
HOBBIT: Hashed OBject Based InTegrity
Matthias Bernad # Ñ

µCSRL – Munich Computer Systems Research Lab, Research Institute CODE,
University of the Bundeswehr Munich, Neubiberg, Germany

Stefan Brunthaler # Ñ

µCSRL – Munich Computer Systems Research Lab, Research Institute CODE,
University of the Bundeswehr Munich, Neubiberg, Germany

Abstract
C vulnerabilities usually hold verbatim for C++ programs. The counterfeit-object-oriented program-
ming attack demonstrated that this relation is asymmetric, i.e., it only applies to C++. The problem
pinpointed by this COOP attack is that C++ does not validate the integrity of its objects. By
injecting malicious objects with manipulated virtual function table pointers, attackers can hijack
control-flow of programs. The software security community addressed the COOP-problem in the
years following its discovery, but together with the emergence of transient-execution attacks, such as
Spectre, researchers also shifted their attention.

We present Hobbit, a software-only solution to prevent COOP attacks by validating object
integrity for virtual function pointer tables. Hobbit does not require any hardware specific features,
scales to multi-million lines of C++ source code, and our LLVM-based implementation offers a
configurable performance impact between 121.63% and 2.80% on compute-intensive SPEC CPU
C++ benchmarks. Hobbit’s security analysis indicates strong resistance to brute forcing attacks
and demonstrates additional benefits of using execute-only memory.

2012 ACM Subject Classification Security and privacy → Software security engineering; Software
and its engineering → Compilers

Keywords and phrases software security, code-reuse attacks, language-based security, counterfeit-
object-oriented programming, object integrity, compiler security

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.7

Supplementary Material Software: https://doi.org/10.5281/zenodo.11046716 [8]
Software: https://github.com/mbernad/hobbit-artifact [7]

Funding The research reported in this paper has been funded by the Federal Ministry for Climate
Action, Environment, Energy, Mobility, Innovation and Technology (BMK), the Federal Ministry
for Labour and Economy (BMAW), and the State of Upper Austria in the frame of the COMET
Module Dependable Production Environments with Software Security (DEPS) [(FFG grant no.
888338)] within the COMET - Competence Centers for Excellent Technologies Programme managed
by Austrian Research Promotion Agency FFG.

1 Motivation

Among the myriad of security exploits, control-flow hijacking is the most severe problem, as
it allows the attacker to execute arbitrary code. A buffer overflow, for example, allows an
attacker to overwrite the return address stored in a function’s stack frame, and thus divert
control-flow to a location of her choice. Many other similar vulnerabilities exist and have
been both explored and exploited over the past two decades. Most of these vulnerabilities
affect both C and C++ alike.

The feasibility of an attack focusing exclusively on the C++ superset was demonstrated
by Schuster et al. in 2015 [45]. By injecting malicious objects into a C++ application the
attack hijacks control-flow and allows Turing-complete, arbitrary computation. In analogy
to other similar attacks, such as return-oriented programming, this attack is known as
counterfeit-object-oriented programming, COOP for short.

© Matthias Bernad and Stefan Brunthaler;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 7; pp. 7:1–7:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.bernad@unibw.de
https://www.unibw.de/ucsrl
https://orcid.org/0009-0003-1171-2601
mailto:brunthaler@unibw.de
https://www.unibw.de/ucsrl
https://orcid.org/0000-0001-9766-4871
https://doi.org/10.4230/LIPIcs.ECOOP.2024.7
https://doi.org/10.5281/zenodo.11046716
https://github.com/mbernad/hobbit-artifact
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 HOBBIT: Hashed OBject Based InTegrity

Due to the prevalence of C++ in systems and application software, researchers focused on
devising mitigations against COOP. To prevent control-flow hijacking, prior defenses apply
principles from effective C defenses. The principle of WˆX limits attacker capabilities to
inject code through new hardware features, such as Intel’s NX bits [52]. CFIXX, for example,
uses the MPX extension to secure a bookkeeping table it relies upon [12]. By applying
cryptography to encode and decode control-flow data, adversaries cannot know a priori
how target addresses are encoded. CCFI, for example, uses Intel’s AES-NI instructions to
cryptographically secure program addresses, such as return addresses, function-, and vtable
pointers [31].

Although both of these defenses thwart COOP attacks, they, too, have drawbacks.
Reliance on Intel’s MPX is problematic for three reasons. First, MPX may not be available in
a system’s target environment, such as in embedded systems or IoT contexts. Second, Intel
could decide to abandon the MPX instruction set extensions. Consider the MPK instruction
set extension, which was discontinued rather abruptly, rendering defenses relying on it
incapacitated. Third, MPX is non-compositional: A defense cannot protect an application
that already relies on MPX for its business logic, as the MPX registers are already taken.

Cryptographic protection of pointers is desirable due to strong security guarantees, but
suffers from prohibitive performance penalties. CCFI’s use of AES-NI reserves x86-64’s
vector registers, i.e., SSE, AVX, AVX2, or AVX512, blocking their use for other purposes.
Unavailability affects video processing, cryptographic operations, and a variety of other tasks.

Hobbit neither requires specific hardware extensions nor blocks vector registers and,
thus, addresses both of these challenges. Instead, Hobbit modifies the C++ object layout
to embed an integrity signature when an object is constructed. This signature is validated
before executing each virtual method’s body.

A Clang/LLVM-based implementation of Hobbit compiles large programs, such as the
WebKit browser, and allows parameterization to balance security with performance. The key
factor affecting performance is the choice of hashing technique to create an object’s signature.
Our evaluation shows that choosing strong hashing techniques can lead to substantial
overheads. To eliminate this overhead, Hobbit implements two different optimizations. First,
Hobbit applies a class-sensitive optimization to restrict its protection to classes that are
essential to the COOP attack. Second, Hobbit applies the idea of MAC algorithm parameter
randomization, thereby increasing overall security. For many application contexts, Hobbit
is thus the only viable defense against COOP.

Our contributions are as follows:
We present Hobbit, a software-only defense that thwarts counterfeit-object-oriented
programming (COOP, for short).
We describe the implementation of a fully-fledged Clang/LLVM-based prototype that
supports all C++ features, such as multiple inheritance (see Sections 5 and 6).
We discuss two new Hobbit optimization techniques that enable users to balance their
security needs with the available performance budget. We introduce Gadget-directed
optimization (see Sections 5.5 and 7.5), to apply protections specifically to COOP gadgets,
and Class-Hierarchy-driven Seed Randomization (see Sections 5.3 and 6.4).
We evaluate Hobbit w.r.t. performance, scalability, and security (see Section 7). Specifi-
cally, we report:

Performance: A configurable performance impact between 121.63% and 2.80%.
Scalability: Hobbit compiles complex real-world software, such as the WebKit web
browser.
Security: Hobbit provides comprehensive security through either strong hashing
techniques or randomizing parameters of weaker hashing techniques.



M. Bernad and S. Brunthaler 7:3

B::v4

B::v3

A::v2

A::v1

vptr 0

1

2

3

4

structure 
from 
class

values 
from 
object

.rodata.text

B::m4

B::m1

A::m2

A::m1 0

1

2

3

A a = new B()

a->m2()

(*a[0][1])(a,...)

B::new()
11

22

33 44

m2:
m2 code
...

55

heap

Figure 1 Overview of polymorphism and dynamic binding in C++. 1 constructors allocate
objects and set vptr and field values, 2 . Method calls require resolving of the vtable, 3 , and then
the corresponding fixed method id, 4 , before being able to call the method, 5 .

2 Background

In this section, we will introduce the background needed to understand the Counterfeit
Object-Oriented Programming (COOP) attack. Since COOP is a high-level attack targeting
specific C++ semantics, we will briefly explain the C++ object layout, polymorphism, and
dynamic dispatch mechanism. Finally, we need to cover some preliminary concepts used in
Hobbit.

2.1 C++ Polymorphism and Dynamic Binding
In object-oriented programming languages, such as C++, programs are organized around
classes and objects. Classes in C++ define the fields of objects and the methods operating
upon them. A concrete instance of a class is called object and consists of values for the
defined data fields residing in a contiguous memory region. To create and initialize newly
created objects, programmers call special methods, so-called constructors.

Figure 1 illustrates these concepts. Instantiating a new B object triggers a call to its
constructor 1 , which allocates a contiguous memory region and sets the vptr due to the
concrete dynamic type 2 . The class determines the structure of each object, while the object
holds values specific to the instance.

To dynamically bind a method call, C++ uses so-called vtable-based method dispatch
(see Figure 1). For each class, C++ generates a corresponding vtable that holds the addresses
of each callable method on it. If a class inherits a method, its address will merely be copied
into the corresponding method slot. If a class overrides a method, a new address will be
written into the corresponding method slot. A method call, then, consist of two steps: (i)
resolving the vtable by dereferencing an object an accessing the first entry, which holds
the vtable reference 3 , and (ii) resolving the method by dereferencing the proper method
through a callsite-fixed method identifier 4 .

2.2 Counterfeit-Object-Oriented Programming (COOP)
Over the past four decades, the memory unsafe nature of C and C++ lead to an “Eternal
War in Memory” [51]. In the beginning, attackers were able to insert instructions as data
in writable memory. By facilitating a buffer overflow to overwrite the return address,

ECOOP 2024



7:4 HOBBIT: Hashed OBject Based InTegrity

attackers could hijack the control-flow of a program to execute injected code, resulting in
Arbitrary Code Execution (ACE). Simple defenses, such as Write exclusive-or Execute (WˆX)
– marking memory as either writable or executable, but not both – render such code injection
attacks impossible. Therefore, attackers adapted and began reusing existing code, residing in
executable memory. Attackers either reused whole functions (e.g., return-into-libc [21, 35]) or
performed arbitrary computations by chaining together small pieces of code, called gadgets,
as in Return-Oriented Programming (ROP) [46, 42, 49] and its variations [10, 19, 15, 44].
Many defenses targeting mentioned Code Reuse Attacks (CRAs) exist [28, 37, 1, 2, 11]. A
more recent CRA targeting high-level C++ semantics is COOP [45].

