
Formalizing, Mechanizing, and Verifying
Class-Based Refinement Types
Ke Sun #

Key Lab of HCST (PKU), MOE, School of Computer Science, Peking University, Beijing, China

Di Wang1 #

Key Lab of HCST (PKU), MOE, School of Computer Science, Peking University, Beijing, China

Sheng Chen #

The Center for Advanced Computer Studies, University of Louisiana, Lafayette, LA, USA

Meng Wang #

University of Bristol, UK

Dan Hao #

Key Lab of HCST (PKU), MOE, School of Computer Science, Peking University, Beijing, China

Abstract
Refinement types have been extensively used in class-based languages to specify and verify fine-
grained logical specifications. Despite the advances in practical aspects such as applicability and
usability, two fundamental issues persist. First, the soundness of existing class-based refinement
type systems is inadequately explored, casting doubts on their reliability. Second, the expressiveness
of existing systems is limited, restricting the depiction of semantic properties related to object-
oriented constructs. This work tackles these issues through a systematic framework. We formalize a
declarative class-based refinement type calculus (named RFJ), that is expressive and concise. We
rigorously develop the soundness meta-theory of this calculus, followed by its mechanization in Coq.
Finally, to ensure the calculus’s verifiability, we propose an algorithmic verification approach based
on a fragment of first-order logic (named LFJ), and implement this approach as a type checker.

2012 ACM Subject Classification Theory of computation → Type structures; Software and its
engineering → Formal software verification

Keywords and phrases Refinement Types, Program Verification, Object-oriented Programming

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.39

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.22

Funding This work is sponsored by National Natural Science Foundation of China Grant No.
62232001, NSF Grant 1750886, and EPSRC Grant EP/T008911/1.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Refinement types have been widely used in class-based languages [47, 67, 10, 56, 26, 33, 36]
to enhance the capabilities of traditional type systems, allowing for more precise safety
guarantees. These types extend basic data types (e.g., integer type, boolean type, and class
types) with logical constraints that specify detailed conditions on the data. For example,
{ν : C|ν.f > 0} characterizes instances of type C with the property that their f field exceeds
zero. The logical constraint (e.g., ν.f > 0) is often called the refinement of the type.

1 Corresponding author

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 39; pp. 39:1–39:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sunke@stu.pku.edu.cn
https://orcid.org/0000-0002-2966-9889
mailto:wangdi95@pku.edu.cn
https://orcid.org/0000-0002-2418-7987
mailto:sheng.chen@louisiana.edu
https://orcid.org/0000-0003-1735-0704
mailto:meng.wang@bristol.ac.uk
https://orcid.org/0000-0001-7780-630X
mailto:haodan@pku.edu.cn
https://orcid.org/0000-0001-8295-303X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.39
https://doi.org/10.4230/DARTS.10.2.22
https://doi.org/10.4230/DARTS.10.2.22
https://doi.org/10.4230/DARTS.10.2.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Despite the advancements in various practical aspects (briefly surveyed in Section 8),
a comprehensive examination of the fundamental aspects of class-based refinement types
remains elusive. The primary reason stems from the intricate logical interpretation associated
with refinements, which determines their meanings. In existing class-based refinement type
systems, the logical interpretations are often defined via the Satisfiability Modulo Theories
(SMT) relation [9, 35], since they are typically analyzed algorithmically via SMT solvers.
Although this interpretation is closer to the actual algorithmic interpretation, it brings
two crucial problems. Firstly, the soundness of the type system is difficult to define and
argue formally, since it depends on the SMT relation, which is both complex and intricate
to define properly. This complexity has led to a paucity of mechanized soundness proofs
in previous systems, putting their reliability in doubt. Secondly, the expressiveness of
the refinement types is limited by the need to adhere to decidable theory combinations
(e.g., QF-EUFLIA [9]), which impedes the representation of semantic properties relevant to
user-defined classes and methods.

To address those fundamental issues, this work makes three consecutive contributions.

1. Formalization. To formalize a foundational calculus, this paper introduces Refinement
Featherweight Java (RFJ), an FJ-like [30] calculus with expressive refinements capable
of stating arbitrary properties about user-defined elements. Our basic methodology is
to construct a declarative, SMT-independent logical interpretation within the language,
which greatly increases the expressiveness and benefits the meta-theoretical development.
Apart from that, RFJ is equipped with several features important for refinement-type-based
verification, yet mostly absent from previous systems, such as interfaces for decomposing proof
obligations among subclasses (c.f., Section 2.2), general selfification – a typing mechanism [66,
51] (detailed in Section 2.1) that seamlessly integrates accurate term information into
refinements, and flexible method overriding through co/contra-variance [11]. Besides those
critical features, RFJ closely mirrors FJ, avoiding the usage of non-standard judgments (e.g.,
object constraint systems [47, 67]) and non-standard constructs (e.g., ANF [10], existential
types [67]). Thus, we believe RFJ can be an ideal base to explore further extensions.

2. Mechanization. The soundness properties of RFJ are rigorously established and mech-
anized in Coq. Although leveraging an in-language logical interpretation reduces the proof
difficulty, the proof is still challenging and requires non-standard techniques. For example, we
make a novel use of big-step semantics to obtain a convenient induction principle for proving
the preservation lemma under arbitrary type substitution. We introduce a novel approach
to establish the logical soundness property (one major soundness property of RFJ), as the
standard logical relation technique [62] is ineffective for first-order languages like RFJ [55].

3. Verification. The expressive refinements provided by RFJ fall out of the scope of existing
SMT theories, casting ambiguity on the system’s algorithmic verifiability. We address this
concern by proposing an algorithmic verification approach based on a fragment of order-sorted
first-order logic (OS-FOL) [57]. We name this fragment as LFJ, and define a type-directed
translation from RFJ to the LFJ. We define an intended model of LFJ and map the RFJ
refinement subtyping problem to the LFJ validity problem under this model. We devise
an axiomatization of the intended model covering the semantics of RFJ programs. The
axiomatization can be used by SMT solvers to perform algorithmic verification. Thus, the
expressive refinements of RFJ are not only meta-theoretical constructs: they are amenable
to algorithmic analysis within SMT solvers. Additionally, we develop a refinement type

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:3

checker that leverages Z3 [19] for checking the validity of LFJ formulas. The type checker is
evaluated against a small yet representative benchmark derived from a Java textbook [23]
and prior systems [65].

In the remainder of this paper, we detail our contributions. Section 2 provides an overview.
Sections 3, 4, and 5 each describe one of the three contributions. Section 6 discusses the
mechanization and implementation. Sections 7, 8, and 9 review related work and conclude.

The accompanying code of this paper, including the meta-theory mechanization and type
checker implementation, is available as the supplementary material of this paper.

2 Overview

This section serves as an overview of the whole paper. We start with an example program to
demonstrate the expressiveness and features of RFJ. Then, we discuss the actual verification
through LFJ. Finally, we turn back to the meta-theory of RFJ and the challenges of developing
the meta-theory. The sequence of discussion – starting with verification before addressing
meta-theoretical concerns – is intentionally chosen to contrast with the presentation order
in subsequent sections, aiming to enhance comprehension by familiarizing readers with the
system through its verification aspects first.

2.1 RFJ by Example

1 class Pizza{
2 {v:int|v>0} price(){return 1;}
3 Pizza remA(){return new Pizza();}
4 Pizza sell (this.price()>5){return this;}}
5 class Crust extends Pizza{
6 {v:int|v>0} price(){return 1;}
7 Pizza remA(){return new Crust();}
8 Pizza sell (){return this;}}
9 class Cheese extends Pizza{

10 p:Pizza
11 {v:int|v>0} price(){return let pp = this.p.price() in pp + 1;}
12 Pizza remA(){return new Cheese(this.p.remA());}}
13 class Anchovy extends Pizza{
14 p:Pizza
15 {v:int|v>0 && v>=this.p.price()} price(){return let pp = this.p.price() in pp;}
16 Pizza remA(){return this.p.remA();}}
17 class MagicAnchovy extends Anchovy{
18 {v:int|v>0 && v>this.p.price()} price(){return let pp = this.p.price() in pp + 1;}}
19 class Main{
20 int assertSingleCheesePizza(x: {v:Pizza|v = new Cheese(new Crust())}{
21 return 0; }
22 int testRemA(){
23 return let p1 = new Anchovy(new Cheese(new Crust())) in
24 this.assertSingleCheesePizza(p1.remA());}}

Figure 1 An example RFJ program. In refinements, v stands for ν.

In this section, we illustrate RFJ using a program extended from a textbook example [23]
(we add some methods to make it more interesting). The program models various pizzas and
three operations on them: computing the price of a pizza (the price method), removing all
anchovies from a pizza (the remA method), and selling a pizza (the sell method).

Simple Verification. Our initial focus is a basic property: the price of any pizza must
be positive. To enforce this property, we refine the return types of price methods with a
refinement ν > 0, where ν denotes the value being refined. RFJ’s refinement subtyping
mechanism guarantees that the price methods indeed return positive values. Pick Pizza.price
for an example, RFJ enforces the following subtyping constraint for the return type:

ECOOP 2024

39:4 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

this : {ν : Pizza|true} ⊢ {ν : int|ν = 1} <: {ν : int|ν > 0} (1)

In refinement type systems like RFJ, such subtyping constraints have logical interpreta-
tions. In particular, Constraint (1) requires all ν satisfying ν = 1 must also satisfy ν > 0,
which holds under RFJ logical interpretation (formally defined in Section 3.3). Note that the
subtyping constraint is checked within a specific type environment this : {ν : Pizza|true},
which contains the types of all visible variables. Those variables may be referred to by the
refinement types, as demonstrated in the following example.

Method Override. RFJ supports overriding methods in subclasses. For example,
Cheese.price overrides Pizza.price to provide a different price computation. To preserve the
logical property, the return type must still be validated, yielding the following constraint:

this : {ν : Cheese|true}, pp : {ν : int|ν > 0} ⊢ {ν : int|ν = pp + 1} <: {ν : int|ν > 0} (2)

The pp item in the environment is introduced by the let binding. Since pp is bound to
this.p.price(), RFJ sets its type as the type of this.p.price(), which is {ν : int|ν > 0}.

Refinement for this and Override with Co/contra-variance. In RFJ, every method has
an implicit this parameter with the same type as the enclosing class of this method (e.g., in
Cheese.price(), this has Cheese type). We have seen this appearing in previous subtyping
constraints, but with a trivial refinement true. this can also be given a non-trivial refinement
to ensure that methods are invoked on objects satisfying specific criteria. For instance,
Pizza.sell includes a refinement of this (marked cyan), specifying that only the pizza whose
price is greater than 5 can be sold.

Meanwhile, suppose that a Crust can also be sold regardless of its price. This can be
achieved by overriding the method sell in Crust, as the example shows. In the overriding
method, the refinement of this is true and thus omitted, making it a supertype of the
previous refinement this.price > 5, obeying contra-variance of parameter types2.

Now, consider a property for Anchovy.price(): the price is not only positive, but also not
less than that of this.p. This extra property is marked olive in the program. The property
makes the new return type a subtype of the old, obeying return type co-variance.

General selfification. Checking Anchovy.price()’s return type yields this constraint:

this : Anchovy, pp : {int|ν > 0} ⊢ {int|ν = pp} <: {int|ν > 0&&ν ≥ this.p.price()} (3)

Here, we omit the refinement binder ν and the refinement when it is trivial (i.e., true).
However, this constraint can not be proved currently, essentially due to the loss of the
this.p.price() term information in the type of pp. Luckily, RFJ’s general selfification3

mechanism addresses this by ensuring the persistence of such information. In a nutshell, it
works by equating the term being typed to the refinement of its type, giving this.p.price() :
{ν : int|ν > 0&&ν = this.p.price()}, which is also the type of pp. The strengthened type
of pp lets the constraint be proved. With the same technique, we can prove the validity of
MagicAnchovy.price, which further overrides Anchovy.price.

2 Strictly speaking, for the type of this, we use co-variance for the base type and contra-variance for the
refinement, c.f. Section 3.1.

