially redundant expressions, we require only the information
regarding the partially available expressions. This information is obtained through partially
available expressions analysis. In order to eliminate the partially redundant expressions, we
require additional information on partially anticipated expressions, which is obtained through
partially anticipated expressions analysis.

The fundamental idea behind partial redundancy elimination is to find redundancy
paths. To identify the redundancy paths, we first mark all the program points where the
expression under consideration is both partially available and partially anticipated. Now,
we identify the redundancy paths by connecting the adjacent program points which are
marked. Partial redundancy elimination is done by insertions and replacements of expressions



R. Roy, S. S, and V. Paleri 35:5

1 2

3

4

1 2

3

4

1 2

3

4

1 2

3

4

a = x+ y

b = x+ y

a = x+ y

b = x+ y

a = x+ y

b = x+ y b = h

h = x+ y
a = h

h = x+ y

Insert

Replace

Insert

Replace

(a) Partially Available path and
Partially Anticipated path

(b) Redundancy path

(c) The points of insertions
and replacements

(d) After transformation

Partially Anticipated path
Partially Available path
Redundancy path

Figure 1 An example for partial redundancy elimination.

at appropriate points in the program [See Fig. 1(c)]. As the initial transformation step,
all partially redundant expressions are made totally redundant by inserting the statement
h = e, where e is the expression of interest, at the edges that enter the junction nodes on
the redundancy paths. Now, we insert the statement h = e at the starting points of the
redundancy paths. The next step involves the elimination of all the redundant expressions
through replacements. The replacement involves the redundant expressions being replaced
by the temporary variable h.

We consider the same example in [16] to explain the basic concept. In Fig. 1(a), the
purple line represents the path where the expression is partially available at all points on the
path. Similarly, the orange line denotes the path where the expression is partially anticipated
at all points on the path. The redundancy path is marked in the red line in Fig. 1(b). The
insertion points are the input point of node 1 and the edge (2, 3), and the replacement points
are nodes 1 and 4, as shown in Fig. 1(c) based on the basic idea explained above. The CFG
after the transformation is given in Fig. 1(d).

3.1 The New Approach
As stated above, redundancy path is the basic idea behind PRE. We observe an important
characteristic of a redundancy path corresponding to an expression e. In a redundancy path,
the first and last nodes contain the expression e [See Fig. 1(c)]. To identify this redundancy
path for e, we need to visit the nodes in the CFG in a systematic fashion such that e must
be partially available and partially anticipated in the nodes.

A partially available path for an expression e starts at a node (say s) containing e in the
CFG and moves in the forward direction. We propagate the partially available information
of e from the node s forward until e is killed or the exit node of the CFG is reached. A
partially anticipated path for an expression e starts at a node (say t) containing e and moves

ECOOP 2024



35:6 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

in the backward direction. We propagate partially anticipated information of e from the node
t along the partially available path computed earlier until e is no longer partially available.
The path from s to t along which the expression e is both partially available and partially
anticipated forms the redundancy path. Thus, the redundancy path is obtained using just two
computations – not two iterative data flow analyses.

To preserve the semantics of the original program, the insertions of computations cor-
responding to the transformation done during the PRE algorithm must be safe. We use
the notion of safety to preserve the semantics of the transformed program. A point p is
safe for insertion of an expression e if e is available or anticipated at p. Hence, instead of a
simple redundancy path, we identify a safe redundancy path in the proposed algorithm. The
information required to compute safety is obtained using two classical data flow analyses:
available expressions analysis and anticipated expressions analysis. After computing safety
information, safe redundancy paths are computed the same way as the computation of
redundancy paths where propagation must additionally satisfy the safety property. Thus, the
safe redundancy path is identified using just two computations: safe partially available path
computation and safe redundancy path computation, which are detailed in Section 4.

Overall, the algorithm takes two iterative data flow analyses followed by two computation
passes over the program.

4 The Proposed Algorithm for PRE

The proposed algorithm consists of two phases: a data flow analysis phase and a computation
phase. The first phase has two classical unidirectional data flow analyses: available expression
analysis and anticipated expression analysis. The second phase contains the computations
for safe partially available path and safe redundancy path. The algorithm is presented for a
single arbitrary expression e. However, an independent combination of all the expressions in
a program will result in a global algorithm for partial redundancy elimination.

A detailed description of the data flow analyses and computations is presented in this
section.

