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Abstract
Timing channel attacks are emerging as real-world threats to computer security. In cryptographic
systems, an effective countermeasure against timing attacks is the constant-time programming
discipline. However, strictly enforcing the discipline manually is both time-consuming and error-
prone. While various tools exist for analyzing/verifying constant-time programs, they sacrifice at
least one feature among precision, soundness and efficiency.

In this paper, we build CtChecker, a sound static analysis for constant-time programming.
Under the hood, CtChecker uses a static information flow analysis to identify violations of constant-
time discipline. Despite the common wisdom that sound, static information flow analysis lacks
precision for real-world applications, we show that by enabling field-sensitivity, context-sensitivity
and partial flow-sensitivity, CtChecker reports fewer false positives compared with existing sound
tools. Evaluation on real-world cryptographic systems shows that CtChecker analyzes 24K lines of
source code in under one minute. Moreover, CtChecker reveals that some repaired code generated by
program rewriters supposedly remove timing channels are still not constant-time.
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1 Introduction

Modern cryptographic systems are vulnerable to timing attacks [21, 10, 26, 6], which can
quickly reveal confidential keys by analyzing the encryption/decryption time of those systems.
While the treat has been well-known for decades, identifying timing channel vulnerabilities
in cryptographic systems is a daunting task, as timing channels result from implementation
details such as data and instruction cache effects, branch prediction buffers and memory
controllers. As all of those hardware features are invisible in the source code, manually
identifying timing channel vulnerabilities is extremely challenging, if possible at all, as doing
so precisely requires a crystal clear view of the whole software-hardware stack and how secret
information flows throughout the stack.
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To make it feasible to mitigate timing channels, one common practice is to identify and rule
out dangerous code patterns that lead to timing channels. Notably in cryptographic systems,
a common countermeasure against timing attacks is to follow constant-time disciplines [1, 11],
which rules out (1) branching on secret-dependent data, as well as (2) accessing memory with
secret-dependent offset (e.g., an array access with a secret-dependent index). For example, a
secret-dependent branch if s[i] then x = 2 may be identified by noting that s[i] is the i-th
bit of the private key, hence violating the first constant-time discipline. We might further
replaced it with x = s[i]*(2-x)+x, or x = (-s[i]&2)|((s[i]-1)&x), which are both functionally
equivalent to the original code. While the violation in this example is easy to spot as it
directly uses the secret value s, detecting constant-time violations and rewriting them in a
secure way in general is still error-prone, as evidenced by timing leak in manually validated
code [27] as well as a sequence of timing-related patches where early patches introduce
new vulnerabilities that are fixed by later ones [36]. Hence, more rigorous and automated
techniques are necessary for security.

Motivated by the need for rigorous and automated tools, designing and developing
automated tools for detecting and sometimes repairing constant-time violations has been
an active research area. Observing the relation between constant-time disciplines and non-
interference [16], most automated tools rely on some form of information flow analysis to
detect constant-time violations (i.e., to detect “tainted” branch conditions and memory
addresses). For example, ct-verif [1] uses a sound and complete reduction on the source code
to verify constant-time disciplines as a safety problem, via off-the-shelf verification tools.
FACT [11] is a domain-specific language that uses a static information flow type system
to detect constant-time violations. Constantine [7] deploys a dynamic taint analysis [7],
while FlowTracker [32] uses an optimized program dependence graph (PDG) to identify
constant-time violations. If we narrow down the scope further and focus on cache-based timing
channels only, it is also common to identify constant-time violations first, before further
refining the results to those that are vulnerable to cache-based attacks only. For instance,
SC-Eliminator [46] uses a static taint analysis to identify “leaky conditional statements” (i.e.,
sensitive branches) and “leaky lookup-table accesses” (i.e., sensitive memory addresses via
array accesses) before applying a (more costly) static cache analysis on leaky lookup-table
accesses to filter out the ones that are not vulnerable to cache-based timing attacks (though
they might still be vulnerable to other variants of timing attacks; see Section 2.3). The same
applies to SpecSafe [9] and oo7 [43], which used static and dynamic taint analysis respectively
before applying more costly cache analysis to refine their results.

With ample tools that use information flow analysis to detect constant-time violations,
the precision issue of those tools is still under-investigated to the best of our knowledge. Yet,
to be practical, the precision issue is just as important as soundness, especially given the
common wisdom that static information flow analysis usually comes with high false positive
rates when being applied to real-world applications [33]. To be more concrete, the following
research questions still linger when cryptographic library developers plan to develop or adopt
an information flow analysis for the purpose of detecting constant-time violations:
RQ1: To analyze cryptographic libraries, what are the impacts of various design decisions

(e.g., field-sensitivity, declassification, context-sensitivity) on the analysis precision?
RQ2: Which approach (e.g., logic-based formal verification, PDG-based analysis) should

they follow in order to achieve better trade-offs between precision and performance?
RQ3: Is it possible to improve the precision of existing tools without sacrificing soundness

and performance?
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To address these research questions, we start from a baseline PDG-based static information
flow analysis called PIDGIN [18], with minor extensions that use its resulting sensitivity
of registers and memory blocks to detect violations of constant-time disciplines. With the
baseline implementation, we thoroughly study the root causes of false positives produced by
the baseline and improve it with various features such as field-sensitivity, declassification
and flow-sensitivity to reduce its false positive rate. The precision study is performed on a
benchmark consisting of various implementations of modular exponentiation used in popular
cryptographic systems (Libgcrypt, OpenSSL, mbedTLS and BearSSL), which are known
to be vulnerable to timing attacks, as well as a set of automatically repaired code from
Constantine [7], which are expected to be constant-time. The precision study shows that
field-sensitivity and declassification are the most effective features. As a result from the
precision study, we built CtChecker, a precise, sound and efficient information flow analysis
for constant-time programming. CtChecker was implemented based on PIDGIN, with several
precision improving features introduced. CtChecker targets LLVM intermediate representation
(IR), which allows it to analyze various source code languages with compatible compiler
front-ends. In summary, CtChecker reduces the false positives of the baseline by 67.6%, and
we observed that the remaining ones are mainly due to imprecision in the sound points-to
analysis used by CtChecker. Moreover, CtChecker detects true positives in 6 repaired programs
produced by Constantine, which was not revealed before to the best of our knowledge.
A1: Field-sensitivity and declassification are the most effective features that can improve

analysis precision, while the precision of point-to analysis (used by sound information
flow analysis) has a considerable impact on the overall precision.

To study the remaining two research questions, we first compare the precision of CtChecker
with respect to ct-verif [1], which first transforms source code to target code via a sound and
complete reduction, and then verifies safety properties on the target code via off-the-shelf
verification tools. Despite the fact that the reduction is sound and complete, and the common
wisdom that logic-based formal verification generally offers superior precision than static
program analyses that are built on approximation of program semantics, CtChecker turns
out to be both more precise and more efficient compared with ct-verif [1]. Digging into the
results, we found that ct-verif uses loop invariant heuristics to verify the code after reduction,
which introduced higher false positive rates than CtChecker. Moreover, PDG-based approach
is more appealing for detecting constant-time violations as it can pinpoint those violations in
the code, while verifiers only produce a binary result of the existence or absence of violations.
A2: Based on our empirical study on state-of-the-art tools, we found that PDG-based

information flow analysis offers the best trade-off between precision and performance
compared with logic-based approach.