3 We name it general to distinguish from the cases like [34], where selfification is only used for variables.

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:5

Referring to Methods. Next, we turn to the remA methods for removing all anchovies
from a pizza. Consider the method testRemA, where we assess the correctness of the remA
implementations. For the assertion in Line 24, RFJ enforces the subtyping constraint below:

p1 : {An|ν = An(Ch(Cr()))} ⊢ {Pi|ν = p1.remA()} <: {Pi|ν = Ch(Cr())} (4)

We omit this from the type environment, which does not affect the meaning of this
subtyping constraint. Meanwhile, we abbreviate class names to their initial two letters
(e.g., Ch represents Cheese), and omit the new keyword (e.g., An(Ch(Cr())) represents
new An(new Ch(new Cr()))), in order to save space. Proving Constraint (4) demands
intricate reasoning about the program’s semantics, particularly the semantics of the remA
methods. This contrasts with the previous example, where no specific knowledge about the
price methods is required. In our meta-theoretical calculus, since the logical interpretation
is built upon the program semantics, Constraint (4) does not pose a significant challenge.
Nevertheless, facilitating its efficient handling within SMT solvers requires a theory about
RFJ program semantics, which is discussed in detail in Section 2.2.

Proving with Interfaces. Finally, we consider a more interesting property concerning price
and remA: the price of a pizza should not increase after removing all anchovies. We can express
this by appending the following method to Pizza: {bool|this.price()>=this.remA().price()}
remA_noinc_price(){return true;}, yielding the subtyping constraint below:

this : Pizza ⊢ {bool|ν = true} <: {bool|this.price() ≥ this.remA().price()} (5)

This property holds in our meta-theoretical calculus. However, it breaks the proof
modularity and is not verifiable in the algorithmic verification, even with the theory extended
with RFJ program semantics. The mitigation of this challenge is facilitated by another key
feature of RFJ: interfaces. We discuss that in detail in the following section.

2.2 Algorithmic Verification

In conventional refinement type systems, subtyping constraints are typically discharged by
SMT solvers, which facilitate automated reasoning and significantly reduce implementation
efforts. We adapt this methodology by providing a logical encoding of RFJ into a dedicated
order-sorted first-order logic, named LFJ. A detailed exposition of LFJ is provided in Section 5.
Here, we offer a concise overview of it, drawing upon the examples discussed in Section 2.1.

EUFLIA. After being encoded into LFJ, the subtyping constraints (1), (2), and (3) fall into
the theory of Equality, Uninterpreted Functions, and Linear Integer Arithmetic (EUFLIA), a
domain widely supported by contemporary SMT solvers [9, 4, 19]. LFJ incorporates EUFLIA
for verifying those constraints.

Reasoning about Program Semantics. We have illustrated in Section 2.1 that the veri-
fication of Constraint (4) requires knowledge about program semantics. We encode the
knowledge with several axioms, which are discussed formally in Section 5.3. Currently, We
illustrate them utilizing Constraint (4), which is translated to the LFJ formula shown below:

∀p1 : An, ν : Pi. p1 = Ancr(Chcr(Crcr())) ∧ ν = AnremA(p1) ⇒ ν = Chcr(Crcr())

ECOOP 2024

39:6 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Here, the Ancr, Chcr, Crcr functions represent the constructors for the classes An, Ch,
and Cr, respectively. AnremA represents the conditional function composed of the possible
implementations of Anchovy.remA. The characterization of Anchovy.remA is shown below:

AnremA(this) =
{

PiremA(Anp(this)) if this = Ancr(...)
PiremA(Anp(this)) if this = Macr(...)

This characterization redirects the function application to the implementation, depending
on the class of this (although the implementations are the same). Since the two classes
both use Anchovy.remA, all the implementations are the logic translation of the method body
of Anchovy.remA. Here, Anp denotes the access function of the field p of the class An, while
PiremA is the conditional function for Pizza.remA.

Because we know p1 is Ancr(Chcr(Crcr())), we choose the first branch and deduce
ν = PiremA(Anp(Ancr(Chcr(Crcr())))), which can be then handled by an axiom for Anp:

∀p : Pi. Anp(Ancr(p)) = p

With this axiom, we can deduce ν = PiremA(Chcr(Crcr())). This time, we need to utilize
the semantics of PiremA, and choose the branch for this = Chcr(...), i.e., PiremA(this) =
Chcr(PiremA(Chp(this))), which lets us deduce ν = Chcr(PiremA(Chp((Chcr(Crcr()))))).
Following the routine we just outlined, we can deduce ν = Chcr(Crcr()) eventually.

Verifying with Interfaces. Even with the knowledge of program semantics, Constraint (5)
still can not be verified. In particular, it would be translated to ∀this : Pi. P iprice(this) ≥
Piprice(PiremA(this)), whose verification requires induction. In several previous refinement
type systems for functional languages [66], induction is supported but is based on pattern
matching and recursive functions. In object-oriented languages, pattern-matching constructs
are typically not included. Thus, in this paper, we propose to utilize interface, a feature that
is included in most object-oriented languages, to perform induction. To use interface-based
induction in our case, we reimplement Pizza as an interface, which decomposes the proof
obligation into subclasses implementing Pizza. To illustrate, we pick the proof of Constraint
(5) for Anchovy as an example, shown in Figure 2.

The first thing to note is that, the method body of Anchovy.remA_noinc_price is not
trivial (e.g., return true). This means that an SMT solver would not prove this property
automatically. Before we explain the method body, we first give a brief informal proof to help
understanding. The assumptions to facilitate the proof are listed below. Once the assumptions
are within the proof context, the formula we want (this.price() ≥ this.remA().price()) can
be easily deduced within EUFLIA.

this.price() ≥ this.p.price() (p1) : a property of Anchovy.price

this.p.price() ≥ this.p.remA().price() (p2) : the induction hypothesis of this.p

this.remA() = this.p.remA() (p3) : a property of Anchovy.remA

The first assumption (property) is about Anchovy.price, and we have proved it in Sec-
tion 2.1, so we can just refer to it as a lemma. In principle, even if we have not proved
it, the solver can still automatically prove the property with the given program semantics
and use it to prove the formula we want. However, leaving such a property to the solver
often increases the searching time for proving the formula. Thus, we prove it as a separate
property and introduce it (p1 in the body of remA_noinc_price()) to the proof context so
that the solver can use it directly. The second property is the induction hypothesis of this.p

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:7

25 interface Pizza{
26 {int|v>0} price()
27 Pizza remA()
28 Pizza sell (this.price()>5)
29 {v:bool|this.price()>=this.remA().price()} remA_noinc_price() }
30 class Anchovy implements Pizza{
31 p:Pizza
32 {v:int|v>0 && v>=this.p.price()} price(){return let pp = this.p.price() in pp;}
33 Pizza remA(){return this.p.remA();}
34 {v:bool|this.price()>=this.remA().price()} remA_noinc_price(){
35 return let p1 = this.price() in
36 let p2 = this.p.remA_noinc_price() in true;}}

Figure 2 Proving remA_noinc_price for Anchovy.

(this.p.price() ≥ this.p.remA().price()), and we can utilize it by referring to the method
remA_noinc_price of this.p. The third property asserts that for every this:Anchovy, it holds
that this.remA()=this.p.remA(). This is obvious since no matter whether this is an Anchovy
or a MagicAnchovy, calling remA on it would resolve to the same method implementation. Like
p1, this property is also automatically derivable, so we can leave it to the SMT solver, or
explicitly prove it like we do for p1. In particular, p3 represents a special case where we can
add an axiom to the solver, to spare the efforts of automatic search and manual proof. As a
result, it is not included in the method body. We will discuss this further in Section 5.3.

We need not prove the same property for MagicAnchovy, since it inherits the property
from Anchovy. Similarly, we can prove other properties such as the fact that no Anchovy exists
after remA, as well as the idempotence of remA; all have been included in our test suite.

2.3 Meta-theoretical Arguments

As we have seen in the previous sections: the design of RFJ aims at expressiveness and ease
of use. At the same time, this very desirable combination leads to a tricky meta-theory. One
major contribution of this paper is to establish the meta-theory rigorously (i.e., in Coq). The
detailed development of the meta-theory is given in Section 4. In this section, we briefly
overview the soundness theorems, and several challenges in proving them.

2.3.1 Soundness Theorems

Type Soundness. The type system should be able to preclude evaluation from being stuck.
Formally, if a closed expression is well-typed (∅ ⊢ e : t), then it would never be stuck
in a state where it can not be evaluated and is not a value yet. Since type soundness is
typically guaranteed by the base type system (in our case, the FJ type system) already, the
core of proving that in refinement type systems is to ensure the additional refinement type
mechanisms (e.g., general selfification) do not break the promise of the base type system.

Logical Soundness. The type system should infer only true refinements. Formally, if a
typing judgment (Γ ⊢ e : {w|p}) is made by the type system, the refinement formula p

must be true whenever the conditions stipulated by Γ are fulfilled. Logical soundness serves
as a complement to type soundness, going beyond the guarantee that the evaluations of
well-typed programs would never get stuck by also ensuring that the evaluations of such
programs adhere to the logical constraints specified by type refinements.

ECOOP 2024

39:8 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

2.3.2 Challenges
Logical Interpretation. Refinements are logical formulas and should be interpreted logically.
For example, the subtyping relation between two refinement types (Γ ⊢ {w|p} <: {w|q})
is defined as the truth of the implication p ⇒ q under the assumption set Γ. While our
approach to algorithmic verification leverages a translation of RFJ into first-order logic (c.f.,
Section 2.2), employing this logic directly for defining the logical interpretation can prove
both intricate and unwieldy. Rather, we choose to define it inside the language, allowing
the algorithmic verification approach to serve as an external algorithm that scrutinizes the
intrinsic logical interpretation. Nevertheless, articulating a precise logical interpretation is
still challenging due to complex typing mechanisms like interfaces and nominal subtyping.

Type Substitution and General Selfification. Different from previous class-based refinement
type calculus, RFJ uses type substitution instead of ANF [32] or existential types [34]. This
increases the generality and usability (detailed in Section 7). However, this also increases
its meta-theoretical complexity, and several nonstandard lemmas about type substitution
and typing have to be proved. Similarly, although general selfification increases the precision
of the verification by recording term information in refinements, it affects substitution
and preservation lemmas intricately and several non-standard properties (e.g., exactness,
Γ ⊢ e : t then Γ ⊢ e : self(t, e)) of it have to be proved for proving those lemmas.

First Order Functions. The logical relation technique [62] is frequently employed in prior
research [8, 29] to establish the logical soundness theorem. However, this technique can not be
applied to RFJ, since RFJ is a first-order language without explicit function abstraction but
with recursive method definition. Thus, we do not have a strong enough induction principle
about methods when performing induction on typing. This challenge is not unique to us
and has been encountered in previous studies [64, 55]. However, the workaround adopted by
these studies, which essentially inlines methods at call-sites, is incompatible with RFJ, since
that requires particular type structures supporting the strong normalisation of derivation
reduction, a property that RFJ lacks.

3 Declarative Calculus: RFJ

This section outlines the syntax, semantics, and typing rules of RFJ, built upon the classical
calculus FJ extended with primitive data types (integers and booleans) and let bindings. The
FJ parts follow closely the classical textbook presentation [52]. To delineate the extensions
unique to RFJ, we highlight the extended features in gray background .

3.1 Syntax and Lookup Functions
The syntax of RFJ is depicted on the left side of Figure 3. The metavariables C, D, and
E range over class names; f and g range over field names; m ranges over method names;
x ranges over parameter names; ν ranges over refinement binder names. We also use n to
range over integers, and b to range over booleans (i.e., true and false). In a nutshell, RFJ
extends FJ by refinement types, interfaces, and the ⊤ type, each highlighted in dark gray to
distinguish the enhancements. We have discussed refinement types and interfaces extensively.
For the ⊤ type, it is introduced mainly to characterize the equality between any two values,
not just values of the same type. Compared to strictly monomorphic equality which demands
type uniformity for comparands, ⊤-typed equality is closer to the actual Java equality [28]
and the equality used in order-sorted logics [57].

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:9

Syntax

C ::= class definitions:

class C extends D implements I {t f ; K M}

I ::= interface I{Q} interface Defs.

K ::= C(t f) {super(f); this.f = f ; }

Q ::= t m(p, t x) method Decs.

M ::= Q{return e; } method Defs.

e, p, q ::= terms:
x variable

e.f field access

e.m(e) method invocation

new C(e) instance creation

n integer

b boolean

¬ e unary operation

e ⊕ e binary operation

let x = e in e let binding

⊕ ::= = | ∨ | ∧ binary operators

v ::= n | b | new C(v) values

N ::= C | I nominal types

w, u ::= ⊤ | int | bool | N base types

s, t, r ::= {ν : w|p} refinement types

Sub-nominal Base-subtyping Subtyping
N1 <:n N2 w <:b u Γ ⊢ s <: t

N <:n N

N1 <:n N2 N2 <:n N3

N1 <:n N3

CT (C) = class C extends D ...{...}
C <:n D

CT (C) = class C ... implements I{...}

C <:n Ii

w <:b ⊤

int <:b int

bool <:b bool

N1 <:n N2

N1 <:b N2

w <:b u Γ, ν : w ⊨ p ⇒ q

Γ ⊢ {ν : w|p} <: {ν : u|q}
(R-Subtyping)

Figure 3 Syntax and subtyping.