4.1 Data Flow Analysis Phase

4.1.1 Available Expression analysis

The available expression analysis (definition provided in Section 2.2) is done in the forward
direction of the control flow graph. To solve the forward available expression analysis, we
need to initialize AvOutentry with the value False because the expression is not available
at the output point of the entry node. Note that an entry node is the first node of a CFG
with no instructions in it. We initialize AvOuti = Top (Top is denoted by ⊤) for all
other nodes, as this value will allow the iterative algorithm to converge to the desired value.
Note that for a value x, x ∧ ⊤ = x. The iterative data flow analysis to compute available
expression information is given in Algorithm 1.



R. Roy, S. S, and V. Paleri 35:7

Algorithm 1 Iterative data flow analysis to compute available expression information.

Input : Control Flow Graph(CFG), a program expression e.
Output : Input CFG annotated with availability information at all points for the

expression e.
1 Procedure AvailExpr(CFG, e)
2 AvOutentry = False
3 for each node i ̸= entry do
4 AvOuti = ⊤
5 end
6 while changes to any AvOut occur do
7 for each node i ̸= entry do
8 AvIni =

∏
p∈pred(i) AvOutp

9 AvOuti = AvLoci + AvIni.Transpi

10 end
11 end
12 end

4.1.2 Anticipated Expression analysis

The anticipated expression analysis (definition provided in Section 2.2) is carried out in the
backward direction of the control flow graph. To solve the backward anticipated expression
analysis, we need to initialize AntInexit with the value False because the expression is not
anticipated at the input point of the exit node. We initialize AntIni = ⊤ for all other nodes,
as this value will allow the iterative algorithm to converge to the desired value. The iterative
data flow analysis to compute anticipated expression information is given in Algorithm 2.

Algorithm 2 Iterative data flow analysis to compute anticipated expression information.

Input : Control Flow Graph(CFG), a program expression e.
Output : Input CFG annotated with anticipated information at all points for the

expression e.
1 Procedure AntExpr(CFG, e)
2 AntInexit = False
3 for each node i ̸= exit do
4 AntIni = ⊤
5 end
6 while changes to any AntIn occur do
7 for each node i ̸= exit do
8 AntOuti =

∏
s∈succ(i) AntIns

9 AntIni = AntLoci + AntOuti.Transpi

10 end
11 end
12 end

ECOOP 2024



35:8 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

4.2 Computation Phase

The second phase in the proposed algorithm consists of computations for safe partially
available path and safe redundancy path. During this phase, the necessary information is
computed by propagating data from specific points along predefined paths. It is important
to note that the paths for data propagation are different for the two distinct computations.
The worklist method is used to compute both computations.

4.2.1 Worklist

The basic idea of a work list is to maintain a list of nodes to be processed until the list
becomes empty. There are three stages in the use of the worklist in the algorithm:

Initialization: The WorkList is initialized with a set of nodes in the CFG containing
the expression of interest.
Processing WorkList:

GetNode: The node n to be processed next is taken out from the WorkList.
Process: Perform the computations on the node n.
Update: If there is a change in the value computed for the node n in the processing
step, successor or predecessor nodes of n − for safe partially available path and safe
redundancy path computations respectively − are added to the WorkList.

Termination: The algorithm terminates when the WorkList becomes empty, indicating
that all the required nodes are processed.

This worklist algorithm propagates the property, i.e., safe partially available path or safe
redundancy path, from specific nodes, with which the worklist is initialized, through the nodes
in the control flow graph until the property becomes False. The algorithm is designed in
such a way that each point in the CFG is processed only once.

The computations are detailed in the following sections.

4.2.2 Safe Partially Available Path Computation

In the initialization step of the safe partially available path computation, the nodes containing
the expression of interest are collected and arranged in the reverse post-order sequence of
their appearance within the CFG. This order facilitates efficient computation of information
in the forward direction, commencing from each expression found within the CFG.

The basic idea is to compute safe partially available path for an expression by traversing
a safe path in the forward direction and marking the points where the expression is also
partially available. We get a safe path by connecting all the adjacent program points that
are safe. Note that a point p is safe for insertion of an expression e if e is either available or
anticipated at p.

The information required to compute safety is obtained during the first phase of the
algorithm. After collecting available expression and anticipated expression information in
the first phase, instead of computing safety as an independent computation, we integrate
safety within the safe partially available path computation for efficiency. The computation
of safe partially available path begins from a node with the expression of interest e and
continues forward along the safe path until partial availability becomes False. Note that
partial availability becomes False when expression e is killed.



R. Roy, S. S, and V. Paleri 35:9

Algorithm 3 Computation of safe partially available path for an expression e.

Input : Control Flow Graph annotated with available and anticipated information
for e.

