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Abstract
Synthetic Separation Logic (SSL) is a formalism that powers SuSLik, the state-of-the-art approach for
the deductive synthesis of provably-correct programs in C-like languages that manipulate heap-based
linked data structures. Despite its expressivity, SSL suffers from two shortcomings that hinder
its utility. First, its main specification component, inductive predicates, only admits first-order
definitions of data structure shapes, which leads to the proliferation of “boiler-plate” predicates
for specifying common patterns. Second, SSL requires concrete definitions of data structures to
synthesise programs that manipulate them, which results in the need to change a specification for a
synthesis task every time changes are introduced into the layout of the involved structures.

We propose to significantly lift the level of abstraction used in writing Separation Logic specific-
ations for synthesis – both simplifying the approach and making the specifications more usable and
easy to read and follow. We avoid the need to repetitively re-state low-level representation details
throughout the specifications – allowing the reuse of different implementations of the same data
structure by abstracting away the details of a specific layout used in memory. Our novel high-level
front-end language called Pika significantly improves the expressiveness of SuSLik.

We implemented a layout-agnostic synthesiser from Pika to SuSLik enabling push-button synthesis
of C programs with in-place memory updates, along with the accompanying full proofs that they
meet Separation Logic-style specifications, from high-level specifications that resemble ordinary
functional programs. Our experiments show that our tool can produce C code that is comparable in
its performance characteristics and is sometimes faster than Haskell.
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1 Introduction

Recent advances in program synthesis have allowed programmers to concentrate on stating
precise specifications – leaving the job of generating provably correct and efficient imperative
code to the synthesiser, such as SuSLik [6, 9, 13]. Such specifications are usually expressed
using (Synthetic) Separation Logic [7, 10] that while hugely successful in verifying properties
of pointer-manipulating programs remains out of reach to many mainstream developers. As
the programs grow in complexity, such SSL specifications can become exceedingly verbose
and complex – making the job of specification writer especially error-prone and defeating the
purpose of a usable proof automation toolchain.

The power of Separation Logic (SL) specifications for the tasks of both verification and
synthesis, is its mechanism of inductive predicates that concisely capture the shape of possibly
recursive pointer-based tree-like data structures, determining both induction schemes for
verification and the shape of recursion for the synthesis tasks of the programs that manipulate
such data structures [10]. The surprising ability of SL specifications to capture precisely the
logic of a desired program to be synthesised in the logical assertions comes at the price of
the involved inductive predicates being (a) first-order and (b) somewhat low-level, with both
these aspects posing limitations to the usability of SL-based program synthesis.

The first-order nature of the predicates means, for instance, that synthesis tasks that
involve several data structures with very similar heap layouts would require to use different
predicate definitions. As a specific example, consider a task synthesising two functions, f
and g. Both f and g take as an argument a pointer to a linked list of integers; f increments
all elements of the list by one, while g multiplies all its elements by two. To specify these two
tasks, the state-of-the-art tools for program synthesis based on SL specifications require the
user to provide, in addition to the pre-/postconditions, three different inductive predicates:
one for an arbitrary list, another for a list that carries a known payload, with each element
incremented by one, and the final capturing the multiplication of each element by two.

The second aspect, i.e., the low-level nature of the SL inductive predicates used for
synthesis, shows up when we try to rewrite an already specified synthesis task for a data
structure with a slightly different layout. As an example, imagine defining the task of
concatenating two lists. It is natural to expect that the specification will look very similar
for both singly and doubly linked lists. Yet, since those are two different structures, with
two different layouts, the user would require to supply two different task specifications.

A seasoned programmer would immediately notice that both issues (a) and (b) very
much resemble the struggle that one faces when programming in a language that does not
provide certain abstractions, which are nowadays mostly taken for granted: higher-order
functions and abstract data types. Our first example could be streamlined should the SL-based
specification language offer a way to define a function similar to List.map, available in all
popular functional programming languages, so it could be used to concisely express the two
scenarios of manipulating with the payload of a list’s elements. The second example would
benefit from the ability to specify concatenation of abstract lists, while separately handling
manipulations with single- or doubly-linked lists in terms of their memory layouts.
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Pika code SuSLik specification SuSLik synthesis tree C code + SL proof

Figure 1 Pika translation pipeline.

Key Ideas
The two challenges faced by the SSL specification language for the synthesis of heap-
manipulating programs – the need for higher-order functions and abstract data types – have
provided the primary motivation for this work.

As a solution, we developed Pika: a high-level front-end language and specification
translation framework built on to of the state-of-the-art SL-based program synthesiser
SuSLik.1 SuSLik is based on a variant of separation logic called synthetic separation logic or
SSL [9]. Pika has a syntax similar to popular functional programming languages and features
specification-level higher-order functions on Algebraic Data Types (ADTs). In addition to
being more succinct in comparison to Synthetic Separation Logic (SSL), the specification
formalism of SuSLik, Pika also addresses its reusability issues outlined above. First, the
use of specification-level higher-order functions allows the user to abstract over the specific
properties of the payloads of the heap-based data structures, thus, generalising existing
inductive predicates for so they could be employed in a wider range of synthesis tasks. Second,
by manipulating ADTs, the synthesis specifications do not need to deal with the specific
memory layouts of the data structures. This separates the specification of the tasks that
operate on those data structures from the low-level details of their memory representations.

The Pika pipeline is depicted in Figure 1. As our goal was to extend the expressivity of
SuSLik by giving it a high-level specification language while retaining its meta-theoretical
guarantees (i.e., the certifiable correctness of the programs it synthesises), we had to overcome
several technical obstacles when designing Pika and implementing it on top of SuSLik. First,
we had to formally define the operational semantics of Pika and its translation to SSL-based
specifications of SuSLik, defining the corresponding soundness result, relating the behaviour of
programs eventually synthesised to that of their high-level counterparts (Section 3). Second,
to support the higher-order specifications of Pika, we introduced conservative extensions
to SuSLik’s specification language as well as to its deductive synthesis rules, to make it
capable of handling pre-/postconditions with first-class functions operating on the payload
of heap-stored data types (Section 4).

Pika as a Programming Language
Given the close similarity of Pika, our new specification language, to general-purpose func-
tional programming languages, such as Haskell, it is natural to wonder whether it’s possible
to leverage its underlying synthesis pipeline as a way to produce efficient imperative programs
in a language such as C from equivalent high-level functional programs. In other words, if we
decide to use a combination Pika + SuSLik as a compiler, would it be a viable replacement to
many-decades old tools such as Glasgow Haskell Compiler (GHC) [3], for producing efficient
runnable code? To answer this question, we have conducted evaluation on several list- and
tree-manipulating benchmarks, comparing the performance of verified C code, emitted by
SuSLik from Pika specifications, to that of executables produced for equivalent tasks by GHC.

1 Both susliks and pikas are Central Asian mammals. Pikas might look similar to susliks, but are more
nimble and have longer life expectancy.

ECOOP 2024
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Our preliminary results are encouraging: thanks to avoiding unnecessary allocation and
using destructive heap updates whenever possible, the C code synthesised by Pika + SuSLik
outperforms the GHC output (with compiler optimisations flags turned) in the majority
of list-manipulating benchmarks we’ve tried; our synthesis tool also produces strictly more
performant C code for tree-manipulating benchmarks when compared to the corresponding
Haskell programs, compiled by GHC without or with optimisations (Section 5). In particular,
we specifically observe this when we compare C code synthesised by Pika + SuSLik with no
C compiler optimisation flags to GHC compiled code with no GHC compiler flags.

Contributions
In this work, we make the following contributions:

We address the expressivity limitations of SSL, the specification formalism of the state-
of-the-art deductive synthesis tool SuSLik by developing Pika– a high-level specification
language with higher-order functions and abstract data types.
We formally define the operational semantics of Pika and prove the soundness of translation
from Pika to pre-/postconditions in SSL.
We develop an extension to SuSLik’s specification and synthesis mechanism that enables
translation from Pika specifications featuring first-class functions.
We observe that the synthesis tool resulting from the combination Pika + SuSLik enables
certified memory-layout-agnostic compilation from a functional specification to C code.
We report on the evaluation of the Pika regarding its expressiveness and performance.
In particular, we show that the C code it produces frequently outperforms equivalent
Haskell programs compiled by GHC.

