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Abstract

Interprocedural data-flow analysis is important for computing precise information on whole programs.
In theory, the popular algorithmic framework interprocedural distributive environments (IDE)
provides a tool to solve distributive interprocedural data-flow problems efficiently. Yet, unfortunately,
available state-of-the-art implementations of the IDE framework start to run into scalability issues
for programs with several thousands of lines of code, depending on the static analysis domain.
Since the IDE framework is a basic building block for many static program analyses, this presents
a serious limitation. In this paper, we report on our experience with making the IDE algorithm
scale to C/C++ applications with up to 500 000 lines of code. We analyze the IDE algorithm and
its state-of-the-art implementations to identify their weaknesses related to scalability at both a
conceptual and implementation level. Based on this analysis, we propose several optimizations to
overcome these weaknesses, aiming at a sweet spot between reducing running time and memory
consumption. As a result, we provide an improved IDE solver that implements our optimizations
within the PhASAR static analysis framework. Our evaluation on real-world C/C++ applications
shows that applying the optimizations speeds up the analysis on average by up to 7×, while also
reducing memory consumption by 7× on average as well. For the first time, these optimizations allow
us to analyze programs with several hundreds of thousands of lines of LLVM-IR code in reasonable
time and space.
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1 Introduction

Over the recent years static program analysis has become an important tool for finding
bugs and security vulnerabilities [7, 11,16,26–28,30]. To produce results that actually help
developers in these tasks, static analyses are ideally both sound (or at least soundy [14]) and
precise, i.e., they report only true findings without missing any real bugs and vulnerabilities.
The analyses need to obtain a complete picture about the program under analysis and
therefore have to be interprocedural, i.e., following procedure calls. But it is a major
challenge to develop sound and precise inter-procedural analyses that scale well with large
real-world target programs [6, 19,31,32].

The interprocedural distributive environments (IDE) framework [20] operates on data-flow
problems whose flow functions distribute over the analysis’ merge operator. Following the
functional approach to interprocedural analysis [24], for such distributive data-flow problems
IDE constructs fine-grained, per-fact, procedure summaries that can be reapplied in each
subsequent calling context of a given procedure. This allows IDE to scale to larger programs
relatively well even though its time complexity is O(|N | · |D|3), where N is the set of nodes
of the target program’s interprocedural control-flow graph and D is the symbol domain of
the data-flow analysis.

Common static analysis frameworks such as Heros [5] and PhASAR [22] provide generic
and parameterizable IDE solver implementations; they even implement the simpler IFDS [17]
algorithm in terms of IDE. For an analysis problem on the desired target program to be
solved in an automated manner, users of these frameworks merely have to specify its flow
(and edge) functions and provide this specification to the IDE implementation. Current IDE
implementations, also known as solvers, aim at analyzing real-world target programs in a
fully flow and context-sensitive manner, computing precise and informative results depending
on the quality of the flow (and edge) functions’ specification. Nonetheless, the authors of
this paper can tell from many years of experience in program analysis that all publicly
available IDE implementations run into severe scalability issues for larger target programs –
a major problem. This effectively impedes or even prevents the analysis of many real-world
programs, or forces analysis developers to resort to simpler analysis domains, which reduces
the precision and usefulness of the analysis results. Sattler et al., for instance, present a novel
concept to combine program analysis and repository mining that addresses numerous relevant
software engineering problems [21]. This approach, however, requires one to run an exhaustive
IDE-based taint analysis that needs to generate and propagate all program variables, which,
in turn, produces millions of data flows. In this vein, we use PhASAR’s current IDE
implementation to demonstrate that sound and precise analyses that produce more than
100 million data flow edges cannot be completed using ordinary consumer hardware. Such a
huge number of data flows can easily arise already when analyzing programs that comprise
fewer than 100 000 instructions in LLVM’s [13] intermediate representation (IR). The number
of IR instructions is relevant, since PhASAR performs its analyses on the LLVM-IR level,
and even seemingly small C/C++ programs can lead to a large number of IR instructions.
Still, using an IR enables analysis writers to develop analyses for programs originating from
complex languages, such as C++, that would otherwise add drastic implementation overhead.
Further, we can support analyzing programs from multiple different source languages (in
our case C and C++) with just one analysis implementation, whereas a source-level analysis
would need different implementations per language. Therefore, we prefer analyzing LLVM
IR and handle the program size from within the solver.
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In this work, we report on our experiences analyzing real-world programs with the IDE
framework, identifying two critical optimization levers when implementing a generic state-of-
the art IDE solver. Specifically, using 31 real-world C and C++ target programs, we evaluate
PhASAR’s state-of-the-art IDE solver implementation with regard to runtime and memory
consumption. Based on insights gained from these experiments, we propose and evaluate two
optimizations that we have devised to improve the performance of the IDE implementation.
One optimization chooses an optimized data layout for storing required data, while the other
one extends the garbage collection procedure from Arzt [1].

The improved IDE solver, which incorporates the abovementioned optimizations and
insights, reduces analysis running times as well as memory consumption by up to 7× on
average, depending on the client-analysis problem that should be solved. The experiments
show that this allows one to conduct sound and precise inter-procedural data-flow analyses
on interesting target programs such as FastDownward, a domain-independent planning
system, in reasonable time and space.

In summary, we make the following contributions:
We analyze the IDE algorithm as described in the literature and its state-of-the-art,
openly-available implementations with regard to runtime and memory consumption.
Based on the analysis, we propose optimizations that overcome these weaknesses.
We report on an empirical study on our optimized IDE solver, showing that it improves
runtime and memory usage of IDE-based analysis by up to 7× on average.
We provide an open-source implementation of the IDE algorithm that incorporates our
optimizations within PhASAR [22] and make it available as supplementary material1.

The remainder of this paper is structured as follows: Section 2 gives an introduction to
the IDE algorithm and Section 3 analyzes the state-of-the-art in IDE-based analysis and
describes the problems that we identify. Section 4 presents our optimizations to IDE to
mitigate these problems and Section 5 describes the highlights of our implementation. In
Section 6, we detail on our empirical evaluation on real-world C/C++ programs and Section 8
concludes this paper.

2 Background on IDE

In this section, we introduce the conceptual Interprocedural Distributive Environments
(IDE) [20] algorithm. IDE solves a data-flow problem by constructing an exploded supergraph
(ESG). By construction, a data-flow fact d holds at instruction n, if a node (n, d) in the ESG is
reachable from a special, tautological node (n0,Λ) for an entry point statement n0. The ESG
is constructed by replacing each node in the target program’s interprocedural control-flow
graph (ICFG) with a bipartite graph representation of the respective flow functions. IDE
requires all flow-functions to distribute over the merge operator (usually set union). Such
distributive flow functions can be represented as bipartite graphs without loss of precision.
The common flow functions identity, gen (generate), and kill (remove) are distributive and
thus, all gen/kill data-flow problems can be encoded in IDE.

To enable a context-sensitive, interprocedural analysis, IDE follows the summary-based
approach [24] to inter-procedural static data-flow analysis: It constructs per-fact summaries
for sequences of instructions by composing their flow functions. The composition h = g ◦ f
of two flow functions f and g, called jump function, can be produced by merging the nodes

1 Supplementary Material: https://zenodo.org/doi/10.5281/zenodo.13137081
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of g with the corresponding nodes of the domain of f . A jump function ranging from a given
procedure p’s starting point to its exit point builds up a summary ψ of p. Once summary ψ
has been constructed for procedure p, it can be re-applied in any other context in which the
procedure p is called. The runtime complexity of IDE is O(|N | · |D|3), where N is the set of
nodes of the target program’s ICFG and D is the data-flow domain of the analysis.

In addition, IDE allows to annotate the ESG’s edges with lambda functions – so-called
edge functions f ∈ J – which operate on a separate value domain V and encode an additional
value-computation problem. The value-computation problem specified using the ESG edges
is solved when performing a reachability check. This way, IDE is able to effectively encode
problems with infinite domains such as linear-constant propagation with D = V, where V
is the set of program variables and V = Z⊤

⊥. In this setup, IDE would propagate constant
variables through the program and compute their constant values using the edge functions.
An exemplary ESG for a linear-constant propagation encoded in the aforementioned manner
is shown in Figure 1. The ESG nodes are visualized in a matrix structure where the rows
represent the program statements n1, . . . , n4 and the columns represent the data-flow facts
a, b, p and the special Λ fact. This way, Figure 1 also shows the bipartite nature of the
encoded flow functions.

The jump functions constructed by the IDE algorithm describe data flows (and corres-
ponding value computations). They comprise quadruples ⟨d1, n, d2, f⟩, where d1 ∈ D is the
data-flow fact that holds at the source instruction (or node in the ICFG) sp ∈ N , n ∈ N

is the target instruction, d2 ∈ D is the data-flow fact at the target instruction, and f ∈ J

is a function that describes the respective value computation. The source instruction sp is
implicit – it is the first instruction of the procedure that is being analyzed. In Figure 1,
the jump function that describes that the data-flow fact a holds at ICFG node (n4) in the
program shown thus is: ⟨Λ, n4, a, λℓ.ℓ ◦λℓ.ℓ+ 2 ◦λℓ.1⟩ ≡ ⟨Λ, n4, a, λℓ.3⟩. Its evaluation yields
that variable a carries the constant value 3 at ICFG node (n4).