We further compare CtChecker with CacheS [44] and SC-Eliminator [46] on the benchmarks
that those tools were evaluated on. Both tools are soundy as CacheS is built on lightweight
but unsound memory model, and SC-Eliminator assumes no information flow via aliasing.
Though CtChecker is built on a sound points-to analysis, we found that CtChecker reports
very similar positives with those reported by CacheS [44], even though CacheS is built on
complex abstraction interpretation with an unsound memory model. Compared with the
static taint analysis used by SC-Eliminator, CtChecker reports fewer positives in 6 programs
and the same positives in 9 programs in the SC-Eliminator benchmark. CtChecker reports
more positives in 2 programs, but they are all true positives missed by SC-Eliminator, since
it does not propagate information flows via aliasing.
A3: CtChecker improves the precision of existing tools without sacrificing soundness and

performance. Compared with CtChecker, existing solutions either fall short on the high
false positive rates with sound static method [1], or inherit the unsoundness of dynamic
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method [45, 37], or simplified but unsound memory model [44, 46]. Notably, the precision
of CtChecker is close to those built on unsound memory models, even though they have
the advantage of possibly reporting fewer false positives by sacrificing soundness.

In summary, this paper makes the following contributions:
Design and implementation of CtChecker, a precise, sound and efficient static information
flow analysis for constant-time programming. The source code is made publicly available1.
Identification of the imprecision sources (e.g., field-sensitivity, declassification and flow-
sensitivity) of constant-time analysis on cryptographic libraries (Section 3), and improve-
ment of overall analysis precision based on the findings. Overall, field-sensitivity and
declassification are the most effective features that improve precision, while combining
multiple features enables CtChecker to reduce the total false positives compared to the
baseline by 67.6% (Section 4).
Comparison between CtChecker and state-of-the-art tools with similar goals. Evaluation
results suggest that PDG-based information flow analysis offers the best trade-off between
precision and performance compared with logic-based approach (e.g., ct-verif [1]) and
abstract interpretation (e.g., CacheS [44]). Moreover, its precision is close to tools that
are built on unsound memory models (Section 4).
Evaluation of CtChecker on automatically repaired code from Constantine [7] reveals new
timing channels that are not reported before (Section 4).

2 Background

2.1 Information Flow Analysis
Information flow analysis tracks interactions of information throughout a program. Given
the confidentiality of program inputs, an information flow analysis tracks which data have
been computed from confidential information or its derivatives. In general, information flow
analysis handles complex confidentiality and/or integrity policies which can be formalized as
a security lattice [13], while its simplest setting, known as taint analysis, only handles a two-
level confidentiality lattice with “public” and “secret” labels only. A sound information flow
analysis typically enforces non-interference [16] or its variants. Intuitively, non-interference
guarantees that information labeled with higher confidentiality (or lower integrity) has no
influence on information labeled with lower confidentiality (or higher integrity).

Listing 1 Example of Explicit and Implicit Information Flow.
// key = sensitive information
x = key + 1;
y = 0;
if (key > 100) {

y = 1;
}

There are two kinds of information flows: explicit and implicit, as illustrated in the
example shown in Listing 1. In this simple example, key is the only confidential input. We
can see that x is directly computed from key, forming an explicit information flow. On the
other hand, the variable y is assigned to a public constant in the true branch. However, due
to the fact that the assignment occurs only in a branch whose condition is dependent on
key, an attacker with the ability to observe the value of y can infer if the value of key is
above 100 or not. In this case, the confidential data implicitly flows into y.

1 https://github.com/psuplus/CtChecker

https://github.com/psuplus/CtChecker
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A variety of information flow analyses have been implemented with different methodical
approaches. The utilization of program dependence graph (PDG) to detect the flow of
information inside a program can be found in works such as PIDGIN [18] and FlowTracker [32].
Another approach is to use reduction techniques such as self-composition [5, 1] and product
programs [4, 48] to reduce the information flow problem to safety properties, which can be
verified by formal methods. Type-based approach, another more traditional method, can be
found in various implementations [23, 42, 30]. Besides the static sound approaches above,
dynamic taint analysis tracks information flow [14, 24, 39] at program execution time.

In this paper, we focus on the PDG-based approach and logic-based approach as they
have been used in existing automated and sound tools that detects timing channels [1, 32].
Some prior work uses type-based approach to detect timing channels in software [49] and
hardware [51] designs, but the precision of type systems is usually limited [33, 20]. They
require type annotations from programmers, which is time-consuming, and pinpointing the
root cause of type errors is a nontrivial task [50, 25, 34].

2.2 Timing Channels in Cryptosystems

A timing channel is a side channel in which an attacker uses program execution time to learn
information about sensitive data. In some implementations of sliding window exponentiation,
for example, the sequences of squares and multiplies can be measured due to differences in
each method’s execution time. This attack can be illustrated in the source code from an old
OpenSSL implementation of sliding window exponentiation, shown in Listing 2.

Listing 2 Square and Multiply Timing Channel.
1 for (i = 1; i < bits; i++) {
2 if (! BN_sqr (v, v, ctx))
3 goto err;
4 if ( BN_is_bit_set (p, i))
5 if (! BN_mul (rr , rr , v, ctx))
6 goto err;
7 }

The for-loop here iterates through each bit in the confidential exponent p. In each
iteration, it first computes the square of v, and if the i-th bit of p is set, an additional
multiplication computation is executed before proceeding to the next loop iteration. Since
the extra multiplication computation is only performed when the i-th bit of p is set, the code
is vulnerable to a timing attack which utilizes the “side effects” of the extra computation on
timing to rebuild the entire private key (e.g., [6]).

Another common kind of timing channels in cryptography algorithm implementations
root from array accesses being indexed with an offset derived from secret. The reason is that
when accessing the memory, different indices may cause the loading or eviction of data into
or from different cache lines in the data cache. By observing such behaviors, an attacker
could reveal secret data; this variant of timing attacks is also known as cache attacks. The
code snippet below is an example which is vulnerable to cache attack, where a public array
Sbox is accessed with secret key RK:

RK [4] = RK [0] ^ Sbox [(RK [3] >> 8) & 0xFF ];

As different values of RK[3] can lead to different cache lines to be fetched, a cache-probing
attack can be launched to learn the value of RK[3]. The code snippet represents real timing
vulnerabilities in encryption algorithms such as AES [17].

ECOOP 2024
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2.3 Constant-Time Disciplines and Cache-Specific Analysis

As timing channels are revealed by the execution time of a program, and many hardware
features (e.g., data/instruction cache, CPU pipeline and cache bank) can affect timing,
manually reasoning about timing channel vulnerabilities is extremely challenging, if possible
at all. So as a practical countermeasure against timing channels, the threat model of constant-
time discipline [1, 11] defines two constant-time violations of programs which can be exploited
by attackers: (1) secret-dependent branch conditions, and (2) secret-dependent memory
addresses. The constant-time disciplines are widely adopted in security-critical cryptographic
systems [1, 11] due to a few benefits:

It is agnostic to hardware configurations (e.g., cache configuration and replacement policy)
and features (e.g., cache, pipeline and cache bank) that are utilized by timing attacks.
It provides a security abstraction that is more attractable both for programmers and for
rigorous program analysis. For example, it is a common practice to use information flow
analysis [1, 7, 11, 32] to detect constant-time discipline violations: it is sufficient to tag
branches and memory accesses that use tainted values.

We note that under a weaker threat model that focuses on cache-based timing attacks only,
various cache analyses [8, 35, 46] has been developed to detect if confidential information
has impact on the cache hit/miss behaviors. For instance, SC-Eliminator [46] assumes a
weaker threat model where an attacker only observes the number/type of instructions and
cache hits/misses. Consider preload A; A[secret], where preload A loads the whole array A
into the cache. The code is secure per SC-Eliminator’s threat model since A[secret] always
hits the cache. But it is insecure against other sophisticated attacks, such as the CacheBleed
attack [47] that exploits cache-bank conflicts, and traffic analysis on the memory bus.