Output : Input CFG annotated with safe partially available path information for e.
1 Procedure SafeParAvailExpr(ACFG)
2 Create empty WorkList;
3 for each node i do // The order of traversal is reverse post order
4 SpavPathIni = False
5 SpavPathOuti = False
6 VisitedIni = False
7 VisitedOuti = False
8 if node i contains expression e then
9 WorkList.add(i)

10 end
11 while !WorkList.isEmpty() do
12 i = WorkList.remove()
13 if !VisitedOuti then
14 SpavPathOuti = AvLoci+ SpavPathIni. Transpi

1

15 VisitedOuti= True
16 if change to SpavPathOuti occur then
17 for each node s ∈ succ(i) do
18 if !VisitedIns then
19 if SafeIns then // SafeIns = AvIns + AntIns

20 SpavPathIns = True
21 VisitedIns = True
22 WorkList.add(s)
23 end
24 end
25 end

4.2.3 Safe Redundancy Path Computation

In the initialization phase of the computation for safe redundancy path, the nodes containing
the expression of interest are stored in the post-order sequence of their appearance within the
CFG. This arrangement facilitates the efficient computation of information in a backward
direction, commencing from each expression found within the CFG.

The basic idea is to compute safe redundancy path for an expression e by traversing a
safe partially available path in the backward direction and marking the points where the
expression is also partially anticipated. After computing safe partially available path, the safe
redundancy path computation begins from a node in the initialized work list, and it progresses
in a backward direction along the safe partially available path until the partially anticipated
property becomes False. Note that partially anticipated property becomes False when
expression e is killed.

1 AvLoci =⇒ SafeOuti and SpavPathIni. Transpi =⇒ SafeOuti

ECOOP 2024



35:10 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

Algorithm 4 Computation of safe redundancy path for an expression e.

Input : Control Flow Graph annotated with safe partially available path
information for e.

Output : Input CFG annotated with safe redundancy path information for e.
1 Procedure SafeRedPath(ACFG)
2 Create empty WorkList;
3 for each node i do // The order of traversal is post order
4 SredPathIni = False
5 SredPathOuti = False
6 VisitedIni = False
7 VisitedOuti = False
8 if node i contains expression e then
9 WorkList.add(i)

10 end
11 while !WorkList.isEmpty() do
12 i = WorkList.remove()
13 if !VisitedIni then
14 SredPathIni = SpavIni. (AntLoci + SredPathOuti. Transpi)

VisitedIni = True
15 if change to SredPathIni occur then
16 for each node p ∈ pred(i) do
17 if !VisitedOutp then
18 if SpavPathOutp then
19 SredPathOutp = True
20 VisitedOutp = True
21 WorkList.add(p)
22 end
23 end
24 end

4.3 The Main Algorithm
The main algorithm for PRE is given in this section. After computing the required information
from the two phases of the algorithm given in sections 4.1 and 4.2, the points of transformation
are identified. We can divide the conceptual idea behind the algorithm into three stages:
1. Identification of partially redundant computations.
2. Conversion of partially redundant computations into totally redundant computations

through insertions of expressions at program points identified. During insertions, we
insert an assignment of the form h = expr, where h is a new temporary variable.

3. Elimination of all the redundant expressions through replacements at the identified
program points. During replacements, we replace some of the original computations of
expr by h.

We denote the insertion at the entry of node i by Inserti, insertion on edge (i, j) by
Insert(i,j), and replacement in node i by Replacei. These terms compute Boolean values,
and we use this information to detect the places of insertions and replacements. The proposed
algorithm for partial redundancy elimination is given as Algorithm 5. The Transform()
function in Algorithm 5 does the necessary transformation using the information computed
earlier in the algorithm.



R. Roy, S. S, and V. Paleri 35:11

Algorithm 5 Algorithm for Partial Redundancy Elimination.

Input : Control Flow Graph(CFG), a program expression e

Output : The input CFG with the partial redundancies of e eliminated.
1 Procedure PRE (CFG, e)
2 AvailExpr(CFG, e)
3 AntExpr(CFG, e)
4 SafeParAvailPath(ACFG)2 // A computation using work list

algorithm
5 SafeRedPath(ACFG)3 // A computation using work list algorithm
6 for each node i in the CFG do
7 Inserti = ¬ SredPathIni . SredPathOuti

8 Replacei = AvLoci.SredPathOuti + AntLoci.SredPathIni

9 end
10 for each edge (i,j) in CFG do
11 Insert(i,j) = ¬ SredPathOuti

12 .
13 SredPathInj

14 end
15 Transform(CFG, Insert1...n, Insert(1...n, 1...n), Replace1...n) /* n

represents the number of nodes in the CFG */
16 end

4.4 Example

In Fig. 2, we present an example [14] to illustrate the operation of the proposed algorithm.
In Fig. 2(a), the blue line represents the anticipated path. In Fig. 2(b), the orange line
shows the available path. The adjacent points which are either blue or orange are joined to
form the safe path. The red dotted line in Fig. 2(b) represents safe path. The red line in
Fig. 2(c) signifies the safe partially available paths. The brown line in Fig. 2(d) represents
the safe redundancy path, which is computed by traversing the safe partially available path
in a backward direction and identifying the points where the expression is also partially
anticipated. The transformed CFG with insertions and replacements is shown in Fig. 3. The
data flow analysis and the transformation information are given in Table 1.

