
Refinements for Multiparty Message-Passing
Protocols
Specification-Agnostic Theory and Implementation

Martin Vassor #

University of Oxford, UK

Nobuko Yoshida #

University of Oxford, UK

Abstract
Multiparty message-passing protocols are notoriously difficult to design, due to interaction mismatches
that lead to errors such as deadlocks. Existing protocol specification formats have been developed to
prevent such errors (e.g. multiparty session types (MPST)). In order to further constrain protocols,
specifications can be extended with refinements, i.e. logical predicates to control the behaviour of
the protocol based on previous values exchanged. Unfortunately, existing refinement theories and
implementations are tightly coupled with specification formats.

This paper proposes a framework for multiparty message-passing protocols with refinements
and its implementation in Rust. Our work decouples correctness of refinements from the underlying
model of computation, which results in a specification-agnostic framework.

Our contributions are threefold. First, we introduce a trace system which characterises valid
refined traces, i.e. a sequence of sending and receiving actions correct with respect to refinements.
Second, we give a correct model of computation named refined communicating system (RCS), which
is an extension of communicating automata systems with refinements. We prove that RCS only
produce valid refined traces. We show how to generate RCS from mainstream protocol specification
formats, such as refined multiparty session types (RMPST) or refined choreography automata. Third,
we illustrate the flexibility of the framework by developing both a static analysis technique and
an improved model of computation for dynamic refinement evaluation. Finally, we provide a Rust
toolchain for decentralised RMPST, evaluate our implementation with a set of benchmarks from the
literature, and observe that refinement overhead is negligible.

2012 ACM Subject Classification Software and its engineering → Specification languages; Theory
of computation → Assertions; Theory of computation → Concurrency

Keywords and phrases Message-Passing Concurrency, Session Types, Specification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.41

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.23

Funding Work supported by: EPSRC EP/T00006544/2, EP/K011715/1, EP/K034413/1,
EP/L00058X/1, EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462, EP/X015955/1n
NCSS/EPSRC VeTSS, and Horizon EU TaRDIS 101093006.

Acknowledgements We thank B. Ekici, M. Giunti, P. Hou, A. Suresh, and F. Zhou.

1 Introduction

Message passing programming is a notoriously difficult task with new bugs arising with respect
to sequential programming, for instance deadlocks. To address this increased complexity,
various specifications have been introduced (e.g., message sequence charts [24], multiparty
session types [38, 19, 18], choreography automata [1]). In general, specifications are used to

V1.1

A
rt
ifa

cts Available

ECOOP

© Martin Vassor and Nobuko Yoshida;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 41; pp. 41:1–41:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin@vassor.org
https://orcid.org/0000-0002-2057-0495
mailto:nobuko.yoshida@cs.ox.ac.uk
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2024.41
https://doi.org/10.4230/DARTS.10.2.23
https://doi.org/10.4230/DARTS.10.2.23
https://doi.org/10.4230/DARTS.10.2.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Refinements for Multiparty Message-Passing Protocols

constrain messages, in order to prevent errors such as deadlocks (via message ordering) or
payload mismatch (by enforcing the sender and the receiver of a message to agree on the
datatype exchanged).

In this paper, we tackle an important and advanced aspect of protocol specification, logical
constraints (or contracts) on asynchronous message-passing communications. Contracts for
heterogeneous systems are predominant for correctly designing, implementing, and composing
software services, and have a long history in distributed software development as found
in Design-by-Contracts [28], Service Level Agreements, and Component-Based Software
Engineering. With contracts, software designers can define more precise (refined) and
verifiable specifications for distributed software components. Contracts have been investigated
from a variety of perspectives, using many different analysis techniques and formalisms.
Our goal is to distill an essence of those models for protocol refinements by answering the
following questions affirmatively:

(i) what does it mean for an execution of contracts for message-passing systems to be
correct;

(ii) how do we integrate a theory to a variety of models;
(iii) how do we analyse their correctness?; and
(iv) how do we implement correct systems in a programming language?

To explain our framework, consider a guessing game (from [41]) with three participants
where the first one (participant A) chooses a secret integer and sends it to the second
participant (B). Then, the third participant (C) tries to guess this number. Depending on
the guess, B replies with hints (more and less) until C succeeds in guessing the correct value.

The developer writing the specification for such protocol would like to ensure, in the
specification, that hints from B are consistent with the previous values exchanged. For
instance, if the secret is 5 and the guess is 10, the specification should constrain B to send
less. Figure 1 shows a communication diagram of the protocol with constraints (which we
call refinements) shown in light blue.

CBA
secret(n : int)

guess(x : int)

more

less

correct

or n < x

or n = x

choice n > x

Figure 1 Communication diagram for the guessing game protocol with refinements.

In this paper, we develop a formal framework for refinements, agnostic to any particular
specification formalism. Its core part is composed of a characterisation of refinement
correctness: Valid Refined Traces, and a model of computation: Refined Communicating
Systems (RCS), where communication is asynchronous and refinements are centrally and
dynamically evaluated. For illustration, we use Refined Multiparty Session Types as the main
specification format for multiparty protocols.

M. Vassor and N. Yoshida 41:3

In addition, we demonstrate the versatility of our framework with multiple extensions.
First, our framework can accommodate other protocol specification formats (e.g. choreography
automata [1]). Second, it is used as a baseline for improved refinement evaluation: we present
an optimised model of computation (decentralised refinement evaluation). Finally, it is also
used as a baseline for implementing static analysis techniques: we present a simple strategy
for statically removing redundant refinements.

Valid Refined Traces. The first building block is a common notion of correct executions
with respect to added refinements. We introduce valid refined traces which are consistent
traces with respect to refinements. This approach allows us to establish a general notion
of refinements, which is applicable to different logics for constraints, type theories, models
of computations, and programming languages. We consider asynchronous communications
(FIFOs), distinguishing sending and receiving actions in traces.

To illustrate our approach, consider the guessing game example shown above. Each
execution of that protocol is recorded in a trace, i.e. a sequence of the individual events that
take place during the execution (c.f. Section 2.2). For instance, a possible trace of the first
four events of the protocol is the following:

A!B⟨secret, ⟨n, 5⟩⟩ : ⊤ · A?B⟨secret, ⟨n, 5⟩⟩ : ⊤ · C!B⟨guess, ⟨x, 5⟩⟩ : ⊤ · C?B⟨guess, ⟨x, 5⟩⟩ : ⊤

This trace contains four actions, and each action records an event, i.e. a message emission
(denoted with a !) or reception (denoted with a ?). For instance, A!B⟨secret, ⟨n, 5⟩⟩ : ⊤
records A sending a message to B, the payload of this message is a variable n, which has value
5. In the first four actions, we do not need any constraint, therefore actions are guarded by
⊤ which denotes a tautology predicate. The next action following this trace would be for B
to send either more, correct, or less. Choosing more or less would be inconsistent with our
protocol, since C guessed the correct number. For instance, choosing more would add the
action B!C⟨more⟩ : n > x at the end of the queue: the refinement n > x would be violated,
since x = n = 5.

Valid Refined Traces characterise consistency based on the produced trace; and we aim to
provide a model of computation constrained in a way that prevents such inconsistent choices.

Refined Communicating Systems. The second building block of our framework is a model
of computation that only produces correct traces. Communicating Systems (CS) [5] are a
model of concurrent computation, where Communicating Finite State Machines communicate
asynchronously using unbounded FIFO queues. CS are often used to model and implement
MPST [12, 13, 7]. We adapt CS to accommodate refinements, which we call Refined
Communicating Systems (RCS). The semantics is modified in order to check refinements
at every step. For this, we introduce a shared map in order to keep track of variables and
their values that are exchanged in messages (e.g. the values of x and n in the guessing
game example). This record of values is used to evaluate refinements, preventing undesired
transitions. In this paper, we show that RCS only produce valid refined traces and we explain
how to generate an RCS from a RMPST.

Refined MPST. Working with CS is cumbersome, and, in practice, we would prefer to
adapt existing specification formats. We present in depth how to integrate refinements in
Multiparty Session Types (MPST) [38, 19, 18], which are a family of type systems that aims
to prevent communication bugs.

The following refined global type (G±) is a specification of the guessing game protocol
(Figure 1), with refinements: a participant A begins by sending a secret to B; the value of
the secret is stored in the variable n. Then, C tries to guess the value (stored in variable x),

ECOOP 2024

41:4 Refinements for Multiparty Message-Passing Protocols

and B replies with more, less (in which case the protocol loops and C can make another
guess: µT.G denotes the recursion) or correct, at which point the protocol terminates (end
denotes the termination). The refinements specify conditions upon which the more, less, and
correct branches are possible. For instance, the protocol can take the correct branch only if
the values in the secret and the guess messages are the same, i.e. if x = n.

G± =

A → B

secret(n : int |= ⊤).µT.C → B

guess(x : int |= ⊤).B → C

more(|= x < n).T,

less(|= x > n).T,

correct(|= x = n).end

Compared to standard MPST, Refined MPST (RMPST) contain variable names (n and x)
and refinements (denoted with |= r in the payloads, meaning that to send the message, r

must hold). We present those extensions as well as the relation between RMPST and RCS.

Applications and Extensions. To show the versatility of our framework, we extend it:
Decentralised Refinement Evaluation: The canonical semantics for RCS we present uses

a single shared map of variables to provide a simple way to reason about refinements.
Having this global map would not be suited for a distributed implementation. We extend
our framework with an alternative semantics where each participant of a protocol has a
local map of variables. We show that if variables are not duplicated, then this alternative
model also produces valid refined traces.

Static Elision of Redundant Refinements: At places where refinements are redundant (e.g.
where it is entailed by previous refinements), we could benefit from removing those
refinements. In order to show the versatility of our framework, we show how to develop a
simple static analysis technique to remove such redundant refinements.

Refined Choreography Automata: While we mostly use RMPST as an example of protocol
specification language, we sketch another specification by (informally) presenting how to
integrate refinements in choreography automata (in [35]).

Rust Implementation. The last objective of our work is to implement RMPST into Rust.
We choose Rust for several reasons: its affine type system makes it easy to avoid unwanted
reuse of values, which helps to prevent a participant from duplicating actions; and thanks to
its growing popularity, there are already a few existing toolchains for session types in Rust
[27, 6, 26, 25]. Among them, we choose Rumpsteak [7] since it already uses CS to implement
MPST participants inside its toolchain. We extend Rumpsteak with refinements using the
decentralised refinement evaluation approach. We finally measure the refinement overhead in
Rumpsteak.

Contributions and Outline. Our main contribution is to unify the different points presented
above in a single framework as presented in Figure 2. We introduce a uniform framework
which is agnostic to any particular specification formalism, model, semantics and language,
defining the correctness of refinements as validity of traces. We then prove the safety of the
framework (Theorem 18). We demonstrate the versatility of our framework by accommodating
multiple protocol specifications such as (refined) multiparty session types [38, 19, 18, 42] and
(refined) choreography automata [1, 16], multiple semantics such as (refined) communicating
automata [5] with centralised and decentralised semantics, and multiple analysis techniques
such as dynamic and static analyses. We provide an implementation of an instance of the
framework in Rust. Our framework is the first, to the best of our knowledge, to achieve such
versatility.