If an ESG node (n, d) is reachable along multiple program paths, the edge functions
associated with the respective jump functions are combined using a join operation. Similar to
flow functions, edge functions must distribute over the join operation. Hence, edge functions
must be evaluable functions supporting regular function composition as well as the binary
join operation and an equality relation. These operations – and the implementations for the
flow and edge functions – need to be specified by analysis writers for the specific data-flow
problem at hand.

The number of edges in an ESG is in O(|N | · |D|2). Even though D must be finite, D can
be very large. Constructing the full ESG can easily lead to a graph containing millions of
nodes and edges even for moderately-sized programs. Nearly all open-source state-of-the-art
IDE implementations therefore construct only the valid paths reachable from the entry point
(smain,Λ) in an on-the-fly manner, as proposed by Naeem et al. [15].

Naeem’s on-the-fly algorithm requires the following essential structures to solve an analysis
problem:

JumpFn (D × N × D → J): Jump functions ⟨d1, n, d2, f⟩ tabulated by the IDE algorithm
that describe the data-flow facts reachable from (smain,Λ).
Incoming (N × D → N × D): A set that records nodes ⟨sp, d⟩ that the analysis has
observed to be reachable and predecessors of ⟨sp, d⟩, where sp ∈ N a start point of
procedure p. Using this set avoids the need to compute inverse flow functions, which
might not be possible for all analysis problems.
EndSummary (N ×D → N ×D×J): A table that stores jump functions that summarize
the effect of a complete procedure p: ⟨sp, d1, ep, d2, f⟩, where ep ∈ N an exit point of p.
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Λ pa b

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4) foo(b);

𝜆ℓ. 1

𝜆ℓ. ℓ + 2

𝜆ℓ. ℓ ⋅ 5

Figure 1 An example exploded supergraph for a linear constant analysis encoded in IDE [17].
The solid edges represent the individual flow functions, whereas the jump functions are denoted by
the colored dashed edges. All (solid) flow edges are annotated with their edge functions; identity
edge functions have been omitted to avoid cluttering. By following the flow edges in backwards
direction, we can see that at (n4) variable a is reachable from Λ and thus holds as data-flow fact.
This information is also encoded as green dashed jump function from (n1, Λ) to (n4, a). Composing
the annotated edge functions, we can see that at (n4), variable a has the constant value 3.

These per-fact procedure summaries are reapplied in each subsequent context p is called.

2.1 IDE Algorithm Overview
The IDE algorithm works in two phases: (I) Constructing the relevant part of the ESG and
(II) computing the values associated to the node-data-flow-fact pairs (n, d) by evaluating all
edge functions f annotated to the jump functions in the ESG. We provide a copy of the
original IDE algorithm as part of our supplementary website for this paper2.

Phase I works as fixed point iteration starting from initial ESG nodes, called seeds. Based
on the ICFG and the set of flow- and edge functions, the procedure ForwardComputeJump-
FunctionsSLRPs (see algorithm Phase I) incrementally extends the ESG by adding new edges
or updating the annotated edge functions of existing edges. This extending and updating
of the ESG is performed by the Propagate (see algorithm Propagate) procedure, which gets
iteratively called by the solver until a fixed point is reached. The final ESG for the example
code snippet in Figure 1 is shown in the same figure (excluding the content of function foo).

Phase II (see algorithm Phase II) works in two steps: value propagation and value
computation. First, in the value propagation phase, the initial edge values are propagated
iteratively through the ESG from the seeds to the beginning of all analyzed procedures. After
that, in the value computation phase, the edge functions of all remaining jump functions are
evaluated with the values previously aggregated at the beginning of the respective procedure.

For example, consider the code snippet in Figure 1. Assuming that it is part of a function
that gets called with p = 4, the value propagation will create the relation (n1, p) 7→ 4. If the
code snippet is called with multiple different values for p, the relation gets updated using the
lattice join of the value domain. Further, to aggregate the starting values for all procedures,
the value propagation computes the relevant edge values for the call-site, in this case for b
at n4. It computes b = (λℓ.ℓ · 5)(4) = 20 and iteratively propagates it into foo. After the
value-propagation phase has finished, all remaining result relations can be computed, which
leads to (n2, a) 7→ 1, (n2, p) 7→ 4, (n3, a) 7→ 3, etc.

2 Supplementary website: https://secure-software-engineering.github.io/paper-idesolverxx/
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3 The State of the Art

In many years of developing static data-flow analyses, we have found that state-of-the art
analysis implementations, many of them implementing IDE (or a subset of it), do not scale to
large programs comprising several hundreds of thousands to millions of lines of code. In the
following, we report on the problems with current IDE implementations, with the example of
PhASAR, that has lead us to define the optimizations to IDE that we present in Section 4.

To show the performance of a current state-of-the-art IDE implementation, we use the
current IDESolver from PhASAR3 in version v2403, which is the most recent stable version
of the open-source framework at the time. To assess the state-of-the-art, we have applied the
IDESolver to 31 real-world C and C++ programs4 denoted in Table 1 and solved a typestate
analysis (TSA), a linear constant analysis (LCA), and an instruction-interaction analysis
(IIA) [21]. In Table 1 the columns with the analysis problems are sorted in ascending order
by analysis complexity.

Measuring runtime and memory usage of the analysis runs, as Table 1 shows, we observed
that, with increased analysis complexity, the number of recorded timeout (t/o) and out-of-
memory (OOM) events grows. While the IDESolver was able to complete the LCA and TSA
on almost all target programs, the solver performed worse on the IIA: In fact, we observed
that six out of 31 could not be run on an ordinary developer machine, seven others ran
out-of-memory while four others timed out.

The current situation, as illustrated by Table 1, that many interesting data-flow analyses
cannot be solved on medium-sized to large target programs is inacceptable. While long
runtimes can be tackled by running the analysis less often (e.g., in a CI/CD pipeline) or
by increasing the time budget, the high memory requirements are often impossible to solve
due to hardware limits; more memory might be integrated which then—depending on the
system—would incur high procurement- and operating costs.

As some state-of-the-art IDE implementations, such as PhASAR and Heros, are open-
source, we are able to analyze them to gain insights where the performance bottlenecks are
and propose optimizations (cf. Section 4) for lowering the time- and memory requirements
of IDE.

4 Optimizations

To mitigate the scalability issues of IDE identified in Section 3, we reviewed state-of-the art
literature regarding IDE implementations, profiled the IDE solver implementation within the
PhASAR framework, and identified two aspects that suggest to offer potential for effective
optimizations in terms of both runtime and memory consumption. Although the IDE
algorithm works in two phases (see Subsection 2.1), we can tell from our experience that
IDE spends the majority of its time during phase I—the part that IFDS and IDE have in
common. Thus, we aim to optimize phase I.

First, while computing the target analysis’ fixed point, an IDE implementation must
efficiently store the set of jump functions. This corresponds to the JumpFn map [20] in
the original algorithm. The jump-functions table stores all ESG edges that are computed
by the IDE solver. That is, it stores quadruples drawn from (D × N × D) → J . The
size of the jump-functions table is therefore bound by O(|N | · |D|2). As it is unlikely to

3 PhASAR: https://github.com/secure-software-engineering/phasar/tree/v2403
4 Subsection 6.2 provides details on how the results were obtained and how the analyses were configured.

https://github.com/secure-software-engineering/phasar/tree/v2403
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Table 1 On the left, we see all evaluation targets with additional information, such as the revision
we analyzed and the amount of LLVM-IR code. The IR code size is important because PhASAR’s
IDE solver works at the IR level. In addition, we report the number of procedures (Proc), the
number of globals (Glob), and the number of call-sites (Calls) in the IR, which may influence the
performance of the analysis. The three rightmost columns show time [s] and memory consumption
[MiB] of the benchmarked analyses utilizing the IDESolver from PhASAR. Orange cells indicate
that the memory of a common consumer machine (32 GiB) was exceeded. Dark orange cells indicate
that even a compute cluster with 128 GiB would be insufficient. Red cells indicate the analysis
ran out-of-memory with a memory limit of 250 GiB, and blue cells represent timeout (t/o) events
exceeding four hours of analysis time.