COOP exploits the dynamic dispatch mechanism and escapes mentioned defenses above.
Instead of introducing new invalid control-flows like in ROP or return-into-libc, COOP
misuses existing callsites. To illustrate this point, consider the example from the previous
section, but from the perspective of the CPU. A callsite merely fixes the method identifier,
but accepts any vtable and will, thus, invoke any method identified by the fixed method
identifier (see Figure 1, 5 .)

COOP abuses this property of vtable-based method dispatch, by injecting malicious
objects, so-called counterfeit objects. These objects use invalid vtable entries, to abuse
method invocation. Instead of abusing gadgets as in return-oriented programming, COOP
abuses whole functions. Since the notion of code-reuse attacks is tied to the nomenclature of
gadgets, COOP, too, defines whole-function reuse gadgets.

These COOP gadgets are methods that can be abused for a specific malicious purpose.
Not all COOP gadgets are equally important, though. The most important gadget is the
so-called main-loop gadget, or ML-G for short. Consider the following C++ method:

1 virtual void removeElement(Element x) {
2 for (int i= 0; i < this.N; i++) {
3 this.L[i].remove(x);
4 }
5 }

Listing 1 Example of a COOP main-loop gadget (ML-G).

As shown in Listing 1, the removeElement method will loop over an array, namely the
field L and invoke the virtual method remove on every object stored in the field L. From an
adversarial COOP perspective, this means that the attacker can inject arbitrary malicious
objects and store them in the corresponding L field. Once she can invoke the removeElement
method, the attack will be launched.

More advanced variants of COOP relax this requirement for a container object holding
references to other objects. Crane et al., for example, describe Recursive- and Unrolled
COOP variants that allow different patterns of repetition [20]. By applying control-flow
integrity, valid control-flow transfers can be restricted to the program’s call-graph. Chen et
al. demonstrates that COOP can still succeed despite this constrain [16]

2.3 Execute-Only Memory (XOM)
Machine code in the text section of a program usually possesses read and execute privileges.
The read privilege is required to process inlined data, such as jump tables for switch
statements. But the read privilege requirement is not strict. The only essential privilege for
code is the ability to execute. Inlined data must then move to another section with read
privileges.



M. Bernad and S. Brunthaler 7:5

The principle of least privilege – a core tenet of computer security policies – prescribes
that reducing privileges improves security. Thus, in the 60s the Multics project already
supported execute-only memory [18]. Over the past decade, the idea of execute-only memory
saw a revival [4, 47, 19, 20, 24, 6]. The revival was due to advanced, sophisticated multi-stage
attacks that used memory leaks to (i) read a processes code layout, and then to (ii) relocate a
generic attack to the specific code layout used by a program. These specific code layouts were
derived from an active research area called “software diversity,” and complementing existing
methods with execute-only memory begot the new class of defenses called leakage-resilient
diversity.

2.4 Message Integrity Through MACs
To verify the authenticity and integrity of a message sent over an untrusted medium, people
use so-called message-authentication codes, MACs for short. Both sender and receiver
agree on a message authentication code (MAC) algorithm, based on a shared secret key
k. Then, the sender computes the MAC checksum, also known as tag t, for every message
m: t = MAC(m, k) and sends this tag t along with the message. At the receiving end, we
recompute the tag t′ for the received message m′: t′ = MAC(m′, k). Then, by comparing
both tags t and t′ for equality, we verify the message m’s integrity. Since the MAC algorithm
is based on a secret key k, only shared between sender and receiver, third-parties cannot
compute valid tags. Typically, secure MAC algorithms are based on cryptographic keyed-hash
functions.

Counterfeit-object-oriented programming exploits the fact that control data, such as
vptrs are mixed with non-control data. Similar to buffer overflows, mixing both types
of data proves to be a security problem when adversaries inject malicious objects.

3 Related Work

Due to the severity of counterfeit-object-oriented programming as an attack vector, a variety
of defenses [26, 20, 40, 57, 5, 16] has been proposed. Prior work, thus, considers multiple
different design criteria. These design criteria include: software-only [20, 5] vs hardware-
based [31, 54], hardening applied to binaries [41, 56, 23, 22] vs software-only, differences
w.r.t. protected program parts (such as, protecting vtables, vtable-pointers, or dynamic
dispatch). Due to these differences, giving an exhaustive treatment is in direct conflict within
traditional scope restrictions. We therefore focus on the most directly related work, and skip,
e.g., prior work dealing with securing C++ programs without source code access.

Most closely related to Hobbit is CFIXX, which uses Intel’s discontinued MPX extension
to protect vptrs [12]. At its core, CFIXX separates vptrs from vtables and stores them
into a dedicated memory area protected by MPX. In 2022, Xie et al. demonstrated a CFIXX
version building on Intel’s Control-Flow Enforcement Technology (CET) [54]. Recently,
many defenses proposed the use of Intel’s MPK extension. Unfortunately, using MPK is
not compositional: If an application uses MPK itself, it cannot share its MPK use with any
other component, such as a defense.

Compared to Hobbit, CFIXX highlights the need for a software-only approach that
does not require specific hardware extensions beyond extended-page table support to enable
execute-only memory.

ECOOP 2024



7:6 HOBBIT: Hashed OBject Based InTegrity

CCFI, short for cryptographically-secured control-flow integrity, is another closely related
defense – not specifically aimed at preventing COOP attacks, but providing comprehensive
protection against essentially all forms of control-flow hijacking [31]. CCFI pioneers the use
of MACs to protect code pointers. Unfortunately, to secure the keys from leaking, the system
proposed to reserve vector registers (i.e., SSE’s xmm registers), thus slowing down application
relying on their use, such as media en- or decoders.

Compared to Hobbit, CCFI highlights the need to preserve performance characteristics
of programs, primarily by finding alternatives to protect secret keys that do not result in
prohibitive performance impacts.

Hardware-based approaches are inextricably bound to the hardware mechanism
and thus prone to sun-setting, as in the case of Intel’s MPX instructions, or lack of
compositionality, as in the case of MPK extensions.

Defenses based on cryptographic primitives often suffer from poor performance,
e.g., by effectively blocking vector registers, and the security-prerequisite of having
cryptographic primitives not spill data onto the stack.

4 Threat Model

COOP is a rather sophisticated attack and will, thus, often be a last resort for attackers. We
assume, consequently, that proper defenses against simpler attacks, such as code injection,
ROP [46, 42], and return-into-libc [21] are in place. Since Hobbit aims to prevent COOP
attacks, we assume a strong threat model in line with previous work [45, 20, 31, 12].

In general, launching a COOP attack requires an attacker to hijack an initial object,
including its virtual table pointers (vptrs) and data, and inject new counterfeit objects. To
that end, an attacker needs to read or infer addresses of Virtual Tables (vtables) and write
object-like data, including vptrs and other data, to specific memory regions. A variety of
vulnerabilities provide such capabilities, including buffer overflows [38] and use-after-free
vulnerabilities [51]. Although a restricted read- and write capability might suffice, we assume
an attacker capable of reading arbitrary readable memory and writing to arbitrary writable
memory.

Our system relies on WˆX, marking memory either as writable or executable, but not
both at the same time. Writing to code residing in executable memory or execute written
data is not possible. Therefore, injecting new code or modifying existing code is not possible.

The attacker’s arbitrary read capability renders defenses relying on secrets in readable
memory ineffective. For example, protecting against overflowing into control data, such as
return addresses or vptrs with (stack) canaries, is not effective. An attacker can easily read
these values and embed them in her payload, or – assuming an arbitrary write capability
– skip canaries at all. To mitigate this issue, we assume Execute-Only Memory (XOM),
therefore, we consider values or functions in XOM as secret.

Finally, we assume an attacker with specific knowledge about the target program and
system. First, he has access to the target program’s source code. Second, she is able to
infer the base address of the initial object, and the addresses of virtual function gadgets
(vfgadgets) located in C++ modules. Although COOP relies primarily on high-level C++

semantics, some vfgadgets rely on specific instructions or registers, e.g., vfgadgets for loading
argument registers to pass arguments to other vfgadgets. An attacker requires at least partial
knowledge of the binary layout to use some vfgadgets. Third, the attacker knows about the
system’s configuration, including deployed defenses, software versions, and hardware features.



M. Bernad and S. Brunthaler 7:7

vptr 0

heap.rodata.text

A a = new B()

a->m2()

(*a[0][1])(a,...)

B::new()
11

22

33 44

A::v1 2A::v1 2

A::v2 3A::v2 3

......

MAC tag 1

m2:
check MAC
m2 code
...

B::m4

B::m1

A::m2

A::m1 0

1

2

3

55

Figure 2 Hobbit changes to C++. 1 constructors allocate objects, set vptr and field values and
compute a MAC value, 2 . Method calls are resolved as before, see Figure 1, but all method prologs
now validate the MAC value, 5 .

5 Design Aspects of Hobbit

Hobbit is, broadly speaking, a defense that monitors and validates integrity. Whenever
this integrity is violated by an adversary, we know that the program is under attack. A
direct consequence of any integrity-protection mechanism also holds for Hobbit: we protect
neither the injection, nor the modification of objects; subsequent method calls trying to act
on maliciously-modified objects will detect integrity violations.

