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—— Abstract

We provide support for polymorphism in static typestate analysis for object-oriented languages with
upcasts and downcasts. Recent work has shown how typestate analysis can be embedded in the
development of Java programs to obtain safer behaviour at runtime, e.g., absence of null pointer
errors and protocol completion. In that approach, inheritance is supported at the price of limiting
casts in source code, thus only allowing those at the beginning of the protocol, i.e., immediately
after objects creation, or at the end, and in turn seriously affecting the applicability of the analysis.

In this paper, we provide a solution to this open problem in typestate analysis by introducing a
theory based on a richer data structure, named typestate tree, which supports upcast and downcast
operations at any point of the protocol by leveraging union and intersection types. The soundness
of the typestate tree-based approach has been mechanised in Coq.

The theory can be applied to most object-oriented languages statically analysable through
typestates, thus opening new scenarios for acceptance of programs exploiting inheritance and casting.
To defend this thesis, we show an application of the theory, by embedding the typestate tree
mechanism in a Java-like object-oriented language, and proving its soundness.
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1 Introduction

Modern software engineering practices, e.g., Continuous Delivery [21], produce reliable
software at high pace, through automatic pipelines of building, testing, etc. However,
programming errors such as dereferencing null pointers [19] or using objects wrongly (e.g.
reading from a closed file; closing a socket that timed out!) are often subtle and difficult to
catch, even during the automated testing process. As put by Dijkstra [14]: “program testing
can be used to show the presence of bugs, but never to show their absence”. So, tools to
(statically) catch bugs are essential. Formal methods like deductive verification are difficult
to adopt given the effort required [26], but lightweight static program analysis techniques
can greatly improve the quality of the source code by detecting at compile-time logic errors,
i.e., an unexpected action or behaviour. Beckman et al. [6] observe:

In the open-source projects in our study [...] approximately 7.2% of all types defined
protocols, while 13% of classes were clients of types defining protocols. [...] This
suggests that protocol checking tools are widely applicable.

To tackle the challenge of finding bugs in object-oriented code, where objects naturally
have protocols, in this paper we provide a protocol checking approach, supported by a tool,
based on typestates [31, 15]. The work we present is applicable to most object-oriented
languages, following the approach in closely related work [18, 11]: attach protocols (essentially,
allowed orders of method calls) to classes and type check classes (i.e., their method bodies)
following the protocol, thus gaining typestate-based nullness checking (ensuring memory-
safety), protocol compliance, and protocol completion (under program termination).

In our previous work [3], we applied the approach to Java, proposing the JaTyC tool,
exploiting the seminal simulation-based notion of subtyping [16] to check that the protocol of
a class was a subtype of the protocol of its superclass. However, only upcasts and downcasts
at the beginning of an object protocol (i.e., just after object creation) or at the end (i.e., in
the end state) were allowed. Additionally, to determine if a typestate was a subtype of
another, the simulation was only applied to the initial typestates of the protocols. It is
crucial to overcome these limitations to make JaTyC applicable to real-world scenarios since,
as shown in the study of Mastrangelo et al. [25], casts are widely used. The type checker was
developed following a research methodology based on an iterative/incremental approach (see
figure in Appendix A for details), based on the theory, which together with motivating
examples, drove the type checker implementation (built upon the Checker Framework [30]).

Running example. To emphasise the relevance of our contribution, consider an example
inspired from the automotive sector where driving dynamics control allows to customise
the drive mode?; for SUVs, in particular, we consider a Comfort and a Sport modalities,
where each allows specific features: EcoDrive and FourWheelsDrive, respectively.? List. 1
and List. 2 describe the behaviours of the controllers of a Car and a SUV, respectively, where
class SUV extends Car. All cars have two base states: OFF, which models a powered off
car, and ON, which represents a powered on car that can perform certain actions, e.g., set
a concrete speed. In OFF, it is possible to turnOn the car and then access features like
setSpeed. Dually, in ON, it is possible to turn0ff the car. The turnOn action may, by some

! https://github.com/redis/jedis/issues/1747.

