
Dynamically Generating Callback Summaries for
Enhancing Static Analysis
Steven Arzt #

Fraunhofer SIT | ATHENE – National Research Center for Applied Cybersecurity,
Darmstadt, Germany

Marc Miltenberger #

Fraunhofer SIT | ATHENE – National Research Center for Applied Cybersecurity,
Darmstadt, Germany

Julius Näumann #

TU Darmstadt | ATHENE – National Research Center for Applied Cybersecurity,
Darmstadt, Germany

Abstract
Interprocedural static analyses require a complete and precise callgraph. Since third-party libraries
are responsible for large portions of the code of an app, a substantial fraction of the effort in
callgraph generation is therefore spent on the library code for each app. For analyses that are
oblivious to the inner workings of a library and only require the user code to be processed, the
library can be replaced with a summary that allows to reconstruct the callbacks from library code
back to user code. To improve performance, we propose the automatic generation and use of precise
pre-computed callgraph summaries for commonly used libraries. Reflective method calls within
libraries and callback-driven APIs pose further challenges for generating precise callgraphs using
static analysis. Pre-computed summaries can also help analyses avoid these challenges.

We present CGMiner, an approach for automatically generating callgraph models for library
code. It dynamically observes sample apps that use one or more particular target libraries. As we
show, CGMiner yields more than 94% of correct edges, whereas existing work only achieves around
33% correct edges. CGMiner avoids the high false positive rate of existing tools. We show that
CGMiner integrated into FlowDroid uncovers 40 % more data flows than our baseline without
callback summaries.

2012 ACM Subject Classification Software and its engineering → Dynamic analysis

Keywords and phrases dynamic analysis, callback detection, java, android

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.4

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.2
Software (Source Code): https://github.com/Fraunhofer-SIT/DynamicCallbackSummaries/

archived at swh:1:dir:774fc1c198c94da21f9d9dc21f9a9721c9ac233c

Funding This research work has been funded by the German Federal Ministry of Education and
Research and the Hessian Min- istry of Higher Education, Research, Science and the Arts within
their joint support of the National Research Center for Applied Cybersecurity ATHENE.

1 Introduction
Static analyses are commonly used for checking software for security vulnerabilities, quality
defects, privacy leaks, and other properties. The callgraph is a core data structure of
interprocedural static analysis. It encodes which statements in the code call which methods.
When an analysis encounters a method call, it queries the callgraph for the set of callees
in which to continue the analysis. If the callgraph misses edges, the respective callees are
not considered and the analysis is incomplete. If the callgraph, on the other hand, contains
spurious edges, irrelevant subtrees in the callgraph must be processed. This may not only
impact performance and scalability, but may also lead to false positives.

V1.1

A
rt
ifa

cts Available

ECOOP

© Steven Arzt, Marc Miltenberger, and Julius Näumann;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 4; pp. 4:1–4:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Steven.Arzt@sit.fraunhofer.de
https://orcid.org/0000-0002-5807-9431
mailto:Marc.Miltenberger@sit.fraunhofer.de
https://orcid.org/0000-0002-3806-0522
mailto:Julius.Naeumann@tu-darmstadt.de
https://orcid.org/0000-0002-5162-3334
https://doi.org/10.4230/LIPIcs.ECOOP.2024.4
https://doi.org/10.4230/DARTS.10.2.2
https://doi.org/10.4230/DARTS.10.2.2
https://github.com/Fraunhofer-SIT/DynamicCallbackSummaries/
https://archive.softwareheritage.org/swh:1:dir:774fc1c198c94da21f9d9dc21f9a9721c9ac233c;origin=https://github.com/Fraunhofer-SIT/ECOOP2024-DynamicCallbackSummaries;visit=swh:1:snp:1337542ad7ff0dc037a7be087584e5602d09382f;anchor=swh:1:rev:2b236099e63269496b7d2420c8964f002dfb70ec
https://doi.org/10.4230/DARTS.10.2.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Dynamically Generating Callback Summaries for Enhancing Static Analysis

Computing a complete and precise callgraph is non-trivial due to virtual dispatch and
exceptional control flow. Approaches such as SPARK [16] already handle polymorphism
well. SPARK builds upon the Escape Analysis in Soot [14] to handle exceptional control flow
precisely. Nevertheless, several problems remain unsolved. Firstly, software commonly [17]
uses third-party libraries, which can contribute significant amounts of code. Large code
bases, in turn, pose scalability challenges for callgraph generation. Secondly, libraries can be
complex and, e.g., use reflective method calls, contain asynchronous control flow, or manage
callbacks in collections. A callgraph analysis must be able to handle all these language
features correctly. Some libraries such as the popular OKHTTP3 library have separate
callbacks for successful and failed requests. The failure callback is only executed when an
exception is thrown within the library code. An approach without support for exceptional
flows misses these callbacks. In practice, existing callgraph analyses apply approximations
that lead to spurious or missing edges, or are too complex to scale to large programs.

We observe that, from the perspective of most client analyses, only the interface of a
library is relevant. Callgraph edges inside the library only need to be computed as a means
to obtain edges that cross the library’s interface through callbacks. We therefore argue that
these API edges can be summarized once as a one-time effort. Only the information which
API calls trigger which callbacks must be retained. Intuitively, the summary is a list of
such target callbacks. When a client analysis encounters a call to an API method for which
a summary is available, it plugs in the summary instead of analyzing the library. More
precisely, it adds a callgraph edge to each callback described in the summary. A similar
reasoning has already been applied to the data flow behavior of libraries [2].

Manually assembling these summaries is inefficient, since many libraries use callbacks.
Furthermore, each new version of each library would need to be studied to reflect the changes
made to the library API in the model. Consequently, the generation of these callback models
must be automated. Static approaches [8] share the shortcomings of static callgraph analyses
and require coarse approximations, leading to false positives as we show.

Our approach CGMiner is based on dynamic analysis instead. CGMiner takes a set of
programs that use libraries of interest. It statically instruments these programs such that
each call to a library function reports dynamic callgraph data to an analyzer. CGMiner
executes all instrumented programs and combines the resulting execution traces into a callback
summary for the respective library. It abstracts away from all program-specific behavior
and reduces the summaries to edges between methods in the public interface of the library,
omitting calls within the library itself leading eventually to the execution of a callback. If a
library, for example, takes a callback as the first argument on an API call and then invokes a
method on the object passed as the first argument, there is an edge between this API method
and its first parameter. This edge exists regardless of which program uses the API and
what the concrete callback implementation is. CGMiner captures such abstract callback
semantics on the API level. With its focus on dynamic analysis, CGMiner avoids many of
the common challenges in static analysis such as precisely modeling reflective method calls
and complex collection types.

In this work, we focus on Android apps. On Android, libraries are compiled into the
apps that use them, rather than being shared between apps. Consequently, a wide variety
of libraries is used in apps [26], and handling them efficiently is vital for each app analysis.
Furthermore, almost 2 million apps are available in the official Play Store. Since for each
library, CGMiner requires a sample set of apps that use the respective library, such a
freely accessible data source is beneficial. In addition, Android is widely used for dealing
with sensitive data and functions, making client analyses that depend on callgraphs for,

S. Arzt, M. Miltenberger, and J. Näumann 4:3

e.g., finding data leaks, highly relevant in practice. We show that CGMiner can identify
efficiently complex callback edges. While other approaches lead to true positive rates of
more than 33% with an additional 20% of edges being incomplete, CGMiner achieves more
than 91% correct edges. Note that CGMiner focuses on control flow and is intended to
be combined with analysis-specific summaries such as StubDroid [2] for data flow analysis.
Even with a simple integration approach, CGMiner summaries lead to 28% more correct
flows being discovered than without callback summaries.

The remainder of this paper is structured as follows. Section 2 contains some background
information about Android. Section 3 shows a motivating example. Section 4 explains the
CGMiner approach. We describe implementation details in Section 5, before explaining
CGMiner’s limitations in Section 6. Our empirical research questions and evaluation data
is contained in Section 7. Finally, we present related work in Section 8 and conclude in
Section 9.

2 Android Background

Android applications are written predominately in Java and Kotlin. The compiler translate
this code into Dalvik byte code, which is similar to Java byte code used by the JVM. After
compilation, the Dalvik byte code is written into one or multiple classes.dex files. The dex
files as well as the necessary resource files of the app are packaged in an APK file, which is
ultimately just a ZIP file. Android apps may use system classes from the java(x) and android
packages. The implementation of these system classes are shared between different apps and
reside on the device. On the host computer, the Android SDK installs a stubbed version of
this Android system classes, which only contains the method signatures and class hierarchies
of the actual implementation. This stub jar is used to link against during compilation, but
does not contain the actual implementation code. In contrast to the system implementation,
all other third party libraries and their transitive dependencies are compiled to Dalvik byte
code as well and placed alongside the application code in the same dex files, so that each
application is self-contained.

3 Running Example

Listing 1 shows a program that uses a simplified API for communicating with a remote server
once the app’s main activity is launched. The library is a slightly adapted version of the
OKHttp library. For the sake of brevity, we omit the implementation of the library and
instead explain it using the code of the example program.

The library’s main class HttpLibrary is responsible for communicating with the server.
Each request is represented by an instance of the HttpTask class. Each task is scheduled for
execution using the schedule method. Once all requests are scheduled, the program invokes
the runAll method to run them against the remote server. Once a task is complete, i.e.,
the server has responded with results or an error, the respective callback is invoked. The
implementation of the error callback is omitted in Listing 1 for brevity.

