
38th European Conference on
Object-Oriented Programming

ECOOP 2024, September 16–20, 2024, Vienna, Austria

Edited by

Jonathan Aldrich
Guido Salvaneschi

LIPIcs – Vo l . 313 – ECOOP 2024 www.dagstuh l .de/ l ip i c s

Editors

Jonathan Aldrich
Carnegie Mellon University, Pittsburgh, PA, USA
jonathan.aldrich@cmu.edu

Guido Salvaneschi
University of St. Gallen, Switzerland
guido.salvaneschi@unisg.ch

ACM Classification 2012
Software and its engineering → General programming languages

ISBN 978-3-95977-341-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-341-6.

Publication date
September, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ECOOP.2024.0

ISBN 978-3-95977-341-6 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-0631-5591
mailto:jonathan.aldrich@cmu.edu
https://orcid.org/0000-0002-9324-8894
mailto:guido.salvaneschi@unisg.ch
https://www.dagstuhl.de/dagpub/978-3-95977-341-6
https://www.dagstuhl.de/dagpub/978-3-95977-341-6
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ECOOP.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-341-6
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ECOOP 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Message from the Program Chairs
Jonathan Aldrich and Guido Salvaneschi . 0:ix

Message from the Artifact Evaluation Chairs
Karine Even-Mendoza and Raphaël Monat . 0:xi

Message from the AITO President
Davide Ancona . 0:xiii

List of Authors
. 0:xv

Regular Papers

A Sound Type System for Secure Currency Flow
Luca Aceto, Daniele Gorla, and Stian Lybech . 1:1–1:27

Runtime Instrumentation for Reactive Components
Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir 2:1–2:33

A Dynamic Logic for Symbolic Execution for the Smart Contract Programming
Language Michelson

Barnabas Arvay, Thi Thu Ha Doan, and Peter Thiemann . 3:1–3:26

Dynamically Generating Callback Summaries for Enhancing Static Analysis
Steven Arzt, Marc Miltenberger, and Julius Näumann . 4:1–4:27

Behavioural Up/down Casting For Statically Typed Languages
Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and
António Ravara . 5:1–5:28

Cross Module Quickening – The Curious Case of C Extensions
Felix Berlakovich and Stefan Brunthaler . 6:1–6:29

HOBBIT: Hashed OBject Based InTegrity
Matthias Bernad and Stefan Brunthaler . 7:1–7:25

Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines
Bob Brockbernd, Nikita Koval, Arie van Deursen, and Burcu Kulahcioglu Ozkan . . 8:1–8:20

A Language-Based Version Control System for Python
Luís Carvalho and João Costa Seco . 9:1–9:27

Indirection-Bounded Call Graph Analysis
Madhurima Chakraborty, Aakash Gnanakumar, Manu Sridharan, and
Anders Møller . 10:1–10:22

Regrading Policies for Flexible Information Flow Control in Session-Typed
Concurrency

Farzaneh Derakhshan, Stephanie Balzer, and Yue Yao . 11:1–11:29
38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Mutation-Based Lifted Repair of Software Product Lines
Aleksandar S. Dimovski . 12:1–12:24

Pure Methods for roDOT
Vlastimil Dort, Yufeng Li, Ondřej Lhoták, and Pavel Parízek . 13:1–13:29

The Performance Effects of Virtual-Machine Instruction Pointer Updates
M. Anton Ertl and Bernd Paysan . 14:1–14:26

Rose: Composable Autodiff for the Interactive Web
Sam Estep, Wode Ni, Raven Rothkopf, and Joshua Sunshine . 15:1–15:27

Mover Logic: A Concurrent Program Logic for Reduction and Rely-Guarantee
Reasoning

Cormac Flanagan and Stephen N. Freund . 16:1–16:29

Fair Join Pattern Matching for Actors
Philipp Haller, Ayman Hussein, Hernán Melgratti, Alceste Scalas, and
Emilio Tuosto . 17:1–17:28

A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with
Built-In On-The-Fly Call Graph Construction

Dongjie He, Jingbo Lu, and Jingling Xue . 18:1–18:29

Fearless Asynchronous Communications with Timed Multiparty Session Protocols
Ping Hou, Nicolas Lagaillardie, and Nobuko Yoshida . 19:1–19:30

Taking a Closer Look: An Outlier-Driven Approach to Compilation-Time
Optimization

Florian Huemer, David Leopoldseder, Aleksandar Prokopec, Raphael Mosaner,
and Hanspeter Mössenböck . 20:1–20:28

Learning Gradual Typing Performance
Mohammad Wahiduzzaman Khan, Sheng Chen, and Yi He . 21:1–21:27

Constrictor: Immutability as a Design Concept
Elad Kinsbruner, Shachar Itzhaky, and Hila Peleg . 22:1–22:29

InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based
Type Inference

Senxi Li, Tetsuro Yamazaki, and Shigeru Chiba . 23:1–23:28

Qafny: A Quantum-Program Verifier
Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang,
and Xiaodi Wu . 24:1–24:31

Compositional Symbolic Execution for Correctness and Incorrectness Reasoning
Andreas Lööw, Daniele Nantes-Sobrinho, Sacha-Élie Ayoun, Caroline Cronjäger,
Petar Maksimović, and Philippa Gardner . 25:1–25:28

Matching Plans for Frame Inference in Compositional Reasoning
Andreas Lööw, Daniele Nantes-Sobrinho, Sacha-Élie Ayoun, Petar Maksimović,
and Philippa Gardner . 26:1–26:20