5 Proof of Correctness and Optimality

In this section, we prove the correctness of the analyses performed in the proposed PRE
algorithm. In the algorithm, two well-known classical analyses are presented. Therefore,
we only provide proof of the correctness of the algorithms for computations in the PRE
algorithm. For the proof, as in the algorithm, we consider only one expression e in the input
program. Also, our CFG nodes have only a single statement. We assume that a statement of
the form x = x + 1 is transformed into two statements, t = x + 1 and x = t, where t is a
unique temporary variable.

2 ACFG with available and anticipated information for the expression e
3 ACFG with safe partially available path information for the expression e

ECOOP 2024



35:12 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

1

2

3 4

5 6

7

8

9

a =

= a + b

= a + b

= a + b

= a + b

Exit

Entry

(a) Anticipated Path.

1

2

3 4

5 6

7

8

9

a =

= a + b

= a + b

= a + b

= a + b

Exit

Entry

(b) Anticipated, Available, and Safe Path.

1

2

3 4

5 6

7

8

9

a =

= a + b

= a + b

= a + b

= a + b

Exit

Entry

(c) Safe Partially Available Path.

1

2

3 4

5 6

7

8

9

a =

= a + b

= a + b

= a + b

= a + b

Exit

Entry

(d) Safe Redundancy Path.

Figure 2 An Example demonstrating PRE by the proposed algorithm.



R. Roy, S. S, and V. Paleri 35:13

Table 1 Boolean Properties and Transformations.

Local Boolean Properties Global Boolean Properties Insertions and Replacements

AvLoci = {6, 7, 8, 9} AntIni = {3, 5, 6, 7, 8, 9} Inserti = {6}
AntLoci = {6, 7, 8, 9} AntOuti = {3, 4, 5, 6, 7} Insert(i,j) = {(3, 5), (4, 8)}

AvIni = {9} Replacei = {6, 7, 8, 9}
AvOuti = {6, 7, 8, 9}
SafeIni = {3, 5, 6, 7, 8, 9}
SafeOuti = {3, 4, 5, 6, 7, 8, 9}
SpavPathIni = {5, 7, 8, 9}
SpavPathOuti = {5, 6, 7, 8, 9}
SredPathIni = {5, 7, 8, 9}
SredPathOuti = {5, 6, 7, 8}

1

2

3 4

5 6

7

8

9

a =

= h

= h

= h

Entry

Exit

h = a + b

h = a + b

h = a + b

= h

Figure 3 CFG after transformation.

5.1 Correctness of Safe Partially Available Path computation

▶ Theorem 1 (Correctness). The computation of the safe partially available path is done
correctly.

Proof. We have to show that every point computed as safe partially available by the safe
partially available path computation (Algo.3) is correct. Let N represent the set of nodes in
the input CFG.

Axiom 1. {∀ i: i ∈ N: (SpavPathIni = False) Λ (SpavPathOuti = False)} at the
beginning.

[From initialisation in lines 4-5]

ECOOP 2024



35:14 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

Axiom 2. For an expression e, the input point of node i is on a safe partially available path
if the input point of i is safe and the output point of at least one predecessor of node i is on
the safe partially available path.
i.e., SpavPathIni = SafeIni. (

∑
p∈pred(i) SpavPathOutp) [By definition, Section 2.2]

Axiom 3. In the algorithm, SpavPathIni is set to True for a node i iff
{∃ p: p ∈ pred(i): SpavPathOutp.SafeIni} [Lines 16, 19-20]

▶ Lemma 2. The computation of the safe partially available path at the input point of node
i, i.e., SpavPathIni, is done correctly.

