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Abstract
Failure transparency enables users to reason about distributed systems at a higher level of abstraction,
where complex failure-handling logic is hidden. This is especially true for stateful dataflow systems,
which are the backbone of many cloud applications. In particular, this paper focuses on proving
failure transparency in Apache Flink, a popular stateful dataflow system. Even though failure
transparency is a critical aspect of Apache Flink, to date it has not been formally proven. Showing
that the failure transparency mechanism is correct, however, is challenging due to the complexity
of the mechanism itself. Nevertheless, this complexity can be effectively hidden behind a failure
transparent programming interface. To show that Apache Flink is failure transparent, we model it in
small-step operational semantics. Next, we provide a novel definition of failure transparency based
on observational explainability, a concept which relates executions according to their observations.
Finally, we provide a formal proof of failure transparency for the implementation model; i.e., we prove
that the failure-free model correctly abstracts from the failure-related details of the implementation
model. We also show liveness of the implementation model under a fair execution assumption. These
results are a first step towards a verified stack for stateful dataflow systems.
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1 Introduction

Stateful dataflow systems have seen wide adoption in the modern cloud infrastructure due to
their ability to process large amounts of event-based data at ingestion time [24]. Apache
Flink [13], for example, is used to power tens-of-thousands of streaming jobs with up to
nine billion events per second at ByteDance [48], and several thousand streaming jobs at
Uber [25]. An essential aspect of stateful dataflow systems is the recovery from failures, as
failures are to be expected in any long-running streaming job [19]. However, failure recovery
is non-trivial. For example, simply recovering from a failure by restarting a job from the
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Figure 1 This work in the context of a fully verified stack for distributed programming.

very beginning would discard all progress up to that point, making the recovery prohibitively
expensive. To balance the need for efficiency and reliability, stateful dataflow systems have to
embrace complex failure recovery protocols. Because of their complexity, the correctness of
these recovery protocols is a crucial problem for the reliability of stateful dataflow systems.

In previous work [21, 44, 26], a failure-masking recovery protocol is considered to be
correct, if failures can be masked such that the user cannot observe the failures. This property
is also known as failure transparency, i.e., a user should be able to ignore failures as if they
do not occur. Failure transparency has been shown for some distributed systems, such as
Durable Functions [8], Reliable State Machines [51], reliable actors (KAR) [61], and serverless
microservices (µ2sls) [30]. As for stateful dataflow, the core mechanism used in Apache
Flink’s [13] recovery protocol, namely Asynchronous Barrier Snapshotting (ABS) [11, 12],
has been shown to be a correct snapshotting protocol [10]. However, the proof does not
reason about failure transparency and its related aspects, such as modelling failures and the
recovery from failures, as well as about the equivalence of observed executions. That is, there
has been no formal proof that Apache Flink’s entire failure recovery protocol provides failure
transparency. Furthermore, the literature lacks a formal definition of failure transparency for
systems described with distinct failure-related rules using small-step operational semantics, a
widely-used method for defining program execution in programming languages theory.

An important approach for ensuring reliability and correctness is machine-checked formal
verification, i.e., proving that a system implements its specification. There is well-known prior
work on verified compilers [41, 33, 53], operating systems [31], as well as processors [16, 29, 55]
(Figure 1, left). However, there is an apparent lack of verified distributed systems, particularly,
there is no verified stateful dataflow system. We believe that it is essential to address this
gap in order to prevent disastrous outages of distributed infrastructure as known today.

This work is a first step towards the grand goal of providing a fully verified reliable stack
for distributed programming, as shown in Figure 1. It addresses the highlighted gap by:
(1) providing a definition of failure transparency, (2) formalizing a stateful dataflow system as
a model in small-step operational semantics, under the assumptions of crash-recovery failures
and FIFO-ordered channels, and (3) formally proving that the model permits abstracting
from failures, i.e., that it is failure transparent. Our definition of failure transparency is
based on observational explainability, a property which, informally, says that the explainable
implementation model generates the same observable output as is possible in the explaining
abstract model. Using this property, a system is defined as failure transparent if the whole
system is observationally explainable by its explicitly separated failure-free part. Finally, we
prove that our formal model of a stateful dataflow system based on Asynchronous Barrier
Snapshotting [13, 10] is failure transparent. This abstraction from failures is designed to
serve the end users of the modelled system with less interest in its implementation details.
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Contributions. In summary, this paper makes the following contributions.
We provide the first small-step operational semantics of the Asynchronous Barrier Snap-
shotting protocol within a stateful dataflow system, as used in Apache Flink (Section 4).
We provide a novel definition of failure transparency for programming models expressed
in small-step operational semantics with explicit failure rules and the intuitions behind it
(Section 5). It is the first attempt to define failure transparency in the context of stateful
dataflow systems.
We prove that the provided implementation model is failure transparent and guarantees
liveness (Section 6).
We provide a mechanization of the definitions, theorems, and models in Coq.2

Outline. Section 2 introduces background on failures, distributed systems, stateful dataflow,
as well as some basic notation used throughout this paper. Section 3 informally introduces
the stateful dataflow programming model and failure recovery via the Asynchronous Barrier
Snapshotting (ABS) protocol. Section 4 provides a small-step operational semantics of a
stateful dataflow system based on ABS. Section 5 defines failure transparency and observa-
tional explainability for programming models expressed in small-step operational semantics.
Section 6 proves that the implementation model is failure transparent. Section 7 discusses
related work, and Section 8 concludes this paper.

2 Background

2.1 Failures in Distributed Systems
A distributed system is a system of many processes communicating over a network [9]. The
kind of distributed systems which are related to this work are event-based processing systems
such as stateful dataflow systems [19, 67, 13, 52, 69, 60]. Failures within such systems are
expected to happen, due to their typical large scale and longevity [19]. However, failures are
notoriously hard to deal with within distributed systems. For this reason, failure transparency
is a necessary abstraction, as it enables the user to abstract from failures. Failure transparency
as a general concept, and failure recovery protocols are both well-studied topics in distributed
systems [63, 65, 40, 44, 43, 26, 21]. Moreover, failure transparency has seen an increase
in interest within the programming languages community in recent years [8, 30, 51, 61].
The goal of failure recovery is to provide automatic system means to recover from system
failures, in ways which the system user may or may not notice. In contrast, the goal of failure
transparency is to provide an abstraction of the system, such that the abstraction hides the
internals of failures and failure recovery, masking the failures from the user [26]. For this
reason, failure transparency greatly simplifies the programming model to the benefit of the
end user.

2.2 Stateful Dataflow and Apache Flink
Stateful dataflow systems, sometimes also called stream processing or dataflow streaming
systems, such as Apache Flink [13], have become ubiquitous for real-time processing of large
amounts of data [48, 25]. Other well known dataflow systems include Google Dataflow [2],
IBM Streams [18], Apache Spark [66] and Spark Streaming [68], Timely Dataflow [52],

2 https://github.com/aversey/abscoq
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NebulaStream [69], Portals [60], and more [7, 56]. The popularity and wide-spread use
of dataflow systems [25, 48] is due to their ability to scale-out production workloads. In
particular, they provide high throughput, low latency, and strong guarantees (such as failure
transparency, sometimes referred to as exactly-once processing). The programming model of
most stateful dataflow systems is based on acyclic dataflow graphs [24]. In these graphs, the
nodes are stateful processing tasks, and the edges are streams of data. As failure transparency
is an important aspect of the stateful dataflow programming model, it and its failure recovery
protocol is the focus of this paper.

2.3 Asynchronous Barrier Snapshotting
The failure recovery protocol used in Apache Flink [13] is a checkpointing-based rollback
recovery protocol [21], in which the system regularly takes checkpoints and, after a failure,
recovers to the latest completed checkpoint. For batch execution systems, such as MapRe-
duce [19], the general approach is to atomically execute one batch at a time, and if a failure
occurs, the system restarts from the beginning of the current batch. In contrast, computation
on stateful dataflow streaming systems is continuous [24], without predefined recovery points
in its execution, complicating the failure recovery. The solution to recovery in continuous
computations is the acquisition of causally consistent snapshots [14], which can be used for
the recovery to a consistent system state after a failure [21]. The specific implementation
of Apache Flink [13] and other stateful dataflow systems [60] use the Asynchronous Barrier
Snapshotting (ABS) protocol [12], an extended and optimized variant for data processing
graphs of the Chandy-Lamport snapshotting protocol [14], for taking causally-consistent
snapshots. In contrast to the Chandy-Lamport snapshotting protocol, the ABS protocol is
tailored to acyclic dataflow graphs and its snapshots do not contain any in-flight events. In
contrast to batching protocols, the ABS protocol is fully asynchronous, and does not require
blocking coordination. For these reasons, the ABS protocol greatly benefits the end-to-end
latency and throughput of the system.