2 BMW Sport vs Comfort modes: bmwofstratham.com/bmw-sport-mode-vs-comfort-mode-stratham-nh
3 Code online: github.com/jdmota/java-typestate-checker/tree/master/examples/car-example
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https://www.bmwofstratham.com/bmw-sport-mode-vs-comfort-mode-stratham-nh
https://github.com/jdmota/java-typestate-checker/tree/master/examples/car-example
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Listing 1 Car protocol. Listing 2 SUV protocol (SUV extends Car).
typestate Car { 1 typestate SUV {
OFF = { 2 OFF = {
boolean turnOn(): 3 boolean turnOn(): <true:COMF_ON,false:0FF>,
<true:0N,false:0FF>, 4 drop: end
drop: end 5 }
6 COMF_ON = {
ON = { 7 void turnOff (): OFF,
void turnOff (): OFF, 8 void setSpeed(int): COMF_ON,
void setSpeed(int): ON 9 Mode switchMode (): <SPORT:SPORT_ON,COMFORT:COMF_ON>,
} 10 void setEcoDrive (boolean): COMF_ON
} 11 }
12 SPORT_ON = {
13 void turn0ff (): OFF,
14 void setSpeed(int): SPORT_ON,
15 Mode switchMode(): <SPORT:SPORT_ON,COMFORT:COMF_ON>,
16 void setFourWheels(boolean): SPORT_ON
17 }
18 }

technical reason, fail, and so, depending on the returned value, either the resulting case is ON
or OFF. SUVs are described by the protocol in Listing 2: when they are successfully powered
on by means of turnOn, they are set in Comfort mode (COMF_ON), and in turn they enjoy
specific operations, e.g., setEcoDrive. The mode can be changed by executing switchMode,
whose result depends on the reached mode being still Comfort (as the operation may fail,
e.g., if the speed is too high), or Sport (SPORT_ON). Similarly, the Sport mode provides the
switchMode actions and also specific ones, e.g., setFourWheels. Note that setSpeed is
overridden in the SUV class: if eco-drive is active, the speed must respect a given threshold,
otherwise it can be set to any value. As we will see, in Section 6, overriding correctness is
checked based on typestate variance, thus dynamic dispatch is guaranteed to work safely.
Section 8 explains how our work compares with others dealing with inheritance.

Each protocol is defined by a set of typestates (e.g., in List. 1, OFF and ON), each one
defining a set of callable methods and subsequent states, possibly depending on return values:
e.g., if turnOn returns true in state OFF of the SUV protocol, then the next state is COMF_ON.
By applying the subtyping algorithm by Gay and Hole [17] to the initial typestates (i.e., OFF
in Car and SUV protocols), we see that the SUV protocol is a subtype of the Car one.

Listing 3 upcast/downcast limitation protocol.
public static void dispatch(@Requires("ON") Car c) { --- }

public static void providePoweredSUV(QRequires ("OFF") SUV c) {
if (c.turnOn()) dispatch(c); // Upcast rejected by current typestate analysis
}

Key insight. Even for simple classes as Car and SUV, limiting casts only at the beginning/end
of the protocols seriously reduces the programs we are able to typestate-check, such as the
one in List. 3, where an automotive system dispatches already powered on cars (i.e., required
in typestate ON), whether they are SUVs or not. Removing this limitation is challenging.
The solution relies on the key insight that one has to run the subtyping algorithm not only
on the pair of initial typestates, but on all pairs, to find all typestates in both protocols that
are in a subtyping relation. For example, the 1imitSpeed method in List. 4 expects a Car in
typestate ON. Since SPORT_ON is a subtype of ON, code passing a SUV in typestate SPORT_ON
to limitSpeed is type-safe. However, if we run the subtyping algorithm starting from the
pair of initial typestates of the given protocols (i.e., (OFF,0FF)), the generated simulation
relation [4, 17] (in Figure 1, where boxes represent input states, and diamonds output ones),
will not include (SPORT_ON,ON) (leftmost graph). If we provide (SPORT_ON,ON), we realise
that this pair is in the typestate subtyping relation (rightmost graph).
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Listing 4 Limitation of the Subtyping Algorithm Application.

void limitSpeed (@Requires("ON") Car c, int speed) {
c.setSpeed(Math.min(speed, 50));
}

setSpeed()

SPORT_ON|ON [

turnoff()

OFF | OFF

turnoff()

turnoff()

setSpeed()

COMF_ON | ON [

setSpeed()

COMF_ON|ON [ D

Figure 1 Subtyping simulations starting with (OFF,0FF) (left) and (SPORT_ON,ON) (right). Blue
depicts typestates of the SUV protocol and red those of Car.

