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Abstract
Kotlin language has recently become prominent for developing both Android and server-side ap-
plications. These programs are typically designed to be fast and responsive, with asynchrony and
concurrency at their core. To enable developers to write asynchronous and concurrent code safely
and concisely, Kotlin provides built-in coroutines support. However, developers unfamiliar with the
coroutines concept may write programs with subtle concurrency bugs and face unexpected program
behaviors. Besides the traditional concurrency bug patterns, such as data races and deadlocks, these
bugs may exhibit patterns related to the coroutine semantics. Understanding these coroutine-specific
bug patterns in real-world Kotlin applications is essential in avoiding common mistakes and writing
correct programs.

In this paper, we present the first study of real-world concurrency bugs related to Kotlin coroutines.
We examined 55 concurrency bug cases selected from 7 popular open-source repositories that use
Kotlin coroutines, including IntelliJ IDEA, Firefox, and Ktor, and analyzed their bug characteristics
and root causes. We identified common bug patterns related to asynchrony and Kotlin’s coroutine
semantics, presenting them with their root causes, misconceptions that led to the bugs, and strategies
for their automated detection. Overall, this study provides insight into programming with Kotlin
coroutines concurrency and its pitfalls, aiming to shed light on common bug patterns and foster
further research and development of concurrency analysis tools for Kotlin programs.
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1 Introduction

Kotlin is a cutting-edge programming language that has recently become a primary language
for Android development. Its modern syntax, seamless interoperability with Java, and
enhanced features have positioned Kotlin as the preferred language for creating mobile
and server-side applications for many developers. A standout feature amongst Kotlin’s
diverse functionalities is the built-in coroutines [14] support, which significantly simplifies
asynchronous programming. Coroutines offers developers a streamlined approach to handling
background tasks, thus enabling more intuitive and readable code.

Kotlin coroutines enables writing asynchronous code in a sequential style, thus avoiding
the complexity of multithreaded programs. One may think of coroutines as lightweight
threads. Following the notion of coroutines in the literature [12], Kotlin coroutines can
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suspend and resume their execution, and they do that through the suspending functions.
Suspending functions (marked with the suspend keyword in Kotlin) are similar to async
functions in other asynchronous languages and frameworks [37, 33], which encapsulate
asynchronous computations but look like synchronous code, and calling them looks similar
to calling regular functions. A suspending function indicates that it can be suspended in
the middle of computation and resumed later. By suspending and resuming at predefined
points, they yield computing resources to other coroutines and coordinate their execution.
For example, when a suspending function encounters a long-running task and suspends, the
underlying thread does not block but takes another coroutine to execute.

While coroutines simplify writing asynchronous programs and increase performance
by asynchronously running long-running tasks, asynchronous programming comes with
additional challenges. Besides the inherent concurrency non-determinism of multithreading,
which causes traditional classes of concurrency bugs (such as data races, deadlocks, order
violations, and atomicity violations), utilizing coroutine requires developers to reason about
the asynchronous interactions between the concurrent components due to coroutine semantics,
synchronous/asynchronous execution contexts, suspension and resumption of coroutines.
Developers unfamiliar with the Kotlin coroutine semantics can use coroutines and suspending
functions improperly, resulting in subtle concurrency bugs.

Kotlin is a relatively new language, so we know little about common misconceptions and
bug patterns in programs with Kotlin coroutines. This work aims to shed light on them.

Our contribution. In this study, we explored real-world concurrency bugs in programs that
use Kotlin coroutines. We collected concurrency bugs from popular open-source code reposit-
ories and identified common patterns in these bugs, their root causes, and misconceptions
that might cause them. The results are available in the following GitHub repository [6].

Our analysis shows that some concurrency bugs are related to bridging synchronous and
asynchronous executions. While asynchronous functions can only be called on a coroutine
and the syntax of suspendable functions helps function coloring by marking asynchronous
functions, composing synchronous parts of the program with asynchronous functions remains
a challenge to programmers inexperienced in asynchronous programming. As a quick remedy
for calling asynchronous functions from synchronous functions, they may call these functions
in blocking coroutines, which in turn may affect the program’s performance or even introduce
deadlocks in case of nested blocking calls. On the other hand, when calling synchronous
functions from asynchronous functions, they should be aware that the called function may
run in an asynchronous context. Calling asynchronous functions from such functions can
demand manual bookkeeping of coroutine scopes or omitting one of Kotlin’s core concurrency
principles: structured concurrency [34, 9]. In addition to nested blocking calls, we identified
classes of bug patterns where the developers may violate structured concurrency by improper
scope passing, querying asynchronous objects, synchronization with asynchronous objects, and
improper coroutine exception handling.

In summary, our work makes the following contributions:
We present the first (to the best of our knowledge) comprehensive study of real-world
concurrency bugs in programs that use Kotlin coroutines, examining 55 concurrency bugs
selected from 7 popular open-source repositories that use Kotlin coroutines.
We identify common bug patterns related to Kotlin coroutines, presenting real-world
examples and possible corrections for each, providing root causes and misconceptions
that lead to these bugs, and discussing strategies for their automated detection.
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Moreover, we communicated our findings to Kotlin developers. Our initial discussions
show that our findings align with some of their observations, e.g. [29, 27]. We are in contact
with them to develop inspection tools for identified bug patterns and have already contributed
to IntelliJ IDEA with an inspection that detects one of the identified bug patterns [7].