For demonstration purposes, we assume the following simplified implementation of the
library. The constructor of HttpTask stores the callback that it receives as a parameter
into a field in HttpTask. The schedule method adds the HttpTask to a list. Still, for not
freezing the UI thread, the library is multi-threaded and performs the http request in the
background. The runAll method spawns a worker thread that regularly polls the scheduled

ECOOP 2024

4:4 Dynamically Generating Callback Summaries for Enhancing Static Analysis

Listing 1 Motivating Example Code.
1 ICompleted onComplete = new ICompleted (){
2 @Override
3 public void onCallback(String results){
4 Log.i("Web", "Results:␣" + results);
5 }
6 };
7 IHttpFailed onFailed = ...;
8 HttpTask task = new HttpTask("/api/do", onComplete , onFailed);
9 HttpLibrary lib = new HttpLibrary("http :// www.company.com");

10 lib.schedule(task);
11 lib.runAll ();

tasks, takes the task at the top of the worklist, and processes it. The worker thread sends
the requests to the server, collects the results, and then invokes the callback. The callbacks
are invoked on a different thread than the original call to schedule or runAll.

Callgraph algorithms traditionally do not model the delayed behavior of the callback
and instead insert an edge from the call site that causes the callback to be executed to
the callback implementation, e.g., from Thread.start to the run() method of the thread.
CGMiner adopts the same behavior. Its callback summaries model an edge from runAll to
the onCallback method of both completion and error callback. In other words, our model
assumes that runAll immediately invokes both callbacks. The challenge in this example,
which is not handled by existing approaches, arises because the callbacks are not in the scope
of the call site for runAll. Instead, the summary generator must automatically infer the link
to the HttpTask instances that were scheduled, and then to the actual callbacks that were
passed to the constructor of the HttpTask.

Existing approaches such as EdgeMiner [8] model the callgraph edges in Line 8. This
reduces the complexity of the example, because the callback is not passed across multiple
classes. On the other hand, such a model is incompatible with a flow-sensitive analysis.
To illustrate this, we change the example slightly as shown in Listing 2. For this example,
suppose that the source method call in Line 9 returns sensitive information. Further assume
that the parameter of the sink method (called in Line 4) is sent to a remote server. This
example uses the field data to save the sensitive information, which is leaked in the callback
method.

Consider we are running a flow-sensitive taint analysis such as FlowDroid [5] to detect
this data flow from source to sink. FlowDroid starts at the source [4] statement in Line 9
and advances forward through the control-flow graph until it reaches a sink. It reports a
leak when the sink is reached with a tainted parameter. During the propagation, it keeps
track of all variables that may contain sensitive information (“tainted“).

Notice that the callback is passed to the library in Line 8, before the source method is
called. During execution, the call to runAll in Line 12 invokes the callback which leaks the
data. Nonetheless, EdgeMiner inserts an edge at Line 8 to the onCallback method. Because
the call to source happens after the callback registration, FlowDroid does not encounter
the sink statement when using the EdgeMiner summary. Consequently, the leak is missed.
In this example, FlowDroid needs an edge from the runAll call in Line 12 to the callback
method in order to reach the sink and thus detect the dataflow.

S. Arzt, M. Miltenberger, and J. Näumann 4:5

Listing 2 Flow-Sensitivity Example.
1 ICompleted onComplete = new ICompleted (){
2 @Override
3 public void onCallback(String results){
4 sink(data);
5 }
6 };
7 IHttpFailed = ...;
8 HttpTask task = new HttpTask("/api/do", onComplete , onFailed);
9 data = source ();

10 HttpLibrary lib = new HttpLibrary("http :// www.company.com");
11 lib.schedule(task);
12 lib.runAll ();

Such approximations as in existing work have even greater negative consequences. In yet
another modification of the example, imagine that the runAll method never calls onFailed,
but throws an exception instead. The onFailed callback only exists for a second method
tryRun that calls onFailed in the case of an error and that never throws an exception. In
that case, EdgeMiner would still model the edge from the HttpTask constructor call in Line 8
to onFailed. This edge is clearly invalid if the program never calls tryRun. The EdgeMiner
model does not contain any notion of runAll and tryRun and, hence, cannot make this
distinction.

4 Approach

To avoid the inherent challenges of static analysis described in Section 1, CGMiner relies
on dynamic analysis for inferring the callgraph summaries on libraries. Figure 1 shows the
architecture of the analysis. CGMiner takes as input the original APK file and a list of
classes that correspond to libraries. These apps are then instrumented with three analyses: a
general-purpose dynamic callgraph analysis, a general-purpose dynamic taint analysis and a
specialized callback analysis into the app. Since libraries (except for the Android Framework)
are part of the application code in Android, library code can be instrumented as well.

App
Instrumenter

Library List

Instrumented
App

Runner

Device

Analyzer

• Dynamic Callgraph
• Dynamic Taints
• Callback Events

Callback
Summaries

Figure 1 CGMiner Approach. The app is instrumented and then executed on a device, with
runtime events being routed to the callgraph analysis. Events include dynamic callgraph, dynamic
taint tracking, and specific callback analysis events.

The instrumented app is passed to the runner, which installs it on a device, and establishes
a communication channel with the app. It forwards all events sent by the analysis code
injected into the app to the analyzer. The analyzer is responsible for processing the events

ECOOP 2024

4:6 Dynamically Generating Callback Summaries for Enhancing Static Analysis

and for inferring the callback summaries while the app is running. In the remainder of this
section, we explain how the analyzer derives the callback summaries and how the different
components (dynamic callgraph, dynamic taint analysis, callback analyzer) interact.

4.1 General Idea
CGMiner needs to identify which statements trigger which callbacks. The app is instru-
mented with event tracing that reports back to the analysis computer whenever a potential
callback method is invoked on the phone. When such a method is invoked, CGMiner uses
a combination of dynamic control flow analysis and dynamic taint tracking to identify all
API calls between the point where the callback class was originally passed to the library
(constructor of HttpTask in the example) and the callback method.

When arriving inside a callback, CGMiner must find the API call that triggered the
callback (method runAll in the example). Intuitively, this can be done by searching backwards
through the dynamic control flow graph. This approach, however, does not identify the
necessary state changes to the HttpLibrary object. Recall from Section 3 that the runAll
method would not invoke any callback unless the callback has previously been registered
with the library using the schedule method. In other words, the inner state of the HttpTask
object must be changed before calling runAll. More generally, the callback is passed through
several objects along the way, and CGMiner must identify the API calls that lead to
these state changes, i.e., that copy the callback around. In the example, the constructor of
HttpTask assigns the callback to a field and the schedule method adds the task to the list,
which is finally processed by runAll (see Section 3). We call such methods transfer methods.
The user code must call this method for the callback to be registered, and it must therefore
be part of the callback summary.

Intuitively, when an API method stores a callback in a field or collection inside of some
object, the transfer method is the last API call that transitively lead to the assignment. To
find the relevant assignments, CGMiner relies on dynamic data flow analysis. CGMiner
taints each callback object when it is first passed to an API call (constructor of HttpTask in
the example), i.e., each callback object is considered a source for the dynamic taint tracking
algorithm. It then follows this taint through the library, until it arrives at the this object
inside a callback method. The start of a potential callback method is considered a sink.

The taint state on the device is always mirrored to the analysis computer. When the
analyzer observes that a callback has been called, it retrieves the taint paths, i.e., all
statements that have passed the taint from one object to another on the path between the
callback registration and the invocation of the callback method. Whenever a new object is
tainted, e.g., through an assignment to a field, CGMiner searches the dynamic callgraph
backwards to find the API call that triggered this taint transfer, i.e., the methods that user
code must call before runAll.

4.2 Overview of the Approach
We define a border edge as an edge that is from library code to user code or vice versa. In
other words, the caller is in library code and the callee is user code (i.e., a callback), or the
caller is in user code and the callee is library code (traditional call to a library method).
Edges in the first case, i.e., callbacks, are denoted out edges, whereas edges in the second
case, i.e., normal library calls, are in edges. Figure 2 shows an abbreviated control flow
graph for Listing 1. It further shows the in and out edges for the motivating sample. In
the example, the HttpTask and HttpLibary constructor calls and the calls to schedule and

S. Arzt, M. Miltenberger, and J. Näumann 4:7

runAll are in edges, because these calls in the application code directly call library methods.
The runAll method iterates over all scheduled tasks, which were registered in the schedule
method, and calls a library-internal run method. The run method calls the onComplete on
the callback. Thus, this method call constitutes an out edge.

Figure 2 Shows in and out edges for Listing 1. in edges are regular arrows. The out edge is
denoted by a white tip.

As a pre-analysis, CGMiner statically over-approximates the potential callback imple-
mentations, i.e., potential targets of out edges. We call these methods callback candidates.
Afterwards, CGMiner statically approximates a set of all possible callback classes. In
Listing 1, the constructor HttpTask may register a callback. All classes that (transitively)
implement the interfaces ICompleted and IHttpFailed are potential callbacks. Specifically,
we have the anonymous inner class implementing ICompleted and the (omitted) correspond-
ing inner class for IHttpFailed. These classes override the interface methods, in this case
only onCallback. These overriden methods represent the potential targets of out edges.
These steps for identifying callback registration sites and potential callbacks are static
over-approximations, which are used to bootstrap the dynamic analysis that follows later.

The dynamic analysis is used to determine which callback candidates are reached and to
perform dynamic taint tracking in order to track which API calls (such as the schedule and
the constructor calls in Listing 1) are necessary.

At the start of each callback candidate, we statically instrument a call to a method we
call reporting method. This reporting method sends an event with information about the
triggered callback to the analyzer. Because irrelevant callback candidates or spurious callback
implementations will later not be reached during dynamic analysis, they will not become
false positives. We provide details on how potential callbacks are identified in Section 4.3.