Typestate LCA IIA

Revision Domain LOC Proc Global Calls Time Mem Time Mem Time Mem

FastDownward 641d70b3 Planning 849k 35k 5k 176k 20 1 407 81 7 709 - OOM
asterisk a0946200 Signal processing 626k 8k 15k 85k 72 4 131 t/o - - OOM
bison 849ba01b Parser 123k 1k 1k 13k 38 1 974 82 8 885 - OOM
bitlbee fb774da0 Chat client 91k 1k 2k 12k 1 203 17 2 126 - OOM
brotli 9801a2c5 Compression 103k 978 173 10k 2 315 9 1 640 505 43 220
bzip2 1ea1ac18 Compression 29k 154 182 1k 3 166 20 1 829 842 34 006
cat 1913bfcf UNIX utils 6k 223 139 736 <1 45 1 243 40 1 986
cp 1913bfcf UNIX utils 23k 524 373 3k <1 86 4 577 288 12 398
dd 1913bfcf UNIX utils 19k 319 287 2k <1 69 11 1 214 497 16 014
file e94d5264 UNIX utils 1k 66 170 314 <1 39 <1 53 3 413
fold 1913bfcf UNIX utils 6k 210 130 715 <1 52 2 245 41 1 943
grep cb15dfa4 UNIX utils 79k 808 424 6k 1 207 25 3 208 545 44 827
gzip 23a870d1 Compression 17k 251 351 1k <1 67 7 1 049 91 9 364
htop bc22bee6 UNIX utils 58k 917 1k 7k 19 290 12 1 647 1 680 102 431
hypre f69f8ef4 Solver 713k 3k 3k 71k 86 6 461 1 259 77 313 t/o -
join 1913bfcf UNIX utils 10k 267 184 1k <1 66 2 324 55 3 098
kill 1913bfcf UNIX utils 5k 196 135 663 <1 43 1 215 39 1 689
lepton 429fe880 Compression 139k 3k 889 24k 3 331 35 4 062 2 902 87 637
libjpeg_turbo 2cad2169 File format 142k 582 184 7k 1 242 161 9 172 - OOM
libsigrok 68321f73 Signal processing 148k 1k 4k 16k 2 338 8 1 257 t/o -
libzmq ec6f3b1d C++ Library 162k 5k 1k 26k 29 2 120 9 901 t/o -
ls 1913bfcf UNIX utils 31k 646 515 3k <1 111 14 1 642 301 21 901
lz4 4a555363 Compression 35k 445 424 4k 12 221 5 847 749 23 597
openvpn cec4353b Security 187k 3k 4k 24k 10 540 74 8 135 t/o -
opus bce1f392 Codec 131k 851 472 10k 1 233 38 5 160 3 851 143 264
poppler 315ab300 Rendering 546k 15k 15k 87k 207 3 573 125 11 788 - OOM
uniq 1913bfcf UNIX utils 7k 242 181 939 <1 54 2 260 44 2 316
wc 1913bfcf UNIX utils 10k 272 187 1k <1 61 2 338 52 3 056
whoami 1913bfcf UNIX utils 5k 180 113 539 <1 42 1 209 36 1 489
x264 e067ab0b Codec 500k 2k 2k 33k 48 3 151 203 19 605 - OOM
xz e7da44d5 Compression 10k 252 455 1k <1 57 2 327 31 4 740

reduce this worst case bound, we propose in Subsection 4.1 to lower the constant factors of
these bounds by optimizing the memory layout of the jump-functions table, which enables
practical performance gains. Second, most jump functions computed by IDE are just needed
temporarily to craft the procedure summaries ψ. Once a summary has been created, the
corresponding intermediate jump functions are no longer needed. Hence, to reduce IDE’s
memory footprint, we propose in Subsection 4.2 to remove such intermediate entries from
the jump-functions table. In fact, we extend the work from Arzt [1] by designing a garbage
collector for jump functions that—in contrast to the one proposed by Arzt—is applicable to
arbitrary IDE problems.

It is important to note that our optimizations do not target just one particular implemen-
tation; our optimizations are generally applicable.

4.1 Data Structures for the Exploded Supergraph
While solving an IDE data-flow analysis problem, the solver incrementally creates jump
functions (see Section 2) that need to be stored in memory. To solve the analysis problem
efficiently, the jump functions need to be stored efficiently, allowing for short lookup and
insertion times as well as for a small memory footprint.

ECOOP 2024
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(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4);

Λ p a b

Λ, n1, Λ ↦ 𝜆ℓ. ℓ

p, n1, p ↦ 𝜆ℓ. ℓ

Λ, n2, Λ ↦ 𝜆ℓ. ℓ

p, n2, p ↦ 𝜆ℓ. ℓ

Λ, n2, a ↦ 𝜆ℓ. 1

Λ, n3, Λ ↦ 𝜆ℓ. ℓ

p, n3, p ↦ 𝜆ℓ. ℓ

Λ, n3, a ↦ 𝜆ℓ. 3

Λ, n4, Λ ↦ 𝜆ℓ. ℓ

p, n4, p ↦ 𝜆ℓ. ℓ

Λ, n4, a ↦ 𝜆ℓ. 3

p, n4, b ↦ 𝜆ℓ. ℓ ⋅ 5

(𝒅𝟏, 𝒏, 𝒅𝟐) ↦ 𝒇

Figure 2a. The jump-functions table similar to
the FastSolver of FlowDroid. Without nesting,
the whole jump functions ⟨d1, n, d2, f⟩ of the ESG
for Figure 1 are stored in one level which may lead
some of d1, d2, and n being stored redundantly.

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4);

Λ p a b

n1

n2

n3

n4

Λ

p

Λ

p

Λ

p

Λ

p

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 1

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 3

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 3

b ↦ 𝜆ℓ. ℓ ⋅ 5

𝒏 𝒅𝟏 𝒅𝟐 ↦ 𝒇

Figure 2b. The main jump-functions table from
PhASAR and Heros. For each jump function
⟨d1, n, d2, f⟩, it maps the nodes n to inner maps,
which map the source data-flow facts d1 to the
respective target facts d2 and edge functions f .
This avoids some nodes n and source facts d1 to
be stored multiple times, as they would be in Fig-
ure 2a, but adds extra cost for the inner mappings.

Figure 2 Different jump-functions table layouts currently used by open-source IDE implementa-
tions.

4.1.1 Jump Functions Table Analysis

Existing IDE solver implementations such as Heros [5], PhASAR [22] and FlowDroid [4]
use different representations to store jump functions, each of which comes with different
performance properties. PhASAR and Heros use nested mappings N → (D → (D → J))
that map a target node n ∈ N to a map of source data-flow fact d1 ∈ D to a map of target
fact d2 ∈ D to the associated edge function f ∈ J . Yet, to speed up algorithm-specific
lookup and insert tasks, Heros and PhASAR store each jump function redundantly in two
additional maps, effectively modeling a multi-index table. In what follows, when referring
to the jump-functions table structure used by PhASAR and Heros, we focus on the nested
mapping described above, but keep in mind that the multi-index may have a drastic impact
on the overall memory consumption of the solving process.

FlowDroid uses a flat (N ×D ×D) → D representation to map a full jump function
(n, d1, d2) ∈ N × D × D to the same target fact d2. As FlowDroid only implements
IFDS, which is a subset of IDE where all edge functions are implicity the identity function
λx.x, it does not need to store edge functions f ∈ J . It stores the target fact twice for
implementation-specific support for path-tracking. As path tracking is out of scope for this
work, we concentrate on the (N ×D ×D) part of the data structure.

Both data structures (nested and flat) have their advantages and drawbacks. Consider
the example in Figure 1. Having no nested mappings, as shown in Figure 2a, makes lookup
and insertion fast, since they only consist of a single hash-map operation. In contrast, the
nested approach, as shown in Figure 2b, requires three hash-map operations for each lookup
or insert as for each of n, d1 and d2 in a jump-function entry a separate hash-map lookup or
insertion is required.

In both designs, the noticeable duplication of the edge functions f could be solved
by storing them in a separate cache. PhASAR, in fact, supports such a cache already.
However, even with caching edge functions, nodes n and source facts d1 may be stored
redundantly in memory. This is, because it is likely that there are multiple jump functions
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that lead to the same target node, which corresponds to the existence of the jump functions
(d1,1, n, d2,1), . . . , (d1,k, n, d2,m) for n ∈ N , {d1,1, . . . , d1,k, d2,1, . . . d2,m} ⊆ D and k,m ∈ N.
Such jump functions may store the target node n multiple times in a flat structure, such as
Figure 2a, but store n only once in a nested representation such as Figure 2b.

In the same vein, when generating data-flow facts, it is also likely that there are multiple
target facts for the same source-fact and target node, for example, jump functions of the form
(d1, n, d2,1), . . . , (d1, n, d2,m) for n ∈ N, {d1, d2,1, . . . , d2,m} ⊆ D and m ∈ N. For instance,
the jump functions (Λ, n2,Λ, λℓ.ℓ) and (Λ, n2, a, λℓ.1) from Figure 1 fall in that category.
In a flat representation such as of Figure 2a, jump functions store both source fact d1 and
target node n redundantly, but avoid the redundant storage in a nested representation as
shown in Figure 2b.

In summary, nested mappings store less data from the jump functions redundantly and
therefore are likely to expose a lower memory usage than a shallow representation. Conversely,
common operations such as lookup and insertion of jump functions in the table are likely
to be faster in the flat representation as there are fewer indirections and fewer hashing
operations. Furthermore, map data structures themselves have implementation-specific
memory overhead. Therefore, a nested representation is more memory efficient than a
flat one only if the additionally introduced maps grow beyond an implementation-specific
threshold to compensate the overhead of these maps.

4.1.2 Optimized Jump Functions Table
Given the analysis in Subsubsection 4.1.1, we propose a compromise between nested and flat
data structure representations that harnesses the advantages of both to drastically improve
both the memory usage as well as the runtime of the IDE algorithm. We acknowledge
that a nested mapping is necessary to avoid duplicate storage of nodes and data-flow facts.
However, to keep lookup times low and to keep the individual maps sufficiently large, we
aim at reducing the nesting depth as well. Specifically, we propose a two-level nested map
as a compromise between fast lookup times and low memory usage. For a design with two
levels of nesting, there are six possible mappings to store jump functions:

1. (n, d1) 7→ (d2 7→ f)
2. (n, d2) 7→ (d1 7→ f)
3. (d1, d2) 7→ (n 7→ f)

4. n 7→ (d1, d2) 7→ f

5. d1 7→ (n, d2) 7→ f

6. d2 7→ (n, d1) 7→ f

To reduce the number of candidate representations, we consider one more optimization:
As we limit ourselves to two-level nested maps, each jump functions access requires at
least two indirections. However, with intelligent batch-processing, the effective number
of indirections can be reduced. We observe that during ESG construction in the IDE
algorithm(cf. Subsection 2.1), the only direct access to the jump-functions table is inside the
Propagate function depicted on the left side of Algorithm 1. Here, the expression JumpFn(e)
performs the jump-functions table access where e represents a complete jump edge consisting
of the target node n and the source- and target data-flow facts d1 and d2. We further observe
that in the original algorithm Propagate is always called from within a loop where parts of n,
d1, or d2 are loop-invariant.