Despite the differences in their threat models, we note that cache analysis sometimes
performs a static taint analysis first to identify array indices that are potentially tainted by
sensitive data. Then, with the results from the taint analysis, a more costly cache analysis is
performed to determine cache hits/misses. A positive from the taint analysis is removed if
the cache analysis decides that this positive is a cache must-hit [35, 46]. Hence, precision
improvements in sound and efficient static taint analysis, the focus of this paper, could also
improve the precision of existing cache analysis, despite their very different threat models.

3 CtChecker Design

In this section, we depict the design details of CtChecker. We first describe the general
workflow of CtChecker. Then we highlight the unique challenges and their solutions, and
finally discuss the precision of CtChecker.

3.1 General Workflow

CtChecker first captures information flows by identifying the information flow introduced by
each instruction according to its semantics. The captured flows are represented as a set of
constraints, where each constraint element represents the sensitivity of registers or memory
blocks. A least solution that satisfies all constraints is then computed. Lastly, all branch
conditions and memory accesses are checked against the least solution to see if any sensitive
information was used in them, resulting in violations of constant-time discipline.
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<pointer > = getelementptr inbounds <ty >, ptr
<ptrval >{, [ inrange ] <ty > <idx >}*

Flow: V (ptrval) → V (pointer)

store <ty > <value >, ptr <pointer >

Flow: V (value) → D(pointer)

<result > = load <ty >, ptr <pointer >

Flow: V (pointer) ∪ D(pointer) → V (result)

Figure 1 Memory-Related Specification for LLVM IR.

3.1.1 Capturing Information Flows
The information flow specification of each instruction describes the sources (i.e., where
information come from) and the sinks (i.e., where information go to). Based on the semantics
of each instruction, the sources and sinks are usually easy to identify: instruction operands
being read are sources and operands that are written to are sinks. However, since pointers
can point to different data (in the memory) and the data to which they point to can change,
a concrete information flow specification needs to distinguish three categories of elements,
namely 1) the operand itself (e.g., a register), 2) the memory location that a pointer directly
points to, and 3) all memory locations that are reachable from a pointer (through pointer
arithmetics). Hence, we define three functions (V, D, R) which return the elements to be
constrained for a value, respective to the three categories.

V (x), the value associated with the operand x.
D(p), the memory block that a pointer p points to.
R(p), the set of all reachable (i.e., accessible) memory blocks from a pointer p.

In order to correctly compute D and R, a sound points-to analysis is employed. Formally,
the points-to analysis creates a directed graph G = (P, M, E) from the code being analyzed,
where node set P represents all pointer values, node set M represents all memory blocks
being allocated, and edge set E links nodes in P to nodes in M (i.e., the points-to relation),
as well as links connecting memory blocks, as a memory block can also hold a pointer.

To compute the function D(p), we locate p ∈ P and return the set {m | m ∈ M ∧ (p, m) ∈
E}. Similarly, to compute the function R(p), we return the set of memory blocks that are
reachable from p in G. For example, assume a pointer p1 pointing to a pointer field of a data
structure, D(p1) will be the memory block storing the pointer only, while R(p1) contains
all the memory blocks that can be recursively reached by p1 through node traversal, which
include both the memory block storing the pointer and the data that the pointer points to.

For most IR instructions, information flow is captured by a simple value flow, V (source) →
V (sink). For memory-related instructions (e.g., the getelementptr (GEP), store and load
instructions in LLVM IR), the more complicated specification is given in Figure 1. Specifically,
for GEP instruction that calculates the memory address of a subelement in an aggregate
data structure (i.e., array and structure) from the base pointer and the index of the target
subelement, the sink V (pointer) is the address directly pointed to by p. For store and load,
function D is used to specify the source and destination of the memory write and read
respectively. Function R is used for function calls, which we discuss in Section 3.2.4.

ECOOP 2024
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3.1.2 Constraints and Their Least Solution
With the information flow specification, CtChecker creates a set of constraints from sources to
sinks for each instruction. For each register and memory block m ∈ M , a distinguished con-
straint element is created (i.e., a one-to-one mapping). For an information flow source → sink,
a constraint is generated as Esource ≤ Esink where Esource and Esink are the corresponding
constraint element of the source and sink respectively. The ≤ symbol represents a partial
ordering on the constraint elements and each constraint element can either be L (public) or
H (secret), where L < H and H ̸≤ L. Additionally, CtChecker identifies the initial sensitive
data m (e.g., secret keys) and generates constraints of the form H ≤ Em. For example,
code snippet “k=secret; x=k; y=0;” will generate three constraints H ≤ Ek, Ek ≤ Ex

and 0(constant) ≤ Ey. These generated constraints are then added to the set of constraints,
which are used to find the least solution.

The least solution, if exists, can be computed with linear-time algorithms, such as
the Rehof-Mogensen algorithm [31]. By definition, the least solution provides the least
confidentiality level of each constraint element, where the set of constraint elements with the
least level H are considered to contain sensitive information. For the code snippet above,
the least confidentiality level of k, x and y are H, H, and L, respectively. As a result, k and
x are considered containing sensitive information.

3.1.3 Checking the Constant-Time Discipline
With the least solution at hand, CtChecker can check whether the analyzed program adheres
to the constant-time discipline by examining all branch conditions and memory accesses,
where a violation is found if a branch condition has level H, or a memory address being
loaded from or stored to has level H. CtChecker reports all locations in terms of the line
number in the source code regarding violations of the constant-time discipline.

3.2 Challenges and Solutions
The general workflow above presents the foundation of a sound analysis of constant-time
programs. However, to develop an useful analysis, we need to address the following challenges.

3.2.1 Field-Sensitivity
In the naive analysis above, function D is modeled as D(pointer), the aggregated data
structure that pointer points to. However, it is common for cryptographic libraries to store
secret and public information in the same structure. In Listing 3, consider the gcry_mpi
struct of Libgcrypt, where the array under expo->d in the modular exponentiation function
holds secret value, while all other metadata fields are public. The naive approach would
constrain expo as a single entity, reporting both branches at lines 8 and 9 as secret-dependent
branches. However, the branch on expo->flags is not secret, resulting in a false positive.

To address the issue, both the sound points-to analysis and information flow analysis
need to be field-sensitive, meaning that they both need to differentiate different fields in
a structure. In particular, points-to analysis creates one separate memory block for each
subelement in aggregate data structures, and correspondingly, CtChecker creates one distinct
constraint element for each memory block from points-to analysis. By retrieving the offset
and size information when possible (using idx operand from the corresponding GEP instruction
of a store or load instruction as well as type information), CtChecker refines function D as
D(pointer, offset, size), providing the necessary lookup information into the memory nodes in
G, constructed by a field-sensitive points-to analysis. Function R is refined in a similar way.
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Listing 3 Field-Sensitivity Issues.
1 struct gcry_mpi {
2 ...
3 unsigned int flags;
4 mpi_limb_t *d; // secret value
5 };
6

7 struct gcry_mpi *expo;
8 if (expo ->flags) ... // not secret - dependent
9 if (expo ->d[i]) ... // secret - dependent

10 if (expo ->d) ... // not secret - dependent

One remaining subtlety is to distinguish pointer values and the memory blocks that they
point to. For example, it is common to store private keys at the public memory address
(i.e., revealing the addresses of the keys does not reveal their values). To prevent CtChecker
from over-tainting these addresses (e.g., line 10 in Listing 3), CtChecker follows a two-phase
approach. In the first phase, CtChecker propagates the addresses that are potentially storing
sensitive information. In the second phase, when the data in these addresses is accessed, the
tainted information will then be tracked from these accesses.