A theory of typestate upcast and downcast. With this key insight, we devise the following
mechanism: when downcasting, we look for the typestates (in the protocol of the target class)
that are subtypes of the current one; when upcasting, we look for the typestates that are
supertypes of the current one. Since multiple typestates may be found, we need a structured
notion of types to combine them. When downcasting, we combine the subtypes in a union
type [5, 29] (modelling the fact that the actual type is unknown) so that a method call is
allowed only if it is permitted by both elements of the union. Union types are also useful to
allow branching code to be typed with different types so that subsequent code, complying
with either branch, is accepted (e.g., after an if statement). This is more flexible than some
other approaches (like session types ones [32]), which require both branches to have the same
type. When upcasting, dually, we combine the supertypes in an intersection type so that a
method call is allowed if it is permitted by at least one element of the intersection.

However, we need more than just intersection and union types. To illustrate the problem,
consider a class for an Electric Car (ECar) which also extends Car. Consider the code in
List. 5. After the if statement, is ¢ an instance of SUV or ECar? Because of these scenarios,
we associate classes with types and track all possibilities. To that end, we introduce typestate
trees, which resemble the class hierarchy. Herein, the typestate tree would have a root for
class Car, with child nodes for SUV and ECar. Each node corresponds to a class and maps
to the type of the object, accounting for the case in which the object is indeed an instance
of that class. In this way, in case of a future downcast to the SUV or ECar classes, we just
consider the corresponding subtree corresponding to that class.

Listing 5 Typestate Tree motivation.
Car c;

if (cond) c = mnew SUV();
else ¢ = new ECar();

Discussion. The solution we devise is language agnostic, applicable to many object-oriented
languages. To test its expressiveness, we applied it to Java, extending JaTyC to now
support (up/down)casting in the middle of a protocol. By doing this, we advance related
work (Section 8). Kouzapas et al. [24] mention, in the future work section, that to cope
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with protocol inheritance between two classes one just needs “a subtyping relation between
their typestate specifications”. This is enough if one is only concerned with extending class
inheritance but, as we showed, is not adequate to deal with casting, a very common feature.
Furthermore, we support droppable typestates (see typestate OFF in List. 1), the final
typestates of a protocol — where one can either safely stop using the protocol or perform
more actions (if there are any). A droppable typestate with no actions is similar to the
end state in session types. To fully support droppable typestates, we provide a definition of
subtyping over these, extending Gay and Hole’s session type subtyping definition.

Contributions. In short, the main contributions of this work are:

sound support for safely performing upcasts and downcasts at any point of a protocol
(assuming class downcasts are performed to a class of which an object is a subtype of);
formalisation of subtyping over droppable typestates (generalising Gay and Hole’s
session type subtyping);

mechanisation of all definitions and proofs of our results in Coq (artifact available);
implementation of the presented concepts in our type checker for Java, JaTyC, where
we successfully run all examples included in this paper.

Advances with respect to the state of the art. As far as we know, no previous work deals
with casts in the middle of protocols. Moreover, droppable states allow to mark states when
the protocol can be safely stopped, another key concept. So, our work advances the state
of the art with expressive support for inheritance and casting in object-oriented languages,
leveraging on behavioural types [2, 22].

Structure of the paper. Section 2 presents the subtyping relation, shown to be a pre-order,
and a complete and sound algorithm to check typestates subtyping (Theorems 8 and 9).
Section 3 presents upcast and downcast, and the crucial result that each operation preserves
subtyping (Theorems 23 and 28). Moreover, we show that, as expected, each operation
reverses the other (Corollaries 29 and 30). Finally, we show that method calls make the
typestates evolve, preserving subtyping (Theorem 33), and evolution on types commutes
with upcast and downcast (Theorems 34 and 35). Section 4 presents typestate trees, the
crucial structure to allow up/down-casting in the middle of a protocol, and main results
(Theorem 46 and 51). Section 5 presents a key result to safely equip a programming
language with our subtypestate mechanism — operations on typestate trees preserve their
soundness (Theorem 54). Section 6 discusses how to safely develop a type checking system
with typestate trees. Notice that the main contribution of this paper is the provably
safe subtypestates theory, paving the way to its use in (most) object-oriented languages.
Section 7 explains how the example presented in List. 6 is type checked with our tool
and describes a suite of examples showing the expressiveness of our approach. Section 8
discusses related work. Section 9 concludes by envisioning future challenges, e.g., the
mechanisation of a type(state tree)-safe object calculus with inheritance to use as basis for
our Java implementation. Appendix A provides insights on the research methodology we
adopted, while Appendix B provides a glossary listing all the notations used in the paper.