2.4 Basic Notation
Functions. We denote a function f similarly to set-builder notation as:

[
k 7→ t

∣∣ k ∈ dom(f)
]
.

The part after the bar defines the domain of the function. The part before the bar defines
the value of the function at point k by the expression t. The expression t captures all
variables defined on the right side of the bar, including k. A function with only one element
in its domain is represented as

[
x 7→ x′], for example,

[
3 7→ 7

]
is such a function that

dom(
[
3 7→ 7

]
) = {3} and

[
3 7→ 7

]
(3) = 7. We denote function update as f g, such that:

(f g)(x) =
{

g(x) if x ∈ dom(g)
f(x) if x /∈ dom(g)

Sequences. We represent a sequence S as a function f with domain
{

i
∣∣ i ∈ N ∧ i < |S|

}
.

The length of the sequence is represented by |S| and may be infinite. The notation Si stands
for the i-th element of the sequence S and equals f(i). To simplify our analysis of sequences,
we use

[
t
]n

i
as a shorthand for

[
i 7→ t

∣∣ i ∈ N ∧ i < n
]
, where t is an expression that captures

i and represents the i-th element of the sequence. Therefore, for any sequence S, we have
that S =

[
Si

]|S|
i

.
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integers
source

E⟨5⟩ E⟨3⟩ E⟨1⟩

reset
source

Reset

incremental
average

task

result
sink

Figure 2 Example stateful dataflow program calculating the incremental average of a data stream
of integers. Another stream is used to transfer control messages resetting the state of the program.

The usage of indices for variables standing for sequences may differ from other variables.
If S stands for a sequence, then Si corresponds to the i-th element of S. If, in contrast, x is
not a sequence, then xi is an independent variable and is not connected to x or any xj . To
avoid confusion, we name sets and sequences using uppercase and individual elements using
lowercase.

Sequence concatenation can be used to extend or shrink existing sequences. We include a
shorthand notation for sequence concatenation, concatenating S with S′ as follows S : S′ ≡[
i 7→ Si

∣∣ i ∈ N ∧ i < |S|
][

j + |S| 7→ S′
j

∣∣ j ∈ N ∧ j < |S′|
]
. To simplify extraction and

addition of single elements, we denote single-element sequences
[
x

]1
i

as
[
x

]
, where x is the

only value in the sequence. The empty sequence is represented as ε.

3 Stateful Dataflow

Stateful dataflow systems, sometimes also called distributed dataflow, dataflow streaming,
or stream processing systems, are widely used for real-time processing of large amounts of
streaming data. This section informally introduces the stateful dataflow programming model
and its failure recovery mechanism, which we formalize and prove correct in later sections. It
is mostly based on Apache Flink [13], a stateful dataflow system, however, the core concepts
and techniques involved also apply to other similar systems [19, 66, 68, 2, 18, 52, 69, 60].

3.1 A Taste of Programming in Stateful Dataflow
Figure 2 shows a stateful dataflow example calculating the incremental average of a stream
of integers. The example consists of two sources ingesting streams of events into the system.
One source ingests a stream of integers E⟨i⟩, and the other ingests a stream of Reset events.
The term stream can be understood as an unbounded sequence of events, it may in general
continue forever. The example also consists of a task, an internal processing unit, which
calculates an incremental average of the integers. The incrementally computed averages are
emitted to a sink, which is the output of the system.

A more detailed representation of the example is shown in Listing 1. Sources, tasks,
and sinks are created using corresponding functions. The API enables users to: (1) create
sources, tasks, and sinks; (2) specify the connections in the graph by providing input and
output streams; and (3) to specify how the tasks process events by providing their processing
functions. In this example, when the task receives an integer event E⟨i⟩, it updates the
average and emits the new average. When it receives a Reset event, it resets its local state,
such that the average is reset to its initial state. To note is that the task is considered stateful,
as it maintains local state for its computation of the incremental average, even though the
processing function f is a pure function. Also to note is that it is possible to provide an
easier-to-use API above this core API, for example an API based on higher-order functions
(map, flatMap, etc.) [13, 60, 2, 52].

ECOOP 2024
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Listing 1 A stateful dataflow program calculating the incremental average of a data stream of
integers (see Figure 2).

Source(input = "src_reset", output = "reset")
Source(input = "src_ints", output = "ints")
Sink(inputs = { "avgs" }, output = "sink_avgs")
Task(inputs = { "src_ints", "src_reset" }, output = "avgs",

f = (event, state) => event match {
case Reset =>

val new_state = {sum = 0, count = 0}
return (Nil, new_state)

case E⟨value⟩ =>
val new_state = {sum = state.sum + value, count = state.count + 1}
val average = E⟨value = new_state.sum / new_state.count⟩
return (average : Nil, new_state) })

p1

p2

p3

m1,1

m2,1

m1,2 m1,3

m2,2

(a) Inconsistent snapshot.

p1

p2

p3

m1,1

m2,1

m1,2 m1,3

m2,2

(b) Chandy-Lamport snapshot.

p1

p2

p3

m1,1

m2,1

m1,2 m1,3

m2,2

(c) ABS snapshot.

Figure 3 Examples of snapshots obtained in a distributed stateful dataflow system with three
processes p1 → p2 → p3.

3.2 Failure Recovery via Asynchronous Barrier Snapshotting
Failure recovery is a crucial aspect of stateful dataflow systems. In this section, we describe
the failure recovery mechanism of the Asynchronous Barrier Snapshotting (ABS) protocol [12]
as used in Apache Flink. More specifically, ABS is a distributed snapshotting protocol [14]
which is used for the checkpointing-based rollback-recovery protocol [21] within Apache
Flink [12]. After a failure, a checkpointing-based recovery will restart the system from the
latest valid snapshot of the system [21].

Distributed Snapshotting Protocols. A distributed snapshotting protocol is considered
causally consistent if it captures snapshots that do not violate causality [14]. Causality,
here, refers to the causal order relation [35], informally: two events are causally ordered if
one event was part of a causal chain leading to the other event. Consequently, a causally
consistent snapshot captures the state of a system such that all events causally preceding
any other event in the snapshot are included. This definition is illustrated by three example
executions of different snapshotting protocols for a dataflow graph consisting of three nodes,
shown in Figure 3. An incorrect implementation (Figure 3a) would be to let the processes
periodically capture a snapshot of their state without coordination. A snapshot captured
with this method can be inconsistent, thus not suitable for recovery, as it may violate
causality. In the example, the incorrect snapshot has captured that m2,2 was received by
p3 but never sent by p2, this is a violation of causality, and recovery from such a snapshot
would be considered erroneous. In contrast, consistent snapshotting protocols do not violate
causality. The Chandy-Lamport asynchronous snapshotting protocol [14] (Figure 3b) solves
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Listing 2 Representation of an event handler within a stateful dataflow system implementing
failure recovery using the ABS protocol [12, 10].

EventHandler Def TK⟨f,
[
Si

]n

i
, o⟩

Vars state, snapshots
On Event Receive < Sj, epoch, Event⟨w⟩ > If ∃v: state = < epoch, v > Do

v’, w’ = f(v, w’)
state = < epoch, v’ >
emit(< o, epoch, Event⟨w’⟩ >)

On Event Receive
[
< Si, epoch, Border >

]n

i
If ∃v: state = < epoch, v > Do

snapshots.update(epoch 7→ v)
state = < epoch + 1, v >
emit(< o, epoch, Border >)

On Event Fail Do
state = Failed

On Event Recover < recoverEpoch > Do
state = < recoverEpoch, snapshots(recoverEpoch) >

this issue through distributed coordination by means of disseminating markers during its
regular execution, separating pre-snapshot and post-snapshot messages. However, a snapshot
captured with the Chandy-Lamport protocol may capture in-flight events: as shown in
the example (Figure 3b), the message m2,2 was sent (according to p2’s snapshot) but not
yet received (according to p3’s snapshot). The Asynchronous Barrier Snapshotting (ABS)
protocol [12, 10], in contrast, captures complete distributed computations without in-flight
events by modification of the marker-based Chandy-Lamport protocol. As shown in Figure 3c,
the snapshot does not include any in-flight events.

The ABS Protocol. A representation of the ABS protocol [12, 10] corresponding to our
formalization in Section 4 is found in Listing 2. The handler has two mutable states: the
processing task’s volatile state, and the persistent snapshots state. The state is a tuple
< epoch, v > consisting of the current epoch’s sequence number being processed, and the
state v of the processing task. The first event handler consumes an event Event⟨w⟩ from
a stream with stream name Sj out of the sequence of stream names S for some epoch if
it is not currently in a failed state. It processes the event w on its current state v, which
produces an output event w′ and new state v′. It then updates its mutable state, and emits
the output on its outgoing stream with stream name o. The second handler processes the
Border markers from the higher-level ABS protocol. It will consume all border events from
all its incoming streams in a single step. In doing so, it will take a snapshot of the local state
and update the epoch number, as well as disseminate the border marker further downstream.
To note is that the first handler does not consume from a stream if that stream has a border
marker as its next event, instead it will block such streams until the border step (i.e., the
second handler) has been taken. The first and second handlers implement the ABS protocol,
whereas the third and fourth handlers implement the failure recovery. The third handler
models the random failures of tasks, a task can randomly fail at any time, in which case it
loses its volatile state. The fourth handler implements the failure recovery, and is triggered
by some external coordinating instance once it has detected the failure. Once a failure has

ECOOP 2024
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p1

p2

recover
p3

(a) Execution with a failure.

p1

p2

p3

(b) Observed execution.