The Fault in Our Stars: Designing Reproducible Large-scale Code Analysis
Experiments

Petr Maj, Stefanie Muroya, Konrad Siek, Luca Di Grazia, and Jan Vitek 27:1–27:23

Contents 0:vii

Static Basic Block Versioning
Olivier Melançon, Marc Feeley, and Manuel Serrano . 28:1–28:27

Generalizing Shape Analysis with Gradual Types
Zeina Migeed, James Reed, Jason Ansel, and Jens Palsberg . 29:1–29:28

Verifying Lock-Free Search Structure Templates
Nisarg Patel, Dennis Shasha, and Thomas Wies . 30:1–30:28

Ozone: Fully Out-of-Order Choreographies
Dan Plyukhin, Marco Peressotti, and Fabrizio Montesi . 31:1–31:28

Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations
Jie Qiu, Colin Cai, Sahil Bhatia, Niranjan Hasabnis, Sanjit A. Seshia, and
Alvin Cheung . 32:1–32:28

Compiling with Arrays
David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini 33:1–33:24

Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems
Amos Robinson and Alex Potanin . 34:1–34:28

Partial Redundancy Elimination in Two Iterative Data Flow Analyses
Reshma Roy, Sreekala S, and Vineeth Paleri . 35:1–35:19

Scaling Interprocedural Static Data-Flow Analysis to Large C/C++ Applications:
An Experience Report

Fabian Schiebel, Florian Sattler, Philipp Dominik Schubert, Sven Apel, and
Eric Bodden . 36:1–36:28

Java Bytecode Normalization for Code Similarity Analysis
Stefan Schott, Serena Elisa Ponta, Wolfram Fischer, Jonas Klauke, and
Eric Bodden . 37:1–37:29

Optimizing Layout of Recursive Datatypes with Marmoset: Or, Algorithms +
Data Layouts = Efficient Programs

Vidush Singhal, Chaitanya Koparkar, Joseph Zullo, Artem Pelenitsyn,
Michael Vollmer, Mike Rainey, Ryan Newton, and Milind Kulkarni 38:1–38:28

Formalizing, Mechanizing, and Verifying Class-Based Refinement Types
Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao . 39:1–39:30

Information Flow Control in Cyclic Process Networks
Bas van den Heuvel, Farzaneh Derakhshan, and Stephanie Balzer 40:1–40:30

Refinements for Multiparty Message-Passing Protocols: Specification-Agnostic
Theory and Implementation

Martin Vassor and Nobuko Yoshida . 41:1–41:29

Failure Transparency in Stateful Dataflow Systems
Aleksey Veresov, Jonas Spenger, Paris Carbone, and Philipp Haller 42:1–42:31

Inductive Predicate Synthesis Modulo Programs
Scott Wesley, Maria Christakis, Jorge A. Navas, Richard Trefler,
Valentin Wüstholz, and Arie Gurfinkel . 43:1–43:30

ECOOP 2024

0:viii Contents

Type Tailoring
Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman 44:1–44:27

Higher-Order Specifications for Deductive Synthesis of Programs with Pointers
David Young, Ziyi Yang, Ilya Sergey, and Alex Potanin . 45:1–45:26

CtChecker: A Precise, Sound and Efficient Static Analysis for Constant-Time
Programming

Quan Zhou, Sixuan Dang, and Danfeng Zhang . 46:1–46:26

Defining Name Accessibility Using Scope Graphs
Aron Zwaan and Casper Bach Poulsen . 47:1–47:29

Message from the Program Chairs

Started in 1987, ECOOP is Europe’s oldest programming conference, welcoming papers on all
practical and theoretical investigations of programming languages, systems, and environments
that provide innovative solutions to real problems as well as evaluations of existing solutions.
Papers were submitted to one of four categories: Research for papers that advance the
state of the art in programming; Replication for empirical evaluations that reconstruct a
published experiment in a different context in order to validate the results of that earlier
work; Experience for applications of known techniques in practice; and Pearl/Brave New
Idea for papers that either explain a known idea in an elegant way or unconventional papers
introducing ideas that may take some time to substantiate. The chairs thank the Program
Committee for their dedication to ensuring a quality program and providing constructive
feedback to authors: Alvin Cheung, Eva Darulova, Jenna DiVincenzo (Wise), Werner Dietl,
Jens Dietrich, Sebastian Erdweg, Patrick Eugster, Carla Ferreira, Simon J. Gay, Jeremy
Gibbons, Elisa Gonzalez Boix, Arjun Guha, Suresh Jagannathan, Ranjit Jhala, Yu David Liu,
Mira Mezini, Heather Miller, Ragnar Mogk, David Naumann, Marianna Rapoport, António
Ravara, Manuel Serrano, Peter Thiemann, Emilio Tuosto, and Elena Zucca.

This year, we continued a number of innovations that were first introduced in 2022:

Multiple rounds. ECOOP has two main rounds of submissions per year (Jan 17 and
Apr 17). Each round supports both minor and major revisions. Major revisions are
handled in the next round (either the same year or the next) by the same reviewers. In the
second round we gave as many papers as possible the chance to try revising by the minor
revision deadline so that they could make the 2024 program; all of these resubmissions
were accepted.
No format or length restrictions. In order reduce friction for authors, papers can
come in any format and at any length. This applies to submissions. Final versions must
abide by the publisher’s requirements.
Artifacts and Papers together. Every submitted paper can be accompanied with an
artifact, submitted a few days after the paper. Both submissions are evaluated in parallel
by overlapping committees as members of the artifact evaluation committee were invited
to served on the conference review committee.
Journal First/Last. Papers can be submitted either one of three associated journals
and be invited to present at the meeting. Furthermore, some accepted papers can be
forwarded to journals.