M. Vassor and N. Yoshida 41:5

③ Section 4

① Section 2

②
Se

ct
io

n
3

⑦
Se

ct
io

n
5

④

⑤

⑥ [35] (Example)

⑧ Section 6
Refined Communicating

System (RCS)

Refined
Configuration

Decentralised
Configuration

Refined Decentralised
Traces

Traces
of RCS

Valid Refined Traces

Refined Local Types

Refined Global Type Refined Choreography Automata

Static
Elision

Simulates
Theorem 31

Global
Semantics

Decentralised
SemanticsSubset of

Cor. of Theorem 31

Subset of (Theorem 18)

Instantiate (Definition 22)

Projection

Project
ion

Correctness (Theorem 35)

Figure 2 Overview of the framework for RMPST developed in this work. The coloured back-
grounds show the main steps of this paper.

The framework is composed of the following parts (circled numbers refer to Figure 2):
① Valid Refined Traces: We introduce valid refined traces which characterise valid execu-

tions with respect to refinements.
② Refined Communicating Systems (RCS): We extend Communicating Systems to accom-

modate refinements. From a configuration of RCS, we induce a set of possible traces.
One of our main results is Theorem 18 (④), which states that all traces produced by RCS
are valid refined traces, which in turn proves the correctness of the RCS.

③ Refined Multiparty Session Types (RMPST): In Section 4, we adapt MPST (which con-
sists of global types (which describe a multiparty protocol), local types (which describe
the behaviour of a single participant), and a projection from global to local types which
extracts the behaviour of a single participant) to accommodate for refinements. We show
how to generate a RCS from a set of local types with refinements (⑤). In addition, in
[35], we sketch how to accommodate refinements in choreography automata, to illustrate
the versatility of the framework (⑥).

⑦ and ⑧ Optimisations: In Section 5 (⑦), we propose a decentralised model as an alternative
for RCS. We show trace inclusion w.r.t. RCS, which ensures refinements are correctly
checked. In Section 7, we implement this improved model in Rust. In addition, in
Section 6, we demonstrate how to develop analysis techniques using the framework. We
show how redundant refinements can, under some conditions, be statically removed (⑧).

ECOOP 2024

41:6 Refinements for Multiparty Message-Passing Protocols

2 Refined Traces and their Validity

This section introduces refined traces which are sequences of messages actions. We then
define their validity, introducing two definitions on traces, well-queued and well-predicated
traces. We precede this (in Section 2.1) with preliminary definitions used throughout this
paper.

2.1 Preliminaries: Predicates Language and Semantics
This first subsection introduces the basic definitions we use in this paper.

Let V be a set of variables, ranged over by x, y, . . .; and a finite set C of values (in this
work, we take 32-bit integers: Z/232Z).

We use associative maps from variable names to values, noted M . dom(M) denotes the
domain of a map, that is the set of variables that appear in the map. Maps are equipped
with lookup (M(x)), update (M [x7→c]) and removal (M\x) operations. M1

⊎
M2 denotes

the union of M1 and M2 if their domains are disjoint (see [35] for the definition of all those
operators). Finally, M∅ denotes an empty map.

In order to keep our work general, we do not strictly specify the language of predicates,
nor their semantics rules. Instead, we suppose we are given a language to express refinements,
whose terms are produced by a rule R. In this paper, we intentionally leave the logic
underspecified so that it can be fine tuned by the end user. In practice, in our implementation
(Section 7), custom predicates can easily be added. In the following, we use a simple grammar
with arithmetic and relational operators as predicates. Let R be the set of refinement
expressions. We assume refinements can have free variables, and that there exist a function
fv : R → P(V) that gives the free variables of each refinement expression. We note RW be
the set of refinements of R whose set of free variables is W ⊆ V. We assume a variable
substitution function, R{vi/xi} that substitutes every free occurrence of each variable xi for
the value vi. For any refinement expression r, r{.../fv(r)} is a closed refinement. Since our
predicates are abstract, we do not explicitly specify their semantics, nor their well-formedness.
Instead, we assume each closed refinement formula evaluates to ⊤ or ⊥. We assume there
exists a function eval(r) that evaluates the refinement r, provided that r is closed1. Finally,
we assume the existence of a closed formula ⊤ that is a tautology, i.e. eval(⊤) = ⊤.

Given a map M and a refinement r, we note M |= r if and only if the refinement
r is closed under the map M : fv(r) ⊆ dom(M), and evaluates to ⊤ after substitution:
eval(r{M(fv(r))/fv(r)}) = ⊤.

In a protocol with multiple participants, let P be a set of participants ranged over by
A, B, . . . and p, q, . . . being meta-variables over participant names. In this work, messages
contain a label, a variable, and a value. Let L be a set of labels; ℓ and its decorated variants
range over labels in L. We define M = L× (V×C) for the set of messages (as a reminder: L
is the set of labels, V the set of variables, and C the set of values).

2.2 Traces
Let us denote e⃗ = e1::. . .::en (n ≥ 0) as a FIFO, i.e., a finite sequence of elements ei (messages
exchanged in this paper). We use ε for an empty FIFO (n = 0). We define: enq(e⃗, e) def= e::e⃗;
deq(e⃗::e) def= e⃗ (deq(ε) is undefined); and next(e⃗::e) def= e (next(ε) is undefined). Notice

1 We do not discuss the decidability of the actual chosen logic of refinements here. For undecidable logics,
providing such function is, of course, not possible; however this is not in the scope of this work.

M. Vassor and N. Yoshida 41:7

that deq(e⃗) is defined if and only if next(e⃗) is defined. In this paper, we consider one FIFO
channel per pair of participant. We call queues a map of all pairs of distinct participants to
their communication FIFO of a system. We note enq(p,q)(w, e), deq(p,q)(w), next(p,q)(w),
where the indices indicates which FIFO of the set is affected (see [35] for the formal definition).
We write w∅ for the empty queue, which is the queue where w(p,q) = ε for all p and q.

Actions are tuples consisting of a sending participant p, a direction of communication
† ∈ {!, ?} (! stands for sending, and ? stands for receiving), a receiving participant q, a message
m and a predicate r associated to the action (as a reminder: R is the set of refinements).
We require participants to be distinct (i.e. p ̸= q).

▶ Definition 1 (Action and Trace). An action is an element of A defined as follows: A =
P × {!, ?} × P × M × R. We write α = p†q⟨m⟩ : r (p ̸= q) when ⟨p, †, q, m, r⟩ ∈ A.

Traces (denoted by τ and its decorated variants) are finite sequences of actions, defined
inductively from the rule T ::= α · T | ϵ , where α is an action. We write A⋆ for
the set of traces.

▶ Example 2 (Trace). We presented a trace in Section 1.

We denote τ1 · τ2 for the concatenation of two traces. We assume an intuitive notion of the
size of trace, as well as lemmas that allow us to infer that, if the size is 0, then the trace is ϵ.

2.3 Properties of Refined Traces
In this subsection, we characterise the correctness of traces w.r.t. refinements.

There are two conditions valid traces should verify. First, the sending/reception of
messages should be consistent (as with normal MPST). Second, for every action of the trace,
predicates that guard the action should hold. We call traces that satisfy message consistency
well-queued traces, and the traces that satisfy the predicates well-predicated traces. In the
end, we consider traces that satisfy both conditions: we call those traces valid refined traces.

To start with well-queued traces, we first evaluate the impact of a trace on a queue, by
looking at the effect of each action on that queue (Definition 3).

▶ Definition 3 (Trace Ending Up with Queues, well-queued traces). A trace τ ends up with
the queue wf w.r.t. a queue wi if:
1. If τ = ϵ, wi = wf ; and
2. If τ = p!q⟨m⟩ : r · τ ′, then τ ′ ends up with wf w.r.t. enq(p,q)(wi, m); and
3. If τ = p?q⟨m⟩ : r · τ ′, then τ ′ ends up with wf w.r.t. deq(p,q)(wi) and next(p,q)(wi) = m.
A trace τ is well-queued with regards to the queue w if τ ends up with the empty queue w∅
with respect to an initial queue w.

A trace τ is valid if τ is well-queued with respect to the empty queue w∅.

▶ Remark 4. In Definition 3, we say wi is the initial queue.

Regarding well-predicated traces, the idea is to record the latest value of each variable in
a map; and to use that map to evaluate refinements (Definition 5).

▶ Definition 5 (Well-Predicated Traces). A trace τ is well-predicated under a map M , if
either

(i) τ = ϵ; or
(ii) τ = p†q⟨l, (x, c)⟩ : r · τ ′ and M [x 7→c] |= r and τ ′ is well-predicated under M [x 7→c].

ECOOP 2024

41:8 Refinements for Multiparty Message-Passing Protocols

▶ Example 6 (Well-Predicated Traces). In Section 1, we presented the trace τ :
A!B⟨secret, ⟨n, 5⟩⟩ : ⊤ · A?B⟨secret, ⟨n, 5⟩⟩ : ⊤ · C!B⟨guess, ⟨x, 5⟩⟩ : ⊤ · C?B⟨guess, ⟨x, 5⟩⟩ : ⊤

To illustrate Definition 5, we propose two actions after τ :
(i) τ1 = B!C⟨more, ⟨_, _⟩⟩ : x > n; and
(ii) τ2 = B!C⟨correct, ⟨_, _⟩⟩ : x = n.

We can investigate whether τ · τ1 (resp. τ · τ2) is a well-predicated trace under M∅. According
to Definition 5, we have to investigate whether τ1 (resp. τ2) is well predicated under
M = {⟨n, 5⟩, ⟨x, 5⟩}.

For τ1, according to Item ii in Definition 5, then x > n must hold under M , which is not
the case, therefore τ · τ1 is not well-predicated.

Regarding τ2, according to Item ii in Definition 5, then x = n must hold under M , which
is the case.

Finally, we consider traces that are both valid with respect to predicates and to messages.
We call those Valid Refined Traces. Our overall goal is to show that our framework only
produces such valid refined traces.

▶ Definition 7 (Valid Refined Traces). A refined trace τ is valid if
(i) τ is well-queued with respect to the empty queue w∅; and
(ii) τ is well-predicated under the empty map M∅.

3 Refined Communicating Automata

In this section, we model message-passing concurrent systems with refinements. We ensure
that this model only generates valid refined traces (c.f. Definition 7). Our model of
computation is an extension of communicating systems (CS) [5, 8], which are sets of Finite
State Machines communicating using queues. We introduce refined communicating systems
(RCS), a variant of CS which accounts for refinements and we show that all traces produced
by RCS are valid refined traces (Theorem 18).

Refined Communicating Finite State Machines. Communicating systems [5] are a con-
current model of computation composed of a set of communicating finite state machines
(CFSM) that interact with exchanges of messages. CFSM are standard finite state machines,
where labels represent actions (i.e. sending or receiving messages). Individual FSM are then
given a concurrent semantics, which performs messages exchanges. The state of the system is
called a configuration, which records the state of the individual CFSMs as well as the content
of the message queues. In this section, we adapt communicating systems for refinements.

First, we add refinements to the transitions of CFSM, which we call refined CFSM. This
appears in the additional R in Definition 8 (we recall R is the set of refinements).

▶ Definition 8 (Refined Communicating Finite State Machine (RCFSM)). An RCFSM is a
finite transition system given by M = ⟨Q, C, q0,M, δ⟩, where Q is a set of states; C = {pq ∈
P2 | p ̸= q} is a set of channels2; q0 ∈ Q is an initial state; M is a finite alphabet of messages;
and δ ⊆ Q × (C × {!, ?} × A × R) × Q is a finite set of transitions.