Impact. We envision our findings contributing to developing reliable Kotlin programs
targeting multiple audiences. They can help (i) Kotlin programmers better understand
concurrency bugs and write correct programs, (ii) increase the awareness of programmers
using Kotlin libraries about the potential asynchrony in the functions they use, (iii) provide
insights to the Kotlin language team about possible misconceptions of programmers and (iv)
researchers develop suitable concurrency analysis and testing tools for Kotlin programs.

2 Background on Kotlin Coroutines

Essentially, coroutines are lightweight threads that are relatively cheap to suspend and
resume. They also support efficient cancellation, which, in sum, makes them very powerful
for asynchronous programming. This section briefly introduces coroutines in Kotlin. dis-
cussing important differences compared to traditional threads and the features necessary to
understand the bug patterns we present in our study.

Launching a coroutine. A coroutine is a computation unit not bound to any particular
thread. Instead, coroutines run on threads and reuse them. When a coroutine gets suspended
(pauses in the middle of computation), the underlying thread does not park but takes another
coroutine and executes it, utilizing resources more efficiently. In this essence, coroutines can
be considered a framework for managing expensive threads.

When launching a new coroutine, we can specify a coroutine dispatcher, which determines
how to schedule the coroutine. The default dispatcher (Dispatchers.Default) is essentially
a thread pool, where the number of threads is bound to the number of CPUs. It is also
possible to launch coroutines on the Main dispatcher, ensuring that they are executed on
the Main (UI) thread, or the IO dispatcher when the code does not compute something but
blocks the running thread with an I/O operation.

Listing 1 shows an example with one coroutine launching another and printing “Hello”,
and the second suspending for one second and printing “World!”. The main() function starts
with a runBlocking call, which bridges the non-coroutine and coroutine worlds, blocking
the current thread for the duration of the coroutine it runs. The launch call starts a
new coroutine concurrently with the rest of the code on Dispatchers.Default coroutine
dispatcher, which means this coroutine will run on a shared pool of threads. The delay call
in the launched coroutine suspends it for one second. As result, this code prints “Hello”
followed by “World!”.

Listing 1 Launching a new coroutine in Kotlin.
1 fun main () = runBlocking { // launches a coroutine on this thread
2 launch ( Dispatchers . Default ) { // launch a new coroutine
3 printWorldWithDelay ()
4 }
5 println ("Hello")
6 }
7
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8 suspend fun printWorldWithDelay () {
9 delay (1000L) // non - blocking delay for 1 second

10 println ("World!")
11 }

Suspending functions. To utilize coroutines, Kotlin provides the suspending function
concept. Suspending functions, marked with suspend modifier, can be paused and resumed
later without blocking the underlying thread. In Listing 1, printWorldWithDelay() and
delay(..) are suspending functions, which might pause (in this case, the underlying
thread switches to executing another coroutine). A suspending function can only be called
from another suspending function, providing a structured way to write asynchronous and
non-blocking code.

To summarize, the suspend keyword in Kotlin is used to mark a function that can be
asynchronously completed – it can suspend its execution at some point, being resumed where
it left off later, without blocking the underlying execution thread.

Structured concurrency. Coroutines follow a principle of structured concurrency, which
means that new coroutines can only be launched in a specific scope, delimiting the lifetime
of the coroutine. Structured concurrency ensures that they are not lost and do not leak.
An outer scope cannot be completed until all its children’s coroutines are complete, while
cancellation of one of the coroutines in a scope instantly aborts the others within the scope.

In Listing 1, runBlocking launches a new coroutine and establishes a coroutine scope
(accessible by this in the code block), so any coroutine launched within this block will
cause this runBlocking call to wait until the launched coroutine finishes. This is why the
runBlocking call does not complete until the second coroutine that prints “World!” finishes.

One may also specify a custom CoroutineScope to ensure that launched coroutines
do not get lost and do not leak. Specifically, the scope finishes when all the coroutines
launched within it are completed, while canceling the scope results in the cancellation of
all the coroutines within it. Listing 2 contains the printHelloWorld() suspending function
that, similarly to the code in Listing 1, launches a new coroutine and prints “Hello”, while
the launched coroutine suspends for one second and prints “World!”. The coroutine scope
here ensures that printHelloWorld() finishes only when the launched coroutine finishes. At
the same time, in case the launched coroutine gets canceled, the whole scope gets canceled,
resulting in printHelloWorld() cancellation.

Listing 2 Creating a custom CoroutineScope in Kotlin.
1 suspend fun printHelloWorld () = coroutineScope {
2 launch {
3 delay (1000L)
4 println ("World!")
5 }
6 println ("Hello")
7 }

Cancellation. Kotlin coroutines provide a built-in cancellation mechanism, which is es-
pecially useful for long-running applications. For example, a user might have closed the
page that launched a coroutine, so its result is no longer needed, and the coroutine can be
canceled. If a coroutine gets canceled while suspending, the respective suspend function
throws CancellationException – the user code must not catch and always propagate it.
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Listing 3 Coroutine communication via channel.
1 fun main () = runBlocking {
2 val channel = Channel <Int >( capacity = 1)
3 launch {
4 for (x in 1..5) channel .send(x * x) // sends to channel
5 }
6 repeat (5) {
7 println ( channel . receive ()) // receives from channel
8 }
9 }

With structured concurrency, when a coroutine is canceled, all the coroutines operating
within the scope get canceled, too, thus ensuring that all the related computations are safely
canceled and do not leak.