In addition, this year we introduced a new review process, in which all papers were rated
on each of the following criteria:

Soundness: How well the paper’s contributions are supported by rigorous application of
appropriate research methods;
Significance: The extent to which the paper’s contributions are novel, original, and
important, with respect to the existing body of knowledge;
Presentation: Whether the paper’s quality of writing meets the high standards of
ECOOP.

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Message from the Program Chairs

After the author response and reviewer discussions, papers were accepted if the PC
decided that the paper meets our high bar for Soundness and Presentation, and if at least
one reviewer judges the paper to meet the bar for Significance. The goal of this process is to
ensure quality of writing and confidence in results, while assuming that if one reviewer finds
the paper to be significant then there will be readers who do so as well.

Overall, we found that most of these innovations to have worked well. The new reviewing
criteria helped focus the reviewer discussion on what are the main issues with each paper.
The acceptance criteria did not affect many papers but made a difference for a few; we believe
the result is a more diverse program than might have been accepted based on a traditional,
one-dimensional quality rating.

Overall, 59 papers were submitted in the first round and 53 in the second round. Each
of these included some resubmissions of papers that received a reject or major revision
judgment in prior reviewing rounds. In the end 47 papers were accepted, in many cases after
a final round of checking for papers that initially received a conditional accept rating. As
is common with journals, the ability to resubmit improved versions of a paper allowed the
conference to accept a larger percentage of papers overall than in prior editions of ECOOP,
while maintaining a high quality thereshold.

We hope that future chairs will continue to experiment with more, and perhaps, different
innovations that will enrich the ECOOP community further.

Jonathan Aldrich Guido Salvaneschi
Program Committee Co-chair Program Committee Co-chair
Carnegie Mellon University University of St. Gallen

Message from the Artifact Evaluation Chairs

ECOOP has a long-standing tradition of offering artifact evaluation dating back to 2013.
Following the process introduced in 2022, the artifact evaluation involved every single
paper submission to ECOOP 2024, rather than just accepted papers. As such, it happened
in parallel with the paper review process. This approach has two benefits: all authors
who submitted an artifact received feedback (independently from paper acceptance), and
evaluation results were made available to the reviewers of the papers. In addition, senior
artifact evaluation committee members (representing half of the members) contributed to
an average of 2 paper reviews to the technical research track as members of the extended
review committee, improving the information sharing between the two processes. Artifact
submissions could, thus, provide more insights into the technical contributions described in
the papers and help to improve the overall review process.

To handle the high review load that such a process entails, we recruited a large artifact
evaluation committee that included a total of 61 artifact reviewers. The artifact submissions
were due around one week after the paper deadline, for both submission rounds of ECOOP.
We received a total of 64 submissions (41 for R1 and 23 for R2). After a kick-the-tires
review and author response phase, during which authors had the opportunity to clarify or
address technical issues with their submissions, each submitted artifact was reviewed by
three committee members.

We have followed ACM’s badging policy1 since 2023; details about the evaluation process
are provided in the preface to the Artifact volume.2 Out of the 64 submissions, the artifact
evaluation committee awarded the highest qualification (available, functional and reusable
badges) to 19 artifacts, the available and functional badges to 18 artifacts, and the available
badge to 23 artifacts. Out of those 64 submissions, 33 were associated with papers accepted
for presentation at ECOOP 2024.

The smooth and thorough artifact evaluation process would have not been possible without
the members of the committee, who handled the artifact review workload and contributed
to the technical PC discussions with great dedication. We would like to thank them for
their valuable work, feedback to authors and the inspiring discussions! We would also like to
thank the ECOOP 2024 program committee chairs Guido Salvaneschi and Jonathan Aldrich
for the pleasant and productive interactions over the coordination of the paper and artifact
review processes, and the Dagstuhl Publishing team for their proactive and highly responsive
assistance during the preparation of this DARTS volume.

Karine Even-Mendoza Raphaël Monat
King’s College London Inria Lille & University of Lille

Artifact Evaluation Co-chairs

1 https://www.acm.org/publications/policies/artifact-review-and-badging-current
2 https://doi.org/10.4230/DARTS.10.2.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.10.2.0
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Foreword by the President of AITO

After last year’s event in Seattle, ECOOP 2024 returns to the heart of Europe, hosted by
the prestigious Vienna University of Technology (TU Wien). Before this year, the conference
had been held in Austria only once, 28 years ago in Linz. Therefore, I am especially pleased
to welcome the ECOOP community to Vienna.

Although I have been involved in many ECOOP conferences, ECOOP 2024 holds special
significance for me, as this is my first time attending the conference as President of AITO.
Recently, the AITO Executive Board has undergone significant renewal. I am glad to welcome
Christian Hammer and Ben Hermann as the new Secretary and Treasurer of the Board,
respectively.

I owe deep gratitude to Eric Jul and Walter Olthoff, our previous President and Treasurer,
for supporting us during this transition and for their long-standing contributions to the
AITO community and the success of ECOOP.

As in previous years, ECOOP 2024 is co-located with ISSTA and, for the first time, with
MPLR. The ECOOP 2024 team, along with the ISSTA and MPLR teams, has done a great
job in putting together an excellent and rich program for the conferences, including ten
workshops, a doctoral symposium, tool demos, and tutorials. A huge thanks to them and to
all others who have contributed.