The integrity monitored by Hobbit is the object to vptr binding. One could just add
a random value into an object and repeatedly validate its value. Since our threat model
includes a powerful attacker with memory read capabilities, choosing a simple random value
is insecure. Instead, Hobbit considers objects, more specifically vptrs, between constructors
and methods as messages, and secures them by applying message-authentication codes.

The following sections provide an in-depth discussion of the relevant design aspects of
Hobbit. Section 5.1 discusses C++ relevant aspects of object lifetime and changing the object
layout to add the MAC tag. Sections 5.2 and 5.3 describe the benefits of using execute-only
memory, and MAC-algorithm diversification. Section 5.4 lists possible locations for verifying
signatures. Finally, we introduce the concept of gadget-directed optimization in Section 5.5.

5.1 C++ Object Lifetime and Layout

Objects in C++ live between construction and destruction, i.e., by constructors and destructors,
respectively. Constructors instantiate an object by initializing, or assigning concrete values
to its fields, which themselves are prescribed by their corresponding class definitions. Since a
vptr is merely a field itself, at least from a run-time perspective, the constructor assigns the
vptr of the called dynamic type. Destructors clean up object instances and, finally, free the
allocated memory.

Hobbit changes the C++ object layout by adding a machine-word per vptr that holds
the computed MAC tag (see Figure 2 1 ). Besides requiring an extra word per vptr, such a
change breaks the application binary interface (ABI), and we discuss the implications thereof
in Section 6.

ECOOP 2024



7:8 HOBBIT: Hashed OBject Based InTegrity

5.2 Message-Authentication Codes and Execute-Only Memory
In Hobbit, we consider vptrs as messages sent from constructors (see Figure 2 1 ) and
received by virtual methods (see Figure 2 5 ). The key security aspect of MAC functions
is the shared-secret key between senders and receivers. If an attacker retrieves this secret
key, she can craft valid signatures for malicious messages, thus violating the authenticity
property of sent messages. To prevent leakage of this shared-secret key, Hobbit piggybacks
on execute-only memory’s leakage-resilience property.

Execute-only memory means that the adversary is precluded from reading code memory.
As a result, we can hide privileged information directly in code memory. Hobbit hides two
privileged pieces of information there: (i) keys as intermediate constants, and (ii) MAC
algorithm implementations. Hiding implementations from adversaries forces them to guess,
thus further frustrating attacks.

MAC algorithm parameters, too, are important for security. Consider the following
parameterization to compute object-vptr tags:

t = MAC(vptr ⊕ r) (1)

Although we include a random parameter r to the MAC computation, our attacker can use
their memory-read primitive to read an object – including its vptr and the corresponding
tags – and, use it later on during an attack at a different location. Such a staged attack is
called a “replay” attack. To counter these replay attacks, we need to add the vptr location
to the computation:

t = MAC(vptr ⊕ &vptr ⊕ r) (2)

By making MAC tags location-dependent, the attacker cannot trivially replay the object
layout she read at a different location.

Prior defenses reserve registers to hold the key and exclude them from register alloca-
tion [31, 39]. Since the compiler then never allocates these registers, the key stored therein is
considered safe from attackers. Although simple, this solution suffers from two drawbacks.
First, reserving registers increases register pressure, which is particularly problematic on
architectures with few registers, such as x86. Second, whether a key stored in registers is
actually safe, depends on additional measures and precautions for context switches. Through
its use of execute-only memory, Hobbit bypasses these shortcomings.

5.3 Class-Hierarchy-Driven Seed Randomization
By using just a single random parameter r in our MAC tag computation, the adversary
can bypass Hobbit, once he identifies both the secret MAC algorithm and the value of r.
Hobbit counters this problem by using as many random parameters r as possible. In theory,
different random parameters r can be randomly assigned across an application. In practice,
however, we need to preserve C++ semantics across type-compatible call-sites. A conservative
way to ensure semantics preservation is to map a single random parameter r to a subgraph
in the class hierarchy graph (see Section 6.4). A more aggressive way would be to factor in
run-time information, e.g., through profiling.

Due to this additional security mechanism, we can also loosen the strength requirements
for our MAC algorithm. By choosing small, but efficient pseudo hash functions, such as
moremur-hash [32], Hobbit users favor performance over security, and vice versa. Since
MAC algorithm implementations are protected by execute-only memory (see Section 2.3),
the perceptible loss of security is minimal.

Hobbit supports a wide variety of MAC hashing algorithms, such as blake3,
highwayhash, xxhashct, moremur, and moremur-random.



M. Bernad and S. Brunthaler 7:9

5.4 Validating MAC Tags

Hobbit recomputes and validates tags stored in objects in function prologs of virtual
functions (see Figure 2, 5 ). Although an attacker can inject malicious objects, Hobbit
will detect tampering with a tag after resolving the dynamic type, but before executing
the actual method body. Alternatively, Hobbit can also validate tags already at virtual
call sites, but this implies embedding MAC hash computation into every call site, thus
increasing the amount of machine instructions for each call site. Depending on the chosen
MAC function implementation (e.g., inlined), these additional machine instructions might
result in a considerable binary size increase.

In C++, most compilers use vptrs for other run-time related features besides dynamic
dispatch. The use of run-time type information (RTTI), for example, requires loading the
rtti pointer from the vtable. Similarly, dynamic casts use information stored in vtables,
such as offsets to access/identify sub-objects for multiple inheritance. Although Hobbit
could validate tags in these cases, too, we choose to focus protection on dynamic dispatch,
which is the key objective for COOP attacks.

5.5 Gadget-Directed Optimization

For performance-critical systems, such as real-time applications, Hobbit can relax security
and optimize for speed. Since COOP relies on special gadgets for dispatching other gadgets,
we can embed integrity checks only in methods acting as such gadgets. To prevent attackers
from executing Main Loop Virtual Function Gadgets (ML-Gs), Hobbit can perform static
analysis on source code to identify methods iterating over a collection of objects and calling
virtual functions on them (see Section 6.5.)

Hobbit could also analyze binaries to identify gadgets relying on binary instructions.
Muntean et al., for example, created a tool for identifying gadgets and automating a COOP
attack [34]. In general, identifying all gadgets is difficult and since variants of COOP exist,
the resulting defense may not be complete [20, 16].

6 Hobbit Implementation

We implemented our prototype of Hobbit as compile-time transformations on top of
LLVM/Clang 17.0.3 [17] for the x86_64 Linux platform and Itanium ABI [25]. Most
researchers implement their prototypes as passes in LLVM that operate on and modify the
LLVM specific intermediate representation, short LLVM IR. However, we implemented most
parts of Hobbit in Clang, since compilation is a lossy transformation and high-level C++

information, e.g., virtual methods and their callsites, are not – at least without complex
analysis – available in LLVM IR.

First, Hobbit extends the object layout to reserve space for the newly introduced MAC
tag fields. After reserving space for MAC tags, we add instructions for computing and
storing MAC tags in objects to constructors. For the final part of the vptr validation, we
implement MAC tag checks in virtual methods. In Section 6.3 we describe our different
MAC function implementations, Section 6.4 shows Hobbit’s diversification implementation,
and Section 6.5 demonstrates a prototype of our Gadget-directed Optimization. Section 6.6
lists the limitations of our prototype implementation of Hobbit.

ECOOP 2024



7:10 HOBBIT: Hashed OBject Based InTegrity

6.1 Extending Object Layouts
Extending the object layout requires us to change the size of objects in a special data structure
called RecordLayouts. Clang uses the type CXXRecordDecl to represent C++ structs, unions,
and classes. RecordLayouts store information about fields, their offsets, paddings, and
lengths, (virtual) bases, and other layout-related information. Since Hobbit introduces a
new MAC tag field, we have to increase the size of the layout accordingly. On x64 systems,
pointers are eight byte long. Therefore, we add eight bytes to the (data-) layout size for
dynamic CXXRecordDecls that do not inherit vptr (and consequently the MAC tag field) from
a parent class in AST/RecordLayoutBuilder (ItaniumRecordLayoutBuilder::LayoutNon
VirtualBases). Later, during the lowering of records, we add the field information for our
MAC tag field, right after the vptr (see Listing 2).

1 void CGRecordLowering::accumulateVPtrs() {
2 if (Layout.hasOwnVFPtr()) {
3 auto vfptr = ...;
4 Members.push_back(vfptr);
5 auto HobbitMACField = MemberInfo(getSize(vfptr.Data),
6 MemberInfo::Field,
7 getIntNType(64));
8 Members.push_back(HobbitMACField);
9 }

10 ...
11 }

Listing 2 Add MAC tag field while lowering records.

Extending the object layout breaks the C++ ABI compatibility. By recompiling the entire
toolchain, including a standard C++ library, we still can compile and run programs with
our C++ ABI modifications. We encountered one error in the libunwind library regarding
macro definitions for the size of libunwind::UnwindCursor. libunwind::UnwindCursor is
a dynamic class, therefore, consists of a vptr and with Hobbit also a MAC tag field. To fix
this error we have to account for the new tag field and thus add one to all macro definitions
defining the constant _LIBUNWIND_CURSOR_SIZE in __libunwind_config.h. With this
simple fix, Hobbit can compile even the largest C++ programs.

6.2 Computing and Validating MAC Tags
C++ programs adhering to the C++ standard create objects solely by calling constructors.