We write s
i†j⟨m⟩:r−−−−−→ s′ for ⟨s, ⟨ij, †, m, r⟩, s′⟩ ∈ δ. Refined communicating systems (RCS)

are analogous to their non-refined counterparts and simply consist of a tuple of RCFSM, with
one RCFSM per participant. For refined configurations, as with (non-refined) configurations,

2 The original definition uses channels, which we do not use. We keep them for the sake of consistency.

M. Vassor and N. Yoshida 41:9

B1 B2 B3 B4
A?B⟨secret, ⟨n, cn⟩⟩ : ⊤ C?B⟨guess, ⟨x, cx⟩⟩ : ⊤

B!C⟨more, ⟨_, _⟩⟩ : x < n

B!C⟨less, ⟨_, _⟩⟩ : x > n

B!C⟨correct, ⟨_, _⟩⟩ : x = n

Figure 3 RCFSM of B in the G± protocol.

we store the states of the individual CFSM and the content of queues. In addition, contrary
to non-refined configurations, refined configurations also contain a map in order to keep track
of the values of the variables in order to be able to evaluate refinements.

▶ Definition 9 (Refined Communicating System (RCS)). A refined communicating system is
a tuple R = ⟨Mp⟩p∈P of RCFSMs such that Mp = ⟨Qp, C, q0p,M, δp⟩.

An RCS uses one RCFSM per participant i ∈ P. A configuration represents the state of
such RCS, where each participant i is in a local state si.

▶ Definition 10 (Refined Configuration). A refined configuration of an RCS R is a tuple S

as follows: S
def= ⟨⟨s1, . . . , sn⟩, w, M⟩R where each si ∈ Qi, w is a queue of messages, and M

is a map from variables names to values. Let S be the set of refined configurations.

▶ Remark 11. Refined configurations are indexed by their RCS. This allows the configuration
to store the automaton of the participant. The semantics developed below uses those (local)
transitions to infer the global semantics. When the context is clear, we omit this index.

From that, we characterise initial and final configurations. We call a configuration initial
when it is a possible configuration where no actions have been taken yet. This means that
there is no pending messages (which would imply a previous send action), nor known variables
(which would imply a previous action initialised the variable). We say a configuration is final
when there are no pending messages (otherwise, we would expect a receive action to take
place). Notice that it does not mean the system cannot take action at all.

▶ Definition 12 (Initial and Final Refined Configuration). A refined configuration
⟨⟨s1, . . . , sn⟩, w, M⟩ ∈ S is initial if and only if

(i) w = w∅;
(ii) M = M∅; and
(iii) each si is initial in the RCFSM.

A refined configuration S = ⟨⟨s1, . . . , sn⟩, w, M⟩ ∈ S is final if and only if w = w∅.

▶ Example 13 (RCS). The RCFSM of participant B in the guessing game is shown in
Figure 3. See [35] for the RCFSM of A and C. Together, they form a RCS, which initial
configuration is ⟨⟨A1, B1, C1⟩, w∅, M∅⟩.

Refined Semantics. We now define the semantics of RCS in Definition 14 with two reduction
rules GRRec and GRSnd (the initial GR stands for global refined, to distinguish the rules
from variants in the following parts of this work), which are respectively used for receiving
and sending messages. To avoid confusion with RCFSM reductions, we use a double arrow
(=⇒) to represent reductions at the refined communicating system level.

ECOOP 2024

41:10 Refinements for Multiparty Message-Passing Protocols

Rule GRSnd specifies that, if a participant i reduces from state si to state s′
i while

sending a message m and if the refinement predicate r attached to the action holds, then the
transition is taken at the global level. In the resulting refined configuration, the message is
enqueued in the relevant queue and the map of known variables M is updated to take into
account the new value of the carried variable c.

Rule GRRec is similar, with the additional requirement that the message received must
be the next in the participant’s queue (the third premise).

Notice that the verification of refinements is dynamic, as it is performed by the corres-
ponding premise in each of the rules, i.e. at execution time.

▶ Definition 14 (Refined Global Semantics). Given a RCS R = ⟨Mp⟩p∈P, we define:

GRRec
t = si

j?i⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ s′
i ∈ δi M [x 7→c] |= r next(j,i)(w) = ⟨ℓ, ⟨x, c⟩⟩

⟨⟨. . . , si, . . .⟩, w, M⟩R
t=⇒ ⟨⟨. . . , si

′, . . .⟩,deq(j,i)(w), M [x 7→c]⟩R

GRSnd
t = si

i!j⟨ℓ,⟨x,c⟩⟩:r−−−−−−−→ s′
i ∈ δi M [x 7→c] |= r

⟨⟨. . . , si, . . .⟩, w, M⟩R
t=⇒ ⟨⟨. . . , s′

i , . . .⟩, enq(i,j)(w, ⟨ℓ, ⟨x, c⟩⟩), M [x 7→c]⟩R

▶ Remark 15. Global transitions are labelled with the underlying local transition. When the
local transition is not relevant, we do not show it.

▶ Example 16 (Transitions of a RCS). Considering the RCS of G± (Figure 3) in its initial
configuration Ci = ⟨⟨A1, B1, C1⟩, w∅, M∅⟩, we have that the automaton of A can fire a
transition A1

A!B⟨secret,⟨n,5⟩⟩:⊤−−−−−−−−−−−−→ A2, and M∅[n 7→5] |= ⊤, by definition of ⊤. Therefore, Ci

can take a GRSnd transition and reduce to ⟨⟨A2, B1, C1⟩, w, {⟨n, 5⟩}⟩, where w contains a
single message ⟨secret, ⟨n, 5⟩⟩ in w(A,B).

If the RCS is in the configuration C = ⟨⟨A2, B3, C2⟩, w∅, M⟩ with M = {⟨x, 5⟩, ⟨n, 5⟩},
the RCFSM of participant B offers three possible transitions:

(i) B3
B!C⟨more,⟨_,_⟩⟩:x<n−−−−−−−−−−−−−−→ B2;

(ii) B3
B!C⟨less,⟨_,_⟩⟩:x>n−−−−−−−−−−−−−→ B2; and

(iii) B3
B!C⟨correct,⟨_,_⟩⟩:x=n−−−−−−−−−−−−−−−→ B4.

The predicates carried in first two do not hold under M : M ̸|= x < n (resp. for x > n).
Therefore, only B3

B!C⟨correct,⟨_,_⟩⟩:x=n−−−−−−−−−−−−−−−→ B4 is feasible as a GRSnd transition in the RCS.
As we will see below (Theorem 18), this semantics prevents invalid traces.

Trace of Refined Communicating Systems. In order to show that the semantics of RCS
captures the intuition of refinements, we study the traces formed by sequences of reductions
(see [35] for the formal definition of traces of RCS).

▶ Example 17 (Trace of an RCS). The trace τ · τ2 (Example 6) is a trace of the RCS of G±.

We conclude this section with our main result, which is that all traces produced by S(G)
are valid refined traces. A trace is initial (resp. final) if it is obtained from a run whose first
(resp. last) state is initial (resp. final).

▶ Theorem 18 (Traces of Refined Communicating Systems are Valid Refined Traces). For all
RCS R, for all initial and final traces τ of R, τ is a valid refined trace.

The proof is in [35].

M. Vassor and N. Yoshida 41:11

G ::= p → q{li(xi : S |= R).G}i∈I | µt.G communication, recursive type
| t | end type variable, termination

L ::= p⊕{li(xi : S |= R).L}i∈I | t | end internal choice, type variable, termination
| p&{li(xi : S |= R).L}i∈I | µt.L external choice, recursive type

S ::= int | . . . sort (payload types)

Figure 4 Syntax of Global (G) and Local (L) Types and Sorts (S).

4 Refined Multiparty Session Types (RMPST)

In the two previous sections, we introduced refinement validity and a variant of CS which is
correct with respect to our validity criterion. However, working with RCS is cumbersome, in
particular if we intend to prove additional properties (e.g. deadlock freedom). Fortunately,
various models for message-passing concurrent computation have been developed in the
literature, many of which can be encoded into CS. Multiparty session types (MPST) [38, 19, 18]
is an example of such model. We focus on MPST as they have proved successful for many
applications and the theory enjoy many useful properties (e.g. session fidelity, deadlock
freedom, liveness etc). However, MPST is not the only possible choice, and we sketch different
input models in [35]. In this section, we introduce refined multiparty session types (RMPST),
which are an extension of MPST annotated with refinement predicates and we show how one
can extend existing models to easily obtain refinements.

In Section 4.1, we first present the syntax of global and local refined multiparty session
types, adapted for refinements. In Section 4.2, we present how to obtain RCS from local
RMPST, extending a standard approach to implement MPST in CS [12] with refinements.

4.1 Syntax of RMPST
We define the syntax of RMPST. First we assume that messages carry different sorts of
payload. As a reminder, for simplicity, in our examples, we only consider int payloads.
Also, we recall the conventions from Section 2.1: P is the set of participants and L is the
set of labels. For recursion, we introduce type variables that range over {T, U, . . . }; t is a
meta-variable taken over the set of type variables. We assume all type variables appearing in
a type are distinct and we do not (syntactically) distinguish global and local type variables.
Finally, xi are meta-variables over payload variables taken from the set V.

We first define global refined multiparty session types, which are inductive data types
generated by the production G in Figure 4. The type A → B{li(xi : Si |= ri).Gi}i∈I describes
a protocol where A chooses a label li amongst possible I and sends a message to B. The
message contains a payload of type Si, which is bound to xi when sent. Refinement predicates
we introduce guard the communication they are attached to, meaning the system can select
a choice with predicate ri only if ri holds. In that case, the message is sent and the protocol
continues with its continuation of type Gi. µT.G binds T in G, and a bound type variable
T in a type denotes a protocol recursion. Let frv(G) denotes the free recursion variables
occuring in G. Finally end describes a terminated protocol. Let parts(G) be the set of
participants that appear in G (c.f. [35] for the definition of parts(G)). We write p ∈ G for
p ∈ parts(G).

▶ Example 19 (Refined Global Multiparty Session Type). The type G± presented in Section 1
is a refined global type; we have parts(G±) = {A, B, C}.

ECOOP 2024

41:12 Refinements for Multiparty Message-Passing Protocols

To characterise the behaviour of individual participants, we define refined local multiparty
session types, which are inductive datatypes generated by L in Figure 4. Recursion, type
variables and termination are similar in local and global types. Only the communication
specifications differs: in a local type p⊕{li(xi : Si |= ri).Li}i∈I describes an internal choice,
i.e. the participant chooses a label li and sends it to p. Conversely, p&{li(xi : Si |= ri).Li}i∈I

describes an external choice: p makes a choice amongst the possible li and the local participant
receives this choice.

Global and local MPST are related: we can project a global type onto the local types
of its participants. Below, we define a projection (partial) operator G↾p, which returns the
local type of p with respect to the global type G.

We define a projection with a merge (partial) operator, which merges multiple local types
of a participant into a single local type. This is used to merge the (possibly different) types
of the continuations present in the communication branches. The study of different variants
of merge operators is an active field (e.g. [32, Section 3]). For the sake of simplicity, in this
paper we use a naïve merge operator, which simply ensures that all types are the same.