When a callback is invoked at runtime and the respective callback event is triggered, the
analyzer uses the dynamic callgraph to find the corresponding in edge. The call site at the in
edge represents the API method that triggers the callback. Note that the analyzer skips the
library-internal calls between in and out edge. The in and out edges are trivial to identify
based on the classes in which the respective calls and their corresponding callees are located.
In the example from Listing 1, the analyzer deduces that a call to HttpLibrary.runAll
invokes IHttpCompleted.onCallback. Further, CGMiner uses dynamic taint tracking to
find the transfer methods. Therefore, the statements at the beginning of all potential callback

ECOOP 2024

4:8 Dynamically Generating Callback Summaries for Enhancing Static Analysis

methods are marked as sinks for the dynamic taint analysis. To build the list of sources,
CGMiner first collects all API sites that receive instances of potential callback classes as
arguments. These API calls are then registered as sources in the dynamic taint analysis such
that the respective potential callback classes, i.e., the call arguments, are tracked at runtime.
Note that this approach is an over-approximation. When generating the callback summaries,
CGMiner only relies on the taint paths that were actually taken at runtime. Therefore,
marking too many classes as potential callbacks or registering too many APIs as sources
does not reduce CGMiner’s precision. CGMiner assigns an unique ID number to each
taint source in order to distinguish different sources.

Transfer methods do not need to operate on the original heap object. The schedule
method in Listing 1 never touches the callback object. It operates on the HttpTask that
encapsulates the callback. An approach based on object identity alone would miss the
schedule method. Dynamic taint tracking, on the other hand, can taint the HttpTask
object when it encounters the assignment inside the constructor of HttpTask. Recall that
this constructor receives the callback and stores it in a field. Afterwards, the dynamic
taint tracker follows the HttpTask object as well. Similar reasoning must be applied for the
schedule method, which stores the HttpTask object in a list, i.e., the list must be tainted
as well.

With this taint tracking information, CGMiner can identify all border edges by looking
at the taint transfers. Recall that the first statement inside the callback is a sink. CGMiner
can query the taint analysis for the corresponding source and all statements in between at
which taint was transferred to fields or collections (details in Section 4.5). For each statement
on the taint path, it queries the dynamic callgraph to identify the corresponding in edge,
i.e., the call from the user code that lead to the taint transfer. In the example, this allows
CGMiner to identify the call to the constructor of HttpTask (transfer: field assignment)
and to schedule (transfer: collection). Approaches that only inspect the call chain that
ends at the callback (runAll in the example) would miss these intermediate calls.

4.3 Identifying Potential Callbacks
Recall that the callback analysis is started when a callback is invoked. Consequently, each
possible callback method must be instrumented with an event that notifies the analyzer
about which method has been called at runtime. This section shows the static analysis phase
of the CGMiner approach. In this phase, CGMiner first determines possible callbacks and
then instruments code in order to be notified when a callback happens.

To find the potential callbacks, CGMiner identifies all statements in the app that call
library methods. The approach then checks whether a reference to a callback object is
passed as an argument. We define a callback argument as follows. The declared type of the
respective parameter is a reference type from the library, i.e., a class or an interface, which
must be non-final and accessible to user code according to its access modifiers. Further, if
the library class is a class and not an interface, it must have a non-private constructor. The
type of the argument that is passed must be a class type from the user code that (potentially
indirectly) inherits from the library class or implements the library interface. This class
type represents a potential callback implementation. The type of the callback class can be
approximated statically, either by identifying the allocation site at which the callback object
was instantiated, or by looking at the declared type of the callback variable that is passed
as an argument. To be complete, CGMiner applies a Variable Type Analysis (VTA) style
analysis [24] to identify all possible types based on the declared type if no precise allocation
site is available. Considering too many potential callbacks only leads to more instrumentation
effort and does not affect the precision of CGMiner, as these spurious callbacks are not
triggered at runtime.

S. Arzt, M. Miltenberger, and J. Näumann 4:9

CGMiner only identifies a set of potential library classes in this step. The concrete
library method to which the callback object is passed is irrelevant for the analysis in this
stage and is discarded.

Potential callbacks must be instrumented. Since this is not possible for Android and
Java system classes, CGMiner automatically wraps these classes. For example, when
java.lang.ArrayList is instantiated in the application code, CGMiner replaces the call
so that a wrapped version of ArrayList is called, which can then be instrumented. The
wrapped variant inherits from ArrayList and forwards all protected and public methods to
their corresponding super class implementations. CGMiner not only wraps constructor
calls, but also values returned by system classes, e.g. ArrayList.iterator().

4.4 Dynamic Callgraph Analysis
For building the dynamic call graph, CGMiner instruments the app as follows. Before each
call, a CALL event is sent from the device to the analyzer with the unique ID of the call
site. After the call site, i.e., when the call has returned, a RETURN event is sent for the same
ID. At the beginning of each method, a ENTER event is sent. Before each return or throw
statement, a LEAVE event is sent. These events allow the analyzer to reconstruct the call
edges taken on the device. Due to memory and performance constraints, CGMiner does not
build the dynamic callgraph on the device. Once the events are sent, they are immediately
discarded on the device.

The analyzer maintains a separate call stack for each thread. For each CALL event, the
respective call site is put on the stack. When the analyzer receives an ENTER event, it creates
a call edge from the top call site on the stack to the method that was entered. Note that a
CALL event may be followed by multiple pairs of ENTER and LEAVE events before the RETURN
event occurs. The Dalvik / Java runtime calls the static initializer of a class when the class
is loaded. Therefore, each call may first invoke the static initializer before the actual callee is
called. CGMiner captures this semantic by leaving the call site of the static initializer on
the stack until the RETURN event is encountered. CGMiner does not consider implicit calls
to static initializers from statements that are not call sites, e.g., from assignments to static
variables. In this case, the static initializer generates an ENTER event, but has no matching
call site on the stack. Therefore, the ENTER event is discarded. As CGMiner reconstructs
call chains to callbacks, non-call initializations are not relevant.

4.5 Dynamic Taint Analysis
As explained in Section 4.2, CGMiner uses dynamic taint tracking to track the callback
object through the program, including all container objects that hold this callback object.
Note that only heap objects are tracked, no primitives. Therefore, the runtime code that gets
instrumented into the app can uniquely distinguish each tainted object by its identity hash
code (System.identityHashCode()). The instrumented runtime code stores a map between
the unique ID of the taint source and the identity hash code1, and also transmits this map
to the analyzer on every change, i.e., whenever a new object is tainted. These transmissions
occur on the background based on a transmission queue. The events are sent as one message
whenever a certain number of events have accumulated. Therefore, the transmissions do not
affect the performance of the original app.

1 The implementation takes care of checking referential equality in case of hash collisions.

ECOOP 2024

4:10 Dynamically Generating Callback Summaries for Enhancing Static Analysis

All field assignments are instrumented to perform taint transfers. If a variable is assigned
to a field, the runtime code checks whether the variable on the right side of the assignment
is tainted, i.e., its identity hash code is in the taint map. If so, the base object that contains
the field is tainted as well, i.e., its identity hash code is written into the map with the same
source ID as the variable. These derived taints are field-insensitive by design. If a library
stores two different callbacks in two fields of the same object, this object is associated with
both sources.

Recall that the dynamic taint tracking in CGMiner is special, since the object that
is tainted at the source (the callback object) is always the same object that arrives at the
sink (the this object inside the callback). The taint tracking is only used to track the path
between where the callback was registered in the library and where the control flow arrives
inside the callback. This allows for some imprecision in the taint tracking, because flows
where source and sink object are not identical can be discarded.

The Java Standard Library cannot be instrumented, because it is pre-installed on the
device and not part not part of the app. For such cases, CGMiner relies on the static
taint data flow summaries from StubDroid [2]. Based on these summaries, CGMiner adds
instrumentation at the call site in the user code rather than instrumenting the library itself.

4.6 Callback Summary Modelling
In this section, we describe the model that we use for the callback summaries throughout the
rest of the paper. Note that this section only contains the general principle of a summary.
We will use this model in Section 4.7, where we describe the algorithm for generating the
callback summaries.

In the simplest case, we model callback summaries as a single “fake” call edge a → ⟨b, c⟩
from an API call a to a callback method b. The target is a pair ⟨b, c⟩, where c describes
the object on which method b is called at the call site a. Recall that applying a callback
summary corresponds to a virtual dispatch in the context of the original API call. In
other words, the target method is called either on the same base object as the original
API method, or an object passed to the original API call as a parameter. As an example,
consider AsyncTask. AsyncTask is a class that is commonly used in Android, which is
part of Android’s standard library, which is automatically available to every app. It is
used to perform an action asynchronously, similar to a Java thread. Developers extend the
AsyncTask class and override the doInBackground method, which is the callback method
called in a background thread. In order to start the task, developers invoke the execute
method on their AsyncTask instance. In the case of the AsyncTask class, the summary would
be AsyncTask.execute → ⟨AsyncTask.doInBackground, −1⟩. The special value c = −1
stands for the base object of the call to execute, i.e., the AsyncTask object itself. A c ≥ 0
would denote the cth parameter object of the caller statement using zero-indexing. Note
that there may be more than one edge that originates in the same API method a. In the
example, the Android OS also calls methods such as onPostExecute and onPreExecute,
each of which is modelled as a separate summary edge.

The case from the example in Listing 1 is more complex, since the callback object is
passed through multiple intermediate API calls, i.e. transfer functions. When applying the
callback summary in a callgraph algorithm, i.e., when identifying the method that shall
receive calls to HttpLibrary.runAll, the intermediate edges are processed in reverse order.
The method schedule is called on the base object (index -1) of the previous call to runAll.
The constructor of HttpTask, is called on the object that was the first argument (index 0)
on the previous call to schedule. The original callback method onCallback is invoked on
the object that was the second argument (index 1) in the previous call to the constructor of
HttpTask.

S. Arzt, M. Miltenberger, and J. Näumann 4:11

In the callback summary, these intermediate calls are modelled as intermediate edges:
HttpLibrary.runAll →⟨HttpLibrary.schedule, −1⟩ →⟨HttpTask.cons, 0⟩ →
⟨IHttpCompleted.onCallback, 1⟩.

4.7 Callback Reconstruction
Algorithm 1 shows the details of how callback summaries are created. Function Build-
CallbackSummaries is the main entry point that builds the callback summaries. It is called
when the analyzer receives an event that callback method m has been called at runtime.