We note that while field-sensitivity can be enabled on many cases, a sound analysis in-
evitably needs to sacrifice field-sensitivity in cases where type information is missing, or aliases
have inconsistent types, for instance. In these cases, refined function D(pointer, offset, size)
resorts to its basic version without offset and size (i.e., D retrieves all fields in the structure
that pointer points to).

3.2.2 Declassification
In real-world applications, strict information flow analysis should be relaxed to allow infor-
mation flows that reveal limited or intended amount of sensitive information. This relaxation
is known as declassification. CtChecker supports a whitelisting mechanism, where a user-
provided whitelist (often provided by a programmer with domain knowledge) consists of
variables that are derived from tainted data but are considered harmless. For all crypto-
graphic libraries, we add variables storing key sizes but nothing else to the whitelist. These
variables are manually checked to make sure that they do not contain key content themselves.

With a whitelist, CtChecker removes constraints that are associated with whitelisted
variables after constraint generation. This way, not only the whitelisted variables are
considered public, but also variables derived from them. The branches based on whitelisted
variables or their derivatives are not reported by CtChecker.

3.2.3 Flow-Sensitivity
A variable might store both sensitive and public values at different program points, leading
to imprecision issues. Consider the code snippet where both branches are dependent on i.

1 int i = key;
2 if (i == 0) ... // secret - dependent
3 i = 10;
4 if (i == 0) ... // not secret - dependent

A naive information flow analysis generates the constraints H ≤ Ei and L ≤ Ei, where i
throughout the program shares the same constraint element Ei. The least solution of the
constraints is Ei = H, meaning that i is potentially sensitive. As a consequence, both branch
conditions at lines 2 and 4 are marked as violations of constant-time discipline.

ECOOP 2024
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declare <RetType > @<FnName > ([ arg list ])

Flow: Vargs ∪ Rargs → Tret ∪ Rargs

Vargs =
N⋃

i=0

V (argi)

Rargs =
N⋃

i=0

{R(argi) : type(argi) = pointer}

Tret =
{

V (retval) RetType = primitive
R(retptr) RetType = pointer

Figure 2 Unknown Function Specification for LLVM IR.

Observing that the root cause of the issue above is lacking flow-sensitivity, CtChecker
utilizes existing compiler support to improve flow-sensitivity. In LLVM, all registers are in
static single-assignment (SSA) form. Hence, CtChecker can utilize LLVM’s mem2reg pass,
which transforms the IR code by turning the standard alloca-store-load instruction
sequences on memory (e.g., assignment and use of i in the example above) into simple
register assignments. With the code transformation, the two i’s are named as i.0 and
i.1, respectively. Hence, two constraints are generated: H ≤ Ei.0, L ≤ Ei.1, and the least
solution is Ei.0 = H, Ei.1 = L. Therefore, only the branch at line 2 which uses i.0 is marked.

However, we note that due to aliasing and other subtleties in C language’s memory model,
enabling flow-sensitivity on pointer-based accesses while maintaining soundness is much more
challenging, which is beyond the scope of this paper.

3.2.4 Unknown Functions
The analyzed code often calls to external functions whose source code is either unavailable,
or not covered by the analysis. To soundly capture information flows with the absence of
some function definitions, we need to constrain possible flows in those missing functions.
Obviously, input arguments can flow to return values. Moreover, if an argument or the
return value is a pointer, any value that is reachable from the pointer-argument might flow
to all reachable values from the pointer-return (e.g., through pointer arithmetics and memory
writes). Hence, the information flows with absent function implementation is specified as
the rule in Figure 2, where reachable memory from pointer-arguments are both sources and
sinks of information flow, while reachable memory from pointer-return are sinks.

3.3 Precision of CtChecker
While CtChecker is empowered by various techniques above to improve its precision while
maintaining soundness, false positives are still unavoidable like any nontrivial static program
analysis.

One potential source is from a sound points-to analysis. To be sound, the points-to
analysis must mark memory nodes as collapsed when the type information is inconsistent or
missing. Once a node is collapsed in the points-to analysis, field-sensitivity is lost on the
memory node. Moreover, whenever the points-to analysis fails to distinguish two different
pointers’ corresponding memory nodes, it merges them into one node, resulting in an
over-approximation of the taint analysis.
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Second, CtChecker is a context-sensitive interprocedural analysis. However, when a
callee function is invoked multiple times within the same caller function with different
arguments, CtChecker only creates one context for all calls. This leads to the same indexed
arguments of the multiple calls being aliased in the points-to analysis. As a result, a similar
over-approximation is observed.

Furthermore, the adoption of LLVM’s mem2reg pass only enables flow-sensitivity on
non-aggregate type memory. Memory accesses involving GEPs are still flow-insensitive.

While the above limitation prevents us from removing all false positives, we observe that
CtChecker is able to outperform existing sound analysis. We provide the evaluation details
next in Section 4.

4 Evaluation

4.1 Implementation

We implement CtChecker on PIDGIN [18], a static information flow analysis that integrates
a query language into program dependence graphs (PDGs). However, PIDGIN lacks the
precision-enhancing features discussed in Section 3.2, which we implement with an additional
2100 LOC in C++.

One implementation choice of static information flow analysis is the points-to analysis to
derive sound approximation of memory blocks that a pointer might point to. The two main-
stream points-to analysis algorithms are the unification-based Steensgaard’s algorithm [38]
and the inclusion-based Andersen’s algorithm [2]. Both algorithms have implementations that
are both context- and field-sensitive in order to gain better precision. For example, DSA [22]
is a field- and context-sensitive points-to analysis based on Steensgaard’s algorithm with
heap cloning. On the other hand, Andersen’s algorithm is generally considered more precise
but also costly. Tools such as SVF [40] provide precision from context- and field-sensitivity
without sacrificing much performance. Noting that DSA is used in our baseline PIDGIN and
ct-verif [1], a representative logic-based tool, CtChecker is also built on top of DSA to make
fair comparison with them (see the comparison with PIDGIN in Section 4.4 and ct-verif in
Section 4.5). We leave the study of the impact of points-to analysis on constant-time analysis
as future work.

4.2 Benchmarks

We evaluated CtChecker on two sets of benchmark programs. The first benchmark set
consists of code taken from four cryptographic libraries, i.e., BearSSL v0.6 [29], Libgcrypt
v1.10.1 [12], mbedTLS v3.2.1 [41] and OpenSSL v1.1.1q [15]. Among the four libraries,
Libgcrypt and OpenSSL have widespread use, mbedTLS is built for embedded platforms,
and BearSSL is less popular but it claims to be a constant-time cryptographic library [28]. In
particular, the code consists of the modular exponentiation implementations of each library,
where 4 implementations are taken from OpenSSL, as it is the only library that has various
implementations for the same functionality. In the benchmark, the exponents in the modular
exponentiation computation is marked as confidential sources. According to the definition of
constant-time discipline, the sinks of the analysis are simply branch conditions and memory
addresses.
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The second benchmark set consists of code generated by a constant-time rewriter Con-
stantine [7], which automatically identifies timing channels in the source code and repair
them to follow the constant-time discipline2. To the best of our knowledge, this is the first
work to analyze the rewritten code by constant-time rewriters. Due to an incompatible
LLVM version used by Constantine [7], we used an off-the-shelf C-backend [19] to translate
their rewritten IR back to C source code whenever possible.

4.3 Evaluation Setup
We answer four research questions with the evaluation:
Q1: Impact of separate features. How do field-sensitivity, declassification and flow-

sensitivity affect the analysis precision as separate features? Will including additional
source code improve the analysis precision? Does CtChecker improve the precision of its
baseline (i.e., PIDGIN)?