Therefore, we decided to implement the MAC tag computation and storing of the results
in constructors. Constructors already perform the vptr initialization in a function called
CodeGenFunction::InitializeVTablePointer. Likewise, Hobbit initializes the MAC tags
right after vptr initialization. Listing 3 shows the resulting assembly code of a constructor
compiled with Hobbit. A standard clang compiler emits the three assembly instructions
(lines 3–5) initializing the vptr of an object of a class B. Since _ZTV1B points to the beginning
of the vtable – the first two entries in the vtable are the offset-to-top and the RTTI pointer
– the compiler adds 16 bytes to the vtable such that the vptr points to the first virtual
function and finally saves the vptr in the designated field at the beginning of the given object.
The remaining instructions (lines 7–12) are emitted by Hobbit and responsible for loading



M. Bernad and S. Brunthaler 7:11

1 _ZN1BC2Ev:
2 ...
3 leaq _ZTV1B(%rip), %rcx # load address of vtable
4 addq $16, %rcx # add 2 qwords for 1st virt. function = vptr
5 movq %rcx, (%rax) # store vptr at beginning of object
6 # HOBBIT START #
7 movq (%rax), %rdx # load vptr into rdx register
8 movq %rax, %rcx # load this into rdx register
9 xorq %rdx, %rcx # vptr xor this

10 movabsq $random, %rdx # load secret value r to rdx
11 xorq %rdx, %rcx # xor secret value r = mac tag
12 movq %rcx, 8(%rax) # save mac tag to designated field
13 # Possible inlined hashing or call to compiler-rt hash function
14 # HOBBIT END #
15 ...

Listing 3 x86_64 assembly for an exemplary constructor of a dynamic class B emitted by
Hobbit.

1 _ZN1A2m2Ev:
2 # start function prolog:
3 # save callee-saved registers
4 # set up stack for local variables
5 # ...
6 # HOBBIT START #
7 movq (%rcx), %rdx # load vptr to rdx
8 movq %rcx, %rax # load this ptr to rax
9 xorq %rdx, %rax # vptr xor this

10 movabsq $random, %rdx # load secret value r to rdx
11 xorq %rdx, %rax # xor secret value r = mac tag'
12 movq 8(%rcx), %rcx # load saved mac tag
13 cmpq %rcx, %rax # check if tag' = tag
14 jne .LBB4_2 # on mismatch jump to trap
15 ... # actual function # actual function body
16 .LBB4_2: # %MACMismatchBlock # block with trap for mac tag mismatch
17 movl $147, %edi # store result code 147 to edi
18 callq exit@PLT # exit(147) on mac tag mismatch
19 # HOBBIT END #

Listing 4 x86_64 assembly for an exemplary virtual method of a dynamic class B emitted by
Hobbit.

both vptr and this in registers, followed by the xor instruction. The movabsq instruction
loads an immediate – the random secret r – to a register and xor it to the previous result.
Finally, the xor result is written to the MAC tag field, 8 bytes after the vptr.

Hobbit inserts MAC tag validation checks in virtual functions (see Listing 4). These
validation checks protect against attackers calling virtual functions on objects with fake
or altered vptrs, therefore mitigating COOP attacks. If Hobbit should protect dynamic

ECOOP 2024



7:12 HOBBIT: Hashed OBject Based InTegrity

Table 1 Details of implemented MAC functions used for benchmarking.

Name MAC Function Implementation

baseline – –
no-hash none; only xor(vptr, &vptr, random_secret) –
blake3 C implementation of BLAKE3 static lib
highwayhash highwayhash shared lib
xxhashct compile-time implementation of xxhash static lib
moremur pseudo hash function based on moremur inlined
moremur-random diversified version (random parameter) of moremur inlined

casts or RTTI access, we could insert MAC validation checks at those locations as well. To
prevent the execution from virtual function bodies Hobbit inserts the following instructions
in CodeGenFunction::StartFunction:
1. We retrieve all vptrs for the current object.
2. For each vptr, we compute the MAC tag again.
3. For each vptr, we load the stored MAC tag value.
4. Then, we compare the computed and loaded MAC tag values.
5. If these tags match, we start executing the function body.
6. Otherwise, we detect an ongoing COOP attack and can launch counter-measures. In our

prototype implementation, we simply exit the program with status 147.
Listings 3 and 4 show the resulting assembly code for both constructors and virtual methods
of a class with 1 vptr without any hashing (no-hash).

6.3 MAC Function Implementations
We implemented different MAC functions in Hobbit and extended the baseline, an unmod-
ified Clang/LLVM 17.0.3. Table 1 shows the different hash implementations for the MAC
function. The simplest approach is no-hash (as shown in Listings 3 and 4) that uses the
identity function as MAC in Equation (2). Therefore, tag t is the unhashed result of the xor
operations.

In contrast, moremur [32] implements a pseudo-hash function as MAC. These pseudo hash
functions should be small, such that Hobbit inlines these hash functions in both constructors
and virtual functions. With XOM, immediate values used in such hash functions are resistant
to leakage and can thus be considered secret. Section 6.4 describe moremur-random, a
diversified implementation variant of moremur.

1 ... # preceding instructions from Listing 3
2 movabsq $random, %rax # load random value to rax
3 xorq %rax, %rdi # xor random value = mac tag
4 callq coop_hash@PLT # call to compiler-rt hash function
5 movq %rax, %rcx # store result of coop_hash to rcx
6 movq -16(%rbp), %rax # reload this pointer
7 movq %rcx, 8(%rax) # save mac tag to designated field
8 ...

Listing 5 Constructor calling a hash function in rt-lib.



M. Bernad and S. Brunthaler 7:13

We implemented the remaining MAC functions, all including larger and more complex
hash functions, as compiler run-time libraries, short compiler-rt. LLVM provides and links
these libraries for run-time support in compiled binaries. We implemented different versions
of such a compiler-rt for the remaining MAC variants blake3 [9], highwayhash [3], and
xxhashct [55]. Hobbit links the compiler-rt libraries for blake3 and xxhashct statically
to the program under compilation. Highwayhash, in contrast, is dynamically linked as a
shared library.

With run-time hashing support enabled, Hobbit simply inserts a call to the hash function
located in the run-time library, according to Equation (2). Listing 5 shows the resulting
instructions. After the initial xor instructions, the result is passed as an argument to the
coop_hash function. The function coop_hash computes a hash according to the chosen hash
function (Table 1), namely blake3, highwayhash, or xxhashct. Finally, after loading the
this pointer again, the returned result is stored in the designed MAC tag field.

6.4 Class-Hierarchy-Driven Seed Randomization
In its current implementation, the random parameter r of Equation (2) is fixed over the
whole program. We implemented a naive diversification approach diversifying this random
parameter. Ideally, we would choose a different parameter for each class, however, due to the
polymorphic nature of C++, the diversification degree is limited. We create MAC tags in
constructors and validate them in virtual functions, therefore, both MAC functions must
use the same random parameter. With subtyping, methods must be callable for different
classes, according to the inheritance graph. Therefore, our diversified implementation chooses
a random parameter for each weakly connected subcomponent of the inheritance graph.
The inheritance graph is, in fact, a directed acyclic graph1, since C++ has the concept of
multi-inheritance, hence the famous diamond problem.

We implemented moremur-random in the following steps:
1. In an initial compilation step, Hobbit outputs all classnames with the corresponding

(virtual-) bases.
2. We implemented a Python script that constructs the inheritance DAG.
3. Our script assigns each weak component2 a different random parameter r.
4. Hobbit then use this class assignment to diversify the MAC tag computation.

By enabling link-time optimization, we could implement the inheritance graph anal-
ysis and the diversification assignment in Clang/LLVM.

6.5 Gadget-Directed Optimization
We implemented a simple gadget-directed optimization that identifies simple main-loop
gadgets. With this optimization enabled, Hobbit performs a static analysis to identify
potential main-loop gadgets. Our naive analysis checks whether a virtual method belongs to
a class declaring any fields of C++ standard container type [13], either directly or indirectly,
by inheriting from classes with such fields. This prototype gadget-directed optimization
only identifies simple main-loop gadgets, but fails to identify other forms of dispatcher
gadgets, serving as a main-loop gadget [45, 20]. Other dispatcher gadgets include recursive
gadgets, unrolled COOP, or iterators over linked lists. Hobbit could use COOP exploit
automation frameworks, such as iTOP, to identify additional gadgets and feed them into our
gadget-directed optimization [34].

1 Not a tree, as one would expect.
2 All connected subgraphs, also called components, ignoring the direction of edges.

ECOOP 2024



7:14 HOBBIT: Hashed OBject Based InTegrity

Table 2 Benchmark system configuration.

EPYC 7H12 i7-8559U Ryzen 9 5900X

Processor AMD EPYC 7H12 Intel 8559U AMD Ryzen 9 5900X
RAM 1 TB DDR4 64 GB DDR4 64 GB DDR4
OS Debian 12 Debian 12 Ubuntu 22.04.4 LTS
Kernel 6.1.0-16-amd64 6.1.0-16-amd64 6.5.0-27-generic
gcc 12.2.0 12.2.0 11.4.0
glibc 2.36 2.36 2.35
linker gold (2.38) gold (2.38) GNU ld (2.38)

6.6 Limitations
Hobbit does not protect RTTI objects. RTTI objects are dynamic types, but not created by
calling constructors at run-time. Instead, Clang initializes RTTI objects during compilation,
therefore, Hobbit does not compute and store MAC tags for such objects. At load-time,
vtables and RTTI objects alike are loaded into .rodata. However, protecting RTTI objects
is still possible but requires extra effort. We could, for example, create initialization code
similar to our MAC tag initialization in constructors and call this RTTI object initializer
when the address of both vtables and RTTI objects is known, at load-time. Since Hobbit
does not create MAC tags for RTTI objects, we do not emit integrity checks in virtual
functions belonging to RTTI classes.

7 Evaluation

We present the evaluation of our prototype implementation of Hobbit. In Section 7.1,
we describe the machines used for our evaluation. Sections 7.2–7.4 show the performance
evaluation, including measurements of run-time, memory-usage, and code-size. We evaluate
our implemented prototype of gadget-directed optimization in Section 7.5. In Section 7.6,
we evaluate the scalability of Hobbit by compiling real-world applications with Hobbit.
Finally, Section 7.7 shows the evaluation of the class-hierarchy-driven seed randomization.