2 Types and subtyping

In this section, we present the types one can assign to terms of an object-oriented language
taken into account, and the corresponding subtyping relations. We first describe typestates,
which encode the current state of an object and specify the available methods (Section 2.1).
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Then, we compose these in union and intersection types (Section 2.2). Unions track the
possible typestates an object might be in, and intersections combine behaviour of two distinct
typestates. These will be important when we present how casting works (Section 3).

2.1 Typestates

The following grammar (Def. 1) defines our typestates language. It is very similar to the
one presented by Bravetti et al. [11]. The meta-variable m ranges over the set of method
tdentifiers MNames, o ranges over the set of output values ONames, and s ranges over the
set of typestate names SNames. The wide tilde stands for a sequence of values.

States are basically of two forms: input and output states. Input states d{m} denote a
set like {mj:wy, ma:wa, ..., mpyw,} offering methods (being n > 0 a natural number), seen
as input actions (i.e., external choices), followed by arbitrary states; the meaning is that by
selecting method m;, the input state transitions to state w;. Input states may optionally be
marked as droppable (with the subscript drop at the left of the set). This marks which input
states are final. For example, in List. 1, the typestate OFF is defined as a droppable input
state (which in the user defined protocol associated with the Java code is represented by the
drop:end option). Output states (0 :u) denote a set like (01:u71, 02:ua, ..., 0p:Uy, ), presenting
all possible outcomes of a method call (values 01 to o,, being n a positive natural number),
seen as output actions (i.e., internal choices), followed by input states or typestate names.
We only consider boolean and enumeration values as outputs.

To deal with recursive behaviour, protocols use equational definitions of typestates.

» Definition 1. Typestates, ranged over by meta-variable u, are terms generated by the
following grammar. States are terms ranged over by meta-variable w.

u = gdmiw}|s d == ¢|drop

w = ul|{oTu) E = s=g4dm:w}

We assume that in (0 u) we have at least one output, while in 4{m : w}, we can have
no inputs: 4rop{} represents the protocol ending state, also denoted by end. Moreover, in
an equation F, typestate names s do not occur unguarded (i.e., we disregard equations like
s = s'). We write w” to denote state w associated with a set of defining equations. Therefore,
we assume that each typestate name s that is used in w and in the body of equations E has
a unique defining equation in E. Let W be the set of terms w® and U be the set of terms
u?. Furthermore, let X be the subset of W containing only input states d{n/f:_/w} and Y be
the subset of W with only output states (o : u). Meta-variables z and y range over X and Y,
respectively. Hereafter, whenever the finite set of equations E is clear from the context, we
consider states w implicitly associated with E. Moreover, we omit writing €.

We can use the grammar introduced in Def. 1 to formally specify protocols associated
to classes. A protocol is represented by s¥, with s being the initial typestate name. For
example, the protocol associated with class Car (List. 1) is OFFFer with Ec,, being:

OFF = grop{ turnOn : ( true : ON, false : OFF ) }
ON = { turnOff : OFF, setSpeed : ON }

The OFF typestate is marked as droppable and offers a single method (i.e., turnOn) which,
depending on the returned value (true or false), leads to either ON or OFF, respectively. The
ON typestate offers two methods, turn0ff and setSpeed, leading to OFF and ON, respectively.

State subtyping is key to support behavioural casting. In our setting, subtypes offer a
superset of the supertype methods (input contravariance), and a subset of the supertype
outputs (output covariance). To define it properly (with the intended properties), we follow
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the work by Gay and Hole on session types subtyping [17]. Therefore, we define the subtyping
relation as a simulation one (as protocols can be infinite state systems), and present a sound
and complete algorithm to check if one state is a subtype of another. We first introduce
function def to unfold typestate name definitions. The simulation relation follows.