Figure 4 An execution with failures and its observed execution.

been detected, all tasks are recovered to the same epoch which corresponds to the latest
snapshot of the system. When triggered, the fourth handler recovers the state back to the
snapshot of the epoch found in the message.

Failure Recovery. The dataflow system can recover from failures using the ABS protocol.
Figure 4a shows an execution using the ABS protocol in which p2 fails. The coordinator (not
displayed) will eventually discover the failure, and trigger a synchronous recovery step in
which all processes recover to the latest completed snapshot and continue processing from
there. Even though failures occur in the execution, the observer will be able to construct an
idealized execution corresponding to our notion of failure transparency in which there are no
failed events or incomplete epochs as shown in Figure 4b. This is, loosely speaking, achieved
by ignoring the side effects from the failed epochs, and is explored in detail in Section 6.

4 Implementation Model

We now provide a formal model of the stateful dataflow system described above. The goal
of this formalization is to capture and analyze key aspects of the implementation of the
system, with focus on its failure recovery using the Asynchronous Barrier Snapshotting
protocol [12, 10]. The formal model is presented in two parts: the first part presents an
explicit evaluation rule for message passing, and the second part presents the evaluation
rules for processing and failure recovery.

4.1 Streaming Model
The streaming model is based on processors (or tasks) that communicate via streams. A
processor is a stateful entity that may consume an event from an incoming stream, process it,
and produce events to its outgoing stream. Streams, in turn, transport the events between
processors in a FIFO order. With this notion of processors and streams, we can execute
computational graphs by means of steps. Note that, in this section, we discuss a general
streaming model, leaving the implementation of processors abstract. Whereas, in the next
section, we discuss concrete implementations of processors.

Syntax. Figure 5 shows the syntax of the streaming model. A configuration c = ⟨ Π, Σ, N,

M, D ⟩ represents a point in an execution of a streaming program. The processors Π indexed
by identifiers p represent processor definitions, for which Σ represents the states of the
processors. The messages M are modeled as a sequence of all messages, for which a message
m corresponds to a tuple of a sequence number n, a stream name s, and the message data d.
The current sequence number from which a processor p reads from or writes to a stream s is
represented by Np(s). The sequence numbers for all processors are represented by N . When
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p, q processor ID s, o stream name n ∈ N sequence number

π processor σ state d message data D auxiliary data

Π ::=
[
π

]|Π|
p

processors

Σ ::=
[
σ

]|Π|
p

states

M ::=
[
m

]|M |
i

messages

N ::=
[
Np

]|Π|
p

sequence numbers
Np ::=

[
s 7→ n

∣∣ s
]

sequence numbers of p

X ::=
[
x

]|X|
i

actions
x ::= action

+ s d production
| − s d consumption

m ::= n s d message

Figure 5 Streaming syntax.

p

3 2 1 0

q1

0

q2

0

(a) Initial state.

p

4 3 2 1 0

q1

0

q2

0

(b) Production by p.

p

4 3 2 1

q1

1 0

q2

0

(c) Consumption by q1.

Figure 6 Production and consumption to/from a stream with a producer p and consumers q1

and q2.

a processor processes a message, it may produce and consume messages. This production
and consumption is represented by a sequence of actions X. A production action producing
message d to stream s has the form + s d, similar to the consumption action − s d. The
auxiliary data D is used to store global and additional execution information which is specific
to the models; for example, it can be used to implicitly model the global coordinator. In
the formalization here, the processor π, state σ, message data d and auxiliary global data D

are seen as atomic values, that is, no information about their internal structure is provided.
These limitations permit reusing the same syntax and rule for different instantiations of π, σ,
d and D.

Figure 6 illustrates a stream as a sequence of messages with index numbers. When
producing an event to a stream (Figure 6b), the event is appended to the stream with
an incremented index number. This also increments the producer’s index number for the
stream from 3 to 4. Similarly, the consumer’s index number points to the next event to be
consumed. Figure 6c shows that the consumer q1 has consumed the event 0, which in turn
also increments its index number for the stream, pointing at the next event. Consumers
and producers process the stream independently and asynchronously. The production of a
message is a kind of broadcast, in the sense that all processors will have to consume it before
consuming a newer message.

Step Rule. The streaming model essentially consists of a single rule (S-Step) which describes
the processing of messages. Intuitively, a streaming step from configuration ⟨ Π, Σ, N, M, D ⟩
can be taken if there is a local step with actions X, such that the actions are applicable. A
local step describes how the processor Πp changes its current state Σp to its next state Σ′

p

using actions X. The actions X are applicable to Np and M if all messages consumed by X

are available on the input streams of the processor. The application of the actions X results
in N ′

p and M ′, which are the incremented sequence numbers for the processor and the set of

ECOOP 2024
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messages M extended with the newly produced messages. In case of taking a streaming step,
the configuration transitions to the new configuration ⟨ Π, Σ

[
p 7→ Σ′

p

]
, N

[
p 7→ N ′

p

]
, M ′, D ⟩.

In summary, the result of the streaming step is an update of the local state of the processor
according to the local step, and an update of the sequence numbers and messages according
to the actions X. To simplify the analysis of streaming steps, auxiliary information about
the processor ID, its sequence numbers, and the actions of the step is placed on the arrow
of the execution step. This information can be omitted when it is not needed by applying
abstraction steps S-AbsX and S-AbsP.

Πp ⊩ Σp
X−→ Σ′

p X(Np, M) = (N ′
p, M ′)

⟨ Π, Σ, N, M, D ⟩
Np,X
====⇒

p
⟨ Π, Σ

[
p 7→ Σ′

p

]
, N

[
p 7→ N ′

p

]
, M ′, D ⟩

S-Step

c
Np,X
====⇒

p
c′

c =⇒
p

c′ S-AbsX
c =⇒

p
c′

c ⇒ c′ S-AbsP

The streaming rule can be applied if there exists a derivation of the form Πp ⊩ Σp
X−→ Σ′

p

for a processor Πp. These are called local steps, since they have access only to the local
data of a processor, i.e., its definition, state and locally accessible messages. These rules
describe the local step of a processor, in which the processor may produce and consume
messages/actions X, and update its local state to Σ′

p. The produced actions X modify the
sequence numbers of the processor Np and the messages in the system after application. This
is computed by the action application function X(Np, M) and results in the new sequence
numbers N ′

p and messages M ′ for the next configuration as defined below.

Action Application. The action application rule defines how actions modify the sequence
numbers and messages. A production action + s d increases the sequence number of the
stream s for the producer, and adds the message to the sequence of messages. Each stream
has at most one producer; thus, we do not need to specify the producer in the action or
message. A consumption action − s d increases the sequence number of the stream s for
the consumer, but does not remove it from the sequence of messages, as there may be
other consumers waiting to consume the message. To note is that the consumption action
application is only defined if the message is present in the sequence of messages. Due to this,
local steps may only be applied in the context of the S-Step rule if the consumed message
is present in the sequence of messages. The remaining cases of the definition are for the
recursive application of actions.

▶ Definition 4.1 (Action Application).

(+ s d)(Np, M) = (Np

[
s 7→ Np(s) + 1

]
, M ∪

{
Np(s) s d

}
)

(− s d)(Np, M) = (Np

[
s 7→ Np(s) + 1

]
, M) if Np(s) s d ∈ M , undefined otherwise

(
[
x

]
: X)(Np, M) = X(x(Np, M))

ε(Np, M) = (Np, M)
According to the definition, it is not always possible to apply an action. This may be the

case if, for example, a message for some sequence number is not yet available on its stream.
This enables indirectly “passing” messages to the local step rules. Whereas the local step
rule is defined for all possible steps for all messages that it may consume, cases in which the
message consumption is not applicable by the action application definition are ruled out by
the streaming global step rule. This leaves only messages which are applicable to be applied
to the steps, thus passing the message to the rule.
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v, w value

π ::= TK⟨ f, [Si]|S|
i , o ⟩ task

a ::= [e 7→ v | e] snapshot archive
σ ::= ⟨ a, σV ⟩ state

σV ::= volatile state
fl failed state

| ⟨ e, v ⟩ normal state

e ∈ N epoch number

d ::= ⟨ e, dC ⟩ message
dC ::= message cases

EV⟨ w ⟩ event
| BD epoch border

D ::= M0 initial input messages

Figure 7 Stateful dataflow syntax.