2 Overview

2.1 Background
The Pika language is translated into SuSLik [9], which is a program synthesis tool that uses
Synthetic Separation Logic (SSL)-a variant of Hoare-style [4] Separation Logic (SL) [7].

A synthesis task specification in SuSLik is given as a function signature together with a
pair of pre- and post-conditions, which are both SL assertions [9]. The synthesiser generates
code that satisfies the given specification, along with the SL proof of its correctness by
searching in a space of proofs that can be derived by using the rules of the underlying logic [13].
A distinguishing feature of Synthetic Separation Logic is the format of its assertions. An SSL
assertion consists of two parts: a pure part and a spatial part. The pure part is a Boolean
expression constraining the variables of the specification using a few basic relations, like
equality and the less-than relation for integers. The spatial part is a symbolic heap, which
consists of a list of heaplets separated by the ∗ symbol.

Each heaplet takes on one of the following forms [9]:
emp: This represents the empty heap. It is also the left and right identity for ∗.
ℓ 7→ a: This asserts that memory location ℓ points to the value a. It also asserts that the
location ℓ is accessible.
[ℓ, ι]: At memory location ℓ, there is a block of size ι.
p(ϕ): This is an application of the inductive predicate p to the arguments ϕ. An induct-
ive predicate has a collection of branches, guarded by Boolean expressions (conditions) on
the parameters. The body of each branch is an SSL assertion. The assertion associated
with the first branch condition that is satisfied is used in place of the application. Note
that inductive predicates can be (and often are) recursively defined.
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Variable x, y Alpha-numeric identifiers ∈ Var
Size, offset n, ι Non-negative integers
Expression e ::= 0 | true | x | e = e | e ∧ e | ¬e | d
T -expr. d ::= n | x | d+ d | n · d | {} | d | · · ·
Command c ::= let x = *(x + ι) | *(x + ι) = e |

let x = malloc(n) | free(x) | error | f(ei)
Program Π ::= f(xi) { c } ; c
Logical variable ν, ω

Cardinality variable α

T -term κ ::= ν | e | · · ·
Pure logic term ϕ, ψ, χ ::= κ | ϕ = ϕ | ϕ ∧ ϕ | ¬ϕ
Symbolic heap P,Q,R ::= emp | ⟨e, ι⟩ 7→ e | [e, ι] | pα(ϕi) | P ∗Q
Heap predicate D ::= pα(xi) : ej ⇒ ∃y.{χj ;Rj}
Assertion P,Q ::= {ϕ;P}
Environment Γ ::= ∀xi.∃yj .

Context Σ ::= D
Synthesis goal G ::= P ⇝ Q

Figure 2 Syntax of Synthetic Separation Logic.

The general form of an SSL assertion is (p;h1 ∗ h2 ∗ · · · ∗ hn), where p is the pure part and
h1, h2, · · · , hn are the heaplets which are the conjuncts that make up a separated conjunction
of the spatial part. ∗ is separating conjunction: h1 ∗ h2 means that the heaplets h1 and h2
apply to disjoint parts of the heap. A syntax definition for SSL is given in Figure 2, which is
adapted from Cyclic Program Synthesis by Itzhaky et al. [6]. We will also use the symbol **
for separating conjunction and the symbol :-> for 7→.

As the specification language of SuSLik, SSL serves as the compilation target for the
Pika language. From there, executable programs are generated through SuSLik’s program
synthesis. Consider a program that takes an integer x and a result in location r and stores
x+ 1 at location r. This can be written as the SuSLik specification:

void add1Proc (int x, loc r)
{ r :-> 0 }
{ y == x + 1 ; r :-> y }

{ ?? }

This example can be written as follows in our tool:

add1Proc : Int -> Int;
add1Proc x := x + 1;

In contrast with SuSLik spec, the Pika one requires no direct manipulation with pointers.

2.2 The Pika Language
While SSL provides a specification language that allows tools like SuSLik to synthesise code,
it is only able to express specifications as pointers. This is useful for some applications,
such as embedded systems, but it does not provide any high-level abstractions. As a result,
every part of a specification is tailored to a specific memory representation of each data
structure involved. To address this shortcoming, we introduce a language with algebraic data
types that gets translated into SSL specifications. Additionally, we introduce a language
construct that allows the programmer to specify a memory representation of an algebraic

ECOOP 2024
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data List := Nil | Cons Int List;

Sll : List >-> layout [x];
Sll (Nil) := emp;
Sll (Cons head tail) := x :-> head , (x+1) :-> tail , Sll tail;

Figure 3 List algebraic data type together with its singly-linked list layout Sll.

data type called a layout. The distinction between algebraic data types and layouts provides
the separation of concerns between the low-level representation of a data structure and code
that manipulates it at a high level.

Syntactically, Pika resembles a functional programming language of the Miranda [12] and
Haskell [5] lineage. It supports algebraic data types, pattern matching at top-level function
definitions (though not inside expressions) and Boolean guards. The primary difference
arises due to the existence of layouts and the fact that the language is compiled to an SSL
specification rather than executable code. Beyond algebraic data types and layouts, Pika
has a built-in type for integers as well as Booleans.

Functions in Pika are only defined by their operations on algebraic data types. Thus, all
function definitions are “layout-polymorphic” over the particular choices of layouts for their
arguments and result. Giving a layout polymorphic function, a particular choice of layouts is
called “instantiation”. Specifying the layout of a non-function value is called “lowering.”

The code generator is instructed to generate a SuSLik specification for a certain func-
tion at a certain instantiation by using a %generate directive. For example, if there is
a function definition with the type signature mapAdd1 : List -> List, a line reading
%generate mapAdd1 [Sll] Sll would instruct the Pika compiler to generate the SuSLik
inductive predicate corresponding to mapAdd1 instantiated to the Sll layout for both its
argument and its result. An example of an ADT definition and a corresponding layout
definition is given in Figure 3. There is one unusual part of the syntax in particular that
requires further explanation: layout type signatures. A layout definition consists of a layout
type signature and a pattern match (much like a function definition), with lists of SSL heaplets
on the right-hand sides. A layout type signature has a special form A : α ↣ layout[x].
This says that the layout A is for the algebraic data type α and the SSL output variable x
denoting the “head” pointer of the respective structure.

2.3 Pika by Example
We demonstrate the characteristic usages of Pika by a series of examples. In these examples,
we will often make use of the List algebraic data type and its Sll layout from Figure 3. A
simple example of Pika code that illustrates algebraic data types and layouts is a function
which creates a singleton list out of the given integer argument:

% generate singleton [Int] Sll

singleton : Int -> List;
singleton x := Cons x (Nil );

This gets compiled to the following SuSLik specification (modulo auto-generated names):

predicate singleton (int p, loc r) {
| true => { r :-> p ** (r+1) :-> 0 ** [r ,2] }
}
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predicate sll(loc x) {
| x == 0 => { emp }
| not (x == 0) => { [x, 2] ** x :-> v ** (x+1) :-> nxt ** sll(nxt) }
}

predicate mapAdd1 (loc x, loc r) {
| x == 0 => { emp }
| not (x == 0) => { [x, 2] ** x :-> v ** (x+1) :-> xNxt ** [r, 2]

** r :-> (v+1) ** (r+1) :-> rNxt ** mapAdd1 (xNxt , rNxt) } }

void mapAdd1_fn (loc x, loc y)
{ sll(x) ** y :-> 0 }
{ y :-> r ** mapAdd1 (x, r) }

{ ?? }

Figure 4 Specifying a function that adds one to each element of a singly-linked list in SuSLik.

A slightly more complicated example comes from trying to write a functional-style map
function directly in SuSLik. Consider a function which adds 1 to each integer in a list of
integers. Considering the list implementation to be a singly-linked list with a fixed layout,
one way to express this in SuSLik is shown in Figure 4. In the mapAdd1 predicate, the input
list is given as the x parameter and the r parameter points to the output list. In the non-null
case, the head of r is required to be the successor of the head of x. The predicate is then
applied recursively to the tails.