Q2: Comparison with state-of-the-art. Does CtChecker improve the precision when com-
pared with ct-verif [1], a sound verifier for constant-time programming? Does CtChecker
produce comparable or even more precise results when compared with CacheS [44] and
SC-Eliminator [46]), both are built on simplified but unsound memory model?

Q3: Precision. How many false positives does CtChecker produce? What are the origins of
the remaining false positives?

Q4: Scalability. Does CtChecker scale to real-world codebase with moderate size?

4.4 Impacts of Analysis Features
To answer Q1, we first create three variants of CtChecker, where only one feature among
field-sensitivity (FS), white-list (WL) and flow-sensitivity (FL) is enabled. One extra feature,
which is external to CtChecker, is how much code does it cover in the analysis. To study
the impact of code coverage, we create two versions of each library implementation: one
only includes the essential code that is necessary to compile the modular exponentiation
implementation, while the other version (SRC) includes utility functions such as the multi-
precision integer (mpi) or big number (bn) libraries3. The evaluation results are summarized
in Table 1.

The improvement for field-sensitivity alone (column FS) is smaller than expected: while
all implementations allocate secret and non-secret values in same structures, only four
implementations (Libgcrypt, mbedTLS, BearSSL and OpenSSL-MontConstTime) observe
some improvements. The reason is largely due to the lack of utility function implementations:
both points-to analysis and information flow analysis remain very conservative without
callee’s implementation, making it hard to differentiate read/write effects on each individual
data field.

All four libraries saw a considerable reduction in positives when whitelist was used
(column WL). The removed positives only leak key sizes, which are explicitly declassified in
the whitelist. OpenSSL and mbedTLS saw a slight reduction with flow-sensitivity enabled
(column FL).

2 We pick Constantine [7] instead of other available rewriters such as SC-Eliminator [46], Lif [35] as they
both assume a weaker threat model that only tackles cache attacks (see Section 2.3). In particular, their
rewritten code with prefetching technique still violates constant-time disciplines.

3 The only exception is on BearSSL, which remains the same for both versions for two reasons: (1) the
modular exponentiation function only contains high-level code that makes up fewer than 20 lines of
code. An analysis on it alone does not generate any meaningful result, and (2) BearSSL has a much
smaller codebase compared with other libraries.
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Table 1 Number of positives based on features. Each column represents the analysis result with
some features enabled. Base: the baseline analysis, FS : field-sensitivity, WL: whitelist, SRC : adding
extra source code, FL: flow-sensitivity, and All: all features enabled. TP represents the true positives
and Reduction computes the reduction rate of false positives, i.e., (Base − All)/(Base − TP).

Library Base FS WL SRC FL All TP Reduction
Libgcrypt 1.10.1 66 46 55 76 66 30 6 60.0%
mbedTLS 3.2.1 50 45 48 33 45 10 4 87.0%
BearSSL 0.6 18 15 6 18 16 3 1 88.2%
OpenSSL 1.1.1q

Reciprocal 14 14 3 20 13 9 2 41.7%
Mont 45 45 36 37 44 25 2 46.5%
MontConstTime 36 27 28 29 34 18 0 50.0%
MontWord 4 4 2 15 4 12 1 -267%

binsec/aes_big 0 0 – – 0 0 0 –
binsec/des_tab 51 26 – – 51 26 24 92.6%
binsec/tls-rempad-luk13 7 6 – – 7 6 6 100%
appliedCryp/3way 41 0 – – 41 0 0 100%
appliedCryp/des 72 62 – – 72 62 62 100%
appliedCryp/loki91 75 72 – – 75 72 56 15.8%
ghostrider/findmax 0 0 – – 0 0 0 –
ghostrider/matmul 4 0 – – 4 0 0 100%
libg/des 448 432 – – 448 432 432 100%
pycrypto/ARC4 20 19 – – 20 19 19 100%

Overall 951 813 178 228 940 724 615 67.6%

Including additional source code (column SRC) does not necessarily reduce false positives:
doing so in fact increases positive numbers for Libgcrypt, OpenSSL-Reciprocal and OpenSSL-
MontWord. This somewhat surprising degradation comes from the imprecision of the
underlying points-to analysis. The points-to analysis, using heap cloning technique, will
merge distinct nodes that are processed by a common function. The analysis also merges
nodes that are found to be in the same equivalence class. In the case of Libgcrypt, nodes
that were considered distinct in the baseline test, end up aliased to the same node in the full
source benchmark.

CtChecker enables all features and analyzes more than the essential code (i.e., it also
covers utility function implementations), whose result is shown under the column “All”. For
most libraries, CtChecker delivers the most precise result, with the exceptions of OpenSSL-
Reciprocal and OpenSSL-MontWord. By inspecting the differences, we concluded that the
reason is also due to undesirable effects in the points-to analysis when additional code is
being analyzed.

4.5 Comparison with ct-verif

ct-verif [1] is one of the first sound tools for verifying constant-time properties; it uses the
self-composition technique [5] to convert the constant-time property into a classical program
verification problem. One reason for comparing with ct-verif is that it is also built on top
of the DSA [22] points-to analysis; hence, the comparison focuses on the advantages of
each approach, rather than some engineering details, such as the difference in the points-to
analysis, in their implementations.
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Table 2 Comparison with ct-verif. “Full-SRC” corresponds to full source in Table 1. “No-
Undefined-Function” is the version where all function calls without sources are removed. “ct-verif-
Verified” stands for all positives in ct-verif are removed, while “CtChecker-Verified” stands for all
positives in CtChecker are removed.

Library

ct-verif CtChecker

Full
SRC

No
Undefined
Function

ct-verif
Verified

CtChecker
Verified

Full
SRC

No
Undefined
Function

ct-verif
Verified

CtChecker
Verified

Libgcrypt 1.10.1 – 20 0 10 30 6 0 0
mbedTLS 3.2.1 OOM 5 0 1 10 4 0 0
BearSSL 0.6 3 3 0 0 3 3 0 0
OpenSSL 1.1.1q

Reciprocal – 2 0 0 9 2 0 0
Mont. – 4 0 2 25 2 0 0
Mont. Const. Time – 2 0 3 18 0 0 0
Mont. Word – 1 0 0 12 1 0 0

One challenge in the comparison is that as a verification tool, ct-verif only reports whether
the input program is constant-time or not4. To find the exact lines that ct-verif deems
constant-time violations, a line-by-line check on the source code is needed. Whenever ct-verif
reports a positive, we log the current line, modify it with some constant-time code, and run
ct-verif again. The same strategy is applied to function calls that lead the control flow to
other functions.

Even though we carefully make the changes so that the information flow remains the
same, there is still a chance that the information flow might be changed while rewriting the
code that has constant-time violations. For a fair comparison, both tools are running on the
same rewritten code.

4.5.1 Results
Both ct-verif and CtChecker are sound analyses and we did observe that both tools report all
true positives. The differences are on false positives. To evaluate the false positive reported
by each tool, we consider four variants of the cryptographic libraries that we evaluated in
Section 4.3. The results are summarized in Table 2.

Full-SRC contains the full source code of the libraries, including mpi libraries. ct-verif
was only able to analyze BearSSL in this setting (recall that BearSSL has the smallest
codebase among all libraries). ct-verif fails with an out-of-memory error on mbedTLS. As for
Libgcrypt and OpenSSL, full source introduces a huge amount of source code. Since we have
to manually go through the source code line by line with ct-verif to find offending lines. It is
a prohibitive amount of work to get all positives. On the contrary, CtChecker could get all
four libraries’ results, where the result on BearSSL is the same as what ct-verif reports.