4.2 Stateful Dataflow Model

The presented stateful dataflow model consists of processing tasks, sources, and sinks. A
processing task consumes messages from a set of input streams, and produces messages on its
output stream. The task’s behavior is defined by a function f which processes the messages.
The function f takes the task’s state and an input message, and produces a new state and
a sequence of output messages: f(v, w) = v′,

[
W ′

i

]n

i
. The presented formal model does not

provide a syntax and semantics for functions; they can be expressed using any suitable
formalism. The sources of the model are emulated by streams which are initialized in the
first configuration to contain all the messages which are to be consumed from the source.
That is, each source is represented by its output stream, which in turn becomes an input to
one of the tasks of the computational graph. Sinks are also emulated as streams, however,
in contrast to sources, they are initially empty. The computation of the system, informally,
takes inputs from the sources, processes them in the processing graph, and produces outputs
to the sinks.

Syntax. The syntax of the implementation model (Figure 7) extends the shared streaming
syntax and semantics (Figure 5) by providing concrete instances of processors/tasks, messages,
and state definitions. A task TK⟨ f, S, o ⟩ is a three-tuple of its processing function f , sequence
of input streams S, and its output stream o. Tasks process messages which are tuples of
an epoch number e and the message data dC. There are two kinds of messages: normal
events EV⟨ w ⟩ and epoch borders BD. The epoch border messages are markers used for the
snapshotting algorithm, whereas the events are the actual data processed by the tasks. When
processing, the tasks manipulate state which consists of a persistent snapshot archive a,
i.e., a map from epoch numbers to the corresponding local snapshots, and some volatile state
σV. The snapshot archive is a map from epoch numbers e to the state v of the processor at
the end of the epoch. The volatile state is either a failed state fl or a normal state ⟨ e, v ⟩,
consisting of the current epoch number and the state data value v of the processor. As with
the messages, normal states are tagged by epoch numbers. A processor is in a failed state if
it has crashed and lost its volatile state. The auxiliary data D used for this model consists of
the initial input messages for the system. As we may need to restore the messages which are
yet to be consumed, we keep track of all the initial input messages as the global auxiliary
data of the system.
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(a) Block streams with borders. (b) Borders are aligned.

(c) Upload snapshot and propagate border. (d) Continue processing.

Figure 8 Epoch border alignment protocol (figure adapted from [10]).

4.2.1 Derivation Rules
The semantics of the model consists of seven rules. Three of the rules, I-Event, I-Border,
and F-Fail, are local rules which enable deriving a local step of the form π ⊩ σ

X−→ σ′.
Whereas the I-Event and I-Border rules model the processing of the system, the F-Fail
rule models nondeterministic crash-failures of a processing task within the system. These
rules, together with the streaming rule S-Step and its abstraction rules S-AbsX and S-AbsP,
are used for deriving global steps. The fourth rule, F-Recover, is a global rule used for
recovering the state of all processors after a failure.

Event Rule. The first rule, I-Event, models tasks processing events:

f(v, w) = v′,
[
W ′

i

]n

i

TK⟨ f, S, o ⟩ ⊩ ⟨ a, ⟨ e, v ⟩ ⟩
[− Sj ⟨ e, EV⟨ w ⟩ ⟩]:[+ o ⟨ e, EV⟨ W ′

i ⟩ ⟩]n

i−−−−−−−−−−−−−−−−−−−−−−−−→ ⟨ a, ⟨ e, v′ ⟩ ⟩
I-Event

The rule can perform a local step for a task TK⟨ f, [Si]|S|
i , o ⟩, if the current state of the

task is a normal state ⟨ e, v ⟩, and the task can consume an event EV⟨ w ⟩ from one of its
inputs Sj . Applying a task’s function f to its current state v and the consumed event w

results in the task’s next state v′ and a sequence of output events
[
W ′

i

]n

i
. The rule updates

the state of the task to the new state ⟨ e, v′ ⟩ and produces the output events [EV⟨ W ′
i ⟩]ni on

the output stream o. The local step produces the actions which are the concatenation of the
consumed and produced events. For example, [− Sj ⟨ e, EV⟨ w ⟩ ⟩] : [+ o ⟨ e, EV⟨ w′ ⟩ ⟩] is the
action of consuming the event EV⟨ w ⟩ with epoch number e from the input stream Sj and
producing the event EV⟨ w′ ⟩ with epoch number e on the output stream o.

Border Rule. Whereas the event rule consumes a single event from a stream, the border
rule (I-Border) consumes one border event BD from every incoming stream:

TK⟨ f, [Si]ni , o ⟩ ⊩ ⟨ a, ⟨ e, v ⟩ ⟩
[− Si ⟨ e, BD ⟩]n

i :[+ o ⟨ e, BD ⟩]
−−−−−−−−−−−−−−−−−→ ⟨ a

[
e 7→ v

]
, ⟨ e + 1, v ⟩ ⟩

I-Border

This consumption is enabled for a task if the next event to be consumed on every one of
its incoming streams is a border event. In other words, the event rule consumes events up
until all streams are aligned by the border events, at which point the border rule consumes
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the border events from all its incoming streams. The rule is a local step which, in addition
to consuming border events from all incoming streams and producing a border event on its
outgoing stream, stores the current state v for epoch e to the snapshot storage a (by setting
the new snapshot archive to a[e 7→ v]), as well as incrementing the current epoch number.

Epochs are a key concept of Asynchronous Barrier Snapshotting. Each epoch is a sequence
of data-bearing events, ending with an epoch border, and are used to define the boundaries
of state snapshots. After regular processing for which some streams are blocked by border
events (Figure 8a), the rule aligns the streams by the borders (Figure 8b), takes a copy
of the current state of the processor storing it to the snapshot archive (Figure 8c), and
propagates the epoch border message downstream and increments the epoch number, ready
to process events from the next epoch (Figure 8d). The effect of this is that epochs of events
are separated by the border events throughout the whole processing graph.

Failure Rule. Failures are introduced nondeterministically by the F-Fail rule:

TK⟨ f, S, o ⟩ ⊩ ⟨ a, σV ⟩ → ⟨ a, fl ⟩
F-Fail

The failure rule sets the task’s state to failed ⟨a, fl⟩, thus losing the task’s volatile state.
Once a task is failed, it is no longer able to apply the steps I-Event and I-Border, and
will remain idle until the F-Recover rule has been applied.

Failure Recovery Rule. The last rule, F-Recover, is a global rule which recovers the state
of all failed tasks:

⟨ a, fl ⟩ ∈ Σ
⟨ Π, Σ, N, M, M0 ⟩ ⇒ lcs(⟨ Π, Σ, N, M, M0 ⟩)

F-Recover

The rule may be triggered nondeterministically if there exists a task in a failed state, and
will reset the state of the system to the latest common snapshot. The full details of how
the latest common snapshot (lcs) is computed is discussed further below, as it depends on
additional definitions.

The latest common snapshot is constructed by: (1) calculating the greatest common
epoch for which a snapshot has been taken by all processors in the system; (2) restoring
the state of all processors to their local snapshots at the greatest common epoch; and (3)
restoring sequence numbers and messages to undo any messages that were produced or
consumed for epochs greater than the greatest common epoch. The greatest common epoch
is calculated by finding the minimum (common) of the maximum (greatest) epoch numbers
of the local snapshots of all the processors.

▶ Definition 4.2 (Greatest Common Epoch Number). The greatest common epoch number of
a configuration c = ⟨ Π, Σ, N, M, D ⟩ is:

gce(c) = min
{

max(dom(a))
∣∣ Σp = ⟨ a, σV ⟩

}
The persistent output messages of the system consist of all messages produced up to and

including the greatest common epoch. These messages can be identified by comparing their
epoch number e to the greatest common epoch number e ≤ gce(c). The recovery purges any
messages which are not part of this set, bar the initial input messages M0, thereby making
these output messages (identified by out) persistent.
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p1

p2

p3

(a) An execution with a failure.

p1

p2

p3

(b) Snapshot-view of the execution.

Figure 9 Executions viewed through the latest common snapshot.

▶ Definition 4.3 (Output Messages). For a configuration c = ⟨Π, Σ, N, M, D⟩, its output
messages are:

out(c) =
{

n s ⟨ e, d ⟩
∣∣ (n s ⟨ e, d ⟩) ∈ M ∧ e ≤ gce(c)

}
▶ Definition 4.4 (Messages on a Stream). The subset M ↓ s of messages on a particular
stream is defined as:

M ↓ s =
{

n′ s′ d′ ∣∣ (n′ s′ d′) ∈ M ∧ s′ = s
}

The lcs function computes the latest common snapshot of a configuration for use as a
recovery point in the F-Recover rule. Its computation makes use of the greatest common
epoch number (gce), and the output messages (out). The states Σ′ are restored by removing
any stored snapshots with an epoch number larger than the gce, and the volatile states are
restored to the states captured by the snapshot of the gce. The messages are updated to
only keep the stable output messages out(c) and the messages which are yet to be consumed
Min. The sequence numbers N ′ are updated accordingly, setting the sequence number of a
processor p for a stream s to the number of messages that the processor has either produced
or consumed on the stream: |out(c) ↓ s|. Its complete definition is given below.