Besides the extension, RFJ simplifies FJ in two aspects, widely adopted in prior studies [55,
10, 42, 27]. First, casts are not included since they complicate the calculus and are orthogonal
with refinement types, the focus of this work. Second, a single parameter is used instead of
an arbitrary number of parameters. However, this does not impact the expressiveness of RFJ,
because empty parameters can be modeled by a single parameter that is not referred to in
the method body, while multiple parameters can be modeled by declaring a class containing
those parameters and using it as a single parameter.

Finally, we introduce several remarkable notations. Firstly, note that we use e, p, and q

to range over RFJ terms. The latter symbols (p and q) are used to range over RFJ terms
that have bool type (also called formulas). Secondly, we use two shorthands for refinement
types: we omit the binders declaration in {ν : w|p} when the binder is just ν (a reserved
name), and we short {w|p} as w when p is true.

Subtyping. The right half of Figure 3 explicates RFJ’s subtyping relations, featuring
sub-nominal (<:n), subtyping amongst base types (<:b), and refinement subtyping (<:).
The sub-nominal relation is a straightforward extension of FJ’s subclassing to account for
interface types. The base subtyping relation is also standard. Refinment subtyping combines
base subtyping and logical implication (defined in Section 3.3). It is parameterized by type
environments with the usual construction, which is used for logical implication. Note that

ECOOP 2024

39:10 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

when checking logical implication, we use the type of the sub-base-type (w) instead of the
super-base-type (u) for ν, to make refinement subtyping transitive. In the remaining of this
paper, we short refinement subtyping as subtyping when there is no ambiguity.

Field lookup fields(C) = t f

fields(Object) = •

CT (C) = class C exds D imps I{t f ; K M}
fields(D) = s g

fields(C) = s g, t f

C-method-type mtype(m, C) = p → x : t → r

CT (C) = class C exds D imps I{t f ; K M}
r m (p, t x) {return e; } ∈ M

mtype(m, C) = p → x : t → r

CT (C) = class C exds D imps I{t f ; K M}
m is not defined in M

mtype(m, C) = mtype(m, D)

C-method-body mbody(m, C) = (x, e)

CT (C) = class C exds D imps I{t f ; K M}
r m (p, t x) {return e; } ∈ M

mbody(m, C) = (x, e)

CT (C) = class C exds D imps I{t f ; K M}
m is not defined in M

mbody(m, C) = mbody(m, D)

Override override(m, C, D, p → x : t → r)
mtype(m, D) = q → x : t′ → r′

=⇒ (∅ ⊢ {C|q} <: {C|p}

∅, this : {C|q} ⊢ t′ <: t

∅, this : {C|q}, x : t′ ⊢ r <: r′)

override(m, C, D, p → x : t → r)

I-method-type mtypei(m, I) = p → x : t → r

IT (I) = interface I{Q}

r m (p, t x) ∈ Q

mtypei(m, I) = p → x : t → r

Implement implement(m, C, I, p → x : t → r)
mtype(m, C) = q → x : t′ → r′

∅ ⊢ {C|p} <: {C|q}

∅, this : {C|p} ⊢ t <: t′

∅, this : {C|p}, x : t ⊢ r′ <: r

implement(m, C, I, p → x : t → r)

Interface implemented C ▷ I

IT (I) = interface I{r m(p, t x)}

implement(m, C, I, p → x : t → r)

C ▷ I

Figure 4 Auxiliary definitions.

Auxiliary Definitions. The lookup functions, override relation, and interface implemented
relation are shown in Figure 4. The lookup functions should be pretty self-explanatory, only
to note that although we use → in mtype and mtypei, it is not arrow type constructor, but
an intuitive type signature representation, as in original FJ [11]. We explain the override
and interface implemented relations subsequently.

In RFJ, the criterion for valid method override differs from FJ’s strict type match-
ing, utilizing co/contra-variance instead. This is encapsulated by the override relation
(override(m, C, D, p → x : t → r)), which ensures the class C properly overrides the method
m of the class D (if m does exists in D), encoding three constraints:
1. For this, we have co-variance in the base type (the base type is C, which is a subtype of

D) and contra-variance in the refinement (as the ∅ ⊢ {C|q} <: {C|p} states). Using co-
variance for the base type is widely known as a seminal work [11] on method overriding has
pointed out: the parameters that determine the selection must be co-variantly overridden
(i.e., have a lesser type). However, since method selection relies solely on the base type
(note that mbody considers the class but disregards refinement), we must require the
refinement to be more general (contra-variant) to ensure compatibility.

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:11

2. The contra-variance on the parameter type and co-variance on the return type (ignore
the subtyping context for now) follow the function subtyping principle [52].

3. Since the parameter type refinement may refer to this, while the return type refinement
may refer to this and the parameter, their co/contra-variance must be assessed under a
type environment with those variables, as the definition shows. Here, note that we opt
for “narrower” subtype contexts: we assess contra-variance (t′ <: t) within the context of
{C|q} rather than {C|p}, and likewise for co-variance (r <: r′), within {C|q} and t′. This
decision renders the overriding rule more permissive: subtyping in a narrower context is
easier to satisfy, as the narrowing property of subtyping shows (c.f., Section 4.3.1).

Finally, note that we simplify the presentation by assuming identical parameter names (x);
otherwise, they should be renamed to a fresh variable for checking return type co-variance.

For valid interface implementations, C ▷ I confirms that a class properly implements all
methods declared in the interface. The implementation relation (implement(m, C, I, p →
x : t → r) is a dual of the override relation, ensuring that the method m of interface I with
type signature p → x : t → r, is overridden in the class C. Note that the formalization is
different from override in that, override only requires the subtyping constraints to hold if
the method m exist, while implement requires the method m does exist, and satisfies the
subtyping constraints.

3.2 Operational Semantics

Evaluation e⇝ e′

fields(C) = t f

(new C(v)).fi ⇝ vi

mbody(m, C) = (x, e0)
(new C(v)).m(v)

⇝ [this 7→ (new C(v)); x 7→ v]e0

e0 ⇝ e′
0

e0.f ⇝ e′
0.f

e0 ⇝ e′
0

e0.m(e)⇝ e′
0.m(e)

e⇝ e′

v0.m(e)⇝ v0.m(e′)

ei ⇝ e′
i

new C(v, ei, e)
⇝ new C(v, e′

i, e)

e⇝ e′

¬e⇝ ¬e′

¬b⇝ ¬p(b)
e0 ⇝ e′

0

e0 ⊕ e⇝ e′
0 ⊕ e

e⇝ e′

v0 ⊕ e⇝ v0 ⊕ e′

⊕ ok v0 v1

v0 ⊕ v1 ⇝ ⊕p(v0, v1)
e0 ⇝ e′

0

let x = e0 in e⇝ let x = e′
0 in e

let x = v0 in e⇝ [x 7→ v0]e
Valid binary operation ⊕ ok v0 v1

∧ ok b0 b1

∨ ok b0 b1

= ok v0 v1

Figure 5 Small-step semantics of RFJ.

ECOOP 2024

39:12 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Now, we present the operational semantics of RFJ. We first present the small-step
semantics, defined in Figure 5. The semantics aligns with that of FJ4, diverging only to
accommodate the integration of new constructs – specifically, primitive operations and let
bindings. The standard semantics of the boolean operations – including negation, conjunction,
and disjunction, are preserved. The only thing worth noting is the equality operation, which
is defined for every pair of values. RFJ equality is defined as the syntactic equality (i.e., we
view values as finite term trees [22]: two values are equal iff their corresponding trees are
identical).

Multi-step and Big-step Semantics. We define the multi-step semantics (e⇝∗ e′) as the
transitive closure of the small-step semantics, used for type soundness and logical truth later.

Despite being directly derivable from small-step semantics, multi-step semantics do not
provide a convenient induction principle, which makes the related proof intricate. To mitigate
this, we introduce big-step semantics and prove its coincidence with the multi-step semantics
terminating with a value (i.e., e ⇓ v iff e⇝∗ v). The big-step semantics mirrors the small-step
semantics, and we omit its formal definition from this paper. We defer its comprehensive
exposition to the accompanying Coq development.

3.3 Logical Interpretation
Figure 6 defines the logical notations, which are used in the refinement subtyping relation
and logical soundness theorem. The definitions make use of closing substitutions, i.e., partial
mappings from variables to values. The application of a closing substitution θ to a term e is
defined as the function θ(e), which simply substitutes each variable-value pair sequentially.
We also lift θ(·) to refinement types: θ({ν : w|p}) = {ν : w|θ(p)}.

Logical Truth and Entailment. The core of our logical interpretation is the logical truth
relation, which means that the logical formula evaluates to true under the given interpretation
(i.e., RFJ operational semantics). Note that this relation is defined only for closed formulas
(i.e., sentences), and a closing substitution is applied whenever this relation is checked.

With the logical truth relation in hand, we can define the logical entailment relation
(Γ ⊨ p), which signifies the truth of a formula p under the type and logical constraints
encoded within Γ. It requires that for every closing substitution that satisfies Γ (formally
defined later), the closing substitution must also satisfy the formula p (i.e., make it a truth).
Similarly, we define the logical implication relation (Γ ⊨ p ⇒ q), by requiring all closing
substitution that satisfies Γ and p also satisfies q.

The logical implication relation is used for defining the subtyping relation (c.f., Section 3.1).
To illustrate, we revisit the subtype constraint (4) presented in Section 2.1, which imposes
the following constraint by the definition of subtyping and logical implication:

∀θ ∈ [[Γ]]. if ⊨ θ(ν = p1.remA()) then ⊨ θ(ν = new Ch(new Cr()))

where Γ = p1 : {An|ν = new An(new Ch(new Cr()))}, ν : Pi. There are infinite closing
substitutions satisfying Γ. In particular, p1 can only be new An(new Ch(new Cr())), but ν

can be any Pizza, since any Pizza v satisfies v ∈ [[Pi]]. However, there is only one closing
substitution that also satisfies the if condition (⊨ θ(ν = p1.remA())), i.e., the one whose
ν is new Ch(new Cr()). This closing substitution also satisfies the then condition. Thus,
Constraint (4) holds under the logical interpretation.

4 To be specific, we align with the semantics in the textbook presentation [52], which diverges from the
nondeterministic beta-reduction semantics in the original paper [30].

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:13

θ ::= θ, x : v| ∅
Closing Substitution

∅(e) = e

(θ, x : v)(e) = [x 7→ v]θ(e)

Logical Truth ⊨ p

p⇝∗ true

⊨ p

Logical Entailment Γ ⊨ p

∀θ ∈ [[Γ]]. ⊨ θ(p)
Γ ⊨ p

Logical Implication Γ ⊨ p ⇒ q

∀θ ∈ [[Γ]].if ⊨ θ(p) then ⊨ θ(q)
Γ ⊨ p ⇒ q

Environment Denotation θ ∈ [[Γ]]

∅ ∈ [[∅]]

v ∈ [[θ(t)]] θ ∈ [[Γ]]
θ, x : v ∈ [[Γ, x : t]]

Type Denotation v ∈ [[t]]

⊨ [ν 7→ n]p
n ∈ [[{ν : int|p}]]

(DenInt)

⊨ [ν 7→ b]p
b ∈ [[{ν : bool|p}]]

(DenBool)

⊨ [ν 7→ new C(v)]p
fields(C) = t f v ∈ [[[this 7→ new C(v)]t]]

new C(v) ∈ [[{ν : C|p}]]
(DenClass)

w <:b u v ∈ [[{ν : w|p}]]
v ∈ [[{ν : u|p}]]

(Upcast)

Figure 6 Logical interpretation of RFJ.

Type and Environment Denotation. Now, we formally define what is meant by “a substi-
tution satisfies a type environment.” This relation is defined by the environment denotation
relation θ ∈ [[Γ]], which is a natural lift of the type denotation relation (v ∈ [[t]]), determining
if a value is denoted by a type. Type denotation is defined by casing on the structure of the
value, with an additional upcast rule for upcasting the base type. Basically, type denotation
relation (v ∈ [[{u|p}]]) encapsulates two facets: the value v belongs to the base type u, and it
satisfies the refinement p. DenClass additionally requires the denotation for the fields of
the class, to justify the nominal nature of class types.

