
Behavioural Up/down Casting For
Statically Typed Languages
Lorenzo Bacchiani #

University of Bologna, Italy

Mario Bravetti #

University of Bologna, Italy

Marco Giunti #

University of Oxford, UK

João Mota #

NOVA LINCS, Nova University Lisbon, Portugal
NOVA School of Science and Technology, Caparica, Portugal

António Ravara #

NOVA LINCS, Nova University Lisbon, Portugal
NOVA School of Science and Technology, Caparica, Portugal

Abstract
We provide support for polymorphism in static typestate analysis for object-oriented languages with
upcasts and downcasts. Recent work has shown how typestate analysis can be embedded in the
development of Java programs to obtain safer behaviour at runtime, e.g., absence of null pointer
errors and protocol completion. In that approach, inheritance is supported at the price of limiting
casts in source code, thus only allowing those at the beginning of the protocol, i.e., immediately
after objects creation, or at the end, and in turn seriously affecting the applicability of the analysis.

In this paper, we provide a solution to this open problem in typestate analysis by introducing a
theory based on a richer data structure, named typestate tree, which supports upcast and downcast
operations at any point of the protocol by leveraging union and intersection types. The soundness
of the typestate tree-based approach has been mechanised in Coq.

The theory can be applied to most object-oriented languages statically analysable through
typestates, thus opening new scenarios for acceptance of programs exploiting inheritance and casting.
To defend this thesis, we show an application of the theory, by embedding the typestate tree
mechanism in a Java-like object-oriented language, and proving its soundness.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Object oriented constructs; Theory of computation → Program verification

Keywords and phrases Behavioural types, object-oriented programming, subtyping, cast, typestates

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.5

Supplementary Material Software (Coq Proofs Artifact): https://zenodo.org/records/7712822
Software (JaTyC Tool Artifact): https://zenodo.org/records/7712915
Software (JaTyC Tool on GitHub): https://github.com/jdmota/java-typestate-checker

archived at swh:1:dir:69edd64b73a190021dd96ee97c7192722edfd00f

Funding This work was partially supported by the EU H2020 RISE programme under the Marie
Skłodowska-Curie grant agreement No. 778233 (BehAPI).
Marco Giunti: EPSRC (EP/T006544/2).
João Mota: NOVA LINCS (UIDB/04516/2020) via the Portuguese Fundação para a Ciência e a
Tecnologia (doi:10.54499/2021.05297.BD).

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and
António Ravara;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 5; pp. 5:1–5:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lorenzo.bacchiani2@unibo.it
https://orcid.org/0000-0002-4305-7491
mailto:mario.bravetti@unibo.it
https://orcid.org/0000-0001-5193-2914
mailto:marco.giunti@cs.ox.ac.uk
https://orcid.org/0000-0002-7582-0308
mailto:jd.mota@campus.fct.unl.pt
https://orcid.org/0000-0003-3182-2245
mailto:aravara@fct.unl.pt
https://orcid.org/0000-0001-8074-0380
https://doi.org/10.4230/LIPIcs.ECOOP.2024.5
https://zenodo.org/records/7712822
https://zenodo.org/records/7712915
https://github.com/jdmota/java-typestate-checker
https://archive.softwareheritage.org/swh:1:dir:69edd64b73a190021dd96ee97c7192722edfd00f;origin=https://github.com/jdmota/java-typestate-checker;visit=swh:1:snp:8c144fa96d2c09b3471e534f7a5140c5fe393943;anchor=swh:1:rev:e3664b0e9a625f379e29ba1788bb7ab40c2beee7
https://doi.org/10.54499/2021.05297.BD
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Behavioural Up/down Casting for Statically Typed Languages

1 Introduction

Modern software engineering practices, e.g., Continuous Delivery [21], produce reliable
software at high pace, through automatic pipelines of building, testing, etc. However,
programming errors such as dereferencing null pointers [19] or using objects wrongly (e.g.
reading from a closed file; closing a socket that timed out1) are often subtle and difficult to
catch, even during the automated testing process. As put by Dijkstra [14]: “program testing
can be used to show the presence of bugs, but never to show their absence”. So, tools to
(statically) catch bugs are essential. Formal methods like deductive verification are difficult
to adopt given the effort required [26], but lightweight static program analysis techniques
can greatly improve the quality of the source code by detecting at compile-time logic errors,
i.e., an unexpected action or behaviour. Beckman et al. [6] observe:

In the open-source projects in our study [...] approximately 7.2% of all types defined
protocols, while 13% of classes were clients of types defining protocols. [...] This
suggests that protocol checking tools are widely applicable.

To tackle the challenge of finding bugs in object-oriented code, where objects naturally
have protocols, in this paper we provide a protocol checking approach, supported by a tool,
based on typestates [31, 15]. The work we present is applicable to most object-oriented
languages, following the approach in closely related work [18, 11]: attach protocols (essentially,
allowed orders of method calls) to classes and type check classes (i.e., their method bodies)
following the protocol, thus gaining typestate-based nullness checking (ensuring memory-
safety), protocol compliance, and protocol completion (under program termination).

In our previous work [3], we applied the approach to Java, proposing the JaTyC tool,
exploiting the seminal simulation-based notion of subtyping [16] to check that the protocol of
a class was a subtype of the protocol of its superclass. However, only upcasts and downcasts
at the beginning of an object protocol (i.e., just after object creation) or at the end (i.e., in
the end state) were allowed. Additionally, to determine if a typestate was a subtype of
another, the simulation was only applied to the initial typestates of the protocols. It is
crucial to overcome these limitations to make JaTyC applicable to real-world scenarios since,
as shown in the study of Mastrangelo et al. [25], casts are widely used. The type checker was
developed following a research methodology based on an iterative/incremental approach (see
figure in Appendix A for details), based on the theory, which together with motivating
examples, drove the type checker implementation (built upon the Checker Framework [30]).

Running example. To emphasise the relevance of our contribution, consider an example
inspired from the automotive sector where driving dynamics control allows to customise
the drive mode2; for SUVs, in particular, we consider a Comfort and a Sport modalities,
where each allows specific features: EcoDrive and FourWheelsDrive, respectively.3 List. 1
and List. 2 describe the behaviours of the controllers of a Car and a SUV, respectively, where
class SUV extends Car. All cars have two base states: OFF, which models a powered off
car, and ON, which represents a powered on car that can perform certain actions, e.g., set
a concrete speed. In OFF, it is possible to turnOn the car and then access features like
setSpeed. Dually, in ON, it is possible to turnOff the car. The turnOn action may, by some

1 https://github.com/redis/jedis/issues/1747.
2 BMW Sport vs Comfort modes: bmwofstratham.com/bmw-sport-mode-vs-comfort-mode-stratham-nh
3 Code online: github.com/jdmota/java-typestate-checker/tree/master/examples/car-example

https://github.com/redis/jedis/issues/1747
https://www.bmwofstratham.com/bmw-sport-mode-vs-comfort-mode-stratham-nh
https://github.com/jdmota/java-typestate-checker/tree/master/examples/car-example

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:3

Listing 1 Car protocol.
1 typestate Car {
2 OFF = {
3 boolean turnOn ():
4 <true :ON , false :OFF >,
5 drop : end
6 }
7 ON = {
8 void turnOff (): OFF ,
9 void setSpeed (int): ON

10 }
11 }

Listing 2 SUV protocol (SUV extends Car).
1 typestate SUV {
2 OFF = {
3 boolean turnOn (): <true :COMF_ON , false :OFF >,
4 drop : end
5 }
6 COMF_ON = {
7 void turnOff (): OFF ,
8 void setSpeed (int): COMF_ON ,
9 Mode switchMode (): <SPORT :SPORT_ON , COMFORT :COMF_ON >,

10 void setEcoDrive (boolean): COMF_ON
11 }
12 SPORT_ON = {
13 void turnOff (): OFF ,
14 void setSpeed (int): SPORT_ON ,
15 Mode switchMode (): <SPORT :SPORT_ON , COMFORT :COMF_ON >,
16 void setFourWheels (boolean): SPORT_ON
17 }
18 }

technical reason, fail, and so, depending on the returned value, either the resulting case is ON
or OFF. SUVs are described by the protocol in Listing 2: when they are successfully powered
on by means of turnOn, they are set in Comfort mode (COMF_ON), and in turn they enjoy
specific operations, e.g., setEcoDrive. The mode can be changed by executing switchMode,
whose result depends on the reached mode being still Comfort (as the operation may fail,
e.g., if the speed is too high), or Sport (SPORT_ON). Similarly, the Sport mode provides the
switchMode actions and also specific ones, e.g., setFourWheels. Note that setSpeed is
overridden in the SUV class: if eco-drive is active, the speed must respect a given threshold,
otherwise it can be set to any value. As we will see, in Section 6, overriding correctness is
checked based on typestate variance, thus dynamic dispatch is guaranteed to work safely.
Section 8 explains how our work compares with others dealing with inheritance.

Each protocol is defined by a set of typestates (e.g., in List. 1, OFF and ON), each one
defining a set of callable methods and subsequent states, possibly depending on return values:
e.g., if turnOn returns true in state OFF of the SUV protocol, then the next state is COMF_ON.
By applying the subtyping algorithm by Gay and Hole [17] to the initial typestates (i.e., OFF
in Car and SUV protocols), we see that the SUV protocol is a subtype of the Car one.

Listing 3 upcast/downcast limitation protocol.
1 public static void dispatch (@Requires ("ON") Car c) { · · · }
2 public static void providePoweredSUV (@Requires ("OFF") SUV c) {
3 if (c. turnOn ()) dispatch (c); // Upcast rejected by current typestate analysis
4 }

Key insight. Even for simple classes as Car and SUV, limiting casts only at the beginning/end
of the protocols seriously reduces the programs we are able to typestate-check, such as the
one in List. 3, where an automotive system dispatches already powered on cars (i.e., required
in typestate ON), whether they are SUVs or not. Removing this limitation is challenging.
The solution relies on the key insight that one has to run the subtyping algorithm not only
on the pair of initial typestates, but on all pairs, to find all typestates in both protocols that
are in a subtyping relation. For example, the limitSpeed method in List. 4 expects a Car in
typestate ON. Since SPORT_ON is a subtype of ON, code passing a SUV in typestate SPORT_ON
to limitSpeed is type-safe. However, if we run the subtyping algorithm starting from the
pair of initial typestates of the given protocols (i.e., (OFF,OFF)), the generated simulation
relation [4, 17] (in Figure 1, where boxes represent input states, and diamonds output ones),
will not include (SPORT_ON,ON) (leftmost graph). If we provide (SPORT_ON,ON), we realise
that this pair is in the typestate subtyping relation (rightmost graph).

ECOOP 2024

5:4 Behavioural Up/down Casting for Statically Typed Languages

Listing 4 Limitation of the Subtyping Algorithm Application.
1 void limitSpeed (@Requires ("ON") Car c, int speed) {
2 c. setSpeed (Math.min(speed , 50));
3 }

Figure 1 Subtyping simulations starting with (OFF,OFF) (left) and (SPORT_ON,ON) (right). Blue
depicts typestates of the SUV protocol and red those of Car.

