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Abstract
We extend prior work on a language-based approach to versioned software development to support
versioned programs with mutable state and evolving method interfaces. Unlike the traditional
approach of mainstream version control systems, where a textual diff represents each evolution step,
we treat versions as programming elements. Each evolution step, merge operation, and version
relationship is represented explicitly in a multifaceted code representation. This provides static
guarantees for safe code reuse from previous versions and forward and backwards compatibility
between versions, allowing clients to use newly introduced code without needing to refactor their
program manually. By lifting versioning to the language level, we pave the way for tools that interact
with software repositories to have more insight into a system’s behavior evolution. We instantiate
our work in the Python programming language and demonstrate its applicability regarding common
evolution and refactoring patterns found in different versions of popular Python packages.
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1 Introduction

The evolution of software systems is an essential aspect of software development and its life-
cycle. As requirements from stakeholders change, software systems must evolve to conform to
such changes. These changes may include bug fixing, implementing new features, porting code
to new hardware, updating business requirements, and other tasks that represent activities in
the life-cycle of a software system. As the release cycles in the software development process
become shorter [20] the overhead of managing multiple versions increases. On the one hand,
software maintainers have to reason more frequently about what changes to backport and
whether the changes they introduced break existing client code. On the other hand, the
stakeholders of a product will need to consider more frequently whether or not to upgrade.
Integrating a release with breaking changes leads to runtime errors and requires manual
intervention, while missing a critical update may lead to software vulnerabilities.

Given the manual effort required for semantic software versioning, which is largely rooted
in the fact that version control systems (VCS, e.g. git, svn, mercurial) operate on text
rather than programs, we extend prior work on a language-based VCS for a core functional
language, Versioned Featherweight Java [5], by adding support for programs with mutable
state and side effects, and versioning of class methods.
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9:2 A Language-Based Version Control System for Python

The current industry practices for software evolution advocate the use of version control
systems. However, while very good at managing changes to information, VCS give no
semantic meaning to each program delta (diff ). Each evolution step is typically defined by
1) the new code it introduces and 2) an accompanying natural language message describing
the change. To issue a new version of the software, the developer includes one or more of
these steps and generates a changelog, naming the version according to some convention.

A widely adopted convention is Semantic Versioning [26], where the increment of each
version identifier denotes the nature of the introduced changes. Clients can then define their
update policy according to this convention. There is no guarantee that the code effectively
follows the versioning policy (e.g. the developer unknowingly introduced an unexpected
breaking change), thus VCS allow for inconsistent versions to be committed, and still require
work from developers in identifying the kind of changes made [33, 27].

In this work, we embed the versioning in the programming language, so that the developer
specifies as code what each delta is, and also how it relates to other versions. This allows for
(formal) verification on if and how the different versions interact with each other; it allows for
clients to use newly introduced code without changing their existing program; it is well-suited
for targeting software for a specific version, producing artifacts containing only the necessary
code; for providing a version-aware development environment (drawing inspiration from [23])
in which a developer may edit a snapshot and have the changes automatically committed
with the appropriate version tags. We extend previous work [5] to provide a language-based
VCS for Python programs, where versions and their relations are specified as code in the
program. The features that strictly extend [5] are:

A mechanism for defining transformations (which we call lenses) between method interfaces
in different, related, versions. This allows the developer to specify how the evolution of a
method interface is to be handled by clients, so that they do not have to manually adapt
their code to account for the new definition.
Support for mutability and side-effects. Featherweight Java (FJ) is a functional language
and, as such, does not model side effects. In this work, we instantiate our core calculus
in Python, a mainstream language with new challenges in comparison to FJ, particularly
concerning mutability. To do so, we ensure that mutability and side-effects are well
reflected when transitioning between versions with different state representations.

In this setting, the developer of a versioned program defines how the versions of the
program relate to each other, and provides each evolution step as code, to define how clients
should evolve between versions. As such, clients can then get new features from other versions
without their code breaking, and without any need for manual refactoring: the evolution
steps provided by the developer are used to adapt the code to the client version, so that they
can use it without breaking.

The diagram in Figure 1 provides the intuition on the parallels between traditional version
control systems and our approach. With the developer providing each evolution step as code,
we allow clients to migrate automatically, thus removing the need for migration tools (which
can also introduce bugs) to help clients do that. The traditional repository operations, such as
committing a file, or merging two branches, are well supported in our setting, by defining the
appropriate version graph. Finally, we provide a slicing procedure to allow developers to issue
a release for a given version, without having to manually perform operations on the repository
(e.g. backporting a security fix to another branch). The resulting slice, corresponding to a
release for a given version, ensures that the release conforms to the versioning graph, i.e. it
does not introduce unintended breaking changes.
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Figure 1 Diagram describing the parallels between version control systems and our approach.

The main contributions of this paper are as follows:
Extending the work in [5], with method lenses and programs with state and side-effects.
Instantiating the core calculus in Python to add support for versioned programs.
Extending a type system for Python to account for versioned programs.
Introducing a slicing compiler that can generate a projection of a versioned Python
program for a single target version.

We expect this approach to provide static guarantees of safe code reuse from previous
snapshots, as well as ensuring forward and backward compatibility between related versions
through type-safe state transformation functions.

The remainder of this document is structured as follows: section 2 provides a running
example to illustrate the ideas in this work; section 3 describes in detail our technical
approach; section 4 evaluates the approach using public Python packages and provides the
empirical results; section 5 discusses the related work in this space; section 6 discusses the
limitations of this work and how we plan to address them; section 7 summarises our results.

2 Example

In Figure 2, we present examples of two Python programs: a versioned library program
(Figure 2a) and a client program that uses a specific version of that library (Figure 2b). The
versioned program (Figure 2a) contains a version graph describing how the different versions
relate to each other (lines 1-3). The class Name of this program contains versioned definitions
of methods, which are annotated with the version in which they are introduced.

In this example, there are three different versions of the library program, the class Name.
The program starts with the definition of a version graph for class Name. Version init is
the starting point of the example, and includes the definitions of fields first and last, and
of methods display and set_last. Note that, in version bugfix, the developer introduces
a new definition of method display (lines 15-17), but otherwise makes no changes. This
new definition supersedes the previous one for clients running in the context of version init.
This is indicated by the replaces relationship between versions bugfix and init.

Finally, in version full the developer introduces a new constructor (lines 9-11), where
they change the internal state representation of the class (line 11), and a new method,
get_full_name (lines 21-23). Contrary to version bugfix, these new definitions are only
meant for clients that are specifically running in the context of version full, and does not
affect clients in other versions. The code from version init is available in the new versions,
allowing it to be safely reused.

ECOOP 2024



9:4 A Language-Based Version Control System for Python

1 @version(’init’)
2 @version(’bugfix’, replaces=[’init’])
3 @version(’full’, upgrades=[’init’])
4 class Name:
5 @at(’init’)
6 def __init__(self, first: str, last: str):
7 self.first = first
8 self.last = last
9 @at(’full’)

10 def __init__(self, full: str):
11 self.fname = full
12 @at(’init’)
13 def display(self):
14 return f’{self.first}, {self.last}’
15 @at(’bugfix’)
16 def display(self):
17 return f’{self.last}, {self.first}’
18 @at(’init’)
19 def set_last(self, name: str):
20 self.last = name
21 @at(’full’)
22 def get_full_name(self):
23 return self.fname

(a) Example of a versioned Python class.

1 @run(’full’)
2 def main():
3 n = Name(’Bob Dylan’)
4 n.set_last(’Marley’)
5 print(n.display())
6 print(n.fname)

(b) Client code for version full.

1 @get(’full’, ’init’, ’first’)
2 def lens_first(self) -> str:
3 if ’ ’ in self.fname:
4 return self.fname.split(’ ’

)[0]
5 return self.fname
6 @get(’full’, ’init’, ’last’)
7 def lens_last(self) -> str:
8 if ’ ’ in self.fname:
9 return self.fname.split(’ ’

)[1]
10 return ’’
11 @get(’init’, ’full’, ’fname’)
12 def lens_full(self) -> str:
13 return f’{self.first} {self.

last}’

(c) Lenses for fields between different
versions.