3.4 Typing
In this section, we define the typing relations in RFJ, as shown in Figure 7. We first define
the term typing, depending on the type well-formedness relation, which in turn depends
on the FJ term typing. After the term typing is defined, we define the method typing
(M ok in C), class typing (C ok), and interface typing (I ok).

Well-formedness. For a refinement type {ν : w|p} to be deemed well-formed under en-
vironment Γ, denoted as Γ ⊢w {ν : w|p}, the refinement p must have bool type under the
type environment. In the definition, ⊢F is the FJ term typing relation, which is used to
check if the refinement does have bool type. Note that we can not use the RFJ term typing
here, since it depends on the type well-formedness relation. We do not define the FJ term
typing separately. It is a standard textbook relation [52] and can be obtained by removing

ECOOP 2024

39:14 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Type well-formedness Γ ⊢w t

⌊Γ⌋, ν : w ⊢F p : bool

Γ ⊢w {ν : w|p}

RFJ Typing Γ ⊢ e : t

self({ν : w|p}, e) = {ν : w|p ∧ ν = e}

x : t ∈ Γ Γ ⊢w t

Γ ⊢ x : self(t, x)
(T-Var)

Γ ⊢ n : { int |ν = n}
(T-Int)

Γ ⊢ b : { bool |ν = b}
(T-Bool)

Γ ⊢ e0 : { C0 |p} fields(C0) = t f

Γ ⊢ e0.fi : self([this 7→ e0] ti, e0.fi)
(T-Field)

mtype(m, C0) = q → x : t → r

Γ ⊢ e0 : { C0 |p} Γ ⊢ {C0|p} <: {C0|q}
Γ ⊢ e : s Γ ⊢ s <: [this 7→ e0] t

Γ ⊢ e0.m(e) : self([this 7→ e0; x 7→ e] r, e0.m(e))
(T-Invok)

mtypei(m, I0) = q → x : t → r

Γ ⊢ e0 : {I0|p} Γ ⊢ {I0|p} <: {I0|q}
Γ ⊢ e : s Γ ⊢ s <: [this 7→ e0]t

Γ ⊢ e0.m(e) : self([this 7→ e0; x 7→ e]r, e0.m(e))
(T-InvokI)

fields(C) = t f

Γ ⊢ e : s Γ ⊢ s <: [this 7→ new C(e)] t

Γ ⊢ new C(e) : self(C, new C(e))
(T-New)

Γ ⊢ e0 : s0 Γ, x : s0 ⊢ e : t Γ ⊢w t

Γ ⊢ let x = e0 in e : self(t, let x = e0 in e)
(T-Let)

Γ ⊢ e0 : s0

¬t
.= x : t0 → r Γ ⊢ s0 <: t0

Γ ⊢ ¬e0 : [x 7→ e0] r
(T-Unop)

⊕t
.= x : t0 → y : t → r

Γ ⊢ e0 : s0 Γ ⊢ s0 <: t0

Γ ⊢ e : s Γ ⊢ s <: [x 7→ e0] t

Γ ⊢ e0 ⊕ e : [x 7→ e0; y 7→ e] r

(T-Binop)
Γ ⊢ e : s Γ ⊢ s <: t Γ ⊢w t

Γ ⊢ e : t
(T-Sub)

method typing M ok in C

CT (C) = class C exds D imps I{...}
this : {C|p}, x : t ⊢ e0 : r

override(m, C, D, p → x : t → r)
∅ ⊢w {C|p} this : {C|p} ⊢w t

this : {C|p}, x : t ⊢w r

r m(p, t x){return e0; } ok in C

class typing C ok

K = C(s g, t f){super(g); this.f = f ; }
fields(D) = s g M ok in C

∅, this : C ⊢w t C ▷ I

class C exds D imps I{t f ; K M} ok

interface method typing Q ok in I

∅ ⊢w {I|p} this : {I|p} ⊢w t

this : {I|p}, x : t ⊢w r

r m(p, t x) ok in I

interface ok I ok

Q ok in I

interface I{Q} ok

Figure 7 Typing relations of RFJ.

the gray parts of RFJ typing. Since the FJ term typing is only defined for base types
and base type environments, we must use an erase function (⌊·⌋) to convert refinement type
environments to base type environments. The erase function is naturally lifted from the
erase function of refinement types (i.e., ⌊{ν : w|p}⌋ = w).

Based on the type well-formedness, we define the well-formedness of type environment:

(1) ⊢w ∅ (2) ⊢w Γ , Γ ⊢w t , x /∈ Γ =⇒ ⊢w Γ, x : t

which simply asserts that all types are well-formed and all variables are unique.

Term Typing. RFJ term typing is an extension of FJ term typing, replacing base types with
refinement types and using refinement subtyping for subtyping. Notably, RFJ term typing
utilizes an explicit subsumption rule (T-Sub), which deviates from the implicit algorithmic
subtyping commonly attributed to FJ. This deviation is not borne from necessity but is
rather a methodological choice, aimed at simplifying the meta-theoretical development.

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:15

The types of primitive operations (used in T-Unop and T-Binop) follow their semantics:

¬t
.= x : bool → {bool|v = ¬x}

∧t
.= x : bool → y : bool → {bool|v = x ∧ y}

∨t
.= x : bool → y : bool → {bool|v = x ∨ y}

=t
.= x : ⊤ → y : ⊤ → {bool|v = x = y}

RFJ typing utilizes several mechanisms absent in FJ typing, i.e., well-formedness checking,
type substitution, and general selfification. We briefly discuss those non-standard mechanisms.
1. Well-formedness checking. Three rules (T-Var, T-Let, and T-Sub) include type well-

formedness checking in their premises, guaranteeing the inference of only well-formed
types, which is required to establish various lemmas (e.g., the structural properties).

2. Type substitution. Refinement types can refer to visible variables. For example, the type
of a field f can be {ν : int|ν = this.h}, specifying it equal to the h field of the object. For
those refinements to refer to proper variables, we must substitute these references with
actual terms during typing. Continuing the example, suppose we are typing a.f , the type
should be updated to {ν : int|ν = a.h}, by substituting this to a, as T-Field rule shows.

3. General selfification. Each rule except the subsumption rule and the rules for primitives
(T-Int, T-Bool, T-Unop and T-Binop) is companioned with a selfification operation
(self), ensuring the terms are always recorded in their types. selfification is not required
for subsumption, as it is performed in prior derivations, and primitive rules inherently
equate terms in their types (e.g., T-Int assigns {int|ν = 2} to 2).

Method, Class Typing and Interface Typing. The method, class, and interface typings
are relations to identifying valid methods, classes, and interfaces. RFJ’s approach to these
typings closely mirrors that of FJ, with the addition of well-formedness checks for method
and field types. Additionally, the class typing judgment is extended with a checking C ▷ I

that ensures the interfaces are properly implemented.

Termination. Finally, we address one tricky issue in typing: termination. As a Turing-
complete language, the well-typedness of RFJ terms does not ensure the termination of
its evaluation. However, non-terminating evaluations can lead to unsound refinements.
For instance, ∅ ⊢ new C().m() : {bool|0 = 1} is derivable, where C.m is defined as bool
m(){return this.m()};. Consequently, our logical soundness theorem is strictly applicable to
terms that are both well-typed and terminating (defined below). In practice, a termination
checker should be equipped to ensure the termination where logical soundness is concerned.

∀θ ∈ [[Γ]].θ(e)⇝∗ v

Γ ↓ e
terminating

Main Theorems. The following theorems link typing to semantics and logical entailment.

▶ Theorem 1 (Type Soundness). If ∅ ⊢ e : t and e⇝∗ e′, then e′ is a value or ∃e′′.e′ ⇝ e′′.

▶ Theorem 2 (Logical Soundness). If Γ ⊢ e : {ν : w|p}, ⊢w Γ, and Γ ↓ e , then Γ ⊨ [ν 7→ e]p.

The major steps to establish those theorems are given in the next section.

ECOOP 2024

39:16 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

4 Meta-theoretical Results

We argue the proposed system possesses type soundness and logical soundness. The proof
of type soundness follows the “Type Soundness = Preservation + Progress” approach [70].
The approach to logical soundness is different from that of previous refinement type systems,
as their approach does not apply to RFJ (c.f., Section 2.3). Our proof approach can
be summarized as “Logical Soundness = Preservation + Typing Denotation + Closing
Substitution.” We give an overview of the critical lemmas and theorems used in the proof
and the dependency relation in Figure 8. In the remainder of this section, we provide a brief
overview of the proof. For a detailed exposition, please refer to the Coq development.

Basic Properties

Typing Lemmas

Logical Lemmas

Progress Preservation Clo. Sub.

Substitution

Weakening

Narrowing

Type Soundness Logical Soundness

Typ. Den. Den. Typ.
Type-sub. Inv.

Eva. Inv. Exactness

Exact. Eva.

Figure 8 Proof Overview. Arrows signify the dependencies among lemmas and theorems.

4.1 Basic Properties
▶ Lemma 3 (Evaluation Invariant). If e⇝ e′, then [x 7→ e]p⇝∗ v ⇔ [x 7→ e′]p⇝∗ v.

This lemma asserts that evaluation remains unaffected by the substitution with pre-or-post-
evaluation terms, as the next lemma shows. Since the multi-step evaluation (⇝∗) does not
give a very useful induction principle, we first prove this lemma using the big-step semantics,
then link the lemma back to multi-step semantics via the correspondence between big-step
and multi-step semantics (i.e., e ⇓ v ⇔ e⇝∗ v).

▶ Lemma 4 (Type-substitution Invariant). If e ⇝ e′, then Γ ⊢ [x 7→ e]t <: [x 7→ e′]t and
Γ ⊢ [x 7→ e′]t <: [x 7→ e]t.

This lemma states the coherence of types under substitution with pre-or-post-evaluation
terms. This lemma is important to prove the preservation lemma. Since subtyping relies
eventually on evaluation, the primary challenge of proving this lemma hinges on Lemma 3.

▶ Lemma 5 (Exactness). If Γ ⊢ e : t then Γ ⊢ e : self(t, e).

This lemma states what we mean by “term information is always recorded”: for any well-typed
term e, we can always construct a typing where the term is selfified (recorded in the type).
Apart from being used for Lemma 6, this lemma is important for the substitution lemma
(Lemma 10).

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:17

▶ Lemma 6 (Exactness Evaluation). If e⇝ e′ and Γ ⊢ e′ : t then Γ ⊢ e′ : self(t, e).

This lemma ensures the term after evaluation (e′) can have the type selfified with the term
before evaluation (e), which is often needed to prove the preservation of typing throughout
evaluation steps. This lemma requires the exactness lemma, as shown above.

4.2 Logical Lemmas
▶ Lemma 7 (Typing Denotation). If Γ ⊢ v : t, then ∀θ ∈ JΓK.v ∈ [[θ(t)]].

This lemma states that typing implies denotation. It can be proved by induction on the
typing judgment. This lemma is important for the substitution lemma (Lemma 10) and is a
milestone for logical soundness, as we discuss in Section 4.5.

▶ Lemma 8 (Denotation Typing). If v ∈ [[t]] and ∅ ⊢w t, then ∅ ⊢ v : t.

This lemma states that denotation implies typing, which is crucial for Lemma 14. The basic
proof idea is to first construct a “ground type” for v: ∅ ⊢ v : {ν : w|ν = v}, where w is the
inherent base type of the value (int for n, bool for b, and C for new C(...)), and then link
the “ground type” to t by ∅ ⊢ {ν : w|ν = v} <: t, which holds due to v ∈ [[t]].

4.3 Typing Lemmas
4.3.1 Structural Lemmas for Typing
As usual, we establish structural properties (weakening, narrowing and substitution) for RFJ
typing. Since typing relies on subtyping which in turn, relies on logical implication, we need
those structural properties for subtyping and logical implication, too.

▶ Lemma 9 (Narrowing). for any variable x not in Γ and Γ′:
1. If Γ, x : r, Γ′ ⊢ p ⇒ q and Γ ⊢ r′ <: r, then Γ, x : r′, Γ′ ⊢ p ⇒ q.
2. If Γ, x : r, Γ′ ⊢ s <: t and Γ ⊢ r′ <: r, then Γ, x : r′, Γ′ ⊢ s <: t.
3. If Γ, x : r, Γ′ ⊢ e : t and Γ ⊢ r′ <: r, then Γ, x : r′, Γ′ ⊢ e : t.
The first narrowing lemma can be proved by observing that a denotation θ′ of Γ, x : r′, Γ′ is
always a denotation of Γ, x : r, Γ′. Using the first lemma, the remaining two are easy.