Channels. When programming with coroutines, developers typically use channels for implicit
synchronization and communication instead of manipulating shared memory. A channel is a
blocking queue of bounded capacity with receive operation suspending if the channel is
empty and send suspending when the channel is full. Listing 3 illustrates an inter-coroutine
communication via channel. One coroutine sends square numbers to the channel, and the
main coroutine reads these numbers from the same channel and prints them.

Coroutines and threads. Coroutines do not introduce a new concurrency model but enable
cooperative concurrency and efficient and safe thread management, with the structured
concurrency feature and explicit communication primitives in particular. However, one
may still program with coroutines in a way similar to programming with threads, sharing a
mutable state (e.g., a concurrent cache) and using the same synchronization primitives (e.g.,
mutex).

Discussion. Programming with coroutines varies significantly from traditional thread-based
programming. These differences might give rise to unique bugs distinct from those typically
encountered when manipulating threads and shared memory. This work sheds light on popular
concurrency bug patterns discovered in real-world applications with Kotlin coroutines.

3 Bug Study Methodology

Our bug study targets seven open-source repositories listed in Table 1 together with the
numbers of Kotlin code lines, commits, and GitHub stars. The repositories are selected based
on three criteria: (i) the repository mainly contains Kotlin code, (ii) the project depends
on the Kotlin coroutines library, and (iii) the repository has a high number of commits,
indicating its active development and high number of stars indicating its popularity and the
interest of the community.

As Kotlin is the primary language for Android development, we started with identifying
top-starred Android projects on GitHub and eliminated the projects that have less than
1,000 commits and lack descriptive commit messages. As a result, we obtained two repos-
itories: the Shadowsocks proxy client [31] and the Tachiyomi comic reader [35]. Next, we
determined the Android repositories with the highest commit count. After elimination, the
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Table 1 The selected GitHub repositories for the bug analysis.

Repository Commits Stars Kotlin LOC Total LOC
JetBrains/intellij-community 427.4 K 16.1 K 1 603.4 K 9 805.0 K
wordpress-mobile/WordPress-Android 83.2 K 2.9 K 243.5 K 4 561.7 K
woocommerce/woocommerce-android 46.8 K 259 250.5 K 367.6 K
mozilla-mobile/firefox-android 30.2 K 1.3 K 431.1 K 717.0 K
jshaw29/tachiyomi-backup 1 6.2 K 25.8 K 66.1 K 114.1 K
ktorio/ktor 5.1 K 11.8 K 152.5 K 152.6 K
shadowsocks/shadowsocks-android 3.6 K 34.3 K 7.8 K 12.2 K

following three were selected: the WordPress website builder [3], the WooCommerce webshop
manager [2], and the Firefox web browser [25]. Additionally, we selected the Ktor [18]
framework for building asynchronous server-side and client-side applications and IntelliJ
IDEA Community Edition [17], both developed by JetBrains – the main maintainers of
Kotlin coroutines.

To collect concurrency bugs related to Kotlin coroutines, we analyzed all commits in the
selected repositories. Specifically, (1) we filtered the commits based on whether the commit
messages contained specific concurrency-related keywords, and (2) manually reviewed the
sifted commits. Finally, (3) we categorized the identified bugs by the root causes of the errors.

Filtering the commits based on the commit messages. Following prior research on
concurrency bug studies [38, 40, 23], we selected the commits that include at least one
of the following keywords: race, deadlock, synchronization, concurrency, lock, mutex,
atomic, compete, or semaphore. With our work focusing on Kotlin coroutines, we expanded
the filter with the coroutine-related keywords: runBlocking, Dispatcher, CoroutineScope,
cancel, and CancellationException. For the feasibility of the manual analysis, we limited
the number of selected commits associated with each keyword to the most recent 30 commits.

Manual analysis of the selected commits. After filtering the commits in the repositories, we
had 1353 commits to analyze. We manually reviewed them, examining their commit messages
and code changes. We selected the commits that fixed a concurrency bug involving Kotlin
coroutine primitives, with the change being comprehensible without in-depth knowledge of
the codebase. Thus, we also filtered out the classic concurrent bugs unrelated to coroutines.
We ended up with 55 bugs that involve Kotlin coroutine constructs.

Manual analysis and categorization of the bugs. Finally, we categorized the filtered 55
bugs by their root causes, analyzing the programming patterns that led to the errors. The
source code links to the studied bugs are available in our GitHub repository [6].

Classic concurrency bugs. As the goal of this work is to analyze concurrency bugs that are
related to Kotlin coroutines, the study does not cover traditional multithreaded concurrency
bug patterns [23] such as data races, order violations, or atomicity violations. Rather, we
focus on the bug patterns related to and introduced by using Kotlin coroutines constructs.