Figure 2 Client and library code.

The version graph (lines 1-3) is a set of version decorators defining a name for a new
version and the type of relationship (upgrades or replaces) they have with other versions.
The type of relationship describes how the new version affects the existing version graph,
including versions introduced earlier: if the code is to be implicitly available for clients in
previous (related) versions, then the type replaces is used. This ensures clients running
in a previous version will have the new definitions available without having to update their
code (e.g. bug or security fixes). Otherwise, if the new version is a backward-incompatible
extension of a previous one (c.f. class inheritance), then the type upgrades is used. This
ensures that definitions introduced in an upgrade version are only available for clients running
explicitly in that version. These decorators can be provided by the developer (i.e. while
developing the program) or, for existing programs, they can be (naively) inferred from the
repository (e.g. the version graph for the repository in Figure 3a is depicted in Figure 3b).

The library program also contains several versioned programming elements, such as
constructors (lines 5-11) and methods (lines 15-23), which are decorated with the version in
which they are introduced.

The client program (Figure 2b) uses version full of the library. It uses the __init__
method (line 3) introduced in version full; the set_last (line 4) and display (line 5)
methods introduced in previous versions; and the attribute fname, which is the only field of
class Name in version full.
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(a) Example of a git repository with two commits
(init, bugfix), one branch (full), and one merge
(final).

1 @version(’init’)
2 @version(’bugfix’
3 , replaces=[’init’])
4 @version(’full’
5 , upgrades=[’init’])
6 @version(’final’
7 , upgrades=[’full’]
8 , replaces=[’bugfix’])

(b) Version graph inferred from a git repository.

Figure 3 Repository and its corresponding version graph.

To resolve methods for the client at version full, we perform a method lookup operation
taking the version graph into account: the available definition of method set_last is the
one introduced in version init; the definition of method display is the one from version
bugfix, because it replaces the definition in version init. Given that these definitions are
available at version full, clients should be able to safely use them in that context.

However, since these methods use a different internal representation of class Name, we can
not use them as-is in version full, as that would result in an error since the class fields do
not match. We propose that, instead of re-implementing all the methods missing from the
new representation (of version full), the developer provides a mapping between the fields of
versions init and full. This mapping, which we call a get lens (Figure 2c), represents the
inner semantics of the evolution step.

A get lens is introduced by a method with a decorator of the form @get(v,v’,f), that
maps how field f of version v’ is derived from the state in version v. For instance, the lens
from version full to version init of field first (Figure 2c, lines 4-8) defines how the field
first, in version init, is obtained from the state of version full. Lenses are the building
blocks for developers to express evolution steps in the form of code.

The versioning-aware method lookup policy coupled with lenses allows clients to use code
from different versions at runtime in a way that respects the version graph and the evolution
semantics specified by the developer.

It is also possible to obtain a static, self-contained, slice of a versioned program for a
specific target version. This slice will include all code available throughout the version graph
for that target version, using the lookup policy described earlier. Again, since this can
include code that uses different internal state representations, the slicing procedure rewrites
such expressions using the corresponding lenses so that they are correct in the context of the
target version, as hinted at earlier.

For example, at version init, the available definition for method display is the one
introduced in the bugfix version. As such, this definition must be included in the slice
for version init (Listing 1). Since both versions init and bugfix share the same internal
representation of class Name (version bugfix does not define its own class fields), in the slice
for version init we do not need to rewrite the method display, as it already complies with
the state of version init.

1 class Name:
2 def __init__(self, first: str, last: str):
3 self.first = first
4 self.last = last
5 def display(self):
6 return f’{self.last}, {self.first}’

Listing 1 Slice of a versioned Python class for version init.

ECOOP 2024



9:6 A Language-Based Version Control System for Python

At version full, the available definition for methods display and set_last are intro-
duced in versions bugfix and init, respectively. These definitions must be included in
the slice for version full (Listing 2). In this case, since version full introduces a new
internal representation of class Name (by changing the fields from version init), then the
definitions of methods display and set_last do not conform to this representation, as
they are defined in the context of other versions. As such, we need to rewrite the methods
using the corresponding lenses for fields first and last (Listing 2, lines 12-21), so that they
match the context of version full.

1 class Name:
2 def __init__(self, full: str):
3 self.fname = full
4 def display(self):
5 return f’{self.lens_last()}, {self.lens_first()}’
6 def set_last(self, name: str):
7 __name = name
8 self.fname =
9 self.lens_full(first=self.lens_first(), last=__name)

10 def get_full_name(self):
11 return self.fname
12 def lens_full(self, first, last):
13 return f’{first} {last}’
14 def lens_first(self):
15 if ’ ’ in self.fname:
16 return self.fname.split(’ ’)[0]
17 return self.fname
18 def lens_last(self):
19 if ’ ’ in self.fname:
20 return self.fname.split(’ ’)[1]
21 return ’’

Listing 2 Slice of a versioned Python class for version full.

Both the library and client programs are valid Python programs1. The library program
can be fed as input to our compiler to extract a projection for a given version. The result of
this is a valid Python program without any version annotations. The client program, when
fed to an interpreter, is executed following the operational semantics described in this work
for multi-version program execution.

3 Design

The ideas presented in this work are mainly language-agnostic, provided the language has
support for objects and mutability. To implement these ideas, we instantiate this work in
the Python programming language [1]. We chose Python for the following reasons:

Being a mainstream and widely adopted language facilitates the evaluation of the approach
using publicly available repositories of both software libraries and their corresponding
clients.

1 For brevity, the statement to import the decorators, which is necessary for the code to run, is omitted
here
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In comparison with other mainstream languages that provide similar features (e.g. Java,
C#), Python’s less complex syntax usually results in simpler programs [22]. This, again,
facilitates the empirical evaluation of the approach, as the code patterns will be simpler
to grok.
From an implementation point of view, Python’s dynamic nature allows us to quickly
prototype a solution that implements the ideas discussed in this work.

Our implementation works with a large subset of the Python language. Particularly, we
do not provide semantics for the versioning of: async/await statements, yield statements,
list comprehensions, and modules2. The implementation also works under the assumption
that the program is typed, either manually or with the help of automated type inference
tools [6, 17, 32, 21]. This requirement should not be deemed too restrictive, since the practice
of providing type annotations in Python programs is becoming increasingly common [7].

On top of this, we provide a type-checker and a slicing procedure for versioned Python
programs. The type-checker is an extension of Pyanalyze, a type-checker developed by Quora
that also annotates the AST nodes with their corresponding types. We extend Pyanalyze
with support for versioned lookup of fields and methods, ensuring the correct type are
inferred. The type-checker ensures the soundness of the program against its version graph,
and provides the following guarantees for well-typed programs:

A client that follows the versioning policy, defined in the version graph, will never have
their code break.
If a method needs to be rewritten for a different, related, version, it will always succeed
and never produce a type error.

The slicing procedure allows for the projection of code to a specific version, inspired by
software product lines and other technical approaches, such as programming variability and
CI/CD pipelines. This procedure is implemented on top of a rewriting mechanism to allow
library developers to release the code targeting a specific version. For well-typed programs,
the slicing procedure ensures that:

All necessary code for the target version, according to the specification in the version
graph, is included.
All the code included from other, related versions, is well-typed in the context of the
target versions, by applying state or method transformations when necessary (using
lenses).
Client code that targets the sliced projection will always type-check, even if the resulting
slice includes code from other versions.

The remainder of this section is structured as follows:
Section 3.1 describes how to define versioned elements in a program.
Sections 3.2 and 3.3 describe the versioned lookup disciplines for fields and methods
respectively.
Section 3.4 describes the use of lenses, particularly how they affect the result of a slice
for a version to ensure that it is well-typed in the presence of elements from different,
related versions.
Section 3.5 describes the rewriting procedure, which is crucial to ensure that code from
different versions included in a slice is always well-typed.
Section 3.6 describes the details of the slicing procedure, that allows library developers to
produce the code that targets a specific version.