▶ Lemma 10 (Substitution). for any distinct variables x and y not in Γ and Γ′:
1. If Γ, x : rx, y : ry, Γ′ ⊨ p ⇒ q and Γ ⊢ vx : rx, Γ ⊢ vy : [x 7→ vx]ry, then Γ, [x 7→ vx; y 7→

vy]Γ′ ⊨ [x 7→ vx; y 7→ vy]p ⇒ [x 7→ vx; y 7→ vy]q.
2. If Γ, x : r, y : ry, Γ′ ⊢ s <: t and Γ ⊢ vx : rx, Γ ⊢ vy : [x 7→ vx]ry, then Γ, [x 7→ vx; y 7→

vy]Γ′ ⊢ [x 7→ vx; y 7→ vy]s <: [x 7→ vx; y 7→ vy]t.
3. If Γ, x : r, y : ry, Γ′ ⊢ e : t and Γ ⊢ vx : rx, Γ ⊢ vy : [x 7→ vx]ry, then Γ, [x 7→ vx; y 7→

vy]Γ′ ⊢ [x 7→ vx; y 7→ vy]e : [x 7→ vx; y 7→ vy]t.
Since RFJ has double substitution operations in method invocation (we must substitute for
this and the parameter), we need double substitution lemmas. The first substitution lemma
follows from the observation that a denotation of Γ, x : rx, y : ry, Γ′ can be constructed from
a denotation of Γ, [x 7→ vx; y 7→ vy]Γ′ by adding x : vx and y : vy. The core step of this
construction is to prove that vx is indeed a denotation of rx and vy is indeed a denotation of
[x 7→ vx]ry, utilizing Lemma 7. Using the first lemma, the second lemma is easy. The third
lemma can be proved by induction on typing. The T-Var case requires the exactness lemma
(Lemma 5) and weakening lemma (shown below). The other cases are easy.

ECOOP 2024

39:18 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

▶ Lemma 11 (Weakening). for any variable x not in Γ, Γ′, p, q, s and t:
1. If Γ, Γ′ ⊨ p ⇒ q, then Γ, x : r, Γ′ ⊨ p ⇒ q.
2. If Γ, Γ′ ⊢ s <: t, then Γ, x : r, Γ′ ⊢ s <: t.
3. If Γ, Γ′ ⊢ e : t, then Γ, x : r, Γ′ ⊢ e : t.
The first weakening lemma can be proved by observing that we can always construct a
denotation θ′ of Γ, Γ′ from a denotation θ of Γ, x : t, Γ′, by removing the x entry from θ.
Since x is fresh, removing it from θ does not impact the validity of this implication. With
the first weakening lemma in hand, the remaining two are straightforward.

4.3.2 Progress & Preservation
▶ Lemma 12 (Progress). If ∅ ⊢ e : t then e is a value or ∃e′.e⇝ e′.

The proof is done by induction on typing, following the standard approach of FJ.

▶ Lemma 13 (Preservation). If ∅ ⊢ e : t and e⇝ e′, then ∅ ⊢ e′ : t.

The proof is done by induction on the typing judgment and using the structural lemmas
for substitutions and environment narrowings. To argue the preservation in the presence of
general selfification and type substitution, Lemma 6 and Lemma 4 must also be utilized.

4.3.3 Closing Substitution
▶ Lemma 14 (Closing Substitution). If Γ ⊢ e : t, then ∀θ ∈ JΓK.∅ ⊢ θ(e) : θ(t).

The closing substitution lemma bears a similarity with the substitution lemma (Lemma 10).
They both concern the invariance of typing under substitution. The closing substitution
lemma can be proved by induction on typing. Most of the cases are standard, except for the
variable case, which requires proving ∅ ⊢ θ(x) : θ(t) under Γ ⊢ x : t. Since θ is a denotation
of Γ, we know that x must be in θ and θ(x) ∈ [[θ(t)]]. Thus, Lemma 8 can be applied to
construct the expected typing judgment.

4.4 Type Soundness
To improve the readability, we reproduce Type Soundness (Theorem 1) below:

▶ Corollary 15 (Type Soundness). If ∅ ⊢ e : t and e⇝∗ e′, then e′ is a value or ∃e′′.e′ ⇝ e′′.

Type soundness is an easy corollary of progress and preservation [70].

4.5 Logical Soundness
To improve readability, we reproduce the Logical Soundness (Theorem 2) below:

▶ Corollary 16 (Logical Soundness). If Γ ⊢ e : {ν : w|p}, ⊢w Γ, and Γ ↓ e , then Γ ⊨ [ν 7→ e]p.

The key to proving logical soundness is to observe that it can be reduced to closed logical
soundness (shown below) if we can derive a corresponding closed typing judgment given any
typing judgment. This is facilitated by the closing substitution lemma (Lemma 14).

▶ Theorem 17 (Closed Logical Soundness). If ∅ ⊢ e : {ν : w|p} and ↓ e, then ⊨ [ν 7→ e]p.

Closed logical soundness is a natural consequence of preservation and typing denotation.
Supposing e evaluates to v, the proof skeleton is that:
1. Due to the preservation lemma, ∅ ⊢ v : {ν : w|p}.
2. Due to the typing denotation lemma, v ∈ [[{ν : w|p}]], thus ⊨ [ν 7→ v]p.
3. Lastly, we can apply the evaluation invariant lemma to get ⊨ [ν 7→ e]p.

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:19

5 Logical Encoding: LFJ

Following the standard procedure as outlined in, e.g., [6], we convert RFJ to an algorithmic
bidirectional type system. The only judgment whose algorithmic property was unexplored
was the class-based refinement subtyping. In this section, we present an encoding of RFJ
to an order-sorted first-order logic [57], named LFJ, which gives a convenient axiomatic
approach to determine RFJ refinement subtyping by invoking logical decision procedures.

5.1 Language
Figure 9 presents the syntax of LFJ. The constant symbols (c) are for RFJ values. We
assume each RFJ value has a corresponding LFJ constant symbol. The function symbols (g)
are for methods (Nm), field selectors (Cf), class constructors (Ccr), and primitive operations
in RFJ. We associate methods with nominal names and field selectors with class names, for
attributing more precise semantics (detailed later). Note that interfaces have no fields. The
terms in LFJ do not contain quantification: they are viewed as implicitly quantified and a
universal quantification would be added to the outermost to close them. Sorts in LFJ consist
of ⊤, Int, Bool, and N . The sorts have an apparent correspondence with RFJ base types.
We denote |w| as the translation of a base type w to its sort, and |t| as the translation from
a refinement type t to its sort. The subsort relation ⊑ is straightforwardly translated from
the base-subtyping relation. The signatures of functions are also translated from their RFJ
type definitions, e.g., the signature of Cm is C → |t| → |r| if mtype(m, C) = p → x : t → r.

Syntax

e, p ::= terms:
x variable

c constant

g(e) apply

let x = e in e let binding

g ::= Nm | Cf | Ccr | ¬ | ⊕ functions

Sorts

s ::= ⊤ | Int | Bool | N sorts

|w| = match w with base translation

|⊤ ⇒ ⊤|int ⇒ Int|bool ⇒ Bool|N ⇒ N

|t| =|⌊t⌋| type translation

⊑ .= | <:b | subsort

Term Translation

|x| =x

|v| =cv

|¬e0| =¬(|e0|)
|e0 ⊕ e1| = ⊕ (|e0|, |e1|)

|new C(e)| =Ccr(|e|)
|e0.m(e1)| =δ(e0)m(|e0|, |e1|)

|e0.f | =δ(e0)f (|e0|)
|let x = e0 in e| =let x = |e0| in |e|

Environment Translation

|∅| =true

|Γ, x : {ν : u|p}| =|Γ| ∧ |[ν 7→ x]p|

Figure 9 LFJ syntax and translation.

Translation. The translation from RFJ terms and type environments to LFJ terms is mostly
straightforward. The only thing to note is the association of type information during the
translation of method invocations and field accesses, marked brown in Figure 9. This is
facilitated by the typeof function: δ(e) is the static type of expression e. δ can be constructed
during type checking. The association of type information is important for two purposes (we
take method invocations as an example, but the argument also applies to field accesses):

ECOOP 2024

39:20 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Disambiguation. Suppose the method m is defined by two classes C and D, which share no
common superclass except Object. If methods are not associated with nominal types, the
LFJ function representation of m would necessitate an assumed domain of Object for its
first parameter, rendering the model for the function inherently partial, because not all
Object has an m implementation. Incorporating type information ensures model totality
for the first parameter by guaranteeing the existence of at least one implementation of
m; such existence is verified by static type checking. This totality guarantee plays an
important role in the intended model (c.f., Section 5.2).
Axiomatization. The aim of LFJ is to provide an axiomatization of its intended model
(c.f., Section 5.3). By associating type information, the axiomatization can be crafted
with greater specificity and accuracy.

5.2 Intended Model

Domain:

GI =G⊤ = ∅

GC ={C(ds)| ds ∈ D|t|}, fs(C) = t f

GInt =Z
GBool ={T, F }

Ds ={d|d ∈ Gs′ ∧ s′ ⊑ s}

Functions:

¬, ∧, ∨ = normal

Ccr(d) =C(d)

Cfi (C′(d)) =di, C′ ⊑ C and fs(C) = t f

Nm(this, x) =

{
[[mb(m, C)]](this, x) if this = C(d)
... proceeds for all C ⊑ N

Figure 10 The intended model of LFJ. fs is short for fields.

In this section, we delineate the construction of an intended model A for LFJ, given in
Figure 10. This model bears similarities with several denotational semantics of class-based
languages [58, 12], especially in the usage of conditional functions as models of method
invocations, whereas we work with order-sorted logic, different from those semantics.

Domains. Each sort s is associated with a dynamic domain Gs and a static domain Ds.
The dynamic domain of a sort is a set containing all values inherently belonging to the sort.
The dynamic domains of ⊤ and I (i.e., interfaces) are both ∅. GInt and GBool are standard.
GC is the finite term trees [22] generated in a sort-correct manner (i.e., each field is drawn
from the static domain of the corresponding sort). The static domain (or simply, domain)
for a sort s aggregates the dynamic domains of its subsorts, as in standard OS-FOL [57].

Functions. The model adopts conventional interpretations for equality and boolean operat-
ors. The intended functions for constructors and fields are the constructing and destructing
functions for term trees. The intended function of Nm is just a conditional function composed
of the denotations of the implementation functions conditioned by the first parameter (i.e.,
the receiving object). We do not detail the denotations in this paper: because we require
termination for well-typed RFJ programs, those denotations are total on their domains and
can be constructed using standard fixed-point techniques as shown in, e.g, [46].

Algorithmic Subtyping. With the intended model A in hand, we now define the algorithmic
subtyping relation:

w <:b u A ⊨L ∀x.|Γ| ∧ |p| ⇒ |q|
Γ ⊢ {ν : w|p} <:L {ν : u|q}

A-Subtyping

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:21

where ⊨L is the normal semantics of OS-FOL [57]. We assume all variables in Γ are distinct
and are not ν. We use a universal quantification ∀x to close the formula, where x is the
variables used in Γ, p and q.

We establish the soundness of the algorithmic subtyping with respect to the refinement
subtyping, which is a corollary of the semantic equivalence and translation-substitution
distributivity. Semantic equivalence states the true sentences in RFJ logical interpretation
are also true in A, and vice versa. Translation-substitution distributivity states it does not
matter whether we apply a closing substitution prior to or after the translation.

▶ Proposition 18 (Semantic Equivalence). A ⊨L |p| ⇔ ⊨ p

▶ Proposition 19 (Translation-substitution Distributivity). A ⊨L |θ|(|p|) ⇔ A ⊨L |θ(p)|

▶ Corollary 20. If Γ ⊢ s <:L t, then Γ ⊢ s <: t.