A theory of typestate upcast and downcast. With this key insight, we devise the following
mechanism: when downcasting, we look for the typestates (in the protocol of the target class)
that are subtypes of the current one; when upcasting, we look for the typestates that are
supertypes of the current one. Since multiple typestates may be found, we need a structured
notion of types to combine them. When downcasting, we combine the subtypes in a union
type [5, 29] (modelling the fact that the actual type is unknown) so that a method call is
allowed only if it is permitted by both elements of the union. Union types are also useful to
allow branching code to be typed with different types so that subsequent code, complying
with either branch, is accepted (e.g., after an if statement). This is more flexible than some
other approaches (like session types ones [32]), which require both branches to have the same
type. When upcasting, dually, we combine the supertypes in an intersection type so that a
method call is allowed if it is permitted by at least one element of the intersection.

However, we need more than just intersection and union types. To illustrate the problem,
consider a class for an Electric Car (ECar) which also extends Car. Consider the code in
List. 5. After the if statement, is c an instance of SUV or ECar? Because of these scenarios,
we associate classes with types and track all possibilities. To that end, we introduce typestate
trees, which resemble the class hierarchy. Herein, the typestate tree would have a root for
class Car, with child nodes for SUV and ECar. Each node corresponds to a class and maps
to the type of the object, accounting for the case in which the object is indeed an instance
of that class. In this way, in case of a future downcast to the SUV or ECar classes, we just
consider the corresponding subtree corresponding to that class.

Listing 5 Typestate Tree motivation.
1 Car c;
2 if (cond) c = new SUV ();
3 else c = new ECar ();

Discussion. The solution we devise is language agnostic, applicable to many object-oriented
languages. To test its expressiveness, we applied it to Java, extending JaTyC to now
support (up/down)casting in the middle of a protocol. By doing this, we advance related
work (Section 8). Kouzapas et al. [24] mention, in the future work section, that to cope

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:5

with protocol inheritance between two classes one just needs “a subtyping relation between
their typestate specifications”. This is enough if one is only concerned with extending class
inheritance but, as we showed, is not adequate to deal with casting, a very common feature.

Furthermore, we support droppable typestates (see typestate OFF in List. 1), the final
typestates of a protocol – where one can either safely stop using the protocol or perform
more actions (if there are any). A droppable typestate with no actions is similar to the
end state in session types. To fully support droppable typestates, we provide a definition of
subtyping over these, extending Gay and Hole’s session type subtyping definition.

Contributions. In short, the main contributions of this work are:

sound support for safely performing upcasts and downcasts at any point of a protocol
(assuming class downcasts are performed to a class of which an object is a subtype of);
formalisation of subtyping over droppable typestates (generalising Gay and Hole’s
session type subtyping);
mechanisation of all definitions and proofs of our results in Coq (artifact available);
implementation of the presented concepts in our type checker for Java, JaTyC, where
we successfully run all examples included in this paper.

Advances with respect to the state of the art. As far as we know, no previous work deals
with casts in the middle of protocols. Moreover, droppable states allow to mark states when
the protocol can be safely stopped, another key concept. So, our work advances the state
of the art with expressive support for inheritance and casting in object-oriented languages,
leveraging on behavioural types [2, 22].

Structure of the paper. Section 2 presents the subtyping relation, shown to be a pre-order,
and a complete and sound algorithm to check typestates subtyping (Theorems 8 and 9).
Section 3 presents upcast and downcast, and the crucial result that each operation preserves
subtyping (Theorems 23 and 28). Moreover, we show that, as expected, each operation
reverses the other (Corollaries 29 and 30). Finally, we show that method calls make the
typestates evolve, preserving subtyping (Theorem 33), and evolution on types commutes
with upcast and downcast (Theorems 34 and 35). Section 4 presents typestate trees, the
crucial structure to allow up/down-casting in the middle of a protocol, and main results
(Theorem 46 and 51). Section 5 presents a key result to safely equip a programming
language with our subtypestate mechanism – operations on typestate trees preserve their
soundness (Theorem 54). Section 6 discusses how to safely develop a type checking system
with typestate trees. Notice that the main contribution of this paper is the provably
safe subtypestates theory, paving the way to its use in (most) object-oriented languages.
Section 7 explains how the example presented in List. 6 is type checked with our tool
and describes a suite of examples showing the expressiveness of our approach. Section 8
discusses related work. Section 9 concludes by envisioning future challenges, e.g., the
mechanisation of a type(state tree)-safe object calculus with inheritance to use as basis for
our Java implementation. Appendix A provides insights on the research methodology we
adopted, while Appendix B provides a glossary listing all the notations used in the paper.

2 Types and subtyping

In this section, we present the types one can assign to terms of an object-oriented language
taken into account, and the corresponding subtyping relations. We first describe typestates,
which encode the current state of an object and specify the available methods (Section 2.1).

ECOOP 2024

5:6 Behavioural Up/down Casting for Statically Typed Languages

Then, we compose these in union and intersection types (Section 2.2). Unions track the
possible typestates an object might be in, and intersections combine behaviour of two distinct
typestates. These will be important when we present how casting works (Section 3).

2.1 Typestates
The following grammar (Def. 1) defines our typestates language. It is very similar to the
one presented by Bravetti et al. [11]. The meta-variable m ranges over the set of method
identifiers MNames, o ranges over the set of output values ONames, and s ranges over the
set of typestate names SNames. The wide tilde stands for a sequence of values.

States are basically of two forms: input and output states. Input states d{m̃ : w} denote a
set like {m1:w1, m2:w2, . . . , mn:wn} offering methods (being n ≥ 0 a natural number), seen
as input actions (i.e., external choices), followed by arbitrary states; the meaning is that by
selecting method mi, the input state transitions to state wi. Input states may optionally be
marked as droppable (with the subscript drop at the left of the set). This marks which input
states are final. For example, in List. 1, the typestate OFF is defined as a droppable input
state (which in the user defined protocol associated with the Java code is represented by the
drop:end option). Output states ⟨õ : u⟩ denote a set like ⟨o1:u1, o2:u2, . . . , on:un⟩, presenting
all possible outcomes of a method call (values o1 to on, being n a positive natural number),
seen as output actions (i.e., internal choices), followed by input states or typestate names.
We only consider boolean and enumeration values as outputs.

To deal with recursive behaviour, protocols use equational definitions of typestates.

▶ Definition 1. Typestates, ranged over by meta-variable u, are terms generated by the
following grammar. States are terms ranged over by meta-variable w.

u ::= d{m̃ : w} | s

w ::= u | ⟨õ : u⟩
d ::= ε | drop
E ::= s = d{m̃ : w}

We assume that in ⟨õ : u⟩ we have at least one output, while in d{m̃ : w}, we can have
no inputs: drop{} represents the protocol ending state, also denoted by end. Moreover, in
an equation E, typestate names s do not occur unguarded (i.e., we disregard equations like
s = s′). We write wẼ to denote state w associated with a set of defining equations. Therefore,
we assume that each typestate name s that is used in w and in the body of equations Ẽ has
a unique defining equation in Ẽ. Let W be the set of terms wẼ and U be the set of terms
uẼ . Furthermore, let X be the subset of W containing only input states d{m̃ : w} and Y be
the subset of W with only output states ⟨õ : u⟩. Meta-variables x and y range over X and Y ,
respectively. Hereafter, whenever the finite set of equations Ẽ is clear from the context, we
consider states w implicitly associated with Ẽ. Moreover, we omit writing ε.

We can use the grammar introduced in Def. 1 to formally specify protocols associated
to classes. A protocol is represented by sẼ , with s being the initial typestate name. For
example, the protocol associated with class Car (List. 1) is OFFECar with ECar being:

OFF = drop{ turnOn : ⟨ true : ON, false : OFF ⟩ }
ON = { turnOff : OFF, setSpeed : ON }

The OFF typestate is marked as droppable and offers a single method (i.e., turnOn) which,
depending on the returned value (true or false), leads to either ON or OFF, respectively. The
ON typestate offers two methods, turnOff and setSpeed, leading to OFF and ON, respectively.

State subtyping is key to support behavioural casting. In our setting, subtypes offer a
superset of the supertype methods (input contravariance), and a subset of the supertype
outputs (output covariance). To define it properly (with the intended properties), we follow

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:7

the work by Gay and Hole on session types subtyping [17]. Therefore, we define the subtyping
relation as a simulation one (as protocols can be infinite state systems), and present a sound
and complete algorithm to check if one state is a subtype of another. We first introduce
function def to unfold typestate name definitions. The simulation relation follows.

▶ Definition 2 (Typestate name definitions). Function def : W → W \ SNames is such
that, given a state wẼ ∈ W, if it is a typestate name, def(wẼ) yields the body of its defining
equation; otherwise, def(wẼ) yields the given state wẼ. Formally,

def(wẼ) =
{

xẼ if wẼ = sẼ′∪{s=x} for some s, E′, x

wẼ otherwise

▶ Definition 3 (State simulation). A relation R ⊆ W × W is a state simulation, if
(w1

E1 , w2
E2) ∈ R implies the following conditions:

1. If def(w1
E1) = d1{m̃ : w}1

E1 then def(w2
E2) = d2{m̃ : w}2

E2 and:
a. for each m′:w′

2 in {m̃ : w}2, there is w′
1 such that m′:w′

1 in {m̃ : w}1 and
(w′

1
E1 , w′

2
E2) ∈ R.

b. if d2 = drop then d1 = drop.
2. If def(w1

E1) = ⟨õ : u⟩1
E1 then def(w2

E2) = ⟨õ : u⟩2
E2 and:

a. for each o′:u1 in ⟨õ : u⟩1, there is u2 such that o′:u2 in ⟨õ : u⟩2 and (u1
E1 , u2

E2) ∈ R.

Now we define subtyping, following standard approaches.

▶ Definition 4 (Subtyping on states). We say w1 is a subtype of w2, i.e., w1
E1 ≤S w2

E2 , if
and only if there exists a state simulation R such that (w1

E1 , w2
E2) ∈ R.

An example of a state simulation (Def. 3) follows (also depicted in rightmost graph of
Figure 1). It is then easy to check, using Definition 4, that SPORT_ONESUV ≤S ONECar .

{(SPORT_ONESUV , ONECar), (OFFESUV , OFFECar),
(⟨true : COMF_ON, false : OFF⟩ESUV , ⟨true : ON, false : OFF⟩ECar),
(COMF_ONESUV , ONECar)}

Notice that the common rule for session type subtyping of end states (i.e., end ≤S end)
is derivable from the previous definitions by just picking the relation R = {(drop{}, drop{})}
and observing that it is a state simulation (Def. 3), thus drop{} ≤S drop{} holds by Def. 4.

As a sanity check, we show basic subtyping properties on states: reflexivity and transitivity.

▶ Lemma 5 (Reflexivity). For all w, then w ≤S w.

▶ Lemma 6 (Transitivity). For all w1
E1 , w2

E2 , w3
E3 , if w1

E1 ≤S w2
E2 and w2

E2 ≤S w3
E3 ,

then also w1
E1 ≤S w3

E3 .

Defining an algorithm to check state subtyping is crucial, not only because it shows
that subtyping is decidable, but also for implementing a type checking procedure (Def. 7).
To obtain an algorithm for checking state subtyping, we guarantee termination by always
applying Assump, whenever applicable. The initial goal of the algorithm is the judgement
∅ ⊢ w1

E1 ≤Salg
w2

E2 . This approach is similar to the session type subtyping algorithm
presented by Gay and Hole [17]. We also show in Theorems 8 and 9 that the subtyping
algorithm is complete and sound with respect to the coinductive definition ≤S (Def. 4).