Note that inductive predicates are used for two different purposes: the sll inductive
predicate describes a singly-linked list data structure, while the mapAdd1 inductive predicate
describes how the input list relates to the output list. Both are used in the specification of
mapAdd1_fn: sll in the precondition and mapAdd1 in the postcondition.

Using the mapAdd1 inductive predicate gives us two advantages over attempting to put
the SSL propositions directly into the postcondition of mapAdd1_fn:
1. We are able to express a conditional on the shape of the list. This is much like pattern

matching in a language with algebraic data types, but we are examining the pointer
involved directly.

2. We are able to express recursion part of the postcondition: the mapAdd1 inductive
predicate refers to itself in the not (x == 0) branch.

These two features are both reminiscent of features common in functional programming lan-
guages: pattern matching and recursion. However, there are still some significant differences:

In traditional pattern matching, the underlying memory representation of the data
structure is not exposed.
Compared to a functional programming language, the meaning of the specification is
more obscured. It is necessary to think about the structure of the linked data structure to
determine what the specification is saying. This is related to the first point: The memory
representation is front-and-center.
In many functional languages, mutation is either restricted or generally discouraged. In
SuSLik, mutation is commonplace.

Suppose we want to write the functional program that corresponds to this specification.
One way to do this in a Haskell-like language is by using the List type from Figure 3.

mapAdd1_fn : List -> List;
mapAdd1_fn (Nil) := 0;
mapAdd1_fn (Cons head tail) := Cons (head + 1) ( mapAdd1_fn tail );

ECOOP 2024
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The only missing information is the memory representation of the List data structure. We
do not want the mapAdd1_fn implementation to deal with this directly, however. We want to
separate the more abstract notions of pattern matching and constructors from the concrete
memory layout that the data structure has.

To accomplish this, we now extend the code with the definition of Sll from Figure 3.
Sll is a layout for the algebraic data type List. Now we have all of the information of
the original specification but rearranged so that the low-level memory layout is separated
from the rest of the code. This separation brings us to an important observation about
the language, manifested throughout these examples: none of the function definitions need
to directly perform any pointer manipulations. This is relegated entirely to the reusable
layout definitions for the ADTs. The examples are written entirely as recursive functions
that pattern match on, and construct, ADTs.

All that is left is to connect these two parts: the layouts and the function definitions.
We instruct a SuSLik specification generator to generate a SuSLik specification from the
mapAdd1_fn function using the Sll layout:

% generate mapAdd1_fn [Sll] Sll

The [Sll] part of the directive tells the generator which layouts are used for the arguments.
In this case, the function only has one argument and the Sll layout is used. The Sll at the
end specifies the layout for the result.

2.3.1 Synthesising the in-place map function
We can generalise our mapAdd1 to map arbitrary Int functions over a list and then redefine
mapAdd1 using the new map.

% generate mapAdd1 [Sll] Sll

data List := Nil | Cons Int List;

Sll : List >-> layout [x];
Sll (Nil) := emp;
Sll (Cons head tail) := x :-> head , (x+1) :-> tail , Sll tail;

map : (Int -> Int) -> List -> List;
map f (Nil) := Nil;
map f (Cons x xs) := Cons ( instantiate [Int] Int f x) (map f xs);

add1 : Int -> Int;
add1 x := x + 1;

mapAdd1 : List -> List;
mapAdd1 xs := instantiate [Int -> Int , Sll] Sll map add1 xs;

The keyword instantiate gives specific layouts to use for the types in function applications,
e.g., if a function g has type A -> B -> C -> D, then instantiate [L1, L2, L3] L4 g x y z
will use layout L1 for type A, L2 for type B, L3 for type C and, finally, L4 for the result type
D, while applying the function g to the three arguments x, y and z.

This example makes use of instantiate in two places. The first one in the call of
instantiate [Int] Int f x: the builtin Int layout is used for both the input and output. In
this special case, the Int layout shares a name with the Int type that it represents. This is
necessary since instantiate is used for all non-recursive (non constructor) calls.
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predicate filterLt9 (loc x, loc r) {
| (x == 0) => { r == 0 ; emp }
| not (x == 0) && head < 9 =>

{ x :-> head ** (x+1) :-> tail ** [x ,2] ** filterLt9 (tail , r) }
| not (x == 0) && not (head < 9) =>

{ x :-> head ** (x+1) :-> tail ** [x ,2] ** filterLt9 (tail , y)
** r :-> head ** (r+1) :-> y ** [r ,2] } }

void filterLt9 (loc x1 , loc r)
{ Sll(x1) ** r :-> 0 }
{ filterLt9 (x1 , r0) ** r :-> r0 }

{ ?? }

Figure 5 SuSLik specification of filterLt9, excluding Sll, which is given in Figure 3.

In the second use, instantiate [Int -> Int, Sll] Sll map add1 xs, we specify that the
second argument uses the Sll layout for the List type from Figure 3. We also give Sll as
the layout for the result of the call. Note that it is not necessary to use instantiate for the
recursive call to map. This is because the appropriate layout is inferred for recursive calls.

The type signature of mapAdd1 implies that it is layout polymorphic, as the type does
not refer to any specific layout. It might be surprising that instantiate is required in the
body of mapAdd1 since the type signature of mapAdd1 suggests that it is layout polymorphic
and yet we must pick a specific List layout when we use instantiate to call map. This is
because, in general, a call inside the body of some function fn might use any layout, even
layouts that have no relation to the layouts that fn is instantiated to. Finally, please note
that our benchmarks shown in Figure 1 include a more general version of mapAdd.

2.3.2 Guards

While we have a pattern-matching construct at the top level of a function definition, we have
not seen a way to branch on a Boolean value so far. This is a feature that is readily available
at the level of SuSLik, since the same conditional construct we use to implement pattern
matching can also use other Boolean expressions.

We can expose this in the functional language using a guard, much like Haskell’s guards.
Suppose we want to write a specialised filter-like function. Specifically, we want a function
that filters out all elements of a list that are less than 9. This is a specific example where
the SuSLik specification is noticeably more difficult to read. For a SuSLik specification of
this example, see Figure 5. On the other hand, an implementation of this in Pika is:

% generate filterLt9 [Sll] Sll

filterLt9 : List -> List;
filterLt9 (Nil) := Nil;
filterLt9 (Cons head tail)

| head < 9 := filterLt9 tail;
| not (head < 9) := Cons head ( filterLt9 tail );

When translating a guarded function body, the translator takes the conjunction of the
Boolean guard condition with the condition for the pattern match. Finally, please note that
our benchmarks shown in Figure 1 include a more general version of filterLt.

ECOOP 2024
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While the SuSLik version of filterLt9 requires working with pointers directly, the Pika
version uses pattern matching and constructor application. This allows the Pika code to
work independent of the layout used.

2.3.3 if-then-else

Another feature that is common in functional languages is if-then-else expressions. This
has a straightforward translation into SuSLik. The if-then-else construct corresponds to
SuSLik’s C-like ternary operator. We can use this feature to implement the even function
which produces 1 is the argument is even and 0 otherwise.

% generate even [Int] Int

even : Int -> Int;
even (n) := if (n % 2) == 0 then 1 else 0;

2.3.4 Using multiple layouts
To show the interaction between multiple algebraic data types, we write a function that
follows the left branches of a binary tree and collects the values stored in those nodes into
a list. This example demonstrates a binary tree algebraic data type and a layout that
corresponds to it.

% generate leftList [ TreeLayout ] Sll

data Tree := Leaf | Node Int Tree Tree;

TreeLayout : Tree >-> layout [x];
TreeLayout (Leaf) := emp;
TreeLayout (Node payload left right) := x :-> payload , (x+1) :-> left ,

(x+2) :-> right , TreeLayout left , TreeLayout right;

leftList : Tree -> List;
leftList (Leaf) := Nil;
leftList (Node a b c) := Cons a ( leftList b);

2.3.5 Synthesising fold
A fold is a common kind of operation on a data structure in functional programming, where
a binary function is applied to the elements of a data structure to create a summary value.
For example, if the binary function is the addition function, it will give the sum of all the
elements of the data structure. The classic example of such a fold is a fold on a list. In this
example, we will write a right fold over a List.