2 Although we do not provide versioning semantics for these elements, they can still be used in a versioned
program; however, they will not follow the semantics described here.

ECOOP 2024



9:8 A Language-Based Version Control System for Python

3.1 Versioned programming elements in Python
To add support for versioning elements in Python programs, we provide the following class
and function decorators3. The motivation for using decorators is that they are enough to
implement the semantics described here, without requiring changes to the language syntax:

1 @version(<version>, <replaces>, <upgrades>)
2 @at(<version>)
3 @get(<from>, <at>, <name>)
4 @run(<version>)

Listing 3 Decorators for versioned Python programs.

These decorators allow programmers to define new versions of a class (line 1) by providing
a name (<version>) and the relation to other versions, if any (<replaces> and <upgrades>);
to introduce class methods in a version (line 2); to define class lenses that map how a field or
a method (<name>), defined in the context of a version (<at>), is mapped to the context of
another version (<from>) (line 3); and to indicate that a function should run in the context
of some version (<version>) (line 4).

The type-checker ensures the soundness of the decorators presented here. It ensures that
all version references are defined; that the version graph is acyclic; that the attribute specified
in a lens (<name>) exists in the context of its <at> version, if it corresponds to a field name,
and that it exists on both versions, if it corresponds to a method name; that the return type of
a get lens matches the type of its corresponding field, or the type of its corresponding method
(<name>); and that a class method defined at some version (<version>) is type-checked
against the context of that same version (namely, when resolving field and method types).

The @run decorator defines the operational semantics to provide an environment for
multi-version program execution. Additionally, we provide static semantics for versioned
program slicing, so that developers are able to extract a static projection of code for a
specific version. This is based on the concepts of class field and method lookup, version
lenses (provided by the developer), and program slicing. We present these concepts in greater
detail in the following sections.

3.2 Class field lookup
When type-checking a method of a class defined at some version v, we might encounter field
access expressions (e.g. return self.f). To check such expressions, we need to know 1) if
the field exists in that version of the class and 2) what its type is. Since fields can be defined
across multiple versions of the same class, the standard (syntactic) field lookup discipline
will not yield the correct field set for a given version.

As such, to be able to type-check a program, we need to define a lookup policy for class
fields at a given version (fields(C, v)), so that we know which fields are or are not available
at that version, and what their types are.

In our setting, a version (v) of a class (C) may either redefine its fields (e.g. by introducing
or removing a field) or inherit the fields of related versions. The version(s) in which the fields
of v are defined are called the base versions of v. Each version in the graph has one or more
corresponding base versions for a given class (bases(C, v)).

3 For readers unfamiliar with Python, decorators are a method of applying a transformation to a function
or a class. Except for the run decorator, none changes the decorated function or class (i.e. they act as
syntactic hints to infer the version context.)
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A field is defined in a version of a class by assigning, in any method at that version,
a value to an attribute of the method caller4 (this is the first parameter of the method,
typically named self).

This is expressed in rule (Fields-At) (Figure 4). We start by collecting methods available
at version v (methods(C, v)) and selecting only those tagged for version v (at(m) = v, where
at performs a syntactic lookup of the method version decorator). Then, we collect all
parameters to this method (parameters(m)), and inspect the method’s body to check if
there is an assignment to an attribute of the first parameter (A0.f = e ∈ body(m)), which
corresponds the class instance, and, if so, we collect it’s type (T ). Finally, we check all
previous related versions (W ) to ensure that, if f is defined in a previous version, its type is
different than the type defined at v (C ⊢w f : T ′ ∧ T ̸= T ′). If the type is the same, the field
is considered to be inherited, and not explicitly defined at v.

Note that, in this and all subsequent inference rules, we use some helper functions (at,
args, parameters, upgrades, replaces, and body) that perform standard syntactic lookup of
nodes in the AST (e.g. parameters returns all parameters for a given method definition).

For instance, in Figure 2a (lines 7 and 8), fields first and last are introduced in
version init, in the constructor of that version. Note that the field is only considered to be
introduced in this version (as opposed to inherited) if it is not a field, with the same type,
of any parent version. We make a small exception (not expressed in rule (Fields-At) for
brevity) for the constructor: there, a developer can redefine fields with the same name and
type from other related versions5.

To lookup the bases of a version v, we start by collecting the fields defined explicitly at
that version given the procedure described earlier (fields_at(C, v)). If this set is not empty,
then the base of version v is simply itself (rule (Base-Self)). Otherwise ((rule (Bases))),
the bases of v are the union of bases from the versions it upgrades and replaces (W ), using
the same lookup logic.

Finally, to lookup the (versioned) fields for a class C in version v (fields(C, v)), we collect
the union of fields in all base versions of v (rules (Fields), (Fields-Self)).

Note that, in this setting, these lookup rules are different from those presented in [5]. In
particular, in this work, a version of a class can have multiple base versions, as opposed to a
single one: as such, the lookup logic for fields is also slightly different, since we can lookup
fields on multiple base versions.

In the example of Figure 2a, the base version of bugfix, in which no fields are explicitly
defined, is init; the base version of full is itself. If we were to add a new version to this
program, final, that merges versions full and bugfix

@version(’final’, upgrades=[’full’, ’bugfix’])

then the base versions of final would be versions full (the base of itself) and init (the
base of bugfix); its fields would be the union of all fields in these versions (first, last,
and fname).

The base versions are used in all typing and reduction rules to ensure that the version
graph is respected when resolving class fields..

4 This follows the approach of most Python type-checkers, such as MyPy.
5 This is to account for the semantic (as opposed to syntactic) evolution of a field, when its name and

type are still preserved.
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9:10 A Language-Based Version Control System for Python

m ∈ methods(C, v) at(m) = v A = parameters(m)
A0.f = e ∈ body(m) Γ ⊢v e : T W = upgrades(v) ∪ replaces(v)

∀w∈W : f ∈ fields_at(C, w) ⇒ C ⊢w f : T ′ ∧ T ̸= T ′

f ∈ fields_at(C, v)
(Fields-At)

#fields_at(C, v) ̸= 0
v ∈ bases(C, v)

(Base-Self)

#fields_at(C, v) = 0
W = upgrades(v) ∪ replaces(v)

∀w∈W : bases(C, w) ⊂ bases(C, v)
(Bases)

bases(C, v) ̸= { v } W = bases(C, v)
∀w∈W : fields(C, w) ⊂ fields(C, v)

(Fields)

bases(C, v) = { v }
fields(C, v) = fields_at(C, v)

(Fields-Self)

Figure 4 Inference rules for field and base version lookup.

3.3 Method lookup
Similar to class fields, class methods can be defined across multiple versions of the same
class. As such, the standard method lookup discipline will not yield the correct definition of
a method for a given version, since there can be multiple definitions with the same name
across different versions. Consider the following (abstract) example of a class with three
related versions. Version 1 introduces a definition for methods n and m. The other versions
introduce a definition for method m:

@version(‘1’)
@version(‘2’, upgrades=[‘1’])
@version(’2.1’, replaces=[‘2’])
class C:

@at(‘1’)
def n(self): ...
@at(‘1’)
def m(self, x): ...
@at(‘2’)
def m(self, x): ...
@at(’2.1’)
def m(self, y): ...

Listing 4 Evolution of a method between versions.

The intuition here is that clients running at version 1 should use the definition of m
introduced in that version, since there is no definition of m that replaces the one from version
1. Clients at version 2 should use the definition of m introduced at version 2.1, since this is
declared as a replacement over version 2; and clients at version 2.1 should use the definition
of m introduced in that version. For method n, all versions use the definition from version 1,
which is local to version 1 and inherited in version 2 (and, subsequently, in version 2.1).