1 The Tachiyomi repository has been taken down since January 2024: https://tachiyomi.org/news/2024-
01-13-goodbye, so we reference a backup repository instead.

https://github.com/JetBrains/intellij-community
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/woocommerce/woocommerce-android
https://github.com/mozilla-mobile/firefox-android
https://gitlab.com/jshaw29/tachiyomi-backup
https://github.com/ktorio/ktor
https://github.com/shadowsocks/shadowsocks-android
https://tachiyomi.org/news/2024-01-13-goodbye
https://tachiyomi.org/news/2024-01-13-goodbye
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Table 2 Collected bugs and their categorization into bug patterns of nested runBlocking,
scope passing, querying asynchronous objects, synchronizing with cancellation, and
CancellationException bugs. All observed bugs that did not fall into one of these categories
are listed under “Uncategorized”.

Repository Nested
runBlocking

Scope
Passing

Querying
Async

Sync
Cancel

Cancellation
Exception Uncategorized

Intellij 6 0 1 1 10 5
Firefox 2 2 2 2 0 4
Tachiyomi 2 0 0 0 3 1
Ktor 0 0 1 0 0 3
Shadowsocks 0 0 1 0 1 1
Wordpress 1 0 0 0 0 0
Woocommerce 0 2 0 1 0 3
Total 11 4 5 4 14 17

4 Categorization of Bugs

In this section, we analyze the bug patterns and root causes of the concurrency bugs and
categorize them based on their characteristics. We discuss possible developer misunderstand-
ings that lead to these mistakes, offer insight into possible remedial steps to rectify these
errors and suggest methods for their automatic detection.

Table 2 lists the number of bugs in the repositories that fall into each of the bug
categories. Based on our analysis of the Kotlin-specific concurrency primitives that are
commonly involved in bugs and their root causes, we categorized the concurrency bugs in
Kotlin programs into the classes of bugs due to (1) nested runBlocking calls (Section 4.1),
(2) coroutine scope passing (Section 4.2), (3) querying asynchronous objects (Section 4.3),
and (4) synchronizing with cancellation (Section 4.4). A special class of bugs occurs when a
CancellationException is accidentally caught or incorrectly rethrown (Section 4.5). While
it is not strictly a concurrency bug, it is caused by the Kotlin coroutines machinery, so we
included it in our analysis.

Lastly, not all bugs found in the collection phase can be categorized into one of the
categories. These bugs are displayed in Table 2 in the “Uncategorized” column. We omit
these bugs in our analysis.

4.1 Calling runBlocking in a Coroutine
A common concurrency bug in Kotlin manifests when runBlocking coroutine builder is
called from a coroutine and blocks the underlying coroutine dispatcher thread. Such a pattern
can lead to a deadlock. We observed 11 bugs caused by this.

Root cause. The root cause of this bug is an improper use of the runBlocking coroutine
builder designed to bridge non-coroutine and coroutine worlds and not expected to be called
from another coroutine. Such an improper use can block the underlying scheduler thread,
which might lead to a deadlock. Figure 1 and Listing 4 provide program examples with this
bug pattern.

Figure 1 provides the code and the deadlock illustration. The program launches Coroutine
A on the Dispatcher.Main dispatcher (line 2), dispatching the coroutine onto the UI
thread. Then, coroutine A calls nonSuspendingFunction(). In turn, this function calls

ECOOP 2024
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runBlocking (line 8) which launches a coroutine B scheduled on Dispatcher.Main (line 9).
The runBlocking builder blocks the UI thread and, due to structured concurrency, waits
for coroutine B to finish. However, coroutine B cannot be dispatched until the UI thread is
free. In other words, coroutine A blocks the thread that needs to execute coroutine B, while
coroutine A also waits for coroutine B completion, which results in a deadlock.

The same deadlock might also occur in a multi-thread scenario. Listing 4 provides such
an example, using the Default multi-threaded dispatcher to schedule coroutines. Similarly
to the code in Figure 1, the program gets into a deadlock when all threads are executing the
coroutines launched in main(), schedule new coroutines in nonSuspendingFunction() calls.
However, these new coroutines cannot be executed – all the scheduler threads are occupied
with the coroutines launched in main() and wait for the completion of these coroutines
launched in nonSuspendingFunction().

Figure 1 A program with a deadlock due to a runBlocking call from a coroutine on a single-
threaded dispatcher.

Misconceptions. A common misconception is that the runBlocking builder can safely be
used in non-suspending functions. However, a non-suspending function can be called from
an asynchronous context; there is no guarantee that it runs outside a coroutine. Even if
developers know they are working inside a coroutine, they might be unaware that the function
they call contains a runBlocking builder. It is not always trivial to determine whether
a piece of code runs inside a coroutine or whether a function call reaches a runBlocking,
especially when the call stack is large.

When developers need to call a suspending function from a non-suspending function, they
tend to call runBlocking, especially when the developer is unaware that this synchronous
function actually runs in a coroutine. The right course of action, however, is not always
clear and requires careful consideration by the developer. In the example program, turning
nonSuspendingFunction into a suspendingFunction by adding the suspend keyword does
the trick, as given as a potential solution in Listing 5. By turning the function into a suspend
function, the developer can call coroutineScope, which allows for a normal launch. Note
that this requires all functions calling suspendingFunction also to be suspending. In other
cases, one might prefer to acquire a coroutine scope created elsewhere. This scope, however,
comes with its own set of challenges, which we explain in Section 4.2.
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Listing 4 A program with a deadlock due to a runBlocking call from a coroutine on a multith-
readed dispatcher.