BuildCallbackSummaries uses the method GetLastLibraryCallSite to get the last
library call site. GetLastLibraryCallSite in turn uses a helper method GetDynamicTraces,
which returns a set of call traces that end in statement s by performing a graph search on
the dynamic callgraph. The call graph is flattened into a set T of sequences of call sites c.
Recursions are unrolled once in GetDynamicTraces, since repeating the same sub-sequence
of calls does not provide any additional insights for the purpose of callgraph analysis. For
not bloating the description, we do not present the implementation of the helper method
GetDynamicTraces in the pseudocode.

Given a statement inside library code, method GetLastUserCodeCallSite uses the traces
returned by GetDynamicTraces and returns the last user code statement that happened
before and that transitively triggered the given library code statement. Similarly, method
GetLastUserCodeCallSite takes a statement inside a callback in user code and identifies the
last library statement that happened before and (transitively) invoked the given statement
from the callback method. The helper method Predecessor takes a statement and returns
the predecessor statement on the dynamic callgraph. For simplifying the presentation, we
assume that this statement is unique. Our implementation can handle multiple candidates.

The main summary generator BuildCallbackSummaries first obtains the last statement
in the library code before the callback was invoked (line 20). This is the last statement
in the library before the control flow is passed back to user code, i.e., the out edge. The
relevant interactions between user code and library API occur between this statement and
the statement that originally passed the callback to the library (the in edge and source for
the dynamic data flow analysis). We will explain the special case of Sc = ϵ (first branch in
line 21) later. In line 25, CGMiner uses the method GetPathsBetween to query the dynamic
taint graph for all taint paths between the two statements. A taint path is a sequence of
statements that assigns a tainted variable or field to another variable or field, i.e., passes
around a reference to a tainted object. This definition implies that method calls are part of
the taint path as well, because they assign the value of the tainted argument at the call site
to the corresponding parameter variable inside the callee. Note that there can be more than
one path between source and sink, so P is a set of lists of statements. CGMiner first iterates
over all paths and then over the statements in each path. It builds a new summary for each
path. Hence, the initialization of the summary (line 27) is inside the loop over the paths.

The summary starts with the statement that passes the callback object to the library,
i.e., the in edge. This statement is simply the source from which taints arrive in the callback
method, as shown in line 27. Method GetSource returns the API at which the source was
registered. The assignment statements on the taint path that copy around the callback
object inside the library are not directly visible to the user code. Instead, the user code
calls API methods that transitively trigger these statements through library-internal call
chains. In the example, an assignment somewhere inside schedule or one of its transitive
callees assigns the parameter with the task to a field. This assignment is on the taint
path, but only the preceding call to the transfer method schedule is relevant as a part

ECOOP 2024

4:12 Dynamically Generating Callback Summaries for Enhancing Static Analysis

Algorithm 1 Callback Reconstruction Algorithm.

1 Function GetLastUserCallSite(s):
INPUT: s – the first statement in the callback
OUTPUT: The last statement in user code

T = GetDynamicTraces (s)
2 foreach t ∈ T do
3 foreach c ∈ t do
4 c′ = Predecessor (c)
5 if not IsLibrary (GetMethod (c′)) then
6 if IsLibrary (GetMethod (c)) then
7 return c′

8 return ϵ

9

10 Function GetLastLibraryCallSite(s):

INPUT: s – the first statement in the callback
OUTPUT: The last statement in library code

T = GetDynamicTraces (s)
11 foreach t ∈ T do
12 foreach c ∈ t do
13 c′ = Predecessor (c)
14 if not IsLibrary (GetMethod (c)) then
15 if IsLibrary (GetMethod (c′)) then
16 return c′

17 return ϵ

18

19 Function BuildCallbackSummaries(m):

INPUT: m – the callback method
OUTPUT: A set of callback summaries

∆ = ∅
20 Sc = GetLastLibraryCallSite (FirstStmt (m))
21 if Sc = ϵ then
22 ϕ =GetSource (m)
23 ∆ = {ϕ → ⟨m, γ(m)⟩}
24 else
25 P = GetPathsBetween (GetSource (m), Sc)
26 foreach p ∈ P do
27 δ = ω(m)
28 foreach s ∈ p do
29 Su =GetLastUserCallSite (s)
30 δ = δ ◦ ⟨ω(Su), γ(Su)⟩
31 ∆ = ∆ ∪ {δ}
32 return ∆
33

S. Arzt, M. Miltenberger, and J. Näumann 4:13

of the summary. In line 29, CGMiner uses the helper method GetLastUserCallSite to
identify this corresponding API method by conducting a backward search in the dynamic
callgraph. For statements that are already in user code, i.e., the first statement on the path,
GetLastUserCallSite is an identity function.

Each identified transfer statement in user code maps to one fragment of a summary. In
line 30 the current API method is concatenated to the summary built so far. For example,
if the summary HttpLibrary.runAll → ⟨HttpLibrary.schedule, −1⟩ existed before, a new
right arrow is appended to the next method and parameter index. As explained above, for
the last statement of a taint path, Su = Sc holds, i.e., a taint path always ends with the API
call that finally invokes the callback. Sc is the last library call site (line 20 in Algorithm 1),
i.e., the last statement that was executed in the library before invoking the callback.

For extending the summary, CGMiner uses two helper functions: ω and γ. The ω

method performs the generalization from concrete statements and methods to API interfaces.
For call sites, ω retrieves the API signature. For callback methods, ω retrieves the name
of the interface or abstract API class that declares the method. The γ method takes a call
statement and identifies the tainted parameter, i.e., the parameter that contains the callback
object, by querying the dynamic data flow graph. As explained in section 4.6, CGMiner
uses the special value −1 if the base object of the call is tainted.

Note that Algorithm 1 also works for cases without transfer methods. Android’s
AsyncTask.execute method is part of the Android SDK, i.e., a pre-installed library on
the device. It cannot be instrumented. Conceptually, the in edge points to a fake node (a
method for which we have no implementation) and the out edge points from this node to
the callback method doInBackground. In this case, the summary is a simple edge from a
single API call site to a single callee method as explained in Section 4.6. In the algorithm,
Sc = ϵ holds, and the first branch is taken in line 21. CGMiner retrieves the taint source,
i.e., the in edge and construct an edge to the callback method m. The parameter index is
derived from the taint graph using an overload of γ that processes the parameter variables of
m instead of the call arguments at a call site.

4.8 Extensions and Special Cases
For simplicity, the algorithm presented in the pseudocode assumes that a single callback
method is only connected to a single source, i.e., GetSource returns a single method. In
other words, the developer does not re-use the same callback implementation for different
independent API calls. Our implementation supports such re-uses.

Further, recall from Section 4.5 that CGMiner uses StubDroid summaries to model the
effects of methods that cannot be instrumented in the dynamic taint analysis. In these cases,
the transfer method cannot be found using a backwards search on the dynamic callgraph as
shown in line 29. Instead, CGMiner marks these statements and directly uses statement s

in such a case.

4.9 Applying Summaries
Many static analysis approaches require a callgraph. Computing the callgraph on the
application code as well as the code of all libraries required by the application can require
significant computational resources and time. Therefore, it makes sense to replace the
libraries by summaries. These summaries must capture the control flow of the library with
respect to its external interface, i.e., it must correctly model callbacks back to the application
code. CGMiner generates such summaries. They can applied whenever a callgraph is
needed on an application that uses a library for which a summary was previously computed.

ECOOP 2024

4:14 Dynamically Generating Callback Summaries for Enhancing Static Analysis

As such, we want to apply the generated callback summaries during the callback construc-
tion. In the case of the motivating sample in Listing 1, we want to apply the edge summary
HttpLibrary.runAll →⟨HttpLibrary.schedule, −1⟩ →⟨HttpTask.cons, 0⟩ →
⟨IHttpCompleted.onCallback, 1⟩. In this section, we introduce Algorithm 2. In the case
of the motivating example, the algorithm outputs an edge from runAll to the anonymous
implementation referenced by onComplete and onFailed, resulting in a precise callgraph. This
shows that we need the intermediate edges in order to determine the link between the
implementation supplied at the constructor call (referenced by onComplete in the sample)
and the call to runAll. Without these intermediate edges we have no information on the
actual type of the callback object at the callback invocation site. Without such information,
we would need to create edges from runAll to all possible implementations of ICompleted,
even if they are not used as a callback.

Given a call site s and a set of callback summaries ∆, method FindReceivers in
Algorithm 2 enumerates the potential callees at s. FindReceivers performs a traditional
callgraph search via QueryCallgraph. It then augments these callees with the callbacks that
are found by applying the callback summaries.

Algorithm 2 Summary Application Algorithm.

1 Function FindReceivers(s, ∆):
INPUT: s – the call site for which to find the receivers,
δ := ⟨α1, β1⟩ → ... → ⟨αn, βn⟩
– the callback summaries
OUTPUT: The potential callees for the given call site

2 R = { QueryCallgraph (s) }
3 foreach (δ := (ω(s) → ... → ⟨αn, βn⟩)) ∈ ∆ do
4 δ̂ := ⟨α1, β1⟩ → ... → ⟨α1, β1⟩
5 R = R∪ApplySummary (s, δ̂, −1)
6 return R
7

8 Function ApplySummary(s, δ, i):

INPUT: s – the call site for which to find the receivers, δ – the summary, i – the
argument index
OUTPUT: The potential callees for the given call site

9 δ̂ := ⟨α2, β2⟩ → ... → ⟨αn, βn⟩
10 v = VariableOf(s, i)
11 S = GetCallsOn(v)
12 R = ∅
13 foreach ŝ ∈ S do
14 if δ̂ = ϵ then
15 R = R ∪ {κ(ŝ, v)}

else
16 FindReceivers (ŝ, δ̂, γ(ŝ, v)))
17 return R
18

S. Arzt, M. Miltenberger, and J. Näumann 4:15

For applying the callback summaries, line 3 iterates over all summaries δ in the database ∆.
It looks for those summaries that reference the API call from the given statement. Recall from
Section 4.7 that ω(s) extracts the generic API method signature from a concrete statement.
Each summary is applied using method ApplySummary. Note that the source statement ω(s)
is removed from the sequence of calls inside the summary and only the remaining calls are
passed. Method ApplySummary processes these intermediate calls recursively and removes
one call per iteration until the final call, i.e., the one that invokes the callback method, is
found. We included the structure of δ in line 1 for clarity. Line 9 shows the derived δ̂ with
the first element removed from the summary.