7.1 System Configuration
We perform our evaluation of Hobbit on three different machines listed in Table 2.

We used machines EPYC 7H12 and i7-8559U for the performance evaluation in Section 7.2
and the gadget-directed optimization evaluation in Section 7.5. The scalability evaluation in
Section 7.6 and the evaluation of the diversification statistics in Section 7.7 were done on
Ryzen 9 5900X.

Our prototype of Hobbit is based on the LLVM/Clang version 17.0.3 (see Section 6),
which we call baseline in the following evaluation. Since Hobbit breaks the C++ ABI, we
have to build and use a custom-built version of the LLVM C++ standard library libc++ [29]
(same as LLVM/Clang: 17.0.3). To improve comparability – although not strictly necessary –
we build and use a custom-built libc++ for the baseline as well.

7.2 Performance
As common in performance evaluations, we evaluate the performance of Hobbit by building
the SPEC CPU 2017 benchmark with our compiler modifications. In particular, since Hobbit
only applies changes to C++ programs, we run the four C++ benchmarks of the SPECspeed™



M. Bernad and S. Brunthaler 7:15

620.omnetpp

623.xalancbmk

631.deepsjeng
641.leela geomean

100

101

102

Ru
n-

tim
e

ov
er

he
ad

(%
)

no-hash
blake3
highwayhash
xxhashct
moremur
moremur-rnd

(a) EPYC 7H12.

620.omnetpp

623.xalancbmk

631.deepsjeng
641.leela geomean

10−1

100

101

102

Ru
n-

tim
e

ov
er

he
ad

(%
)

no-hash
blake3
highwayhash
xxhashct
moremur
moremur-rnd

(b) i7-8559U.

Figure 3 Run-time overhead introduced by Hobbit for C++ benchmarks of the SPECspeed™
2017 Integer test suite, relative to baseline on log-scale.

2017 Integer test suite, namely 620.omnetpp, 623.xalancbmk, 631.deepsjeng, and 641.leela.
The remaining non-C++ benchmarks showed – as expected – no measurable overhead. As
mentioned in Section 7.1, we use the custom-built libc++ instead of the bundled version of
the Linux distribution. Each experiment compiles all relevant benchmarks and runs the
compiled benchmark afterwards. We repeated each experiment 10× on EPYC 7H12 and 6×
on i7-8559U and calculated the geometric mean over those repetitions.

Run-time, a key metric within SPEC, quantifies the time in seconds required for a
benchmark to execute. Figure 3 shows the results for all evaluated MAC functions (see
Table 1).

For the i7-8559U machine, the geometric mean overhead over all benchmarks, are
107.62% (blake3), 40.40% (highwayhash), 12.21% (xxhashct), 2.83% (moremur), and 2.80%
(moremur-random). In comparison, on EPYC 7H12, the benchmarks show a higher per-
formance impact over all benchmarks, namely 121.63% (blake3), 47.81% (highwayhash),
16.02% (xxhashct), 4.49% (moremur), and 4.54% (moremur-random). Both, 620.omnetpp
and 623.xalancbmk, show the most performance impact on both machines. On i7-8559U,
620.omnetpp shows the highest run-time increase consistently for all benchmarked MAC
functions. In contrast, on EPYC 7H12, we see a significantly higher run-time overhead
on 623.xalancbmk for blake3 and highwayhash compared to 620.omnetpp. The remaining
hash functions (xxhashct, moremur, and moremur-random) on EPYC 7H12 show the same
trend as on i7-8559U, namely, a higher performance overhead for 620.omnetpp rather than
623.xalancbmk.

We also evaluated a stripped down version that does not compute MAC tags to measure
the minimum overhead (no-hash in Figure 3). On i7-8559U no-hash introduces a geometric
mean overhead of 0.55%, with a maximum performance impact of 4.00% (620.omnetpp). In
contrast to “correct” hash functions, the implementation of no-hash is 7.27% faster on EPYC
7H12 (overall 0.51%; 620.omnetpp 2.66%) when compared to i7-8559U.

7.3 Memory
Since Hobbit extends object layouts, therefore, increases the size of objects, we are interested
in the maximum resident set size (RSS). RSS is a metric indicating the memory usage
of a process in RAM. Swapped memory does not count to RSS. By querying the rusage
counters [43], our benchmarking environment measures the maximum RSS maxrss.

ECOOP 2024



7:16 HOBBIT: Hashed OBject Based InTegrity

620.omnetpp

623.xalancbmk

631.deepsjeng
641.leela geomean

0

1

2

3

4

Re
sid

en
tS

et
Si

ze
in

cr
ea

se
(%

)
no-hash
blake3
highwayhash
xxhashct
moremur
moremur-rnd

(a) Run-time memory increase.

620.omnetpp

623.xalancbmk

631.deepsjeng
641.leela geomean

0

10

20

30

40

50

60

Bi
na

ry
siz

e
in

cr
ea

se
(%

)

no-hash
blake3
highwayhash
xxhashct
moremur
moremur-rnd

(b) Binary code size increase.

Figure 4 Memory effects of Hobbit for C++ benchmarks of the SPECspeed™ 2017 Integer suite,
relative to baseline (EPYC 7H12).

Table 3 Binary sizes of benchmarks and run-time libraries for both machines EPYC 7H12 and
i7-8559U.

(a) Binary sizes of baseline benchmarks.

Name Size in Bytes

620.omnetpp 2,915,320
623.xalancbmk 7,362,408
631.deepsjeng 118,120
641.leela 254,936

(b) Binary sizes of hashing run-time libraries.

Name Size in Bytes

blake3 90,618
highwayhash 15,816
xxhashct 1,874

Figure 4 shows the benchmarking results for machines EPYC 7H12 and i7-8559U. On
both machines, our benchmarks show an overall geometric maxrss overhead of 2.2% and
2.18%, respectively. We see the highest maxrss overhead for 623.xalancbmk (EPYC 7H12
4.64%, i7-8559U 4.65%). 620.omnetpp has a similar maxrss overhead (EPYC 7H12 3.99%,
i7-8559U 3.88%), whereas Hobbit has a low maxrss impact on 641.leela (EPYC 7H12 0.41%,
i7-8559U 0.32%). For 631.deepsjeng, our defense does not increase the maxrss on neither
machine at all.

7.4 Code Size

Hobbit inserts instructions for creating and validating MAC tags and, for some MAC
functions, links run-time libraries and creates function calls to these libraries. These additional
instructions (and libraries) increase the binary size of compiled programs. To that end, we
evaluate the binary size of each benchmark. Table 3 shows the binary sizes of the baseline
benchmarks (see Table 3a) and the run-time hashing libraries (see Table 3b).

The binary size increase on both machines is identical and shown in Figure 4b. Hobbit,
in its blake3 variant, introduces the highest geometric mean increase in binary size of 26.90%
over all benchmarks, ranging from 10.50% for 623.xalancbmk up to 61.87% for 631.deepsjeng.
Blake3 is a big hashing library (see Table 3b). Since Hobbit links blake3 statically to the
compiled program, the big library size, compared to small benchmarks as in 631.deepsjeng
and 641.leela, contributes to the significant increase in the resulting hardened binary. On
the other hand, for highwayhash, nearly 8.5× bigger than xxhashct, accounts for roughly



M. Bernad and S. Brunthaler 7:17

620.omnetpp

623.xalancbmk

631.deepsjeng
641.leela geomean

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ru
n-

tim
e

ov
er

he
ad

(%
)

blake3-mlg
highwayhash-mlg
xxhashct-mlg
moremur-rnd-mlg

(a) EPYC 7H12.

620.omnetpp

623.xalancbmk

631.deepsjeng
641.leela geomean

−2

−1

0

1

2

3

4

Ru
n-

tim
e

ov
er

he
ad

(%
)

blake3-mlg
highwayhash-mlg
xxhashct-mlg
moremur-rnd-mlg

(b) i7-8559U.

Figure 5 Reduction of performance impact through gadget-directed optimization.

the same binary size increase as xxhashct. The reason for this similar increase in binary
size – despite a different library size itself – results from a different linkage. Highwayhash is
dynamically linked, whereas blake3 and xxhashct are statically linked, therefore, embedded
in the binary. Hobbit variants that inline MAC functions in constructors and virtual
functions, namely mormeur and moremur-random, introduce the highest increase in binary
size for 620.omnetpp (13.54%) and 623.xalancbmk (13.36%).

7.5 Gadget-Directed Optimization
We evaluated our naive implementation for the main-loop gadget analysis optimization
(see Section 6.5), that only creates and validates MAC tags for classes having a standard C++

container field.
Although our gadget-directed optimization finds no main-loop gadgets for benchmarks

623.xalancbmk, 631.deepsjeng, and 641.leela, it finds 12 instances of classes having – directly
or indirectly – at least one container-type field. Hobbit inserts MAC tag integrity validation
logic in 137 methods of these 12 classes.

Figure 5 shows the run-time overhead introduced by Hobbit with gadget-directed
optimization enabled.

7.6 Scalability
To evaluate the scalability of Hobbit, we compiled WebKit, a web browser engine consisting
of millions of lines of C and C++ code (see Table 5). Specifically, we built the GTK version
of Webkit, WebKitGTK [53], a full-featured port of WebKit for GTK-based Linux desktop
systems. Although Hobbit breaks the C++ ABI through its object-layout extension, we
only needed a single change to successfully compile WebKit, shown in Listing 6. Since
ScrollableArea is a dynamic class, Hobbit inserts a field for the MAC tag, thus we have
to add 8 to this static_assert to account for the increased object size.