▶ Definition 20 (Projection). Given p, q and r three distinct participants:

p → q{li(xi : Si |= Ri).Gi}i∈I↾p = q⊕{li(xi : Si |= Ri).Gi↾p}i∈I

q → p{li(xi : Si |= Ri).Gi}i∈I↾p = q&{li(xi : Si |= ⊤).Gi↾p}i∈I

q → r{li(xi : Si |= Ri).Gi}i∈I↾p = ⊓i∈I(Gi↾p)

µt.G′↾p =
{

µt.(G′↾p) if p ∈ G′ or frv(G′) ̸= ∅
end otherwise

t↾p = tend↾p = end

where a merge operator is defined as: ⊓i∈ILi
def= L if ∀i ∈ I · L = Li, undefined otherwise.

Notice that our local RMPST accept refinements on both receiving and sending, and the
semantics developed in Section 3 accept any position for verification. When projecting a
global type G = A → B {ℓ(x : int |= r).end} onto local types, we therefore have a choice to
project the refinement:

on the send side: G↾A = B⊕{ℓ(x : int |= r).end} and G↾B = A&{ℓ(x : int |= ⊤).end}
on the receive side: G↾A = B⊕{ℓ(x : int |= ⊤).end} and G↾B = A&{ℓ(x : int |= r).end}
or a combination of both3.

Our projection takes the first option, i.e. refinements are checked when the message is emitted,
but with any of these choices, our developments would not substantially change.

▶ Example 21 (Projection). We project G± (Section 1) onto participants A and B4:
G±↾A = B⊕{secret(n : int |= ⊤).end}
G±↾B =

A&

secret(n : int |= ⊤).µT.C&

guess(x : int |= ⊤).C⊕

more(|= x < n).T,

less(|= x > n).T,

correct(|= x = n).end

3 For instance, if we want to implement a centralised server that communicates with (isolated) clients, we

may want all refinements to be asserted by the server, independently of the direction.
4 The projection onto C is similar to the recursive part of the projection onto B, with ! and ? swapped.

M. Vassor and N. Yoshida 41:13

4.2 From Refined MPST to Refined Communicating System
In this subsection, we show how to generate an RCS from local RMPSTs. As shown in
Definition 20, local types are projected from global multiparty session types. Therefore, this
step allows us to complete the conversion from a global RMPST into an RCS. We adapt the
translation from local type to CFSMs presented in [13] to accommodate refinements in types.

The intuition behind the translation is to decompose a local type into the individual
steps it specifies. For this, we first need to retrieve all those steps. We define the set of types
that occur nested in another type: a type T ′ occurs in a type T (noted T ′ ∈ T) if it appears
in the continuations of T after one or multiple steps (see [35]).

Given this, we can proceed to the translation itself, in Definition 22. This definition says
that the states of the RCFSM of a local type T0 are composed of the (sub)types that appear
in T0, stripped of the leading µt. (the function strip removes the leading recursions variables;
this formalises [13, Item (2) in Definition 3.4]) and of recursive variables t. We define the set
of transitions of this RCFSM by taking the action each type (i.e. each state) can take, and
adding a transition with this action from the initial state to the continuation (stripped of
leading µt.). In the case that the continuation is a recursion variable t, we have to search in
the original type the continuation. Compared to [13, Item (2) in Definition 3.4], we simply
add the support for the refinements predicates, which appear both in the types (i.e. in the
states) and in the actions (i.e. in the transitions).

▶ Definition 22 (RCFSM of Refined Local Types (extends Definition 3.5 in [13])). Given a
global type G, the RCFSM of participant p (with local type T0 = G↾p) is the automaton
A(T0) = ⟨Q, C, strip(T0),M, δ⟩ where:

Q = {T ′ | T ′ ∈ T0 ∧ T ′ ̸= t ∧ T ′ ̸= µt.Tµ};
C = {pq | p, q ∈ G, p ̸= q}; and
δ is the smallest set of transitions such that: for all T ∈ T0 in Q, for all c ∈ C:

if T is q⊕{ℓi(xi : Si |= ri).Ti}i∈I , for all Ti:
∗ if Ti ̸= t, then ⟨T , p!q⟨ℓi , ⟨x, c⟩⟩ : r, strip(Ti)⟩ ∈ δ

∗ if Ti = t with µt.T ′ ∈ T0, then ⟨T , p!q⟨ℓi , ⟨x, c⟩⟩ : r, strip(T ′)⟩ ∈ δ

if T is q&{ℓi(xi : Si |= ri).Ti}i∈I , for all Ti:
∗ if Ti ̸= t, then ⟨T , q?p⟨ℓi , ⟨x, c⟩⟩ : r, strip(Ti)⟩ ∈ δ

∗ if Ti = t with µt.T ′ ∈ T0, then ⟨T , q?p⟨ℓi , ⟨x, c⟩⟩ : r, strip(T ′)⟩ ∈ δ

where strip(T) def= strip(T ′) if T = µt.T ′; and strip(T) def= T otherwise.

Finally, we define the RCS of a type.

▶ Definition 23 (Refined Communicating System of a Type). The RCS of a type G, noted
S(G), is a tuple composed of the RCFSM of all participants S(G) def= ⟨A(G↾p)⟩p∈parts(G).
We note C(G) the initial configuration of S(G).

▶ Example 24 (Refined Communicating System of G±). The communicating system of G± is
S(G±) = ⟨A(G±↾A), A(G±↾B), A(G±↾C)⟩.

The initial configuration C(G±) of this RCS S(G±) is ⟨⟨A1, B1, C1⟩, w∅, M∅⟩.

Theorem 18 applies to RCS obtained from RMPST: RCS generated from Definition 23
only produce valid refined traces, with the refined global semantics presented in Definition 14.
Notice also that, if refinements always hold, RMPST and their semantics coincide with the
semantics presented in [12].

ECOOP 2024

41:14 Refinements for Multiparty Message-Passing Protocols

5 Decentralised Refined Multiparty Session Types

In the previous section, we presented RCS and we showed that every trace of an RCS is
a valid refined trace. However, RCS are theoretical constructions and are not intended to
be implemented directly, as they use a global shared map of variables. In practice, a user
may want to develop more precise analysis techniques on specific classes of RCS to remove
this global map, which allows a decentralised verification of refinements, while keeping the
validity of refined traces.

The goal of this section is twofold: on the one hand, the decentralised semantics we
develop serves as a theoretical background for our implementation (Section 7). On the
other hand, it illustrates the modularity of our framework. We show that the decentralised
approach produces valid refined traces by showing refined configurations we developed in
Section 3 simulate decentralised systems. This approach is not specific to our variant: we
expect other optimisations presented in the literature could be integrated similarly.

This section is divided in the following steps: first, we define what we mean by decentralised
verification of the refinements, by adapting the semantics of RCS (Definitions 25 and 28). We
split the global map of variables’ values into local maps (one per participant). Then, we show
that despite being modified, the new variant still produces valid refined traces (Definition 7).
We justify this claim by proving that under some conditions, the original RCS simulates (c.f.
[30, Exercise 1.4.17, p. 26]) the decentralised variant (Theorem 31). Since trace equivalence
is coarser than simulation, this is sufficient to prove that decentralised configurations that
meet the said conditions produce valid refined traces.

The conditions we mentioned above are:
(i) variables should not be duplicated; and
(ii) when evaluating a predicate, the free variables of the predicate must be in the local

map.
Without the first condition, we can possibly have two distinct values assigned to the same
variable without being able to distinguish which is the most recent. The second condition
is required to verify the refinements locally (e.g. predicates that constraint an action of A
should be checked by A itself). To illustrate the importance of the first condition, consider the
type A → B {ℓ1 (x : int).C → D {ℓ2 (x : int).end}}. In the centralised approach, x is aliased,
while in the decentralised approach, the x exchanged between A and B is stored in a local
map, and the x exchanged between C and D is stored in another local map; both are not
aliased. To prevent different semantics, we need to prevent such difference, which is the goal
of the first condition.

Decentralised Configurations and Decentralised Semantics. First, we define decentralised
configurations in Definition 25. Compared to Definition 10, instead of a global map in the
tuple, we associate a local map to each automata state. Those maps store the variables each
participant has access to.

▶ Definition 25 (Decentralised Configuration). A Decentralised Configuration of an RCS
S(G) = ⟨⟨Qi, Ci, q0,i,A, δi⟩⟩i∈parts(G) is a tuple ⟨⟨⟨s1, M1⟩, . . . , ⟨sn, Mn⟩⟩, w⟩S(G) where each
si ∈ Qi, each M i is a local map of variables to values, and w is a queue of messages.

Let SD be the set of decentralised configurations. We note D(G) the initial decentralised
configuration of S(G).

Remark 11 also applies for decentralised configurations.

M. Vassor and N. Yoshida 41:15

▶ Example 26 (Initial decentralised configuration of G±). In Example 13, we presented the
refined communicating system of G± and its associated refined configuration. The initial
decentralised configuration of this system is ⟨⟨A1, M∅⟩, ⟨B1, M∅⟩, ⟨C1, M∅⟩, w∅⟩. In particular,
notice that it uses the same set of refined CFSM than the refined configuration.

The global reduction rules are adapted accordingly: in the rules DRec and DSnd (“D”
stands for “decentralised”), when a message is sent or received, the corresponding local map
is updated, instead of a global map as in GRRec and GRSnd.
▶ Remark 27. Contrary to Definition 14, when a variable is sent, it is removed from
the local map of variables. Intuitively, when a participant sends a variable, it erases its
knowledge of it, to prevent aliasing issues. A direct consequence of this is that, in the
centralised implementation, the global map of variables is a superset of the local maps in
the corresponding decentralised implementation. Indeed, while a variable is in transit, it
appears neither in the sender’s map, nor in the receiver’s one. This observation will be
proved together with the simulation proof (Theorem 31).

▶ Definition 28 (Decentralised Global Semantics). Given an RCS R = ⟨Mp⟩p∈P

DRec
t = si

j?i⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ s′
i ∈ δi next(j,i)(w) = ⟨ℓ, ⟨x, c⟩⟩ Mi[x 7→c] |= r

⟨⟨. . . , ⟨si, M i⟩, . . .⟩, w⟩R
t=⇒ ⟨⟨. . . , ⟨si, Mi[x 7→c]⟩, . . .⟩,deq(j,i)(w)⟩R

DSnd
t = si

i!j⟨ℓ,⟨x,c⟩⟩:r−−−−−−−→ s′
i ∈ δi Mi[x7→c] |= r

⟨⟨. . . , ⟨si, M i⟩, . . .⟩, w⟩R
t=⇒ ⟨⟨. . . , ⟨si, M i\x⟩, . . .⟩, enq(i,j)(w, ⟨ℓ, ⟨x, c⟩⟩)⟩R

Conditions for Decentralised Verification and Correctness Proofs. We now focus on
proving that this decentralised semantics produces valid refined traces. As we mentioned
above, this holds under two conditions, which we define first:

▶ Definition 29 (Conditions for Decentralised Verification Simulation). Given a decentralised
configuration ⟨⟨⟨si, Mi⟩, . . .⟩, w⟩, the conditions for simulation are:
1. No duplication:

a. if ∃Mi · x ∈ dom(Mi), then ∀i, j · x ̸∈ w(i,j) and ∀j ̸= i · x ̸∈ dom(Mj).
b. if ∃⟨i, j⟩ · x ∈ w(i,j), then ∀i · x ̸∈ dom(Mi) and ∀⟨i′, j′⟩ ≠ ⟨i, j⟩ · x ̸∈ w(i′,j′).