To comply with the version graph, we must also define a lookup policy for class methods
at a given version, as illustrated above. The reader may notice that the definition of m
introduced in version 2.1 – which should be available to clients in version 2 – has a different
interface from the local definition of m at version 2 (parameter x is renamed to y). Intuitively,
this means that client code is written for version 2, which may call method m using keyword
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arguments (i.e. C().m(x=...)), which type-checks against the local interface, cannot simply
use the new definition, as that would introduce a type error (no parameter named x, missing
parameter y).

As such, the lookup of a method m at version v must return both the interface (to comply
with clients targeting v) and its implementation (to comply with new definitions introduced
in replacement versions). The lookup discipline for methods works in the following order:
Local definition. Search for a local definition of m introduced at version v. If any is found,

that definition corresponds to the interface and implementation of m for version v.
Parent definition. If no local definition was found, search all versions that v either upgrades

or replaces for a definition of m. If any is found, that definition corresponds to the interface
and implementation of m for version v. If there are multiple matches, they must be the
same definition. Otherwise, a conflict occurs, and the program is not well-typed.

Replacement definition. Finally, search all replacement versions of v for an implementation
of m. If no interface was found yet (either locally or inherited from a parent version), it
means m was introduced in a replacement version, so that interface is the one available to
clients at version v. In any case, if there are multiple matches, they must be the same
definition. Otherwise, a conflict occurs and the program is not well-typed.

This lookup policy is illustrated in the example above, where, for version 2, the interface
of m is the one from the local definition at 2, and the implementation is from the definition
at version 2.1. Later in this section, we describe how to use one interface with a different
implementation. For now, it’s important to retain that the lookup of methods must respect
the version graph, and take into account how the client code is typed (i.e., against which
interface). For method n, the interface and implementation at version 2 is the one inherited
from version 1.

This lookup policy is used to type-check function calls at a given version; to detect missing
lenses between methods of different versions, when the interface differs from the interface of
the implementation (e.g. method m at version 2 in the previous example); to detect conflicts
in the version graph; to select method definitions when providing a slice for a target version;
and to find the code to execute at runtime.

3.4 Version lenses
The lookup policy for class methods, described earlier, allows for a version v of a class to use
methods introduced in another (parent or replacement) version t. In such cases, there are
two situations where we need to pay special attention:

The implementation provided by the lookup policy is defined at another version, t, which
has a different state representation (i.e. different base versions from v).
The interface provided by the lookup policy is different than the interface of the imple-
mentation, and the signatures of the interfaces differ (e.g. method m in version 2 of the
previous example).

In the first case, since the state representation of the class is different, the method body
may not comply with the representation of version v: this is illustrated in Figure 2a, where
method display, available for version full, complies with the state of another version
(init). Intuitively, this means that, to use such implementations, we must introduce a
mapping between the fields used in the method body and the fields of the target version (in
this case, version full), otherwise we would introduce type errors.
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In the second case, since the interface of the method is different from the interface available
for clients at version v, we can not simply use the new definition, since client code is typed
against a different interface (as such, doing so would introduce a type error). Intuitively, this
means that, to use the new implementation, while preserving the type correctness of clients
at v, we must introduce a mapping between the two interfaces.

These mappings, called lenses, for fields and methods, are described in more detail in the
remainder of this subsection.

3.4.1 Field lenses
Consider again the example in Figure 2a, where the interface and implementation of method
display for version full is from version bugfix (Figure 2a, line 17). In version full, class
Name has no first nor last field, so this definition of method display is not well-typed in
version full. For a client in version full to correctly use this code, we need to rewrite the
method body, so that it complies with the desired state.

The type system requires that the developer defines the necessary lenses at version full
for the fields at version init (Figure 2c). Intuitively, these lenses express how each field
evolved from the state of version full. In this case, the lenses are simple: split the full name
on a whitespace, if any, and return the corresponding component (if it exists). Later, when
projecting the code for version full, the lenses are used to rewrite field expressions in the
method body so that they are well-typed in the context of version full.

Each field lens is a standard class method, annotated with a @get decorator, of the form
@get(<at>, <from>, <name>) (Listing 3, line 3), with a single argument (the method caller,
self). In practical terms, the implementation of the lens answers the question: “In the
context of version <at>, how do I represent the field <name> of version <from>?”. The type
system ensures that the body of a lens is type-checked in the context of its <at> version (in
this case, version full); that <name> is a field in version <at>; and that the return type of
the lens matches the type of field <name> in version <at> (in this case, str).

Field lenses are a suitable mechanism for modelling common software evolution patterns,
such as renaming a field, changing its type, or refactoring its representation (as in the example
of Figure 2a, where we join both fields in a single one).

Evolution patterns that mostly concern text manipulation (as opposed to program
semantics), are typically considered breaking changes (e.g. changing the name of a field in
a class). In our setting, these patterns are well supported, as it is always possible for the
developer to express such a pattern in the form of a lens. If they do so, then these patterns
can be applied successfully without introducing breaking changes.

For instance, a lens to rename a field (f, to t) from version 1 to 2 is expressed by:

1 @get(‘1’, ‘2’, ‘t’)
2 def rename_f_t(self):
3 return self.f
4 @get(‘2’, ‘1’, ‘f’)
5 def rename_t_f(self):
6 return self.t

and allows clients in version 1 to use code from version 2, thus making it a non-breaking
change; and for code in version 2 to reuse code from version 1, so that the developer does
not need to rewrite methods that use field f. In these cases, the lenses can be synthesised
with the help of editor tools, instead of manually implemented by developers (c.f. refactoring
tools in Bides)6.

6 This is discussed in greater detail in section 6.
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Evolution patterns that concern program semantics, such as changing the type of a
field, are not always possible to model with a lens. For instance, in the previous example
(Figure 2c), we showed how to model such a pattern (refactoring two fields into one).

However, consider the case where we want to refactor a list (in version 1) into a dictionary
(in version 2, that replaces 1). Assuming the semantics of the program dictate that the
elements of the list correspond to the values in the dictionary, then we can devise a lens
that maps the dictionary to the list (e.g. return list(self.data.values()), where data
is the dictionary), which allows the developer to reuse code from version 1 while working in
the context of version version 2. But what about the other way around? If we want to map
the list to a dictionary, it may not be possible to infer the keys7 (for instance, if they are
provided by the client when creating the dictionary).

In such cases, the type system detects an error: the replaces relationship between the
two versions defined in the graph implies that clients in version 1 should be able to use all
code from version 2 – but without a lens this is not possible.

In such cases, where the developer can not define a lens for a field (e.g. data), then the
code does not comply with the version graph, as the lens is missing. Intuitively, this indicates
that the developer introduced a breaking change from version 1 to version 2, so clients can
not migrate automatically. To fix this, the developer must change the version graph and use
the upgrades relationship between both versions instead.

This typing discipline reflects the nature of a breaking change when evolving class fields,
as it prevents the developer from issuing such a change in a replacement release, which, in
the absence of a lens, would make the client code crash. Instead, by using the upgrades
relationship, the developer instructs clients to adapt manually, by migrating to the new
version and then type checking their code in that context, correcting manually for any errors.

3.4.2 Method lenses
Similar to field lenses, method lenses map how (possibly different) interfaces of the same
method evolve between different, related versions.

Consider again the example in Listing 4, where method m is refactored in version 2.1 by
renaming parameter x to y.

In this case, the replaces relationship implies that clients in version 2, whose code is
written using the interface from that version (i.e. with parameter x), should be able to use
the new implementation of m automatically, without their code breaking:

1 @at(’2’)
2 def client():
3 return C().m(x=...)

Since the client code is written against the interface defined at version 2, to use the
new implementation, the type system requires that the developer define a method lens at
version 2 for method m at version 2.1. This lens expresses how the method evolved from one
version to the other, so that clients can safely use this new definition without rewriting their
code. Later, when projecting the code for version 2, the lenses are used to rewrite method
definitions, so that they conform to the interface of version 2 while using the implementation
from version 2.1. The following is an example of a method lens that renames argument x to
y, while otherwise preserving the semantics:

7 Whether this is possible or not depends on the program’s intended semantics.
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1 @get(‘1’, ‘2’, ‘m’)
2 def lens_m(self, f: Callable[[C, P], T], x: P) -> T:
3 return f(y=x)

Listing 5 Method lens to rename a parameter

A method lens is a standard class method, annotated with a @get decorator (Listing 3,
line 3). The body of each lens function is type-checked in the context of the <from> version.
The type system ensures that the method (<name>) is available in both versions (<from> and
<at>), and that the return type of the lens function (T’) matches the return type of method
<name> in version <from>.