Proof. We give a brief proof sketch of Corollary 20 here. Suppose s is {ν : w|p} and t is
{ν : u|q}. To prove Γ ⊢ {ν : w|p} <: {ν : u|q}, we need to prove ∀θ ∈ [[Γ, ν : w]]. if ⊨
θ(p) then ⊨ θ(q). By Γ ⊢ s <:L t, we have A ⊨L ∀x.|Γ| ∧ |p| ⇒ |q|, which gives us
∀σ.A ⊨L σ(|Γ| ∧ |p|) ⇒ A ⊨L σ(|q|) (by the semantics of OS-FOL). Pick σ as |θ|, due to
Propositions 18 and 19, we have A ⊨L |θ|(|Γ| ∧ |p|), which let us deduce A ⊨L |θ|(|q|). Using
Propositions 18 and 19 again, but in the reverse direction, we have ⊨ θ(q). ◀

5.3 Theory
To utilize the capability of deductive reasoning for checking subtyping algorithmically, we
axiomatize the intended model A by a theory TJ . TJ includes the usual theory of Equality,
Uninterpreted Functions, and Linear Integer Arithmetic (EUFLIA) [1]. Besides, it is equipped
with axioms for Nm, Cf , and Ccr. We specify and explain them in this section.

(1) generate :↠↠↠ ∀x : N.
∨

C⊑N

∃y : |fs(C)t|.x = C(y)

(2) inject :↠↠↠ ∀x : |fs(C)t|, y : |t|. Ccr(x) = Ccr(y) ⇒ x = y

(3) discriminate : C ̸= D ↠↠↠ ∀x : |fs(C)t|, y : |fs(D)t|. Ccr(x) ̸= Dcr(y)
(4) access : fs(C) = f t, C ′ ⊑ C ↠↠↠ ∀x : |fs(C ′)t|. Cfi

(C ′
cr(x)) = xi

(5) invoke : mt(m, N)x = tx, C ⊑ N, mb(m, C) = (x, e)↠↠↠
∀o : N, x : |tx|, d : |fs(C)t|. o = C(d) ⇒ Nm(o, x) = |e|

The above listing gives five axiom schemata. The symbol ↠↠↠ means “instantiate”: if the
condition on the left is satisfied, one can instantiate an axiom following the schema on the
right. The symbols fs, mb, fst, and mtx short for fields, mbody, the type part of fields,
and the parameter part of mtype (or mtypei for interfaces), respectively.

The axiom schemata are straightforward given the intended model A. However, they may
not be as efficient as we want. To address this, we add two derivable properties as axioms, to
speed up deductive reasoning. The first covers cases where the branches of a method direct to
the same implementation. We have seen such a case in our example: Anchovy.remA has two
branches that direct to the same implementation. We call these methods like Anchovy.remA

final methods. Final methods have the same implementation on all branches, and there is no
need to actually do the branching. We axiomatize their semantics using the axiom schema
(6) shown below. An instantiation of (6) gives the property p3 we discussed in Section 2.2.
The second covers cases where a method is called on a subclass of the declared type. For

ECOOP 2024

39:22 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

example, suppose we have ν = PiremA(x) and x : An, and we want to prove ν = AnremA(x).
With basic axioms (1) through (5) above, we have to first deduce the fact that x can only be
An(...) or Ma(...), then analyze the semantics of PiremA and AnremA for those two cases,
and finally deduce that the equality holds for both cases. However, this is mostly redundant:
PiremA and AnremA are the same function if the first argument is known to be an An. We
axiomatize this fact using schema (7) shown below. For certain cases involving comparing
method-call results, axiom schema (7) can speed up reasoning significantly.
(6) final : mt(m, C)x = tx, C.m final, mb(m, C) = (x, e), ↠↠↠ ∀o : C, x : |tx|. Cm(o, x) = |e|
(7) override : N ′ ⊑ N, mt(m, N ′)x = tx ↠↠↠ ∀o : N ′, x : |tx|. Nm(o, x) = N ′

m(o, x)

Encoding into Many-sorted Logic. The aforementioned axioms are defined in OS-FOL and
should be used in order-sorted deductive reasoning. Unfortunately, we are not aware of any
SMT solver that supports order-sortedness. Thus, we translate the axioms into many-sorted
logic following the strategy suggested by Leino [38]. The translation of primitive data types
is straightforward. For objects, a unified sort Object is designated. We then introduce a sort
Nominal to encompass all nominal entities, i.e., classes and interfaces in the targeting RFJ
program. We also declare the sub-nominal relation between those entities. The association
of nominal information with objects is facilitated through the Tag function, which relates
objects with their nominal identifiers. The sort requirements become sub-nominal checkings
on tags, e.g., instead of ∀x : C. p(x), we use ∀x : Object. sub-nominal(Tag(x), C) ⇒ p(x).

The direct encoding of the sort ⊤ into many-sorted logic is beyond our current scope,
primarily influencing the polymorphic nature of equality. Nevertheless, given the uniform
Object sort for all object values, object equality is still ⊤-typed essentially, circumventing
potential limitations posed by the absence of a direct ⊤ sort.

6 Mechanization and Implementation

6.1 Coq Mechanization
We mechanize the meta-theory of RFJ in Coq. There are two major technical challenges
around the mechanization. (1) Binders. Handling binders is cumbersome and complex [3],
especially considering the number of binder structures present in RFJ (e.g., methods, let-
bindings, and refinement types). To address this issue, we adopt the locally nameless
representation [13]. Although the locally nameless representation has been widely used in
mechanizing functional languages [8, 29, 13], to the best of our knowledge, ours is the first
mechanization of a class-based language that utilizes this technique. (2) Nested Inductive
Types. The presence of nested inductive types within our definitions poses a significant
challenge; that is, the default induction principles generated by Coq fell short when proving
the most critical properties. To mitigate this issue, we specify the custom induction principles
for a range of inductive definitions (e.g., terms, typing judgments, and big-step semantics),
following the classical methodology [15].

We briefly overview the structure of the mechanization, which contains about 15K lines
of Coq code:
1. Definitions (3K): language definitions as presented in Section 3.
2. Lemmas (11K):

a. Basic Lemmas (5K): miscellaneous lemmas concerning basic operations, semantics,
and class/interface definitions (some of which are listed in Section 4.1).

b. Logical Lemmas (2K): lemmas concerning the logical interpretation (c.f., Section 4.2).
c. Typing Lemmas (4K): basic, structural, and crucial lemmas of typing (c.f., Section 4.3).

3. Theorems (1K): type and logical soundness theorems (c.f., Sections 4.4 and 4.5).

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:23

6.2 Python Implementation
We implement a refinement type checker for RFJ. The implementation is written in roughly
2,000 lines of Python code, with Z3 [19] as the SMT backend. In addition to all features of
RFJ, the type checker also supports a form of if-then-else following the standard practice [32],
to increase the scope of the evaluation. The concrete syntax supported in the implementation
is a subset of Python with static types. We opt for Python just to reuse its parser and editor
supports. RFJ can be implemented for any other class-based language.

To test the type checker, we handcraft a test suite, including all the major examples that
do not use type-test/downcast or imperative features from a Java textbook [23], as well as
some interesting examples inspired by previous work [65]. Each example is paired with some
non-trivial properties. In total, there are 14 examples with about 1,500 LOC, covering all
important features of RFJ. We list several representative examples in Table 1.

Table 1 Several representative examples.

Name Features LOC Properties
pizza classes, overrides 135 remA_noinc_price, remA_idempotent
pizza visitor visitors, upcasts 110 noObj_after_rem, noObj_after_effective_sub
tree visitor interfaces 152 height_ge_root
geometry factory methods 184 origin_in_shape
list data structures 125 contains_weakening, inserts_preserve_sortedness
λ calculus data structures 71 size_positive, substitution_nodec_size
stlc meta-theories 307 map_extend_included, typing_weakening

Type-checking each example took under 5 seconds, on an Apple M1 machine.

7 Discussion

In this section, we discuss specific designs of RFJ in greater detail.

Type Substitution vs ANF and Existential types. In the realm of refinement type systems,
the conventional strategy often involves leveraging ANF [32, 37] or existential types [47, 34, 8]
to maintain the logic of refinements within a decidable framework, such as EUFLIA [9].
Our approach, however, consciously eschews these mechanisms and sticks to simple type
substitution for three compelling reasons. (1) From the theoretical perspective. We want to
argue the soundness of our system within a broader, more generalized framework: all RFJ
programs expressed in ANF are inherently valid within our system, while the converse does
not hold. Thus, our results perfectly apply to the condition where ANF is required (e.g., a
particular implementation may perform ANF transformation before type checking). (2) From
the algorithmic perspective. Recent advances [41, 44] have shown a complete algorithm for
formula validity under a user-specified theory exists, which is exactly what we need to perform
algorithmic subtyping checking. The fact that all our examples are checked costing only a
little time also evidences that a reasonably efficient algorithm exists even if the logic falls
outside the familiar decidable fragment. (3) From the pragmatical perspective. Eliminating
ANF and existential types significantly lowers the barrier between the programmer’s intent
and the underlying type system, simplifying the debugging process. To further lower the
barrier, our typing rules are carefully formulated without using any implicit environment
extension (e.g., the Field and Invoke rules in [47]). The only cases that would extend the
typing and subtyping environment are Let and method typing, thereby maintaining a clear
correspondence between the code and its type-level representation.

ECOOP 2024

39:24 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Axiomatization vs. Reflection. As pointed out by prior work [66], there are two kinds of
methodologies to support user-defined functions in refinement type systems: axiomatization
and reflection. Axiomatization articulates the semantics of user-defined functions through
logical axioms, an approach we adopt and have elaborated on in Section 5.3. In contrast,
reflection directly incorporates the function definition into the return type’s refinement (e.g.,
the return type of Anchovy.remA can be declared as {ν : Pizza|ν = this.p.remA()} to reflect
its definition). In our system, programmers can utilize reflection by manually specifying the
method return type (reflection annotation could also be provided to automate this process).
Those reflections are always valid thanks to general reflection, which ensures that terms are
always recorded in refinements. Notably, reflection offers an alternative to the final constraint
of the invoke axiom schema (c.f. Section 5.3): one can reflect the definition of an overriding
method and the overridden method simultaneously, as long as the return types of those
methods obey the co-variance principle.

The major difference between reflection and axiomatization resides in the instantiation
strategy of method definitions. With reflection, instantiations of the reflected functions are
performed within the type system, either by the programmer or an algorithm (e.g., PLE
in [66]). With axiomatization, instantiation is delegated to the SMT solver, although special
mechanisms such as trigger/fuel [2, 40] are needed to keep the process in control. Currently,
no special algorithm or mechanism for reflection or axiomatization is employed in RFJ.
However, we identify the comparison of these two methodologies in RFJ, especially in the
context of a reflection instantiation algorithm and more advanced type system features (e.g.,
occurrence typing and union/intersection types) as important future work.

8 Related Work

This work intersects three research topics: class-based refinement type systems, mechanization
of refinement types and class-based languages, and SMT-based reasoning in program verifiers.

Class-based Refinement Type Systems. Class is an important and time-honored abstraction
in object-oriented programming [16, 59, 25, 31], with numerous pieces of literature devoted [69,
60, 5, 55] to its extensions. In particular, many works have focused on class-based refinement
type systems. For example, Nystrom et al. [47] formalize core X10 as a refinement type system.
However, they focus only on the functional aspects. Vekris et al. [67] introduce a refinement
type calculus that not only conducts immutability analysis but also integrates union and
intersection types, with the caveat that only immutable fields are subject to refinement.
Campos et al. [10] combine refinement types with class-based linear types, further increasing
the support for imperative features. Kuncak et al. [56] present qualified type, a form of
refinement type, and offer an in-depth discussion on qualifier inference. Gamboa et al. [26]
address the practical challenges of incorporating refinement types into existing class-based
systems by proposing a design approach to usability.

All the aforementioned work limits their refinements to well-established decidable SMT
theories (e.g., EUFLIA), and thus have significant issues concerning soundness and ex-
pressiveness, as we have explained before. Meanwhile, although there are systems [33, 63]
exploring the support for more expressive refinements, their approach is mainly pragmatic
(i.e., they both rely on external verification tools to support the expressive refinements),
which complicates the analysis of their meta-theoretical properties further.

This work addresses the expressiveness and soundness issues in a fundamental way, by
providing an expressive and mechanized calculus grounded in Featherweight Java. We
anticipate that extensions such as generics and imperative features could be seamlessly
integrated into our framework, prospects we reserve for future exploration.