2. Free variables are in the map: ∀i · ∀si
′ · si

i†j⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ s′
i · fv(r) ⊆ dom(Mi[x 7→c])

▶ Definition 30 (Decentralisable Type). A type G is decentralisable if the two conditions
hold for all reachable decentralised configurations from D(G).

Notice that the second condition is redundant, as the condition Mi[x 7→c] |= r (in the
premises of the reduction rules) already requires that fv(r) is a subset of the variables in
Mi[x 7→c]. Even without making this condition explicit, the system would stall if a predicate
cannot be verified. For the sake of clarity, we keep it explicit in the two required conditions.

We now observe a correspondence between the (centralised) refined configuration and the
decentralised configuration of a global type G. To characterise the correspondence between
centralised and decentralised configuration, we establish a simulation relation between the two
(see [35] and [30]). Intuitively, a simulation captures the fact that one system (the centralised
configuration in our case) can mimic all transitions of another system (the decentralised one
here).

We can now prove the main result of this section, which is that the decentralised semantics
does not induce new (unwanted) behaviours, i.e. all decentralised transitions can be mimicked
by centralised transitions, i.e. the centralised approach simulates the decentralised one.

ECOOP 2024

41:16 Refinements for Multiparty Message-Passing Protocols

▶ Theorem 31 (Centralised simulates Decentralised). For all decentralisable RMPST G

(Definition 30), C(G) simulates D(G).

Proof. The proof is available in [35]. ◀

This result shows that any type that verifies the conditions stated in Definition 29 can be
verified in a decentralised way. The difficulty is that the conditions are about the execution:
we do not know whether a predicate will have a missing variable during the execution. With
a knowledge flow algorithm, we can infer (from the communication specifications in the
global type) which participant has access to which variables at any point in the execution
of the protocol, i.e. we can localise each variable throughout the execution of the protocol.
This algorithm (which we present in [35]) does not present major challenges.

Notice that the reverse simulation does not hold: D(G) does not simulate C(G). Indeed,
C(G) can verify a predicate whose variables are spread over different participants, i.e. where
variables would be spread across multiple Mi in the decentralised variant.

6 Static Elision of Redundant Refinements

In this section, we present a second optimisation, which is complimentary from the first
one. The main idea is to statically analyse a given protocol to find and remove redundant
refinements. Our approach is to consider a target transition, which we aim to remove the
refinement, if possible. Our optimisation can then be applied successively to different target
transitions one after each other. For instance, consider the following protocol Gs. We target
the second refinement, x < 10, which necessarily holds if the first one does (since x does not
change). Therefore it is redundant and can be removed.

Gs = A → B {ℓ1 (x : int |= x < 0).A → B {ℓ2 (y : int |= x < 10).end}}

However, removing refinements is not always trivial, since the communication semantics is
asynchronous. Consider for instance the following type:

A → C {ℓ1 (x : int |= x > 20).A → B {ℓ2 (x : int |= x < 0).C → B {ℓ3 (y : int |= x < 10).end}}}

A naïve approach would be to remove the refinement of the last communication (x < 10),
since the previous communication has a stronger guarantee (x < 0). However, due to the asyn-
chrony of communications, the second and third communications could be swapped at runtime,
but the refinement (x < 10) does not hold before the action A → B {ℓ2 (x : int |= x < 0).. . .}
occurs. Therefore, in this case, removing the last refinement is incorrect. The optimisation we
present takes into account those cases, by keeping track of causal relations between actions.

This section is independent of the previous one, although this second optimisation can
help to make some protocols localisable: for instance, Gs above is not localisable. Since
the second step A → B {ℓ2 (y : int |= x < 10).end} requires A to access x, which is at B.
However, once removed, the protocol becomes localisable, and can therefore be decentralised,
helping the first optimisation introduced in Section 5.

As with the previous section, the optimisation we present could easily be further improved.
Here, we focus on a simple case, as our goal is not to discuss the optimisation itself, but
rather to show the versatility of the framework.

We present this section in two steps: first, in Section 6.1, we focus on RCS, which form
the core of our framework; then, in Section 6.2, we apply the above result to RMPST.

M. Vassor and N. Yoshida 41:17

A1 A2 A3
A!B⟨ℓ1 , ⟨x, _⟩⟩ : x < 0 A!B⟨ℓ2 , ⟨y, _⟩⟩ : x < 10

(a) RCFSM of A in the protocol Gs (A(Gs↾A)).

B1 B2 B3
A?B⟨ℓ1 , ⟨x, _⟩⟩ : ⊤ A?B⟨ℓ2 , ⟨y, _⟩⟩ : ⊤

(b) RCFSM of B in the protocol Gs (A(Gs↾B)).

Figure 5 RCFSM of the RCS of Gs, the running example of Section 6.

6.1 Static Elision of Refinements in RCS
In a first step, we develop and prove the correctness of our analysis in RCS. The question is
therefore whether, given a RCS R with one CFSM containing a transition with refinement r,
this RCS R is equivalent (bisimilar) to an RCS where r is replaced with ⊤.

For the sake of simplicity, in this subsection, we’ll explain the static elision of refinements
in RCS using examples. Formal definitions, lemmas and their proofs are available in [35].
We use the RCS of Gs shown in Figure 5.

If we aim to i.e. transitions which payload modify variables that do not appear free in
the refinement of the considered transition.

▶ Example 32 (Independent transitions). In S(Gs), A2
A!B⟨ℓ2 ,⟨y,_⟩⟩:x<10−−−−−−−−−−−−→ A3 depends on

the variable x ∈ fv(x < 10). This transition is self-independent. Since the payload of
A1

A!B⟨ℓ1 ,⟨x,_⟩⟩:x<0−−−−−−−−−−−−→ A2 is x, the former transition depends on the later.

▶ Remark 33. We note Tx the set of transitions σ
†⟨_,⟨x,_⟩⟩:_−−−−−−−−−−→ σ′. Given a transition t

with refinement r, if x ∈ fv(r), then t depends on all transitions of Tx.
Essentially, when attempting to remove a refinement from a target transition t, we can

disregard all transitions t is independent of.
The second definition we will need is about transitions being well-defined. So far, nothing

prevents us to use refinements with undefined free variables, we simply consider the refinement
does not hold (c.f. Definition 14). In this section, we specifically focus on systems where free
variables of refinements are in the map when the refinement is evaluated. When it is the
case, we call transitions with such refinements well-defined.

▶ Example 34 (Well-defined transition). Considering the RCS in Figure 5. In the RCFSM
of A, the (local) state A2 is only accessible with a transition A1

A!B⟨ℓ1 ,⟨x,_⟩⟩:x<0−−−−−−−−−−−−→ A2.
Therefore, any global state ⟨⟨A2, B{1,2,3}⟩, _, M⟩ necessarily contains a preceding transition

A1
A!B⟨ℓ1 ,⟨x,_⟩⟩:x<0−−−−−−−−−−−−→ A2. Therefore, x is always in the map M of that state.
Therefore, the transition A2

A!B⟨ℓ2 ,⟨y,_⟩⟩:x<10−−−−−−−−−−−−→ A3 is well-defined.

We can now conclude our analysis technique: consider a target transition t with refinement
r that is self-independent (it does not modify the variables of its refinement) and well-define.
If all transitions that modify the free variables of r can guarantee (via their refinement) that
the modification they do is correct with respect to r, then we can safely remove r.

▶ Theorem 35 (Correctness of refinement elision). Given an RCS R containing an RCFSM
M = ⟨Q, C, q0,A, δ⟩, and t = si

p†q⟨m⟩:r−−−−−→ si
′ ∈ δ, a well-defined self-independent transition.

Let t′ = si
p†q⟨m⟩:⊤−−−−−−→ si

′; δ′ = δ \ {t} ∪ t′; M ′ = ⟨Q, C, q0,A, δ′⟩; and R′ be R where M is
replaced with M ′. If, for each transition tw = _ _!_⟨_⟩:rw−−−−−−−→ _ in

⋃
x∈fv(r) Tx, for all map M ,

M |= rw entails M |= r, then there exists a bisimulation relating the states of R′ and R.

ECOOP 2024

41:18 Refinements for Multiparty Message-Passing Protocols

Proof. Proving each direction of the bisimulation is direct (see the proof in [35]). ◀

▶ Example 36 (Application of Theorem 35). The following RCFSM, where x < 10 is removed,
is a valid replacement for A(Gs↾A) in S(Gs).

A1 A2 A3
A!B⟨ℓ1 , ⟨x, _⟩⟩ : x < 0 A!B⟨ℓ2 , ⟨y, _⟩⟩ : ⊤

6.2 Application to RMPST Protocols
The above subsection explains how to remove some redundant refinements in RCS. In this
subsection, we intend to do the same, focusing on RMPST instead of RCS.

Our goal is the following: we are given an RMPST G, and we would like to remove one
of its refinement (which we call the target refinement r). For the sake of simplicity, in this
section, we assume all labels are uniquely used. For the general case, we can simply uniquely
rename redundant labels. Overall, the roadmap for this subsection is to show that given
the type G′, which is G where r is replaced by ⊤, G and G′ behave similarly, i.e. the RCS
the generate are bisimilar. To achieve this, we show that Theorem 35 applies to S(G) and
S(G′). Therefore, the main point is finding conditions on RMPST that ensures hypothesis
of Theorem 35 holds; we have to verify the following items:
1. all transitions our refinement depends on should entail the refinement itself;
2. the transition that carries the refinement must be well-defined. Since variables cannot

be removed from the map, the first occurrence of the target transition must respect the
domain condition. Therefore, for this step, we can ignore recursion.

The main difference with automata is that, in types, we have communications, which
possibly contains choices with multiple branches; and we our goal is to remove the refinement
of one of those branches. Therefore, we first introduce steps of a communication, i.e. given a
choice, what are the possible choices it can take. We then extend this to types. We show
that steps in a type correspond to transitions in the automata of that type.

▶ Example 37 (Step). The type Gy = A → B {ℓ2 (y : int |= x < 10).end} has the step
A → B⟨ℓ2 , y⟩ |= x < 10. Since Gy occurs in one of the branches of Gs (from the introduction
of this section), this step occurs in Gs.

Given this notion of steps occurring in a type that is analogous to transitions in the
RCFSM of that type, we can now focus on the conditions of Theorem 35. Therefore, we
have to characterise what corresponds to well-defined transitions in a type. Since transitions
(in RCS) and steps (in types) are analogous, we introduce well-define steps in a type. We
recall that, in a RCS, a transition is well-defined if the free variables of the refinement it
carries are always known when the transition is fired. Since variables are never removed from
the map, we can focus on the first occurrence of the transition. So far, we do not have a
notion of run for a type. Therefore, we first define an happens-before relation in RMPST,
and we use this relation to define well-defined steps as steps that contain a refinement which
free variable are all exchanged in a communication that happens-before the step we consider.
With those two definitions, we can finally prove that a well-defined step in a type corresponds
to a well-defined transition in the corresponding RCS.

▶ Example 38 (Well-define step in a type). Consider Gs and Gy as in Example 37. The step
A → B⟨ℓ2 , y⟩ |= x < 10 is well-defined. Indeed, fv(x < 10) = {x}, Gs < Gy, and Gs contains
a branch that sends x and which continuation contains Gy.

M. Vassor and N. Yoshida 41:19

We can finally proceed to the overall goal of this section: showing that the type with and
without the target refinement behave similarly. Thanks to the above lemmata, we simply
have to target a refinement with the appropriate conditions and apply Theorem 35.