% generate fold_List [Int , Sll] Int
fold_List : Int -> List -> Int;
fold_List z (Nil) := z;
fold_List z (Cons x xs) :=

instantiate [Int , Int] Int f x ( fold_List z xs);
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We will specifically look at the specialization where we use the addition function for f so
that we can focus on way that layouts are used in the translation. This sort of specialization
corresponds to defunctionalization. The compiler produces the following SuSLik specification
for fold_List:

predicate fold_List (int i1 , loc x, int i2) {
| x == 0 => { i2 == i1 ; emp }
| not (x == 0) => { (zz4 == i1) && (( zz5 == nxt13) &&

(i2 == (h + b3 ))) ; [x ,2] ** x :-> h ** (x + 1) :-> nxt13 **
fold_List (zz4 , zz5 , b3) } }

The first two parameters of the SuSLik predicate correspond to the two arguments of the
Pika function. The final parameter of the predicate, i2, corresponds to the output of the
Pika function. There are two cases:
1. The x == 0 case corresponds to the Nil case in Pika. In this case, the pure part of

the assertion (to the left of the semicolon) requires that the output is equal to the first
parameter. This is because the Pika function returns the first parameter in its Nil case.

2. The not (x == 0) case corresponds to the Cons case. First, let’s look at the spatial
part (this is everything to the right of the semicolon). The pattern match destructures
the Cons into its head and tail. Likewise, in the spatial part of the SuSLik predicate,
we require that x points to h (the head) and x + 1 points to nxt13 (the tail). We also
recursively call the predicate on the tail. The pure part does two things: it introduces
new names for things (these are used internally) and it requires that the output i2 is the
sum of the head (h) and the value obtained from the output of the recursive call (b3).

3 Formal Semantics of Pika

In this section, we have the following plan:
We define abstract machine semantics for executing a subset of Pika programs. This
semantics is given by the big-step relation 7−→ which we define later.
We define the translation from that subset of Pika into SSL. This translation is given
by the function T JeKV,r from Pika expressions into SSL propositions. The r is a variable
name to be used in the resulting proposition and V is a collection of fresh names.
We prove a soundness theorem. Given any well-typed expression e and an abstract
machine reduction producing the store-heap pair (σ′, h′), the SSL translation of e should
be satisfied by SSL model (σ′, h′). This is stated formally, and proven, in Theorem 3.

This subset of Pika does not have guards or conditional expressions, but it does have
pattern matching. It also has the requirement that functions can only have one argument.
Unlike the implementation, there is no elaboration. As a result, every algebraic data type
value must be lowered to a specific layout at every usage and every function application must
be explicitly instantiated with a layout for the argument and a layout for the result. We also
limit the available integer and Boolean operations for brevity.

The grammar for this subset is given in Figure 6. The grammar for types, layout
definitions and algebraic data type definitions remain the same as before and are therefore
omitted. instA,B(f) corresponds to instantiate [A] B f. We also include another con-
struct, lowerA(C e1 · · · en). This says to use the specific layout A for the given constructor
application C e1 · · · en.

The semantics for SSL are largely derived [9] from standard separation logic semantics. [11]
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⟨i⟩ ::= · · · | -2 | -1 | 0 | 1 | 2 | · · ·

⟨b⟩ ::= true | false

⟨e⟩ ::= ⟨var⟩ | ⟨i⟩ | ⟨b⟩ | ⟨e⟩ + ⟨e⟩ | C ⟨e⟩ | instA,B(f)(⟨e⟩) | lowerA(⟨e⟩)

⟨fn-def ⟩ ::= ⟨fn-case⟩

⟨fn-case⟩ ::= f ⟨pattern⟩ := ⟨e⟩

Figure 6 Grammar for restricted Pika subset.

3.1 Overview of the Two Interpretations
The soundness theorem will link the abstract machine semantics to the translation. In fact,
the abstract machine semantics and the translation are similar to each other. For the abstract
machine we manipulate concrete heaps, while for the translation we generate symbolic heaps.

Comparing the two further, there are two main points (beyond what we’ve already
mentioned) where these two interpretations of Pika differ:
1. When we need to unfold a layout, how do we know which layout branch to choose?
2. How do we translate function applications (including, but not limited to, recursive

applications)?

First, consider the abstract machine semantics. In this case, we are able to choose
which branch of a layout to use by evaluating the expression we are applying it to until the
expression is reduced to a constructor value (where a “constructor value” is either a value or
a constructor applied to constructor values). If the expression is well-typed, this will always
be a constructor of the algebraic data type corresponding to the layout. The two rules that
this applies to are AM-Lower and AM-Instantiate. To interpret a function application,
we interpret its arguments and substitute the results into the body of the function. We
then proceed to interpret the substituted function body. This process is performed by the
AM-Instantiate rule.

Next, consider the SSL translation. Here we can determine which layout branch to
use by generating a Boolean condition that will be true if and only if the SSL proposition
on the right-hand side of the branch holds for the heap. Note that we assume that the
programmer-supplied layout definitions are injective functions from algebraic data types to
SSL assertions (up to bi-implication). We can directly translate function applications into
SSL inductive predicate applications. Since inductive predicates already allow for recursive
applications, there is no special handling necessary for recursion.

After defining these interpretations, we show how the abstract machine relation 7−→ and
the SSL interpretation function T JeKV,r relate to each other by the Soundness Theorem 3.

3.2 Abstract Machine Semantics
In this section, we will define an abstract machine semantics for Pika and relate this to the
standard semantics for SSL.

3.2.1 Notation and Setup
The set of values is Val = Z ∪ B ∪ Loc. Each of these three sets is disjoint from the other
two. In particular, note that Loc and Z are disjoint.
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There is also a set of Pika values FsVal. This includes all the elements of Val, but also
includes “constructor values” given by the rules in Figure 7. In addition to the store and
heap of standard SSL semantics, the abstract machine semantics uses an FsStore. This is a
partial function from locations to Pika values: FsStore = Loc ⇀ FsVal. The primary purpose
of this is to recover constructor values when given a location.

The general format of the transition relation is (e, σ, h,F) 7−→ (v, σ′, h′,F ′, r), where the
expression e results in the store being updated from σ to σ′, the heap being updated from h

to h′, v is the Val obtained by evaluating e, the initial and final FsStore are F and F ′ and
the result is stored in variable r. We assume that there is a global environment Σ which
contains all layout definition equations and function definition equations.

Given a heap h and a heap layout H, we will make use of the notation h · [H]. This
extends the heap with the location assignments given in H. We say that the layout body
H is acting on the heap h. This is defined in Figure 9. The intuition for this is that h gets
updated using the symbolic heap description in H. For example, ∅ · [a :-> 7] will contain
only the value 7 at the location a. It is assumed that H does not have any variables on the
right-hand side of :->.

3.2.2 Abstract Machine Rules
The abstract machine semantics provides big-step operational semantics for evaluating Pika
expressions on a heap machine. Its rules, given by Figure 8, make use of standard SSL
models:

Model M ::= (σ, h)
Store σ : Var ⇀ Val
Heap h : Loc ⇀ Val

Note that a compound expression, consisting of multiple subexpressions, uses disjoint parts
of the heap for each subexpression. This can be seen in the AM-Add, AM-Lower and
AM-Instantiate rules, which is essential for the proof of Soundness Theorem 3.

3.3 Translating Pika Specifications into SSL
We will define two translations: One from Pika expressions into SSL propositions and the
other from Pika definitions into SSL inductive predicate definitions. We start with the former.

3.3.1 Translating Expressions
In the rules given in Figure 10, the notation IA,B(f) gives the name of the inductive predicate
that the Pika function f translates to when it is instantiated to the layouts A and B.

We start by defining the translation rules for expressions. We use these translation rules
in Lemma 1 to define a translation function T J·KV,r. Then, we will define translation rules for
function definitions. The translation relation for expressions has the form (e, V ) ⇓ (p, s, V ′, v),
where p and s are the pure part and spatial part (respectively) of an SSL assertion and
V, V ′ ∈ P(Var).

The rules can be thought of as being in two groups:
1. Rules for base type expressions, such as S-Lit and S-Add.
2. Rules for using layouts to translate expressions whose types involve algebraic data types.