I am looking forward to excellent conferences and workshops, great presentations fostering
personal interaction, and excellent keynotes, including talks by the two 2024 Dahl-Nygaard
Prize Winners. Enjoy the conference and Vienna.

Davide Ancona
AITO President

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Luca Aceto (1, 2)
Reykjavík University, Iceland;
Gran Sasso Science Institute, L’Aquila, Italy

Jason Ansel (29)
Meta, Menlo Park, CA, USA

Sven Apel (36)
Saarland University, Saarland Informatics
Campus, Saarbrücken, Germany

Barnabas Arvay (3)
University of Freiburg, Germany

Steven Arzt (4)
Fraunhofer SIT | ATHENE – National Research
Center for Applied Cybersecurity, Darmstadt,
Germany

Duncan Paul Attard (2)
University of Glasgow, UK

Sacha-Élie Ayoun (25, 26)
Imperial College London, UK

Lorenzo Bacchiani (5)
University of Bologna, Italy

Casper Bach Poulsen (47)
Delft University of Technology, The Netherlands

Stephanie Balzer (11, 40)
Carnegie Mellon University,
Pittsburgh, PA, USA

Felix Berlakovich (6)
University of the Bundeswehr Munich,
Neubiberg, Germany

Matthias Bernad (7)
µCSRL – Munich Computer Systems Research
Lab, Research Institute CODE, University of
the Bundeswehr Munich, Neubiberg, Germany

Sahil Bhatia (32)
University of California, Berkeley, CA, USA

Eric Bodden (36, 37)
Paderborn University, Department of Computer
Science, Heinz Nixdorf Institute, Germany;
Fraunhofer IEM, Paderborn, Germany

Mario Bravetti (5)
University of Bologna, Italy

Bob Brockbernd (8)
Delft University of Technology, The Netherlands

Stefan Brunthaler (6, 7)
University of the Bundeswehr Munich,
Neubiberg, Germany

Timon Böhler (33)
Technische Universität Darmstadt, Germany

Colin Cai (32)
University of California, Berkeley, CA, USA

Paris Carbone (42)
EECS and Digital Futures, KTH Royal Institute
of Technology, Stockholm, Sweden;
Digital Systems, RISE Research Institutes of
Sweden, Stockholm, Sweden

Luís Carvalho (9)
NOVA LINCS, NOVA School of Science and
Technology, Caparica, Portugal

Madhurima Chakraborty (10)
University of California, Riverside, CA, USA

Le Chang (24)
University of Maryland, College Park, MD, USA

Stephen Chang (44)
University of Massachusetts Boston, MA, USA

Sheng Chen (21, 39)
CACS, University of Louisiana,
Lafayette, LA, USA

Alvin Cheung (32)
University of California, Berkeley, CA, USA

Shigeru Chiba (23)
The University of Tokyo, Japan

Maria Christakis (43)
TU Wien, Austria

Rance Cleaveland (24)
University of Maryland, College Park, MD, USA

João Costa Seco (9)
NOVA LINCS, NOVA School of Science and
Technology, Caparica, Portugal

Caroline Cronjäger (25)
Ruhr-Universität Bochum, Germany

Sixuan Dang (46)
Duke University, Durham, NC, USA

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2197-3018
https://doi.org/10.4230/LIPIcs.ECOOP.2024.1
https://doi.org/10.4230/LIPIcs.ECOOP.2024.2
https://orcid.org/0009-0007-5207-2179
https://doi.org/10.4230/LIPIcs.ECOOP.2024.29
https://orcid.org/0000-0003-3687-2233
https://doi.org/10.4230/LIPIcs.ECOOP.2024.36
https://orcid.org/0009-0002-2720-7100
https://doi.org/10.4230/LIPIcs.ECOOP.2024.3
https://orcid.org/0000-0002-5807-9431
https://doi.org/10.4230/LIPIcs.ECOOP.2024.4
https://orcid.org/0000-0002-2448-5394
https://doi.org/10.4230/LIPIcs.ECOOP.2024.2
https://doi.org/10.4230/LIPIcs.ECOOP.2024.25
https://doi.org/10.4230/LIPIcs.ECOOP.2024.26
https://orcid.org/0000-0002-4305-7491
https://doi.org/10.4230/LIPIcs.ECOOP.2024.5
https://orcid.org/0000-0003-0622-7639
https://doi.org/10.4230/LIPIcs.ECOOP.2024.47
https://orcid.org/0000-0002-8347-3529
https://doi.org/10.4230/LIPIcs.ECOOP.2024.11
https://doi.org/10.4230/LIPIcs.ECOOP.2024.40
https://orcid.org/0000-0003-0132-3728
https://doi.org/10.4230/LIPIcs.ECOOP.2024.6
https://orcid.org/0009-0003-1171-2601
https://doi.org/10.4230/LIPIcs.ECOOP.2024.7
https://doi.org/10.4230/LIPIcs.ECOOP.2024.32
https://orcid.org/0000-0003-3470-3647
https://doi.org/10.4230/LIPIcs.ECOOP.2024.36
https://doi.org/10.4230/LIPIcs.ECOOP.2024.37
https://orcid.org/0000-0001-5193-2914
https://doi.org/10.4230/LIPIcs.ECOOP.2024.5
https://doi.org/10.4230/LIPIcs.ECOOP.2024.8
https://orcid.org/0000-0001-9766-4871
https://doi.org/10.4230/LIPIcs.ECOOP.2024.6
https://doi.org/10.4230/LIPIcs.ECOOP.2024.7
https://orcid.org/0009-0002-9964-7367
https://doi.org/10.4230/LIPIcs.ECOOP.2024.33
https://doi.org/10.4230/LIPIcs.ECOOP.2024.32
https://orcid.org/0000-0002-9351-8508
https://doi.org/10.4230/LIPIcs.ECOOP.2024.42
https://orcid.org/0000-0003-3445-939X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.9
https://doi.org/10.4230/LIPIcs.ECOOP.2024.10
https://doi.org/10.4230/LIPIcs.ECOOP.2024.24
https://orcid.org/0000-0002-4760-0658
https://doi.org/10.4230/LIPIcs.ECOOP.2024.44
https://orcid.org/0000-0003-1735-0704
https://doi.org/10.4230/LIPIcs.ECOOP.2024.21
https://doi.org/10.4230/LIPIcs.ECOOP.2024.39
https://doi.org/10.4230/LIPIcs.ECOOP.2024.32
https://orcid.org/0000-0002-1058-5941
https://doi.org/10.4230/LIPIcs.ECOOP.2024.23
https://orcid.org/0000-0002-2649-1958
https://doi.org/10.4230/LIPIcs.ECOOP.2024.43
https://doi.org/10.4230/LIPIcs.ECOOP.2024.24
https://orcid.org/0000-0002-2840-3966
https://doi.org/10.4230/LIPIcs.ECOOP.2024.9
https://doi.org/10.4230/LIPIcs.ECOOP.2024.25
https://orcid.org/0000-0002-3241-9530
https://doi.org/10.4230/LIPIcs.ECOOP.2024.46
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Authors