▶ Theorem 39 (Static elision of redundant refinements in types). Given two a global types
G and Gs = p → q{ℓi(xi : Si |= ri).Gi}i∈I ∈ G, such that, for one t ∈ I, p → q⟨ℓt , xt⟩ |= rt

is a well-defined step with xt ̸∈ fv(rt). Let ℓt′ = ℓt, xt′ = xt, St′ = St, r′
t = ⊤, Gt′ = Gt,

Gs′ = p → q{ℓi(xi : Si |= ri).Gi}i∈I\{t}∪{t′}; and G′ be G where Gs is replaced with Gs′ . If,
for all steps, r → s⟨_, xw⟩ |= rw occurring in G (for each x ∈ fv(r)), M |= rw entails M |= r

(for all M), there exists a bisimulation between the states of S(G) and those of S(G′).

Proof. We prove this by showing that Theorem 35 applies to S(G) and S(G′). The proof is
provided [35]. ◀

▶ Example 40 (Application of Theorem 39). Given Gs as in Example 37 and G′
s as follows

(notice the second refinement is replaced by ⊤), Gs and the following G′
s have the same

behaviour:

G′
s = A → B {ℓ1 (x : int |= x < 0).A → B {ℓ2 (y : int |= ⊤).end}}

7 Implementation

In the previous section, we introduced an instance of our framework: a system that accom-
modates refinements using a decentralised verification mechanism. In this section, we follow
up on this example with an implementation, based on Rumpsteak, of this system.

Rumpsteak [7] is a framework to write Rust programs according to an MPST specification.
The framework is divided into two parts:

(i) a runtime library that provides primitives to write asynchronous programs in Rust; and
(ii) a tool (rumpsteak-generate) to generate skeleton Rust files from specification files

(i.e. from global types), in two steps.

Working with Rumpsteak takes two manual steps. The user specifies (step 1) the protocol
in a global type(written as Scribble files [39], see Figure 6a). This global type is automatically
projected using νScr [15] and the projected types are used to generate skeleton Rust files
(see Figure 6b). The generated Rust code contains Rust types that encode local types (e.g.
the type for A is shown in Line 1 in Figure 6b). The user then manually implements (step 2)
the process of each participant, following their type (Line 7), using provided communication
primitives (Line 13). Rumpsteak relies on Rust’s typechecker to ensure the consistency of
the implementation. For the sake of clarification where needed, we call Vanilla Rumpsteak
the framework without refinements (i.e. as presented in [7]), and Refined Rumpsteak the
framework modified to accommodate refinements.

In this section, we explain the main differences between Vanilla and Refined Rumpsteak:
we introduce refinements in the types used in the runtime library, we modify the program
generation step accordingly, and we introduce tools that ensure the localisation conditions
are met (Definition 29 in Section 5). The overall workflow is presented in Figure 7. We
conclude this section by measuring the overhead induced by the refinement w.r.t. Vanilla
Rumpsteak and the time needed for asserting the localisation conditions.

ECOOP 2024

41:20 Refinements for Multiparty Message-Passing Protocols

1 (*# RefinementTypes #*)
2

3 global protocol PlusMinus
4 (role A, role B, role C)
5 {
6 Secret(n: int) from A to B;
7 rec Loop {
8 Guess(x: int) from C to B;
9 choice at B {

10 More(x: int {x < n}) from B to C;
11 continue Loop;
12 } or {
13 Less(x: int {x > n}) from B to C;
14 continue Loop;
15 } or {
16 Correct(x: int {x = n}) from B to C;
17 }}}

(a) νScr description of the guessing game protocol.

1 type PlusMinusA =
2 Send<B, 'n',
3 Secret,
4 Tautology::<Name, Value, Secret>,
5 Constant<Name, Value>, End>;
6 // ...
7 async fn a(role: &mut A)
8 -> Result<(), Box<dyn Error>> {
9 try_session(role,

10 HashMap::new(),
11 |s: PlusMinusA<'_, _>| async {
12 let s =
13 s.send(Secret(10)).await?;
14 return Ok(((), s))
15 })
16 .await
17 }

(b) Rust type and implementation of participant
A of the guessing game protocol. The handwrit-
ten code (Line 7 to Line 17) is the same than
with Vanilla Rumpsteak.

Figure 6 Implementation of the guessing game using Rumpsteak.

Global Type (Scribble) (Figure 6a) Graph of Global Type

Unrolled Graph

Localisation result

Local Types (DOT)

Rust APIs

Rumpsteak program (Figure 6b)

Executable File

scr2dot

mpst_unroll

dynamic_verify

νScr

rumpsteak-generate

Manual implementation

Compilation (type-checking)

Figure 7 Workflow of Rumpsteak. Green nodes represent steps that already existed in Vanilla
Rumpsteak and that have been adapted to accommodate for refinements, red nodes represent new
steps, and blue nodes represent unmodified steps. The three new steps (scr2dot, mpst_unroll, and
dynamic_verify) verify the conditions mentioned in Definition 29.

7.1 Refinement Implementation

Modifications to the Rumpsteak Library. In order to accommodate for refinements, we have
to introduce new elements in to the Rumpsteak’s encoding of local types. Consider the local
type of participant A introduced in Example 21 B⊕{secret(n : int |= ⊤).end}: Rumpsteak
now has to take into account the name of the variable sent (n), and the refinement attached to
the transition (⊤). Consider the type declaration in Line 1 to Line 5, Figure 6b. Compared to
Vanilla Rumpsteak, we introduce 'n', a const generic5, that carries the name of the variable
sent (Line 4). Regarding the refinement, we introduce Tautology::<Name, Value, Secret>,

5 https://github.com/rust-lang/rfcs/blob/master/text/2000-const-generics.md

https://github.com/rust-lang/rfcs/blob/master/text/2000-const-generics.md

M. Vassor and N. Yoshida 41:21

which represent the refinement ⊤. The generic parameters are used to specify the type
of variable names (chars in our case) and values (i32) as well as the label of the message
(Secret). We modified νScr and rumpsteak-generate to generate skeleton files (the content
of the file up to Line 5). Rumpsteak provides a set of available refinements, and additional
ones can be written ad-hoc (for specific needs). To add an ad-hoc refinement, the user simply
implements the trait Predicate (which extends Default), which requires a method check that
asserts whether the predicate holds. For instance, the check function of Tautology simply
returns true.

Verification of the Conditions for Decentralised Refinement Assertion. As we explained
in Section 5, to make sure that refinements can be verified in a decentralised way, we require
to check that variables needed for the refinements are located correctly (Definition 29). To
perform this verification, we implemented new tools for the Rumpsteak framework (in red in
Figure 7).

Our tools:
(i) convert the global type into a graph (scr2dot);
(ii) unroll the loops once to precisely capture variables initialisations (unroll_mpst); and
(iii) localise variables on the unrolled graph (dynamic_verify).

The core part of this verification, dynamic_verify, finds variables locations with simple
inference rules written in Datalog. We use the crepe library [40] which provides a Datalog
DSL for Rust. We provide more details on the algorithm in [35].

Limitations. The current implementation makes extensive use of the Rust feature const
generics9 which introduces a limited form of dependent types in Rust. It allows to use
constant values in types. As of today, only some basic types can be used as const generics,
in particular chars and the various integer types. We use such const generics to encode
informations about the variables into the types: for instance, the predicate x < 5 would have
the type LTnConst<L, 'x', 5>, where the 'x' and the 5 are const generics.

For readability, we choose to set variables to chars, meaning that in the current imple-
mentation, we can only accommodate a limited number of distinct variables. Should more be
needed, one could easily modify our implementation to replace them with u64, which allows
264 variables names. Similarly, we only consider i32 as message payloads. Should different
types of messages be needed, they could be encoded in an enum.

Finally, the static elision optimisation (Section 6) is not implemented.

7.2 Runtime and Localisation Benchmarks
We evaluate how Rumpsteak with refinements performs with respect to Rumpsteak without
refinements. First, we measure the runtime of our analysis tool which verifies the two
conditions in Definition 29 (scr2dot, unroll_mpst and dynamic_verify). Although not a
runtime cost, and while we expect this analysis to be possibly expensive, we would like to
ensure that it is still practical for test cases from the literature. Secondly, we evaluate the
runtime overhead of adding refinements with respect to Rumpsteak without refinements.

Setup and Benchmark Programs. We evaluate the performance of Rumpsteak with re-
finement with benchmarks. Most of them are taken from the literature (Table 1). This set
of program contains various micro-benchmarks with a variety of combination of properties
(whether the protocol is binary or multiparty, contains recursivity or choice). Notice that
protocols that contain recursivity with no choice (e.g. simple auth are infinite). Therefore,

ECOOP 2024

41:22 Refinements for Multiparty Message-Passing Protocols

Table 1 The set of micro benchmarks together with their characteristics. “MP” denotes a
multiparty protocol, “Rec” the presence of recursion, and “Choice” the presence of choice.

Name MP Rec Choice
① simple adder [21] no no no
② travel_agency [23] no no yes
③ ping pong [42] no yes no
④ simple auth. no yes yes
⑤ ring max yes no no
⑥ three_buyers [19] yes no yes
⑦ plus or minus yes yes yes

such protocols are only measured in the variable localisation paragraph. Also, where it
applies, protocols were modified in order to add relevant refinements; such modifications
are listed below. By default, we add Tautology predicates (Section 7.1). The tests were
performed on a machine running Ubuntu 22.04.1 LTS x86_64 (kernel 5.15.0-60) with an Intel
i7-6700 processor (4 cores, 8 threads running at 4GHz maximum) and 16GB of memory6.
We compare Rumpsteak with refinement vs. Vanilla Rumpsteak. For a comparison between
Vanilla Rumpsteak and other libraries, see [7, Figure 6].

Added Refinements & Protocol Modifications. Some benchmarks from the literature were
adapted in order to accommodate refinements. In addition, we introduce three benchmarks.
Those benchmarks are close to examples from the literature, adapted to better highlight
refinements.
simple adder: This example is adjusted from the Adder ([21]) protocol, but we remove the

choice of operation in order to increase the benchmark diversity;
ping pong: In [42], some of the loops were statically unrolled, and the protocol contained a

choice to exit. Ours is equivalent to an infinite PingPong1 in [42].
simple authentication: This example is a binary example of an authentication protocol (e.g.

OAuth [31]). The added refinements enforce that access is granted if and only if the given
password is correct.

ring max: A multiparty protocol where participants receive a value from their predecessor
(except for the initial participant), and forward an other value to their successor (the final
participant forwards it to the initial one). Refinements ensure that the value forwarded is
greater than or equal to the value received.

plus or minus: An implementation of our running example.

Static Analysis of Variable Locations. Table 2 shows the decentralised verification time
cost for each refined global label. As shown in Figure 7, this static analysis is performed
with three tools. The results shown account for the whole pipeline, and were measured over
50 samples, with 10 warmup runs (excluded from the measurements). Overall, the runtime
for variable localisation is stable (around 5.6ms). We suspect that, for graphs with a low
number of states, the runtime is dominated by the accesses to the file.

6 The micro-benchmarks are not memory intensive. The memory size is not a limiting factor. However,
the benchmarks seem to be dominated by the startup time, which includes memory access time.