Examples include S-Lower-Constr and S-Inst-Inst.
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x ∈ Val
x ∈ FsVal FsVal-Base

x1 ∈ FsVal · · · xn ∈ FsVal
(C x1 · · ·xn) ∈ FsVal FsVal-Constr

Figure 7 FsVal judgment rules.

r fresh i ∈ Z σ′ = σ ∪ {(r, i)}
(i, σ,∅,F) 7−→ (i, σ′,∅,F , r) AM-Int

r fresh b ∈ B σ′ = σ ∪ {(r, b)}
(b, σ,∅,F) 7−→ (b, σ′,∅,F , r) AM-Bool

v ∈ dom(σ) σ(v) ̸∈ Loc
(v, σ,∅,F) 7−→ (σ(v), σ,∅,F , v) AM-Var-Base

v ∈ dom(σ) σ(v) ∈ Loc
(v, σ,∅,F) 7−→ (F(σ(v)), σ,∅,F , v) AM-Var-Loc

(x, σ,F , h1) 7−→ (x′, σx, h
′
1,F , vx) (y, σx,F , h2) 7−→ (y′, σy, h

′
2,F , vy)

r fresh h = h1 ◦ h2 h′ = h′
1 ◦ h′

2 z = x′ + y′ σ′ = σy ∪ {(r, z)}
(x+ y, σ, h,F) 7−→ (z, σ′, h′,F , r) AM-Add

(A[x] (C a1 · · · an) := H) ∈ Σ (e, σ0, h0) 7−→ (C e1 · · · en, σ1, h1, y1)
(ei, σi, hi) 7−→ (e′

i, σi+1, h
′
i, vi) for each 1 ≤ i ≤ n

h′ = h′
1 ◦ h′

2 ◦ · · · ◦ h′
n h = h0 ◦ h1 ◦ · · · ◦ hn σ′ = σn+1 ∪ {(r, ℓ)}

ℓ fresh r fresh
H ′ = H[x := ℓ][a1 := σ2(v1)][a2 := σ3(v2)] · · · [an := σn+1(vn)]

F ′ = F ∪ {(ℓ, (C e′
1 · · · e′

n))}
(lowerA(e), σ0, h,F) 7−→ ((C e′

1 · · · e′
n), σ′, h′ · [H ′],F ′, r) AM-Lower

(A[x] (C a) := H) ∈ Σ (f (C b) := ef ) ∈ Σ
(e, σ, h) 7−→ (C e1, σ1, h1, y)
(e1, σ1, h1) 7−→ (e′

1, σ2, h2, r)
ℓ fresh r fresh y fresh

H ′ = H[x := ℓ][a := e′
1] h′ = h1 · [H ′] σ′ = σf ∪ {(r, ℓ)}

F ′ = F ∪ {(ℓ, (C e′
1))}

(lowerB(ef [b := y]), σ2, h
′) 7−→ (e′

f , σf , h
′′, r)

(instA,B(f)(e), σ,F , h) 7−→ (e′
f , σ

′, h′′,F ′, r) AM-Instantiate

Figure 8 Abstract machine semantics rules.

h · [emp] = h
L-Emp

h′ = h · [H] a ∈ Val
h · [ℓ :-> a,H] = h′[ℓ 7→ a] L-PointsTo

e ∈ Val
h · [A[x](e), H] = h · [H] L-Apply

Figure 9 Rules for layout bodies acting on heaps.
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In the first group, consider S-Add. In the result of the translation, we’ve included
v == v1 + v2 in the list of conjuncts in the pure part. Here, v1 and v2 are the results of the
two subexpressions in the addition. In the pure part, we also include the pure parts of the
two subexpressions as conjuncts. These are p1 and p2. The spatial part of the translation
consists of the spatial parts of the two subexpressions, s1 and s2.

Now, in the second group, consider S-Lower-Constr. This translates a Pika constructor
application expression using a specific layout (which is provided by using the lower−(−)
construct). It takes the specific branch of the layout corresponding to the constructor in
question and puts the right-hand side of that branch into the spatial part, after applying the
appropriate substitutions for the arguments given to the constructor in the application. The
right-hand side of the layout branch is H and, after the substitution, it is called H ′.

The S-Inst-Inst rule is used to translate a function application being applied to the
result of another function application, given particular layouts for each application. In
SuSLik, it does not make sense to directly apply a predicate to another predicate application.
Therefore, we must do an ANF-like translation, where the result does not have “compound”
applications like this. This translation is exactly what S-Inst-Inst is doing.

▶ Lemma 1 (T J·K function). (·, V ) ⇓ (·, ·, ·, r) is a computable function Expr → (Pure ×
Spatial × P(Var)), given fixed V and r where r ̸∈ V .

By throwing away the third element of the tuple in the codomain, we obtain a function
Expr → (Pure × Spatial) from expressions to SSL propositions.

Call this function T J·KV,r. That is, we define the function as follows where r ̸∈ V :

T JeKV,r = (p; s) ⇐⇒ (e, V ) ⇓ (p, s, V ′, r) for some V ′

We highlight the computability of this function to emphasise the fact that it can be used
directly in an implementation of this subset of Pika.

3.3.2 Translating Function Definitions
The next step is to define the translation for Pika function definitions. In order to do this, we
must first figure out how to determine the appropriate layout branch to use when unfolding a
layout, a problem we highlighted earlier. Once this is accomplished, the rest of the translation
can be defined. When this problem was solved for the abstract machine semantics, it was
possible to simply evaluate the Pika expression until a constructor application expression
was reached. From there, it is possible to just look at the constructor name and match it
against the appropriate layout branch.

For the translation, however, we do not have the luxury of being able to evaluate
expressions. Instead, we must instead rely on the fact that, in SSL, a “pure” (Boolean)
condition can determine which inductive predicate branch to use. The question becomes:
Given an algebraic data type and a layout for that ADT, how do we generate an appropriate
Boolean condition for a given constructor for the ADT?

The solution is to find a Boolean condition which, given that the inductive predicate
holds, is true if and only if the layout branch corresponding to that ADT constructor is
satisfiable. In more detail, to define the branches of an inductive predicate IA(x), given an
ADT α, a constructor C : β1 → β2 → · · · → βn → α, a layout A : α ↣ layout[x] with a
branch A[x] (C a1 · · · an) := H and given that IA(x) holds, find a Boolean expression b with
one free variable x such that b ⇐⇒ ∃σ, h. (σ, h) |= H.
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i ∈ Z v fresh
(i, V ) ⇓ (v == i, emp, V ∪ {v}, v) S-Int

b ∈ B v fresh
(b, V ) ⇓ (v == b, emp, V ∪ {v}, v) S-Bool

v ∈ Var
(v, V ) ⇓ (true, emp, V, v) S-Var

(e1, V0) ⇓ (p1, s2, V1, v1) (e2, V1) ⇓ (p2, s2, V2, v2) v fresh
(e1 + e2, V0) ⇓ (v == v1 + v2 ∧ p1 ∧ p2, s1 ∗ s2, V2 ∪ {v}, v) S-Add

v ∈ Var
(lowerA(v), V ) ⇓ (true, A(v), V ∪ {v}, v) S-Lower-Var

(A[x] (C a1 · · · an) := H) ∈ Σ
(ei, Vi) ⇓ (pi, si, Vi+1, vi) for each 1 ≤ i ≤ n

v fresh
V ′ = Vn+1 ∪ {x} H ′ = H[a1 := v1] · · · [an := vn]

(lowerA(C e1 · · · en), V1) ⇓ (p1 ∧ · · · ∧ pn, H
′ ∗ s1 ∗ · · · ∗ sn, V

′, x) S-Lower-Constr

v ∈ V r fresh
(instA,B(f)(v), V ) ⇓ (true, IA,B(f)(v, r), V ∪ {r}, r) S-Inst-Var

(A[x] (C a1 · · · an) := H) ∈ Σ
(ei, Vi) ⇓ (pi, si, Vi+1, vi) for each 1 ≤ i ≤ n

x fresh
V ′ = Vn+1 ∪ {x} H ′ = H[a1 := v1] · · · [an := vn]

(f (C b1 · · · bn) := ef ) ∈ Σ e′
f = ef [b1 := v1] · · · [bn := vn]

(lowerB(e′
f ), Vn+1) ⇓ (p, s, V ′, r)

(instA,B(f)(C e1 · · · en), V1) ⇓ (p ∧ p1 ∧ · · · ∧ pn, s ∗ s1 ∗ · · · ∗ sn, V
′, r) S-Inst-Constr

(instA,B(g)(e), V ) ⇓ (p1, s1, V1, r1)
(instB,C(f)(r1), V1) ⇓ (p2, s2, V2, r2)

(instB,C(f)(instA,B(g)(e)), V ) ⇓ (p1 ∧ p2, s1 ∗ s2, V2, r2) S-Inst-Inst

Figure 10 Expression Translation Rules.