So, if we design the jump-functions table accordingly, we can optimize the Propagate
procedure (shown on the right side of Algorithm 1), by batching the access to the outer
map for multiple jump functions accesses together. Here, Propagate receives an additional
parameter j that denotes a view into the jump-functions table where the loop-invariant parts
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Algorithm 1 The modifications in the Propagate procedure that support batch processing.
An exemplary use of Propagate for the case in which the target node n is loop-invariant is
shown in Lines 8-11. To highlight changes compared to the original algorithm from Sagiv et
al. [20], additions are shown in green and removals are shown in red.

1 Procedure Propagate(e, f)
2 let f ′ = f ⊓ JumpFn(e);
3 if f ′ ̸= JumpFn(e) then
4 JumpFn(e) = f ′;
5 Insert e into PathWorkList;
6 end
7 end

// Example use:
8

9 for . . . do
10 Propagate(⟨sp, d1⟩ → ⟨n, d2⟩, f);
11 end

Procedure Propagate(j, e, f)
let f ′ = f ⊓ j(e);
if f ′ ̸= j(e) then

j(e) = f ′;
Insert e into PathWorkList;

end
end
// Example use:
j = JumpFn(⟨∗, ∗⟩ → ⟨n, ∗⟩);
for . . . do

Propagate(j, ⟨sp, d1⟩ → ⟨n, d2⟩, f);
end

Table 2 Access patterns of the jump-functions table with their number of occurrences within the
original IDE algorithm [20] (cf. Subsection 2.1).

Invariant parts # Occurrences

n 1 (call-flow)
n, d1 2 (call-to-return-flow, summary-flow)
n, d2 1 (return-flow)
d1 1 (normal-flow)

are already fixed. In the example, j only contains jump functions where the target node is
a previously fixed n. It is important that the extraction of j happens outside of the loop
that calls Propagate. Using the smaller map j for accessing the jump functions instead of
the complete table JumpFn may improve the performance of Propagate. In fact, if j is one
of the inner maps of our two-level nested jump-functions representation, using j effectively
reduces the nesting depth of the table within Propagate, which in turn reduces the runtime
cost of accessing individual jump functions.

Efficiently extracting the view j from the jump-functions table requires that the jump-
functions table is laid out in a way that supports this operation. This can be achieved by
placing the loop-invariant parts as keys into the outer map and the loop-variant parts into
the inner maps. To decide which view j is best suited to achieve maximum performance
improvement, we have to analyze which parts, n, d1, or d2, of a jump function are most
frequently loop-invariant.

Based on careful analysis of the original algorithm [20], we identify four different access
patterns, as depicted in Table 2. Although n is not strictly invariant in the normal-flow
case, it may still be beneficial to consider n as invariant for the purpose of selecting a
jump-functions representation, as most intraprocedural control-flow nodes mostly have only
one (statement-sequence) or two (conditional branch) successors. Furthermore, to propagate
all normal flows, the algorithm needs to iterate over all relevant n, d2 pairs which is usually
implemented as nested loop, effectively making n or d2 temporarily loop-invariant. This
consideration has no influence on the algorithmic correctness, but on the effectiveness of
batch-processing jump functions accesses in the table.
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Based on these observations, we conclude that it is beneficial to store the target fact d2 in
the inner map and n in the outer map. This enables us to filter out most of the six possible
mappings presented above, leaving only

1. (n, d1) 7→ (d2 7→ f) 4. n 7→ (d1, d2) 7→ f

as possible candidates, which we call JFND and JFN , respectively, denoting the domain used
in the outer map.

Furthermore, we also conjecture that a multi-index representation of the jump-functions
table is not necessary. With any of JFND or JFN we can efficiently model all access patterns
that occur in the IDE algorithm. Hence, we introduce a third jump-functions representation,
JFold, that uses the deep nesting from PhASAR and Heros (n 7→ d1 7→ d2 7→ f), but avoids
the multi-index.

Our theoretical analysis also yields that, with JFND, we already have efficient access to
the procedure summaries, eliminating the need for an extra EndSummary table that was
proposed by Naeem et al. [15]. To access a summary5 of procedure p, we can directly lookup
the necessary jump functions at p’s exit statements. With JFN , to find matching summaries
without the EndSummary table, one requires a linear search over the inner maps at p’s exit
statements. Depending on the size of these inner maps, this linear search may still be fast, so
we split JFN into two candidates: JFN and JFNE where JFNE uses the explicit EndSummary
table while JFN omits it.

4.1.3 Discussion
From the observations in Subsubsection 4.1.2, one could conclude that JFND is superior to
JFN because, in three out of the five Propagate calls, d1 is loop-invariant. However, in JFND
(depicted in Figure 3a) the outer map is larger than in JFN (depicted in Figure 3b) as its key
space is larger: |N | ≤ |N ×D|. Therefore, JFND needs to store more inner maps than JFN

although, in the end, both store the exact same number of jump functions. Furthermore,
the inner maps in JFND are smaller than the inner maps in JFN , as there are more of them
and depending on the concrete implementation-specific overhead of a single inner map, the
memory cost of the inner maps might outweigh their potential benefit. Hence, from a sole
theoretical analysis, we cannot conclude which jump-functions representation performs better
in practice; we need to perform an empirical evaluation to draw a final conclusion (Section 6).

4.2 Garbage Collection of Jump Functions
As discussed in Subsection 4.1, the jump-functions table has a great influence on the overall
memory consumption of the IDE algorithm. Arzt [1] has shown that it is possible to remove
entries in the jump-functions table without preventing the algorithm from reaching a fixed
point. They present a garbage collector (GC) that runs concurrently to the actual IDE
implementation, improving both memory usage and runtime of the underlying analysis. The
GC removes jump functions when they are no longer needed. This applies when the complete
data flow represented by a jump function has already been composed to a summary.

One limitation of the approach of Arzt [1] is that it only applies to an IFDS analysis
and therefore does not need to deal with edge functions. In IDE, the value computation
problem on data-flow edges can only be performed if the corresponding jump functions are

5 Processing summaries as described in line 15.2 by Naeem et al. [15].
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Λ p a b

(n1, Λ) Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ(n1, p)

(n2, Λ)

(n2, p)

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 1

(n3, Λ)

(n3, p)

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 3

b ↦ 𝜆ℓ. ℓ ⋅ 5

(n4, Λ)

(n4, p)

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 3

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4);

(𝒏, 𝒅𝟏) 𝒅𝟐 ↦ 𝒇

Figure 3a. jump-functions representation JFND
for the example shown in Figure 1. The outer
map has a two-dimensional key space consisting
of the target node n and the source fact d1, which
reduces the size of the inner maps, containing only
the target fact d2 and the edge function f .

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4);

Λ p a b

n1

n2

n3

n4

Λ, Λ ↦ 𝜆ℓ. ℓ

p, p ↦ 𝜆ℓ. ℓ

Λ, Λ ↦ 𝜆ℓ. ℓ

p, p ↦ 𝜆ℓ. ℓ

Λ, a ↦ 𝜆ℓ. 1

Λ, Λ ↦ 𝜆ℓ. ℓ

p, p ↦ 𝜆ℓ. ℓ

Λ, a ↦ 𝜆ℓ. 3

Λ, Λ ↦ 𝜆ℓ. ℓ
p, p ↦ 𝜆ℓ. ℓ

Λ, a ↦ 𝜆ℓ. 3

p, b ↦ 𝜆ℓ. ℓ ⋅ 5

𝒏 (𝒅𝟏, 𝒅𝟐) ↦ 𝒇

Figure 3b. jump-functions representation JFN for
the example shown in Figure 1. The outer map has
a one-dimensional key space only consisting of the
target node n, whereas the inner maps have a two
dimensional key space containing the source- and
target facts d1 and d2 as well as the associated edge
functions f . Compared to JFND, JFN contains
fewer inner maps which in turn grow larger.

Figure 3 Exemplary jump-functions tables using the proposed representations JFND and JFN .

present. This makes garbage collecting jump functions more complicated in a general IDE
setting with associated edge functions. Although Arzt describes a possible extension of the
GC to IDE as trivial, we recognize that the correct handling of corner cases makes it less
obvious than it seems on the first glance. Especially, we need to ensure that subsequent
result queries can still evaluate the edge-functions correctly that are annotated to the jump
functions. Secondly, the garbage collection by Arzt [1] exploits multithreading at the level
of the data-flow analysis solver. This requires the complete analysis toolchain to be thread
safe. While some IDE implementations do satisfy this requirement and make use of multiple
cores to speedup the solving process, other implementations are only single-threaded and do
not provide thread-safe data structures. Specifically, PhASAR’s analyses are not thread-safe
and even LLVM—which PhASAR builds upon—is not generally thread-safe. Additionally,
since we conduct a comprehensive study evaluating the runtime and memory consumption of
IDE, we need to ensure that external factors, such as OS scheduling do not influence our
evaluation results. Hence, we prefer using only a single thread, which eliminates many of
these issues by removing non-determinism from the implementation.