After the compilation, we evaluated the run-time overhead introduced by our defenses
with the following browser benchmarks: (i) Kraken, (ii) MotionMark, (iii) Octane, and (iv)
Speedometer.

As this evaluation requires a GUI, we performed the experiments on Ryzen 9 5900X.
With only a terminal window opened, we started the MiniBrowser, a minimal browser based
on WebKitGTK. After each benchmark execution, we closed the MiniBrowser, waited for ten

ECOOP 2024



7:18 HOBBIT: Hashed OBject Based InTegrity

1 #if CPU(ADDRESS64)
2 -static_assert(sizeof(ScrollableArea) == sizeof(
3 SameSizeAsScrollableArea),
4 "ScrollableArea should stay small");
5 +static_assert(sizeof(ScrollableArea) == sizeof(
6 SameSizeAsScrollableArea) + 8,
7 "ScrollableArea should stay small");
8 #endif

Listing 6 Fix required to compile WebKitGTK.

Table 4 Performance impact on browser benchmarks.

Benchmark blake3 highwayhash xxhashct moremur-random

Kraken 1.1 [27] 2.72% 0.70% 0.77% −2.05%
MotionMark 1.3 [33] 14.64% 1.67% 1.87% 3.03%
Octane 2.0 [36] 53.54% 17.32% 2.83% 1.34%
Speedometer 2.1 [50] 161.74% 43.24% 7.85% 2.54%

seconds and repeated the experiment. In total, we executed each benchmark three times.
Table 4 shows the geometric mean performance impact of our evaluation. Kraken measures
the time needed to finish the benchmark, therefore, an induced overhead means an increase in
run-time. In contrast, the other benchmarks measure score points, meaning that an induced
overhead decreases the achieved score.

These real-world benchmark results confirm the results obtained from compute-intensive
programs. Hobbit allows balancing security and performance, and we did not notice
perceptible delays in daily browsing activities.

To further show that Hobbit scales to other real-world programs, we successfully compiled
the following programs listed in Table 5. We included the version of the compiled programs
as well as their C++ source lines of code (SLOC). The selected programs range from small
web frameworks to fully fledged web browsers and compiler. For measuring SLOCs we used
the tool sloccount [48].

Table 5 Source lines of code (SLOC) of real-world programs compiled with Hobbit.

Program Description Version SLOC (C++)

crow C++ Web framework 1.2.0 25,203
json JSON library for C++ 3.11.3 102,977
llvm Collection of compiler tools 17.0.6 2,201,374
webkitgtk GTK port of WebKit 2.41.1 4,444,590
620.omnetpp SPECspeed®2017 Integer suite SPEC CPU 2017 63,100
623.xalancbmk SPECspeed®2017 Integer suite SPEC CPU 2017 243,046
631.deepsjeng SPECspeed®2017 Integer suite SPEC CPU 2017 7,284
641.leela SPECspeed®2017 Integer suite SPEC CPU 2017 30,473



M. Bernad and S. Brunthaler 7:19

Table 6 Top-5 and overall weakly connected component set size for libc++, C++ benchmarks of
SPECspeed™ 2017 Integer, and WebKitGTK.

Top 5 libc++ omnetpp xalanc deepsjeng leela WebKitGTK

1. 78 193 442 78 78 3,916
2. 45 78 93 45 45 1,962
3. 27 52 78 27 27 1,541
4. 13 45 62 13 14 1,066
5. 12 34 49 12 13 427

Overall 197 379 539 197 252 30,438

7.7 Class-Hierarchy-Driven Seed Randomization

We evaluated the number of diversified random parameters for our implementation from
Section 6.4. Table 6 shows the Top-5 weakly connected components, that constitute the
diversification unit. Each of these units is a set of classes for whom we must choose the same
random parameter. All C++ benchmarks of SPECspeed™ 2017 Integer and WebKitGTK
depend on libc++ and, thus, include and extends libc++’s inheritance graph. 631.deepsjeng
does not introduce any new dynamic classes to the inheritance graph, whereas WebKitGTK
adds 30, 241 new weakly connected components.

8 Discussion

We discuss and interpret the relevant findings of our evaluation.

8.1 Performance

Our performance evaluation shows that the performance impact depends primarily on the
choice of the MAC algorithm. Although blake3 offers the highest security, its performance
impact, too, is the highest. To improve performance, Hobbit offers two complementary
options. First, users can opt to use simpler MAC algorithms, such as moremur, which is more
performance friendly. Second, users can apply our gadget-directed optimization to reduce
performance impact of even the most expensive MAC algorithms.

Since we did not find any impact on large, real-world software, such as the WebKit
browser, we argue that Hobbit can be used in a wide variety of contexts.

8.2 Security

We compiled the CFIXX-Suite [14] with our Hobbit compiler. This exploit coverage test
suite, created by Burow et al., demonstrates several scenarios for attacks on the dynamic
dispatch mechanism [12]. Our security evaluation of Hobbit is shown in Table 7. Hobbit, in
its initial version, only protects against scenarios 3–5 (namely VTxchg, VTxchg-hier, COOP),
but fails to detect scenarios 1–2 (namely FakeVT, FakeVT-sig).

The initial Hobbit implementation prevents malicious execution of virtual function
bodies by validating the integrity of vptrs in the function prologue. Since scenarios 1–2
insert fake vtables that contain pointers to non-virtual functions, therefore unprotected by
our defense, our prototype implementation does not prevent this form of attacks.

ECOOP 2024



7:20 HOBBIT: Hashed OBject Based InTegrity

Table 7 Results of testing different vtable related attack building blocks against LLVM, LLVM
CFI, and different configurations of HOBBIT.

Exploit LLVM LLVM-CFI Hobbit Hobbit+LLVM-CFI Hobbit-VFCS

FakeVT ✗ ✓ ✗ ✓ ✓

FakeVT-sig ✗ ✓ ✗ ✓ ✓

VTxchg ✗ ✓ ✓ ✓ ✓

VTxchg-hier ✗ ✗ ✓ ✓ ✓

COOP ✗ ✗ ✓ ✓ ✓

However, Hobbit is compatible and composable with other defenses such as LLVM
CFI [30]. We compiled the exploit coverage test suite with Hobbit again, this time with
vcall sanitizer enabled. To enable LLVM CFI, we provided the following compiler flags:

-fsanitize=cfi-vcall -flto -fuse-ld=lld -fvisibility=hidden

LLVM CFI succeeds in defending against fake vtable attacks and limits successful virtual
calls to valid subtypes of the dispatched object’s static type. Still, LLVM CFI fails to prevent
an attacker from maliciously changing vptrs adhering to the type hierarchy or inserting fake
objects without calling the appropriate constructor – the core principle of COOP. Combining
Hobbit with LLVM CFI protects against all five exploit types evaluated in the exploit
coverage test suite.

To account for situations where CFI cannot be used, we implemented an extension of
Hobbit, namely Hobbit-VFCS. This Hobbit extension moves validation code from the
function prologue of virtual functions to their call sites. Hobbit-VFCS validates vptrs after
loading the vptr (Figure 2 3 ), but before invoking the method call (Figure 2 4 ). Emitting
validation checks at each call site increases the binary size, but mitigates all five exploits. In
future work, we can apply the same principle – checking the validity of vptrs immediately
after loading – to protect other vtable related mechanisms, such as dynamic casts, too.

8.2.1 Balancing Performance and Security

Hobbit has, essentially, two orthogonal compile-time parameters: (i) hash function algorithm
selection, and (ii) validation code granularity. By selecting a strong hash function, such as
blake3, the overall security improves at the cost of performance. Conversely, selecting a
more efficient hash function, such as moremur, decreases security and increases performance.

To offset the performance penalties, Hobbit offers users to parameterize the granularity
of validation code insertion. Either all virtual functions or only COOP-relevant call sites are
protected. By protecting all call sites, Hobbit achieves the highest security at the potentially
highest performance impact (i.e., by selecting an “expensive” hash function). Conversely,
by selecting only the COOP-relevant call sites, Hobbit reduces performance impact to a
negligible level.

Although four different levels can be specified, we recommend the following settings in
practice. A strong hash function, such as blake3, should be combined with COOP-relevant
gadget granularity. A weak hash function, such as moremur, can be used to protect all virtual
functions.



M. Bernad and S. Brunthaler 7:21

8.2.2 Uniformly Distributed Vtables
A method to perform cryptanalysis is to correlate input with output characteristics. Known-
plaintext attacks are a form where the attacker knows the plaintext and infers a model from
the outputs. In our model both inputs and outputs are either known or can be read directly
through a memory-read primitive. The MAC algorithm used is hidden away effectively
through execute-only memory. Yet, some of the input characteristics may allow attackers to
launch a known-plaintext attack.

Consider, for example, that the attacker knows the addresses of vtables v1, v2, and v3.
Let’s assume that although the addresses of these vtables vi are different, their distances
may remain constant. An adversary could, therefore, rely on such constant inter-table
differences to infer properties about the concrete hash MAC algorithm used by Hobbit.

Although our present implementation does not address this issue, we can achieve uniform
distribution of inter-table differences by way of randomizing the order of emitting vtables.
If this randomization proves to be insufficient, padding entries can be added in between
emitted vtables to increase the entropy of vtable addresses.

9 Conclusions

Hobbit presents an integrity-protection mechanism to thwart counterfeit-object-oriented
programming attacks. At its core, this attack shares a symmetry to classical buffer overflows,
in the sense that the underlying problem is the mixing of control with non-control data. For
buffer overflows, this mix consists of keeping return addresses among stack frame data. For
COOP attacks, this mix consists of keeping the vptr among object field data. By injecting
malicious objects, the adversary can thus hijack control-flow and initiate illegitimate method
calls.