V = {v1, · · · , vn} where v1, · · · , vn are distinct variables
r ∈ Var r ̸∈ V c = cond(A,C, x) p1 · · · pn fresh

(p, s) = T JinstA,B(f)(C p1 · · · pn)KV,r

(f (C a1 · · · an) := e) fn-def7−−−→A,B (IA,B(f)(x, r) : c ⇒ {p; s})
FnDef

Figure 11 Translation rule for function definitions.
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▶ Lemma 2 (cond function). There is a computable function cond(·, ·) that takes in any
layout A : α ↣ layout[x] with a branch A[x] (C a1 · · · an) := H for a given constructor
C : β1 → β2 → · · · → βn → α and it produces a Boolean expression with one free variable x
such that the following holds under the assumption that IA(x) holds.

cond(A,C) ⇐⇒ ∃σ, h. (σ, h) |= H

Here, IA(x) is the name of the generated inductive predicate corresponding to the layout A.

With this function in hand, we are now ready to define the translation for Pika function
definitions. This definition is in Figure 11. In this rule, the fresh variables p1, · · · , pn will be
substituted for a1, · · · , an.

3.4 Typing Rules
Typing rules for Pika expressions are given in Figure 12. These rules differ from standard
typing rules for a functional language due to the existence of layouts and their associated
constructors, like instantiate and lower. If an expression is well-typed, then each use of
instantiate and lower only uses layouts together with the ADT that they are defined for.

The rules also make use of a concreteness judgment. The rules for this judgment are given
in Figure 13a. The intuition of this judgment is that a type is “concrete” iff values of that
type can be directly represented in the heap machine semantics. For example, an ADT type
is not concrete because a layout has not been specified. However, once a particular layout is
specified for the ADT type, it becomes concrete. Base types, like Int, are also concrete.

Rules for the ensuring that global definitions are well-typed are given in Figure 13b. In
this figure, ∆ is the set of all (global) constructor type definitions.

3.5 From Pika to SLL Specifications: Soundness of the Translation
We want to show that our abstract machine semantics and our SSL translation fit together. In
particular, our abstract machine semantics should generate models that satisfy the separation
logic propositions given by our SSL translation. Figure 14 gives a high-level overview of how
these pieces fit together. We will give a more specific description of this in Theorem 3.

▶ Theorem 3 (Soundness). For any well-typed expression e, if T JeKV,r is satisfiable for
V = dom(σ′) and (e, σ, h,F) 7−→ (e′, σ′, h′,F ′, r), then (σ′, h′) |= T JeKV,r. That is, given an
expression e with a satisfiable SSL translation, any heap machine state that e transitions to (by
the abstract machine semantics) will be a model for the SSL translation of e (cf. Figure 14).

Proof. See the Appendices in the extended version of the paper [14]. ◀

The fact that, at the top level, we only translate function definitions suggests an additional
theorem. We want to specifically show that any possible function application is sound, in
the sense just described. This immediately follows from Theorem 3.

Abbreviating instA,B(f) as fA,B , we can state the following theorem:

▶ Theorem 4 (Application soundness). For any well-typed function application fA,B(e), if
T JfA,B(e)KV,r is satisfiable for V = dom(σ′) and (fA,B(e), σ, h,F) 7−→ (e′, σ′, h′,F ′, r), then
(σ′, h′) |= T JfA,B(e)KV,r.

Proof. This follows immediately from Theorem 3. ◀
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i ∈ Z
Γ ⊢ i : Int T-Int b ∈ B

Γ ⊢ b : Bool T-Bool
(v : α) ∈ Γ
Γ ⊢ v : α T-Var

(f : α → β) ∈ Σ
Γ ⊢ f : α → β

T-Fn-Global

Γ ⊢ x : Int Γ ⊢ y : Int
Γ ⊢ x+ y : Int T-Add

(v : α) ∈ Γ (A : α↣ layout[x]) ∈ Σ
Γ ⊢ lowerA(v) : A T-Lower-Var

(C : α1 → · · · → αn → β) ∈ Σ (B : β↣ layout[x]) ∈ Σ
Γ ⊢ ei concreteαi

for each i with 1 ≤ i ≤ n

Γ ⊢ lowerA(C e1 · · · en) : B T-Lower-Constr

(A : α↣ layout[x]) ∈ Σ (B : β↣ layout[y]) ∈ Σ
Γ ⊢ f : α → β Γ ⊢ e : A

Γ ⊢ instA,B(f)(e) : B T-Instantiate

(C : α1 → · · · → αn → β) ∈ Σ Γ ⊢ ei : αi for each i with 1 ≤ i ≤ n

Γ ⊢ C e1 · · · en : β T-Constr

Figure 12 Typing rules.

4 Extensions of SuSLik

We have shown the translation from the functional specifications into SSL specifications.
However, some of the SSL specifications are not supported in the original SuSLik and existing
variants. In this section, we show how to extend the SuSLik to support more features to
make the whole thing work. We will show the extensions on the following three aspects:

How to describe and call an existing function within SSL predicates.

How to make the result of one function call as the input of another function call.

How to synthesise programs with inductive predicates without the help of pure theory.

Γ ⊢ e : Int
e concreteInt

C-Int Γ ⊢ e : Bool
e concreteBool

C-Bool

(A : α↣ layout[x]) ∈ Σ Γ ⊢ e : A
e concreteα

C-Layout

(a) Concreteness judgment rules.

(C : α1 → α2 → · · · → αn → β) ∈ ∆
b1 : α1, b2 : α2, · · · , bn : αn ⊢ e : γ

(f (C b1 · · · bn) := e) ⇒ f : β → γ
G-Fn

(b) Global definition typing.

Figure 13 Rules for concreteness judgement and typing global definitions.
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Pika SSL propositions

Abstract machine semantics

translation

interpretation
|=

Figure 14 The relationship between the two Pika semantics given by the soundness theorem.

4.1 Function Predicates
Without any modification upon the implementation, we find the SSL predicate with some
restrictions can be used to describe function relations other than data structures (named
function predicates). The definition of function predicates is as follows:

▶ Definition 5 (Function Predicates). Given any non-higher-order n-ary function
f(x1, ..., xn) in the functional language, the function predicate to synthesise f has the
following format:

predicate predf(T x1, ... ,T xn, T output){...}

where T ∈ {loc, int}. The type of xi (and output) is decided by the type of f . If it is an
integer in f , then its type is int; otherwise, it is loc (for any data structure in Pika).

Since the input of the whole workflow is functional programs, the “output” in the
definition is to provide another location for the output of the function. And the specification
to synthesise function f should have the following format:
void f(loc x1, ... ,loc xn)
{x1 :-> v1 ** x2 :-> l2 ** sll(l2) ** ... ** xn :-> vn ** output :-> 0}
{x1 :-> v1 ** x2 :-> l2 ** ... ** xn :-> vn ** output :-> output0 **

predf(v1, l2, ..., vn, output0)}

4.2 SSL Rules for func Structure
As we show in previous examples, the reason we can have func structure is that the points-to
structure in the post-condition is always eliminated after write operations. For example, the
in-placed inc1 functions specification is satisfied via the Write (Figure 15) on the location.
void inc_y(loc y, loc x)
{x :-> vx ** y :-> vy}
{x :-> vx + vy ** y :-> vy}

The core insight of func structure is: since the function synthesised by function predicate
behaves like the pure function, it is the same as the Write rule in the sense that only the
output location is modified. Thus, we add the new Funcwrite rule into the zoo of SSL
rules (see Figure 15). To make the func structure correctly equal to some “write” operation,
the following restrictions should hold, which are achieved by the translation:

If func f(x1, ..., xn, output) appears in a post-condition, then no write rule can be
applied to any xi. This is to avoid the ambiguity of the func.
The type of function f is consistent.
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Write
Vars (e) ⊆ Γ e ̸= e′ {ϕ; x 7→ e ∗ P}⇝{ψ; x 7→ e ∗ Q}| c

{ϕ; x 7→ e′ ∗ P}⇝{ψ; x 7→ e ∗ Q}| ∗x = e ; c

Funcwrite
∀i ∈ [1, n],Vars (ei) ⊆ Γ {ϕ; P}⇝{ψ; Q}| c

{ϕ; x 7→ e ∗ P}⇝{ψ; func f(e1, . . . , en, x) ∗ Q}| f(e1, . . . , en, x) ; c

Figure 15 The Write and new Funcwrite rules in SSL.