In the following, we describe how we mitigate both limitations, the restriction to a subset
of IDE and the enforced multi-threading.

4.2.1 Single-Threaded Garbage Collection

To keep the GC scalable, Arzt designed it to work on a procedure-level. That is, all jump
functions corresponding to procedure p can be erased once there is no longer any worklist
item that contains a node from inside p or from any procedure that can be transitively
called by p [1]. We call this the GC Condition. Unfortunately, the order in which the
ESG is constructed is not specified by the underlying algorithm [20], which is why one
cannot precisely predict these points. If the garbage collector runs concurrently to the
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actual analysis-solving thread, it can be invoked periodically based on a timer. Additional
computations that the GC needs to perform to determine for which procedures the jump
functions can be erased do not necessarily pause the analysis. However, as explained above,
we decided to aim for a single-threaded solution here. The GC thus needs to be called
explicitly at suitable points within the IDE algorithm and will pause the data-flow analysis
for the garbage collection.

We observe that a procedure p can only become a candidate for garbage collection once
the analysis within p has reached an exit statement. In theory, it is possible to invoke the
GC after exiting any procedure, yet this has a non-negligible overhead that would render the
analysis unscalable. Hence, we aim for finding a point in the IDE algorithm to place the GC,
such that it gets called frequently enough to keep it effective, but not too frequent to keep it
scalable. This means, that the GC should be invoked, once a sufficient amount of procedures
have computed their summary.

There are several ways of deciding when the GC should be invoked, each with different
characteristics and implications. One approach is to increment a counter, whenever a
procedure has computed a new summary, and invoke the GC when the counter reaches a
certain threshold. This approach has the advantage that it is easy to implement. On the
downside, it does not decide to invoke the GC based on concrete information on the internal
solver state, such as the content of the worklist or the jump-functions table. Therefore, many
candidate procedures may actually fail the GC Condition and are not eligible for garbage
collection yet. Hence, its performance may not be predictable and requires a decent amount
of tuning. An alternative is to take the contents of the solver’s worklist into account when
deciding on when to invoke the GC. Since the GC Condition is based on the content of the
worklist, we can invoke the GC when it is guaranteed that the candidate procedures will
pass the GC Condition. In our implementation, we opted for this more informed procedure.

For deciding, when to invoke the GC, we split IDE’s worklist into two separate worklists:
One PathWorkList for top-down propagations, which stores jump functions in D×N×D×J

to be processed, and another worklist, RetWorklist, for bottom-up summary applications
that stores entries of the form (d1, p) ∈ D× P , where P is the domain of callable procedures
in the target program. On a high level, the fixed-point iteration uses the PathWorkList, but
also fills the RetWorklist on-the-fly when a procedure has reached its exit point. Once the
PathWorkList becomes empty, the algorithm handles the work-items from the RetWorklist,
which may fill the PathWorkList again. Although the data-flow propagations have stayed
the same, using two worklists we now have structured the fixed-point iteration into stages (a
stage ends, whenever the PathWorkList becomes empty) that allow placing a call to the GC.

For the two worklists to function properly, we modify the IDE algorithm as sketched
in Algorithm 2. The pseudo code for handling procedure exit points that we removed in
Line 9 of Algorithm 2 has moved to a new outer loop depicted in Algorithm 3. As applying
procedure summaries may lead to new intra-procedural propagations at their return sites,
the whole process runs in a loop until both worklists are empty, as shown in Algorithm 3.

Note that in subsequent iterations, the ForwardComputeJumpFunctionsSLRPs procedure
must skip its initialization phase to not over-write the already computed results. Apart from
that, we did not change the original IDE algorithm, as we describe in Paragraph 4.2.1.1.

Using two worklists, the garbage collection condition now slightly changes. The jump
functions of a procedure p can only be collected if none of the PathWorkList and the
RetWorklist contain a node from inside p or its transitive callees. This is, because when
processing the worklist items (d1, p) from the RetWorklist, the callers of p may be added to
the PathWorkList again preventing garbage collection for p. Whenever the PathWorkList is
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Algorithm 2 Modification in the ForwardComputeJumpFunctionsSLRPs procedure from
the original IDE algorithm [20].

1 Procedure ForwardComputeJumpFunctionsSLRPs(. . . )
2 . . . ;
3 while PathWorkList ̸= ∅ do
4 Select and remove an item ⟨sp, d1⟩ → ⟨n, d2⟩ from PathWorkList;
5 . . . ;
6 switch n do
7 . . . ;
8 case n is the exit node of p do
9 Insert (d1, p) into RetWorklist;

10 end
11 . . . ;
12 end
13 end
14 end

Algorithm 3 High-level overview of the two-step fixed point computation with garbage
collection. The foreach loop in Line 5 denotes the content from ForwardComputeJumpFunc-
tionsSLRPs [20] that we have removed from Algorithm 2. The function RunGarbageCollector
behaves exactly as described by Arzt [1].

1 while PathWorkList ̸= ∅ do
2 ForwardComputeJumpFunctionsSLRPs(. . . );
3 while RetWorklist ̸= ∅ do
4 Remove (d1, p) from RetWorklist;
5 foreach call node c that calls p with corresponding return-site r do
6 . . . ;
7 end
8 end
9 RunGarbageCollector();

10 end

empty, we have the guarantee that for all currently analyzed procedures (and their transitive
callees), the analysis has reached their exit points, making them candidates for garbage
collection. Hence, we now have a structure that precisely defines points for placing the GC.

In particular, we now have two candidate locations to place the garbage collection in
Algorithm 3: Line 3: Right after the returning from ForwardComputeJumpFunctionsSLRPs
(i.e., when the PathWorkList becomes empty) or Line 9: After the RetWorklist becomes
empty. In Line 3, the RetWorklist is potentially non-empty as it may contain procedures p
that have computed a new summary for the propagation of a source data-flow fact d1 that
needs to be propagated back to all callers of p. In Line 9, though, the RetWorklist is empty,
whereas the PathWorkList may be filled with return flows again.

Both insertion points at Line 3 and Line 9 are very similar, however, Line 9 has one small
benefit: Having a jump function from a procedure p in the RetWorklist prevents all caller
procedures of p from being garbage collected. After processing the RetWorklist items, only
those callers of p have jump functions in the PathWorkList for which the new information
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from p requires further propagation. All other caller procedures can still be garbage collected
(unless there are other callees that prevent the collection). This leads to our preference to
place the garbage collection at Line 9. Note, although the worklists are processed until
completion in one iteration of the outer loop, there are still potentially many iterations such
that the garbage collector is run many times as well.

4.2.1.1 Correctness

Our modifications to the IDE algorithm and the integration of the garbage collection do not
violate the correctness and complexity of the IDE algorithm. Splitting the worklist into two
smaller worklists, as we have done in Algorithm 2 and Algorithm 3, does not create new
worklist items that would not be created in the original, and also does not drop worklist
items that would be processed in the original. Only the order, in which the worklist items
are processed, may change. This is, because (1) the processing of exit nodes (cf. Line 9)
gets delayed through the RetWorklist to Algorithm 3 without modifying the corresponding
worklist items, and (2) since the processing order of the worklist items is not defined in the
algorithm [20], any modification on the processing order has no influence on the correctness
or complexity of the algorithm.

In addition, we use the same RunGarbageCollector function from Arzt without modification.
Only the garbage collection condition, has slightly changed: Whereas in the original GC,
a procedure p’s jump functions can be erased, if the worklist does not contain a node
from inside p or its transitive callees, in our extension, this requirement holds for both the
PathWorkList and the RetWorklist. Since we argue above that both PathWorkList and
RetWorklist in combination express the same worklist items as the original worklist, the
correctness argumentation from Arzt still holds.

4.2.2 Generalizing Garbage Collection for IDE
When a procedure p gets evicted by the original GC from Arzt, all jump functions corres-
ponding to that procedure are removed. However, when performing an analysis that uses
IDE’s edge functions, one needs to ensure that the value computation (cf. Subsection 2.1)
can still be performed correctly. To solve the value computation problem for an ESG node
(n, d) ∈ N ×D, the edge functions annotated to all jump functions that lead to node (n, d)
have to be evaluated and thus need to be present. For example, removing the intermediate
jump function ⟨Λ, n3, a, λℓ.3⟩ in Figure 1 would prevent that the analysis computes the result
relation (n3, a) 7→ 3. This makes garbage collection for IDE’s jump functions impossible
when the values for all ESG nodes must be computed. Fortunately, many analyses can
define for which ICFG nodes ni ∈ N analysis-result queries may be raised before starting
the solving process. For example, in a typestate analysis, only the API call nodes that are
relevant for the analyzed usage pattern may be queried. We call those nodes ni interesting.
At interesting nodes, we erase no jump functions in the GC to ensure that at those nodes
the complete analysis results including edge values will be present.

However, we have to retain additional jump functions: The value-propagation phase (cf.
Subsection 2.1) first propagates initial edge values from the entry points to the starting nodes
of all reachable procedures. This is done by iteratively querying and evaluating the jump
functions at all call sites to map the initial values to the start of all reachable procedures.
This initial value-propagation is necessary for the other jump functions to be evaluated, as it
determines the input values for these jump functions. Therefore, for the value propagation
to work properly, one must also retain the jump functions at all call sites, even if they are
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not considered interesting, such that the value propagation to the starting points of all
procedures can succeed. Hence, when using IDE’s edge functions, the garbage collection must
retain more jump functions than just the ones corresponding to interesting nodes, making it
potentially less effective.