1 fun main () = runBlocking {
2 for(i in 1..1000) { // 1000 > max number of scheduler threads
3 launch ( Dispatchers . Default ) {
4 nonSuspendingFunction ()
5 }
6 }
7 }
8

9 fun nonSuspendingFunction () {
10 runBlocking {
11 launch ( Dispatchers . Default ) {
12 println ("Done")
13 }
14 }
15 }

Listing 5 A potential solution to the bug with nested runBlocking calls.
1 fun main () = runBlocking {
2 launch ( Dispatchers .Main) { // launch coroutine A
3 suspendingFunction () // safe to call
4 }
5 }
6

7 suspend fun suspendingFunction () {
8 coroutineScope { // suspends execution until coroutine B is done
9 launch ( Dispatchers .Main) { // launch coroutine B

10 println ("Done")
11 }
12 }
13 }

Ultimately, both runBlocking and coroutineScope will pause the execution of the
function calling it. The difference is that runBlocking does this by blocking the underlying
thread and coroutineScope by suspending the coroutine, which releases the thread in the
meantime.

A situation where it is nontrivial to identify parts of the codebase that run in coroutines
and they may introduce unintended nested runBlocking calls might occur when the codebase
is gradually migrated to use coroutines [10].

Possible automated detection. A static analysis can inspect the program’s call graph and
detect situations when runBlocking is called from a suspend function. This analysis could
also be implemented as an IDE inspection, and we have successfully added one into IntelliJ
IDEA [7].

ECOOP 2024
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4.2 Scope Passing
Scope passing is a coding pattern in which a function launches a coroutine in a coroutine
scope created outside the function. This situation can lead to an unexpected execution order
of program statements, which may violate their intended order. While passing the coroutine
scope is not incorrect and sometimes might be necessary, it makes it difficult to reason about
the execution order.

Root cause. The root cause is the nondeterminism in the completion time of the coroutines
launched on an external scope. Listing 6 provides a program example for the bug pattern.
Consider the function loadTopPerformers (line 4), which is responsible for loading some data
and storing it in the lastUpdateTopPerformers variable (line 2). The developer expects the
data to be available in the lastUpdateTopPerformers variable once the loadTopPerformers
function returns. However, this is not necessarily the case: the coroutine scope used to launch
the coroutine on line 5 is not bound by the function loadTopPerformers; it is inherited
from the DashBoardViewModel class.

As illustrated in Figure 2, the this object in the loadTopPerformers function refers to
class DashboardViewModel, which extends CoroutineScope. This results in the coroutine
unexpectedly outliving the function it was created in.

Figure 2 Visual clarification of coroutine scope origin and usage for Listing 6. Left shows the
situation where the spawned coroutine can outlive the function it was created in. Right shows how
this can be solved by creating a scope in the same function.

The problem can be fixed by ensuring that loadTopPerformersStats returns after the
lastUpdateTopPerformers variable is set. As given in Listing 7, the example bug can be
fixed by starting a coroutineScope call wrapping the function body (line 5). Then, the scope

Listing 6 An example scope passing bug, which is a simplified version of the bug in [32].
1 class DashboardViewModel : CoroutineScope {
2 var lastUpdateTopPerformers : Long? = null
3

4 suspend fun loadTopPerformers () {
5 launch {
6 lastUpdateTopPerformers = observeLastUpdate ()
7 }
8 }
9 }
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Listing 7 A potential solution to example scope passing bug in Listing 6.
1 class DashboardViewModel : CoroutineScope {
2 var lastUpdateTopPerformers : Long? = null
3

4 suspend fun loadTopPerformers () {
5 coroutineScope {
6 launch {
7 lastUpdateTopPerformers = observeLastUpdate ()
8 }
9 }

10 }
11 }

Listing 8 An example for a scope passing bug, which is a simplified version of the bug in [28].
1 class ProductShippingClassViewModel (): CoroutineScope {
2 private var loadJob : Job? = null
3

4 fun load () {
5 waitForCurrentLoadJob ()
6 loadJob = launch { /* loading logic */ }
7 }
8

9 fun waitForCurrentLoadJob () {
10 launch { // launch since join cannot be called from normal fun
11 loadJob ?. join () // join suspends until load job is done
12 }
13 }
14 }

suspends the function loadTopPerformersStats until all its children are completed. Note
that this solution would not have been an option if loadTopPerformers was a non-suspending
function since the coroutineScope can only be called from a suspending function.

Another example of a coroutine unexpectedly outliving its calling function due to launch-
ing on an external scope is provided in Listing 8. The function load starts an expens-
ive load operation by spawning a coroutine (line 6). To ensure this operation only runs
once at a time, the developer keeps a reference to its Job (line 2). Next, he creates a
function waitForCurrentLoadJob that performs a join operation. Then, at line 5, this
waiting function is called before the expensive load operation is started. However, since
waitForCurrentLoadJob is a normal function, it cannot call the suspending join method.
In order to access this join operation, a coroutine is launched (line 10). However, this
coroutine is launched on a scope that is defined outside the waitForCurrentJob function.
The wait function will, therefore, return immediately, allowing a new load job to be started
before the old one is completed.