Note that based on the setting of the function predicate, the parameters of the function
call are pointers, while the parameters of the function predicate are content to which pointers
point. Furthermore, we have the func generated from function predicates and with the format
defined in Subsection 4.1. As a result, the equivalent original SSL that duplicates points-to
of one location is not a problem, since they can be merged as one.

4.3 Temporary Location for the Sequential Application
Though richly expressive, SSL has difficulty in expressing the sequential application of
functions. For example, given the func structure available, the following function is not
expressible within one function predicate:
f x y = g (h x) y

If we attempt to express it, we will have the following part in the predicate:
predicate f(loc x, loc y, loc output)
{... ** func h(x, houtput) ** func g(houtput, y, output)}

However, houtput is not a location in the pre-condition, which is not allowed in SSL.
Thus, we introduce a new keyword temp to denote the temporary location for the sequential
application. The new definition of func is as follows:
predicate f(loc x, loc y, loc output)
{... ** temp houtput ** func h(x, houtput) ** func g(houtput, y, output)}

Roughly speaking, the temp structure will help to allocate a new location for the output of
the first function, and then use it as the input of the second function. After all appearances
of houtput is eliminated, we will deallocate the location.

Note that the temporary variable is possible to appear in two different structures: recursive
function predicates or func call. The reason we don’t need to consider the basic arithmetic
operations is that the integer will be directly used as the predicate parameter, instead of the
location as the parameter. For example, the sum of a list can be expressed as:
predicate sum(loc l, int output){
| l == 0 => {output == 0; emp}
| l != 0 => {output == output1 + v; [l, 2] ** l :-> v ** l + 1 :-> lnxt **

sum(lnxt, output1)} }

Such sequential application is common in functional programming, especially in the
recursive function. For example, it is not elegant to flatten a list of lists without the
sequential application.
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Tempfuncalloc
{ϕ; x 7→ a ∗ P}⇝{ψ; func f(e1, . . . , en, x) ∗ temp(x, 1) ∗Q}| c

{ϕ; P}⇝{ψ; func f(e1, . . . , en, x) ∗ temp(x, 0) ∗ Q}| let x = malloc(1) ; c

Tempfuncfree
{ϕ; P}⇝{ψ;Q}| c

̸ ∃x ∈ Q ∧ {ϕ; P}⇝{ψ; temp(x, 1) ∗ Q}| let x0 = ∗x ; type_free(x0); free(x); c

Figure 16 New allocating and deallocating rule for temp in SSL.

flatten :: [[a]] -> [a]
flatten [] = []
flatten (x:xs) = x ++ flatten xs

We can express this function, but with some strange structure to store all temporary lists.
predicate flatten(loc x, loc output){
| x == 0 => {output :-> 0}
| x != 0 => {[x, 2] ** x :-> x0 ** sll(x0) ** x + 1 :-> xnxt **
[output, 2] ** func append(x, outputnxt, output) ** output + 1 :-> outputnxt **
flatten(xnxt, outputnxt)} }

With such a function predicate, though we can synthesise the function whose result stored
in output is the flattened list, the list output is containing a lot of intermediate values, which
is neither consistent with the definition in the source language nor space efficient.

The new rules consist of allocating and deallocating rules (Figure 16). Based on the
definition of the func structure and the function predicate, the allocated locations are different,
where the temp location for func is directly used; while the temp location for function predicate
should allocate a new location for function predicates. As for the deallocation, not only
the temp location(s) but also the content they point to should be deallocated. That is the
reason we have the type_free function, which is syntax sugar to deallocate the content of
a location based on the type information. For example, if the type of the location is tree,
then the type_free will deallocate the content of the location via tree_free function, which
is synthesised based on the SSL predicate tree as follows.
void tree_free(loc x)

{tree(x)}
{emp}

Specifically, if the location contains the value with type int, then the type_free will do
nothing. Thus, the function predicate with temp is much better, in the sense that no extra
space is used, and the synthesised function is consistent with the source language.
predicate flatten(loc x, loc output){
| x == 0 => {output :-> 0}
| x != 0 => {[x, 2] ** x :-> x0 ** sll(x0) ** x + 1 :-> xnxt ** temp outputnxt

** flatten(xnxt, outputnxt) ** func append(x, outputnxt, output)} }

4.4 Avoiding Excessive Heap Manipulation with Read-Only Locations
The existing SuSLik depends on the set theory to express the pure relation. However, it is
not trivial to automatically generate the pure part of SSL specifications from the functional
specifications. To see why the set theory is needed, the following simple example shows the
functionality of the set theory, with sll_n being the single-linked list with no set.
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predicate sll_n(loc x) {
| x == 0 => {true; emp }
| not (x == 0) => { [x, 2] ** x :-> v ** (x + 1) :-> xnxt ** sll(xnxt) } }
predicate copy(loc x, loc y) {
| x == 0 => {y == 0; emp }
| not (x == 0) => { [y, 2] ** y :-> v ** (y + 1) :-> ynxt ** [x, 2] ** x :-> v

** (x + 1) :-> xnxt ** copy(xnxt, ynxt) } }

While the intent of the function predicate copy is to copy the list x to y, without the set
theory, the output program will be somewhat surprising to see:

{sll_n(x)}
void copy (loc x, loc y) {

if (x == 0) {
} else {

let n = *(x + 1); copy(n, y); let y01 = *y; let y0 = malloc(2); *y = y0;
*(y0 + 1) = y01; let vy = *y0 *x = vy; } }

{copy(x, y)}

The problem here is that, when we have the pure relation in the predicate to indicate
that the values are the same, the synthesiser finds another possible way: instead of copying
the value of x to y, we can just change the value of x to initial value vy after malloc. This is
not the user intent, and the output program is not correct. Turns out, the solution is not
that difficult: we simply need add a new kind of heaplet in the specification language, call
constant points-to, which has a similar idea as read-only borrows [2]. The only difference of
the constant points-to from the original points-to heaplet is that the value of the location
is constant, which means that the Write rule in SSL is not applicable. By this way, the
extended SuSLik will not consider the modification of the input location, thus provides the
correctness mechanism (in Subsection 3.5) for the translation of Pika.

5 Evaluation

In this section, we evaluate Pika’s expressiveness. A secondary objective is to evaluate
Pika’s performance. The performance evaluation is done largely to put Pika into context by
comparing it to a prominent functional programming language (Haskell). The main purpose
of Pika is to increase the expressiveness of SuSLik, which is the reason for the primary
evaluation objective. Towards these goals, we answer the following research questions:

RQ1: Is the performance of the synthesised code competitive with code generated from
traditional functional language compilers?
RQ2: In concrete terms, how does the tool’s expressivity compare with the expressivity
of SuSLik specifications for programs written in a functional style?
RQ3: What are the failure modes of our approach?

Our implementation and benchmarks are available in supplementary material. The
experiments were conducted on a 2021 MacBook Pro with an M1 processor and 32 GB of
RAM. We used GHC version 9.8.1 and Apple Clang version 13.0.0.

For RQ1, we run benchmarks and compare execution time. The benchmarks we selected
are a series of functions that manipulate data structures such as lists and trees, which covers
different common abstract operations (like map, filter, fold). The comparison is between
Haskell functions based on user-defined data structures and C functions generated from
Pika’s specifications (via the extended SuSLik), parameterised with the data structures of
large size. We recorded both execution time with and without optimisation of compilers.
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(a) Benchmarks without optimizations.
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(b) Benchmarks with optimizations.