To stop this type of whole-function code-reuse attack, Hobbit changes the object layout
to embed a tag value. This tag is computed by MAC functions that encode vptr information,
vptr location, and a random secret. By leveraging execute-only memory, Hobbit provides
additional security. Due to complementary optimizations, users gain the ability to balance
performance and security.

A comprehensive analysis provides evidence of both (i) configurable performance impact
between 121.63% and 2.80% and (ii) scalability to multi-million lines of C and C++ code.
At the same time, Hobbit does not depend on MPX and does not inhibit performance by
reserving registers. Without any hardware requirements, Hobbit is applicable to embedded-
and IOT devices.

References

1 Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity. In
Vijay Atluri, Catherine Meadows, and Ari Juels, editors, Proceedings of the 12th ACM
Conference on Computer and Communications Security, CCS 2005, Alexandria, VA, USA,
November 7-11, 2005, pages 340–353, New York, New York, USA, April 2005. ACM. doi:
10.1145/1102120.1102165.

2 Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf. Syst. Secur., 13(1):4:1–4:40, November
2009. doi:10.1145/1609956.1609960.

3 Jyrki Alakuijala, Bill Cox, and Jan Wassenberg. Fast keyed hash/pseudo-random function
using SIMD multiply and permute. CoRR, abs/1612.06257, December 2016. doi:10.48550/
arXiv.1612.06257.

ECOOP 2024

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.48550/arXiv.1612.06257
https://doi.org/10.48550/arXiv.1612.06257


7:22 HOBBIT: Hashed OBject Based InTegrity

4 Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürnberger,
and Jannik Pewny. You can run but you can’t read: Preventing disclosure exploits in
executable code. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, pages 1342–1353, New York, New York, USA, 2014. ACM.
doi:10.1145/2660267.2660378.

5 Markus Bauer and Christian Rossow. Novt: Eliminating C++ virtual calls to mitigate
vtable hijacking. In IEEE European Symposium on Security and Privacy, EuroS&P 2021,
Vienna, Austria, September 6-10, 2021, pages 650–666. IEEE, September 2021. doi:10.1109/
EuroSP51992.2021.00049.

6 Felix Berlakovich and Stefan Brunthaler. R2C: aocr-resilient diversity with reactive and
reflective camouflage. In Giuseppe Antonio Di Luna, Leonardo Querzoni, Alexandra Fedorova,
and Dushyanth Narayanan, editors, Proceedings of the Eighteenth European Conference on
Computer Systems, EuroSys 2023, Rome, Italy, May 8-12, 2023, pages 488–504, New York,
NY, USA, May 2023. ACM. doi:10.1145/3552326.3587439.

7 Matthias Bernad. HOBBIT implementation. Software (visited on 2024-08-29). URL: https:
//github.com/mbernad/hobbit-artifact.

8 Matthias Bernad and Stefan Brunthaler. HOBBIT. Software (visited on 2024-08-29). URL:
https://doi.org/10.5281/zenodo.11046716.

9 BLAKE3/c at master · BLAKE3-team/BLAKE3. URL: https://github.com/BLAKE3-team/
BLAKE3/tree/master/c.

10 Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai Liang. Jump-oriented
programming: a new class of code-reuse attack. In Bruce S. N. Cheung, Lucas Chi Kwong
Hui, Ravi S. Sandhu, and Duncan S. Wong, editors, Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, ASIACCS 2011, Hong Kong, China,
March 22-24, 2011, pages 30–40, New York, New York, USA, 2011. ACM. doi:10.1145/
1966913.1966919.

11 Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler, and
Mathias Payer. Control-flow integrity: Precision, security, and performance. ACM Comput.
Surv., 50(1):16:1–16:33, April 2017. doi:10.1145/3054924.

12 Nathan Burow, Derrick Paul McKee, Scott A. Carr, and Mathias Payer. CFIXX: object type
integrity for C++. In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018, Reston, VA, February 2018.
The Internet Society. doi:10.14722/ndss.2018.23279.

13 C++ Containers. URL: https://cplusplus.com/reference/stl/.
14 CFIXX Suite. URL: https://github.com/HexHive/CFIXX/tree/master/CFIXX-Suite.
15 Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham,

and Marcel Winandy. Return-oriented programming without returns. In Ehab Al-Shaer,
Angelos D. Keromytis, and Vitaly Shmatikov, editors, Proceedings of the 17th ACM Conference
on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8,
2010, pages 559–572, New York, New York, USA, 2010. ACM. doi:10.1145/1866307.1866370.

16 Kaixiang Chen, Chao Zhang, Tingting Yin, Xingman Chen, and Lei Zhao. Vscape: As-
sessing and escaping virtual call protections. In Michael D. Bailey and Rachel Greenstadt,
editors, 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, pages
1719–1736. USENIX Association, August 2021. URL: https://www.usenix.org/conference/
usenixsecurity21/presentation/chen-kaixiang.

17 Release LLVM 17.0.3 · llvm/llvm-project. URL: https://github.com/llvm/llvm-project/
releases/tag/llvmorg-17.0.3.

18 Fernando J. Corbató and Victor A. Vyssotsky. Introduction and overview of the multics
system. In Robert W. Rector, editor, Proceedings of the 1965 fall joint computer conference,
part I, AFIPS 1965 (Fall, part I), Las Vegas, Nevada, USA, November 30 - December 1, 1965,
pages 185–196. ACM, November 1965. doi:10.1145/1463891.1463912.

https://doi.org/10.1145/2660267.2660378
https://doi.org/10.1109/EuroSP51992.2021.00049
https://doi.org/10.1109/EuroSP51992.2021.00049
https://doi.org/10.1145/3552326.3587439
https://github.com/mbernad/hobbit-artifact
https://github.com/mbernad/hobbit-artifact
https://doi.org/10.5281/zenodo.11046716
https://github.com/BLAKE3-team/BLAKE3/tree/master/c
https://github.com/BLAKE3-team/BLAKE3/tree/master/c
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/3054924
https://doi.org/10.14722/ndss.2018.23279
https://cplusplus.com/reference/stl/
https://github.com/HexHive/CFIXX/tree/master/CFIXX-Suite
https://doi.org/10.1145/1866307.1866370
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-kaixiang
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-kaixiang
https://github.com/llvm/llvm-project/releases/tag/llvmorg-17.0.3
https://github.com/llvm/llvm-project/releases/tag/llvmorg-17.0.3
https://doi.org/10.1145/1463891.1463912


M. Bernad and S. Brunthaler 7:23

19 Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen, Ahmad-Reza
Sadeghi, Stefan Brunthaler, and Michael Franz. Readactor: Practical code randomization
resilient to memory disclosure. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015, volume 2015-July, pages 763–780. IEEE Computer
Society, May 2015. doi:10.1109/SP.2015.52.

20 Stephen J. Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen, Lucas
Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael Franz. It’s a trap:
Table randomization and protection against function-reuse attacks. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-16, 2015, pages
243–255, New York, New York, USA, 2015. ACM. doi:10.1145/2810103.2813682.

21 Solar Designer. lpr LIBC RETURN exploit, August 1997. URL: https://insecure.org/
sploits/linux.libc.return.lpr.sploit.html.

22 Mohamed Elsabagh, Dan Fleck, and Angelos Stavrou. Strict virtual call integrity checking
for C++ binaries. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi,
editors, Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017, pages 140–154,
New York, NY, USA, April 2017. ACM. doi:10.1145/3052973.3052976.

23 Robert Gawlik and Thorsten Holz. Towards automated integrity protection of C++ virtual
function tables in binary programs. In Charles N. Payne Jr., Adam Hahn, Kevin R. B. Butler,
and Micah Sherr, editors, Proceedings of the 30th Annual Computer Security Applications
Conference, ACSAC 2014, New Orleans, LA, USA, December 8-12, 2014, pages 396–405, New
York, New York, USA, 2014. ACM. doi:10.1145/2664243.2664249.

24 Jason Gionta, William Enck, and Peng Ning. Hidem: Protecting the contents of userspace
memory in the face of disclosure vulnerabilities. In Jaehong Park and Anna Cinzia Squicciarini,
editors, Proceedings of the 5th ACM Conference on Data and Application Security and Privacy,
CODASPY 2015, San Antonio, TX, USA, March 2-4, 2015, pages 325–336. ACM, March
2015. doi:10.1145/2699026.2699107.

25 Itanium C++ ABI. URL: https://itanium-cxx-abi.github.io/cxx-abi/abi.html.
26 Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Safedispatch: Securing C++ virtual calls

from memory corruption attacks. In 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014. The Internet
Society, 2014. doi:10.14722/ndss.2014.23287.

27 Kraken JavaScript Benchmark (version 1.1). URL: https://mozilla.github.io/
krakenbenchmark.mozilla.org/index.html.

28 Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. Sok: Automated software
diversity. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA,
May 18-21, 2014, pages 276–291. IEEE Computer Society, May 2014. doi:10.1109/SP.2014.
25.

29 “libc++” C++ Standard Library – libc++ documentation. URL: https://libcxx.llvm.org/.
30 LLVM: Control Flow Integrity. URL: https://clang.llvm.org/docs/ControlFlowIntegrity.

html.
31 Ali José Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. CCFI: cryptographi-

cally enforced control flow integrity. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, volume 2015-October, pages 941–951. ACM,
October 2015. doi:10.1145/2810103.2813676.

32 Mostly mangling: Stronger, better, morer, Moremur; a better Murmur3-
type mixer. URL: https://mostlymangling.blogspot.com/2019/12/
stronger-better-morer-moremur-better.html.