ECOOP 2024

5:8 Behavioural Up/down Casting for Statically Typed Languages

▶ Definition 7 (Algorithmic state subtyping). The following inference rules define judgements
Σ ⊢ w1

E1 ≤Salg
w2

E2 in which Σ is a set of typestate pairs, containing assumed instances of
the subtyping relation.

(w1
E1 , w2

E2) ∈ Σ
Σ ⊢ w1

E1 ≤Salg w2
E2

Assump

def(w1
E1) = d1{m̃ : w}1

E1 def(w2
E2) = d2{m̃ : w}2

E2

∀ m′:w′
2 ∈ {m̃ : w}2 . ∃ w′

1 . m′:w′
1 ∈ {m̃ : w}1 ∧ Σ, (w1

E1 , w2
E2) ⊢ w′

1
E1 ≤Salg w′

2
E2

d2 = drop =⇒ d1 = drop

Σ ⊢ w1
E1 ≤Salg w2

E2
Input

def(w1
E1) = ⟨õ : u⟩1

E1 def(w2
E2) = ⟨õ : u⟩2

E2

∀ o′:u1 ∈ ⟨õ : u⟩1 . ∃ u2 . o′:u2 ∈ ⟨õ : u⟩2 ∧ Σ, (w1
E1 , w2

E2) ⊢ u1
E1 ≤Salg u2

E2

Σ ⊢ w1
E1 ≤Salg w2

E2
Output

▶ Theorem 8 (Algorithm completeness). If w1
E1 ≤S w2

E2 then ∅ ⊢ w1
E1 ≤Salg

w2
E2 .

▶ Theorem 9 (Algorithm soundness). If ∅ ⊢ w1
E1 ≤Salg

w2
E2 then w1

E1 ≤S w2
E2 .

2.2 Types
To statically track the possible typestates an object might be in, we combine them in union
types. We also combine them in intersection types to describe combined behaviour from both
typestates in the intersection. Their usefulness will be made clearer when we see the result of
upcasting a type. Our type hierarchy is a lattice, thus supporting ⊤ and ⊥ types. Note that
types do not include class information. Typestate Trees will be used for that (Section 4).

▶ Definition 10 (Types grammar). We call types, ranged over by meta-variable t, the terms
generated by the following grammar. Recall that u refers to typestate terms (Definition 1).

t ::= t ∪ t | t ∩ t | uẼ | ⊤ | ⊥

For example, the union type COMF_ONESUV ∪ SPORT_ONESUV describes an object that might be
in typestate COMF_ON or SPORT_ON.

Let T be the set of types produced by rule t. Now we need to define a subtyping notion
to apply to types. The setting is inspired in work by Muehlboeck and Tate [27], in particular,
their definition of reductive subtyping.

▶ Definition 11 (Subtyping on types). Let ≤ ⊆ T × T be the relation defined by the following
inductive rules.

t ≤ ⊤
Top

⊥ ≤ t
Bot

u1
E1 ≤S u2

E2

u1
E1 ≤ u2

E2
Typestates

t ≤ ti

t ≤ t1 ∪ t2
Union_R (i ∈ {1, 2})

ti ≤ t

t1 ∩ t2 ≤ t
Intersection_L (i ∈ {1, 2})

t1 ≤ t t2 ≤ t

t1 ∪ t2 ≤ t
Union_L

t ≤ t1 t ≤ t2

t ≤ t1 ∩ t2
Intersection_R

As a sanity check, we show basic subtyping properties on types: reflexivity and transitivity.

▶ Lemma 12 (Reflexivity). For all t, then t ≤ t.

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:9

▶ Lemma 13 (Transitivity). For all t, t′, t′′, if t ≤ t′ and t′ ≤ t′′, then t ≤ t′′.

An algorithm to check that two types are in a subtyping relationship (i.e., t ≤ t′) can be
implemented by proof search on the inference rules in Def. 11. For these, one can observe that
the combined syntactic height of the two types being tested always decreases [27]. Therefore,
every recursive search path is guaranteed to always reach a point in which both types being
compared are typestates u ∈ U . Since the algorithm to test u1

E1 ≤S u2
E2 terminates, the

overall algorithm to check subtyping also terminates. For example, it is easy to check that
COMF_ONESUV ≤ COMF_ONESUV ∪ SPORT_ONESUV , using the UNION_R rule in Def. 11.

3 Basic operations on types

In this section, we start by describing some preliminary assumptions on the hierarchy of
classes, and then proceed to present the three main operations on types performed during
type checking: upcast (Section 3.1), downcast (Section 3.2), and evolve (Section 3.3). To
showcase these, we use the code in List. 6 that creates an object of type SUV, calls the method
turnOn, switches mode and finally passes the object to method setSpeed (lines 3-6).

Listing 6 ClientCode class.
1 public class ClientCode {
2 public static void example () {
3 SUV suv = new SUV ();
4 while (! suv. turnOn ()) { System .out. println (" turning on ..."); }
5 suv. switchMode ();
6 setSpeed (suv);
7 }
8 private static void setSpeed (@jatyc .lib. Requires ("ON") Car car) {
9 if (car instanceof SUV && ((SUV) car). switchMode () == Mode. SPORT)

10 ((SUV) car). setFourWheels (true);
11 car. setSpeed (50);
12 car. turnOff ();
13 }
14 }

The method setSpeed takes a Car in the ON state, enforced by the @Requires annotation
(line 8). The behaviour provided by the ON state is also available in COMF_ON and SPORT_ON,
so the method should be prepared to work with a Car in the ON state or a SUV (in COMF_ON
or SPORT_ON). The method tests if the car is a SUV and tries to switch to the sport mode
(line 9); if it succeeds, it proceeds to set the four wheels drive (line 10). Then, it sets the
speed to a given value (line 11) and finishes the protocol by turning off the car (line 12).

Throughout this paper, C is the set of class names and c is a meta-variable ranging over its
elements. Additionally, assume all classes belong to a single-inheritance hierarchy associated.

▶ Definition 14 (Super relation on classes). Super is a partial function such that, given a
class c, Super(c) is the unique direct super class of c, if there is one.

▶ Definition 15 (Subtyping relation on classes). The relation ≤C ⊆ C × C is the reflexive
and transitive closure of the Super relation.

With classes and their Super relation, we now need to map classes to their corresponding
protocols, containing only useful states (i.e., reachable states from the initial one).

▶ Definition 16 (Reachable states). The immediate state reachability relation is a relation
over W × W, defined as follows: w′Ẽ is immediately reachable from wẼ, if:
1. w = d{m̃ : w} and ∃ m′ . m′:w′ in d{m̃ : w};
2. w = ⟨õ : u⟩ and ∃ o′ . o′:w′ in ⟨õ : u⟩;
3. w = s and Ẽ includes the equation s = w′.

The state reachability relation is the reflexive and transitive closure of the immediate state
reachability relation.

ECOOP 2024

5:10 Behavioural Up/down Casting for Statically Typed Languages

Recall that each class c has an associated protocol sẼ , where s is its initial typestate
name. We enforce that for any classes c and c′ such that Super(c′) = c, the protocols of c

and c′ are subtypes (i.e., the initial typestate of c′ is a subtype of the initial typestate of c).

▶ Definition 17 (Protocol input states). ProtInputs(c) is the set of all input states d{m̃ : w}
that are reachable from protocol sẼ of class c.

By only considering reachable input states from the initial typestate name of the protocol,
we perform an optimisation that avoids dealing with useless typestates.

To refer to the typestates occurring in a type, we introduce a dedicated auxiliary function.

▶ Definition 18 (Typestates in a type). Function typestates : T → P(U) is such that, given
a type t ∈ T , typestates(t) yields the set of typestates occurring in t. Formally,

typestates(t) =


typestates(t1) ∪ typestates(t2) if t = t1 ∪ t2 or t = t1 ∩ t2

{t} if t ∈ U
{} if t = ⊤ or t = ⊥

3.1 Upcast
To upcast a typestate from class c to class c′, we take all typestates in the protocol of c′ that
are supertypes of the original typestate, and combine them in an intersection type, combining
behaviour from different types. If no supertypes are found, the “empty intersection” yields ⊤,
signalling an error.4 Since we take supertypes, upcast builds a new type that is a supertype
of the original (guaranteed by Theorem 21); and because we intersect the supertypes, we
build the most “precise” type possible with typestates in c′ (guaranteed by Theorem 22).

▶ Definition 19 (Upcast on types). Function upcast : T × C × C → T is such that, given a
type t, a class c whose protocol the typestates in t belong to, and a class c′ we want to upcast
to; upcast(t, c, c′) yields the type obtained by taking the intersection of all supertypes (in the
protocol of class c′) of typestates included in t. The domain of upcast only includes triples
(t, c, c′) such that typestates(t) ⊆ ProtInputs(c) and c ≤C c′. Formally,

upcast(t, c, c′) =


upcast(t1, c, c′) ∪ upcast(t2, c, c′) if t = t1 ∪ t2

upcast(t1, c, c′) ∩ upcast(t2, c, c′) if t = t1 ∩ t2⋂
{u′ ∈ ProtInputs(c′) | t ≤ u′} if t ∈ U

t if t = ⊤or t = ⊥

To see how upcast works, consider the setSpeed call in List. 6. In line 6, after call-
ing switchMode, the type of suv is COMF_ON ∪ SPORT_ON (since we ignore the output of
switchMode, we do not know the actual typestate). To compute the type of the object passed
as parameter, we use the upcast function, using as input: (i) COMF_ON ∪ SPORT_ON as the
type to be upcast; (ii) SUV as the starting class; (iii) Car as the target class. Since the given
type is a union type composed by two elements, the upcast function initially unfolds it and
creates one intersection for each element (i.e., COMF_ON and SPORT_ON) containing all their
supertypes. In this case, there is just one supertype for each: ON. Thus,

upcast(COMF_ON ∪ SPORT_ON, SUV, Car) = ON ∪ ON = ON .

4 In general, upcast operations are always possible, since they produce a supertype of the original type.
The issue here is that no operations are safely allowed on ⊤, so in practise, even if an error is not
immediately reported on upcast, there will be an error when trying to use an object with ⊤ type.

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:11

As a sanity check, we show that upcast builds a type where the typestates composing
it belong to the class we upcast to. Recall that Def. 19 has constraints typestates(t) ⊆
ProtInputs(c) and c ≤C c′ (the following results assume them). To improve readability we
omit stating the constraints explicitly and simply quantify universally types and classes.

▶ Lemma 20 (Upcast preserves protocol membership). For all t, c and c′, then

typestates(upcast(t, c, c′)) ⊆ ProtInputs(c′).

To ensure upcast correctness, we show that the result: (i) is a supertype of the given
type (Theorem 21); (ii) is the “closest” type to the original with typestates in the protocol
of the target class (Theorem 22); and (iii) preserves the subtyping relation (Theorem 23),
i.e., upcast on types in a subtyping relation produces types that are still in such relation.