» Definition 2 (Typestate name definitions). Function def : W — W \ SNames is such
that, given a state w® € W, if it is a typestate name, def(w) yields the body of its defining

equation; otherwise, def(w?) yields the given state w®. Formally,

~ E . E _ ﬁ'u{s:aj} E/
T if w® =s or some s x
def(wE) = { / 4 T

w otherwise

» Definition 3 (State simulation). A relation R C W x W is a state simulation, if
(w11 we®2) € R implies the following conditions:
1. If def(w ®r) = 4, {m: w}lE1 then def (wo®2) = dz{Tm}gE2 and:
a. for each m':wly in {m : w}s, there is w) such that m":w} in {m:w}, and
(w} ", wy"?) € R.
b. if do = drop then di; = drop.
2. If def (w1 1) = (0w, then def(woP2) = (0T u)™ and:

a. for each o':uy in (0 u)y, there is uy such that o':us in (0: u)e and (uy®r,us®?) € R.

Now we define subtyping, following standard approaches.

» Definition 4 (Subtyping on states). We say w; is a subtype of we, i.e., w1t <g w2, if
and only if there exists a state simulation R such that (wi®1, wo?) € R.

An example of a state simulation (Def. 3) follows (also depicted in rightmost graph of
Figure 1). It is then easy to check, using Definition 4, that SPORT_ONZswv < g ONFeer,

{(SPORT_ON"swv, ONPeer ), (QFF P57, OFF Peer ),
((true : COMF_ON, false : OFF>ES‘“’, (true : ON, false : OFF)EC“)7
(COMF_oN 5 s gy Fear ) }

Notice that the common rule for session type subtyping of end states (i.e., end <g end)
is derivable from the previous definitions by just picking the relation R = {(arop{}, arop{})}
and observing that it is a state simulation (Def. 3), thus arop{} <s arop{} holds by Def. 4.

As a sanity check, we show basic subtyping properties on states: reflexivity and transitivity.

» Lemma 5 (Reflexivity). For all w, then w <g w.

» Lemma 6 (Transitivity). For all w1, wy? Bs if wi Pt <g wa™ and w2 <g ws3,

then also w1 <g ws¥3.

2,@03

Defining an algorithm to check state subtyping is crucial, not only because it shows
that subtyping is decidable, but also for implementing a type checking procedure (Def. 7).
To obtain an algorithm for checking state subtyping, we guarantee termination by always
applying AssuMP, whenever applicable. The initial goal of the algorithm is the judgement
@ = w® <g,,, w2 . This approach is similar to the session type subtyping algorithm
presented by Gay and Hole [17]. We also show in Theorems 8 and 9 that the subtyping
algorithm is complete and sound with respect to the coinductive definition <g (Def. 4).

w
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» Definition 7 (Algorithmic state subtyping). The following inference rules define judgements
T w P <Saly wa? in which T is a set of typestate pairs, containing assumed instances of
the subtyping relation.

(lel,ngZ) ex
= & ASSUMP
Shw ™t <s,y, w2
B\ ——1 E1 By~ B3
def(wi™) =g {m wh def(w2™?) = g,{m T w}e
Vom'awy € {miwye . 3wl . miwl € {mrwh A S, (w7 we ") F wi ™ Sty wh™?
d2 = drop = d; = drop
5 5 INPUT
Y Ew ™t Ssalg wa 2
def(wi®) = (0 un™  def(w2™?) = (0 u)y™?
Y o'y € (oTu)r . Jus . o'us € (o u)y2 A X, (lel,w2E2) F g B <Suig ug 2
= 5 OurpPUT
Shwt <s,,, w2
» Theorem 8 (Algorithm completeness). If w1 "' <g wy®> then @ F w P <g,, wy".

» Theorem 9 (Algorithm soundness). If @ b w1 <g,, w22 then w1 <g w2,

2.2 Types

To statically track the possible typestates an object might be in, we combine them in union
types. We also combine them in intersection types to describe combined behaviour from both
typestates in the intersection. Their usefulness will be made clearer when we see the result of
upcasting a type. Our type hierarchy is a lattice, thus supporting T and L types. Note that
types do not include class information. Typestate Trees will be used for that (Section 4).

» Definition 10 (Types grammar). We call types, ranged over by meta-variable t, the terms
generated by the following grammar. Recall that u refers to typestate terms (Definition 1).

tu=tUt|tnt|u® | T|L

For example, the union type COMF_ONZs U SPORT_ONsw describes an object that might be
in typestate COMF_ON or SPORT_ON.