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:25

Mechanization of Refinement Types and Class-based Languages. Several pieces of recent
work have been dedicated to the mechanization of refinement types. Lehmann et al. [37]
formalize a refinement type system in Coq. Their logical interpretation is axiomatized via a
few basic requirements. This interpretation, however, leaves the semantics of logical formulas
nebulous. Meanwhile, their proof focuses solely on the closed logical soundness, rather than
general logical soundness. Wang et al. [68] mechanize in Coq a calculus that uses refinement
types for complexity analysis, defining logical interpretations through denotational semantics
that link refinements to Coq definitions. This method restricts the scope of terms that can be
utilized as refinements due to the limitation of denotational semantics. Borkowski et al. [8]
mechanizes a polymorphic refinement type system in Coq. They use an axiomatized logical
interpretation for type soundness, and an operational-semantics-based logical interpretation
for logical soundness. Hamza et al. [29] formalize a polymorphic refinement type system
in Coq. They also employ an operational-semantics-based logical interpretation (named
reduciblity in the original paper). Our work draws inspiration from the two works on
using operational-semantics-based logical interpretations, yet our proof diverges notably,
especially given the inapplicability of logical relation techniques in our context. Moreover,
our framework includes several special mechanisms such as general selfification and nominal
subtyping, extending beyond the capabilities of the systems devised by those authors. Chen’s
work [14] in Agda takes a unique route by integrating Agda to define a denotational semantics
for refinements. However, the algorithmic properties are complicated, due to the reliance
on Agda’s logic. Ghalayini et al. [26] opt for a categorical-theoretical perspective for logical
interpretation in their mechanized refinement type system in Lean [18], contrasting with the
semantic logical interpretation in our work.

Apart from the abovementioned differences, our research sets itself apart by focusing on
a class-based calculus. This foundation renders our model particularly adept at mirroring
object-oriented programming paradigms, a facet not directly addressed by the aforementioned
mechanizations. There are also several mechanizations of class-based languages [42, 20, 17].
However, neither of them supports refinement types.

SMT-based Deductive Reasoning in Program Verifiers. Since its inception, SMT solvers
have played a pivotal role in the automated verification of functional properties. Simplify [21]
and ESC/Java [24] are among the earliest examples. Subsequently, a wave of advanced
program verifiers like Dafny [39], Leon/Stainless [7, 29], F* [61] and Liquid Haskell [65, 66]
have garnered attention in both academia and industry. Among those systems, Dafny
and Leon/Stainless all support some object-oriented constructs. However, they lack RFJ’s
support for nominal subtyping and method inheritance. Recent scholarly work has delved
into the foundational aspects of SMT-based deductive reasoning, focusing especially on the
completeness problem [44, 41, 45]. However, the arguments of those papers are all set upon
many-sorted logic, diverging from the order-sorted logic in our study.

On the other hand, SMT solvers have also been extensively used in verifying heap
properties. The modeling and verification of those properties (typically in separation
logic [48, 49]) are, in general, beyond the ability of vanilla SMT theories [43]. Despite
these challenges, research has successfully identified certain significant fragments yielding
effective decision procedures falling into the SMT realm [43, 54, 53]. Currently, RFJ is a
purely functional calculus. However, we believe that it is promising to incorporate those
advancements to support the reasoning of heaps, considering imperative features are ambitious
in class-based object-oriented languages [50].

ECOOP 2024

39:26 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

9 Conclusion and Future Work

This paper introduces Refinement Featherweight Java (RFJ), advancing class-based refinement
types with expressive refinements for comprehensive logical constraints. We mechanize RFJ
in Coq, proving its soundness rigorously. We bridge the declarative calculus and algorithmic
verification via a specified fragment in OS-FOL, making RFJ’s refinements accessible for
SMT reasoning. The deliberate choice of FJ and OS-FOL for our fundamental framework
facilitates important future extensions, such as polymorphic and imperative features, and a
thorough exploration of algorithmic properties.

References
1 Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt,

and Mattias Ulbrich, editors. Deductive software verification – the KeY book – from theory
to practice, volume 10001 of Lecture Notes in Computer Science. Springer, 2016. doi:
10.1007/978-3-319-49812-6.

2 Nada Amin, K. Rustan M. Leino, and Tiark Rompf. Computing with an SMT solver. In
Martina Seidl and Nikolai Tillmann, editors, Tests and Proofs – 8th International Conference,
TAP@STAF 2014, York, UK, July 24-25, 2014. Proceedings, volume 8570 of Lecture Notes in
Computer Science, pages 20–35. Springer, 2014. doi:10.1007/978-3-319-09099-3_2.

3 Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C.
Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve
Zdancewic. Mechanized metatheory for the masses: The poplmark challenge. In Joe Hurd
and Thomas F. Melham, editors, Theorem Proving in Higher Order Logics, 18th International
Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings, volume 3603 of
Lecture Notes in Computer Science, pages 50–65. Springer, 2005. doi:10.1007/11541868_4.

4 Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Computer Aided Verification – 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in
Computer Science, pages 171–177. Springer, 2011. doi:10.1007/978-3-642-22110-1_14.

5 Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti
Venneri. Java & lambda: a featherweight story. Log. Methods Comput. Sci., 14(3), 2018.
doi:10.23638/LMCS-14(3:17)2018.

6 Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu, and David E. Langworthy. Semantic
subtyping with an SMT solver. J. Funct. Program., 22(1):31–105, 2012. doi:10.1017/
S0956796812000032.

7 Régis Blanc, Viktor Kuncak, Etienne Kneuss, and Philippe Suter. An overview of the leon
verification system: verification by translation to recursive functions. In Proceedings of the 4th
Workshop on Scala, SCALA@ECOOP 2013, Montpellier, France, July 2, 2013, pages 1:1–1:10.
ACM, 2013. doi:10.1145/2489837.2489838.

8 Michael Borkowski, Niki Vazou, and Ranjit Jhala. Mechanizing refinement types. Proc. ACM
Program. Lang., 8(POPL):2099–2128, 2024. doi:10.1145/3632912.

9 Aaron R. Bradley and Zohar Manna. The calculus of computation – decision procedures with
applications to verification. Springer, 2007. doi:10.1007/978-3-540-74113-8.

10 Joana Campos and Vasco T. Vasconcelos. Dependent types for class-based mutable objects.
In Todd D. Millstein, editor, 32nd European Conference on Object-Oriented Programming,
ECOOP 2018, July 16-21, 2018, Amsterdam, The Netherlands, volume 109 of LIPIcs, pages
13:1–13:28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.
ECOOP.2018.13.

11 Giuseppe Castagna. Covariance and contravariance: Conflict without a cause. ACM Trans.
Program. Lang. Syst., 17(3):431–447, 1995. doi:10.1145/203095.203096.

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-09099-3_2
https://doi.org/10.1007/11541868_4
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.23638/LMCS-14(3:17)2018
https://doi.org/10.1017/S0956796812000032
https://doi.org/10.1017/S0956796812000032
https://doi.org/10.1145/2489837.2489838
https://doi.org/10.1145/3632912
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.4230/LIPICS.ECOOP.2018.13
https://doi.org/10.4230/LIPICS.ECOOP.2018.13
https://doi.org/10.1145/203095.203096

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:27

12 Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A semantics for lambda&-early: A
calculus with overloading and early binding. In Marc Bezem and Jan Friso Groote, editors,
Typed Lambda Calculi and Applications, International Conference on Typed Lambda Calculi
and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993, Proceedings,
volume 664 of Lecture Notes in Computer Science, pages 107–123. Springer, 1993. doi:
10.1007/BFB0037101.

13 Arthur Charguéraud. The locally nameless representation. J. Autom. Reason., 49(3):363–408,
2012. doi:10.1007/S10817-011-9225-2.

14 Zilin Chen. A hoare logic style refinement types formalisation. In TyDe ’22: 7th ACM
SIGPLAN International Workshop on Type-Driven Development, Ljubljana, Slovenia, 11
September 2022, pages 1–14. ACM, 2022. doi:10.1145/3546196.3550162.

15 Adam Chlipala. Certified programming with dependent types – a pragmatic introduction
to the Coq Proof Assistant. MIT Press, 2013. URL: http://mitpress.mit.edu/books/
certified-programming-dependent-types.

16 William R. Cook. On understanding data abstraction, revisited. In Shail Arora and Gary T.
Leavens, editors, Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009, October 25-29,
2009, Orlando, Florida, USA, pages 557–572. ACM, 2009. doi:10.1145/1640089.1640133.

17 Samuel da Silva Feitosa, Rodrigo Geraldo Ribeiro, and André Rauber Du Bois. Towards
an extrinsic formalization of featherweight java in agda. CLEI Electron. J., 24(3), 2021.
doi:10.19153/CLEIEJ.24.3.3.

18 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction – CADE 28
– 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021,
Proceedings, volume 12699 of Lecture Notes in Computer Science, pages 625–635. Springer,
2021. doi:10.1007/978-3-030-79876-5_37.

19 Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

20 Benjamin Delaware, William R. Cook, and Don S. Batory. Product lines of theorems. In
Cristina Videira Lopes and Kathleen Fisher, editors, Proceedings of the 26th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, pages
595–608. ACM, 2011. doi:10.1145/2048066.2048113.

21 David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005. doi:10.1145/1066100.1066102.

22 Khalil Djelloul, Thi-Bich-Hanh Dao, and Thom W. Frühwirth. Theory of finite or infinite trees
revisited. Theory Pract. Log. Program., 8(4):431–489, 2008. doi:10.1017/S1471068407003171.

23 Matthias Felleisen and Daniel P. Friedman. A little Java, a few patterns. MIT Press, 1996.
24 Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and

Raymie Stata. Extended static checking for java. In Jens Knoop and Laurie J. Hendren,
editors, Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Berlin, Germany, June 17-19, 2002, pages 234–245. ACM, 2002.
doi:10.1145/512529.512558.

25 Maurizio Gabbrielli, Simone Martini, and Saverio Giallorenzo. Programming languages:
principles and paradigms, Second Edition. Undergraduate Topics in Computer Science. Springer,
2023. doi:10.1007/978-3-031-34144-1.

26 Catarina Gamboa, Paulo Canelas, Christopher Steven Timperley, and Alcides Fonseca.
Usability-oriented design of liquid types for java. In 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, pages 1520–1532.
IEEE, 2023. doi:10.1109/ICSE48619.2023.00132.

ECOOP 2024

https://doi.org/10.1007/BFB0037101
https://doi.org/10.1007/BFB0037101
https://doi.org/10.1007/S10817-011-9225-2
https://doi.org/10.1145/3546196.3550162
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.19153/CLEIEJ.24.3.3
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2048066.2048113
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1017/S1471068407003171
https://doi.org/10.1145/512529.512558
https://doi.org/10.1007/978-3-031-34144-1
https://doi.org/10.1109/ICSE48619.2023.00132

39:28 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

27 Simon J. Gay, Nils Gesbert, António Ravara, and Vasco Thudichum Vasconcelos. Modular
session types for objects. Log. Methods Comput. Sci., 11(4), 2015. doi:10.2168/LMCS-11(4:
12)2015.

28 James Gosling, William N. Joy, and Guy L. Steele Jr. The Java Language Specification.
Addison-Wesley, 1996.

29 Jad Hamza, Nicolas Voirol, and Viktor Kuncak. System FR: formalized foundations for
the stainless verifier. Proc. ACM Program. Lang., 3(OOPSLA):166:1–166:30, 2019. doi:
10.1145/3360592.

30 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: a minimal
core calculus for java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
doi:10.1145/503502.503505.

31 Bart Jacobs. Objects and classes, co-algebraically. In Burkhard Freitag, Cliff B. Jones,
Christian Lengauer, and Hans-Jörg Schek, editors, Object Orientation with Parallelism and
Persistence (the book grow out of a Dagstuhl Seminar in April 1995), pages 83–103. Kluwer
Academic Publishers, 1995.

32 Ranjit Jhala and Niki Vazou. Refinement types: A tutorial. Found. Trends Program. Lang.,
6(3-4):159–317, 2021. doi:10.1561/2500000032.

33 Milod Kazerounian, Niki Vazou, Austin Bourgerie, Jeffrey S. Foster, and Emina Torlak.
Refinement types for ruby. In Isil Dillig and Jens Palsberg, editors, Verification, Model
Checking, and Abstract Interpretation – 19th International Conference, VMCAI 2018, Los
Angeles, CA, USA, January 7-9, 2018, Proceedings, volume 10747 of Lecture Notes in Computer
Science, pages 269–290. Springer, 2018. doi:10.1007/978-3-319-73721-8_13.