Misconceptions. A developer might expect a function that launches a coroutine to wait
for the coroutine to finish since that is often the case due to structured concurrency. This,
however, only holds when the coroutine scope is created in that same function. In the
example of Listing 6, the loadTopPerformersStats sits in between scope creation and
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coroutine launch. Listing 8 shows that a normal function waitForCurrentLoadJob calls
a join operation by spawning a coroutine. As discussed in Section 4.1, a problem arises
when a suspend function needs to be called from a non-suspending function that runs in a
coroutine. The developer needs to choose between calling runBlocking, passing scope, or
refactoring all depending code to suspend functions.

Automated detection. Detecting this bug pattern is challenging since there can be valid
reasons for passing the scope. However, the problem is that the developer might be unaware
that, in some cases, a launched coroutine outlives the function that launched it. A simple
analysis can be made that checks whether the scope used to launch a coroutine is created
in the same function or not. A simple and non-intrusive visual indication might aid the
developer in understanding the lifetime and scope of the launched coroutine.

4.3 Querying Asynchronous Objects
A race condition that commonly occurs with many languages is the result of querying the
state of an object in shared memory and, based on that, deciding how to act on it. Listing 9
provides such an example where the developer checks if the channel is closed and sends a
message if it is not closed.

Root cause. The root cause for this bug is simple and similar to race conditions in classical
multithreaded programs. When an object is shared among threads, its state might change
between checking its state and acting on it depending on the accesses to the object. In
the example of Figure 9, the channel can be closed between the check isClosedForSend
(line 1) and sending the message (line 2). A visual representation of this particular example
is provided in Figure 3.

Misconceptions. The misconception is that the state of such an object will not change
between the query and the action, disregarding the possibility of interleavings from other
threads. The fix for the bug is to avoid sending if the channel is closed. As locking is
undesired in Kotlin coroutines, the bug fix does not introduce explicit synchronization but
wraps the send call in a try/catch block. A call on a closed channel should throw a
ClosedSendChannelException, which allows the developer to handle it gracefully.

Automated detection. As the bug occurs in the case of a race condition on the channels,
detecting this pattern can benefit from existing data race detectors.

4.4 Synchronizing with Cancellation
Synchronization with Cancellation is an attempt to ensure that a certain coroutine only runs
once at a time by canceling the previous coroutine before the next is launched.

Root cause. The cancel method of a coroutine returns before the coroutine actually cancels
or stops. In other words, cancel cannot be used to synchronize executions. In the example of
Listing 11 there is a coroutine launched on line 7. The desired behavior is that this coroutine
runs only once at a time. Otherwise, there exists a possible data race between the read (line
8) and write (line 11) actions. The refresh function (line 3) might be called again before
the coroutine on line 7 is finished. To prevent a second coroutine from running in parallel,
the developer keeps a reference to the Job of that coroutine and cancels it before a new
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Listing 9 Race condition on channel status, taken from
the bug fix in [24].

1 if (! channel . isClosedForSend ) {
2 channel .send( message )
3 }

Listing 10 Potential solution to Listing 9.
1 try {
2 channel .send( message )
3 } catch (e: ClosedSendChannelException ) {
4 // handle closed channel if needed
5 }

Figure 3 Visual representation
of the execution order that could
lead to a send operation over an
unexpected closed channel.

Listing 11 Missed synchronization with Job.cancel, a simplified version of the bug in [5].
1 var pendingJob : Job? = null
2

3 suspend fun refresh () {
4 pendingJob ?. cancel () // does not wait for the coroutine to stop
5 coroutineScope {
6

7 pendingJob = launch ( Dispatchers .IO) {
8 val result = read( someVar )
9

10 launch ( Dispatchers .Main) {
11 write(someVar , result )
12 }
13 }
14 }
15 }

coroutine is started. This should ensure that the coroutine only runs once at a time. However,
cancellation does not guarantee that execution will stop immediately, and the cancel() call
does return immediately. Therefore, this coroutine can exist in parallel. Primitives that
allow for synchronization are mutexes, joins, and channels. In this case, a potential solution
is provided in Listing 12, a mutex that wraps the scope of the launched coroutine will make
sure this coroutine can only be launched once the previous one is finished.

Misconceptions. A developer might be unaware that canceling of coroutines is cooperative,
meaning that they can only cancel and stop when they reach a suspension point or manually
check their cancellation status. Therefore, canceling the coroutine never guarantees that
it actually stops. Additionally, the cancel method does not wait for the coroutine to be
stopped.

4.5 Swallowing CancellationException

Incorrect handling of CancellationExceptions can introduce bugs manifesting in the
executions with exceptions. While these bugs are not strictly concurrency bugs, they are
specific to Kotlin coroutines. Therefore, we cover them in this section.