Let T be the set of types produced by rule t. Now we need to define a subtyping notion
to apply to types. The setting is inspired in work by Muehlboeck and Tate [27], in particular,
their definition of reductive subtyping.

» Definition 11 (Subtyping on types). Let < C T x T be the relation defined by the following
inductive rules.

ur "t <g up™

—— Topr Bor — 5 = TYPESTATES
t S T 1 S t uy L S U 2
t<t; t; <t
— UnNIoN_R (i € {1,2}) —— INTERSECTION_L (i € {1,2})
t<ti Uty tiNty <t
t1 <t ta <t t<ty t <t
——— UNION_ L ——— INTERSECTION_R
ti Uty <t t<tiNty

As a sanity check, we show basic subtyping properties on types: reflexivity and transitivity.

» Lemma 12 (Reflexivity). For allt, then t < t.
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» Lemma 13 (Transitivity). For allt, t', t", if t <t and ¢’ <t”, thent <t".

An algorithm to check that two types are in a subtyping relationship (i.e., t <) can be
implemented by proof search on the inference rules in Def. 11. For these, one can observe that
the combined syntactic height of the two types being tested always decreases [27]. Therefore,
every recursive search path is guaranteed to always reach a point in which both types being
compared are typestates u € . Since the algorithm to test u;®* <g us®? terminates, the
overall algorithm to check subtyping also terminates. For example, it is easy to check that
COMF_ONFsw < COMF_ONFsw U SPORT_ON®sw | using the UNION_R rule in Def. 11.

3 Basic operations on types

In this section, we start by describing some preliminary assumptions on the hierarchy of
classes, and then proceed to present the three main operations on types performed during
type checking: upcast (Section 3.1), downcast (Section 3.2), and evolve (Section 3.3). To
showcase these, we use the code in List. 6 that creates an object of type SUV, calls the method
turnOn, switches mode and finally passes the object to method setSpeed (lines 3-6).

Listing 6 ClientCode class.

public class ClientCode {
public static void example () {
SUV suv = new SUVQ);
while (!suv.turnOn()) { System.out.println("turning on..."); }
suv.switchMode () ;
setSpeed (suv) ;
private static void setSpeed(Q@jatyc.lib.Requires("ON") Car car) {
if (car instanceof SUV && ((SUV) car).switchMode() == Mode.SPORT)
((SUV) car).setFourWheels (true);
car.setSpeed (50) ;
car.turn0ff () ;
i

The method setSpeed takes a Car in the ON state, enforced by the @Requires annotation
(line 8). The behaviour provided by the ON state is also available in COMF_ON and SPORT_ON,
so the method should be prepared to work with a Car in the ON state or a SUV (in COMF_ON
or SPORT_ON). The method tests if the car is a SUV and tries to switch to the sport mode
(line 9); if it succeeds, it proceeds to set the four wheels drive (line 10). Then, it sets the
speed to a given value (line 11) and finishes the protocol by turning off the car (line 12).
Throughout this paper, C is the set of class names and c is a meta-variable ranging over its
elements. Additionally, assume all classes belong to a single-inheritance hierarchy associated.

» Definition 14 (Super relation on classes). Super is a partial function such that, given a
class ¢, Super(c) is the unique direct super class of ¢, if there is one.

» Definition 15 (Subtyping relation on classes). The relation <¢ C C x C is the reflexive
and transitive closure of the Super relation.

With classes and their Super relation, we now need to map classes to their corresponding
protocols, containing only useful states (i.e., reachable states from the initial one).

» Definition 16 (Reachable states). The immediate state reachability relation is a relation

over W x W, defined as follows: w'? s immediately reachable from w®, if:

1. w=gm:w} andIm' . m':w' in 4m:w};

2. w={(0:uy and 3 0 . o' in (0 u);

3. w=s and E includes the equation s = w'.

The state reachability relation is the refierive and transitive closure of the immediate state
reachability relation.
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Recall that each class ¢ has an associated protocol s¥, where s is its initial typestate
name. We enforce that for any classes ¢ and ¢’ such that Super(¢’) = ¢, the protocols of ¢
and ¢’ are subtypes (i.e., the initial typestate of ¢’ is a subtype of the initial typestate of ¢).