Figure 17 Performance of C functions generated by Pika compared to Haskell/GHC.

Table 1 Statistics on the benchmarks: Pika spec size v, generated SSL spec size, translator
performance, and synthesiser performance. All times are in seconds.

# Task Name Pika AST SuSLik AST |Pika AST|
|SuSLik AST| Compile Time Synthesis Time

1 cons 76 123 0.618 0.012 5.134
2 plus 46 91 0.505 0.002 5.992
3 add1Head 64 109 0.587 0.006 5.114
4 listId 62 107 0.579 0.005 4.906
5 add1HeadDLL 74 146 0.507 0.007 10.618
6 even 19 42 0.452 0.001 3.999
7 foldr 63 113 0.558 0.005 5.454
8 sum 58 103 0.563 0.004 5.125
9 filterLt 84 147 0.571 0.009 6.104
10 mapAdd 71 116 0.612 0.007 5.031
11 leftList 116 156 0.744 0.008 7.722
12 treeSize 78 126 0.619 0.007 5.980
13 take 119 212 0.561 0.012 10.447

The results are shown in Figure 17. Our findings are as follows:
When compiled to an executable run without optimisations, the C programs generated by
Pika are faster than Haskell programs. And we can also observe that the speed difference
is larger for functions with more complex data structures.
When compiled to an executable with optimisations:

For functions with complex data structures, the comparison is similar to the case
without optimisation.
For functions for the singly-linked list GHC’s optimisation is very powerful, resulting
in much better performance than C programs generated by Pika. With more tests,
we found out the performance after GHC’s optimisation is similar to the one using
Haskell’s built-in list. We believe this is because GHC’s optimisations are fine-tuned
to optimise code manipulating list-like data structures and use the same optimisation
as for Haskell’s built-in list. That said, similar observations regarding GHC do not
hold on other complex data structures, such as trees.
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selfAppend : List -> List;
selfAppend xs := instantiate [Sll , Sll] Sll append xs xs;

append : List -> List -> List;
append (Nil) ys := ys;
append (Cons x xs) ys := instantiate [Int , Sll[ mutable ]] Sll cons

(addr x) ( append xs ys);

Figure 18 A Pika specification not supported by SuSLik.

To answer RQ2, we first find some common patterns for Pika programs in the benchmarks
shown in Table 1: (1) pattern matching on ADTs (#9, 10, etc.), (2) code reusability (#3 vs 5,
#7 vs 8). Those features are not directly expressible in SuSLik because of the low-level nature
of SSL. For example, the add1Head and add1HeadDLL functions share the same function
definition, where the only difference is the type layout used; but the SuSLik specifications
need to be treated separately, which makes the codes more complex. To make some objective
observations on the expressivity, we measure the number of nodes in the input Pika AST and
find it consistently fewer than the number of AST nodes in the generated SuSLik specification.

To address RQ3, note that a particular failure mode occurs when Pika source code
reuses a variable in a way that violates SSL constraints. For example, see the selfAppend
example in Figure 18 which uses its argument twice. We could have addressed this issue by
introducing a lightweight linear type system to Pika, but have not carried out this exercise
yet. Another kind of failure occurs when SuSLik fails to synthesise an implementation of the
generated specification: handling these failures is beyond the scope of this work.

6 Discussion

We have given a translation from a high-level functional language into SSL specifications to
be given to a program synthesiser.

In doing so, we have revealed a close connection between, on one hand, algebraic data
types and recursive pattern-matching functions and, on the other hand, SSL inductive
predicates. The soundness of this connection is demonstrated by Theorem 3 in Section 3.

Beyond the theory, this connection can be exploited in three directions:
Increased type safety: Algebraic data types allow you to distinguish between types that
have the same runtime heap representation.
More reusability: An algebraic data type can have multiple layouts, each of which gives a
different possible runtime heap representation for the ADT. As Pika functions are defined
only in terms of algebraic data types, they naturally get the polymorphism of the ADT
by being able to work with any layout of the ADT.
Greater succinctness: When working at this higher level of abstraction, it generally takes
less code as you are not frequently manipulating heap locations. The only mention of
heap locations is in reusable layout definitions. This can also give greater clarity.

7 Related Work

Pika is built upon the SuSLik synthesis framework. SuSLik provides a synthesis mechanism
for heap-manipulating programs using a variant of Separation Logic [9]. However, it does not
have any high-level abstractions. In particular, writing SuSLik specifications directly involves
a significant amount of pointer manipulation. Further, it does not provide abstraction over
specific memory layouts. As described in Subsection 2.2, Pika addresses these limitations.
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Dargent language [1] also includes a notion of layouts and layout polymorphism for a class
of algebraic data types, which differs from our treatment of layouts in two primary ways:
1. In Pika, abstract memory locations (with offsets) are used. In contrast, Dargent uses

offsets that are all relative to a single “beginning” memory location. The Pika approach
is more amenable to heap allocation, though this requires a separate memory manager
of some kind. This is exposed in the generated language with malloc and free. On
the other hand, the technique taken by Dargent allows for greater control over memory
management. This makes dealing with memory more complex for the programmer, but it
is no longer necessary to have a separate memory manager.

2. Algebraic data types in the present language include recursive types and, as a result, Pika
has recursive layouts for these ADTs. This feature is not currently available in Dargent.

Furthermore, layout polymorphism also works differently. While Dargent tracks layout
instantiations at a type-level with type variables, in the present work we simply only check
to see if a layout is valid for a given type when type-checking. In particular, we cannot write
type signatures that require the same layout in multiple parts of the type (for instance, in a
function type List -> List we have no way at the type-level of requiring that the argument
List layout and the result List layout are the same). This more rudimentary approach that
Pika currently takes could be extended in future work. Overall, the examples in the Dargent
paper tend to focus on the manipulation of integer values. In contrast, we have focused
largely on data structure manipulation, which follow the primary motivation of SuSLik.

Synquid is another synthesis framework with a functional surface language. While Synquid
allows an even higher-level program specification than Pika through its liquid types, it does
not provide any access to low-level data structure representation. [8] In contrast, Pika’s level
of abstraction is similar to that of a traditional functional language but, similar to Dargent,
it also allows control over the data structure representation in memory.

8 Future Work and Conclusion

We make the following observations based on our experience of developing and using Pika.
By allowing layouts to use multiple SSL parameters, we would be able to give a greater

variety of layouts associated with an ADT. For instance, the List data type used in the
examples could have a doubly-linked list layout in addition to the singly-linked list layout
Sll. Note that any existing Pika function defined over List will continue to work with no
modification with these new layouts. Defunctionalisation and lambda lifting can also be used
to implement true higher-order functions.

It is possible to do inference of some layouts, for example in mapAdd1 we would usually
want to use the same layout as the argument layout, but we leave this for future work.
Another approach is to introduce type variables that correspond to layouts, as done in the
series of works on the Dargent tool [1]. We leave this approach for future work as well.

Reverse transformation deserves further investigation: if we go from an SSL specification
to Pika program and then compile to, e.g., C, can we synthesise additional programs that
traditional SSL synthesisers would struggle with? What are the limitations of this approach?

We may be able to expose more of the synthesis mechanism in the Pika language. For
example, generate an SSL specification given only a Pika type signature (and corresponding
%generate directive). This could combine well with additional polymorphism, as we could
utilise the free theorems that are given by a polymorphic type signature to further constrain
the resulting specification.
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Finally, is it possible to derive translations for languages such as Pika from abstract
machine semantics? In this paper, we have given a language with abstract machine semantics.
We then give a translation of that language into SSL. We then show that the final states
given by the abstract machine semantics are models for the SSL propositions produced by
our translation. But is it possible to begin by specifying the abstract machine semantics and
then mathematically (or automatically) derive an appropriate translation into SSL, with the
requirement that the translation satisfies the soundness theorem?

In conclusion, we have presented Pika: a high-level functional specification language that
paves the way for the efficient synthesis of a verifiably correct imperative code with in-place
memory updates that is comparable in efficiency to the handwritten C.
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