In the evaluation, we demonstrate that the garbage collection is still effective in a real
world setting, even in a single-threaded environment and when using IDE without restrictions.

5 Implementation

We implemented the IDE algorithm including the optimizations proposed in Section 4 on
top of the PhASAR framework [22]. PhASAR is able to analyze LLVM IR [13] in a fully
automated manner and already provides an implementation of IDE, called IDESolver [22,23].
The IDESolver is parametrizable with an user-defined description of an IDE analysis problem
that shall be solved. After solving the analysis problem, the IDESolver can answer queries
about which data-flow facts hold at a given ICFG node and which edge value has been
computed for a given node–data-flow fact pair (n, d) ∈ N ×D. We chose to provide the same
interface in the new solver such that it can be used as a drop-in replacement. Note that the
determination of interesting nodes for the garbage collector is completely opt-in, so only IDE
analyses that use both the garbage collector and edge functions may need to implement it.
We call our new solver IDESolver++.

The existing solver provides several configuration options that influence how the analysis
problem should be solved (e.g., whether the value computation in IDE Phase II should
be performed). Our new implementation is configurable as well, but we chose to lift the
configuration from runtime to compile-time. This allows to specialize the solver for the
selected configuration such that the algorithms and data structures can be selected precisely
for the requested needs. For example, if the implementation detects at compile-time that the
to-be-solved analysis problem does not need edge functions, the jump functions table will
replace its inner map by a set, eliding the storage for associated edge functions that would
otherwise all default to the identity function λx.x.

In Section 4, we have shown different representations of the table storing the jump
functions, and we concluded that this representation is critical for optimal performance of
the overall solving process. Therefore, we chose to use open-addressing6 hash maps to store
the concrete mappings of the structures JFND and JFN , as well as JFold. Open-addressing
hash maps are particularly performant because of their cache efficiency and small number of
dynamic memory allocations. However, their performance degrades with increasing size of
the entries to store. The domains N and D are user defined for both solvers (the current
IDESolver and our IDESolver++) making them generic over the program representation to
analyze and the type of data-flow facts. Therefore, we do not use these types directly as
keys and values in the hash maps to guarantee predictable performance. Instead, we chose
to introduce an intermediate layer that maps each used node and data-flow fact to 32-bit
integers in the contiguous ranges [0, . . . , |N | − 1] and [0, . . . , |D| − 1]. These integers are then
used as keys/values in the actual jump-functions table. The sizes of the intermediate maps
are negligible compared to the size of the jump-functions table. We reasonably assume that
both N and D do not grow larger than 232 − 1, since these domains are bound by the size of
the input program. For the JFN (and JFNE) approach, the intermediate layer enables one
more optimization: The outer map can be replaced by a plain array to further reduce the
memory footprint and to improve lookup performance.

6 Open-addressing hash tables store all buckets in a contiguous block of memory, using probing for collison
resolution.
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Since the inner maps are very small in many cases, we chose to use llvm::SmallDense-
Map<K,V,4> for the inner maps to optimize for the case in which these maps do not exceed a
capacity of 4. This optimization is critical, especially for JFND and JFold, because they store
a large number of small inner maps, where their sizes mostly do not exceed the initial capacity
(48 entries) of a regular llvm::DenseMap. Independent from the selected jump-functions
representation, the corresponding outer hash map is pre-allocated with a reasonable size that
scales linearly with the size of the input program. Together with the small-size optimization,
this pre-allocation reduces the total number of potentially expensive (re-)allocations.

Our implementation is openly available in the supplementary material of this paper and
we are already in contact with the maintainers of PhASAR for rapid integration into the
open source framework.

6 Empirical Study

To empirically evaluate the optimizations proposed in Section 4, we use our IDE implemen-
tation (see Section 5) to analyze 31 real-world C/C++ programs. We start with defining our
research questions.

6.1 Research Questions
Jump-Functions Table Structure

In Subsection 4.1, we have argued that the structure of the jump-functions table directly
influences the performance of the analysis, especially regarding memory consumption. Hence,
we ask:

RQ1 What is the influence of choosing one of the proposed data structures, JFND,
JFN , and JFNE , in terms of runtime and memory consumption when analyzing
real-world C/C++ programs?

Jump-Functions Garbage Collection

Arzt [1] has shown that a garbage collector for jump functions not only significantly reduces
memory usage of the underlying analysis, but reduces runtime as well. As we have applied
significant changes (cf. Subsection 4.2) to the garbage collection by extending it to general
IDE problems and mitigating its restriction to multi-threaded analyses, we ask:

RQ2 How effective is the jump functions garbage collector in reducing memory usage
and running time when analyzing real-world C/C++ applications without the
restrictions to a subset of IDE and a multi-threaded implementation?

6.2 Experiment Setup
To ensure that our experiments are easily reproducible and comprehensible, we detail on
our setup in the following. In Subsubsection 6.2.1, we define what kind of analyses we
consider during the evaluation, and in Subsubsection 6.2.3 we present how we perform our
measurements as well as the required actions to answer the research questions.

6.2.1 Analysis Problems
To test our solver implementation, we choose to evaluate it using three commonly used
analysis problems that put a different amount of load to the solver:

ECOOP 2024
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TSA: Typestate analysis, configured to find invalid usage patterns of libc’s file-IO API
LCA: Linear constant analysis
IIA: Instruction-interaction analysis, to generate git-blame reports [21].

These analysis problems are available within PhASAR, and we use them unchanged. The
typestate analysis is expected to put low load on the solver as many programs use libc’s
file-IO only in few small regions of their code. The linear constant analysis should put
medium load on the solver, as it needs to propagate all potentially constant integer values;
however, the implementation in PhASAR currently is not alias aware, so the load on the
solver is still less than for the instruction-interaction analysis, which propagates all potential
aliases of the generated data-flow facts. Finally, the instruction-interaction analysis puts
an extreme load on the solver as it needs to exhaustively track all of the target program’s
variables and capture their interactions with the program’s instructions [21]. This way, the
size of the data-flow domain D approaches |N | allowing us to approximate the worst-case
scenario for field-insensitive analyses.

6.2.2 Target Programs
To ensure that our evaluation results reflect real-world analysis usage as closely as possible,
we carefully select the set of 31 target programs shown in Table 1. We select the target
programs out of 12 different domains to achieve broad coverage. Further, we choose the
target programs in various sizes in the range from 1 676 to 849 623 lines of code in LLVM IR
to test the IDE solver with different loads. The target programs have varying properties,
such as the number of procedures (66 to 35 134), the number of address-taken functions (0 to
2 696), the number of globals (113 to 15 108), the number of call-sites (314 to 176 350), the
number of indirect call-sites (0 to 2 155), and the number of basic-blocks (266 to 111 521).

We include the benchmarked programs from the initial PhASAR paper [22] excluding
PhASAR itself, because it has grown significantly since 2019, such that expensive analyses,
e.g., the IIA, do not work on that large programs anymore. Still, our evaluation results cannot
be compared to the results from Schubert et al. [22], since we use different client analysis
problems; the taint analysis used by Schubert et al. is of less interest for our work, since it
does not require IDE to be solved efficiently. We also include programs from the evaluation of
Sattler et al. [21] as they explicitly report performance problems of PhASAR’s IDE solver on
their benchmark. In contrast to the PhASAR benchmark, the time and memory results for
the programs analyzed by Sattler et al. can be compared to our evaluation results, because
the implementation and configuration of the IIA has not changed.

6.2.3 Measurement Setup
Each individual experiment is performed separately for each analysis problem. As analysis
targets we use 31 real-world C/C++ programs, which we compile to LLVM 14 IR using
WLLVM7, so that PhASAR’s analyses can consume them. To reduce measurement bias,
we run each experiment (solver configuration × analysis problem × analysis target) three
times and report average values. To validate that our experiments indeed show low variance,
we compute the standard deviation of the runtime measurements of the three repetitions.
We observe an average standard deviation of 2.2s to 8.3s depending on the jump-functions
representation. Normalizing that by the total runtime, the average standard deviation lays

7 WLLVM: https://github.com/travitch/whole-program-llvm

https://github.com/travitch/whole-program-llvm
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between 0.99% and 1.5% of the measured runtime. As we expect running times in the area
of hours instead of seconds, the impact of measurement bias, as well as the variance between
repetition is expected to be negligible and therefore, we consider the relative small number
of repetitions k = 3 as sufficient to achieve reliable results.

We use the UNIX time utility to measure the total runtime and peak memory usage for
all experiments. We compute speedups for runtime and memory consumption (maximum
resident set size) by comparing the statistics of the to-be-evaluated configuration of the
IDESolver++ to the statistics of the respective baseline. Given runtime measurement samples
MN = {mn1 , . . . ,mnk

} and baseline-measurements MB = {mb1 , . . . ,mbk
} with the number

of samples k = 3, the speedup is defined as

S = 1
k2

∑
(mn,mb)∈(MN ×MB)

mb

mn

For memory measurements, we use the inverse 1
S of the above formular to compute the

relative memory usage in percent. We compare each combination of mn and mb, as these
samples are unordered. This prevents potential biases due to sample ordering. Note that
in contrast to Arzt [1] we can make use of the external tool time for measuring memory
consumption, because our experiments do not run in the JVM that makes external memory
measurements unreliable.