Farzaneh Derakhshan (11, 40)
Illinois Institute of Technology,
Chicago, IL, USA

Luca Di Grazia (27)
Università della Svizzera italiana (USI),
Lugano, Switzerland

Aleksandar S. Dimovski (12)
Mother Teresa University,
Skopje, North Macedonia

Thi Thu Ha Doan (3)
University of Freiburg, Germany

Vlastimil Dort (13)
Charles University, Prague, Czech Republic

M. Anton Ertl (14)
TU Wien, Austria

Sam Estep (15)
Software and Societal Systems Department,
Carnegie Mellon University, Pittsburgh, PA,
USA

Marc Feeley (28)
Université de Montréal, Canada

Matthias Felleisen (44)
Northeastern University, Boston, MA, USA

Wolfram Fischer (37)
SAP Security Research, Mougins, France

Cormac Flanagan (16)
University of California, Santa Cruz, CA, USA

Adrian Francalanza (2)
University of Malta, Msida, Malta

Stephen N. Freund (16)
Williams College, Williamstown, MA, USA

Philippa Gardner (25, 26)
Imperial College London, UK

Marco Giunti (5)
University of Oxford, UK

Aakash Gnanakumar (10)
University of California, Riverside, CA, USA

Daniele Gorla (1)
Sapienza, Università di Roma, Italy

Ben Greenman (44)
University of Utah, Salt Lake City, UT, USA

Arie Gurfinkel (43)
University of Waterloo, Canada

Philipp Haller (17, 42)
KTH Royal Institute of Technology,
Stockholm, Sweden

Dan Hao (39)
Key Lab of HCST (PKU), MOE, School of
Computer Science, Peking University, Beijing,
China

Niranjan Hasabnis (32)
Intel Labs, Menlo Park, CA, USA

Dongjie He (18)
University of New South Wales, Sydney,
Australia; Chongqing University, China

Yi He (21)
Data Science, College William & Mary,
Williamsburg, VA, USA

Ping Hou (19)
University of Oxford, UK

Florian Huemer (20)
Johannes Kepler University, Linz, Austria

Ayman Hussein (17)
Technical University of Denmark,
Lyngby, Denmark

Anna Ingólfsdóttir (2)
Reykjavik University, Iceland

Shachar Itzhaky (22)
Technion, Haifa, Israel

Mohammad Wahiduzzaman Khan (21)
CACS, University of Louisiana,
Lafayette, LA, USA