A method lens takes a reference to the instance object (first parameter, self); a reference
to the method definition in version <from> (f), whose signature matches the type of method
<name> in version <at> (in the example, the signature of f corresponds to the type of m at
version 2.1); and all positional and keyword arguments that method <name> takes in version
<at> (in this case, x). The parameter f is to aid the developer statically expressing how the
calls map between the two versions.

In the above example, f is a reference to the definition of m in version 2. As such, the
developer can express how a method call from a client in version 1 maps to the corresponding
method in version 2, in this case by calling f and passing x as the value to y.

Method lenses are a suitable mechanism for modelling common software evolution patterns,
such as adding/removing/reordering parameters, changing the type of parameters, and
changing a method’s return type.

Evolution patterns that mostly concern text manipulation (as opposed to program
semantics), are typically considered breaking changes (e.g. changing the name of a parameter
in a method). In our setting these patterns are well supported, as it is always possible for
the developer to express such a pattern in form of a lens, as hinted in the previous example.
If they do so, then these patterns can be applied successfully without introducing breaking
changes for clients.

The same approach can be used for methods that evolve semantically, not just textually.
Consider the following example, of a method that returns a boolean, and is refactored to
return 0 instead of True and 1 instead of False (the implementation details are omitted
here as they are not relevant):

1 @at(‘2’)
2 def m(self) -> bool: ...
3 @at(‘2.1’)
4 def m(self) -> int: ...

Again, the replaces relationship between version 2 and 2.1 indicates the developer
wants clients in version 2 to use the refactored method introduced in 2.1. As such, the
type system requires that they provide a lens expressing how the result of a call to the
new implementation, defined in version 2.1, can be mapped to the type of the interface,
introduced in version 2. The lens takes as parameter f a function that returns an int,
matching the definition in version 2.1, and returns a value of type bool, matching the
definition at version 2:

1 @get("2", "2.1", "m")
2 def lens_m(self, f: Callable[[C], int]) -> bool:
3 return f() == 0
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Figure 5 Diagram describing the pipeline of the rewriting procedure.

A client using method m in version 2, such as:

1 @at(’2’)
2 def client():
3 return not C().m()

can use the new code from version 2.1 without refactoring their code, since the mapping
from int to bool (the expected return type for clients in version 2) is provided by the lens.

Similar to field lenses, notice how, when a method evolves semantically, it may not always
be possible to devise a lens that models the evolution step, depending on the semantics of
the change. Once again, in those cases, to fix the typing error (missing lens), the developer
must change the version graph, and define the new version as an upgrade, indicating to client
that they must migrate manually and refactor their code to adjust to the new interface.

Method lenses allow clients to use new code without any need for manually refactoring, so
developers can express versioning workflows with typical breaking changes, such as changing
method signatures, and automatically have clients complying with the versioning policy
established in the respective version graph.

3.5 Rewriting procedure
The concept of lenses, described in the previous subsection, allows clients to use code from a
version different than the one their code is targeting, even in the presence of different state
representations (i.e. class fields) and different method interfaces, respecting the evolution
pattern specified by the developer. To do so, we must rewrite the methods that are defined
in different versions, so that they conform to the client’s version context.

This section describes the procedure to rewrite methods defined at some version v so that
they match the context of the client version t. By doing so, we allow clients to use the new
methods without introducing type errors, accounting for side effects and ensuring they are
preserved across different version contexts.

The diagram in Figure 5, illustrates the pipeline of the rewriting procedure to rewrite a
definition of method m from version v (where it is defined) to version t (which the client is
running). Below, we describe each step of this pipeline in detail.

3.5.1 Collecting aliases
In Python, object references are passed by value. When we assign the value of an instance
field to a variable, if the variable is mutated, the changes will be reflected back in the instance
field. As such, to (statically) detect side-effects on instance fields, we first need to keep track
of aliases (to fields) in a given method. Consider the following example of a method m at
version v that appends an element to a list field:

1 @at(’v’)
2 def m(self):
3 x = self.f
4 x.append(1)
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In this example, simple static analysis would not be enough to detect that self.f is
mutated (since the append method is called on a variable, not on a field). So, we need to
known that x is an alias to a class field (in this case, f). To do so, we perform static analysis
on assignment statements to collect the aliases of class fields in scope in each method.

From the assignment statement in the above example, we can infer that x is an alias to
the field f of the method caller’s class. In some cases, we can also detect if assigning the
result of other types of expressions such as a variable, the result of a function call, a list
index expression, and so on, also results in a reference to a mutable object field.

We collect all aliases of mutable object fields in a method to use in the next steps, so
that we can ensure that the side effects in the code for version v are correctly applied when
we rewrite it for version t.

3.5.2 Detecting side-effects
Now that we have collected all aliases to fields within a method, we can start performing
static analysis to detect side-effects. This is crucial to ensure that side-effects on fields of
other versions are correctly carried over to the target version, t, to which we are rewriting
the code. Conversely, detecting cases where no side-effects are produced, avoids having
redundant rewrites of such expressions.

The intuition here is the following: we will be using field lenses (in this case, from version
v to t) to rewrite fields (this is detailed further in this section); but, since field lenses are
pure functions (i.e. they do not mutate the object calling them), the side effects would be
lost if we simply replaced the field by its corresponding lenses – in which case, the side effect
would apply to the result of the lens, but not to the current state representation of the class
in version t.

Consider the following example of method m defined at version v, where the call to method
pop will have a side effect on the state of the object (by removing the first element of the list
stored in field f).:

1 @at(’v’)
2 def m(self):
3 x = self.f.pop()

We detect side effects to object fields by identifying expressions where the field is passed
as a mutable reference to a method8(in this case, method pop), so that we can preserve them
when rewriting.

To do so, we start by extracting the field to a (new) local variable, rewriting its occurrence
in the assignment, and then assigning back to the field the value of the local variable:

1 @at(’v’)
2 def m(self):
3 _x = self.f
4 _x.pop()
5 self.f = _x

This logic is expressed in the following rules. In rule (Rw-Field-Call), we rewrite
method calls that mutate the calling object. We start by collecting all methods available in
the target version t (methods(C, t)), and selecting those defined at a version other than t (i.e.

8 It is not always possible to do so by static analysis. For instance, the functions from the Python
standard library, such as pop, are compiled from C code, which we can not analyse statically. In these
cases, we naively assume that function mutates its arguments.
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those that need rewriting). Then, for each method, we inspect its body to check if there is a
method called on an object (obj.m′(A) ∈ body(m), where A are the arguments passed in the
call). Finally, we check if method m′ mutates its caller: this is given by the helper function
mutates(T, m′, P0), where T is the object’s type and P0 is the first parameter of method
m′ (i.e. its caller). If so, we need to rewrite the method call. As shown in the previous
example, we start by declaring a new, unused, variable (x = fresh()) and assign the object
to it (x = obj). Then, we call the method on this variable, passing the same arguments
rewritten for the context of version t (x.m′(A′), where A′ is the result of rewriting arguments
A). Finally, we assign the value of x back to the object.