No-Undefined-Function corresponds to the minimal source in Table 1. The difference
here is that a function call will be removed if it calls an undefined function. The reason is to
accommodate the difference in how the tools treat excluded sources. ct-verif treats a return
value as sensitive even if there is no tainted argument used in this function call. CtChecker
taints all reachable memory in the presence of pointer-values (even if the pointer itself is

4 When verification fails, ct-verif does generate some error messages. However, it is hard to decipher those
messages and link them to the source code.
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not tainted, see Section 3.2). Removing undefined function calls allows a fair comparison
between the two tools. We note that for all libraries, CtChecker is consistently at least as
precise as ct-verif, where CtChecker reports fewer positives in 4 out of 7 libraries.

ct-verif-Verified was created from column No-Undefined-Function by removing all positives
reported by ct-verif, resulting in fully verified code that is constant time. Any positive reported
by CtChecker on this version is expected to be a false positive. That being said, CtChecker
reported no positive when all positives are removed in ct-verif.

CtChecker-Verified was created similarly from column No-Undefined-Function by removing
all positives that are reported by CtChecker. Each program is a piece of verified constant-time
code. Hence, the positives reported by ct-verif on this version are false positives (we also
manually confirmed). ct-verif reports 16 false positives in total on the constant-time code.

To understand the possible causes for these false positives reported by ct-verif, we analyzed
its output IR code and results. One reason is that memory nodes within an array are marked
public with a constant length by annotation in ct-verif. When a loop is encountered, memory
could be accessed with a loop variable. Then, ct-verif fails to determine whether a piece of
accessed memory is within the public area or not, because it cannot infer how many iterations
at most the loop will be executed. Loop invariants could be automatically computed to verify
the range of loop variables. However, the loop invariant generation in ct-verif, based on a
simple heuristic, might fail to verify secure code. Another series of false positives originates
from how ct-verif handles memcpy, for which it will show arbitrary behaviors. For example,
in the code snippet below, the addresses of s, p1, p2 and p3 are set to public. The contents
of p1, p2 and p3 are also public.

1 int test(int *s, int *p1 , int *p2 , int *p3) {
2 int a=32;
3 memcpy (p1 , p2 , a);
4 if (p3 [0]) dummy ++;
5 }

After calling memcpy, the content of p3 is tainted and line 4 will be reported, even though
p3 is neither an argument nor the return of memcpy.

In summary, CtChecker exhibited a considerable improvement in precision over ct-verif, a
result apparent in the difference between the number of positives reported by each tool in
the last three columns. Moreover, as discussed above, CtChecker is more user-friendly as it
reports all positives in one shot, whereas using ct-verif to find all positives in source code is
cumbersome.

4.6 Comparison with CacheS

CacheS [44] uses abstract interpretation to verify constant-time property. Notably, CacheS
is a “soundy” analysis where “the implementation is unsound for speeding up analysis and
optimizing memory usage, due to its lightweight but unsound treatment of memory”, quoted
from the same paper. Also, it operates on a platform independent IR called REIL IR, which
is lifted from x86 assembly code. We compare CtChecker against CacheS to show how the
memory model and IR code could affect analysis results, see Table 3.

For Libgcrypt, CacheS reports line 19 in Listing 4 (line 682 in mpi-pow.c), where e0 is
derived from secret. But CtChecker ignores this line. The reason is that in LLVM IR, this
line is neither compiled into a branch nor accesses memory with sensitive index. However, in
REIL IR, cmov instruction is lifted to a branch with a condition that is derived from the
secret, the reason that CacheS reports it.
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Table 3 Comparison with CacheS (⋆: low-risk positives; †: extra positive reported by CacheS).

Library File CtChecker
Positives

CacheS
Positives

Libgcrypt 1.10.1 mpi-pow.c

440 440
559⋆ 749⋆

617 617
641 –
667 –
– 682†
702⋆ –

mbedTLS 3.2.1 bignum.c

2124 2124
2127 2127
2173 2173
2182⋆ 2182⋆

BearSSL 0.6 i32_sub.c 36 N/A
OpenSSL 1.1.1q

Reciprocal

bn_exp.c

242

N/A
262

Mont. 398
419

Mont. Word 1240

We also observe that CacheS ignores a few high-risk positives reported by CtChecker. In
Libgcrypt, two high-risk positives are overlooked, namely, lines 7 and 13 in Listing 4 (lines
641 and 667 in mpi-pow.c). In LLVM IR, the branch conditions at these lines are derived
from the secret value and they are inside a loop, which leads to multiple-bit leakage. Similar
to the previous case, the difference between two tools’ analysis targets leads to discrepancies
in results. CacheS observes a bsr instruction in the assembly code, which is a constant-time
instruction on most architectures.

CacheS employs a lightweight but unsound memory model, which avoids one issue of
CtChecker: 69% of false positives of CtChecker are introduced by DSA. However, as a trade-off,
this advantage may lead to false negatives in detecting high-risk vulnerabilities, though we
did not observe any false negatives from CacheS in our evaluation.

4.7 Comparison with SC-Eliminator’s Taint Analysis

As discussed in Section 2.3, SC-Eliminator [46] and CtChecker assume different threat models.
As a consequence, SC-Eliminator performs a taint analysis that identifies violations of
constant-time disciplines first, before the results are further analyzed by a cache analysis.
Here, we compare CtChecker with SC-Eliminator’s taint analysis as they both share the
same functionality. The comparison is also meaningful as precision improvements in the
taint analysis could help cache-analysis tools like SC-Eliminator to rewrite less code, which
improves the performance of the product rewritten code.
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Listing 4 Code snippet from Libgcrypt (mpi_pow.c).
1 count_leading_zeros (c0 , e);
2 e = (e << c0);
3 c -= c0;
4 j += c0;
5

6 e0 = (e >> ( BITS_PER_MPI_LIMB - W));
7 if (c >= W)
8 c0 = 0;
9 ...

10 count_trailing_zeros (c0 , e0);
11 e0 = (e0 >> c0) >> 1;
12

13 for (j += W - c0; j >= 0; j--)
14 {
15 base_u_size = 0;
16 for (k = 0; k < (1<< (W - 1)); k++)
17 {
18 ...
19 base_u_size |= ( precomp_size [k] & (0UL - (k == e0)) );
20 }
21 ...
22 }

We build SC-Eliminator from source code5 with LLVM 8.0.1. The comparison was based
on the benchmarks used in [46], see Table 4. Before analyzing the results, we note two major
differences between CtChecker and SC-Eliminator’s taint analysis:
1. While CtChecker is built on a sound points-to analysis, SC-Eliminator’s taint analysis

does not use any points-to analysis. The result is that the latter might miss taints that
are propagated via aliasing.

2. While CtChecker is implemented as an interprocedural analysis, SC-Eliminator’s taint
analysis is implemented as an intraprocedural analysis. Although an intraprocedural
analysis is inherently free of context-sensitivity issues that we discuss further in Section 4.8,
it requires manual efforts to label sensitive function parameters6, which is both time-
consuming and error-prone.

Despite the differences above, both favor SC-Eliminator’s taint analysis in terms of
precision, CtChecker reports fewer positives in 6 benchmark programs, while the two tools
report the same number of positives on 9 of the benchmark programs. Surprisingly, SC-
Eliminator reports less positives in two algorithm programs, namely, anubis and cast5 in the
Chronos library. The extra positives that CtChecker reports, as we investigate deeper, are
true positives. But due to the lack of a points-to analysis, SC-Eliminator missed them. In
other words, SC-Eliminator in fact has false negatives, which we elaborate next.