ECOOP 2024



8:14 Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines

Listing 12 A potential solution to the synchronizing with cancel example in Listing 11.
1 val mutex = Mutex ()
2 var pendingJob : Job? = null
3

4 suspend fun refresh () {
5 pendingJob ?. cancel () // optional
6 mutex. withLock { // waits for coroutine to stop
7 coroutineScope {
8

9 pendingJob = launch ( Dispatchers .IO) {
10 val result = read( someVar )
11

12 launch ( Dispatchers .Main) {
13 write(someVar , result )
14 }
15 }
16 }
17 }
18 }

Root cause. A CancellationException is thrown to signal that a coroutine is canceled.
When this exception is caught, it interferes with the canceling mechanism of the coroutines. In
Listing 13, a call to suspendingFunction is wrapped in a try/catch block to log any occurred
errors. However, when the coroutine gets canceled while executing suspendingFunction
a CancellationException is thrown which is then caught and logged. While logging a
cancellation might be unfortunate, a bigger problem is that the cancellation is swallowed,
since for it to work the exception needs to be propagated. A solution is given in Listing 14.
The CancellationException is specifically caught and rethrown. We observed 14 bugs
caused by accidentally swallowing CancellationException. This is also one of the most
discussed issues in the Kotlin Coroutines issue tracker [29].

A bug that we did not observe but can occur involving CancellationException is when
older Java frameworks throw these exceptions that could potentially run in a coroutine,
making it stop silently when it shouldn’t. In the example of Listing 15, a coroutine is
launched on line 2. This coroutine calls a function libraryCall (line 3), which in this
example is part of the same file but, in practice, can be any java library that throws a
CancellationException. When this code example is executed, it will never reach the
println statement on line 4. However, the program does finish gracefully (exit code 0).
This is discussed in greater detail in the article ”The Silent Killer That’s Crashing Your
Coroutines” [11].

Listing 13 Swallowed CancellationException.
1 suspend fun foo () {
2 try {
3 suspendingFunction ()
4 } catch (e: Exception ) {
5 Log.error(e)
6 }
7 }
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Listing 14 A potential solution to swallowed CancellationException in Listing 13.
1 suspend fun foo () {
2 try {
3 suspendingFunction ()
4 } catch (e: CancellationException ) {
5 throw e
6 } catch (e: Exception ) {
7 Log.error(e)
8 }
9 }

Listing 15 A library call throws a CancellationExcpetion and incorrectly cancels the coroutine.
1 fun main () = runBlocking {
2 launch {
3 libraryCall ()
4 println (" Unreachable ")
5 }
6 }
7

8 fun libraryCall () { // Anything that throws CancellationException
9 throw CancellationException () // Exception unrelated to coroutines

10 }

Misconceptions. The developer might forget or not be aware of the canceling mechanism
of coroutines. Accidentally catching a CancellationException is the result of that.

Possible automated detection. One may implement a static analysis that inspects the call
graph and searches for try-catch blocks that can call a suspend in the try block and catch
CancellationExcetion (or a more generic one, e.g., Exception or Throwable) without
propagating it by rethrowing outside the catch block. However, one should be careful when
other constructs from the standard Java library that may throw CancellationException
are used in the try block.

5 Threats to Validity

Potential threats to the validity include the representativeness of the studied concurrency
bugs and our study methodology. Similar to other bug studies, our work analyzes a limited
set of project repositories and a limited set of their commits.

We studied the Kotlin repositories based on our selection criteria for well-maintenance
and popularity, which are based on the lines of code, number of commits, and stars. However,
these criteria can potentially miss some Kotlin repositories with concurrency bugs. Similarly,
we study a subset of commits in the selected repositories filtered by some keywords. We
do not include some Kotlin framework keywords in our repository search, such as “channel”
and “suspend”, which are frequently used during development with coroutines, appear in
many of the commits, and introduce noise in the search results. Hence, the search results
may potentially miss some bugs. Moreover, some bugs may not be explicitly discussed in the
repositories’ commit messages or may not even have been diagnosed or fixed; therefore, they
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may be missed by a repository search. Finally, our methodology involves a manual analysis
of the commit source codes. While we aimed the analysis to be comprehensive, it may have
missed some concurrency bugs studied or fixed in the commits.

While the study has limitations, some of which are inherent to real-world bug studies, we
believe the studied bugs provide a useful sample of real-world concurrency bugs to shed light
on misunderstandings and bug patterns in Kotlin programs with coroutines.

6 Key Takeaways and Discussion

While Kotlin coroutines provide a robust and straightforward mechanism for writing asyn-
chronous programs, our study shows that developers can introduce specific concurrency bugs
if they need to correctly use the asynchrony features.

Key takeaways. Our main observation is that developers may find it hard to identify
function coloring, i.e., distinguishing which parts of their code run in asynchronous contexts,
bridging asynchronous and synchronous parts of their code, and they may be unaware of
or disregard the semantics and mechanisms of some coroutine features (e.g., the coroutine
cancellation mechanism).