Proof. Proof is as follows:
Axiom 2 and Axiom 3 ⇒ SpavPathIni is set to True at the input point of node i

if and only if safe partial availability is true – (1)
(1) and Axiom 1 ⇒ The input point of node i which is not safe partially availa-

ble remains False – (2)
(1) and (2) ⇒ Lemma 2 ◀

Axiom 4. For an expression e, the output point of node i is on a safe partially available
path, if e is locally available or the input point of node i is on safe partially available path
and e is transparent in i. i.e., SpavPathOuti = Avloci + SpavPathIni.Transpi. [By
definition, Section 2.2]

▶ Lemma 3. The computation of the safe partially available path at the output point of node
i, i.e.,SpavPathOuti, is done correctly.

Proof. SpavPathOuti is changed only for the nodes that are added to the work list.
Therefore, we consider the nodes that are added to the work list. If a node i is added to the
work list, then either of the following cases holds.
Case 1. Node i contains expression e. [Line 9]

⇒ AvLoci – (3)
[Note that in our CFG, a block has only one instruction. Also, an instr-
uction of the form x = x + 1 is transformed into two statements,
t = x + 1 and x = t.]

⇒ SpavPathOuti [By Axiom 4] – (4)

Case 2. Node i does not contain the expression e (i.e. AvLoci is False) and SpavPathIni

is True. [Lines 20, 22] – (5)
We need to prove that, under the condition (5), SpavPathOuti is set to True if and only
if Transpi is True (as given in line 14).

SpavPathOuti ≡ AvLoci + SpavPathIni.Transpi

[By Axiom 4]
≡ False + SpavPathIni.Transpi

[AvLoci = False, From (5)]
≡ SpavPathIni.Transpi

[False + p ≡ p]
≡ True.Transpi

[SpavPathIni = True, From (5)]
≡ Transpi

[True . p ≡ p]
i.e., SpavPathOuti is True iff node i is transparent.
Hence, SpavPathOuti is set to True correctly in case 2. – (6)



R. Roy, S. S, and V. Paleri 35:15

(4) and (6) ⇒ SpavPathOuti is set to True at the output point of node i

if and only if safe partial availability is true. – (7)
(7) and Axiom 1 ⇒ The output point of node i which is not safe partially available

remains False. – (8)
(7) and (8) ⇒ Lemma 3 ◀

Lemma 2 and Lemma 3 => Theorem 1 ◀

▶ Theorem 4 (Completeness). The computation of the safe partially available path identifies
all points that are safe partially available.

Proof. We take three stages in the computation to prove the completeness:
Starting node of a safe partially available path: A safe partially available path begins
at the output point of a node containing the expression e. A node i containing the
expression e is added to the work list in lines 8-9. The node i is then taken out from the
work list (line 12) and safe partial availability information at the output point of node i

is computed correctly in line 14.
Propagation of information: The safe partial availability information at the output point
of node i is then propagated to the input point of each of the successor nodes, say j, if
the input point of node j is safe (lines 17-20), and those successor nodes are added to the
work list (line 22). Each of these successor nodes is later taken out from the work list
(line 12), and the information is further propagated from the input point to the output
point of node j if node j is transparent (line 14).
End node of a safe partially available path: The propagation ends under two conditions:

(i) The propagation from the input point to the output point of node i ends if e is killed
in i.

(ii) The propagation from the output point of node i to the input point of its successor
node j ends if input point of node j is not safe.

Hence, all possible safe partially available paths starting from a node i are computed
correctly during this process.

This process of propagation of safe partial availability information is performed from each
node containing e in the given input program. Hence, the computation identifies all points
on the safe partially available path. ◀

▶ Theorem 5 (Termination). Safe partially available path computation terminates.

Proof. The algorithm terminates when the work list is empty (line 11). Initially, the work
list contains nodes with the expression e from the input program (lines 8-9). After that,
a node i is added to the work list if there is a change of value in SpavPathOutp where
p ∈ pred(i) (lines 16, 22). The value in SpavPathOuti of a node i can change from the
initialized value False (line 5) to True at most once (line 14), owing to the fact that once
the value becomes True, it remains True. Hence, the number of nodes added to the work
list after initialization equals the number of value changes for SpavPathOut. If the total
number of nodes in the CFG is N , then there can be at most N number of value changes.
Since the nodes from the work list are removed (line 12) for computing SpavPathOut, and
the number of node additions is at most N , eventually the work list becomes empty. Hence,
the algorithm terminates. ◀

ECOOP 2024



35:16 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

5.2 Correctness of Safe Redundancy Path computation
▶ Theorem 6 (Correctness and Completeness). The computation of the safe redundancy path
is correct and complete.

The line of reasoning is similar to the reasoning given for safe partially available path, except
for the fact that the propagation in this case is in the backward direction and necessary
changes accordingly. Hence, the formal proof is avoided here.

5.3 Optimality of Transformation
▶ Theorem 7. The transformation in the proposed PRE algorithm is computationally and
lifetime optimal.