In rule (Rw-Field-Args) (Figure 6), we rewrite method calls that mutate their arguments.
Similar to the previous rule, we start by collecting all methods available in the target version
t (methods(C, t)), and selecting those defined at a version other than t (i.e. those that need
rewriting). Then, for each method, we inspect its body to check if there is a method called
on an object (obj.m′(A) ∈ body(m), where A are the arguments passed in the call)9. Finally,
we select all arguments which are mutated by m′ (A′), and we create a fresh variable for each
of these arguments (X). To rewrite the call, we start by assigning to each fresh variable the
current value of its corresponding argument (xi = A′

i). Then, we call the method, replacing
each (mutated) argument with its corresponding variable ({A′

/X}). Finally, we assign to the
arguments the value of their corresponding variable (which was mutated in the method call).

m ∈ methods(C, t) v = at(m) v ̸= t

obj.m′(A) ∈ body(m) Γ ⊢v obj : T P = parameters(m′)
mutates(T, m′, P0) A ⇝v t A′ x = fresh()

obj.m′(A) ⇝v t x = obj; x.m′(A′); obj = x
(Rw-Field-Call)

m ∈ methods(C, t) v = at(m) v ̸= t obj.m′(A) ∈ body(m)
Γ ⊢v obj : T A′ = { a ∈ A | mutates(T, m′, a) }

X = { fresh() | a′ ∈ A′ }
obj.m′(a) ⇝v t xi = A′

i; obj.m′({A′
/X}); A′

i = xi

(Rw-Field-Args)

Figure 6 Rules to rewrite fields.

Notice how the code is still typed for the context of version v. This procedure is used
whenever object fields (or aliases) are passed as mutable arguments to functions, as described
earlier, and also across all language statements, such as loops, return, try-raise, and so on.
For example, consider the following example, where an object field is mutated as a condition
of an if statement:

1 @at(’v’)
2 def m(self):
3 if self.f.pop():
4 return True

To rewrite this statement, we create two new references: one for the object’s fields (_x, as
described earlier); and another for the condition value of the if statement (_y). Finally, to

9 Note that this rule also applies for functions (e.g. sort, which sorts a list in place) and not just methods.
For brevity, that case is elided here, although it follows the same logic
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apply the side effects of the method call (pop), we assign the value of this reference back
to the object’s field, before executing the if statement. This ensures the semantics of the
(original) code in version v are preserved:

1 @at(’v’)
2 def m(self):
3 _x = self.f
4 _y = _x.pop()
5 self.f = _x
6 if _y:
7 return True

By the end of this step we should have all side effects to fields expressed as simple
assignments of the form self.f = _v, where _v is the variable holding the value after
side-effects are applied.

3.5.3 Rewriting assignments to fields
Following up on the previous step, we now have all side effects expressed as assignments to
fields. To rewrite the assignments to the target version t, we use the corresponding lenses.

The intuition here is the following: when the developer defines a lens (from v to t) for
a field (f), the lens expresses how to compute the value of the field given the state of the
object at version t. As such, any fields of v that appear in the lens will be affected by an
assignment to field f in the context of version v.

Consider the example of method set_last (Figure 2a), that assigns a value to field last.
Since this method is available at version full, we must have a way to express how a change
to field last, in version init, affects the state of this version. This is called a put lens.

By analysing the lenses from version init to version full we see that field last appears
in the lens for field fname:

1 @get(’init’, ’full’, ’fname’)
2 def lens_full(self):
3 return f"{self.first} {self.last}"

In practice, this indicates that the value of the field fname, in version full, is affected by
the value of field last, in version init: if we run the code for this lens, replacing self.last
with the value that we are assigning to the field, we obtain the matching side effect in field
fname that results from the assignment. As such, the developer need not provide a definition
for a put lens, as we can synthesise one from its corresponding get lens.

To do so, we add a parameter for each field referenced in the get lens, and replace the
field reference in the lens body with the (matching) function parameter. The synthesised put
lens for field fname at version full is:

1 @put(’init’, ’full’, ’fname’)
2 def lens_full(self, first, last):
3 return f’{first} {last}’

To rewrite an assignment for field f, we start by synthesising all necessary put lenses.
These are synthesise from the corresponding get lenses defined at version v, for any field (f’)
from version t, that make a reference to field f in their body (rule (Synth-Put-Lenses)).
This ensures that a change to field f, in version v, has its side effects applied to fields f’ of
version t.
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In the previous example there was only one lens in version init using field last, so
that is the one that is synthesised; in cases where there is more than one, we synthesised
all necessary put lenses and unfold the original assignment into multiple assignments, each
using a put lens for the affected fields. For instance, in Figure 2c, in the lenses from version
full to version init, field fname appears in two lenses. This means that both lenses would
be needed to correctly apply side effects to field fname when rewriting such an assignment to
version init (which would reflect on fields first and last, using the same logic).

Now that we have the necessary put lenses synthesised, we can use them to rewrite the
assignment. For example, to rewrite method set_last for version full, we can use the
synthesised put lens (lens_full) to apply the side effects resulting from the assignment. To
do so, we pass the assigned value (name) as the argument to the corresponding field (last).
To all other unaffected field parameters (i.e. first), we pass their current value (in the
context of the version where the method is defined, i.e. self.f for field f).

Finally, to ensure that this code is well-typed in the context of version t, we replace
all field references (in this case, self.first) using the corresponding get lens (Figure 2c,
line 2), as described in the next subsection. This is expressed in rule (Rw-Assignment),
where we start by detecting assignments to fields in the method’s body (obj.f = e), then
we rewrite the right-hand side to match the context of version t (e), and finally collect all
put lenses that affect field f (P ). To rewrite the assignment, for each field of t affected by
the assignment (F ′′

i ), we assign the result of its corresponding put lens (Pi), passing the
rewritten value for all unaffected fields (Fi = F ′

i ), and the rewritten assigned value for the
assigned field (f = e′). The translation of the assignment for version t is then:

1 def set_last(self, name):
2 self.fname = self.lens_full(first=self.lens_first(), last=name)

m ∈ methods(C, t) v = at(m) obj.f = e ∈ body(m)
Γ ⊢v obj : T e ⇝v t e′ F = { fi | fi ∈ fields(C, v) ∧ fi ̸= f }

F ′ = { fi ⇝v t f ′
i | fi ∈ F }

F ′′, P = { f ′, put_lenses(T, v, t, f) | f ′ ∈ fields(C, t) }
obj.f = e ⇝v t obj.F ′′

i = obj.Pi(Fi = F ′
i , f = e′)

(Rw-Assignment)

3.5.4 Rewriting field references
As described earlier (section 2), if the method at version v contains expressions of references
to class fields (e.g. obj.f), we need to rewrite these expressions, using the corresponding get
lens, so they comply with the state of version t.

In this step, we do not account for field references to which the previous cases apply as
those are already compliant with the target version (i.e. assignments, aliases, and function
call arguments).

For example, in Figure 2a, the implementation of method display for version full is
defined in the context of another version, bugfix. This definition makes references to fields
(first and last) that are not defined in the context of version full. As such, we need to
rewrite these references so that they comply with the state of version full.

To do so, we replace field occurrences with a call to their corresponding get lens provided
by the developer (Figure 2c, lines 1-10). This ensures that the code is well-typed in the
context of the target version full, and that it respects the evolution semantics described by
the developer in the implementation of the lenses (rule (Rw-Field)):
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1 def display(self):
2 return f’{self.lens_last()}, {self.lens_first()}’

m ∈ methods(C, t) v = at(m) obj.f ∈ body(m)
Γ ⊢v obj : T f ∈ fields(T, v) l = lens(T, t, v, f)

obj.f ⇝v t obj.l()
(Rw-Field)

3.5.5 Rewriting method definitions
As described earlier, method lenses allow clients to use new method interfaces and implement-
ations without any need for manually refactoring, allowing developers to express versioning
workflows with typical breaking changes and making them non-breaking. This mechanism
applies to cases where the method signature or semantics have changed between versions.

Consider again the example in Listing 4 with two implementations of the same method,
m, where a parameter is renamed from x to y, a typical breaking change. The semantics of
this change is expressed in the lens provided by the developer for this method (Listing 5).
With this lens, we can allow the clients of version 2 to use the definition of m introduced in
version 2.1 without refactoring their code.

To do so, we use the method lens to rewrite the implementation of method m when
extracting a slice for version 2. The intuition here is that we want to preserve the interface of
version 2, since that is what the client code is written against, while using the implementation
of version 2.1, which the developer introduced as a replacement for the old definition.