▶ Theorem 21 (Upcast Consistency). For all t, c and c′, we have t ≤ upcast(t, c, c′).

▶ Theorem 22 (Upcast Least Upper Bound). For all t, t′, c and c′, such that
typestates(t′) ⊆ ProtInputs(c′) and t ≤ t′, we have upcast(t, c, c′) ≤ t′.

▶ Theorem 23 (Upcast Preserves Subtyping). For all t, t′, c and c′, such that t ≤ t′, we have
upcast(t, c, c′) ≤ upcast(t′, c, c′).

3.2 Downcast
To downcast a typestate from class c to c′, we take all typestates in the protocol of c′ that are
subtypes of the original typestate, and combine them in a union type. We use a union type
because we need to account for all possible typestates an object might be in. Since we take
the subtypes, downcast builds a new type that is a subtype of the original one (guarantee
given by Theorem 26); and because we make the union of them, we build the “closest” type
possible with typestates in c′ (guarantee given by Theorem 27).

▶ Definition 24 (Downcast on types). Function downcast : T ×C ×C → T is such that, given
a type t, the class c whose protocol the typestates in t belong to, and the class c′ we want to
downcast to; downcast(t, c, c′) yields the type obtained by taking the union of all subtypes (in
the protocol of class c′) of typestates included in t. The domain of downcast only includes
triples (t, c, c′) such that typestates(t) ⊆ ProtInputs(c) and c′ ≤C c. Formally,

downcast(t, c, c′) =


downcast(t1, c, c′) ∪ downcast(t2, c, c′) if t = t1 ∪ t2

downcast(t1, c, c′) ∩ downcast(t2, c, c′) if t = t1 ∩ t2⋃
{u′ ∈ ProtInputs(c′) | u′ ≤ t} if t ∈ U

t if t = ⊤or t = ⊥

Note that downcast only yields ⊥ if given ⊥. Consider the third case of Def. 24. The
union only yields ⊥ if no sub-typestates in the protocol of c′ are found. But that is impossible.
If we downcast from a typestate t (in c) to a subclass c′, and since the protocol of c′ is a
subtype of the one of c, there will necessarily be at least one typestate in c′ subtype of t.
Moreover, Theorem 54 will show that our overall approach is sound.

To see how downcast works, consider the downcast performed in line 9 of List. 6. To
compute the type of (SUV) car, we use downcast, defined in Def. 24, passing as parameter:
(i) ON as the type to be downcast (given the Requires annotation); (ii) Car as the starting
class; (iii) SUV as the target class. Since the type passed as parameter is a simple typestate,
the downcast function just creates a union containing all the subtypes of ON. Concretely,

downcast(ON, Car, SUV) = COMF_ON ∪ SPORT_ON .

ECOOP 2024

5:12 Behavioural Up/down Casting for Statically Typed Languages

As a sanity check, we show that downcast builds a type where the typestates composing
it belong to the class we downcast to. Recall that Def. 24 has constraints typestates(t) ⊆
ProtInputs(c) and c′ ≤C c. (the following results assume them). To improve readability,
the constraints are implicit and we simply quantify universally types and classes.

▶ Lemma 25 (Downcast preserves protocol membership). For all t, c and c′, we have

typestates(downcast(t, c, c′)) ⊆ ProtInputs(c′).

To ensure downcast correctness, we show that the result: (i) is a subtype of the given
type (Theorem 26); (ii) is the “closest” type to the original with typestates in the protocol
of the target class (Theorem 27); and (iii) preserves the subtyping relation i.e., downcast on
types in a subtyping relation produces types that are still in such relation (Theorem 28).

▶ Theorem 26 (Downcast Consistency). For all t, c and c′, we have downcast(t, c, c′) ≤ t.

▶ Theorem 27 (Downcast Greatest Lower Bound). For all t, t′, c and c′, such that
typestates(t′) ⊆ ProtInputs(c′) and t′ ≤ t, we have t′ ≤ downcast(t, c, c′).

▶ Theorem 28 (Downcast Preserves Subtyping). For all t, t′, c and c′, such that t ≤ t′, we
have downcast(t, c, c′) ≤ downcast(t′, c, c′).

Additionally, we relate the result of upcasting and then downcasting with the original type,
as well as, the result of downcasting and then upcasting. The first follows from Theorems 21
and 27, the second from Theorems 22 and 26. These corollaries are also important to ensure
the soundness of the approach (Theorem 54).

▶ Corollary 29 (Downcast reverses upcast). For all t, c and c′, we have

t ≤ downcast(upcast(t, c, c′), c′, c).

▶ Corollary 30 (Upcast reverses downcast). For all t, c and c′, we have

upcast(downcast(t, c, c′), c′, c) ≤ t.

3.3 Evolve
Whenever we perform a method call on an object with a given type, we need to compute the
new type representing the typestates the object might be in after the call. To compute such
type and rule out misconduct, we define the evolve function, which yields ⊤ when a method
is not callable in the given type. Retm is the set of outputs returnable by method m.

▶ Definition 31 (Evolve). Function evolve : T × M × O → T is such that, given a type t, a
method m, and an object o ∈ Retm; evolve(t, m, o) yields the new type obtained by executing
m on any object currently with type t, where o is the value returned by m. Its definition relies
on the auxiliary functions evolveU : U × M × O → U and evolveY : Y × O → U . Formally,

evolve(t, m, o) =


evolve(t1, m, o) ∪ evolve(t2, m, o) if t = t1 ∪ t2

evolve(t1, m, o) ∩ evolve(t2, m, o) if t = t1 ∩ t2

evolveU(t, m, o) if t ∈ U
t if t = ⊤or t = ⊥

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:13

evolveU(u, m, o) =


w if def(u) = d{m : w, m̃ : w} ∧ w ∈ U
evolveY(w, o) if def(u) = d{m : w, m̃ : w} ∧ w ∈ Y
⊤ otherwise

evolveY(y, o) =
{

u y = ⟨o : u, õ : u⟩
⊥ otherwise

Since evolve is deterministic, it is defined as a function, not as a labelled transition system.
To see how evolve works, consider the switchMode call in line 9 of List. 6. To compute

the type of car, we use evolve, defined in Def. 31, passing as parameter: (i) the type
COMF_ON ∪ SPORT_ON be evolved (given the result of the downcast function); (ii) the method
switchMode to make the type evolve; (iii) the expected output Mode.SPORT to enter the if
branch. Since the type, passed as parameter, is a union type composed by two elements,
the evolve function is called recursively, and then the auxiliary function evolveU is called
for COMF_ON and SPORT_ON. Since the switchMode action leads to an output state, for both
COMF_ON and SPORT_ON (see List. 2), the auxiliary function evolveY is invoked. Concretely,

evolve(COMF_ON ∪ SPORT_ON, switchMode, Mode.SPORT) = SPORT_ON ∪ SPORT_ON

that can be simplified to SPORT_ON. Notice that the evolved type has the same structure of
the one before calling the evolve function i.e., a union type.

As a sanity check, we show that evolve produces a type containing only typestates
belonging to the initial class.

▶ Lemma 32 (Evolve preserves protocol membership). For all t, m, o, c,

typestates(t) ⊆ ProtInputs(c) implies typestates(evolve(t, m, o)) ⊆ ProtInputs(c)

To ensure evolve correctness, we show that the result preserves the subtyping relation:
evolve on types in a subtyping relation produces types that still are in such relation.

▶ Theorem 33 (Evolve preserves subtyping). For all t and t′ such that t ≤ t′, we have that

evolve(t, m, o) ≤ evolve(t′, m, o).

We also relate evolve with upcast and downcast showing that: (i) upcast after evolve
produces a subtype of the inverse sequence of operations (Theorem 34); and (ii) downcast
after evolve produces a supertype of the inverse sequence of operations (Theorem 35). These
theorems are key to ensure soundness (Theorem 54). For readability, we omit the constraints
on the universally quantified variables needed to use upcast and downcast.

▶ Theorem 34 (Evolve and upcast). For all t, m, o, c and c′, we have that

upcast(evolve(t, m, o), c, c′) ≤ evolve(upcast(t, c, c′), m, o).

▶ Theorem 35 (Evolve and downcast). For all t, m, o, c and c′, we have that

evolve(downcast(t, c, c′), m, o) ≤ downcast(evolve(t, m, o), c, c′)

ECOOP 2024

5:14 Behavioural Up/down Casting for Statically Typed Languages

4 Typestate Trees

In this section, we describe Typestate Trees, the crucial data structure we use to solve the
problem of casting in the middle of a protocol. These trees associate classes with types
containing only states in the protocol of those classes (i.e., typestates(t) ⊆ ProtInputs(c)).
The tree root indicates the static type of a variable and the corresponding type (in T) at a
given program point. All other nodes describe what should be the type if we downcast to the
corresponding class. The type in the root is always a sound approximation of the runtime
execution. The types in other nodes are also sound only if the object is an instance of the
corresponding class. This will imply that type safety is guaranteed up-to class downcasts
being performed to a class of which an object is a subtype of. Hereafter we define well-formed
typestate trees and auxiliary functions. Sections 4.1, 4.2, 4.3, and 4.4, describe the main
operations on typestate trees: upcastTT, downcastTT, evolveTT, and mrgTT, respectively.

▶ Definition 36 (Typestate Trees). Recall that c ranges over classes (C) and t ranges over
types (T). Let T T be the smallest set of triples satisfying the following rules:

(c, t, {}) ∈ T T
n ≥ 1 ∀ i, 1 ≤ i ≤ n . tti ∈ T T

(c, t, {tti | 1 ≤ i ≤ n}) ∈ T T

Notice that triples in T T represent trees and are composed of: the class c and the type t

of the root, and a set of subtrees (again triples in T T), one for each root child. Such a set is
empty if the tree root has no children (i.e., the tree simply represents a leaf). Throughout
this paper, tt ranges over elements of T T and tts ranges over sets of elements of T T . We
need functions to destroy an element of T T (which is a triple). Let cl((c, t, tts)) = c,
ty((c, t, tts)) = t, and children((c, t, tts)) = tts.

▶ Definition 37 (No duplicate classes). The predicate nodup over P(T T) asserts that, given
a set tts ∈ P(T T), no two typestates trees in tts have the same associated class. Formally,
nodup(tts) holds if: ∀ tt, tt′ ∈ tts . cl(tt) = cl(tt′) ⇒ tt = tt′.

▶ Definition 38 (Well-formedness Of Typestate Trees). The predicate ⊢ over T T asserts that,
given a typestate tree (c, t, tts), it is correctly constructed. Formally,

typestates(t) ⊆ ProtInputs(c)
nodup(tts) ∀tt ∈ tts . Super(cl(tt)) = c ∧ upcast(ty(tt), cl(tt), c) ≤ t ∧ ⊢ tt

⊢ (c, t, tts)

So, a typestate tree (c, t, tts) is well-formed under the following conditions: (i) all the
typestates of type t belong to the protocol of class c; (ii) there are no two children with the
same class; (iii) the classes associated with each child tree are direct subclasses of c; (iv) if
we upcast a type of a child tree, we get a subtype of t; and (v) each child is also well-formed.
Condition (iv) ensures that the type of a child tree is never less “precise” than the type of
the parent. From now on, we only consider well-formed typestate trees.