The proposed algorithm is based on the idea of the safe redundancy path in [14]. The
transformation done on the safe redundancy path is proved to be both computationally and
lifetime optimal in [14].

6 Experimental Results

In this section, we perform an experimental evaluation to compare the proposed algorithm
with existing ones. For comparison, we consider two aspects: the number of redundancies
detected (i.e., precision) and the running time of the algorithms. We have selected two of
the existing algorithms which are computationally and lifetime optimal for comparison. The
algorithms chosen for this comparison are: LCM [9], the well-known PRE algorithm which
takes four analyses, and PRE-3 [16], which takes three analyses.

In the proposed work, the algorithm is designed for an arbitrary expression e. For
implementation, we employ bit-vector representation to extend the algorithm to all the
n expressions within the program. At a program point in the CFG, each property (e.g.,
SpavPathOuti in Algo. 3) is represented by a bit vector. Each bit in the bit vector
corresponds to an expression where True means the property is true for the expression,
while False means the property is false.

To illustrate how a bit vector facilitates parallel computation of all n expressions within
the program, let’s examine the computation SpavPathOuti = AvLoci + SpavPathIni.
Transpi in Algorithm 3. Consider the computation SpavPathIni. Transpi, where
SpavPathIni and Transpi are bit-vectors representing the information for n expressions.
An AND operation between the bit-vectors SpavPathIni and Transpi results in the bit-
vector representing the property SpavPathOuti for all the n expressions at the output
point of node i.

We used LLVM compiler infrastructure [1, 2] for our implementation. The results were
obtained on a machine with a 1.8 GHz Intel Core i5 processor having 8 GB RAM for selected
programs from the SPEC CPU2006 benchmark suite [3]. The analyses are intraprocedural.
The algorithm is implemented for demonstrating its completeness and efficiency. Accordingly,
we have decided to consider a subset of instructions i.e., instructions involving signed and
unsigned integer arithmetic operators (+, -, ∗, ÷, %) to simplify the implementations. The
LLVM IR instructions considered are add, sub, mul, udiv, sdiv, urem and srem as well as the
load and store instructions of normal variables which includes both local and global variables.
For other instructions, we made conservative assumptions. For example, consider a statement
with pointer assignment, ∗p = ... . This statement may change the value of normal variables
of the program. So, we made a conservative assumption that all the variables are killed at
the output point of such an instruction.



R. Roy, S. S, and V. Paleri 35:17

For our experiment, we begin with some preprocessing steps. We employ the -instnamer
pass in LLVM to assign names to any unnamed values within the LLVM IR code. This is
necessary as these values are not accessible through the getName() method we have used. We
wanted only the instructions that can be reached from the entry node. To achieve this, we
execute the -unreachableblockelim pass provided by LLVM. For Algorithm 3 and Algorithm 4,
the worklist is implemented with the InstructionWorkList in llvm. This InstructionWorkList
is implemented using a stack in llvm.

6.1 Efficiency

In this section, we compare the execution time of the proposed algorithm against the other
two chosen algorithms: the LCM algorithm developed by Knoop et al. and PRE-3 by Roy
et al. The algorithms were implemented as passes in the LLVM compiler and were run
on selected programs from the SPEC CPU2006 benchmark suite [3] using the -time-pass
optimizer tool of LLVM to measure execution time. The time taken for analyses by the
CPU is measured where the reported time is the sum of the CPU time in user mode and the
CPU time in system mode. We execute each benchmark program ten times, employing the
time-pass functionality. We then calculate the average time from these ten runs. The time
taken for analysis by each algorithm is then presented in seconds.

In Table 2, the second column displays the overall count of LLVM IR instructions
within each benchmark program. The third column provides the total count of expressions
considered, adhering to our conservative assumptions. The subsequent columns provide
the time taken by each algorithm under consideration. The final row of the table presents
the average time taken by each algorithm, taking into account all the selected benchmark
programs.

The proposed algorithm performs better since it takes only two iterative data flow analyses
compared to four by LCM and three by PRE-3. The proposed algorithm achieves 51% and
21% reduction in time over LCM and PRE-3, respectively, for the selected set of benchmark
programs. The experimental results demonstrate that the proposed algorithm is more efficient
in terms of the time taken for analysis compared to the other algorithms.