For the structure of the individual calls on the summary, recall from Section 4.6 that the
first element a encodes the API method, and b encodes the base object on which the API
method is called. b = −1 refers to a call on the base object, b ≥ 0 references the parameter
with the respective index.

Method VariableOf in line 10 obtains the variable v that corresponds to index i in the
context of statement s. CGMiner then obtains all virtual call sites ŝ ∈ S where variable v is
the base object using method GetCallsOn. For each of these call sites, CGMiner continues
the search for the element of the call summary using a recursive call to ApplySummary in
line 16. Method γ takes a statement, which must be a call site, and a variable, and returns
the index of that variable in the argument list of the call (or -1 if the variable is the variable
is the base object of the call).

The recursion ends if the summary has no further calls to analyze (line 14). Method κ

takes a statement and a variable, e.g., s.onCallback() and s. It returns the method that
is called (onCallback in this case), which is the final callee that is added to the callgraph.
Note that ApplySummary calls FindReceivers again once the statement and variable of the
callback are known. This is necessary, because callbacks usually rely on virtual dispatch,
i.e., the actual receiver depends on the possible types of the base object. In the example
from Listing 1, multiple classes could implement IHttpCompleted and depending on some
conditional, variable completedCallback could be any one of them at line 11. CGMiner
detects that completedCallback.onCallback is line 11. Finding the final receivers of this
virtual call is an orthogonal problem and CGMiner relies on the existing callgraph algorithm.

CGMiner only summarizes callgraph data and must be extended with summaries that
capture the semantics of the client analysis. CGMiner integrates well with StubDroid [2],
which summarizes data flow, but does not address control flow.

5 Implementation

We run the sample apps on real devices using DFarm [19]. For instrumenting the code and
interacting with the devices, we rely on the VUSC commercial code analyzer. VUSC provides
an API for instrumenting value requests into Jimple [25] code and for associating the events
received at runtime with the Jimple statements at which they were generated. The device
communication is derived from FuzzDroid [23] and uses Soot for instrumentation [3].

The runtime overhead of the additional code injected by CGMiner is not relevant as
long as the app does not crash with an Application Not Responsive (ANR) exception. The
Android system automatically sends ANRs when foreground threads (such as the UI thread)
are blocked for an extended amount of time. In order to avoid ANRs, we queue events in the
corresponding thread in which they occur and sent them asynchronously. The communication
with the control computer happens in a separate thread controlled by an Android Service.

ECOOP 2024

4:16 Dynamically Generating Callback Summaries for Enhancing Static Analysis

For the list of library classes that serves as an input to CGMiner, we crawled the Maven
central repository as well as the Google Gradle repository. To limit the size of the database,
we only include libraries that are referenced by at least five other Maven artifacts. For these
relevant libraries, we extract the package names of all classes contained in the respective JAR
file. When running CGMiner, we consider a class to be a library class when its is contained
in one of these known library packages. Note that library identification is orthogonal to the
callback analysis, and CGMiner is agnostic to how the list of library classes is built.

6 Limitations

CGMiner instruments the Dalvik code inside an app. If parts of the control flow between
API call and callback are implemented in native code, no runtime data can be obtained from
these parts. If the native code contains border edges, the callback summary will be incomplete.
If a taint transfer occurs in native code, CGMiner relies on StubDroid summaries, which
exist for methods from the Java Standard Library, such as System.arrayCopy.

Note that Android requires each APK file to be signed. Therefore, when instrumenting
an app, the app needs to be resigned. Since CGMiner modifies the app for the dynamic
analysis, it must be signed anew before it can be installed on the device. If the app performs
integrity checking, these checks will fail. While the individual app cannot be analyzed in
this case, the CGMiner approach still works if, for each library, enough apps that use the
respective library can be processed.

Not every callback may be invoked in each run of each app. In our example in Listing 1,
the error callback is only invoked if the HTTP connection fails. Since the callback summaries
are merged over many apps in CGMiner, we consider edges that are never triggered even
with dozens of apps to be irrelevant in practice.

Our evaluation is partly based on Monkey [10] for exploring the apps’ user interface.
Monkey is part of the official Android SDK and randomly clicks on the screen for a given
amount of time. Note that CGMiner is agnostic to the input generation tool. It can be
replaced with a more capable approach in future work. We also used manual exploration in
order to augment the automatic analysis.

We currently do not consider Android lifecycle methods such as onCreate, as they are
few, well-known, change rarely, and are already precisely modeled, e.g., in FlowDroid [5].

7 Evaluation

In this section, we evaluate CGMiner with regard to the following research questions:
RQ1 How many callback edges does CGMiner identify?
RQ2 Are the callback summaries correct and complete?
RQ3 How long does the instrumentation take?
RQ4 How often do transfer functions occur?
RQ5 How does CGMiner compare to EdgeMiner?
RQ6 Which summaries have been found (case study)?
RQ7 How do summaries affect data flow analysis?

7.1 Experiment Setup
We used a machine with 144 Intel Xeon Gold 6154 CPU cores and 3 TB of physical memory
using OpenJDK 16. A maximum of 50 GB was assigned as Java heap space. The machine was
chosen due to the performance requirements of FlowDroid for RQ6. Our DFarm installation

S. Arzt, M. Miltenberger, and J. Näumann 4:17

is equipped with around 90 devices in total, comprising Samsung Galaxy XCover Pro phones
distributed over 9 device controller boards and a single master controller. Note that each
run of CGMiner only uses a single device. We use a combination of manual and automatic
exploration. For automatic exploration, we used the Monkey tool from the Android SDK to
explore the user interface of the app at runtime. Despite its simplistic approach, Monkey
achieves code coverage results comparable to more complex approaches [9]. We run each app
for five minutes with automatic and the same time using manual exploration. In apps where
a login was needed in order to proceed the exploration of the app, we manually created user
accounts.

For our callback generation, we randomly collected 700 apps from the Google Play Store
between 2008 and 2021, augmented with apps from AndroZoo [1]. We include older apps to
merge the callback summaries over multiple versions of a library, and to also include error
cases, e.g., failing HTTP connections due to the server no longer being operational. In our
experience, newer versions of libraries return the old methods (including their callbacks) for
backwards compatibility. On the other hand, new versions may introduce new additional
methods with callbacks, requiring us to run CGMiner again on the new version.

For research questions 2 and 5, we inspected callback summaries manually. Two researchers
conducted the manual inspection. Upon disagreeing, a third researcher has been involved
and these cases were discussed until a consensus was reached.

7.2 Baseline over the Dataset
To better understand the performance of CGMiner, we measure the sizes of the original
apps in our dataset, i.e., before the instrumentation. The number of classes ranges from 6 to
37,175 with an average of 14,371 and a median of 13,136. The apps contain between 108 and
226,966 methods, with an average of 85,270 and a median of 69,360 methods. In the Jimple
intermediate representation, the apps contain between 693 and 2,793,272 units (i.e., Jimple
instructions), with an average of 1,107,276 and a median of 1,008,848 units.

7.3 RQ1: Number of Generated Callbacks
From the 700 apps in our dataset, CGMiner created callback summaries for 338 apps.
Not all apps contain callback-driven libraries according to our definition. Hybrid apps, for
example, implement their logic in JavaScript and only present HTML content to the user
via Android’s WebView component. Other apps use libraries that our library detection does
not recognize, or simply do not use callbacks. Some apps contain native code, which is not
supported in CGMiner. Recall that CGMiner creates summaries for libraries rather than
apps. Furthermore, some apps are merely add-ons such as themes for other applications
and do not have any launchable main activity. Therefore, as long as a single app uses the
library’s callback-driven API, a summary can be generated.

In total, CGMiner constructed 1,476 summaries, which is around 8 summaries per app
on average. Figure 3 shows the cumulative distribution of the number of callbacks found per
app. The x axis is the number of edges, and the y axis shows how many apps lead to the
given number of edges. The maximum number of edges obtained from one app is 67, the
minimum is zero, with a median of 5. For each summary, we recorded the number of API
methods that must be called to invoke the callback. On average, one call is required, with a
maximum of 2 calls and a minimum of one call. The median is one call.

To augment our callback summaries, we automatically generated artificial apps in an
attempt to trigger the callback candidates for which CGMiner did not yield an edge on
our original app set. This is a best effort approach. We accept that some of these apps will

ECOOP 2024

4:18 Dynamically Generating Callback Summaries for Enhancing Static Analysis

0 100 200 300

0

20

40

60

Number of edges

N
um

be
r

of
ap

ps

Figure 3 Distribution of callback edge counts over the apps.

crash or fail to invoke the callback. Recall that callback candidates are over-approximated,
i.e., it may be impossible to generate a working app for some candidates. However, since
CGMiner is a dynamic approach, broken apps do not lead to false positives in the callback
summaries generated by observing these apps. The generated artificial apps yielded 1,871
edges.

7.4 RQ2: Correctness of Generated Callbacks
We manually verified the callback summaries generated by CGMiner. We merged the
summaries from apps in the dataset with the generated apps mentioned in RQ1. We found
94.62% of all callback summaries to be correct. 38 edges out of 2046 were false positives.
Transfer statements were missing in 72 cases.

Since CGMiner is a dynamic approach, it is inherently an underapproximation. To
better understand the degree of unsoundness, we manually inspected a random subset of 100
callback candidates which for which CGMiner did not find an edge. We found that 95% of
these callback candidates are indeed not callback methods. 5% were callback candidates that
were missed due to not triggering the respective method in an app at runtime,i.e., actual
false negatives.