Elad Kinsbruner (22)
Technion, Haifa, Israel

Jonas Klauke (37)
Paderborn University, Germany

Chaitanya Koparkar (38)
Indiana University, Bloomington, IN, USA

Nikita Koval (8)
JetBrains, Amsterdam, The Netherlands

Milind Kulkarni (38)
Purdue University, West Lafayette, IN, USA

Nicolas Lagaillardie (19)
Imperial College London, UK

Yi Lee (24)
University of Maryland, College Park, MD, USA

https://orcid.org/0000-0002-2156-2606
https://doi.org/10.4230/LIPIcs.ECOOP.2024.11
https://doi.org/10.4230/LIPIcs.ECOOP.2024.40
https://doi.org/10.4230/LIPIcs.ECOOP.2024.27
https://orcid.org/0000-0002-3601-2631
https://doi.org/10.4230/LIPIcs.ECOOP.2024.12
https://orcid.org/0000-0001-7524-4497
https://doi.org/10.4230/LIPIcs.ECOOP.2024.3
https://orcid.org/0000-0002-0213-7524
https://doi.org/10.4230/LIPIcs.ECOOP.2024.13
https://orcid.org/0009-0009-3794-4295
https://doi.org/10.4230/LIPIcs.ECOOP.2024.14
https://orcid.org/0000-0002-7107-7043
https://doi.org/10.4230/LIPIcs.ECOOP.2024.15
https://orcid.org/0009-0005-5237-8712
https://doi.org/10.4230/LIPIcs.ECOOP.2024.28
https://orcid.org/0000-0001-6678-1004
https://doi.org/10.4230/LIPIcs.ECOOP.2024.44
https://orcid.org/0000-0001-8127-8837
https://doi.org/10.4230/LIPIcs.ECOOP.2024.37
https://orcid.org/0009-0009-5067-6774
https://doi.org/10.4230/LIPIcs.ECOOP.2024.16
https://orcid.org/0000-0003-3829-7391
https://doi.org/10.4230/LIPIcs.ECOOP.2024.2
https://orcid.org/0009-0000-6992-199X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.16
https://doi.org/10.4230/LIPIcs.ECOOP.2024.25
https://doi.org/10.4230/LIPIcs.ECOOP.2024.26
https://orcid.org/0000-0002-7582-0308
https://doi.org/10.4230/LIPIcs.ECOOP.2024.5
https://doi.org/10.4230/LIPIcs.ECOOP.2024.10
https://orcid.org/0000-0001-8859-9844
https://doi.org/10.4230/LIPIcs.ECOOP.2024.1
https://orcid.org/0000-0001-7078-9287
https://doi.org/10.4230/LIPIcs.ECOOP.2024.44
https://orcid.org/0000-0002-5964-6792
https://doi.org/10.4230/LIPIcs.ECOOP.2024.43
https://orcid.org/0000-0002-2659-5271
https://doi.org/10.4230/LIPIcs.ECOOP.2024.17
https://doi.org/10.4230/LIPIcs.ECOOP.2024.42
https://orcid.org/0000-0001-8295-303X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.39
https://doi.org/10.4230/LIPIcs.ECOOP.2024.32
https://orcid.org/0000-0003-0304-8942
https://doi.org/10.4230/LIPIcs.ECOOP.2024.18
https://orcid.org/0000-0002-5357-6623
https://doi.org/10.4230/LIPIcs.ECOOP.2024.21
https://orcid.org/0000-0001-6899-9971
https://doi.org/10.4230/LIPIcs.ECOOP.2024.19
https://orcid.org/0009-0002-5773-4024
https://doi.org/10.4230/LIPIcs.ECOOP.2024.20
https://orcid.org/0009-0005-6173-0976
https://doi.org/10.4230/LIPIcs.ECOOP.2024.17
https://orcid.org/0000-0001-8362-3075
https://doi.org/10.4230/LIPIcs.ECOOP.2024.2
https://orcid.org/0000-0002-7276-7644
https://doi.org/10.4230/LIPIcs.ECOOP.2024.22
https://orcid.org/0009-0001-1760-6645
https://doi.org/10.4230/LIPIcs.ECOOP.2024.21
https://orcid.org/0000-0003-1314-0945
https://doi.org/10.4230/LIPIcs.ECOOP.2024.22
https://orcid.org/0000-0001-9160-9636
https://doi.org/10.4230/LIPIcs.ECOOP.2024.37
https://orcid.org/0000-0002-4515-8499
https://doi.org/10.4230/LIPIcs.ECOOP.2024.38
https://doi.org/10.4230/LIPIcs.ECOOP.2024.8
https://orcid.org/0000-0001-6827-345X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.38
https://orcid.org/0000-0002-6431-4100
https://doi.org/10.4230/LIPIcs.ECOOP.2024.19
https://doi.org/10.4230/LIPIcs.ECOOP.2024.24

Authors 0:xvii

David Leopoldseder (20)
Oracle Labs, Vienna, Austria

Ondřej Lhoták (13)
University of Waterloo, Canada

Liyi Li (24)
Iowa State University, Ames, IA, USA

Senxi Li (23)
The University of Tokyo, Japan

Yufeng Li (13)
University of Cambridge, UK

Jingbo Lu (18)
University of New South Wales, Sydney,
Australia; Shanghai Sectrend Information
Technology Co., Ltd, China

Stian Lybech (1)
Reykjavík University, Iceland

Andreas Lööw (25, 26)
Imperial College London, UK

Petr Maj (27)
Czech Technical University, Prague,
Czech Republic

Petar Maksimović (25, 26)
Imperial College London, UK; Runtime
Verification Inc., Chicago, IL, USA

Olivier Melançon (28)
Université de Montréal, Canada

Hernán Melgratti (17)
University of Buenos Aires & Conicet, Argentina

Mira Mezini (33)
Technische Universität Darmstadt, Germany;
The Hessian Center for Artificial Intelligence
(hessian.AI), Darmstadt, Germany

Zeina Migeed (29)
University of California, Los Angeles (UCLA),
CA, USA

Marc Miltenberger (4)
Fraunhofer SIT | ATHENE – National Research
Center for Applied Cybersecurity, Darmstadt,
Germany

Fabrizio Montesi (31)
University of Southern Denmark,
Odense, Denmark

Raphael Mosaner (20)
Oracle Labs, Linz, Austria

João Mota (5)
NOVA LINCS, Nova University Lisbon,
Portugal;
NOVA School of Science and Technology,
Caparica, Portugal

Stefanie Muroya (27)
Institute of Science and Technology Austria
(ISTA), Klosterneuburg, Austria

Hanspeter Mössenböck (20)
Johannes Kepler University, Linz, Austria

Anders Møller (10)
Aarhus University, Denmark

Daniele Nantes-Sobrinho (25, 26)
Imperial College London, UK

Jorge A. Navas (43)
Certora, Seattle, WA, USA

Ryan Newton (38)
Purdue University, West Lafayette, IN, USA

Wode Ni (15)
Software and Societal Systems Department,
Carnegie Mellon University, Pittsburgh, PA,
USA