4.7.1 False Negatives in SC-Eliminator’s Taint Analysis
The lack of a points-to analysis sometimes breaks the propagation of information flow.
The code snippet shown in Listing 5 contains a concrete true positive that is missed by
SC-Eliminator. Here, the first parameter key of function bar is the tainted source. At line 8,
the first element of ctx->keys is tainted by key. So, line 9 violates constant-time disciplines

5 https://bitbucket.org/mengwu/timingsyn/src/master/
6 To reduce the effort, with only a few hard-coded cases, SC-Eliminator’s taint analysis assumes that only

the first parameter of every function to be tainted.
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Table 4 Comparison with SC-Eliminator’s Taint Analysis.

Library
SC-Eliminator CtChecker

Positives
Reported

False
Negatives

Positives
Reported

appliedCryp/3way.c 4 0 3
appliedCryp/des.c 22 0 18
appliedCryp/loki91.c 8 0 7
chronos/aes.c 388 0 388
chronos/anubis.c 84 8 92
chronos/cast5.c 288 160 448
chronos/cast6.c 448 0 448
chronos/des.c 426 0 416
chronos/des3.c 400 0 390
chronos/fcrypt.c 128 0 128
chronos/khazad.c 40 0 40
libg/camellia.c 32 0 32
libg/des.c 144 0 144
libg/seed.c 8 0 8
libg/twofish.c 248 0 248
supercop/aes_core.c 412 0 409
supercop/cast-ssl.c 448 0 448

as the branch condition is tainted. However, SC-Eliminator misses the positive and leaves
it unchanged in the rewritten code. Due to the lack of a points-to analysis, SC-Eliminator
cannot infer that variable keys defined at line 7 and ctx->keys point to the same memory.
This contrived example illustrates why SC-Eliminator misses those true positives in anubis
and cast5 in the Chronos library.

Listing 5 Example of a false negative in SC-Eliminator.
1 void do_something () {...}
2 typedef struct {
3 int ** keys;
4 int n;
5 } CONTEXT_st ;
6 void bar(int *key , CONTEXT_st *ctx){
7 int ** keys = ctx ->keys;
8 keys [0] = key;
9 if(ctx ->keys [0][0] == 0)

10 do_something ();
11 }

4.8 Analysis Precision
To answer Q3, we inspected each positive and categorized it into three kinds: low-risk,
high-risk and false positive, where the first two are true positives, and their difference is in
the severity of information leakage. In particular, a low-risk positive only reveals one bit of
information while high-risk positives can leak multiple bits of secrets (e.g., a sensitive branch
within a loop).

The classification result is shown in Table 5. CtChecker reports a total number of 724
positives, with 615 true positives and 109 false positives.

True Positives. CtChecker does find true positives in the rewritten code by Constantine.
For example, line 5 in Listing 6 is a timing channel and line 17 is a cache side channel.
At the beginning, %idx is an address calculated from %sec, which is derived from a secret
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Table 5 Result Classifications. Base and All refer to the same columns in Table 1.

Library Base All FP Low-risk High-risk
Libgcrypt 1.10.1 66 30 24 2 4
mbedTLS 3.2.1 50 10 6 1 3
BearSSL 0.6 18 3 2 0 1
OpenSSL 1.1.1q

Reciprocal 14 9 7 0 2
Mont. 45 25 23 0 2
Mont. Const. Time 36 18 18 0 0
Mont. Word 4 12 11 0 1

binsec/aes_big 0 0 0 0 0
binsec/des_tab 51 26 2 24 0
binsec/tls-rempad-luk13 7 6 0 6 0
appliedCryp/3way 41 0 0 0 0
appliedCryp/des 72 62 0 62 0
appliedCryp/loki91 75 72 16 56 0
ghostrider/findmax 0 0 0 0 0
ghostrider/matmul 4 0 0 0 0
libg/des 448 432 0 432 0
pycrypto/ARC4 20 19 0 19 0

key. It is then cast to an integer type and is masked by 63. The result %and is tainted
from the masking operation. At line 4, %cmp, the branch condition, is computed from %and,
making the branch secret dependent. What makes the case more interesting is that the
branch at line 5 does not exist in the original source code. Constantine adds the branch
to check if %and satisfies certain property. If not, the execution will stop. For this reason,
even though this branch is added into the main processing loop, it should be considered a
low-risk positive. Later, %and is used to compute another address %addptr at line 11. Then,
%addptr is accessed by load if the execution path comes from forbody.pre. This memory
access is sensitive because the index is derived from secret even after the masking operation.
All positives found in rewritten code follow the similar pattern.

Listing 6 Rewritten IR by Constantine from pycrypto/ARC4.
1 %idx = gep @stream_state , 0, %sec
2 %2 = ptrtoint %idx to i64
3 %and = and %2, 63
4 %cmp = icmp slt %and , and (sub (add ( ptrtoint ( @stream_state to i64),

319) , ptrtoint ( @stream_state to i64)), -64)
5 br %cmp , label % forbody .pre , label %exit
6

7 exit:
8 ...
9

10 forbody .pre:
11 % addptr = gep @stream_state , 0, %and
12 br label %for.body
13

14 forbody :
15 ...
16 %_ptr = phi [ %addptr1 , % forbody ], [ %addptr , % forbody .pre ]
17 %3 = load volatile %_ptr

False Positives. While the overall false positive rate of CtChecker on all benchmarks
appears low, we further studied the root cause of false positives in the cryptographic library
benchmarks, which witness a higher rate of false positives, and found that the majority
(63 of them) are caused by the imprecision of DSA, 26 by context-insensitivity, and 2 by
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flow-insensitivity (see Section 3.3 for the major reasons of imprecision). Arguably, 69% of
false positives due to DSA are unavoidable while we aim for a sound and scalable analysis. For
example, when creating the data structure graph for the reciprocal method in OpenSSL, the
structure representing the exponent p is collapsed. Without the field information, CtChecker
have to conservatively taint the whole structure. Consequently, line 1 in Listing 7 (which
corresponds to line 171 in bn_exp.c) is reported even though it only depends on flag field,
not the data field.

Listing 7 False positives caused by collapsed memory and callsite-insensitivity in OpenSSL.
1 if ( BN_get_flags (p, BN_FLG_CONSTTIME ) != 0
2 || BN_get_flags (a, BN_FLG_CONSTTIME ) != 0
3 || BN_get_flags (m, BN_FLG_CONSTTIME ) != 0) {
4 BNerr( BN_F_BN_MOD_EXP_RECP , ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED );
5 return 0;
6 }

29% of false positives are produced when a callee function is invoked multiple times within
the same caller function with different arguments. In this case, DSA provides no callsite
distinction. In Listing 7, BN_get_flags is called multiple times with p, a and m as the first
parameter, respectively. Since p is tainted, lines 2 and 3 (lines 172 and 173 in bn_exp.c) are
also reported. One fix is to distinguish all calling contexts in the static analysis, or inlining
all function calls before the source code is being analyzed. However, both approaches will
hurt the scalability of static analysis on large programs.

Other implementations of points-to analyses may be used to improve precision further
in two different aspects: (1) to reduce the number of collapsed memory nodes, and (2) to
provide finer-grained context-sensitivity on callsites. As an example, these improvements
might remove false positives mentioned in the example of reciprocal method in OpenSSL
above. However, as developing a more precise points-to analysis is beyond the scope of this
paper, we leave it as future work.

The remaining 2 false positives are due to the lack of flow-sensitivity. As discussed in
Section 3.2, LLVM’s mem2reg pass only provides flow-sensitivity to some extent. For example,
the tainted data in mbedTLS is the d field of variable E. Hence, line 1 in Listing 8 (line 1988
in bignum.c) is not key-dependent as it only returns the s field of E.