Another approach to check for missing callbacks is to use benchmark suites. To our best
knowledge, there is no ground truth benchmark specifically for callback edges. Therefore,
we used the artificially generated apps introduced in Section 7.3 as a base. On these apps,
CGMiner retrieved edges for 82 % of the callback candidates. For 5%, the generated apps
missed at least one method call to actually trigger the callback. For the rest, these are not
valid callbacks, i.e. these are true negatives.

7.5 RQ3: Instrumentation Performance
Our implementation of CGMiner integrates into an analysis framework that schedules jobs
for processing and performs them when free capacity is available on a system consisting of
analysis server, DFarm device farm server, DFarm controllers, etc. We therefore measure the
performance of the relevant parts of the analysis individually, because the overall time is
dominated by the infrastructure.

First, an APK file is imported into the analysis framework and its code is transformed to
Jimple. This step takes 59 seconds on average (minimum: 8s, maximum: 130s, median: 54s).
Note that this time also includes decoding the app’s resource files and manifest, because

S. Arzt, M. Miltenberger, and J. Näumann 4:19

the instrumentation framework assumes that they can be modified as well. In fact, the
framework injects an application class (if not yet present), services, and permissions as part
of the communication infrastructure between device and analysis server.

After the app has been imported, the instrumentation is performed, which takes 9 seconds
on average (minimum: 4s, maximum: 14s, median: 4s). This time includes the part specific to
CGMiner, i.e., defining the callback events. The CGMiner part alone never takes more than
one second with an average of 0.3 seconds and a mean of 0.2 seconds. Translating the callback
event definitions into statements, along with the other required modifications to establish
the connection between device and analysis host, is part of the VUSC analysis framework. It
counts into the 9 seconds and not the one second. On average, the overall analysis performs
432,000 instrumentation steps (maximum: 556,000 steps, minimum: 302,000 steps, median:
396,000 steps). Each step can be a single statement added or removed, a change to a value
in a statement, etc.

Next, the transformed Jimple code and resource files including the manifest are written
back into an APK file. This step takes 44 seconds on average (maximum: 52s, minimum:
27s, mean: 43s). The total time spent before running the app is 112 seconds on average
(minimum: 40s, maximum: 208s, median: 106s). After building, we run the apps for a
fixed period of time and send inputs manually and afterwards by using Monkey. Therefore,
measuring the runtime performance is not informative. We observe that the apps still meet
the responsiveness requirements of the Android operating system.

We conclude that CGMiner’s runtime is dominated by the dynamic exploration (5
minutes in our configuration), and not by the analysis and instrumentation beforehand
(roughly 2-3 minutes). Note that CGMiner is intended to be used as a tool to generate
callback summaries as a one-time effort. The performance numbers shown correspond to
the time needed to generate the summaries. In contrast, applying the callback summaries
generated by CGMiner does not require any dynamic analysis.

7.6 RQ4: Prevalence of Transfer Functions
In contrast to previous approaches from the literature [8], CGMiner supports complex
callback registration that require transfer functions. In this research question, we evaluate
how important transfer edges are in real-world apps. Conceptually, disregarding transfer
functions via approximations may to lead to a loss of flow-sensitivity as well as false positive
callgraph edges as shown in Section 3.

During callback identification (see Section 7.3), CGMiner discovered CGMiner 2046
edges, 146 of which require transfer functions (6.00%). Note that these numbers are on API
level. Even a single transfer edge can be highly important if the respective API is used
frequently in apps.

To measure the impact of these 146 edges, we therefore check how often these APIs
that require transfer functions are called in real-world apps. To avoid any bias from the
apps on which the transfer edges were originally identified, we chose a separate evaluation
dataset. We randomly picked 1988 apps from the same Play Store and AndroZoo data source
explained in Section 7.1. On this app set, 1928 apps (96.98 %) use transfer functions in their
code. On average, each app uses 103.65 different transfer functions. For comparison, apps in
the dataset use 1089.24 callbacks on average. These results show that transfer functions are
highly relevant in practice.

Table 2 shows the ten most frequently-used transfer functions and their edges together
with the number of times the respective transfer function was encountered in our evaluation
app set. Six of the most found functions are related to wrapped IO calls. For example, a read
method call on an BufferedReader instance triggers the read callback on the reader which
was specified during the construction of the BufferedReader object.

ECOOP 2024

4:20 Dynamically Generating Callback Summaries for Enhancing Static Analysis

Listing 3 Transfer Function Code.
1 StringReader sr = new StringReader(str) {
2 public void close() {
3 // additional callback code
4 super.close ();
5 }
6 };
7 BufferedReader br = new BufferedReader(sr);
8 br.read();

In other words, the constructor of the BufferedReader is a transfer function. Listing 3
shows a code example for such a case. Without modeling the transfer function, approaches
such as EdgeMiner must model an edge from the call to the BufferedReader constructor in
Line 7 to all methods of the Reader that is passed as the first argument. In the example,
this would even be a call to close, even though the StringReader is never closed2.

In total, 19.55 % of the callbacks that EdgeMiner has identified require transfer functions.
All of them are missed. In contrast, CGMiner only misses 3.52% of the transfer functions
that are required for the callbacks identified by CGMiner.

7.7 RQ5: Comparison with EdgeMiner
For a comparison on the Android system we used Android 4.2, since the since the Edgeminer
paper used Android 4.2 for evaluation. EdgeMiner yields 5,125,472 edges in total for
Android 4.2, whereas CGMiner yields 2046 edges. We found that the EdgeMiner output
contains reference to non-existing parameters or callbacks with incompatible types. First,
we removed these edges automatically. Furthermore, we noticed that EdgeMiner’s output
may contain multiple callback edges overloads referencing all implementations albeit an edge
for the abstract superclass or interface was enough. We therefore removed the edges of
these overloads automatically and made sure that the removal process does not change the
semantics. After this cleanup, 17298 callback edges remain (0,36% of the original edge set).
This constitutes as our new base set for EdgeMiner, which we verified manually.

On this base set we compute a false positive rate of 47.42% for EdgeMiner. Manually
checking the CGMiner edges only yields a false positive rate of 1.86%. CGMiner’s dynamic
analysis avoids the false positives that arise from EdgeMiner’s VTA callgraph and the
resulting imprecise points-to set for that is used to derive the types of registers / variables
that store callback objects. We make available the annotated outputs of EdgeMiner and
CGMiner as part of our data package. We removed Android APIs not present in Android
4.2 from CGMiner results, since EdgeMiner cannot possibly have results involving these
APIs and apps in RQ1 may use newer API methods than those present in Android 4.2.

Note that EdgeMiner’s data is based on the Android system’s implementation JAR
alone without third-party libraries. For a fair comparison, we used the library detector
integrated in VUSC to obtain maven coordinates of libraries used in apps in RQ1. We
downloaded the JAR files of the library and executed EdgeMiner on these JARs. Table 1
shows the results for the Android system (comprising the Android SDK and the Java
standard library) as well as third party libraries. While EdgeMiner has more edges on

2 The StringReader has no finalizer either that would call close.

S. Arzt, M. Miltenberger, and J. Näumann 4:21

the Android system jar, it has significantly more false positives and significantly more
incomplete edges than CGMiner. Incomplete edges are edges that lack one or more
necessary transfer functions. For example, in the motivating example of Section 3, an edge
⟨HttpTask.cons, 0⟩ → ⟨IHttpCompleted.onCallback, 1⟩ would be incomplete, because it is
missing the necessary transfer edges to schedule and runAll.

To get a better understanding of the sources of imprecision, we analyzed the false positives
and the incomplete edges produced by EdgeMiner in detail. Setters and constructors are
particularly relevant sources of imprecision. In total, EdgeMiner reports 2826 constructor
edges and 1516 setter edges. EdgeMiner places edges from these methods to the callbacks.
In reality, however, these methods do not invoke any callback function, neither directly or
transitively. Instead, the references to callback objects are saved into fields. Only later, when
other methods are called, these references are read back from the field and the respective
callback is invoked.

Table 1 Results on different libraries for CGMiner and EdgeMiner. TP: true positive edges, FP:
false positive edges, IE: incomplete edges (missing transfers). Regarding “Other“: We have included
several other libraries, which we made sure to supply to EdgeMiner as well.

CGMiner EdgeMiner
Library TP FP IE TP FP IE

Android 1051 27 21 4957 7704 2586
Java 574 8 46 702 494 709
Apache HttpClient 59 0 0 14 1 0
kotlin 46 0 0 0 0 0
Xml Pull Parser 36 0 0 41 4 86
Apache HttpCore 12 0 0 0 0 0
Rxjava 9 0 0 0 0 0
play-services-ads-lite 8 0 0 0 0 0
Gson 7 1 0 0 0 0
Firebase 5 0 0 0 0 0
Google common 4 2 5 0 0 0
play-services-basement 2 0 0 0 0 0
play-services-maps 2 0 0 0 0 0
C3DEngine 1 0 0 0 0 0
AndEngine 1 0 0 0 0 0
Cocos2dx 1 0 0 0 0 0
Other 118 0 0 0 0 0

Total 1936 38 72 5714 8203 3381
Rate 94.62% 1.86% 3.52% 33.03% 47.42% 19.55%

We next describe some examples of such false edges. One constructor of the ConcurrentSkip
ListSet class, for example, takes a Comparator as a parameter. A ConcurrentSkipListSet is
a sorted set, which orders elements according to this comparator. The constructor only saves
the comparator instance to a field, and the callback is triggered when a new element is inserted
into the set using the add or addAll methods. EdgeMiner places an edge from the constructor
to the Comparator’s compare method, although these methods are only called upon adding
an element. In total, EdgeMiner reports incomplete edges in 1734 out of the 2826 constructor
edges, and 779 are false positives (11.08 % correctness rate). In contrast, CGMiner

ECOOP 2024

4:22 Dynamically Generating Callback Summaries for Enhancing Static Analysis

yields only 13 incomplete and 16 false positive edges on 323 constructor edges (91.02 %).
Similarly, most setters set a field to a specific value and do trigger callbacks. For example,
EdgeMiner assumes an edge from LayoutInflater.setFactory(LayoutInflater$Factory) to
LayoutInflater$Factory.onCreateView, although this is only the registration site of the call.
Android calls the callback only upon inflating a layout using the inflate method. Since
EdgeMiner does not support transfer edges, it misses the corresponding transfers on these
edges. For EdgeMiner, out of 1516 setter edges, 663 are incomplete and 195 are false positives.
This constitutes a correctness rate of 43.4 % on these edges for EdgeMiner. On 467 edges on
setter methods reported by CGMiner, 21 are incomplete and 0 false positive, resulting in a
correctness rate of 95.5 %.