▶ Definition 4.5 (Latest Common Snapshot). The latest common snapshot of a configuration
c = ⟨Π, Σ, N, M, M0⟩ is a configuration described by lcs(c):

lcs(c) = ⟨ Π, Σ′, N ′, M0 ∪ out(c), M0 ⟩, where

Σ′ =
[
p 7→ ⟨ A(a), ⟨ gce(c) + 1, a(gce(c)) ⟩ ⟩

∣∣ Σp = ⟨ a, σV ⟩
]

A(a) =
[
e 7→ a(e)

∣∣ e ∈ dom(a) ∧ e ≤ gce(c)
]

N ′ =
[
p 7→

[
s 7→ |out(c) ↓ s|

∣∣ s ∈ dom(Np)
] ∣∣ p ∈ dom(N)

]
Viewing computations through the lens of the latest common snapshot shows configu-

rations which are caused by failure-free executions. Figure 9a shows an execution with a
failed processor p2 and an incompletely processed epoch (green). In contrast, the latest
common snapshot view of the same execution (Figure 9b) shows only the two completed
epochs (red, blue), masking the failed epoch. The snapshot is emulating an execution such
that all the steps on epochs after the greatest common epoch are not taken, and all failed
steps of incompletely processed epochs are ignored. This reasoning is further elaborated for
the proof of failure transparency in the next section, where we show that the implementation
model is failure transparent when viewed through the lens of the output messages function.

4.3 Assumptions
We make the following assumptions as a means to distill the essential mechanism of the
failure recovery protocol. We assume that the message channels are FIFO ordered, a common
assumption for snapshotting protocols [14]. With regard to failures, we make common
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av = 0
a = a0

av = 1
a = a0

av = 1
a = a1

av = 2
a = a1

av = fl
a = a1

av = 1
a = a1

av = 0
a = a1

av = 3
a = a1

av = 4
a = a1

av = 4
a = a2

av = 0
a = a0

av = 1
a = a0

av = 1
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av = 3
a = a1
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a = a2

receive
E⟨1⟩

process
BDs

receive
E⟨3⟩ fail

recover to
a1(1)

receive
Reset

receive
E⟨3⟩

receive
E⟨5⟩

process
BDs

receive
E⟨1⟩

process
BDs

receive
Reset

receive
E⟨3⟩

receive
E⟨5⟩

process
BDs

Figure 10 Execution of the incremental average task (Figure 2). Top: execution with a failure and
subsequent recovery. Bottom: corresponding failure-free execution. Snapshot archives: a0 =

[
0 7→ 0

]
,

a1 = a0
[
1 7→ 1

]
, a2 = a1

[
2 7→ 4

]
.

assumptions to asynchronous distributed systems [9]. Failures are assumed to be crash-
recovery failures, in which a node looses its volatile state from crashing. Further, we assume
the existence of an eventually perfect failure detector, which is used for (eventually) triggering
the recovery. With regard to system components, we assume the following components which
can be found in production dataflow systems. The implicit coordinator instance is assumed
to be failure free; in practice it is implemented using a distributed consensus protocol such
as Paxos [37]. The snapshot storage is assumed to be persistent and durable; a system such
as HDFS [57] would provide this. Further, the input to the dataflow graph is assumed to be
logged such that it can be replayed upon failure. In practice, a durable log system such as
Kafka [32] would be used for this. For our model, we make the following assumptions. The
recovery is assumed to be an atomic, synchronous system-wide step. In practice, it may be
implemented as an asynchronous atomic step, which allows tasks to start processing before
all have been recovered. Further, the task’s processing functions are assumed to be pure,
i.e., free from side effects. A function f may be re-executed multiple times due to failures; a
common assumption in related work [8, 30].

5 Failure Transparency

In this section, we define failure transparency such that it can be applied to systems described
in small-step operational semantics with distinct failure-related rules. We first provide a
rationale behind failure transparency, followed by its formalization.

5.1 Rationale
The purpose of failure transparency is to provide an abstraction of a system which hides
the internals of failures and failure recovery. In particular, we would like to be able to show
that the implementation model presented in the previous section is failure transparent. In
concrete terms, this entails showing that executions in the implementation model can be
“explained” by failure-free executions, something which we explore in this section.

Consider the task of computing the incremental average from the previous example
(Section 3, Figure 2). The task consumes regular events E⟨i⟩, reset events, and border
events BD. For this example, we consider a partial execution of the task in which it processes
the events: [E⟨1⟩, BD, E⟨3⟩, fail, recover, Reset, E⟨3⟩, E⟨5⟩, BD, . . .]. The task’s configurations
consist of the task’s current average value av, and its snapshot archive, a. Figure 10 shows at
the top an execution of the task with a failure and subsequent failure recovery as the fourth
and fifth events. After the recovery step, in its sixth configuration, the task’s state is reset
to its state for the snapshot a1(1), at which point it had the average value 1.
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The question we ask is whether we can rely on the behavior of the task? More specifically,
can we use the average value av = 2 in the fourth configuration (after receiving the event
E⟨3⟩)? The problem is that the task will fail in its next step, and recover to a state in which
the receiving of the event has been undone. Moreover, the task continues its execution after
recovery by processing the reset event first, and does never reach a state again in which
its average value is 2. For this reason, we cannot blindly rely on the observed behaviors
of the task as we may observe things which are later undone. In more complex systems,
failures may further result in duplications and reorderings of events, further complicating
the reasoning about the system.

Dealing with these issues requires the observer of the system to reason about which events
are effectful and which are to be discarded. In some sense, the observer should be able to
reason about the observed execution as if it was an ideal, failure-free execution, i.e., an
execution in which all events are effectful. Put in another way, the solution is to find a
corresponding failure-free execution, and reason about that one instead. Intuitively, the
observer should find some failure-free execution which “explains” the execution. Considering
the above example, a failure-free execution thereof would correspond to the bottom execution
in Figure 10. Note that there are no failure or recovery steps in the failure-free execution,
yet its state progresses in a similar way to the original execution.

Even though the failure-free execution on an intuitive level correspond to the original
execution, we would like to have a formal notion for this. The idea is to lift the observed
executions by means of “observability functions”, to a level where failure-related events and
states are hidden. For example, for the executions above, we could define an observability
function which takes the configuration of the task and keeps only the snapshot storage. After
this transformation, applying this function to every configuration in the executions, we will
not be able to distinguish the two executions by observing the system at any point in time.
That is, common to both executions, we will first observe a0, then a1, and finally a2. On a
technical level, for every configuration of the original execution, we can find a configuration
in the failure-free execution which, after application of the observability functions, is equal
to it (e.g., the mapping from top to bottom configurations in Figure 10); this is what we
mean by “observable explainability”. Thus, we can explain the original execution by the
failure-free execution using the provided observability function.

The essence of our definition of failure transparency is derived from the notion of explaining
the original executions by failure-free executions using observability functions. Instead of
reasoning about executions, we can reason about the observable output of executions at any
given moment. Using observability functions effectively hides the internals of the model and
enables the user to focus on the output of the system. That is, the user can reason about
failure-free executions instead of faulty executions.

This informal introduction highlights three essential parts of failure transparency: the
execution system, failures within the system, and the observability of the system. The goal
of the rest of this section is to define these terms and to provide a formal definition of failure
transparency.

5.2 Executions
The execution system for the failure transparency analysis is modelled as a transition system
for which the transition relation is provided as a set of inference rules. In particular, we
provide a formal definition for executions as a means to discuss the execution of systems.
With this notion, distributed programs can be formally modelled in small-step operational
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semantics, and consequently formally verified. Although it may seem unintuitive to model
distributed systems as transition systems for which the transition relation is defined over the
global state, this is in fact commonly done in other formal frameworks such as TLA+ [38].
▶ Definition 5.1 (Execution Step). A statement c ⇒ c′ is called an execution step from c to
c′. We denote the derivability of an execution step in the set of rules R by R ⊢ c ⇒ c′.

We reason about systems in terms of their executions. An execution is a sequence of
configurations C, connected by execution steps derivable in a set of rules R, starting from
some initial configuration C0.
▶ Definition 5.2 (Executions). A sequence of configurations

[
Ci

]n

i
is called an execution in

a set of rules R, if ∀i < n. R ⊢ Ci−1 ⇒ Ci. The set of all possible executions starting from
C0 in R is denoted as ER

C0
.