To rewrite the definition using the method lens, we start by adding the new definition of
method m (from version 2.1) to the program and renaming it, so that we don’t introduce
a conflict (line 2). Then, we rewrite the body of this method, according to the rewriting
procedure described in this subsection, so that it complies with the state of 2. Then, we
rewrite the lens function, by removing the parameter f (line 4) and replacing it in the body
with a reference to the (renamed) method from version 2.1 (line 5). Finally, we rewrite the
body of method m in version 2 to make a call to the method lens (line 7).

1 class C:
2 def __v2_1_m(self, y: int) -> int: ...
3 def lens_m(self, x: int) -> int:
4 return self.__v2_1_m(y=x)
5 def m(self, x: int):
6 return lens_m(x=x)

The rewriting of method definitions across different versions ensures that clients can write
their code against the old interface while taking advantage of the new implementation. This
concludes the presentation of the rewriting procedure, which we will use to produce a slice of
the program that targets a specific version, as described in the following subsection.

3.6 Program slicing
We propose a slicing procedure, built on top of the rewriting procedure described earlier,
applying static program transformations, to extract code for a specific target version from a
versioned program. The result should include all code available in that version according to
the versioning policy provided by the version graph.

The intuition for the slicing procedure is to be able to project code for a specific release,
similar to techniques used in software product lines or variability programming settings.
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Figure 7 Diagram describing the pipeline of the slicing procedure.

At its core, the slicing procedure relies on the rewriting procedure to ensure that any
code that is reused from other versions is safe to use in the context of the target version t,
respecting the evolution semantics specified by the developer in the lenses.

Now that we have defined our rewriting procedure, we can use it to produce a slice for a
target version t. In Figure 7, we present a diagram with the pipeline of the slicing procedure.
Below, we describe each step of this pipeline in detail:
Select methods. We start by selecting the method definitions (their interface and corres-

ponding implementation, as defined by the lookup policy described earlier) of C that are
available at version t, according to the versioning policy of the version graph and the
lookup functions described in subsection 3.3. This is expressed in rule (Sl-Methods).

M = methods(C, t)
M ⊂ methods(slice(C, t))

(SL-Methods)

Rewrite methods. Given the methods selected in the previous step, we rewrite those that
either 1) have an implementation defined at a (base) version other than t or 2) the
developer has provided a lens for (i.e. the methods whose semantics have changed).
We rewrite these methods using the procedure described earlier so that they match the
context of the target version t.

Select lenses. Since the rewriting procedure may need lenses to rewrite expressions for the
context of t, we will need to include those (and only those) in the final result. We collect
all necessary get and put lenses (rules (Sl-Get-Lenses) and (Sl-Put-Lenses)) that
are required for the rewriting procedure, rewrite them to match the context of version t,
and include them in the resulting slice for this version. Rule (Sl-Get-Lenses) expresses
the logic for including get lenses: we check each method (m) of the target version (t) that
is defined in a different version (v) and, if its body contains a field access expression on an
object (obj.f) of type T , and a lens is defined between versions v and t of class T for field
f (lens(T, t, v, f)), we include it in the final slice of T . Rule (Sl-Put-Lenses) expresses
the logic for including put lenses: we check each method (m) of the target version (t) that
is defined in a different version (v) and, if its body contains a field assignment expression
on an object (obj.f = e) of type T we iterate over all (get) lenses for fields of version t in
class T (L), and finally we include the ones where field f is used (Lf ).

m ∈ methods(C, t) v = at(m) v ̸= t obj.f ∈ body(m)
Γ ⊢v obj : T l = lens(T, t, v, f) C ′ = slice(T, t)

l ∈ methods(C ′)
(Sl-Get-Lenses)

m ∈ methods(C, t) v = at(m) v ̸= t obj.f = e ∈ body(m)
Γ ⊢v obj : T L = { lens(T, v, t, f ′) | f ′ ∈ fields(T, t) }

Lf = { l | l ∈ L ∧ self.f ∈ l } C ′ = slice(T, t)
Lf ⊂ methods(T ′)

(Sl-Put-Lenses)

l = lens(C, v, t, f)
F = { f | s ∈ body(l) ∧ s = self.f } l′ = l{ args = F }

put_lens(C, v, t, f) = l′ (Synth-Put-Lenses)
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Remove version annotations. Finally, to produce the slice for version t, we remove any
version annotations that may exist, so that the end result is a standard Python program
that can be fed to the interpreter to be executed.

In Listing 2, we present the slice of the program in Figure 2a for version full. The
resulting slice includes the fields and methods of version full as defined by the lookup
policies described earlier, and any lenses that are necessary to rewrite statements from other
versions (e.g. lines 5 and 9).

4 Evaluation

In this section, we empirically evaluate the applicability of our approach by answering the
following research questions:
RQ1. Can library developers mitigate the occurrence of breaking changes in common evolu-

tion patterns?
RQ2. Can clients update a library dependency without having to manually refactor their

code to account for breaking changes?

4.1 Evaluation design
To setup the evaluation, we started by gathering a set of publicly available Python software
libraries with at least two major version releases, v and t. We opted for popular packages,
since, given their widespread adoption, these are likely to affect a higher number of clients.
We also took care to select packages with different kinds of changes such as renaming methods,
fields, or changing method signatures, to better illustrate the applicability of our approach.

For each library, L, we start by defining the version graph. Since we are trying to turn
major versions into minor (i.e. so that clients can upgrade transparently without breaking),
we define the later version as a replacement of the previous (major) version:

1 @version(‘v’)
2 @version(‘t’, replaces=[‘v’])

Then, we select the commit tagged for versions v and t and add the respective version
annotations (at(‘v’), at(‘t’)) to the methods in each commit. Now that we have the
version graph defined and all elements annotated with their corresponding versions, we run
the type-checker to detect any missing lenses. We implement the missing lenses, if possible,
according to the description stated in the migration guide for L, which corresponds to the
semantics the developers intend for each change.

At this stage, we should have a program that type-checks against its version graph (again,
if the lenses are possible to implement). Finally, we extract a slice of library L for version v.
Now, we can evaluate the applicability of our approach in two ways:
Using client code. In some cases, we were able to use a client program (C) to check if the

slice of L for version v conforms to the migration semantics the library developer defined.
To do so, we select the commit of C that targets version v of L and type-check this against
the slice of L for version v. If the program type-checks, the approach is validated.

Guided by examples in migration guide. As the reader may have understood by now, this
evaluation requires a bit of manual labour to setup. This is expected, since the ideas
described in this work are more suitable to be applied throughout the development cycle,
instead of applied to existing codebases. As a result, it was not feasible to validate some
libraries against existing client code. In those cases, we simply used the examples stated
in the migration guide (or modelled them ourselves if there are none), and validated the
approach in the same way described in the previous point.
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4.2 Evaluation results
We conducted our experiments using the libraries listed in Table 1, using client code where
possible. The table shows the selected library, the start and target versions we chose, the
client used to validate the approach (if any), the number of breaking changes10, and how
many we were able to successfully model.

Table 1 Libraries and clients selected for the experimental evaluation.