Alexander Nicolellis (24)
Iowa State University, Ames, IA, USA

Julius Näumann (4)
TU Darmstadt | ATHENE – National Research
Center for Applied Cybersecurity, Darmstadt,
Germany

Burcu Kulahcioglu Ozkan (8)
Delft University of Technology, The Netherlands

Vineeth Paleri (35)
National Institute of Technology Calicut, India

Jens Palsberg (29)
University of California, Los Angeles (UCLA),
CA, USA

Pavel Parízek (13)
Charles University, Prague, Czech Republic

Nisarg Patel (30)
New York University, NY, USA

Bernd Paysan (14)
net2o, Munich, Germany

Hila Peleg (22)
Technion, Haifa, Israel

Artem Pelenitsyn (38)
Purdue University, West Lafayette, IN, USA

ECOOP 2024

https://orcid.org/0000-0002-9361-6431
https://doi.org/10.4230/LIPIcs.ECOOP.2024.20
https://orcid.org/0000-0001-9066-1889
https://doi.org/10.4230/LIPIcs.ECOOP.2024.13
https://orcid.org/0000-0001-8184-0244
https://doi.org/10.4230/LIPIcs.ECOOP.2024.24
https://orcid.org/0009-0008-2644-7763
https://doi.org/10.4230/LIPIcs.ECOOP.2024.23
https://doi.org/10.4230/LIPIcs.ECOOP.2024.13
https://orcid.org/0000-0003-4070-3942
https://doi.org/10.4230/LIPIcs.ECOOP.2024.18
https://orcid.org/0000-0001-8219-2285
https://doi.org/10.4230/LIPIcs.ECOOP.2024.1
https://doi.org/10.4230/LIPIcs.ECOOP.2024.25
https://doi.org/10.4230/LIPIcs.ECOOP.2024.26
https://doi.org/10.4230/LIPIcs.ECOOP.2024.27
https://doi.org/10.4230/LIPIcs.ECOOP.2024.25
https://doi.org/10.4230/LIPIcs.ECOOP.2024.26
https://orcid.org/0009-0007-7688-3208
https://doi.org/10.4230/LIPIcs.ECOOP.2024.28
https://orcid.org/0000-0003-0760-0618
https://doi.org/10.4230/LIPIcs.ECOOP.2024.17
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/LIPIcs.ECOOP.2024.33
https://orcid.org/0000-0002-5277-4564
https://doi.org/10.4230/LIPIcs.ECOOP.2024.29
https://orcid.org/0000-0002-3806-0522
https://doi.org/10.4230/LIPIcs.ECOOP.2024.4
https://orcid.org/0000-0003-4666-901X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.31
https://orcid.org/0000-0003-0523-2241
https://doi.org/10.4230/LIPIcs.ECOOP.2024.20
https://orcid.org/0000-0003-3182-2245
https://doi.org/10.4230/LIPIcs.ECOOP.2024.5
https://doi.org/10.4230/LIPIcs.ECOOP.2024.27
https://orcid.org/0000-0001-7706-7308
https://doi.org/10.4230/LIPIcs.ECOOP.2024.20
https://orcid.org/0000-0003-1333-2314
https://doi.org/10.4230/LIPIcs.ECOOP.2024.10
https://doi.org/10.4230/LIPIcs.ECOOP.2024.25
https://doi.org/10.4230/LIPIcs.ECOOP.2024.26
https://orcid.org/0000-0002-0516-1167
https://doi.org/10.4230/LIPIcs.ECOOP.2024.43
https://orcid.org/0000-0003-3934-9165
https://doi.org/10.4230/LIPIcs.ECOOP.2024.38
https://orcid.org/0000-0002-5341-4958
https://doi.org/10.4230/LIPIcs.ECOOP.2024.15
https://doi.org/10.4230/LIPIcs.ECOOP.2024.24
https://orcid.org/0000-0002-5162-3334
https://doi.org/10.4230/LIPIcs.ECOOP.2024.4
https://orcid.org/0000-0002-7038-165X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.8
https://orcid.org/0000-0002-3394-1558
https://doi.org/10.4230/LIPIcs.ECOOP.2024.35
https://orcid.org/0000-0003-4747-365X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.29
https://orcid.org/0000-0003-0714-7446
https://doi.org/10.4230/LIPIcs.ECOOP.2024.13
https://orcid.org/0009-0006-6859-2542
https://doi.org/10.4230/LIPIcs.ECOOP.2024.30
https://doi.org/10.4230/LIPIcs.ECOOP.2024.14
https://orcid.org/0000-0002-0107-5659
https://doi.org/10.4230/LIPIcs.ECOOP.2024.22
https://orcid.org/0000-0001-8334-8106
https://doi.org/10.4230/LIPIcs.ECOOP.2024.38

0:xviii Authors

Marco Peressotti (31)
University of Southern Denmark,
Odense, Denmark

Dan Plyukhin (31)
University of Southern Denmark,
Odense, Denmark

Serena Elisa Ponta (37)
SAP Security Research, Mougins, France

Alex Potanin (34, 45)
Australian National University,
Canberra, Australia

Aleksandar Prokopec (20)
Oracle Labs, Zurich, Switzerland

Jie Qiu (32)
Pittsburgh, PA, USA

Mike Rainey (38)
Carnegie Mellon University,
Pittsburgh, PA, USA

António Ravara (5)
NOVA LINCS, Nova University Lisbon,
Portugal; NOVA School of Science and
Technology, Caparica, Portugal