We conducted our evaluation on a compute cluster in an isolated and controlled environ-
ment to ensure that our measurements are not influenced by external factors. Each compute
node is equipped with an AMD EPYC 72F3 8-Core processor and 250GiB of RAM, running
a minimal Debian 10.

In addition, to increase the reproducibility of our results, we automate the evaluation
process with the VaRA Tool-Suite8.

Baseline. We also evaluate the existing state-of-the-art IDESolver that is openly available
in PhASAR as shown in Section 3. As a baseline for our further experiments, we use the
IDESolver++ with the deeply nested jump-functions representation JFold, which the IDESol-
ver uses as well. In addition, we compare the both solvers in terms of runtime and memory
consumption to assess the influence of our implementation in comparison with the current
state-of-the art, when not applying the optimizations proposed in Section 4. Note that we do
not implement the multi-index table for storing jump functions since the IDESolver++ does
not need it, as discussed in Subsubsection 4.1.2. To achieve a fair comparison, we need to
configure the IDESolver. We set the configuration option recordEdges to false to avoid
storing the ESG edges in a path sensitive way. We record runtime and memory usage, as
well as out-of-memory (OOM) and timeout events of both solvers, providing a baseline to
compare against in the evaluations of our research questions.

RQ1. We evaluate four configurations of our IDESolver++, one using JFND, JFN , JFNE ,
and JFold as jump-functions table respectively. JFold serves as a baseline for the others.
To judge which jump-functions table structure performs best on our target programs, we
compute the speedups compared to the baseline and consider the configuration with the
highest speedup as best. To verify whether the best configuration is significantly best, we
perform a t-test with significance level α = 0.05. The garbage collector is turned off.

8 VaRA Tool-Suite: https://vara.readthedocs.io/en/vara-dev/
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RQ2. We configure the IDESolver++ as follows: turning the GC on or off and using JFND
or JFN . The IDESolver++ with GC turned off is used as baseline. We exclude JFNE here,
because it stores the jump functions in exactly the same way as JFN , just with one additional
table that only contains jump functions which cannot be evicted by the GC at all. So, in
total, we have four configurations for this experiment. For the typestate analysis all state
transition instructions are considered interesting, whereas for the linear constant analysis, all
branch conditions are considered interesting, which is useful when eliminating dead code, for
example. All jump functions at those interesting instructions are ignored by the garbage
collector. We exclude the instruction-interaction analysis for RQ2 as its post-processing needs
the results at all instructions [21] rendering the garbage collection useless. To examine the
influence of the jump functions garbage collector on the analysis, we compute the speedups
of the IDESolver++ compared to its corresponding versions without GC. We consider the
configuration with the highest speedup to perform best.

6.3 Results
We have conducted our experiments on the 31 real-world C/C++ programs listed in Table 1.
Although we have already argued on the correctness of our optimizations, we ran an additional,
non-measured analysis batch to confirm that the new IDESolver++ indeed computes the
same results as the IDESolver. In what follows, we detail on the results of our experiments
and answer the before defined research questions.

6.3.1 Baseline
Our evaluation of the baseline shows that in almost all measured configurations the IDE-
Solver++ is faster and consumes less memory than the IDESolver. We measured runtime
speedups ranging from 1.16× to 7.2× on average and memory savings from 0.96× to 4.8×
compared to the IDESolver as shown in Table 3. Due to the variance, the benefits of
using our IDESolver++ may be program dependent. Note that sometimes the IDESolver++
consumes more memory in the typestate analysis than the IDESolver. This is because the
IDESolver++ allocates large buffers in advance to lower the number of re-allocations (cf.
Section 5); in addition, the typestate analysis is very sparse; it propagates only a very small
number of data-flow facts and therefore does not fill out the pre-allocated buffers which we
do not consider as a problem since the total memory usage is negligible.

In contrast to the IDESolver, the IDESolver++ ran out-of-memory very rarely, as is
apparent in Figure 4. However, the figure also shows that the number of timeouts is higher
for the IDESolver++ than for the IDESolver. That is because analyses that ran out-of-
memory in the IDESolver were able to run long enough to exceed the given time budget
in the IDESolver++. All of the experiments that completed with the IDESolver were also
completed with the IDESolver++, showing that the performance does not degrade. In fact,
out of the 7 experiments that exceeded the time limit of four hours, three were solved in time
with the new solver; out of the five experiments that ran out of memory, one can now be
completed within the memory limit of 250GiB. Furthermore, all 7 experiments that required
up to 143GiB of RAM can now be solved on an consumer hardware with only 32GiB RAM.

There are several aspects that contribute to the improvements in this baseline experiment.
The most notable ones are: The elision of the multi-index storage for jump functions (see
Section 4.1.2), the batch-processing (see Algorithm 1) of data-flow fact propagations, and
the switch from the std::unordered_map to llvm::SmallDenseMap (see Section 5).
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Table 3 The average speedups/memory savings of
the IDESolver++ with JFold compared to PhASAR’s
IDESolver together with their standard deviations

Analysis Memory Runtime

IIA 4.811 ±1.192 7.227 ±2.042
LCA 1.729 ±0.365 4.683 ±2.150
Typestate 0.968 ±0.050 1.162 ±0.143

Old Timeout - 7

Old OOM - 5
Old ≥ 128GiB - 1
Old ≥ 32GiB - 6

Old < 32GiB - 74

New Timeout - 7

New OOM - 2
New ≥ 32GiB - 3

New < 32GiB - 81

Event Flow

Figure 4 A sankey-plot showing
how the number of (target program ×
analysis type) that finish with out-of-
memory (OOM), timeout, or completed
changes when switching from PhASAR’s
IDESolver (Old) to our IDESolver++
(New) with JFold keeping the time-limit
of four hours and the memory limit of
250GiB.

Table 4 Results of our per-analysis comparision between the jump-function representations
within our IDESolver++. We report the mean speedup and its standard deviation for both runtime
and memory. Cells highlighted with green background indicate the JF with highest runtime speedup
or memory savings for that analysis. In case, the highest speedup is <1 or the difference to the
other jump-functions representations is not significant, we omit the highlight.

JF1 JF2 JF3
Memory Runtime Memory Runtime Memory Runtime

IIA 1.270 ±0.231 0.927 ±0.059 1.382 ±0.230 0.949 ±0.071 1.371 ±0.221 0.957 ±0.096
LCA 1.126 ±0.097 0.939 ±0.102 1.406 ±0.267 1.064 ±0.061 1.400 ±0.261 1.063 ±0.061
Typestate 1.059 ±0.053 0.996 ±0.023 1.057 ±0.042 1.013 ±0.035 1.057 ±0.042 1.005 ±0.022

Hence, we can already conclude that based on the high speedups for both runtime and
memory as well as avoiding out-of-memory events, it is crucial to implement IDE in a
performance-oriented way and just changing the implementation of the same underlying IDE
algorithm can enable analyses that were not feasible before.

6.3.2 RQ1: Jump-Functions Table Structure

We evaluated all three data structures JFND, JFN , and JFNE . We found that they behave
differently depending on the target program and analysis. As expected, the instruction-
interaction analysis puts a high load onto the solver, whereas the typestate analysis is very
sparse and therefore completes within seconds.

Figure 5 shows both the runtime speedups and the memory savings of the different
jump-functions representations compared to the deeply nested jump-functions representation
JFold. Both the runtime speedups and memory savings differ depending on the client analysis
and have high variance over the target programs. In the (left) runtime speedup plot we can
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Figure 5 Scatter plots showing the IDESolver++ with the proposed jump-functions representations
compared to the IDESolver++ using the nested representation inherited from PhASAR’s current
IDESolver. The left plot shows the runtime speedup (higher is better), whereas the right plot shows
the relative memory usage (smaller is better). The target programs are sorted in ascending order
based on their number of LLVM-IR instructions. The IDESolver++ was configured to use JFND
(blue), JFN (orange), and JFNE (green). The both horizontal lines are set at 1 meaning no speedup.
We use a log-scale to account for the non-linear distribution of speedups.

see that the speedups of the analyses are approximately centered around 1 with a small
advantage of JFN and JFNE over JFND for the LCA. In the (right) relative memory usage
plot, it becomes visible that the IIA and LCA consume less memory with any of the proposed
jump-functions representations than with JFold. However, the variance across the analyzed
target programs is high. For the TSA, the relative memory consumption is close to 94% for
all jump-functions representations. The target programs in the plots of Figure 5 are sorted
in ascending order by their number of LLVM-IR instructions. We provide variants of these
plots with different program orderings on our supplementary website (see visualizations).
Still, the orderings did not show observable correlations between the speedups and any of
the tested program characteristics.