7.8 RQ6: Case Study on Individual Callbacks
Using CGMiner, we have identified non-obvious multi-step callbacks. The ActionBarSh-
erlock3 library allows a developer to integrate a tab view into his app. New tabs are
added using addTab on an ActionBar object which takes the tab as a parameter. With
Tab.setTabListener, the developer can register a callback that is notified when the user
selects the tab. Therefore, addTab, which automatically opens the new tab, triggers the
the onTabSelected callback previously registered on the tab. This callback involves two
interactive objects, ActionBar and Tab. Other tools such as EdgeMiner [8] cannot pre-
cisely identify and model such a callback. In case of the AsyncTask, CGMiner detects
that a call to AsyncTask.execute results in several callbacks being called: onPreExecute,
doInBackground, onPostExecute.

CGMiner identifies similar API calls that trigger multiple callbacks in the API for the
SQLite database engine. A call to getWritableDatabase or getReadableDatabase triggers
the callbacks onOpen, onConfigure and onCreate. Some callbacks are triggered by the
operating system upon external events, such as new sensor data. In this case, the last user
code call site for this callback is the statement the registered the callback. Even though this
statement does not immediately invoke the callback, modeling an edge from the registration
site to the callback is still a common and useful approximation. CGMiner, for example,
finds a connection between Android’s registerListener method and the onSensorChanged
of the SensorEventListener interface.

7.9 RQ7: Effect on Client Analysis
We next evaluate the effect of callback summaries on data flow analysis. We ran FlowDroid
on 200 randomly selected apps, chosen from the same data source already explained in
Section 7.1. Note that this data flow analysis is distinct from the data flow analysis we
perform in our approach in Section 4.5. The purpose of the data flow analysis in Section 4.5 is
to track all container objects that hold callback objects. This is only relevant when generating
new summaries. In contrast, this section performs data flow analysis to determine sensitive
flows. For this, we use already computed summaries from Section 7.3 to extend the call graph.
We configured a timeout of 3 minutes for callgraph construction and 15 minutes for the main
data flow analysis. The analysis was assigned 250 GB of heap space and a maximum of 7
cores. This configuration allowed us to parallelize multiple runs on the same machine. We
evaluated three different configurations. As our baseline, we perform the FlowDroid data flow

3 http://actionbarsherlock.com/

http://actionbarsherlock.com/

S. Arzt, M. Miltenberger, and J. Näumann 4:23

Table 2 The ten most found transfer functions in apps.

Count Transfer function & Edge

1161 BufferedReader.readLine → ⟨BufferedReader.cons, −1⟩ →
⟨InputStreamReader.read, 0⟩

1071 Runnable.run → ⟨F utureT ask.cons, −1⟩ → ⟨Callable.call, 0⟩
1031 BufferedInputStream.cons → ⟨GZIP InputStream.cons, 0⟩ →

⟨AutoCloseable.close, 0⟩
995 InputStream.read → ⟨BufferedInputStream.cons, −1⟩ →

⟨F ileInputStream.read, 0⟩
983 P rintW riter.print → ⟨P rintW riter.cons, −1⟩ → ⟨OutputStreamW riter.write, 0⟩
980 V iew.layout → ⟨V iew.addOnLayoutChangeListener, −1⟩ →

⟨V iew$OnLayoutChangeListener.onLayoutChange, 0⟩
977 Executor.execute → ⟨ScheduledT hreadP oolExecutor.cons, −1⟩ →

⟨T hreadF actory.newT hread, 1⟩
963 OutputStream.write → ⟨CipherOutputStream.cons, −1⟩ →

⟨ByteArrayOutputStream.write, 0⟩
945 P rintStream.println → ⟨P rintW riter.cons, −1⟩ → ⟨F ileW riter.write, 0⟩
920 P arcel.writeBundle → ⟨P arcel.writeStrongBinder, −1⟩ →

⟨ffm.dispatchT ransaction, 0⟩

analysis without any callback edges. We then ran FlowDroid again with callback summaries
generated by EdgeMiner and with summaries generated by CGMiner. For each run, we
recorded the discovered flows.

Listing 4 Callback Parameter Analysis.
1 class MyTaskRunnable implements Runnable {
2 public String data;
3 public void run() {
4 sink(data);
5 }
6 }
7 ThreadPoolExecutor executor = new ThreadPoolExecutor (...);
8 Runnable r = new MyTaskRunnable ();
9 r.data = source ();

10 executor.execute(r);

Recall that CGMiner and EdgeMiner only model control flow, but not data flow. In the
example in Listing 4, the first parameter of Line 10 becomes the base object inside the callee
run. This relationship is important, because the field data inside the callback object, i.e.,
the access path r.data, is tainted in Line 9. When the data flow analysis processes the sink
call in Line 4, the taint must be available as this.data. In other words, FlowDroid’s IFDS
call edge must re-write the access path from r.data to this.data.

Neither CGMiner nor EdgeMiner create data flow summaries. Therefore, our initial
runs had the required callgraph edges, but could not track data flows across the callback
edges. With this configuration, our baseline yielded 2021 flows. With EdgeMiner summaries,
FlowDroid found 3575 flows (77 % more than baseline). With CGMiner summaries, 2554
flows were detected, which is 26 % more than the baseline. As expected, FlowDroid discovers

ECOOP 2024

4:24 Dynamically Generating Callback Summaries for Enhancing Static Analysis

more flows when provided with callback summaries. Further, since EdgeMiner has more
(true positive) callback edges than CGMiner as shown in Table 1, it is unsurprising that
EdgeMiner leads to more flows as well. FlowDroid tracks flows across the interprocedural
data flow graph. Every additional callgraph edge has the potential to lead to more flows.

We next augment the callgraph summaries with data flow information using heuristics.
Firstly, we map the base object on which the callback is invoked (which is known from the
callback summary) to the this object of the callee. In the example in Listing 4, this leads to
a data flow edge from variable r to the this object of the callback. This allows FlowDroid to
map r.data to this.data. Secondly, if there is an edge from a call site to a callback method
and the call site accepts a parameter that is cast-compatible to a parameter of the callback
method, we assume a data flow edge. We stress that these heuristics are not meant to be
complete. We use them as part of our evaluation to better estimate the effect of callback
edges for data flow analyses.

With these data flow mappings, FlowDroid finds 2717 flows with EdgeMiner and 2830
flows (40 % more than the baseline) with CGMiner. In the baseline without callback
summaries, no data flow mapping is possible. We observe that when we use parameter
mappings, FlowDroid with CGMiner finds more data flows than FlowDroid with EdgeMiner,
although CGMiner has vastly fewer callgraph summary edges than EdgeMiner. The number
of flows found using EdgeMiner callbacks drops from 3575 flows when using no parameter
mapping to 2717 when using parameter mappings. The explanation lies in FlowDroid’s sanity
checking. For example, when FlowDroid propagates taints along edges in the interprocedural
control flow graph, it propagates types along as well. In each propagation step, these
propagated types are checked for cast-compatibility with the target variables. EdgeMiner’s
spurious callback edges lead to many cast-incompatible propagations. This leads to taints
being discarded. For EdgeMiner with many false positive edges or incomplete edges, i.e., edges
placed at the wrong statement, this leads to a significant amount of flows being discarded.
On the other hand, the increase in data flows with CGMiner summaries represents actual
taint propagation along the callback edges. This is expected for examples such as the one
shown in Listing 4. Since CGMiner only has few false positives, it is almost unaffected by
FlowDroid’s type checks, but benefits from parameter mappings being available. We then
analyzed the correctness of the data flows. Due to the large amount of data flow results, we
only looked at a subset of 50 flows of each evaluation run. EdgeMiner shows a precision of
94.34% on these flows. Recall that FlowDroid already discards flows with cast-incompatible
assignments along the taint propagation path. Therefore, it can eliminate some false-positive
flows during propagation. CGMiner delivers a true positive rate of 100%.

As stated in the beginning of this section, we evaluated on FlowDroid using 200 randomly
selected apps. From these apps, we found that 94 % invoke at least one callback method.
Filtering apps with no callback methods yields the following results: Without data flow
mappings, the baseline has 1,987 flows (compared to 2,021 flows w/o filtering). With
EdgeMiner summaries, FlowDroid finds 3,505 flows (compared to 3,575). With CGMiner
summaries, FlowDroid finds 2,511 flows (compared to 2,554). With data flow mappings and
EdgeMiner summaries, FlowDroid then finds 2,681 flows (compared to 2,717). With data
flow mappings and CGMiner summaries, FlowDroid finds 2,787 flows (compared to 2,830).

8 Related Work

EdgeMiner [8] statically analyzes the Android framework to build models for callbacks in API
methods. Due to the large code size of the Android framework, EdgeMiner over-approximates
virtual dispatch using a CHA callgraph. It further suffers from the inherent challenges

S. Arzt, M. Miltenberger, and J. Näumann 4:25

of static analysis, such as dealing with reflective method calls. CGMiner avoids such
imprecision and only generates edges that are possible at runtime. EdgeMiner tries to find
registration and callback pairs using def-use chains. The search starts at a potential callback
and follows the definitions of the base object through the library code until it reaches the
start of a method that has no more potential callers within the library. In case the callback
object is read from a field on the path, all writes to the field are considered as potential
definitions and are thus followed, regardless of their context. EdgeMiner does not provide
support for collections or arrays and would not be able to generate a correct summary for
our example from Listing 3. Perez and Le [20] present Predicate Callback Summaries (PCS)
that model under which conditions a callback or Android lifecycle method is invoked. Their
static tool Lithium works on the Android source code and suffers from the same challenges
of large-scale static callgraph analysis as EdgeMiner. It does not support our complex
example either. Callback Control Flow Automata (CCFA) [21] integrates PCS and Window
Transition Graphs (WTGs) [27], and focuses mainly on UI callbacks and lifecycle methods.
We consider integrating a predicate analysis into CGMiner as future work. Zhang and
Ryder [31] propose a static library analysis based on data reachability. Similarly, Guo et al.
present an approach based on backward data dependency analysis [12]. These analyses must
be conducted for each call site, which is costly in practice [15].