The set of rules R of an execution specifies its reducibility relation by providing c ⇒ c′ as
a conclusion of some of its rules. This approach is commonly known as small-step operational
semantics. In our representation, the set of rules is explicit, whereas commonly it is implicit.
This is due to our need to explicitly distinguish between separate execution systems. This
allows us, for example, to separate an execution system into two parts: one with failures R

s.t. the failure-related rules are a subset thereof F ⊆ R, and one without failures (R \ F ).

5.3 Observational Explainability
The observability function represents the observer’s view of the system. It notably differs
from the plain configurations in the following two ways: the observer may not observe all
internal details of configurations, i.e., some parts of the configuration are hidden from the
observer (e.g., hiding commit messages [8]); and the observer may observe some derived
views of the configuration.
▶ Definition 5.3 (Observability Function). An observability function O of an execution
system is a function which maps configurations to their observable outputs. It is required to
be monotonic with respect to execution steps possible in the set of rules R for some partial
order ⊑O, that is: ∀c, c′. (R ⊢ c ⇒ c′) =⇒ O(c) ⊑O O(c′).

We say that an implementation’s execution is observably explained by a specification’s
execution, if the observer cannot distinguish the two executions. This is the case when, for
every configuration in the implementation’s execution, there is a corresponding configuration
in the specification’s execution, such that their observed values are equal after application of
the respective observability functions.
▶ Definition 5.4 (Observational Explanation). A sequence of configurations C of length n is
explained by a sequence of configurations C ′ of length n′ with respect to observability functions
O and O′, denoted as C O⇌O′

C ′, if:

∀m < n. ∃m′ < n′. O(Cm) = O′(C ′
m′)

An implementation’s system, in turn, is observably explainable by the specification’s
system, if for each execution of the implementation there exists an explaining execution in
the specification. We call this property observational explainability.
▶ Definition 5.5 (Observational Explainability). The set of rules R is observationally explain-
able by R′ with respect to their observability functions O and O′ and the translation relation
T , denoted as R O T−⇀↽−O′

R′, if:

∀ c′ ∈ dom(T ). ∀c. c′Tc =⇒ ∀C ∈ ER
c . ∃ C ′ ∈ ER′

c′ . C O⇌O′
C ′
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(a) Monotonic mapping.
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4 C ′
5ER′

C0
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(b) Non-monotonic mapping.

Figure 11 Monotonic and non-monotonic mapping of configurations.

Properties of Observational Explainability. Observability functions are required to be
monotonic, since observations should be regarded as stable. That is, once a value has been
observed, then it should remain observable in the future. The system should not be able to
undo something that has been observed, otherwise the observer would not be able to rely on
the output. The reason for this is twofold. First, an observer may observe the system multiple
times, and newer observations should provide more up-to-date views. Second, the sequence
of observations should correspond to a valid explanation with respect to the higher-level
specification, this is explored next.

In the general case, it is desirable to have a monotonic mapping of configurations between
the abstract-level and implementation-level executions. Figure 11a shows a monotonic
mapping of configurations between an implementation (top) and a specification (bottom).
What makes the mapping monotonic is that each subsequently mapped configuration of the
implementation is mapped to a configuration with a monotonically growing index. Figure 11b,
on the other hand, shows a non-monotonic mapping, as indicated by the red dashed line.
Non-monotonic mappings, however, are not considered valid explanations. For example, if
the specification consists of the sequence a followed by b, then an implementation which
produces b followed by a is not considered a valid implementation thereof. Thus, we should
not use non-monotonic mappings for the explainability of executions. We capture this notion
in the definition of monotonic observational explanation.

▶ Definition 5.6 (Monotonic Observational Explanation). An observational explanation is
monotonic if it is a monotonic mapping of configurations. That is, [Ci]ni is monotonically
explained by [C ′

j ]n′

j w.r.t. O and O′ if:

∃
[
hk

]n

k
. (∀k < n. ∀k′ ≤ k. hk′ ≤ hk) ∧ (∀m < n. ∃m′ = hm < n′. O(Cm) = O′(C ′

m′))

The following lemma explicitly shows that our definition of observational explainability is
equivalent to the definition of monotonic observational explainability. That is, our defini-
tion does not have the problem with non-monotonic mappings of configurations since the
observability functions are required to be monotonic. For this reason, we do not distinguish
between the two definitions in the following sections.

▶ Lemma 5.7. If R is observationally explainable by R′ w.r.t. O, O′, T , then it is also
monotonically observationally explainable:

∀ c′ ∈ dom(T ). ∀c. c′Tc =⇒ ∀C ∈ ER
c . ∃ C ′ ∈ ER′

c′ .

C is monotonically explained by C ′ w.r.t. O and O′

Proof. The complete proof is available in the companion technical report [62]. ◀

To further aid the use of these definitions within proofs, we also show that the definition
of observational explainability is transitive, as well as a compositionality lemma on the
observability functions. The parametrization of the observable explainability enables reasoning
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about models which differ in their initial states, and for which we want to apply different
observability functions at the different levels. That is, it can be used for reasoning about
sets of rules which differ in their initial states, and for which we want to apply different
observability functions at the different levels.

▶ Lemma 5.8 (Transitivity). R O T−⇀↽−O′
R′ ∧ R′ O′ T ′

−⇀↽−O′′
R′′ =⇒ R O T ◦T ′

−−−⇀↽−−−O′′
R′′

Proof. The complete proof is available in the companion technical report [62]. ◀

▶ Lemma 5.9 (Composition). ∀O′′. R O T−⇀↽−O′
R′ =⇒ R O′′◦O T−⇀↽−O′′◦O′

R′

Proof. The complete proof is available in the companion technical report [62]. ◀

5.4 Defining Failure Transparency
The general goal of failure transparency is to provide an abstraction of a system which masks
failures from the users. We express this notion using observational explainability between
the implementation and its failure-free part. That is, the implementation should be observa-
tionally explainable by the implementation without failures. By explicitly separating the set
of failure-related rules F , it is easy to define the two systems: namely, the implementation
system with all rules, i.e., R; and another system with all rules except the failure-related
rules, i.e., R \ F . To fully instantiate the observational equivalence, we further use the same
observability function O on both the low and high levels, and as a translation relation we
use the identity relation on the set of initial configurations.

▶ Definition 5.10 (Failure Transparency). A set of rules R is failure-transparent with respect to
failure rules F ⊆ R for a monotonic observability function O and a set of initial configurations
K, this is denoted as R O

K F , iff:

R O {(c, c) | c∈K}−−−−−−−−−⇀↽−−−−−−−−−O (R \ F )

6 Failure Transparency of Stateful Dataflow

In this section, we show that the presented implementation model (Section 4) is failure
transparent (Definition 5.10) for the observability function out (Definition 4.3). In order to
prove this, instead of reasoning about executions directly, we reason about the traces of steps
which are performed to obtain these executions. This simplifies the proof, enabling us to
reorder and remove specific steps in and from a trace; in contrast, doing the same with a
configuration from an execution affects all following configurations. In this section, we first
define traces and a causal order relation on traces, and then prove the failure transparency
of the implementation model by manipulating traces. Finally, we complete our analysis of
the model by formulating and proving its liveness, showing that the implementation model
eventually produces outputs for all epochs in its input.

6.1 Traces and Causality
A trace is a sequence of steps, for which each step is a compact representation of the derivation
of a transition from one configuration to another.
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▶ Definition 6.1 (Trace). A trace Z is a sequence of trace steps. A trace step z is one
of: ⟨I-Event, p, Np, X⟩; ⟨I-Border, p, Np, X⟩; ⟨F-Fail, p⟩; ⟨F-Recover⟩. Here I-Event,
I-Border, F-Fail, and F-Recover play the role of the discriminant, where the trace step
is a tagged union.

For example, if in the derivation tree of an execution step from the ith to the i + 1th
configuration, i.e., of R ⊢ Ci ⇒ Ci+1, F-Recover was the root rule, then this execution
step corresponds to the step ⟨F-Recover⟩ in the trace. To link traces with executions, we
use the following definition of trace application.

▶ Definition 6.2 (Trace Application). A trace Z of length n applied to a configuration c

results in a sequence of configurations C of length n + 1, i.e., Z(c) = C, if, for all steps
Zi, the represented derivation of an execution step can be applied to the ith configuration
producing the i + 1th configuration.

Traces can be generated from executions; however, not every trace corresponds to an
execution. This may be the case if a trace has been constructed incorrectly, or reordered
in some way. For this reason, we define valid traces, which are traces that correspond to
executions.

▶ Definition 6.3 (Valid Trace). A trace Z is valid from configuration c if it is applicable to
it, i.e., if there exists an execution C ∈ EI

c such that Z(c) = C.