M. Vassor and N. Yoshida 41:23

Table 2 Benchmark of the localisation analysis (Red branch in Figure 7). |S| denotes the number
of states of the graph of the protocol; |U | denotes the number of states after unrolling the recursion
loops once; and |V | denotes the number of variables in the protocol. |S|, |U | and |V | are computed
manually to give an insight on how protocols compare. et is the execution time, measured by the
benchmark (in ms).

|S| |U | |V | et (µ ± σ)
① 4 4 3 5.5 ± 0.2
② 7 7 6 5.5 ± 0.2
③ 2 4 1 5.5 ± 0.2
④ 6 11 3 5.6 ± 0.2
⑤ 8 8 7 5.7 ± 0.2
⑥ 10 10 7 5.6 ± 0.2
⑦ 4 19 2 5.6 ± 0.2

Table 3 Evaluation of the runtime overhead due to the addition of refinements in Rumpsteak. p is
the MWU p-value, m is the baseline median runtime and mr is the median runtime with refinements
when applicable (p < 0.05). All times are in ms.

p m mr

① 0.00 0.7 0.8
② 0.11 0.8 N/A
④ 0.29 0.8 N/A
⑤ 0.17 0.8 N/A
⑥ 0.68 0.7 N/A
⑦ 0.04 0.7 0.8

Runtime Overhead of Refinement Feature. Our second set of benchmarks aims to measure
the overhead of runtime refinement verification with respect to the original Rumpsteak
framework. We are expecting Rumpsteak with refinements to be slower than the original
Rumpsteak, due to the additional cost of evaluating refinements. This benchmark has two
objectives: first, to find out whether there is an actual, statistically significant, overhead;
and second, if so, estimate this overhead. To measure this overhead, we only consider the
protocols that terminate from the benchmark set.

To fulfil the first objective, we use a Mann-Whitney U test (MWU). We used MWU as it
is a non-parametric test, and our runtime distributions do not follow a normal distribution,
which prevents us to do simpler analysis. As MWU is sensitive to the number of samples,
we run each benchmark 30 times, on both the original Rumpsteak and Rumpsteak with
refinements. We perform the MWU test on the collected 30 samples, preceded by 10 iterations
to warm the system up. Our hypothesis for the MWU test are the following:

H0: The distributions of runtimes with and without refinements are identical.
H1: The distributions of runtimes with and without refinements are distincts.

The p-values obtained from the MWU test are reported in the first column of Table 3.
We also report the baseline (Rumpsteak without refinements) median run time (over the 30
runs) in the second column of the table. Most often, the overhead is not significant (p ≥ 0.05)
and H0 can not be rejected. When the overhead is statistically significant, we also report the
median runtime (over the 30 runs) of Rumpsteak with refinements in the third column. With
our set of microbenchmarks, in most cases we cannot distinguish Rumpsteak with refinement
from Rumpsteak without refinements. We suspect Rumpsteak runtime is dominated by
communications and context switching. However, as our refinements can be arbitrarily
complex, specific instances could show real slowdown due to refinement evaluation.

ECOOP 2024

41:24 Refinements for Multiparty Message-Passing Protocols

8 Related Work and Conclusion

Design-by-Contract for (Multiparty) Session Types. In binary session types, [37] introduces
contracts for binary sessions, and provides an analysis tool which verifies whether a given
program comply with its associated contract. The verification is done with symbolic execution.
Compared to this paper, we address multiparty sessions. Besides, our framework is more
generic (specific instances could be based on symbolic execution, but we can also accommodate
other verification methods). Bocchi et al. [4] present a variant of MPST that allows predicates
on exchanges, that must hold for a typed process to take transitions. The main difference
with our work is that their approach focuses on correctness by construction, i.e. they accept
only correct protocols, while we can accept protocols that fail, and we simply prevent them
to generate incorrect traces. More precisely, the authors statically ensure that there is a
satisfiable path, which prevents some valid runs to be accepted. For instance, consider the
following type:

A → B {ℓ1 (x : int |= x < 10).B → A {ℓ2 (y : int |= x > y ∧ y > 6).end}}

This type would be rejected in [4] since if A sends x = 5 (which is allowed by x < 10), then
there is no y that satisfies 5 > y ∧ y > 6. By rejecting this, they also reject all possibly valid
runs (e.g. if A sends x = 9 and B replies with y = 7). A follow-up on this work is [3] which
introduces local states, i.e. the authors allow participants to have local variables, which can
be updated during process execution. The session types reflect those elements and contain
predicates on exchanged variables and local variables.

With respect to these two papers, our criteria for the validity of refinements (expressed
as a property of the generated trace) is decoupled from the semantics of the model. This
approach allows us to be more flexible than enforcing statically the refinements, and to lower
the cost of adopting refinements, in particular to retrofit refinements into existing systems.
For instance, using our framework, one can simply use the centralised semantics at first,
which is very expressive, without having to prove the correctness of the implementation. In
a second step, users can then develop different verification or analysis techniques which can
be plugged-in transparently. For instance, switching from Vanilla Rumpsteak to Refined
Rumpsteak does not involve changes in the implementation, as the modifications do not
happen in the programming interface. Also, compared to these papers, our framework is not
bound to MPST only, and provide an actual implementation of our framework.

Design-by-Contract in Choreography Automata. Choreography Automata (CA) are graphs
that represent the global behaviour of a concurrent system. The behaviour of individual
participants is obtained by projecting well-formed CA, i.e. erasing all actions that do not
concern a given participant. The result is a FSM which, after determinising and minimising,
is used as a CFSM. The projection of all participants leads to a CS. Notice that CA accept
some protocols that would be rejected by MPST, and vice-versa.

Gheri et al. [16] study the verification of CA with assertions. Their work and ours are
distinct with respect to the following aspects:

(i) the communication semantics;
(ii) the choices;
(iii) the logic for predicates; and
(iv) the implementation presented in [16] is limited to CA without assertions (i.e., the

design-by-contract approach was not implemented and left as their future work).

M. Vassor and N. Yoshida 41:25

Regarding Item i, Gheri et al. [16] defines choreography automata with synchronous
communication semantics, while the one we developed in this work is asynchronous. Gheri
et al. [16, Section 7] discusses asynchronous semantics but it remains future works.

Regarding Item ii, we are constrained by the syntax of RMPST, in which choices can only
happen between two selected participants, while choreography automata accept protocols
with choices where a (single) participant A sends to multiple receivers (B and C) [16,
Definition 4.15]. Explicit connections [22] is an extension of MPST that accommodates with
choices with multiple receivers.

Regarding Item iii, we kept our refinement logic abstract, while it is fixed in choreography
automata, with a form of first order logic. Besides, predicates are handled differently in both
frameworks as well: Gheri et al. [16] require choreography automata to be history-sensitive
[4], a definition which serves a similar purpose to our definition of variable localisation
(Section 5 and [35]), which constrains our decentralised semantics. Our centralised se-
mantics (Definition 10) is not constrained by variable localisation. For instance, the RMPST
A → B {ℓ1 (x : int |= ⊤).C → D {ℓ2 (y : int |= x = y).end}} produces valid traces with our
centralised semantics, while the corresponding choreography automata would be rejected.

Besides, our work introduces a general framework that can accommodate refined CA in
addition to RMPST. We show [35] a possible way to do so.

Implementations of Refinements in MPST. Neykova et al. [29] develop an F# library for
static verification of MPST with refinements. They present a compiler plugin which uses an
SMT solver (Z3) to statically verify some refinements. They use a notion of similar to our
variable localisation criterion (which they call variable knowledge), and a variant of CFSM
with refinements that is similar to ours. In their work, refinements that are statically asserted
by the SMT solver are pruned in the CFSM, while the rest of refinements are kept in the
CFSM and are dynamically checked. Similarly, [41, 42] develop a framework for multiparty
session types with refinements in F⋆. They delegate the management of refinements to F⋆

type system (which internally uses an SMT solver). They define refinements on global types,
which are then projected onto local types. They show that a global type and its projection are
trace equivalent. Those two works focus on the implementation of MPST with refinements.
[29] does not focus on the theory of refinements and the theory developed in [42] is tightly
coupled to F⋆. For instance, they do not present a correctness criterion such as valid refined
traces we present. Contrary to both works, our correctness criteria (based on valid refined
traces) is decoupled from (i.e. independent of) any target type theory, programming language
or model of computation: we only require an LTS labelled with actions. Besides, the logic
used for refinements is also a parameter of our framework, and users could use alternatives,
leading to a greater expressivity of our framework.

The main syntactical difference between our RMPST and those developed in [42] is that
we attach refinements to the messages of the protocol, while [42] attach refinements to the
payload value. This is due to a different approach: correctness in [42] is related to payload
types being inhabited while our criteria of correctness (developed in Definition 7) relies on
actions being allowed. In binary linear logic-based session types, [9] study the metatheory
of binary session types with arithmetic refinements. In particular, they focus on the type
equality, showing that added refinements make the type equality undecidable (they provide a
sound but incomplete algorithm for type equality). [10] also implement a library for session
types with refinements, although it only accounts for arithmetic refinements.

ECOOP 2024

41:26 Refinements for Multiparty Message-Passing Protocols

Other Related Works. There are various papers on the dynamic verification of MPST.
For instance [2] present a framework that allows for both static and dynamic verification of
MPST. This paper introduces a theory for (dynamically) monitoring assertions on messages
(i.e. the equivalent of our refinements). Furthermore, the authors introduce theoretical tools
(bisimulations) to relate monitored processes with correct unmonitored processes. This paper,
however, suffers a few limitations. First, it focuses on monitorable types (which intuitively
correspond to types satisfying our conditions for decentralised verification Definition 29).
Second, it focuses on dynamic verification of assertions. The paper is compatible with
statically verified processes (which allows turning off the dynamic monitoring), but it does
not present techniques for static verification in itself.

On the other hand, our paper takes a different approach, by decoupling the correctness
criterion from the verification technique. This allows us to have a more general framework
(our framework accept types that are not localisable/monitorable, although not all semantics
can accommodate those), as well as to develop static verification techniques.

In Rust, the refinement crate [11] provides refinement data types. Their approach of
refinements is similar to ours, with a Predicate trait that provides a method to perform
the predicate verification (at runtime). Refinement data types have also been implemented
in multiple languages (e.g. F⋆, Haskell [36], etc.). On the practical side, we can note the
similarities between typestates and session types [20]. [14] implements typestates in Rust
with a DSL to verify protocol conformance. While Rumpsteak does not use their library, it
internally uses similar constructs.

Regarding implementations of session types in Rust, there are several frameworks beside
Rumpsteak. [25] first integrate binary session types in Rust, but their implementation
suffers a few drawbacks (see [26, Section 3] for a detailed explanation). Sesh [26] and Ferrite
[6] are two Rust libraries for binary session types, and they implement synchronous and
asynchronous ones, respectively. MultiCrusty [27] implements synchronous MPST on top of
Sesh, with a mesh of binary sessions. Compared to MultiCrusty, Rumpsteak implements
directly MPST instead of wrapping them into binary sessions, and focuses on asynchronous
MPST. None of the aforementioned tools develops refinements. It would be an interesting
future work to apply our criteria to extend their tools with refinements.

Finally, we note the proximity between (MP)ST with refinements and dependent (MP)ST.
For instance, [33] introduce a session type calculus with label-dependency (their approach
does not explicitly account for payload value refinement). Other approaches exist, for instance,
an intuitionistic linear logic-based type theory for building value-dependent session types
[34], and separation logic-based work for reasoning about session types [17].