Some work has focused on Android UI callbacks [28], e.g., for context-sensitive linking of
parameterized callbacks to their respective UI elements. The same callback may be used
for multiple buttons. The clicked button is passed to the callback as a parameter, and the
shared implementation may follow different control flow paths depending on that parameter
value. The information which API methods may trigger callbacks is usually an external input
to these algorithms, which CGMiner can provide. Other work has increased the coverage of
dynamic analyses by reasoning about UI callbacks using a combination of static and dynamic
analysis [6, 29]. CGMiner is more generic and therefore cannot exploit specific properties
of Activities or Intents. TamiFlex [7] uses dynamic analysis to record the runtime values at
reflective method calls and build models of known callees for such call sites. Harvester [22]
uses static slicing and dynamic execution to extract runtime values at reflective call sites.
It rewrites these call sites into explicit calls to deobfuscate apps. The outputs of these
approaches are specific to a concrete target program and do not generalize over re-usable
libraries. HeapDL [11] uses heap dumps to reconstruct callgraph edges. It can be used do
discover callback registration methods, which directly or transitively call callback methods
when such a call is present on the stack of some thread in the heap dump. However, when
a callback is saved as a field during callback registration and used later on, this approach
would require multiple heap dumps taken at precisely the correct timings. Otherwise, either
the callback registration, the callback invocation or both are missed. StubDroid [2] statically
generates data flow summaries for libraries. It requires a complete and precise callgraph of
the library to work properly and can therefore benefit from the callgraph models generated by
CGMiner. Our callback summaries are relevant for various analyses (power analysis, privacy
analysis, injection analysis, etc.) that currently rely on manual callback models [5, 30, 18, 13].

9 Conclusion

We have presented CGMiner, an approach for dynamically monitoring apps to derive
callback summaries for commonly-used libraries. These summaries can then be applied to
static analyses that require a callgraph. We have shown that CGMiner yields a precision
of more than 94%. With the CGMiner summaries, FlowDroid detects 40 % more flows in
comparison to our baseline. In the future, we will run CGMiner on more apps to generate
and provide to the community summaries of lesser-used libraries.

ECOOP 2024

4:26 Dynamically Generating Callback Summaries for Enhancing Static Analysis

Data Availability. The data and implementation have been published to https://github.com/
Fraunhofer-SIT/DynamicCallbackSummaries/. Since CGMiner is built upon the VUSC com-
mercial scanner, you need to apply for a free academic license for VUSC to build and run
CGMiner.

References
1 Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo: Collecting

millions of android apps for the research community. In 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR), pages 468–471. IEEE, 2016.

2 Steven Arzt and Eric Bodden. Stubdroid: automatic inference of precise data-flow summaries
for the android framework. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pages 725–735. IEEE, 2016.

3 Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Instrumenting android and java applications
as easy as abc. In International Conference on Runtime Verification, pages 364–381. Springer,
2013.

4 Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Susi: A tool for the fully automated
classification and categorization of android sources and sinks. University of Darmstadt, Tech.
Rep. TUDCS-2013-0114, 2013.

5 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. Acm Sigplan
Notices, 49(6):259–269, 2014.

6 Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for systematic testing
of android apps. In Proceedings of the 2013 ACM SIGPLAN international conference on
Object oriented programming systems languages & applications, pages 641–660, 2013.

7 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In 2011 33rd
International Conference on Software Engineering (ICSE), pages 241–250. IEEE, 2011.

8 Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Giovanni
Vigna, and Yan Chen. Edgeminer: Automatically detecting implicit control flow transitions
through the android framework. In NDSS, 2015.

9 Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Automated test input
generation for android: Are we there yet? (e). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 429–440, 2015. doi:10.1109/
ASE.2015.89.

10 Google, Inc. Ui/application exerciser monkey, 2023. URL: https://developer.android.com/
studio/test/other-testing-tools/monkey.

11 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis. Heaps don’t
lie: countering unsoundness with heap snapshots. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):1–27, 2017.

12 Chenkai Guo, Quanqi Ye, Naipeng Dong, Guangdong Bai, Jin Song Dong, and Jing Xu.
Automatic construction of callback model for android application. In 2016 21st International
Conference on Engineering of Complex Computer Systems (ICECCS), pages 231–234. IEEE,
2016.

13 Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cristiano L Pereira, Gilles A
Pokam, Peter M Chen, and Jason Flinn. Race detection for event-driven mobile applications.
ACM SIGPLAN Notices, 49(6):326–336, 2014.

14 Patrick Lam, Eric Bodden, Ondrej Lhotak, and Laurie Hendren. The soot framework for
java program analysis: a retrospective. In Cetus Users and Compiler Infastructure Workshop
(CETUS 2011), oktober 2011.

https://github.com/Fraunhofer-SIT/DynamicCallbackSummaries/
https://github.com/Fraunhofer-SIT/DynamicCallbackSummaries/
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/ASE.2015.89
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey

S. Arzt, M. Miltenberger, and J. Näumann 4:27

15 Ondrej Lhoták. Comparing call graphs. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages 37–42, 2007.

16 Ondřej Lhoták and Laurie Hendren. Scaling java points-to analysis using spark. In Görel
Hedin, editor, Compiler Construction, volume 2622 of Lecture Notes in Computer Science,
pages 153–169. Springer Berlin Heidelberg, 2003. doi:10.1007/3-540-36579-6_12.

17 Li Li, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. An investigation into the
use of common libraries in android apps. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages 403–414, 2016.
doi:10.1109/SANER.2016.52.

18 Yepang Liu, Chang Xu, and Shing-Chi Cheung. Where has my battery gone? finding sensor
related energy black holes in smartphone applications. In 2013 IEEE international conference
on pervasive Computing and Communications (PerCom), pages 2–10. IEEE, 2013.

19 Marc Miltenberger, Julien Gerding, Jens Guthmann, and Steven Arzt. Dfarm: massive-
scaling dynamic android app analysis on real hardware. In Proceedings of the IEEE/ACM 7th
International Conference on Mobile Software Engineering and Systems, pages 12–15, 2020.

20 Danilo Dominguez Perez and Wei Le. Generating predicate callback summaries for the android
framework. In 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering
and Systems (MOBILESoft), pages 68–78. IEEE, 2017.

21 Danilo Dominguez Perez and Wei Le. Specifying callback control flow of mobile apps using
finite automata. IEEE Transactions on Software Engineering, 47(2):379–392, 2021. doi:
10.1109/TSE.2019.2893207.

22 Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Harvesting runtime
values in android applications that feature anti-analysis techniques. In NDSS, 2016.

23 Siegfried Rasthofer, Steven Arzt, Stefan Triller, and Michael Pradel. Making malory behave
maliciously: Targeted fuzzing of android execution environments. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE), pages 300–311. IEEE, 2017.

24 Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick Lam,
Etienne Gagnon, and Charles Godin. Practical virtual method call resolution for java.
In Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA ’00, pages 264–280, New York, NY, USA,
2000. Association for Computing Machinery. doi:10.1145/353171.353189.

25 Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying java bytecode for analyses and
transformations, 1998.

26 Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of google play. In
The 2014 ACM international conference on Measurement and modeling of computer systems,
pages 221–233, 2014.

27 Shengqian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swaminathan, Dacong
Yan, and Atanas Rountev. Static window transition graphs for android. Automated Software
Engineering, 25(4):833–873, 2018.

28 Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. Static control-flow
analysis of user-driven callbacks in android applications. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages 89–99. IEEE, 2015.

29 Wei Yang, Mukul R Prasad, and Tao Xie. A grey-box approach for automated gui-model
generation of mobile applications. In International Conference on Fundamental Approaches to
Software Engineering, pages 250–265. Springer, 2013.

30 Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X Sean Wang. Appintent:
Analyzing sensitive data transmission in android for privacy leakage detection. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security, pages 1043–1054,
2013.

31 Weilei Zhang and Barbara G Ryder. Automatic construction of accurate application call
graph with library call abstraction for java. Journal of Software Maintenance and Evolution:
Research and Practice, 19(4):231–252, 2007.

ECOOP 2024

https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1109/SANER.2016.52
https://doi.org/10.1109/TSE.2019.2893207
https://doi.org/10.1109/TSE.2019.2893207
https://doi.org/10.1145/353171.353189

	1 Introduction
	2 Android Background
	3 Running Example
	4 Approach
	4.1 General Idea
	4.2 Overview of the Approach
	4.3 Identifying Potential Callbacks
	4.4 Dynamic Callgraph Analysis
	4.5 Dynamic Taint Analysis
	4.6 Callback Summary Modelling
	4.7 Callback Reconstruction
	4.8 Extensions and Special Cases
	4.9 Applying Summaries

	5 Implementation
	6 Limitations
	7 Evaluation
	7.1 Experiment Setup
	7.2 Baseline over the Dataset
	7.3 RQ1: Number of Generated Callbacks
	7.4 RQ2: Correctness of Generated Callbacks
	7.5 RQ3: Instrumentation Performance
	7.6 RQ4: Prevalence of Transfer Functions
	7.7 RQ5: Comparison with EdgeMiner
	7.8 RQ6: Case Study on Individual Callbacks
	7.9 RQ7: Effect on Client Analysis

	8 Related Work
	9 Conclusion