As the proof reasons about the reordering of steps in a trace, it is important to formulate
which reorderings of steps preserve the validity of the trace. To handle this, we define a
causal order relation on trace steps similar to the happens-before relation [35], and show how
it can be used to reason about traces.

▶ Definition 6.4 (Causal Order). (See technical report [62] for the formal definition) A step
Zi happens before Zj with i < j if:
1. One of them is an F-Recover step (global recovery)
2. They both occur on the same processor (intraprocessor order)
3. If Zi produced a message which is consumed by Zj (interprocessor order)
4. If there exists some step Zk such that Zi happens before Zk and Zk happens before Zj

(transitivity)

Finally, we state a lemma that causality-preserving permutations, i.e., permutations that
preserve the causal order relation [62, Definition B.5], also preserve the validity and the end
result of their application. Intuitively, it follows from the fact that causally unrelated steps
should not influence each other.

▶ Lemma 6.5 (Application of Causality-Preserving Permutations). For a trace Z valid from c

with size |Z| = n, if Z ′ is a causality-preserving permutation of Z, then: Z ′ is valid from c;
Z and Z ′ end in the same configuration after application to c, i.e., Z(c)n = Z ′(c)n.

Proof. The complete proof is available in the companion technical report [62]. ◀

6.2 Proving Failure Transparency
As it is required by the definition of failure transparency, we first define the sets of rules,
namely I, F, and (I \ F); and the set of valid initial configurations K.

The semantics of the model consist of seven rules, defining two separate sets of rules. The
set of rules with failures I consists of all seven rules that have been defined for the stateful
dataflow implementation model; it corresponds to the implementation model presented in
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(a) Original faulty execution.
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(c) Reordered generations.
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p2

p3
commit commit commit

(d) Merged failure-free execution.

Figure 12 The step-wise construction of a failure-free execution trace from an execution with
failures.

Section 4. The set of failure-related rules F within the implementation model consists of the
two rules F-Fail and F-Recover. This way, the rules without failures are defined as the
set (I \ F).

▶ Definition 6.6 (Implementation Model Rules). I = {S-Step, S-AbsX, S-AbsP, I-Event,

I-Border} ∪ F

▶ Definition 6.7 (Failure-Related Rules). F = {F-Fail, F-Recover}

The sets of initial configurations which are considered are any acyclic graph structures
which are properly initialized.

▶ Definition 6.8 (Valid Initial Configurations). K = ⟨ Π, Σ, N, M, M0 ⟩ such that: the graph
defined by Π is acyclic, and the tasks’ functions f do not output infinite sequences; Σ are
the initial well-formed states; N are sequence numbers initialized to 0 for the streams; M

consists of the well-formed inputs to the streams; M0 = M .

▶ Theorem 6.9 (Failure Transparency of the Implementation Model). I out
K F , i.e., the set of

rules I = {S-Step, S-AbsX, S-AbsP, I-Event, I-Border} ∪ F is failure transparent with
respect to the failure rules F = {F-Fail, F-Recover} for the observability function out and
the set of initial configurations K.

Before proceeding with the proof itself, we provide a sketch of it. The proof idea
is to construct a failure-free observational explanation of an arbitrary execution in the
implementation model.

The construction is done using traces; we reorder and manipulate the original trace so
that failures, recoveries, and discarded trace steps are removed from it. Figure 12 illustrates
the construction: (1) first, we split the trace by the recovery steps into generations; (2)
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next, the trace steps are reordered such that all discarded steps are moved to the end of
the generation; (3) then, these steps are safely discarded; (4) finally, we concatenate the
generations to get the final trace.

Next, we have to show that: (i) the constructed trace is valid, i.e., it corresponds to
a failure-free execution; and (ii) that the execution is an observational explanation of the
original execution. We do so by reasoning about the preservation of validity and observable
outputs in each step of the construction. For trace validity, the most complicated step is the
reordering (step 2 of the construction). We show that the reordering is causality-preserving
and thus, by Lemma 6.5, it produces a valid trace. For observational explanation, throughout
the construction we maintain a mapping of observations from the steps of the original trace
to the steps of the constructed trace. The challenge lies in the reordering of steps (step
2 of the construction) and the fusion of generations (step 4 of the construction). For the
reordering, we show a lemma that the observable output is not changed by the discarded
steps; and, for the fusion, we show that the latest common snapshot of a generation is
exactly the configuration obtained by the reordering and removal of the discarded steps.
This, accompanied by an analysis of the rules, lets us show that the sequence of observable
outputs is the same for the original and the failure-free traces.

Proof. Expanding the definitions, we need to prove that, for all executions in I with potential
failures, there is an observational explanation in the failure-free model (I \ F). Given an
arbitrary execution C of length n in I from initial configuration c ∈ K, i.e.,

[
Ci

]n

i
∈ EI

c, the
goal is to construct a failure-free execution

[
C ′

j

]n′

j
such that:

[
C ′

j

]n′

j
∈ EI\F

c ∧ ∀m < n. ∃m′ < n′. out(Cm) = out(C ′
m′)

This execution is constructed indirectly, by first constructing a trace Z ′ which then
generates it. First, we need to prove that the constructed failure-free trace Z ′ is valid
from c, i.e., Z(c); next, we need to show that the corresponding execution C ′ = Z ′(c) is
an observational explanation of the original execution, that is, for each configuration in
the original execution, we have to provide an observationally equal configuration in the
constructed execution. From the original trace Z, for which Z(c) = C, we construct the
failure-free trace Z ′ in four steps as outlined in the proof sketch and illustrated in Figure 12.

(1) First, the trace is split by the recovery steps into generations, giving us a sequence
of generations G (Figure 12b). Each generation is a sequence of S-Steps ending with an
F-Recover step; in the case of the last generation it may not necessarily end with an
F-Recover step. By construction, each generation is a valid trace as each of them is a
contiguous part of a valid trace. We construct the observability mapping by mapping the
configurations of the original trace to their closest preceding committing border steps. A
committing border step is an I-Border step which changes the greatest common epoch
number, gce, and thus also the observed output, out; such steps are labeled with “commit”
in Figure 12. The equality of observations holds, since, by inspection of the rules, only a
committing border step can change the observable output [62, Lemma B.6].

(2) Next, from each generation g = Gi, we construct a new reordered trace g′ = G′
i so

that all the steps of epochs above the greatest common epoch of the generation are placed
after the steps of epochs below it (Figure 12c). In effect, this moves all the discarded steps to
the end of the generation, since they are discarded by the recovery, which in turn is done to
the greatest common epoch of the generation. In other words, g′ = filter(x ∈ g. epoch(x) ≤
e) : filter(x ∈ g. epoch(x) > e), where e = gce(g|g|−1) is the epoch number to which the
recovery is done. The new traces are still valid, as the reordering is causality preserving [62,
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Lemma B.7], and thus the validity follows from Lemma 6.5. The mapping of observations
is kept intact, since the outputs of the committing border steps are not changed by the
reordering [62, Lemma B.8]. This follows from the fact that the observable output is only
changed by committing border steps [62, Lemma B.6], that causality-preserving permutations
result in the same configuration (Lemma 6.5), and that the reordering is preserving causality.

(3) Then, from each G′
i we construct a new trace G′′

i by removing the discarded steps
and the recovery step. That is, the suffix consisting of the failure steps, recovery steps, and
any steps of epochs greater than the greatest common epoch of the generation are removed.
The new trace is a prefix of G′

i, and is thus still a valid trace [62, Lemma B.2]. We keep the
same mapping of observations for the steps that were not removed. As, within a generation,
only the suffix is removed, it does not affect the observed outputs of the remaining steps,
and thus the mapping of observations is kept unchanged.

(4) Finally, we concatenate all stripped generations G′′
i to get the merged trace Z ′

(Figure 12d). We show that the last configuration of each of the generations G′′
i is exactly

the latest common snapshot of the original generation Gi [62, Lemmas B.10-11], in other
words, the latest common snapshot is a view of a configuration as if only the committed
steps occurred. Since the recovery is done to the latest common snapshot, it is also the same
configuration as the first configuration of the following generation G′′

i+1. For this reason, the
concatenation of all generations forms a trace Z ′ valid from c. The observed outputs are not
changed by the merge, and we maintain the same mapping.

By these four steps we have constructed a failure-free observational explanation of the
faulty execution, which means that the implementation model is observationally explainable
(Definition 5.5) by its failure-free version, or, in other words, it is failure transparent
(Definition 5.10). ◀

6.3 Liveness
The proposed definition of failure transparency is a safety property [3, 34], i.e., it prohibits
the implementation from reaching invalid states. Being as such, failure transparency does
not require the implementation to take any observable execution steps; an implementation
that never takes a step would trivially satisfy the property. In contrast, ensuring that
the implementation eventually does something is a liveness property [3, 34]. To complete
our analysis, we would like to show that the implementation model eventually produces
outputs for all epochs in its input. This is a liveness property which, consequently, does
not concern itself with the correctness of the outputs. However, in combination with the
failure transparency property, the properties ensure that the presented implementation model
eventually produces the correct outputs. For this reason, we prove the following theorem
about the liveness of the implementation model.