» Definition 17 (Protocol input states). ProtInputs(c) is the set of all input states 4{m : w}

that are reachable from protocol s of class c.

By only considering reachable input states from the initial typestate name of the protocol,
we perform an optimisation that avoids dealing with useless typestates.
To refer to the typestates occurring in a type, we introduce a dedicated auxiliary function.

» Definition 18 (Typestates in a type). Function typestates : T — P(U) is such that, given
a type t € T, typestates(t) yields the set of typestates occurring in t. Formally,

typestates(t;) U typestates(ta) ift=1t1 Uty ort=1t1 Nto
typestates(t) = ¢ {t} ifteld
i ift=T ort=_1

3.1 Upcast

To upcast a typestate from class c to class ¢/, we take all typestates in the protocol of ¢’ that
are supertypes of the original typestate, and combine them in an intersection type, combining
behaviour from different types. If no supertypes are found, the “empty intersection” yields T,
signalling an error.* Since we take supertypes, upcast builds a new type that is a supertype
of the original (guaranteed by Theorem 21); and because we intersect the supertypes, we
build the most “precise” type possible with typestates in ¢’ (guaranteed by Theorem 22).

» Definition 19 (Upcast on types). Function upcast : T x C x C — T is such that, given a
type t, a class ¢ whose protocol the typestates in t belong to, and a class ¢ we want to upcast
to; upcast(t, ¢, ) yields the type obtained by taking the intersection of all supertypes (in the
protocol of class ¢') of typestates included in t. The domain of upcast only includes triples
(t,c, ) such that typestates(t) C ProtInputs(c) and ¢ <¢ ¢'. Formally,

upcast(t1, ¢, ¢’) Uupcast(ts, ¢, ) ift =11 Ut
upcast(t1, ¢, ¢’) Nupcast(ta, ¢, ) if t =1t Nty
N{v' € ProtInputs(c) |t < u'} ifteld

t ift=Tort=_1

upcast(t,c,c') =

To see how upcast works, consider the setSpeed call in List. 6. In line 6, after call-
ing switchMode, the type of suv is COMF_ON U SPORT_ON (since we ignore the output of
switchMode, we do not know the actual typestate). To compute the type of the object passed
as parameter, we use the upcast function, using as input: (¢) COMF_ON U SPORT_ON as the
type to be upcast; (i¢) SUV as the starting class; (iii) Car as the target class. Since the given
type is a union type composed by two elements, the upcast function initially unfolds it and
creates one intersection for each element (i.e., COMF_ON and SPORT_ON) containing all their
supertypes. In this case, there is just one supertype for each: ON. Thus,

upcast(COMF_ON U SPORT_ON, SUV, Car) = ON U ON = ON .
4 In general, upcast operations are always possible, since they produce a supertype of the original type.

The issue here is that no operations are safely allowed on T, so in practise, even if an error is not
immediately reported on upcast, there will be an error when trying to use an object with T type.
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As a sanity check, we show that upcast builds a type where the typestates composing
it belong to the class we upcast to. Recall that Def. 19 has constraints typestates(t) C
ProtInputs(c) and ¢ <¢ ¢’ (the following results assume them). To improve readability we
omit stating the constraints explicitly and simply quantify universally types and classes.

» Lemma 20 (Upcast preserves protocol membership). For allt, ¢ and ¢, then
typestates(upcast(t,c,c’)) C ProtInputs(c).

To ensure upcast correctness, we show that the result: (i) is a supertype of the given
type (Theorem 21); (i7) is the “closest” type to the original with typestates in the protocol
of the target class (Theorem 22); and (i7i) preserves the subtyping relation (Theorem 23),
i.e., upcast on types in a subtyping relation produces types that are still in such relation.

» Theorem 21 (Upcast Consistency). For allt, ¢ and ¢/, we have t < upcast(t,c,c’).

» Theorem 22 (Upcast Least Upper Bound). For allt, ¢/, ¢ and ¢/, such that
typestates(t’) C ProtInputs(c’) and t </, we have upcast(t,c,c’) <t

» Theorem 23 (Upcast Preserves Subtyping). For allt, t', ¢ and ¢, such that t <t', we have
upcast(t, ¢,c’) < upcast(t,c, ).