While the Kotlin Coroutines framework helps developers identify asynchrony in their code
by marking suspendable functions, programmers should be aware of regular functions that
are called by asynchronous functions. Such functions, in turn, can run in an asynchronous
context, and it can be hard to follow if they run in synchronous or asynchronous context,
especially in large programs with deep execution call stacks.
Developers should be careful when bridging the synchronous and asynchronous parts of
their programs. Our analysis shows that when they need to call a suspend function from
a synchronous context, they may tend to use runBlocking calls as a quick solution. This
mistake is understandable since a suspend function calling a synchronous one is unaware
that it might reach a runBlocking, while the synchronous function is unaware it is called
from a coroutine. However, this unawareness can lead to dangerous runBlocking calls,
which can result in serious concurrency errors such as deadlocks.
When developers are aware of the asynchronous execution context but still need to call
a suspend function from a normal one, they might choose to pass a coroutine scope.
This solution, however, can introduce unexpected executions: the suspend function can
outlive the synchronous function that called it. Incorrect reasoning about the function
scopes and making incorrect assumptions about the completion of functions can result in
unexpected execution orders of the program’s statements.
Similarly, the developers should be aware of the asynchronous objects and use the correct
library structures to access or run operations on them. Incorrect assumptions (e.g., on the
synchronization with channels) and ignorance of possible interference from other threads
result in concurrency errors.
Finally, developers should be aware of the semantics and guarantees of the programming
abstractions and features they use. For example, we observed that there is common
confusion about the canceling behavior of coroutines. Canceling a coroutine is cooperative
and, therefore, does not guarantee it will be canceled. Similarly, the developers unaware
of the cancellation exception handling mechanism of coroutines can introduce serious
problems as incorrectly catching for these exceptions potentially silences critical exceptions
in their programs.
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Discussion. Besides increasing developers’ awareness of common misconceptions, under-
standing common bug patterns can lead to the development of suitable program analysis
tools for Kotlin programs. We communicated our findings to the Kotlin and IntelliJ teams
at JetBrains. Our findings have led to the development of an inspection tool for detecting
problematic runBlocking calls, which is currently part of the IntelliJ source code [7].

7 Related Work

7.1 Studies of Real-world Concurrency Bugs
Similar studies have been conducted that collect and categorize concurrency bugs in different
programming languages and frameworks. Earlier work analyses of C/C++ concurrency bugs
from server and client applications [23, 15], and report that most non-deadlock concurrency
bugs are caused by atomicity and order violations. Focusing on misuse of asynchronous
constructs in C# programs, the work in [26] identifies problems due to misuse or unnecessary
use of asynchronous methods, invocation of long-running tasks in asynchronous methods and
some anti-patterns specific to C#’s async and await model. Another study on real-world
concurrency bugs [40] targets asynchronous and event-driven Node.js programs. The work
identifies the concurrency bug patterns in Node.js programs as atomicity violations, order
violations, and starvation in the execution of event handlers.

For Golang, the studies in [8] and [38] collect and analyze real-world concurrency bugs.
The bug study in [8] focuses on data races in Go programs, and [38] focuses on the inter-thread
communication mechanisms, i.e., whether message passing or shared memory concurrency is
less error-prone. The findings of these works successfully led to the research and development
of multiple concurrency bug analysis techniques for Go [39, 21, 13, 20, 36].

Targeting the actor model of concurrency, bug studies in [16, 22, 4] focus on actor
programs, where a program consists of a set of actors that concurrently operate on their local
states and communicate by exchanging asynchronous messages.The work in [16] categorizes
the bugs in actor programs into communication bugs (problems in handling messages or
due to delivery orderings of messages) and coordination bugs (e.g., ungraceful shutdown or
recovery of actors). Following the categorization of classical shared-memory concurrency bugs,
the work in [22] categorizes the actor program bugs into lack of progress and message protocol
violations and defines specific subclasses of each category for actor programs. The study of
actor concurrency bugs in [4] focuses on real-world Akka actor programs and analyzes their
symptoms, root causes, and API usage. The bug characteristics in actor programs differ
from classical shared memory programs and coroutine programs we study in this work since
actors provide a high-level concurrency model without a shared state, and the concurrency
nondeterminism is in the order of asynchronous events.

Different from these works, which identify the classical bug patterns of atomicity and
order violations in the shared memory accesses [23, 15, 1], atomicity and order violations
in the handling of events [40], message protocol violations in actor programs [16, 22, 4], or
misuses and bugs in asynchronous programming in C# [26] or Go [8, 38], in this work, we
focus on concurrency bugs in Kotlin programs and identify new bug patterns specifically
related to Kotlin coroutines.

7.2 Analysis of Kotlin Programs
Kotlin is a relatively new programming language and only some recent research addresses the
analysis of Kotlin programs. A related work targeting channel-based concurrent programs [30],
which tests channel-based systems through fuzzing, has found and led to the resolution of a
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bug in the Kotlin coroutine implementation. Another related work, Lincheck [19], provides a
testing framework for concurrent algorithms that run on the JVM, which has been adopted
in Java and Kotlin communities.

The bug patterns we discovered in this work can be useful for designing and developing
program concurrency analysis tools for Kotlin programs.

8 Conclusion

This paper introduces the first real-world concurrency bug study for Kotlin coroutines,
shedding light on the typical patterns of concurrency bugs. Having examined 55 concurrency
bugs selected from 7 popular open-source repositories that use Kotlin coroutines, we identified
common bug patterns related to Kotlin coroutine semantics. We distilled suggestions for
Kotlin developers to avoid these programming errors and discussed possible techniques to
detect such issues automatically. We reported our findings to the Kotlin and IntelliJ teams
at JetBrains, and we believe our findings will help future research and development of
concurrency analysis tools for Kotlin.
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