To illustrate the concept, suppose that in line 3 of List. 6, instead of assigning the newly
created object to a SUV variable, we assign it to a Car one, performing an upcast. Since the
static and actual type are different, we need a typestate tree to handle future casts. Given
Def. 36 and Def. 38, the resulting typestate tree is (Car, OFF, {(SUV, OFF, {})}).

4.1 Upcast
Upcasting a typestate tree to class c′ ensures that the resulting root class is c′, by recursively
following the Super relation and building up new tree roots until the root class is c′.

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:15

▶ Definition 39 (Upcast on typestate trees). Function upcastTT : T T × C → T T is such
that upcastTT((c, t, tts), c′) performs an upcast on typestate tree (c, t, tts) to class c′. The
domain of upcastTT only includes pairs ((c, t, tts), c′) such that c ≤C c′. Formally,

upcastTT((c, t, tts), c′) ={
(c, t, tts) if c = c′

upcastTT((Super(c), upcast(t, c, Super(c)), {(c, t, tts)}), c′) otherwise

Notice that, under the assumption on the domain of the upcastTT, the function terminates
since the distance between c and c′ decreases with each recursive step.

▶ Theorem 40 (Typestate Trees Well-formedness Preserved By Upcast). For all c′′, tt, such
that ⊢ tt and cl(tt) ≤C c′′, it holds that ⊢ upcastTT(tt, c′′).

To see how upcastTT works, consider the setSpeed call in List. 6. In line 8, after calling
switchMode, the object suv has the following typestate tree (SUV, COMF_ON ∪ SPORT_ON, {}).
When passing suv to setSpeed, we need to upcast from SUV to Car. To do that, we use the
upcastTT function, defined in Def. 39, passing as parameter: (i) (SUV, COMF_ON∪SPORT_ON, {})
as the typestate tree to be upcast; and (ii) Car as the target class. Thus,

upcastTT((SUV, COMF_ON∪SPORT_ON, {}), Car) = (Car, ON, {(SUV, COMF_ON∪SPORT_ON, {})}) .

It is crucial to notice that to upcast a typestate tree, we must perform multiple upcasts,
incrementally building up new tree roots, not only to preserve the well-formedness property,
but also to ensure soundness. For readability sake, we show the problem with an abstract,
but simple example. Take classes A, B and C, where Super(C) = B, Super(B) = A, and the
protocol equations associated with each class listed below. Recall that end = drop{}.

A1 = { m1 : end }
B1 = { m1 : end, m2 : end }

C1 = { m1 : end, m2 : end, m3 : C2 }
C2 = { m1 : end, m4 : end }

Given the protocols above and according to Def. 4 we have:

C1 ≤S B1 ≤S A1 and C2 ≤S A1, but C2 ̸≤S B1 .

C2 not being a subtype of B1 is not a problem per se, but it may be when upcasting, if
we define it to go directly to the root instead of going level-by-level, as downcasting after
upcasting should lead to the original state.5 To see that, consider the code in List. 7, which
contains an unsafe method call, but would be accepted. At first, we create an object c of
class C and we call its method m3, producing a new typestate, i.e., C2. Then, we assign c to
variable a performing an upcast from class C to A (and from typestate C2 to A1). We finally
perform a sequence of downcasts on a leading the object to class C (and to typestate C1).

Listing 7 Direct upcast example.
1 C c = new C(); // C1
2 c.m3 (); // C2
3 A a = c; // A1: unsound upcast !
4 B b = (B) a; // B1: downcast level -by - level
5 C c = (C) b; // C1: incorrect ! the state should be C2 (that of line 2)
6 c.m2 (); // unsafe !

5 Technically, downcasting after upcasting returns an over-approximation of the original state.

ECOOP 2024

5:16 Behavioural Up/down Casting for Statically Typed Languages

In detail (for those interested), notice that the result of upcasting C2 directly to class A
(line 3, List. 7) is A1, since it is the only supertype of C2, i.e., C2 ≤S A1. To downcast A1
to class B, we check all the typestates in the protocol of B subtypes of A1. Since only B1 is
subtype of A1, that is the downcast result (line 4). Similarly, since only C1 is a subtype of
B1, it is the result of downcasting from B1 (line 5). Notice how a direct upcast to A, followed
by a downcast to B, and then to C, results in a different typestate with respect to the initial
one. This is unsound: C1 and C2 are unrelated. The issue is that a direct upcast to A makes
us lose the information about C1 not having supertypes among typestates in B. Since we first
upcast C2 to B, getting ⊤ as result, we find out that C2 has no supertypes among typestates
in B. Additionally, since we use typestate trees, downcasting to C leads back to C2.

4.2 Downcast
When downcasting a given typestate tree tt to class c, we ensure that the root class of the
resulting tree is c. If we find a subtree in tt whose class is c, we pick it as the result (by
well-formedness, it is unique). Otherwise, we build a new tree downcasting from the most
“precise” type information in tt. For this, we use the closestSubT function to look for the
subtree whose class is hierarchically the “closest” to c.

▶ Definition 41 (Closest subtree). The function closestSubT : T T × C → T T is such that
closestSubT(tt, c) yields the subtree associated with the closest superclass of c occurring in
tt. The domain of closestSubT only includes pairs (tt, c) such that c ≤C cl(tt). Formally,

closestSubT(tt, c) =
{

closestSubT(tt′, c) if c ≤C cl(tt′) ∧ tt′ ∈ children(tt)
tt otherwise

To illustrate the use of closestSubT, consider classes A, B, and C, where Super(B) = A
and Super(C) = B. Let tt be (A, t, {(B, t′, {})}). Then the following equalities hold:
closestSubT(tt, A) = tt; closestSubT(tt, B) = (B, t′, {}); and closestSubT(tt, C) =
(B, t′, {}). The first two cases are easy to understand: the function yields the subtree
whose class is precisely the one we are looking for. In the third case, since there is no subtree
in tt whose class is C, closestSubT(tt, C) yields the subtree corresponding to B, which is the
“closest” superclass of C present in tt, i.e., (B, t′, {}). Now, suppose instead that Super(B) = A
and Super(C) = A (i.e., B and C are “siblings”). Then closestSubT(tt, C) would yield the
entire tree tt whose class is A, which is the “closest” superclass of C present in tt. Lemma 42
ensures the correctness of closestSubT and is useful for the soundness proof (Theorem 54).

▶ Lemma 42 (Closest correctness). For all tt and c, if c ≤C cl(tt) then

c ≤C cl(closestSubT(tt, c)).

▶ Definition 43 (Downcast on typestate trees). Function downcastTT : T T × C → T T is
such that downcastTT(tt, c) performs a downcast on typestate tree tt to class c. The domain
of downcastTT only includes pairs (tt, c) such that c ≤C cl(tt). Formally,

downcastTT(tt, c) ={
tt′ if tt′ = closestSubT(c, tt) ∧ c = cl(tt′)
(c, downcast(ty(tt′), cl(tt′), c), {}) otherwise tt′ = closestSubT(c, tt)

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:17

▶ Theorem 44 (Typestate Trees Well-formedness Preserved By Downcast). For all c, tt, such
that ⊢ tt and c ≤C cl(tt), it holds that ⊢ downcastTT(tt, c).

To see how downcastTT works, observe how (SUV) car would be checked (in List. 6).
To compute its typestate tree, we use downcastTT, defined in Def. 43, passing as parameter:
(i) (Car,ON,{}) as the typestate tree to downcast; (ii) SUV as the target class. Notice
that, in the case the root is also a leaf, we need to replace it with the result of downcastTT.
Concretely, downcastTT((Car, ON, {}), SUV) = (SUV, COMF_ON ∪ SPORT_ON, {}) .

4.3 Evolve
To compute the typestate tree of an object after a call, we define the evolveTT function.

▶ Definition 45 (Evolve on typestate trees). Function evolveTT : T T ×M×O → T T is such
that evolveTT(tt, m, o) yields a new typestate tree resulting from applying evolve(t, m, o)
(Def. 31) to all the nodes of tt. The domain of evolveTT only includes triples (tt, m, o) such
that o ∈ Retm (i.e. the set of outputs returnable by method m). Formally,

evolveTT((c, t, tts), m, o) = (c, evolve(t, m, o),
⋃

tti∈tts

evolveTT(tti, m, o)).

Notice that, when the set tts is empty, evolveTT((c, t, tts), m, o) = (c, evolve(t, m, o), {})

▶ Theorem 46 (Typestate Trees Well-formedness Preserved By Evolve). For all tt, m, o, such
that ⊢ tt, it holds that ⊢ evolveTT(tt, m, o).

Listing 8 EvolveTT example.
1 Car c = new SUV ();
2 if (c. turnOn ()) c. turnOff ();

To see how evolveTT works, consider the code presented in List. 8 (where the pro-
tocols of Car and SUV are presented in List. 1 and List. 2). The typestate tree of c is
(Car, OFF, {(SUV, OFF, {})}). When the turnOn call occurs, we need to “evolve” each node
of the typestate tree. To compute the resulting tree, we use evolveTT, defined in Def. 45,
passing as parameter: (i) the typestate tree of c; (ii) turnOn as the method called; (iii)
true as the expected output to enter the if branch. Concretely,

evolveTT((Car, OFF, {(SUV, OFF, {})}), turnOn, true) = (Car, ON, {(SUV, ON, {})}) .

Notice that every node of the typestate tree is “evolved” using the evolve function.

4.4 Merge
In the case of branching code, one has to merge type information coming from all different
branches, so that subsequent code can be properly analysed by considering all possibilities
(e.g., merging type information coming from both branches of an if statement). To this end,
we define the mrgTT function, which merges two typestate trees. Before presenting mrgTT,
we define some auxiliary functions, crucial for the formalisation.

▶ Definition 47. Function height : P(T T) → N is such that height(tt) yields the greatest
number of nodes traversed, in tt, from the root to one of the leaves (both included).

▶ Definition 48. Function clss : P(T T) → P(C) is such that clss(tts) yields the set of
classes associated with the typestate trees in tts. Formally, clss(tts) = {cl(tt) | tt ∈ tts}.

ECOOP 2024

5:18 Behavioural Up/down Casting for Statically Typed Languages

▶ Definition 49. Function find : C × P(T T) → T T is such that, given a class c and set of
typestate trees tts with c ∈ clss(tts) and nodup(tts), find(c, tts) yields the unique typestate
tree in set tts whose class is c.

▶ Definition 50 (Merge). Function mrgTT : T T × T T → T T is such that, given typestate
trees tt and tt′, mrgTT(tt, tt′) yields the typestate tree obtained by merging tt and tt′. The
domain of mrgTT only includes pairs (tt, tt′) such that cl(tt) = cl(tt′). Formally,

mrgTT((c, t, tts), (c, t′, tts′)) = (c, t ∪ t′, tts1 ∪ tts2 ∪ tts3)

where tts1 =
⋃

ci∈clss(tts)∩clss(tts′)

mrgTT(find(ci, tts), find(ci, tts′))

tts2 =
⋃

ci∈clss(tts)\clss(tts′)

mrgTT(find(ci, tts), (ci, downcast(t′, c, ci), {}))

tts3 =
⋃

ci∈clss(tts′)\clss(tts)

mrgTT((ci, downcast(t, c, ci), {}), find(c, tts′))

Note that mrgTT terminates since height(tt) + height(tt′) decreases with each recursive
step. Moreover, mrgTT is symmetric, i.e., mrgTT(tt, tt′) gives the same result as mrgTT(tt′, tt).