▶ Theorem 6.10 (Liveness of the Implementation Model). For every input epoch present in
the initial configuration, eventually a corresponding epoch appears in the output of a fair
execution. That is:

∀k = ⟨Π, Σ, M, N, D⟩ ∈ K. ∀C ∈ EI
k. fair(C) =⇒

∀(n s ⟨e, d⟩) ∈ M. ∃c ∈ C. ∃(n′ s′ ⟨e′, d′⟩) ∈ out(c). e = e′

where a fair execution is maximal ( i.e., it is not a prefix of another execution), has a finite
amount of failures, and eventually executes any step which is eventually always enabled (see
the technical report [62] for the formal definition of fair execution). ⌟
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The liveness theorem states that for any fair execution C starting from a valid initial
configuration k, and for all input epochs e, eventually there is a configuration c in the
execution for which the output out(c) contains the epoch e.

Proof. The complete proof is available in the companion technical report [62], it is summa-
rized as follows. First, we show that it suffices to demonstrate that, continuing from any
configuration c reachable from the valid initial configuration k, one or both of the following
are true: eventually there is a failure; or eventually the epoch is visible in the output. As the
considered executions have only finite amounts of failures, we further simplify the proof goal:
it suffices to show that eventually the epoch appears in the output under the assumption
that there are no more failures. We handle this simplified case by inductive reasoning on the
acyclic dataflow graph of processors. The induction’s base case is the graph consisting of
the source input streams but with no processors. The induction hypothesis states that all
streams are well-formed and that the border message of all input epochs eventually appear
on all streams; this is satisfied for the base case by validity of the initial configuration. Then,
in the induction step, we construct the graph by adding one processor at a time, given that
all of its input streams are already handled, as either source inputs or as outputs of other
processors in the previous step’s graph. The assumption of fair scheduling allows us to reason
about the processor locally, since, by definition of fairness, if a message has arrived to the
processor, it will eventually be consumed. As a conclusion of the induction, each processor
will eventually have processed a border of each epoch present in the initial configuration;
thus, eventually all processors will process a border of each initial epoch. This, in turn,
by analysis of I-Border, gce, and out, shows that the border messages of the epoch will
eventually be in the output. ◀

7 Related Work

Failure Transparency, Observational Explainability. There has been a significant body
of research on failure transparency [40]. To our knowledge, the earliest work on failure
transparency was by von Neumann in 1956 [63] on creating reliable systems from unreliable
components. Later work by Wensley in 1972 [65] discussed software techniques for failure
transparent computing. Lowell and Chen discussed failure transparency in the context
of consistent failure recovery protocols [44]. In their work, they introduced “equivalence
functions” for comparing executions, a concept which inspired the observability functions in
this paper. Our work, in contrast, restricts these functions to be monotonic, and discusses
their application to both levels (low and high) of the system, which facilitates the presented
transitivity lemma (Lemma 5.8). Around the same time as Lowell and Chen, Gärtner
discussed general models for fault-tolerant computing [26]. Similar to our work, Gärtner
separated fault-tolerant programs into two separate sets of rules (actions): the rules for
normal behavior; and the rules for failure behavior. With this separation, Gärtner discussed
various properties and forms of fault-tolerant programs. In the context of Gärtner’s work,
our definition of failure transparency would be considered “failure masking”, in the sense
that the system can recover from failures and continue its normal operation. Whereas these
works defined failure transparency as a conjunct of safety and liveness [34, 3], we have only
considered its safety property for our definition.

The presented definition for observational explainability is closely related to previous
definitions of refinement (e.g., TLA [38, 36], Compiler Correctness [53]), implementation
(e.g., I/O Automata [45]), and simulation. In simplified terms, one set of executions
implements another if it is a subset thereof (modulo stuttering and multistep executions).
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Our definition of observational explainability, in some sense, extends the notion of refinement
to directly include a refinement mapping [1] on both sides via observability functions. It
resembles notions from related work such as observational equivalence [8] and observational
refinement [30]; in contrast to these works, we provide a formal definition thereof. Different
from inductive proof approaches as typical for TLA [38] and simulation proof strategies, our
proof approach reasons about the whole sequence. This makes it not necessary to include
notions for ghost variables [49] (also known as auxiliary variables [39]) for the purpose of
reasoning about past or future events.

Failure Transparency Proofs. Failure transparency and observational explainability can
be proven in various ways. For example, Burckhardt et al. [8] prove “observational equiv-
alence” for their serverless programming model. Mukherjee et al. [51] propose a failure
transparency theorem for their system of reliable state machines: an execution of the imple-
mentation is a refinement of an execution without failures “with respect to its observable
behavior”, reminiscent of our definition of failure transparency. Other works include models
for distributed reliable actor communication [61], serverless microservices and observational
refinement [30], and reliable state machines [51]. Their specific approaches may differ, some
use simulation [8, 30], others model failures explicitly [30, 61, 51], and others use notions
similar to observability functions [8]. Another approach is to prove the proper restoration
of applications to the exact configuration as before the crash [50]. Our presented failure
transparency proof shares similarities to the proof of the Asynchronous Barrier Snapshotting
protocol [10], such as reasoning about causal orderings; however, our proof relies to a greater
degree on abstraction in terms of refinement of models.

Distributed, Resilient Programming Models. Stateful dataflow has had a high impact [24]
through systems such as: MapReduce [19], Apache Spark [67, 66], Apache Flink [12],
Google Dataflow [2], IBM Streams [18], Portals [60], and others [7, 56]. However, there are
other notable resilient programming models and systems, including: Pregel, a graph-based
system [47], Resilient X10 [17], virtually resilient immortals [27], fault-tolerant reactives [50],
thread-safe reactive programming [20], Durable Functions [8], stateful entities [54], the
eXchange Calculus [6], and others [61, 30, 51, 15]. In general, these resilient programming
models provide system means to recover from failures, the user does not need to implement
the failure recovery mechanisms themselves. Actor models, in contrast, provide the users
with manual failure-handling constructs. For example, the failure-handling constructs in
Erlang, such as actor monitors and supervision [5], have been used successfully for building
reliable services within the telecom industry [4]. Moreover, other programming models such
as Argus [42] and transactors [22] provide constructs for transactions, which in turn can be
used for building reliable services.

The formalization of distributed systems has been a long-standing research topic. Notably,
formalization frameworks such as TLA [38] and I/O Automata [45], have been used to reason
about distributed systems. Examples of this include a dataflow system that was formalized
using I/O Automata [46]. The ABS protocol for stateful dataflow has been formalized with
transition systems [10]. Recently, operational semantics have been used to model and reason
about such systems [8, 61, 30, 51, 28].

Failure Recovery. A general overview of rollback-recovery protocols was given by Elnozahy
et al. [21], comparing between checkpointing-based and logging-based protocols. Stateful
dataflow systems use either checkpointing, or a combination of the two [7, 56, 2, 12, 64, 66,

ECOOP 2024



42:26 Failure Transparency in Stateful Dataflow Systems

19, 18]. The MapReduce system performs failure recovery by detecting failed nodes, and
replaying the computation from sources or from persisted intermediate results [19]. Apache
Spark, in contrast, improves the recovery by replaying from the sources through what is
called lineage recovery [66]. A similar idea is used in a dynamic dataflow system within
Ray [64]. This paper focused on the ABS protocol used in Apache Flink, which, in contrast
to previous works, uses an asynchronous checkpointing technique [12]. It has been proven to
provide high performance and has since been widely adopted [58]. The current version of
Apache Flink’s runtime offers an opt-in feature for “unaligned checkpoints”, which allow the
checkpoint markers to be treated at a higher priority, decreasing the end-to-end latency at
the cost of some overhead as buffered events may become part of the snapshots [23]. Other
adaptations of the Flink protocol include Clonos [59], which logs the nondeterminism to
facilitate faster partial recovery after failures. Failure recovery remains an open research
topic, as it has great impact on the performance characteristics of fault-tolerant systems [58].

8 Conclusions and Future Work

This paper studies failure transparency of stateful dataflow systems. We propose a novel
definition of failure transparency for programming models expressed in small-step operational
semantics. For the definition of failure transparency we introduce observational explainability,
a notion which resembles refinement but on the level of observations of executions. We
provide an implementation model of a stateful dataflow system using the Asynchronous
Barrier Snapshotting protocol in a small-step operational semantics, and prove that the
model is failure transparent and guarantees liveness.

In future work, we plan to implement a fully verified implementation of a stateful dataflow
system based on the semantics presented in this paper, starting from our Coq mechanization.
Furthermore, we would like to apply our definitions to existing related work.
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