6.2 Precision

This section looks at the precision of the chosen algorithms, specifically focusing on their
completeness in identifying redundant expressions. For the LCM algorithm, we record the
count of insertions identified at nodes, the count of insertions specifically at the dummy nodes
generated during preprocessing, replacement counts, and the total number of redundant
expressions identified. In the case of PRE-3 and the proposed algorithm, we present the
count of node insertions, edge insertions, replacements, and the total number of redundant
expressions identified. Table 3 provides the information computed during the process. The
total number of node insertions for LCM is displayed in column 2, which includes dummy
nodes. Column 3 displays the number of dummy nodes created by the algorithm for LCM
and used for insertions. Dummy node insertions in LCM are the edge insertions in PRE-3
and the Proposed Algorithm. The table demonstrates that the proposed algorithm detects
the same number of redundancies as LCM and PRE-3, affirming the completeness of the
algorithm. Moreover, upon examining the data in the table, it becomes evident that the
identified points of insertions, replacements, and edge insertions are the same for all three
algorithms.

ECOOP 2024



35:18 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

Table 2 Comparison of Efficiency.

Benchmark
Programs

No.of
instru-
ctions

Expressions
considered Time (Seconds)

LCM PRE-3 Proposed
Algorithm

astar 11887 260 1.06 0.69 0.63
bzip2 27346 694 33.99 24.87 21.62
gcc 339578 1511 450.52 222.95 170.30
gromacs 185285 3605 40.56 27.71 23.96
h264ref 188827 6302 285.44 218.84 161.06
hmmer 90070 2077 19.47 13.22 11.60
lbm 6155 1131 0.24 0.21 0.14
mcf 3917 90 0.24 0.18 0.16
povray 232142 2049 54.67 36.73 31.87
sjeng 32215 1460 22.60 13.51 12.79
soplex 133448 996 12.81 10.13 9.68
sphinx 47367 824 6.47 4.68 4.13
Average
running time 77.33 47.81 37.32

Table 3 Comparison of Precision.

Benchmark
Programs LCM PRE-3 Proposed Algorithm

Insertions
(nodes in original CFG

+
dummy nodes added)

Insertions
(dummy nodes)

Replace
ments

Redundant
expressions

detected

Insertions
(node)

Insertions
(edge)

Replace
ments

Redundant
expressions

detected

Insertions
(node)

Insertions
(edge)

Replace
ments

Redundant
expressions

detected

astar 13 3 34 24 10 3 34 24 10 3 34 24
bzip2 39 3 82 46 36 3 82 46 36 3 82 46
gcc 61 16 135 90 45 16 135 90 45 16 135 90
gromacs 262 98 532 368 164 98 532 368 164 98 532 368
h264ref 686 99 2057 1470 587 99 2057 1470 587 99 2057 1470
hmmer 220 51 580 411 169 51 580 411 169 51 580 411
lbm 132 0 919 787 132 0 919 787 132 0 919 787
mcf 10 1 45 36 9 1 45 36 9 1 45 36
povray 136 32 317 213 104 32 317 213 104 32 317 213
sjeng 161 13 363 215 148 13 363 215 148 13 363 215
soplex 48 14 70 36 34 14 70 36 34 14 70 36
sphinx 38 10 66 38 28 10 66 38 28 10 66 38

7 Conclusion

In this paper, we presented a novel algorithm for lexical-based partial redundancy elimination.
The proposed algorithm takes two iterative data flow analyses followed by two computation
passes over the program to perform the transformation. The use of well-known data flow
analyses, i.e., available expressions analysis and anticipated expressions analysis, makes
it easy to comprehend the algorithm and prove its correctness. We have provided the
proof for the correctness of the algorithm. The algorithm is more efficient compared to
other computationally and lifetime optimal algorithms in the literature, as it takes only
two iterative data flow analyses, in contrast to at least three analyses required by other
methods. The algorithm is both computationally and lifetime optimal. To substantiate
these claims, we implemented the algorithm using the LLVM Compiler Infrastructure and
compared the number of redundant expressions detected and the time taken for analyses
against the existing algorithms. The results from the experiments conducted demonstrate



R. Roy, S. S, and V. Paleri 35:19

that the proposed algorithm detects the same number of redundant expressions and performs
significantly better compared to the existing well-known algorithms considered. Although
our algorithm is lexical-based, we believe that its fundamental principles hold significant
potential for guiding the transition to a value-based approach, which could ultimately result
in an efficient value-based PRE.

References
1 The LLVM Compiler Infrastructure Project. http://llvm.org/. Accessed on 03/07/2021.
2 LLVM programmer’s manual. https://llvm.org/docs/ProgrammersManual.html. Accessed

on 20-08-2021.
3 The SPEC CPU2006 benchmark suit. https://www.spec.org/cpu2006/, 2006. Accessed on

10-01-2022.
4 Rastisalv Bodík and Sadun Anik. Path-sensitive value-flow analysis. In Proceedings of

the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’98, pages 237–251, New York, NY, USA, 1998. Association for Computing Machinery.
doi:10.1145/268946.268966.