▶ Theorem 51 (Typestate Trees Well-formedness Preserved By Merge). For all tt, tt′, such
that cl(tt) = cl(tt′), ⊢ tt, and ⊢ tt′, it holds that ⊢ mrgTT(tt, tt′).

To see how mrgTT works, consider the if statement in List. 6 (lines 12-14). Notice that,
although the else-branch is missing, in the process of computing the typestate tree of car, we
need to consider it to be there (to account for all possible outputs returned by switchMode).
To compute such typestate tree, we use mrgTT, defined in Def. 50, passing as parameters:
(i) (SUV, SPORT_ON, {}) and (ii) (SUV, COMF_ON, {}). Since neither of the parameters have
children nodes, it is enough to make the union of the root types. Concretely,

mrgTT((SUV, SPORT_ON, {}), (SUV, COMF_ON, {})) = (SUV, SPORT_ON ∪ COMF_ON, {}) .

5 Typestate Trees Soundness

In this section, we discuss why we consider type-safe a programming language equipped with
our subtypestate mechanism. Such result relies on the key property that given a typestate
tree that soundly approximates the current runtime typestate of an object, operations on
it result in new typestate trees that still soundly approximate the runtime typestate. This
assumes that class downcasts are performed to a class of which the object is a subtype of.
So, we do not provide static guarantees that class downcasts will not throw at runtime.

▶ Definition 52 (Sequence of upcasts on types). Function upcast∗ : T ×C×C → T is such that
upcast∗(t, c, c′) performs zero or more upcasts from c to c′ step-by-step, following the class
hierarchy. The domain of upcast∗ only includes triples (t, c, c′) such that typestates(t) ⊆
ProtInputs(c) and c ≤C c′. Formally,

upcast∗(t, c, c′) =
{

t if c = c′

upcast∗(upcast(t, c, Super(c)), Super(c), c′) otherwise

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:19

Since the distance between c and c′ decreases with each recursive step, upcast∗ terminates.
The next relation describes a typestate tree where type information is sound with respect

to class c′ and type t′. That is, assuming c′ and t′ represent the exact runtime type of a
given object, a sound typestate tree correctly approximates such type. Note that the root
has to be necessarily sound with respect to runtime, while the other nodes only need to be
sound if the initialising class of the object is a subclass of the class associated with that node.
Thus, all non-root nodes describe the type of the object if indeed the object is an instance of
the corresponding class. This implies that if we downcast, possibly turning a non-root node
into the new root, we preserve soundness only if the runtime downcast succeeds.

▶ Definition 53 (Soundness Of Typestate Trees). The predicate ⊢c′,t′ over T T , with
typestates(t′) ⊆ ProtInputs(c′), asserts that, given a (well-formed) typestate tree (c, t, tts),
it is sound with respect to class c′ and type t′. Formally,

c′ ≤C c upcast∗(t′, c′, c) ≤ t ∀tt ∈ tts . c′ ≤C cl(tt) ⇒ ⊢c′,t′ tt

⊢c′,t′ (c, t, tts)

The next theorem shows that soundness is preserved by typestate tree operations. Note
that soundness after downcast is only preserved if at runtime the downcast does not throw
an exception (thus the assumption c ≤C c′ ≤C cl(tt) on the second item of Theorem 54).

▶ Theorem 54 (Typestate Trees Soundness Preservation). Soundness is preserved by:
upcast – for all c, t, c′, tt, such that ⊢c,t tt and cl(tt) ≤C c′, it holds that

⊢c,t upcastTT(tt, c′)
downcast – for all c, t, c′, tt, such that ⊢c,t tt and c ≤C c′ ≤C cl(tt), it holds that

⊢c,t downcastTT(tt, c′)
evolve – for all c, t, tt, m, o, such that ⊢c,t tt, it holds that

⊢c,evolve(t,m,o) evolveTT(tt, m, o)
merge – for all c, t, tt1, tt2, such that ⊢c,t tt1 or ⊢c,t tt2, and cl(tt1) = cl(tt2), it holds

that ⊢c,t mrgTT(tt1, tt2).
Having shown our approach sound, the following section explains how the functions

defined in Section 4 are used during type checking.

6 Application to type checking

We believe the setting presented is quite general and applicable to many object-oriented
languages. In this section, we explain, how in detail, assuming a common syntax.6 We start
by describing how declarations are analysed in JaTyC, followed by expressions, and then
statements. We use the Kleene star to denote (possibly empty) sequences.

Class declarations and overriding. First, it is crucial to guarantee that protocols are well-
formed and the relation between classes and their protocols makes sense. To this, we ensure
that all methods mentioned in the protocol are declared in the class. Similarly, we check that
all mentioned outputs are return values of the corresponding methods. Additionally, we check
typestate input contravariance and output covariance in overridden methods, since these may
include @Requires and @Ensures annotations in parameters and return types, respectively,
which limit the typestates received/returned. Finally, we ensure that the subclass protocol is

6 Formalising a type checking system for one particular language, mechanising, and proving it sound is a
matter for another paper. Doing that for a core Java-like language is work-in-progress.

ECOOP 2024

5:20 Behavioural Up/down Casting for Statically Typed Languages

a subtype of the superclass one (i.e., the initial state of the former is a subtype of the initial
state of the latter according to Def. 4). Thanks to these checks, dynamic dispatch works
transparently: if a method is callable on a supertype, it is also callable on its subtypes.

To type check a class, we analyse each method following the sequences of calls allowed
by the protocol, similarly to the approach by Bravetti et al. [11], so that method analysis
benefits from type information coming from the analyses of methods called before. Type
information is stored in a map from locations (local variables, fields of the this object, and
code expressions) to typestate trees (Def. 36). We also store the typestate trees of expressions
since these may evaluate to typestated-objects, which must be tracked. Moreover, type
information of final states is checked to ensure all fields either correspond to a terminated
protocol or are aliased (explained later), to ensure protocol completion of references in fields.

Method declarations: @Ensures(s) type m((@Requires(s) type x)*) {st}. To check
a method, we build a control flow graph [1] with the Checker Framework [30]. Then, we
traverse it, visiting each expression or statement, and propagate type information. For each
expression, we take the type information obtained from analysing the previous one, and
produce new information. Expression or statement analysis is described later.

The initial type information (i.e., the initial input of the graph traversal) is composed
by the types of the parameters, expressed via the @Requires annotation, combined with
information about fields (coming from previous method analysis, as explained before). If a
@Requires annotation is omitted, it means we expect an aliased reference. Return statements
are analysed like assignments, while making sure the returned expression type is a subtype
of the one declared via the @Ensures annotation. If no annotation is provided, we return an
aliased reference. At the end of a method body, we ensure variables and code expressions are
either aliased or in a final state, guaranteeing protocol completion.

Variable declarations or assignments: [type] x = exp. To check a variable declaration
or assignment, we call upcastTT (Def. 39) on the typestate tree of the right-hand-side, and
associate the result with the variable (or field) in the left-hand-side. If upcastTT yields a
typestate tree with ⊤ as root type, the assignment is not allowed and we report an error.
Given how the control flow graph is built, the expression on the right-side was already checked
when we reach this point. If we override a typestate tree corresponding to a non-terminated
protocol, we also report an error, since the assignment may compromise protocol completion
of the overridden reference. Assignments may produce aliasing among variables. Since
an object’s state could be modified via multiple aliases, we restrict aliasing to allow us to
statically track object states. We enforce a linear discipline: only one variable is “active”,
while the others are marked as aliased (and cannot call protocol methods). We also mark
the right-hand-side expression as aliased when checking a variable declaration or assignment.

Method call expressions: exp.m(exp*). To check a call, we first ensure the receiver
expression is not null. We can do this because we distinguish between nullable and non-null
types. Then, we analyse each parameter assignment applying the same rules explained before.
This ensures that calls like obj.m(x,x) do not create unintended aliases. We also ensure
that the root types of the typestate trees associated with the parameter expressions are
subtypes of the expected types in the method signature. Following this, we proceed to check
the call itself. We ensure the receiver expression is a non-aliased reference and use evolveTT
(Def. 45) to compute the typestate tree associated with the receiver after the call, passing
the current typestate tree, the method name, and a possibly returned output (if the method
call appears in an if or switch statement). Note that evolveTT might be called several
times to consider all possible outputs. If evolveTT yields a typestate tree where the root
type is ⊤, then the method is not available to be called in that state, so we report an error.

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:21

Cast expressions: (C) exp. When checking a cast, we know that the inner expression was
already checked, similarly to what happens to other expressions. To check it, we must use
either upcastTT (Def. 39) or downcastTT (Def. 43), passing the inner expression typestate
tree and the target class. We test if we are upcasting or downcasting by comparing the inner
expression static type with the target class. The result is associated with the cast expression
and the inner one is marked as aliased. As for assignments, if upcastTT yields a typestate
tree with ⊤ in the root, we report an error. However, downcastTT does not produce errors
because we provide type safety up-to downcasts not throwing runtime exceptions.

One key detail about cast expressions is that if a cast expression is the receiver object of a
method call, after checking the call, the new type of the receiver object is associated with the
most inner expression which is not a cast, not with the cast expression itself. For example,
if the receiver is (A) ((B) x), the new type information is associated with x directly, not
with (A) ((B) x), so that x can be used again later (instead of being aliased). This will
require an upcast to the class of x, but no information is lost, thanks to typestate trees.

New expression: new C(exp*). The initialisation of a new object is analysed similarly to
a method call (since we are calling the constructor), except that it returns a new object. So,
we associate the expression with a typestate tree with only a root: the class is the object
type we are constructing, and the type (from Def. 10) is the initial typestate of the protocol.

If statements: if (exp) { st } else { st’ }. For simplicity, up until now we omit-
ted an implementation detail crucial to type check if statements (and switch statements):
during the control flow graph traversal, we do not simply propagate a map from locations
to typestate trees; we keep track of type information depending on the values of other
expressions. For instance, to analyse a method call in a condition of an if, we track the type
information for when the condition is true separately from the one when it is false. So,
when checking an if, we just propagate the former to the first branch, and the latter to the
second branch. We also make sure to invalidate such “conditional” type information once it
is no longer relevant. Finally, the typestate trees associated with each location after the if
are the result of merging type information from both branches, using mrgTT (Def. 50).

Switch statements: switch (exp) { (case val : st)* }. We analyse a switch
statement similarly to an if one. A method call in the expression of a switch state-
ment produces type information different for each case, but we consider enumeration values
that may be returned instead of boolean values. So, to check a switch statement, we just
need to propagate the information that holds when a given case is matched to the related
branch. Again, we invalidate this “conditional” type information once it is no longer relevant.

While statements: while (exp) { st }. While statements are analysed like if ones,
except the flow graph is different: after the body is executed, execution returns to the
condition. Because of this, we might traverse the same expression or statement in the graph
more than once. If that occurs, we merge the new gathered information with the previous
one. To ensure that the static analysis terminates, we avoid analysing an expression again if
no new type information was gathered. This is guaranteed to occur because the number of
all possible typestates is finite. In the worst case, when merging, we might produce a union
of all typestates. Typestate trees are also finite because the number of classes is finite.