3.2 Downcast

To downcast a typestate from class c to ¢, we take all typestates in the protocol of ¢’ that are
subtypes of the original typestate, and combine them in a union type. We use a union type
because we need to account for all possible typestates an object might be in. Since we take
the subtypes, downcast builds a new type that is a subtype of the original one (guarantee
given by Theorem 26); and because we make the union of them, we build the “closest” type
possible with typestates in ¢’ (guarantee given by Theorem 27).

» Definition 24 (Downcast on types). Function downcast : T xC xC — T is such that, given
a type t, the class ¢ whose protocol the typestates in t belong to, and the class ¢’ we want to
downcast to; downcast(t, c, ) yields the type obtained by taking the union of all subtypes (in
the protocol of class ') of typestates included in t. The domain of downcast only includes
triples (t,c,c’) such that typestates(t) C ProtInputs(c) and ¢ <¢ c¢. Formally,

downcast(t1, ¢, ') Udowncast(ta, ¢, ) if t =1t Uts

, downcast(t1, ¢, ') Ndowncast(ta, ¢, ) if t =11 Ntg
downcast(t,c,¢') =
(U{v € ProtInputs(c) | v <t} ifteld
t ift=Tort=_1

Note that downcast only yields L if given L. Consider the third case of Def. 24. The

union only yields L if no sub-typestates in the protocol of ¢’ are found. But that is impossible.

If we downcast from a typestate ¢ (in ¢) to a subclass ¢/, and since the protocol of ¢ is a

subtype of the one of ¢, there will necessarily be at least one typestate in ¢’ subtype of ¢.

Moreover, Theorem 54 will show that our overall approach is sound.

To see how downcast works, consider the downcast performed in line 9 of List. 6. To
compute the type of (SUV) car, we use downcast, defined in Def. 24, passing as parameter:
(i) ON as the type to be downcast (given the Requires annotation); (i) Car as the starting
class; (ii1) SUV as the target class. Since the type passed as parameter is a simple typestate,
the downcast function just creates a union containing all the subtypes of ON. Concretely,

downcast (0N, Car, SUV) = COMF_ON U SPORT_ON .
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As a sanity check, we show that downcast builds a type where the typestates composing
it belong to the class we downcast to. Recall that Def. 24 has constraints typestates(t) C
ProtInputs(c) and ¢/ <¢ e. (the following results assume them). To improve readability,
the constraints are implicit and we simply quantify universally types and classes.

» Lemma 25 (Downcast preserves protocol membership). For all t, ¢ and ¢, we have
typestates(downcast(t,c,c’)) C ProtInputs(c).

To ensure downcast correctness, we show that the result: (i) is a subtype of the given
type (Theorem 26); (¢4) is the “closest” type to the original with typestates in the protocol
of the target class (Theorem 27); and (ii¢) preserves the subtyping relation i.e., downcast on
types in a subtyping relation produces types that are still in such relation (Theorem 28).

» Theorem 26 (Downcast Consistency). For allt, ¢ and ¢, we have downcast(t,c,c') < t.

» Theorem 27 (Downcast Greatest Lower Bound). For allt, t', ¢ and ¢/, such that
typestates(t’) C ProtInputs(c’) and t' < t, we have t' < downcast(t,c,c’).

» Theorem 28 (Downcast Preserves Subtyping). For allt, t', ¢ and ¢, such that t <t', we
have downcast(t,c,c’) < downcast(t',c, ).

Additionally, we relate the result of upcasting and then downcasting with the original type,
as well as, the result of downcasting and then upcasting. The first follows from Theorems 21
and 27, the second from Theorems 22 and 26. These corollaries are also important to ensure
the soundness of the approach (Theorem 54).

» Corollary 29 (Downcast reverses upcast). For all t, ¢ and ¢, we have

t < downcast(upcast(t,c,c’),c,c).

» Corollary 30 (Upcast reverses downcast). For all t, ¢ and ¢, we have

upcast(downcast(t, ¢,c'), ¢/, c) < t.

3.3 Evolve

Whenever we perform a method call on an object with a given type, we need to compute the
new type representing the typestates the object might be in after the call. To compute such
type and rule out misconduct, we define the evolve function, which yields T when a method
is not callable in the given type. Ret,, is the set of outputs returnable by method m.

» Definition 31 (Evolve). Function evolve : T x M x O — T is such that, given a type t, a
method m, and a