5 D. M. Dhamdhere. A fast algorithm for code movement optimisation. ACM SIGPLAN Not.,
23(10):172–180, October 1988. doi:10.1145/51607.51621.

6 Dhananjay M. Dhamdhere. E_path−PRE: Partial redundancy elimination made easy. ACM
SIGPLAN Not., 37(8):53–65, August 2002. doi:10.1145/596992.597004.

7 KarlHeinz Drechsler and Manfred P. Stadel. A solution to a problem with Morel and Renvoise’s
global optimization by suppression of partial redundancies. ACM Trans. Program. Lang. Syst.,
10(4):635–640, October 1988. doi:10.1145/48022.214509.

8 Karl-Heinz Drechsler and Manfred P. Stadel. A variation of Knoop, Rüthing, and Steffen’s lazy
code motion. ACM SIGPLAN Not., 28(5):29–38, May 1993. doi:10.1145/152819.152823.

9 Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Lazy code motion. ACM SIGPLAN Not.,
27(7):224–234, July 1992. doi:10.1145/143103.143136.

10 Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Optimal code motion: Theory and practice.
ACM Trans. Program. Lang. Syst., 16(4):1117–1155, July 1994. doi:10.1145/183432.183443.

11 Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Expansion-based removal of semantic
partial redundancies. In Stefan Jähnichen, editor, Compiler Construction, pages 91–106, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

12 E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies.
Commun. ACM, 22(2):96–103, February 1979. doi:10.1145/359060.359069.

13 Rei Odaira and Kei Hiraki. Partial value number redundancy elimination. In Rudolf Eigenmann,
Zhiyuan Li, and Samuel P. Midkiff, editors, Languages and Compilers for High Performance
Computing, pages 409–423, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

14 Vineeth Kumar Paleri, Y. N. Srikant, and Priti Shankar. A simple algorithm for partial
redundancy elimination. ACM SIGPLAN Not., 33(12):35–43, December 1998. doi:10.1145/
307824.307851.

15 Vineeth Kumar Paleri, Y. N. Srikant, and Priti Shankar. Partial redundancy elimination: a
simple, pragmatic, and provably correct algorithm. Sci. Comput. Program., 48(1):1–20, 2003.
doi:10.1016/S0167-6423(02)00083-7.

16 Reshma Roy and Vineeth Paleri. Lexical-based partial redundancy elimination: An optimal
algorithm with improved efficiency. Journal of Computer Languages, 75:101204, 2023. doi:
10.1016/j.cola.2023.101204.

17 Thomas VanDrunen and Antony L. Hosking. Value-based partial redundancy elimination. In
Evelyn Duesterwald, editor, Compiler Construction, pages 167–184, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

ECOOP 2024

http://llvm.org/
https://llvm.org/docs/ProgrammersManual.html
https://www.spec.org/cpu2006/
https://doi.org/10.1145/268946.268966
https://doi.org/10.1145/51607.51621
https://doi.org/10.1145/596992.597004
https://doi.org/10.1145/48022.214509
https://doi.org/10.1145/152819.152823
https://doi.org/10.1145/143103.143136
https://doi.org/10.1145/183432.183443
https://doi.org/10.1145/359060.359069
https://doi.org/10.1145/307824.307851
https://doi.org/10.1145/307824.307851
https://doi.org/10.1016/S0167-6423(02)00083-7
https://doi.org/10.1016/j.cola.2023.101204
https://doi.org/10.1016/j.cola.2023.101204

	1 Introduction
	1.1 Background

	2 Notations and Definitions
	2.1 Control Flow graph
	2.1.1 Annotated Control Flow Graph

	2.2 Boolean Properties Associated with the Expressions

	3 Basic Concept
	3.1 The New Approach

	4 The Proposed Algorithm for PRE
	4.1 Data Flow Analysis Phase
	4.1.1 Available Expression analysis
	4.1.2 Anticipated Expression analysis

	4.2 Computation Phase
	4.2.1 Worklist
	4.2.2 Safe Partially Available Path Computation
	4.2.3 Safe Redundancy Path Computation

	4.3 The Main Algorithm
	4.4 Example

	5 Proof of Correctness and Optimality
	5.1 Correctness of Safe Partially Available Path computation
	5.2 Correctness of Safe Redundancy Path computation
	5.3 Optimality of Transformation

	6 Experimental Results
	6.1 Efficiency
	6.2 Precision

	7 Conclusion