ECOOP 2024

5:22 Behavioural Up/down Casting for Statically Typed Languages

7 Use Cases

To showcase the applicability and expressiveness of our approach, we start by explaining
how the code in List. 6 is type checked in detail. Then, we present a suite of examples
with polymorphic code7, inspired from cyber-physical systems, showing that: (i) JaTyC
detects errors the standard Java type checker does not detect; (ii) our setting is flexible and
expressive enough to model interesting and intricate scenarios.

Type checking List. 6. To type check the ClientCode class (which has no protocol), we
analyse the static methods example and setSpeed, independently (since static methods are
not part of a class protocol). The list of steps to type check the example method follows:

Check the expression new SUV(), associating it with a leaf typestate tree with class SUV
and type OFF (i.e., (SUV, OFF, {}));
Check the assignment, associating the previous typestate tree with the variable suv, and
marking the expression on the right as aliased;
Check the call suv.turnOn(), allowed in type OFF, generating “conditional” type inform-
ation: if true, suv has typestate tree (SUV, COMF_ON, {}), otherwise it has (SUV, OFF, {});
Check the negating expression which “inverts” the conditional information;
Inside the body of the while statement, suv is associated with (SUV, OFF, {}), and after
exiting the while, suv is associated with (SUV, COMF_ON, {});
Check the call suv.switchMode(), which is allowed in type COMF_ON, generating “condi-
tional” type information: suv has the typestate tree (SUV, SPORT_ON, {}) if the call returns
Mode.SPORT, and if the call returns Mode.COMFORT, it has (SUV, COMF_ON, {}). Since the
returned value is not checked in a switch statement, we combine both typestate trees
into (SUV, SPORT_ON ∪ COMF_ON, {});
Check the parameter assignment of suv by upcasting from SUV to Car, generating the
typestate tree (Car, ON, {(SUV, SPORT_ON ∪ COMF_ON, {})}). Since the root type ON is a
subtype of the required type in the @Requires annotation, the parameter assignment is
allowed. Additionally, variable suv is marked as aliased: the setSpeed method is now
the one responsible to complete the protocol of the given instance;
No further checks are necessary for the call expression on setSpeed since it is a static
method and methods are checked in a modular way;
Type checking the example method finishes by checking protocol completion. Since all
locations are marked as aliased at the end, no error about completion is reported.

To finish checking the class, we analyse setSpeed. The list of steps taken follows:
We associate car with typestate tree (Car, ON, {}), according to the @Requires annotation;
Downcast from Car to SUV, resulting in the typestate tree (SUV, COMF_ON ∪ SPORT_ON, {});
Check the call ((SUV)car).switchMode(), which is allowed in type COMF_ON ∪
SPORT_ON, generating “conditional” type information: (SUV)car has typestate tree
(SUV, SPORT_ON, {}), if the call returns Mode.SPORT, and if the call returns Mode.COMFORT,
it has (SUV, COMF_ON, {});
To make car usable again, upcast to Car, associating car with the typestate tree
(Car, ON, (SUV, SPORT_ON, {})), if the call returned Mode.SPORT; and
(Car, ON, (SUV, COMF_ON, {})) if the call returned Mode.COMFORT;

7 The repository of our tool includes an examples folder containing such examples.

https://github.com/jdmota/java-typestate-checker/tree/master/examples

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:23

Check the if statement by propagating the type information corresponding to each
branch;
In the body of the if statement, downcast (again) from Car to SUV, resulting in the
typestate tree (SUV, SPORT_ON, {});
Check the call ((SUV)car).setFourWheels(true), which is allowed in type SPORT_ON,
in a similar fashion as before, associating car with (Car, ON, (SUV, SPORT_ON, {}));
Merge type information from both branches, resulting in car being associated with
typestate tree (Car, ON, (SUV, SPORT_ON ∪ COMF_ON, {}));
Check the call car.setSpeed(50), which is allowed in type ON, leading to ON;
Check the call car.turnOff(), which is allowed in type ON, leading to OFF;
Finish by checking protocol completion. Since all locations are marked as aliased or are
in a final state (car is in the droppable typestate OFF), no completion error is reported.

Examples suite. We report the most significant examples of our suite in Table 1: Directory
indicates the sub-directory; Features highlights the key features; Checks says if the example
is accepted by our tool or not; and, Runtime describes the runtime error exhibited, if any.

In Iterator (1), Alarms and Cars (1), the examples test how our approach behaves with
polymorphic code: as expected, the code compiles and no errors are thrown.

In Drones (1) and Robots (1), the examples are more complex: we introduce a typestated
data structure to increase the degree of flexibility (storing an arbitrary number of typestated
objects, i.e., Drones and Robots). A key feature showcased here is the interaction between
typestated objects: every time an object is used, it needs to be extracted from the data
structure and put back once it has finished its task. In Drones (2), the interaction between
the data structure and the objects is even more articulate: we do not wait for the object to
finish its task, but we immediately put it in the data structure and move to the next one,
simulating a parallel tasks execution. The Drones (3) example is similar to the previous
one, but it relies in a test for null being incorrectly negated in the return expression of an
instance method, which causes a null pointer error in subsequent calls. The tool correctly
propagates type information in the order methods may be called and catches this problem.

In Iterator (2) and Cars (2), we show two problematic scenarios: index out of bounds
and null-pointer exceptions, respectively. The former is caused by getting the next element
without checking whether there are remaining elements or not. The latter is caused due to a
field usage before initialising it. We are able to statically catch both cases.

Finally, in Robots (2), we have another example of null-pointer error. The exception now
is caused by a field being assigned to null in the subclass and used in the superclass, after
performing an upcast. Thanks to our work, we are able to detect that, after assigning the
field to null, the object is in a typestate with no supertypes, thus we raise an error.

In short, the provably sound theory presented in this paper is expressive and applicable
to a mainstream object-oriented language, dealing with realistic code.

8 Related work

Fugue [13] allows checking typestates (seen as predicates over fields) by annotating methods
with contracts and checking invariants. It handles casting and subclassing, where subclasses
are allowed to introduce additional states with respect to superclasses. If an object ends up
in a state unknown to its supertype, Fugue prohibits upcasting - as in our approach. To
handle inheritance, frame typestates are introduced. Each frame is a set of fields declared in a
particular class. An object typestate is the collection of frames. In our approach, our protocols

ECOOP 2024

5:24 Behavioural Up/down Casting for Statically Typed Languages

Table 1 Summary of examples.

Name Directory Features Checks Runtime
Iterator (1) removable-iterator Polymorphic safe code Y Ok
Iterator (2) removable-iterator2 Wrong method call order N Out Of Bounds
Alarms alarm-example Polymorphic safe code Y Ok
Cars (1) car-example Polymorphic safe code Y Ok
Cars (2) car-example2 Wrong method call order N Null-pointer
Drones (1) drone-example Typestated data structure Y Ok
Drones (2) drone-example2 Typestated data structure

Complex objects interaction
Y Ok

Drones (3) drone-example3 Same as Drones (2) and
Incorrect test for null

N Null-pointer

Robots (1) robot-example Typestated data structure
Simple objects interaction

Y Ok

Robots (2) robot-example2 Wrong typestate upcast N Null-pointer

are globally defined with automata (e.g., List. 1 and 2), instead of method contracts, which
we believe is more natural. Moreover, instead of using frames, we treat each class as a whole.
This is enough since we view typestates as defining sequences of calls, not as predicates over
fields, which simplifies the approach when dealing with overriding and dynamic dispatch.

Plural [8] statically checks that clients follow usage protocols based on typestates. It
is based on earlier work [7] addressing the problem of substitutability of subtypes, while
guaranteeing behavioural subtyping in an object-oriented language. Subtyping is supported
by the programmer explicitly specifying which states “refine” (i.e., are substates of) others
in the superclass. In our approach, we do not need to explicitly define subtyping relations:
we define protocols in terms of state machines and automatically find all subtyping pairs.

Obsidian [12] is a language for smart contracts with a type system to statically detect
bugs. It uses typestates to check state changes and has a permissions system for safe aliasing.
It supports parametric polymorphism, but not casting to preserve strong static guarantees.

Gay et al. [18] extend earlier work on session types for object-oriented languages by
attaching a protocol in the form of a session type to a class definition, and presenting an
unification of communication channels and their session types, distributed object-oriented
programming, and a form of typestates supporting non-uniform objects. The formal language
includes a subtyping relation on session types [17] but does not include class inheritance
(subtyping is just for channel communication). This approach has two implementations:
Papaya [23] and Mungo [24]. Papaya considers protocols as in Gay et al. [18], but uses Scala
as the target language with the same limitation of not coping with inheritance. Mungo
considers protocols along the lines of Gay et al. [18], but uses Java (as we do) as the target
object-oriented language. Inheritance is not supported apart from classes without protocols.

Bravetti et al. [11] present a type system for a Java-like language, where objects are
annotated with usages, typestate-like specifications stating the allowed sequences of method
calls. The type-based analysis ensures protocol compliance and completion, and memory
safety (no null pointer dereferencing). However, subtyping (hence casting) is not supported.

Bouma et al. [10] develop a tool called BGJ that takes a global type, modelling the
behaviour of processes in a multiparty session typing setting [20], and automatically generates
Java classes modelling the APIs of projected local types. The state is encoded with a state
field and transitions are encoded with methods annotated with preconditions and post-

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:25

conditions. To verify the clients of these APIs, the programmer writes Java code annotated
with logical formulas. All annotations are statically checked by VerCors [9]. In our approach,
one does not need to spread annotations throughout the code to specify or use protocols,
we simply associate them with classes and the type system ensures memory-safety, protocol
compliance and completion (properties the developer would need to specify for each program).

Table 2 Comparison of related work.

Work How protocols are defined Casting approach
Fugue Typestates are seen as predicates over fields

and methods annotated with contracts
Handles casting with frame
typestates

Plural States defined as “refinements” of superclass
states and methods annotated with contracts

Explicit specification of sub-
typing relations

Obsidian States defined explicitly and methods annot-
ated with contracts

Casting disallowed for strong
safety guarantees

Papaya Usage types (i.e., automata-like) Not supported
Mungo Usage types (i.e., automata-like) Not supported
BGJ Scribble notation [28] projected to local types

implemented as Java classes with state fields
Not supported

JaTyC (ours) Usage types (i.e., automata-like) Fully supported

9 Conclusions and future work

We overcome one of the main obstacles to the adoption of typestates in static analysis of
object-oriented programs – the inability of performing cast operations freely at any point
of the protocol – by introducing a novel theory based on typestate trees. We equip the
theory with a set of functions to manage the typestate tree abstraction, and we mechanise
soundness in the Coq proof system. We argue that typestate trees can be applied in
various program analysers for object-oriented languages with inheritance, being thus language
agnostic, opening the door for acceptance of several programs and features that were rejected
until now in this kind of language. To support this claim, we implement a type checker for
Java and assess the expressiveness of our approach. The relevance of the theory and of its
applications is showcased by typestate-checking realistic Java code of an automotive system
with driving dynamics control that allows to customise the drive mode of SUVs.