Library Start version Target version Client Changes Successful
tensorflow 1 2 gpt-2 19 14
emoji 1.7 2 ntfy 1 1
metaapi-python-sdk 22 23 — 2 2
netbox 3.5 3.6 — 5 4
twillio-python 7 8 — 17 14

The following is a summary of the results we obtained for each library:
tensorflow. Out of 19 breaking changes that affected the gpt-2 package, forcing its de-

velopers to migrate manually to support version 2.0 of tensorflow, we were able to
model 14 successfully. The changes we were unable to model relate to the refactors
of tensforflow between the two versions, that essentially force the developer to re-
structure (and not just rewrite) their code – and our approach does not provide any
mechanism for specifying such changes (i.e. clients must always migrate manually).
The most relevant example in this case study is the removal of the tf.multinomial
method. The migration guide points client developers to use another method instead,
tf.random.categorical. This change can be modelled in our approach by providing a
method lens for the tf.multinomial method from version 1 to version 2, and implement
the lens to use the tf.random.categorical method instead.

emoji. Version 2 of the emoji package introduces 2 breaking changes, one of which affects the
client package ntfy. This change involves removing a boolean parameter, use_aliases,
which defaults to False, from method emojize. In version 2, client developers should
pass language=‘alias’ instead of use_aliases=True. Our approach is able to model
this successfully, by defining a method lens for emojize that passes the appropriate value
to language depending on the value of use_aliases. As such, the client package does
not need to manually refactor to use the new version.

metaapi-python-sdk. The 2 breaking changes introduced in version 23 of this pack-
age involve the rename of a method (enableMetastatsHourlyTarification
is renamed to enableMetaStatsApi), and the rename of a field
(metastatsHourlyTarificationEnabled is renamed to metastatsApiEnabled).
Both are supported in our setting and can be successfully implemented, by using a
method and a field lens respectively, to allow clients to migrate without refactor.

netbox. Out of the 5 breaking changes introduced in version 3.6, we were able to model 4.
The change we were unable to model concerns a dependency (PostgreSQL) that must
be upgraded. Since we do not yet support versioning of modules, this is not possible
in our setting. The remainder of the changes involve: renaming a field (device_role
field on the Device class is renamed to role); changing the name and type of a field

10 When determining the number of breaking changes, we ignored some which fall outside of the scope of
this work, particularly when concerning external dependencies.
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(field choices from the CustomField class is renamed to choice_set, and its type is
changed from a dictionary to CustomFieldChoiceSets); removing fields from a class
(fields napalm_driver and napalm_args are removed from the Platform class); and
changing the return type of a method (reports and scripts are returned within a results
list). All of these were successfully modelled in our setting.

twillio-python. Out of the 17 breaking changes introduced in version 8, we were able to
model 14. The changes we were unable to model concern the renaming of classes:
class ConversationsGrant is replaced by VoiceGrant; and class IpMessagingGrant is
replaced by ChatGrant). We can not model such cases since our type system restricts
method lenses (in this case, the constructor method __init__) to return the same type
as the original definition11. The remainder of the changes involve renaming methods (12
instances) and changing the signature of a method, by removing a parameter (2 instances).
All of these were successfully modelled in our setting.

4.3 Evaluation answers
From the results presented in the previous section, we answer the research questions with:
RQ1. Yes, library developers can mitigate (and in some cases, eliminate) the occurrence of

breaking changes using our approach.
RQ2. Yes, in most cases clients can update without refactoring their code manually.

5 Related work

Program slicing. In his seminal paper, Weiser [31] describes program slicing as a method
for automatically decomposing a program, starting from a subset of its behaviour, and
reducing it to a minimal form which still produces that behaviour. This technique is
employed in many software engineering activities such as debugging, testing, maintenance
and parallelization.
Komondoor et al. [16] propose using slicing to identify duplication in source code, by using
program dependence graphs and program slicing to find clones (instances of duplicated
code) that are then displayed to the programmer. In the same thread, Gupta et al. [11]
suggest a new approach for locating faulty code, with the use of a delta debugging
algorithm to identify a minimal failure-inducing input which is then used to compute a
forward dynamic slice that is intersected with the statements in the backward dynamic
slice of the erroneous output, to compute a failure-inducing chop.
More recently, Maras et al. [18] have applied program slicing to extract the code im-
plementing a certain behaviour for a client-side web application, based on a web page
dependency graph. Maruyama et al. [19] propose a slicing mechanism to extract code
changes necessary to construct a particular class member of a Java program, based on
the history of past code changes which are represented by edit operations recorded on
source code of a program, helping programmers avoid replaying edit operations that are
non-essential to the construction of class members they are analysing.
To the best of our knowledge, ours is the first attempt to use slicing techniques to handle
program variability and versioning.

Update programming. Erwig and Ren [9], Apel and Hutchins [3] introduce an extension to
Haskell that supports update programming, where a program is an abstract data type
whose building blocks are language terms. They provide a mechanism to script changes in

11 This is detailed later on, in section 6.
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programs, creating new terms and changing existing ones. Hazelnut [24] is a core calculus
that builds on typed “holes” and a gradual type theory that features a type system
for expressions with holes and a language of edit actions ensuring that every edit state
has static meaning. Both these approaches allows for progressive program construction,
as well as giving semantic meaning to incomplete code. We maintain the history of
programming versions, well-formed by construction, instead of defining semantics for
partial programs [25]. Such history is a guide to the program slicing procedure in VFJ,
unlike others where an edit calculus is needed to understand changes ([19]).

Delta-oriented programming. Schaefer et al. [28] introduce DOP, a programming language
for designing software product lines based on the concept of program deltas. The
implementation of software product lines is divided into a core module, comprising a
complete valid product, and a set of delta modules, changes to be applied to the core
module to target other products/variations. The language further ensures that all product
variations are well typed.

Multiversion systems analysis. The analysis of multiversion systems is usually a project
management activity that tries to detect change patterns in the code, and assessing
risks of interference between development threads that may result in the introduction of
vulnerabilities [14], code repetition [15] and maintenance hurdles [4, 13, 8, 30], and the
other difficulties in the management of multiple versions [10, 34, 12, 29]. Our approach
acts preventively by detecting illegal evolution steps in the development history and also
complements update and delta oriented programming approaches [2, 9, 28] by recording
a modification history and allowing (legal) branching in the code base.

6 Limitations and future work

Support for versioned modules. Currently, we do not support versioning of modules. In
doing so, we would be able to 1) declared versioned elements at the module level (e.g.
functions, constants, variables) and 2) defined versioned imports of packages (i.e. at some
version v, we want to import version t of package p). The main challenge is devising a
syntax for declaring a module-level version graph (since we use decorators, which are
only valid for classes and functions), and devising a syntax for versioned imports.

Structural typing for lenses. Currently, the type system requires that method lenses return
the same type (or a subtype) of the original method definition. This forbids us from, for
example, defining a lens to rename a class C to D (which would be reflected on the lens of
__init__ method of C, by returning an object of type D). Since our type checker uses
nominal sub-typing, this is not possible (since D is not syntactically declared as a subtype
of C). As such, we intend to define a structural sub-typing discipline for method lenses.

Inlining for lenses. The rewriting procedure for methods and fields replaces their occurrences
with calls to the corresponding lenses. However, from the experiments we conducted, it’s
clear that these are, more frequently than not, single line expressions (e.g. when renaming
a method argument, or renaming a field). To declutter and optimize the resulting slice,
we intend to implement an @inline decorator for lenses whose body is a single return
statement, to indicate that the lens can be inlined instead of rewriting to a function call.

Version-aware development environment. From a user experience perspective, we believe
this approach is not yet suitable for adoption. As such, we intend on implementing tools
for a version-aware development environment that would automate most of the common
refactoring practices (e.g. moving a method, renaming a field). We are working on an
extension for VS-Code to do so, and also plan on extending rope, a refactoring library for
Python, to account for refactoring of versioned programs. Ideally, the developer would
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apply the refactor from the extension in the IDE, and the versioned program would be
changed accordingly to include the proposed refactor (for instance, renaming a method
would introduce a new definition and its corresponding lens).

7 Conclusions

We build on prior work that presents a language-based approach for a version control system
incorporating semantic knowledge of the evolution steps in the code and allowing code sharing
and reuse across versions of a software product. We extend it with support for method
transformations, and for state and side-effects in an imperative setting.

We instantiate this approach in a large subset of the Python programming language, and
demonstrate its applicability by evaluating it against different versions of popular Python
packages. We show that this approach is suitable for capturing common software evolution
steps, rich versioning workflows, and streamlining the delivery of a snapshot for a given
version. We provide a type system to detect conflicts and unintended breaking changes, that
operates on a semantic level on top of the entire version graph and its classes, and a slicing
compiler to extract the Python code targeting a single version.
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