Listing 8 False positives caused by flow-insensitivity in mbedTLS.
1 if( mbedtls_mpi_cmp_int ( E, 0 ) < 0 )
2 return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
3 ...
4 while ( 1 ) // Main processing loop
5 {
6 ...
7 MBEDTLS_MPI_CHK ( mpi_select ( &WW , W, ( size_t ) 1 << wsize , wbits ) );
8 ...
9 }

However, line 1 is falsely reported by CtChecker. Inside mpi_select, s field of WW is changed
to the secret derived from wbits that is tainted. Since DSA treats E and WW as potential
aliases, s field of E is also tainted. However, CtChecker is unable to distinguish when s field
of E is tainted. Hence, it conservatively reports line 1 as a positive.

4.9 Scalability
To answer Q4, we evaluate the scalability of CtChecker on benchmark programs from Table 1
on a PC equipped with 2.30GHz Intel Core i7-11800H and 16 GB memory.
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Figure 3 Running Time vs. Code Size of Benchmarks. Unlabeled data points are from Constantine
rewritten code with smaller size.

For each cryptographic library, the experiment was done with both the full source (i.e., the
SRC version) and the minimal source (i.e., the modular exponentiation code only). Among
the tested benchmarks, BearSSL has the smallest codebase of about 4 KLOC, whereas the
largest codebase is OpenSSL with around 24 KLOC for its full source version. The running
time for these two libraries are 2 and 39 seconds, respectively. The comparison shows that
processing time is small even for larger libraries. The libg/des code rewritten by Constantine,
which has around 8.6 KLOC, had the longest running time of 48 seconds. Overall, the
running time against code size of all benchmark programs being analyzed shows a close to
linear trend, as shown in Figure 3.

In terms of memory consumption, the peak usage is around 150 MB when OpenSSL
is being analyzed, during the constraint solving step. The result shows that CtChecker is
scalable in both the spatial and temporal dimensions.

4.9.1 Running Time of Other Tools
We did not compare the running time and memory usage of CtChecker quantitatively with
other tools since the underlying techniques are very different, making a direct comparison
unfair. However, we discuss other tools’ running time and memory consumption below.
ct-verif: For moderate-sized codebase like mbedTLS, the full source code makes ct-verif run

out-of-memory (OOM) after several hours. Moreover, ct-verif stops execution once the
first violation is found, making it hard to gauge its execution time if it were reporting all
positives in one shot.

CacheS: As reported in [44], the running time for CacheS is at least 33.2 seconds when there
is only one function being analyzed, up to 179.2 seconds if the execution runs successfully
without timeout, and more than 5 hours if timeout occurs. The memory consumption is
also significantly larger than CtChecker, where at least 620 MB of space was used. That
said, we note that their reported numbers are collected from different experimental settings
than ours, e.g., physical machine, analyzed code base, etc. Therefore, the performance
numbers are not directly comparable.

SC-Eliminator: Its taint analysis is the fastest among all tools, which takes around 1 second
for each of their benchmarks. The reasons are two-fold however. On the one hand, it does
not utilize a points-to analysis, which sacrifices its soundness as we mentioned in Section 4.7.
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On the other hand, it simply propagates taints when each instruction is analyzed, which
leads to soundness issues in corner cases. For instance, given x:=y; y:=secret in a
loop, SC-Eliminator fails to taint x, as the taint on y is discovered later in the analysis.
CtChecker is built on more rigorous information flow analysis with constraint generation
and solving. The points-to analysis and constraint generation/solving collectively consume
most of the time for CtChecker.

Although a fair comparison on efficiency is infeasible, it is safe to conclude that CtChecker’s
efficiency is better or at least comparable to other tools employing similar sub-components.
SC-Eliminator is more efficient than ours and other competitors with a loss of soundness, as
discussed above.

5 Related Work

5.1 Detecting Timing Side Channels
Both static and dynamic approaches are widely adopted to detect constant time violations.
VirtualCert [3] and FlowTracker [32] are static tools built with formal methods. VirtualCert
is flow-insensitive and is specially used for virtualized systems. FlowTracker focuses on
optimizing the representation of implicit flows and is flow-sensitive. Almeida et al. [1] propose
ct-verif, a static tool that employs self-composition for verifying constant-time property. It
either accepts or rejects programs being verified, but it does not pinpoint the source code
where the violations occur. Both VirtualCert and ct-verif require additional annotations to
work. SecVerilog [51] is a language-based approach for checking hardware-level information
flow violations. Somorovsky [37] presents a dynamic tool using fuzzing technique to detect
implementation with constant-time violations. Dynamic methods could avoid false positives
but are limited by their search space, which leads to unsoundness. Compared to these tools,
CtChecker is a sound and generic non-constant-time code detection tool that does not require
additional annotations.

5.2 Detecting Cache Side Channels
Cache-based side channels are another type of covert channel that could leak sensitive
information to unintended parties. CacheD [45] is a trace-based analysis that identifies
cache-based timing channels using taint tracking and symbolic execution. However, symbolic
execution might not have the full coverage of execution paths. Brotzman et al. [8] propose a
cache-aware symbolic execution (CaSym) that works on LLVM IR. CaSym is able to cover
all execution path by introducing a technique that could transform a program with loops to
its loop-free version. Both works report the location of vulnerabilities to make it easier for
developers to fix them. CacheS [44] is a static analysis that could detect timing channels and
cache-based channels. A novel abstract domain called Secret-Augmented Symbolic domain
(SAS) is proposed to track sensitive information with high precision while remaining efficient.
However, the unsound memory model it uses may cause false negatives. For comparison,
CtChecker employs a sound points-to analysis, which makes it both sound and efficient.

5.3 Mitigating Side Channels
Another line of work involves mitigating side channels after vulnerabilities are detected.
Cauligi et al. [11] propose a C-like DSL called FaCT. Its compiler is claimed to be able
to compile secret-sensitive source code into constant-time LLVM bitcode. However, FaCT
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requires libraries to be rebuilt in this language, making it impractical for existing libraries
and legacy systems. Wu et al. [46] propose SC-Eliminator, a program rewriter that can
eliminate both timing- and cache-based side channels. A constant time select function is
proposed for secret-dependent branches. Cache-side channels are removed by preloading
all elements in a lookup table. Soares et al. [35] point out that SC-Eliminator introduces
out-of-bound memory accesses when doing the transformation. They put forward another
rewriter called lif that ensures memory safety at the same time. Preloading methods fail
when an attacker could evict cache lines after preloading and before accessing the data.
Constantine [7] adopts a radical full linearization design. It focuses on how to maintain
efficiency under the radical design. CtChecker does not repair programs when vulnerabilities
are found. However, it could help the rewriters to identify problematic code locations more
precisely, hence reducing the overhead of mitigation. Moreover, as we demonstrated in the
evaluation, it can also serve as an efficient verifier for the code generated by those program
rewriters.

6 Conclusion and Future Work

In this work, we build CtChecker, a sound, precise and scalable static information flow
analysis for constant-time programming. Compared with traditional information flow analysis,
CtChecker is equipped with various features to improve analysis precision on cryptographic
code. The features effectively reduce false positive rates while maintaining analysis soundness.
By inspecting remaining false positives, we observed that the majority is due to imprecision
in the sound points-to analysis that CtChecker is built on.

For future work, a fraction of remaining false positives is due to a callee function being
invoked multiple times within the same caller function with different arguments. We plan to
investigate how to identify the instances where inlining such code might improve precision,
with the insight that heterogeneous arguments to the callee function are the root cause of the
imprecision issue. The selective inlining strategy likely will strike a good balance between
precision and performance.
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