As future work, we plan to formally establish the runtime soundness of typestate trees by
devising a core object-calculus with inheritance, static typestate semantics, and dynamic
operational semantics, and by mechanising a type safety result: well-typed programs at
runtime comply objects’ protocol with respect to both the order of method calls and its
completion, and do not raise null-pointer exceptions. Additionally, we will study how these
concepts can be adapted to a setting with multi-inheritance and generics.

References
1 Frances E Allen. Control flow analysis. ACM Sigplan Notices, 5(7):1–19, 1970. doi:10.1145/

390013.808479.
2 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-

Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nich-
olas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral Types
in Programming Languages. Found. Trends Program. Lang., 3(2-3):95–230, 2016. doi:
10.1561/2500000031.

ECOOP 2024

https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479
https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031

5:26 Behavioural Up/down Casting for Statically Typed Languages

3 Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and António Ravara. A Java
typestate checker supporting inheritance. Science of Computer Programming, 221:102844,
2022. doi:10.1016/j.scico.2022.102844.

4 Lorenzo Bacchiani, Mario Bravetti, Julien Lange, and Gianluigi Zavattaro. A Session
Subtyping Tool. In Proc. of Coordination Models and Languages (COORDINATION),
volume 12717 of Lecture Notes in Computer Science, pages 90–105. Springer, 2021. doi:
10.1007/978-3-030-78142-2_6.

5 Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Intersection and
Union Types: Syntax and Semantics. Information and Computation, 119:202–230, 1995.

6 Nels E Beckman, Duri Kim, and Jonathan Aldrich. An Empirical Study of Object Protocols
in the Wild. In Proc. of European Conference on Object-Oriented Programming (ECOOP),
pages 2–26. Springer, 2011. doi:10.1007/978-3-642-22655-7_2.

7 Kevin Bierhoff and Jonathan Aldrich. Lightweight object specification with typestates. In
Proceedings of the 10th European Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2005, pages
217–226. ACM, 2005. doi:10.1145/1081706.1081741.

8 Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2007, pages 301–320. ACM, 2007. doi:
10.1145/1297027.1297050.

9 Stefan Blom and Marieke Huisman. The VerCors Tool for Verification of Concurrent Programs.
In Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun, editors, FM 2014: Formal Methods - 19th
International Symposium. Proceedings, volume 8442 of Lecture Notes in Computer Science,
pages 127–131. Springer, 2014. doi:10.1007/978-3-319-06410-9_9.

10 Jelle Bouma, Stijn de Gouw, and Sung-Shik Jongmans. Multiparty Session Typing in Java, De-
ductively. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 29th International Conference, TACAS 2023,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Proceedings, Part II, volume 13994 of Lecture Notes in Computer Science, pages 19–27.
Springer, 2023. doi:10.1007/978-3-031-30820-8_3.

11 Mario Bravetti, Adrian Francalanza, Iaroslav Golovanov, Hans Hüttel, Mathias Jakobsen,
Mikkel Kettunen, and António Ravara. Behavioural Types for Memory and Method Safety
in a Core Object-Oriented Language. In Asian Symposium on Programming Languages and
Systems, volume 12470 of Lecture Notes in Computer Science, pages 105–124. Springer, 2020.
doi:10.1007/978-3-030-64437-6_6.

12 Michael J. Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles Baker, Yannick Bloem,
Brad A. Myers, Joshua Sunshine, and Jonathan Aldrich. Obsidian: Typestate and Assets for
Safer Blockchain Programming. ACM Trans. Program. Lang. Syst., 42(3):14:1–14:82, 2020.
doi:10.1145/3417516.

13 Robert DeLine and Manuel Fähndrich. Typestates for Objects. In Martin Odersky, editor,
ECOOP 2004 - Object-Oriented Programming, 18th European Conference, Proceedings, volume
3086 of Lecture Notes in Computer Science, pages 465–490. Springer, 2004. doi:10.1007/
978-3-540-24851-4_21.

14 Edsger W. Dijkstra. The humble programmer, 1972. ACM Turing Award acceptance speech.
doi:10.1145/355604.361591.

15 Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations of Typestate-
Oriented Programming. ACM Transactions on Programming Languages and Systems, 36(4):12,
2014. doi:10.1145/2629609.

16 Simon J. Gay and Malcolm Hole. Types and Subtypes for Client-Server Interactions. In Proc.
of Programming Languages and Systems (ESOP), volume 1576 of Lecture Notes in Computer
Science, pages 74–90. Springer, 1999. doi:10.1007/3-540-49099-X_6.

https://doi.org/10.1016/j.scico.2022.102844
https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1007/978-3-642-22655-7_2
https://doi.org/10.1145/1081706.1081741
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/978-3-031-30820-8_3
https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1145/3417516
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/2629609
https://doi.org/10.1007/3-540-49099-X_6

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:27

17 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi-calculus. Acta
Informatica, 42(2-3):191–225, 2005. doi:10.1007/s00236-005-0177-z.

18 Simon J. Gay, Vasco Thudichum Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z.
Caldeira. Modular session types for distributed object-oriented programming. In Proceedings
of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, pages 299–312. ACM, 2010. doi:10.1145/1706299.1706335.

19 Tony Hoare. Null References: The Billion Dollar Mistake, 2009. Presentation at QCon London.
URL: https://tinyurl.com/eyipowm4.

20 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Type.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

21 Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation. Addison-Wesley Professional, 2010.

22 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of Session Types and Behavioural Contracts.
ACM Comput. Surv., 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

23 Mathias Jakobsen, Alice Ravier, and Ornela Dardha. Papaya: Global Typestate Analysis
of Aliased Objects. In Proceedings of the 23rd International Symposium on Principles and
Practice of Declarative Programming (PPDP’21), pages 19:1–19:13. ACM, 2021. doi:10.1145/
3479394.3479414.

24 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J Gay. Typechecking protocols
with Mungo and StMungo. In Proc. of Principles and Practice of Declarative Programming
(PPDP), pages 146–159. ACM, 2016. doi:10.1145/2967973.2968595.

25 Luis Mastrangelo, Matthias Hauswirth, and Nathaniel Nystrom. Casting about in the
dark: an empirical study of cast operations in Java programs. Proc. ACM Program. Lang.,
3(OOPSLA):158:1–158:31, 2019. doi:10.1145/3360584.

26 João Mota, Marco Giunti, and António Ravara. On Using VeriFast, VerCors, Plural, and KeY
to Check Object Usage (Experience Paper). In 37th European Conference on Object-Oriented
Programming, ECOOP 2023, July 17-21, 2023, Seattle, Washington, United States, volume
263 of LIPIcs, pages 40:1–40:29. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.ECOOP.2023.40.

27 Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with integrated
subtyping. Proc. ACM Program. Lang., 2(OOPSLA):112:1–112:29, 2018. doi:10.1145/
3276482.

28 Rumyana Neykova and Nobuko Yoshida. Featherweight Scribble. In Michele Boreale, Flavio
Corradini, Michele Loreti, and Rosario Pugliese, editors, Models, Languages, and Tools for
Concurrent and Distributed Programming - Essays Dedicated to Rocco De Nicola on the
Occasion of His 65th Birthday, volume 11665 of Lecture Notes in Computer Science, pages
236–259. Springer, 2019. doi:10.1007/978-3-030-21485-2_14.

29 Jens Palsberg and Pavlopoulou Chirstina. From Polyvariant flow information to intersection
and union types. Journal of Functional Programming, 11(3):263–317, 2001. doi:10.1017/
S095679680100394X.

30 Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D Ernst.
Practical pluggable types for Java. In Proc. of Software Testing and Analysis (ISSTA), pages
201–212. ACM, 2008. doi:10.1145/1390630.1390656.

31 R. E. Strom and S. Yemini. Typestate: A programming language concept for enhancing
software reliability. IEEE Transactions on Software Engineering, SE-12(1):157–171, 1986.
doi:10.1109/TSE.1986.6312929.

32 Vasco T. Vasconcelos. Sessions, from Types to Programming Languages. Bull. EATCS,
103:53–73, 2011. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/136.

ECOOP 2024

https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1145/1706299.1706335
https://tinyurl.com/eyipowm4
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/3360584
https://doi.org/10.4230/LIPICS.ECOOP.2023.40
https://doi.org/10.1145/3276482
https://doi.org/10.1145/3276482
https://doi.org/10.1007/978-3-030-21485-2_14
https://doi.org/10.1017/S095679680100394X
https://doi.org/10.1017/S095679680100394X
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1109/TSE.1986.6312929
http://eatcs.org/beatcs/index.php/beatcs/article/view/136

5:28 Behavioural Up/down Casting for Statically Typed Languages

A Research Methodology
01/07/24, 11:03

Pagina 1 di 1file:///Users/lorenzobacchiani/Downloads/ecoop_jatyc-2-2.drawio.svg

class Car

class SUV
extends Car

{...}
New language

constructs

Formal Setting

Typestate Tree
Upcast
Downcast
....

Motivating Examples

Verify

Coq Theorem Prover

Drives Implementation

class TypestateTree(...)

fun upcastTT(...): TypestateTree

fun downcastTT(...): TypestateTree

fun evolveTT(...): TypestateTree
Validation

class Robot

class Drone

class Alarm
Test Suite

Figure 2 Research methodology behind the behavioural analysis support.

The iterative process in Figure 2 shows our methodology to support behavioural analysis
within our type checker: we extract, from motivating examples, the language features to
include in the static analysis; we build a formal setting (verified in the Coq theorem prover) to
drive the JaTyC implementation; finally, we validate our approach with a suite of examples.

B Glossary

m A meta-variable ranging over the set of method identifiers MNames
o A meta-variable ranging over the set of output values ONames
s A meta-variable ranging over the set of typestate names SNames
Ã The wide tilde stands for a sequence of values
d{m̃ : w} An input state (Definition 1)
⟨õ : u⟩ An output state (Definition 1)
w A meta-variable ranging over input and output states, and typestate names (Definition 1)
u A meta-variable ranging over input states and typestate names (Definition 1)
Ẽ A set of defining equations
wẼ, uẼ A meta-variable to denote a state w (resp. u) with a set of defining equations
W, U The set of terms wẼ (resp. uẼ)
X A subset of wẼ containing only input states d{m̃ : w}
Y A subset of wẼ containing only output states ⟨õ : u⟩
≤S A subtyping relation between states (Definition 4)
≤Salg The algorithmic version of the subtyping relation between states (Definition 7)
t A meta-variable ranging over the set of types T (Definition 10)
≤ A subtyping relation between types (Definition 11)
c A meta-variable ranging over the set of class names C
≤C A subtyping relation between classes (Definition 15)
Retm The set of outputs returnable by a method m

tt A meta-variable ranging over the set of typestate trees T T (Definition 36)
tts A meta-variable ranging over P(T T)
⊢ Well-formedness of typestate trees (Definition 38)
⊢c,t Soundness of typestate trees (Definition 53)

	1 Introduction
	2 Types and subtyping
	2.1 Typestates
	2.2 Types

	3 Basic operations on types
	3.1 Upcast
	3.2 Downcast
	3.3 Evolve

	4 Typestate Trees
	4.1 Upcast
	4.2 Downcast
	4.3 Evolve
	4.4 Merge

	5 Typestate Trees Soundness
	6 Application to type checking
	7 Use Cases
	8 Related work
	9 Conclusions and future work
	A Research Methodology
	B Glossary