So, there is no clear overall “best” jump-functions table structure, and project- and
analysis specific tradeoffs have to be made. However, by taking an analysis-centric view, we
can determine the “best” jump-functions representation per analysis as shown in Table 4.
For the IIA, JFN has highest average memory improvement with 1.382×(consuming 72% of
the memory from JFold), but the significance test shows that the difference to JFND and
JFNE is not significant, so in terms of memory, they share the first place. In terms of running
time, JFold performed significantly best. For the LCA, JFN is best in terms of both runtime
and memory improvements, consuming only 71% of the memory from JFold while being 6.4%
faster; the difference to JFNE is not significant, so we consider both JFN and JFNE best for
the LCA. While for memory improvement, JFND is with using 97% of the memory slightly,
but significantly better than JFold, for runtime speedup, the difference between JFND and
JFold is insignificant. Finally, for the typestate analysis, the jump-functions representations
performed similarly; yet the memory improvement of JFND, JFN , and JFNE over JFold is
significant, consuming around 94% of the memory from JFold.

https://secure-software-engineering.github.io/paper-idesolverxx/plots
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Figure 6a. A violin plot showing the runtime
speedups of the IDESolver++ with garbage collection
compared to their versions without GC. The solver
was configured to use JFND (blue) and JFN (orange).
Note, that the y-axis is in log-scale to account for the
non-linear distribution of speedups <1 (slowdowns).
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Figure 6b. A violin plot showing the relative
memory usage of the IDESolver++ with GC com-
pared to its versions without GC. The solver was
configured to use JFND (blue) and JFN (orange).
We use a log-scale for the relative memory usages
here.

Figure 6 Violin plots showing the impact of enabling garbage collection on runtime and memory
usage of the IDESolver++.

To answer RQ1: The performance of the jump-functions representations highly depends
on the performed analysis. However, JFN and JFNE have shown significantly best
memory usage for the LCA and perform well for the IIA and TSA; this makes them
a generally reasonable default choice. We also conclude that picking the right data
structure oftentimes is no tradeoff between runtime speedup and memory savings; the
same data structure can improve runtime and memory usage at the same time.

6.3.3 RQ2: Jump-Functions Garbage Collection

The results of evaluating the jump functions garbage collector with JFN are shown in
Figure 6a and Figure 6b. For the LCA we see memory savings, where the analysis consumed,
on average, 12% less memory (±10%). Furthermore, Figure 6b shows higher memory savings
with JFND than with JFN . For the TSA, the analysis with GC saved around 0.4% memory,
which is significant, but we consider it negligible in most cases. This is expected because
the TSA is very sparse and therefore does not have much to erase during garbage collection.
Some analysis runs consumed even more memory than with disabled garbage collection.
This is because of the additional book keeping meta-data that the garbage collector requires.
In summary, the generalization to IDE indeed makes the GC less effective, but still it can
drastically reduce the memory footprint of IDE analyses.

As expected, enabling jump functions garbage collection has non-negligible runtime-
performance impact. The reason for this is that – in contrast to the experiments of Arzt [1] –
the GC runs in the same thread as the analysis and therefore blocks the analysis process
while performing the garbage collection. However, the mean speedup is close to 1 with 96.6%
(±8.6%) for LCA and 98.3% (±6.3%) for TSA. Hence, the average runtime cost is still low.

Enabling the GC in single-threaded mode is a tradeoff between runtime and memory, as
the GC reduces the memory consumption of IDE at the cost of increased runtime.

ECOOP 2024
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To answer RQ2: Constraining the jump functions garbage collector to work in a single-
threaded scenario results in a reduction of the memory consumption of the linear constant
analysis of 12%, with only minimal runtime overhead. However, the effectiveness of the
GC compared to the original GC from Arzt [1] is reduced, making it impractical for
smaller analyses, and for those that do not propagate many data-flow facts.

6.4 Threads to Validity
Internal Validity

Runtime measurement on modern computing systems is a challenging task due to automatic
clock boost and throttling as well as context switches enforced by the operating system. This
makes reliable runtime measurements hard. We therefore ran our experiments three times
and report averages to compensate for this noise. In addition, we ran each experiment in
isolation on equivalent machines, ensuring that no other task is running in parallel. Our
experiments each utilize only one thread to minimize the influence of the OS scheduler on
the measurements.

We evaluated our experiments on a fixed set of target programs, on which we verified
that the IDESolver++ produces the same results as the IDESolver. We cannot rule out
that there are programs where the solvers produce different results because of bugs in the
implementations of either of them. To mitigate this risk, we performed our evaluation on a
large set of real-world programs and configured the IDE solvers with three different client
analysis problems.

External Validity

The performance of the analysis solvers may be different depending on the target program,
that is, there may be programs that we did not benchmark where the analysis solvers behave
differently. To mitigate this threat, we selected a diverse set of target programs from various
domains and with different sizes and complexities. Furthermore, we configured the analysis
solvers with three differently complex analysis problems to have greatest possible variation.
This gives us for the first time a comprehensive study on a substantial number of real-world
C/C++ programs.

6.5 Discussion
In Section 6, we presented the results of our evaluation, some of them require interpretation.

We have observed that JFN in many cases has a lower memory consumption than JFND.
This can be explained by the distribution of jump functions: For many analyses an extra
experiment run with statistics instrumentation shows that the average size of the inner maps
in JFND is < 4, but still with a high number of total jump functions. Hence, JFND pays
the memory overhead of a hash map for the majority of jump functions, whereas JFN and
JFNE oftentimes store more than 1000 elements in their inner maps which can lead to more
efficient use of the provided memory.

On the other hand, depending on the access patterns of the jump-functions table, JFND
can lead to faster jump functions access. For the IIA, we see drastic performance benefits of
JFND and JFold compared to JFN and JFNE when analyzing bison. This can be explained by
the handling of aliasing in the IIA. All aliases of a data-flow fact are propagated individually
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in the IIA. Therefore, for memory-indirection statements, such as store a to b, for all
aliases of the stored pointer a all aliases of the target pointer b must be generated, which are
independent from each other. This leads to the same jump functions to be accessed multiple
times, which may be faster if the inner maps do not incur memory indirections because they
are small enough for small-size optimization.

Combining the measurements from our baseline (cf. Figure 3) with our specific optimiza-
tions from Section 4, we achieve the following overall mean speedups in the IDESolver++
compared to PhASAR’s current IDESolver: Memory improvements of 6.9× for IIA, and
2.7× for LCA; runtime speedups of 6.9× for IIA, and 4.9× for LCA. For the typestate
analysis, there is no overall mean speedup, but also no mean slowdown.

7 Related Work

Performance problems of IDE implementations are a known issue. He et al. [9] perform
sparsification on the ESG by propagating data-flow facts not along ICFG edges, but on their
corresponding def-use chains. Arzt and Bodden [3] automatically generate IDE summaries
for libraries, which prevents re-analyzing commonly used libraries and lowers the size of the
analyzed target programs. Arzt and Bodden [2] improve re-analysis of already analyzed
programs by incrementally analyzing only the changes compared to the previously analyzed
version. These approaches let any existing implementation of IDE scale better in the
circumstances that they optimize. Nonetheless, they can still further profit from an improved
solver that scales better in the first place.

Weiss et al. [29] use a database system to store their internal data structures partially
on disk effectively increasing the amount of available memory. However, they focus on the
specific problem of error-code propagation and do not generalize to arbitrary IDE analyses.
Hsu et al. [10] propose a modified IFDS algorithm that no longer needs to store the ESG
explicitly and computes the reachability based on Depth-First Tree Intervals instead. While
this approach works well for IFDS problems, it cannot be applied to IDE problems directly
as composing edge functions requires to store the jump functions in some way.

He et al. [8] improve the garbage collection presented by Arzt [1] by increasing the GC’s
granularity from method-level to data-flow fact level. However, it suffers from the same
restrictions of required multi-threading and also only applies to the same subset of IDE as
the original garbage collector [1] that we generalize in this paper.

Apart from IDE, there are other approaches to precise interprocedural static data-flow
analysis, such as weighted pushdown systems (WPDS) [12, 18]. As WPDS has the same
runtime- and memory complexities as IDE, similar optimizations as the ones presented in
this paper may be possible for WPDS as well. Other approaches, such as Boomerang [25]
reduce their resource requirements by conducting demand-driven analyses, only computing
the data-flow information for specific program locations. While demand-driven analyses
work well for pointer analysis where a client analysis requests the demand, exhaustive taint
analyses, e.g., a use-after-free analysis would need to issue a demand for each potential sink
statement effectively degenerating the demand-driven analysis to a whole-program analysis
with similar performance issues.

Yu et al. [31] tackle the performance problem by bringing data-flow analysis to the GPU
and optimizing the algorithm, as well as the data-layout for GPU processing. As the CPU
and GPU are particularly different hardware components, optimizations for GPU programs
usually do not apply to CPU programs, and vice versa.

ECOOP 2024
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8 Conclusion

Current state-of-the-art IDE implementations do not scale well to large programs preventing
the analysis of many interesting data-flow problems that can be used for bug- and vulner-
ability detection, as well as other important fields in software engineering. Based on years
of experience with implementing and using IDE-based program analyses, we identified two
different optimizations of the IDE algorithm. We found that choosing an efficient repres-
entation for the jump-functions table structure within the solver implementation has great
influence on the performance of the algorithm. Still, it requires further research to select the
right data structure for an analysis, or to even automate this process. Yet, we learned that
an implementation of IDE has to be designed with performance in mind from the beginning
to achieve a scalable implementation. Furthermore, we extended the jump functions garbage
collection from Arzt to general IDE problems and removed the restriction to a multi-threaded
solver implementation. We evaluated that it still reduces the memory footprint of the IDE
analyses, though being less effective than the original.

Our experiments on 31 real-world C/C++ programs show runtime and memory speedups
of up to 7× on average compared to the existing IDE implementation in PhASAR and enable
the analysis of more target programs than before. We found that especially extremely heavy
analyses such as the instruction interaction analysis presented by Sattler et al. [21] can now
be run on medium-to large programs that was not possible previously, even with larger server
hardware. Still, some analyses require too much memory for being executed on an ordinary
developer machine.
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