33 MotionMark 1.0. URL: https://browserbench.org/MotionMark/.

ECOOP 2024

https://doi.org/10.1109/SP.2015.52
https://doi.org/10.1145/2810103.2813682
https://insecure.org/sploits/linux.libc.return.lpr.sploit.html
https://insecure.org/sploits/linux.libc.return.lpr.sploit.html
https://doi.org/10.1145/3052973.3052976
https://doi.org/10.1145/2664243.2664249
https://doi.org/10.1145/2699026.2699107
https://itanium-cxx-abi.github.io/cxx-abi/abi.html
https://doi.org/10.14722/ndss.2014.23287
https://mozilla.github.io/krakenbenchmark.mozilla.org/index.html
https://mozilla.github.io/krakenbenchmark.mozilla.org/index.html
https://doi.org/10.1109/SP.2014.25
https://doi.org/10.1109/SP.2014.25
https://libcxx.llvm.org/
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://doi.org/10.1145/2810103.2813676
https://mostlymangling.blogspot.com/2019/12/stronger-better-morer-moremur-better.html
https://mostlymangling.blogspot.com/2019/12/stronger-better-morer-moremur-better.html
https://browserbench.org/MotionMark/


7:24 HOBBIT: Hashed OBject Based InTegrity

34 Paul Muntean, Richard Viehoever, Zhiqiang Lin, Gang Tan, Jens Grossklags, and Claudia
Eckert. itop: Automating counterfeit object-oriented programming attacks. In Leyla Bilge and
Tudor Dumitras, editors, RAID ’21: 24th International Symposium on Research in Attacks,
Intrusions and Defenses, San Sebastian, Spain, October 6-8, 2021, pages 162–176. ACM,
October 2021. doi:10.1145/3471621.3471847.

35 Nergal. Advanced return-into-lib(c) exploits (PaX case study), December 2001. URL: http:
//phrack.org/issues/58/4.html#article.

36 Octane 2.0 JavaScript Benchmark. URL: https://chromium.github.io/octane/.
37 Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda. G-free:

defeating return-oriented programming through gadget-less binaries. In Carrie Gates, Michael
Franz, and John P. McDermott, editors, Twenty-Sixth Annual Computer Security Applications
Conference, ACSAC 2010, Austin, Texas, USA, 6-10 December 2010, pages 49–58, New York,
New York, USA, 2010. ACM. doi:10.1145/1920261.1920269.

38 Aleph One. Smashing the stack for fun and profit. Phrack magazine, 7(49):14–16, 1996.
39 Taemin Park, Julian Lettner, Yeoul Na, Stijn Volckaert, and Michael Franz. Bytecode

corruption attacks are real - and how to defend against them. In Cristiano Giuffrida, Sébastien
Bardin, and Gregory Blanc, editors, Detection of Intrusions and Malware, and Vulnerability
Assessment - 15th International Conference, DIMVA 2018, Saclay, France, June 28-29, 2018,
Proceedings, volume 10885 of Lecture Notes in Computer Science, pages 326–348. Springer,
2018. doi:10.1007/978-3-319-93411-2_15.

40 Andre Pawlowski, Victor van der Veen, Dennis Andriesse, Erik van der Kouwe, Thorsten
Holz, Cristiano Giuffrida, and Herbert Bos. VPS: excavating high-level C++ constructs from
low-level binaries to protect dynamic dispatching. In David M. Balenson, editor, Proceedings
of the 35th Annual Computer Security Applications Conference, ACSAC 2019, San Juan,
PR, USA, December 09-13, 2019, pages 97–112, New York, NY, USA, December 2019. ACM.
doi:10.1145/3359789.3359797.

41 Aravind Prakash, Xunchao Hu, and Heng Yin. vfguard: Strict protection for virtual function
calls in COTS C++ binaries. In 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015, Reston, VA,
November 2015. The Internet Society. doi:10.14722/ndss.2015.23297.

42 Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-oriented program-
ming: Systems, languages, and applications. ACM Trans. Inf. Syst. Secur., 15(1):2:1–2:34,
March 2012. doi:10.1145/2133375.2133377.

43 getrusage(2) - Linux manual page. URL: https://man7.org/linux/man-pages/man2/
getrusage.2.html.

44 AliAkbar Sadeghi, Salman Niksefat, and Maryam Rostamipour. Pure-call oriented program-
ming (PCOP): chaining the gadgets using call instructions. J. Comput. Virol. Hacking Tech.,
14(2):139–156, May 2018. doi:10.1007/s11416-017-0299-1.

45 Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi,
and Thorsten Holz. Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in C++ applications. In 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015, volume 2015-July, pages 745–762. IEEE
Computer Society, May 2015. doi:10.1109/SP.2015.51.

46 Hovav Shacham. The geometry of innocent flesh on the bone: return-into-libc without function
calls (on the x86). In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson,
editors, Proceedings of the 2007 ACM Conference on Computer and Communications Security,
CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, pages 552–561, New York, New
York, USA, 2007. ACM. doi:10.1145/1315245.1315313.

47 Zhuojia Shen, Komail Dharsee, and John Criswell. Fast execute-only memory for embedded
systems. In IEEE Secure Development, SecDev 2020, Atlanta, GA, USA, September 28-30,
2020, pages 7–14. IEEE, September 2020. doi:10.1109/SecDev45635.2020.00017.

48 SLOCCount. URL: https://dwheeler.com/sloccount/.

https://doi.org/10.1145/3471621.3471847
http://phrack.org/issues/58/4.html#article
http://phrack.org/issues/58/4.html#article
https://chromium.github.io/octane/
https://doi.org/10.1145/1920261.1920269
https://doi.org/10.1007/978-3-319-93411-2_15
https://doi.org/10.1145/3359789.3359797
https://doi.org/10.14722/ndss.2015.23297
https://doi.org/10.1145/2133375.2133377
https://man7.org/linux/man-pages/man2/getrusage.2.html
https://man7.org/linux/man-pages/man2/getrusage.2.html
https://doi.org/10.1007/s11416-017-0299-1
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/SecDev45635.2020.00017
https://dwheeler.com/sloccount/


M. Bernad and S. Brunthaler 7:25

49 Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen,
and Ahmad-Reza Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained address
space layout randomization. In 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, pages 574–588. IEEE Computer Society, May 2013.
doi:10.1109/SP.2013.45.

50 Speedometer 2.1. URL: https://browserbench.org/Speedometer2.1/.
51 Laszlo Szekeres, Mathias Payer, Tao Wei, and R. Sekar. Eternal war in memory. IEEE Secur.

Priv., 12(3):45–53, May 2014. doi:10.1109/MSP.2014.44.
52 Arjan Van De Ven. New security enhancements in red hat enterprise linux v.3, update 3, 2004.

URL: https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf.
53 WebKit/WebKit at webkitgtk-2.41.1. URL: https://github.com/WebKit/WebKit/tree/

webkitgtk-2.41.1.
54 Mengyao Xie, Chenggang Wu, Yinqian Zhang, Jiali Xu, Yuanming Lai, Yan Kang, Wei Wang,

and Zhe Wang. CETIS: retrofitting intel CET for generic and efficient intra-process memory
isolation. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022,
Los Angeles, CA, USA, November 7-11, 2022, CCS ’22, pages 2989–3002, New York, NY,
USA, 2022. ACM. doi:10.1145/3548606.3559344.

55 ekpyron/xxhashct: Compile time implementation of the 64-bit xxhash algorithm as C++11
constexpr expression. URL: https://github.com/ekpyron/xxhashct.

56 Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn Song. Vtint:
Protecting virtual function tables’ integrity. In 22nd Annual Network and Distributed System
Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015, pages
8–11, Reston, VA, 2015. The Internet Society. doi:10.14722/ndss.2015.23099.

57 Chao Zhang, Dawn Song, Scott A. Carr, Mathias Payer, Tongxin Li, Yu Ding, and Chengyu
Song. Vtrust: Regaining trust on virtual calls. In 23rd Annual Network and Distributed System
Security Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016, Reston,
VA, 2016. The Internet Society. doi:10.14722/ndss.2016.23164.

ECOOP 2024

https://doi.org/10.1109/SP.2013.45
https://browserbench.org/Speedometer2.1/
https://doi.org/10.1109/MSP.2014.44
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://github.com/WebKit/WebKit/tree/webkitgtk-2.41.1
https://github.com/WebKit/WebKit/tree/webkitgtk-2.41.1
https://doi.org/10.1145/3548606.3559344
https://github.com/ekpyron/xxhashct
https://doi.org/10.14722/ndss.2015.23099
https://doi.org/10.14722/ndss.2016.23164

	1 Motivation
	2 Background
	2.1 C++ Polymorphism and Dynamic Binding
	2.2 Counterfeit-Object-Oriented Programming (COOP)
	2.3 Execute-Only Memory (XOM)
	2.4 Message Integrity Through MACs

	3 Related Work
	4 Threat Model
	5 Design Aspects of Hobbit
	5.1 C++ Object Lifetime and Layout
	5.2 Message-Authentication Codes and Execute-Only Memory
	5.3 Class-Hierarchy-Driven Seed Randomization
	5.4 Validating MAC Tags
	5.5 Gadget-Directed Optimization

	6 Hobbit Implementation
	6.1 Extending Object Layouts
	6.2 Computing and Validating MAC Tags
	6.3 MAC Function Implementations
	6.4 Class-Hierarchy-Driven Seed Randomization
	6.5 Gadget-Directed Optimization
	6.6 Limitations

	7 Evaluation
	7.1 System Configuration
	7.2 Performance
	7.3 Memory
	7.4 Code Size
	7.5 Gadget-Directed Optimization
	7.6 Scalability
	7.7 Class-Hierarchy-Driven Seed Randomization

	8 Discussion
	8.1 Performance
	8.2 Security
	8.2.1 Balancing Performance and Security
	8.2.2 Uniformly Distributed Vtables


	9 Conclusions