34 Kenneth L. Knowles and Cormac Flanagan. Compositional reasoning and decidable checking for
dependent contract types. In Thorsten Altenkirch and Todd D. Millstein, editors, Proceedings
of the 3rd ACM Workshop Programming Languages meets Program Verification, PLPV 2009,
Savannah, GA, USA, January 20, 2009, pages 27–38. ACM, 2009. doi:10.1145/1481848.
1481853.

35 Daniel Kroening and Ofer Strichman. Decision procedures – an algorithmic point of view.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2008. doi:10.1007/
978-3-540-74105-3.

36 Florian Lanzinger, Alexander Weigl, Mattias Ulbrich, and Werner Dietl. Scalability and
precision by combining expressive type systems and deductive verification. Proc. ACM
Program. Lang., 5(OOPSLA):1–29, 2021. doi:10.1145/3485520.

37 Nico Lehmann and Éric Tanter. Formalizing simple refinement types in coq. In 2nd Interna-
tional Workshop on Coq for Programming Languages (CoqPL’16), St. Petersburg, FL, USA,
2016.

38 K Rustan M Leino. This is boogie 2. manuscript KRML, 178(131):9, 2008.
39 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In

Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning – 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May
1, 2010, Revised Selected Papers, volume 6355 of Lecture Notes in Computer Science, pages
348–370. Springer, 2010. doi:10.1007/978-3-642-17511-4_20.

40 K. Rustan M. Leino and Clément Pit-Claudel. Trigger selection strategies to stabilize program
verifiers. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification – 28th
International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part I, volume 9779 of Lecture Notes in Computer Science, pages 361–381. Springer, 2016.
doi:10.1007/978-3-319-41528-4_20.

41 Christof Löding, P. Madhusudan, and Lucas Peña. Foundations for natural proofs and quantifier
instantiation. Proc. ACM Program. Lang., 2(POPL):10:1–10:30, 2018. doi:10.1145/3158098.

42 Julian Mackay, Hannes Mehnert, Alex Potanin, Lindsay Groves, and Nicholas Cameron.
Encoding featherweight java with assignment and immutability using the coq proof assistant.
In Wei-Ngan Chin and Aquinas Hobor, editors, Proceedings of the 14th Workshop on Formal
Techniques for Java-like Programs, FTfJP 2012, Beijing, China, June 12, 2012, pages 11–19.
ACM, 2012. doi:10.1145/2318202.2318206.

https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1145/503502.503505
https://doi.org/10.1561/2500000032
https://doi.org/10.1007/978-3-319-73721-8_13
https://doi.org/10.1145/1481848.1481853
https://doi.org/10.1145/1481848.1481853
https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.1145/3485520
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1145/3158098
https://doi.org/10.1145/2318202.2318206

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:29

43 P. Madhusudan, Gennaro Parlato, and Xiaokang Qiu. Decidable logics combining heap
structures and data. In Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, pages 611–622. ACM, 2011. doi:10.1145/1926385.1926455.

44 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan. Complete first-order reasoning
for properties of functional programs. Proc. ACM Program. Lang., 7(OOPSLA2):1063–1092,
2023. doi:10.1145/3622835.

45 Adithya Murali, Lucas Peña, Christof Löding, and P. Madhusudan. A first-order logic with
frames. ACM Trans. Program. Lang. Syst., 45(2):7:1–7:44, 2023. doi:10.1145/3583057.

46 Hanne Riis Nielson and Flemming Nielson. Semantics with applications, volume 104. Springer,
1992.

47 Nathaniel Nystrom, Vijay A. Saraswat, Jens Palsberg, and Christian Grothoff. Constrained
types for object-oriented languages. In Gail E. Harris, editor, Proceedings of the 23rd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA, pages 457–474. ACM,
2008. doi:10.1145/1449764.1449800.

48 Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007. doi:10.1016/J.TCS.2006.12.035.

49 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs that
alter data structures. In Laurent Fribourg, editor, Computer Science Logic, 15th International
Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September 10-13,
2001, Proceedings, volume 2142 of Lecture Notes in Computer Science, pages 1–19. Springer,
2001. doi:10.1007/3-540-44802-0_1.

50 Johan Östlund and Tobias Wrigstad. Welterweight java. In Jan Vitek, editor, Objects, Models,
Components, Patterns, 48th International Conference, TOOLS 2010, Málaga, Spain, June 28
- July 2, 2010. Proceedings, volume 6141 of Lecture Notes in Computer Science, pages 97–116.
Springer, 2010. doi:10.1007/978-3-642-13953-6_6.

51 Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic typing with
dependent types. In Jean-Jacques Lévy, Ernst W. Mayr, and John C. Mitchell, editors,
Exploring New Frontiers of Theoretical Informatics, IFIP 18th World Computer Congress,
TC1 3rd International Conference on Theoretical Computer Science (TCS2004), 22-27 August
2004, Toulouse, France, volume 155 of IFIP, pages 437–450. Kluwer/Springer, 2004. doi:
10.1007/1-4020-8141-3_34.

52 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
53 Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic with trees

and data. In Armin Biere and Roderick Bloem, editors, Computer Aided Verification – 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer
Science, pages 711–728. Springer, 2014. doi:10.1007/978-3-319-08867-9_47.

54 Andrew Reynolds, Radu Iosif, Cristina Serban, and Tim King. A decision procedure for
separation logic in SMT. In Cyrille Artho, Axel Legay, and Doron Peled, editors, Automated
Technology for Verification and Analysis – 14th International Symposium, ATVA 2016, Chiba,
Japan, October 17-20, 2016, Proceedings, volume 9938 of Lecture Notes in Computer Science,
pages 244–261, 2016. doi:10.1007/978-3-319-46520-3_16.

55 Reuben N. S. Rowe and Steffen van Bakel. Semantic types and approximation for featherweight
java. Theor. Comput. Sci., 517:34–74, 2014. doi:10.1016/J.TCS.2013.08.017.

56 Georg Stefan Schmid and Viktor Kuncak. Smt-based checking of predicate-qualified types
for scala. In Aggelos Biboudis, Manohar Jonnalagedda, Sandro Stucki, and Vlad Ureche,
editors, Proceedings of the 7th ACM SIGPLAN Symposium on Scala, SCALA@SPLASH
2016, Amsterdam, Netherlands, October 30 - November 4, 2016, pages 31–40. ACM, 2016.
doi:10.1145/2998392.2998398.

ECOOP 2024

https://doi.org/10.1145/1926385.1926455
https://doi.org/10.1145/3622835
https://doi.org/10.1145/3583057
https://doi.org/10.1145/1449764.1449800
https://doi.org/10.1016/J.TCS.2006.12.035
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-13953-6_6
https://doi.org/10.1007/1-4020-8141-3_34
https://doi.org/10.1007/1-4020-8141-3_34
https://doi.org/10.1007/978-3-319-08867-9_47
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1016/J.TCS.2013.08.017
https://doi.org/10.1145/2998392.2998398

39:30 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

57 Peter H. Schmitt and Mattias Ulbrich. Axiomatization of typed first-order logic. In Nikolaj S.
Bjørner and Frank S. de Boer, editors, FM 2015: Formal Methods – 20th International
Symposium, Oslo, Norway, June 24-26, 2015, Proceedings, volume 9109 of Lecture Notes in
Computer Science, pages 470–486. Springer, 2015. doi:10.1007/978-3-319-19249-9_29.

58 Thomas Studer. Constructive foundations for featherweight java. In Reinhard Kahle, Peter
Schroeder-Heister, and Robert F. Stärk, editors, Proof Theory in Computer Science, In-
ternational Seminar, PTCS 2001, Dagstuhl Castle, Germany, October 7-12, 2001, Proceed-
ings, volume 2183 of Lecture Notes in Computer Science, pages 202–238. Springer, 2001.
doi:10.1007/3-540-45504-3_13.

59 Ke Sun, Sheng Chen, Meng Wang, and Dan Hao. What types are needed for typing dynamic
objects? A python-based empirical study. In Chung-Kil Hur, editor, Programming Languages
and Systems – 21st Asian Symposium, APLAS 2023, Taipei, Taiwan, November 26-29, 2023,
Proceedings, volume 14405 of Lecture Notes in Computer Science, pages 24–45. Springer, 2023.
doi:10.1007/978-981-99-8311-7_2.

60 Ke Sun, Yifan Zhao, Dan Hao, and Lu Zhang. Static type recommendation for python. In
37th IEEE/ACM International Conference on Automated Software Engineering, ASE 2022,
Rochester, MI, USA, October 10-14, 2022, pages 98:1–98:13. ACM, 2022. doi:10.1145/
3551349.3561150.

61 Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,
Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
Jean Karim Zinzindohoue, and Santiago Zanella Béguelin. Dependent types and multi-
monadic effects in F. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 256–270. ACM, 2016.
doi:10.1145/2837614.2837655.

62 William W. Tait. Intensional interpretations of functionals of finite type I. J. Symb. Log.,
32(2):198–212, 1967. doi:10.2307/2271658.

63 Emina Torlak and Rastislav Bodík. Growing solver-aided languages with rosette. In Antony L.
Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM Symposium on New Ideas
in Programming and Reflections on Software, Onward! 2013, part of SPLASH ’13, Indianapolis,
IN, USA, October 26-31, 2013, pages 135–152. ACM, 2013. doi:10.1145/2509578.2509586.

64 Steffen van Bakel and Maribel Fernández. Normalization, approximation, and semantics
for combinator systems. Theor. Comput. Sci., 290(1):975–1019, 2003. doi:10.1016/
S0304-3975(02)00548-0.

65 Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones.
Refinement types for haskell. In Johan Jeuring and Manuel M. T. Chakravarty, editors,
Proceedings of the 19th ACM SIGPLAN international conference on Functional programming,
Gothenburg, Sweden, September 1-3, 2014, pages 269–282. ACM, 2014. doi:10.1145/2628136.
2628161.

66 Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip
Wadler, and Ranjit Jhala. Refinement reflection: complete verification with SMT. Proc. ACM
Program. Lang., 2(POPL):53:1–53:31, 2018. doi:10.1145/3158141.

67 Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement types for typescript.
In Chandra Krintz and Emery D. Berger, editors, Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara,
CA, USA, June 13-17, 2016, pages 310–325. ACM, 2016. doi:10.1145/2908080.2908110.

68 Peng Wang, Di Wang, and Adam Chlipala. Timl: a functional language for practical complexity
analysis with invariants. Proc. ACM Program. Lang., 1(OOPSLA):79:1–79:26, 2017. doi:
10.1145/3133903.

69 Stefan Wehr, Ralf Lämmel, and Peter Thiemann. Javagi : Generalized interfaces for java. In
Erik Ernst, editor, ECOOP 2007 – Object-Oriented Programming, 21st European Conference,
Berlin, Germany, July 30 – August 3, 2007, Proceedings, volume 4609 of Lecture Notes in
Computer Science, pages 347–372. Springer, 2007. doi:10.1007/978-3-540-73589-2_17.

70 Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, 1994. doi:10.1006/INCO.1994.1093.

https://doi.org/10.1007/978-3-319-19249-9_29
https://doi.org/10.1007/3-540-45504-3_13
https://doi.org/10.1007/978-981-99-8311-7_2
https://doi.org/10.1145/3551349.3561150
https://doi.org/10.1145/3551349.3561150
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.2307/2271658
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1016/S0304-3975(02)00548-0
https://doi.org/10.1016/S0304-3975(02)00548-0
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/2908080.2908110
https://doi.org/10.1145/3133903
https://doi.org/10.1145/3133903
https://doi.org/10.1007/978-3-540-73589-2_17
https://doi.org/10.1006/INCO.1994.1093

	1 Introduction
	2 Overview
	2.1 RFJ by Example
	2.2 Algorithmic Verification
	2.3 Meta-theoretical Arguments
	2.3.1 Soundness Theorems
	2.3.2 Challenges

	3 Declarative Calculus: RFJ
	3.1 Syntax and Lookup Functions
	3.2 Operational Semantics
	3.3 Logical Interpretation
	3.4 Typing

	4 Meta-theoretical Results
	4.1 Basic Properties
	4.2 Logical Lemmas
	4.3 Typing Lemmas
	4.3.1 Structural Lemmas for Typing
	4.3.2 Progress & Preservation
	4.3.3 Closing Substitution

	4.4 Type Soundness
	4.5 Logical Soundness

	5 Logical Encoding: LFJ
	5.1 Language
	5.2 Intended Model
	5.3 Theory

	6 Mechanization and Implementation
	6.1 Coq Mechanization
	6.2 Python Implementation

	7 Discussion
	8 Related Work
	9 Conclusion and Future Work