Future Work While, in our work, we consider MPST with payloads (some variants only
consider messages with labels), we restrict our MPST with a single payload (i.e. monadic
MPST, where each message carries a single value). The extension to polyadic MPST, where
a message can carry multiple values, is straightforward, by adapting the RCS rules (GRSnd
and GRRec, Definition 14).

We presented two optimisations, in order to illustrate the flexibility of our theoretical
framework. Regarding the decentralised verification (Section 5), there is room for an extension,
e.g. with specific domains (i.e. some class of protocols with specific refinements). Regarding
the static elision of redundant refinements, we envision improving the technique with use of
SMT solvers could be promising. The main difficulty lies in asynchronous communications:
one would need to consider all possible message orderings before solving constraints.

M. Vassor and N. Yoshida 41:27

References
1 Franco Barbanera, Ivan Lanese, and Emilio Tuosto. Choreography automata. In Simon

Bliudze and Laura Bocchi, editors, Coordination Models and Languages - 22nd IFIP WG 6.1
International Conference, COORDINATION 2020, Held as Part of the 15th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta,
June 15-19, 2020, Proceedings, volume 12134 of Lecture Notes in Computer Science, pages
86–106. Springer, 2020. doi:10.1007/978-3-030-50029-0_6.

2 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. Theoretical Computer Science, 669:33–
58, 2017. doi:10.1016/j.tcs.2017.02.009.

3 Laura Bocchi, Romain Demangeon, and Nobuko Yoshida. A Multiparty Multi-Session Logic.
In 7th International Symposium on Trustworthy Global Computing, volume 8191 of LNCS,
pages 111–97. Springer, 2012.

4 Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A Theory of Design-by-
Contract for Distributed Multiparty Interactions. In Paul Gastin and François Laroussinie,
editors, CONCUR 2010 - Concurrency Theory, Lecture Notes in Computer Science, pages
162–176, Berlin, Heidelberg, 2010. Springer. doi:10.1007/978-3-642-15375-4_12.

5 Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. Journal of the
ACM, 30(2):323–342, April 1983. doi:10.1145/322374.322380.

6 Ruofei Chen and Stephanie Balzer. Ferrite: A Judgmental Embedding of Session Types in Rust,
2021. (repository is found at https://github.com/ferrite-rs/ferrite). arXiv:2009.13619.

7 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-free asynchronous message
reordering in rust with multiparty session types. In Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’22, pages 246–261,
New York, NY, USA, April 2022. Association for Computing Machinery. doi:10.1145/
3503221.3508404.

8 Gérard Cécé and Alain Finkel. Verification of programs with half-duplex communication.
Information and Computation, 202(2):166–190, November 2005. doi:10.1016/j.ic.2005.05.
006.

9 Ankush Das and Frank Pfenning. Session Types with Arithmetic Refinements. In Igor
Konnov and Laura Kovács, editors, 31st International Conference on Concurrency Theory
(CONCUR 2020), volume 171 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 13:1–13:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CONCUR.2020.13.

10 Ankush Das and Frank Pfenning. Rast: A Language for Resource-Aware Session Types. Logical
Methods in Computer Science, Volume 18, Issue 1, January 2022. doi:10.46298/lmcs-18(1:
9)2022.

11 Brady Dean and Joey Ezechiëls. refinement crate, 2021. (repository is found at https:
//github.com/2bdkid/refinement).

12 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Session Types Meet Communicating
Automata. In 21st European Symposium on Programming, volume 7211 of LNCS, pages
194–213. Springer, 2012.

13 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Compatibility in Communicating
Automata: Characterisation and Synthesis of Global Session Types. In 40th International
Colloquium on Automata, Languages and Programming, volume 7966 of LNCS, pages 174–186,
Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-39212-2_18.

14 José Duarte and António Ravara. Retrofitting Typestates into Rust. In 25th Brazilian
Symposium on Programming Languages, pages 83–91, Joinville Brazil, September 2021. ACM.
doi:10.1145/3475061.3475082.

15 Francisco Ferreira, Fangyi Zhou, Simon Castellan, and Benito Echarren. NuScr, 2019. URL:
https://github.com/nuscr/nuscr.

ECOOP 2024

https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1016/j.tcs.2017.02.009
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1145/322374.322380
https://github.com/ferrite-rs/ferrite
https://arxiv.org/abs/2009.13619
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://doi.org/10.46298/lmcs-18(1:9)2022
https://doi.org/10.46298/lmcs-18(1:9)2022
https://github.com/2bdkid/refinement
https://github.com/2bdkid/refinement
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1145/3475061.3475082
https://github.com/nuscr/nuscr

41:28 Refinements for Multiparty Message-Passing Protocols

16 Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. Design-By-
Contract for Flexible Multiparty Session Protocols. In Karim Ali and Jan Vitek, editors, 36th
European Conference on Object-Oriented Programming (ECOOP 2022), volume 222 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 8:1–8:28, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2022.8.

17 Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: Session-type
based reasoning in separation logic. Proceedings of the ACM on Programming Languages,
4(POPL):1–30, January 2020. doi:10.1145/3371074.

18 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
ACM SIGPLAN Notices, 43(1):273–284, January 2008. doi:10.1145/1328897.1328472.

19 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
Journal of the ACM, 63(1):9:1–9:67, March 2016. doi:10.1145/2827695.

20 Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda. Type-
safe eventful sessions in java. In Proceedings of the 24th European conference on Object-oriented
programming, ECOOP’10, pages 329–353, Berlin, Heidelberg, June 2010. Springer-Verlag.

21 Raymond Hu and Nobuko Yoshida. Hybrid Session Verification Through Endpoint API
Generation. In Perdita Stevens and Andrzej Wąsowski, editors, Fundamental Approaches to
Software Engineering, Lecture Notes in Computer Science, pages 401–418, Berlin, Heidelberg,
2016. Springer. doi:10.1007/978-3-662-49665-7_24.

22 Raymond Hu and Nobuko Yoshida. Explicit Connection Actions in Multiparty Session
Types. In Marieke Huisman and Julia Rubin, editors, Fundamental Approaches to Software
Engineering, Lecture Notes in Computer Science, pages 116–133, Berlin, Heidelberg, 2017.
Springer. doi:10.1007/978-3-662-54494-5_7.

23 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming
in Java. In Jan Vitek, editor, ECOOP 2008 – Object-Oriented Programming, Lecture Notes
in Computer Science, pages 516–541, Berlin, Heidelberg, 2008. Springer. doi:10.1007/
978-3-540-70592-5_22.

24 International Telecommunication Union. Z.120 : Message Sequence Chart (MSC), February
2011.

25 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session types
for Rust. In Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming,
pages 13–22, Vancouver BC Canada, August 2015. ACM. doi:10.1145/2808098.2808100.

26 Wen Kokke. Rusty Variation: Deadlock-free Sessions with Failure in Rust. Electronic
Proceedings in Theoretical Computer Science, 304:48–60, 2019. (repository is found at https:
//github.com/wenkokke/sesh). doi:10.4204/eptcs.304.4.

27 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic:
Affine Rust Programming with Multiparty Session Types. In Karim Ali and Jan Vitek,
editors, 36th European Conference on Object-Oriented Programming (ECOOP 2022), volume
222 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:29, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISSN: 1868-8969. doi:
10.4230/LIPIcs.ECOOP.2022.4.

28 Bertrand Meyer. Design by Contract. Advances in Object-Oriented Software Engineering,
pages 1–35, 1991.

29 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: compile-time API generation of distributed protocols with refinements in F#.
In Proceedings of the 27th International Conference on Compiler Construction, CC 2018,
pages 128–138, New York, NY, USA, February 2018. Association for Computing Machinery.
doi:10.1145/3178372.3179495.

30 Davide Sangiorgi. An Introduction to Bisimulation and Coinduction. Cambridge University
Press, Cambridge ; New York, 2012.

https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
https://doi.org/10.1145/3371074
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/2808098.2808100
https://github.com/wenkokke/sesh
https://github.com/wenkokke/sesh
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.1145/3178372.3179495

M. Vassor and N. Yoshida 41:29

31 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited.
Proceedings of the ACM on Programming Languages, 3(POPL):30:1–30:29, January 2019.
doi:10.1145/3290343.

32 Felix Stutz. Asynchronous Multiparty Session Type Implementability is De-
cidable - Lessons Learned from Message Sequence Charts. In DROPS-
IDN/v2/Document/10.4230/LIPIcs.ECOOP.2023.32. Schloss-Dagstuhl - Leibniz Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.ECOOP.2023.32.

33 Peter Thiemann and Vasco T. Vasconcelos. Label-dependent session types. Proceedings of the
ACM on Programming Languages, 4(POPL):1–29, January 2020. doi:10.1145/3371135.

34 Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent session types via intuitionistic
linear type theory. In Proceedings of the 13th International ACM SIGPLAN Symposium on
Principles and Practices of Declarative Programming, pages 161–172, Odense Denmark, July
2011. ACM. doi:10.1145/2003476.2003499.

35 Martin Vassor and Nobuko Yoshida. Refinements for multiparty message-passing protocols:
Specification-agnostic theory and implementation, 2024. Full version on Arxiv.

36 Niki Vazou. Liquid Haskell: Haskell as a Theorem Prover. PhD thesis, University of California,
San Diego, USA, 2016. URL: http://www.escholarship.org/uc/item/8dm057ws.

37 Jules Villard. Heaps and Hops. PhD thesis, Laboratoire Spécification et Vérification, École
Normale Supérieure de Cachan, France, February 2011.

38 Nobuko Yoshida and Lorenzo Gheri. A Very Gentle Introduction to Multiparty Session
Types. In Dang Van Hung and Meenakshi D´Souza, editors, Distributed Computing and
Internet Technology, Lecture Notes in Computer Science, pages 73–93, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-36987-3_5.

39 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In Martín Abadi and Alberto Lluch Lafuente, editors, Trustworthy Global Computing,
pages 22–41, Cham, 2014. Springer International Publishing.

40 Erik Zhang. Crepe, 2022. URL: https://crates.io/crates/crepe.
41 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. Stat-

ically Verified Refinements for Multiparty Protocols. Proc. ACM Program. Lang., 4(OOPSLA),
November 2020. doi:10.1145/3428216.

42 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Statically Verified Refinements for Multiparty Protocols. arXiv:2009.06541 [cs], September
2020. arXiv: 2009.06541. arXiv:2009.06541.

ECOOP 2024

https://doi.org/10.1145/3290343
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://doi.org/10.1145/3371135
https://doi.org/10.1145/2003476.2003499
http://www.escholarship.org/uc/item/8dm057ws
https://doi.org/10.1007/978-3-030-36987-3_5
https://crates.io/crates/crepe
https://doi.org/10.1145/3428216
https://arxiv.org/abs/2009.06541

	1 Introduction
	2 Refined Traces and their Validity
	2.1 Preliminaries: Predicates Language and Semantics
	2.2 Traces
	2.3 Properties of Refined Traces

	3 Refined Communicating Automata
	4 Refined Multiparty Session Types (RMPST)
	4.1 Syntax of RMPST
	4.2 From Refined MPST to Refined Communicating System

	5 Decentralised Refined Multiparty Session Types
	6 Static Elision of Redundant Refinements
	6.1 Static Elision of Refinements in RCS
	6.2 Application to RMPST Protocols

	7 Implementation
	7.1 Refinement Implementation
	7.2 Runtime and Localisation Benchmarks

	8 Related Work and Conclusion