James Reed (29)
Fireworks AI, Redwood City, CA, USA

David Richter (33)
Technische Universität Darmstadt, Germany

Amos Robinson (34)
Sydney, Australia

Raven Rothkopf (15)
Barnard College, Columbia University,
New York, NY, USA

Reshma Roy (35)
National Institute of Technology, Calicut, India

Sreekala S (35)
National Institute of Technology Calicut, India

Florian Sattler (36)
Saarland University, Saarland Informatics
Campus, Saarbrücken, Germany

Alceste Scalas (17)
Technical University of Denmark,
Lyngby, Denmark

Fabian Schiebel (36)
Fraunhofer Institute for Mechatronic Systems
Design IEM, Paderborn, Germany

Stefan Schott (37)
Paderborn University, Germany

Philipp Dominik Schubert (36)
Heinz Nixdorf Institute, Paderborn, Germany

Ilya Sergey (45)
National University of Singapore, Singapore

Manuel Serrano (28)
Inria/UCA, Inria Sophia Méditerranée,
Sophia Antipolis, France

Sanjit A. Seshia (32)
University of California, Berkeley, CA, USA

Dennis Shasha (30)
New York University, NY, USA

Konrad Siek (27)
Czech Technical University,
Prague, Czech Republic

Vidush Singhal (38)
Purdue University, West Lafayette, IN, USA

Jonas Spenger (42)
EECS and Digital Futures, KTH Royal Institute
of Technology, Stockholm, Sweden

Manu Sridharan (10)
University of California, Riverside, CA, USA

Ke Sun (39)
Key Lab of HCST (PKU), MOE, School of
Computer Science, Peking University, Beijing,
China

Joshua Sunshine (15)
Software and Societal Systems Department,
Carnegie Mellon University, Pittsburgh, PA,
USA

Peter Thiemann (3)
University of Freiburg, Germany

Richard Trefler (43)
University of Waterloo, Canada

Emilio Tuosto (17)
Gran Sasso Science Institute, L’Aquila, Italy

Bas van den Heuvel (40)
HKA Karlsruhe, Germany; University of
Freiburg, Germany; University of Groningen,
The Netherlands

Arie van Deursen (8)
Delft University of Technology, The Netherlands

Martin Vassor (41)
University of Oxford, UK

Aleksey Veresov (42)
EECS and Digital Futures, KTH Royal Institute
of Technology, Stockholm, Sweden

https://orcid.org/0000-0002-0243-0480
https://doi.org/10.4230/LIPIcs.ECOOP.2024.31
https://orcid.org/0009-0004-8712-7895
https://doi.org/10.4230/LIPIcs.ECOOP.2024.31
https://orcid.org/0000-0002-6208-4743
https://doi.org/10.4230/LIPIcs.ECOOP.2024.37
https://orcid.org/0000-0002-4242-2725
https://doi.org/10.4230/LIPIcs.ECOOP.2024.34
https://doi.org/10.4230/LIPIcs.ECOOP.2024.45
https://orcid.org/0000-0003-0260-2729
https://doi.org/10.4230/LIPIcs.ECOOP.2024.20
https://orcid.org/0009-0001-8874-7314
https://doi.org/10.4230/LIPIcs.ECOOP.2024.32
https://orcid.org/0009-0002-9659-1636
https://doi.org/10.4230/LIPIcs.ECOOP.2024.38
https://orcid.org/0000-0001-8074-0380
https://doi.org/10.4230/LIPIcs.ECOOP.2024.5
https://doi.org/10.4230/LIPIcs.ECOOP.2024.29
https://orcid.org/0000-0002-8672-0265
https://doi.org/10.4230/LIPIcs.ECOOP.2024.33
https://orcid.org/0009-0004-4837-4981
https://doi.org/10.4230/LIPIcs.ECOOP.2024.34
https://orcid.org/0000-0002-3926-683X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.15
https://orcid.org/0000-0003-3134-4079
https://doi.org/10.4230/LIPIcs.ECOOP.2024.35
https://orcid.org/0009-0007-0641-6399
https://doi.org/10.4230/LIPIcs.ECOOP.2024.35
https://orcid.org/0000-0003-2523-1158
https://doi.org/10.4230/LIPIcs.ECOOP.2024.36
https://orcid.org/0000-0002-1153-6164
https://doi.org/10.4230/LIPIcs.ECOOP.2024.17
https://orcid.org/0009-0008-6867-9802
https://doi.org/10.4230/LIPIcs.ECOOP.2024.36
https://orcid.org/0000-0002-0644-3297
https://doi.org/10.4230/LIPIcs.ECOOP.2024.37
https://orcid.org/0000-0002-8674-1859
https://doi.org/10.4230/LIPIcs.ECOOP.2024.36
https://orcid.org/0000-0003-4250-5392
https://doi.org/10.4230/LIPIcs.ECOOP.2024.45
https://orcid.org/0000-0002-5240-1610
https://doi.org/10.4230/LIPIcs.ECOOP.2024.28
https://doi.org/10.4230/LIPIcs.ECOOP.2024.32
https://orcid.org/0000-0002-7036-3312
https://doi.org/10.4230/LIPIcs.ECOOP.2024.30
https://doi.org/10.4230/LIPIcs.ECOOP.2024.27
https://orcid.org/0000-0001-6912-3840
https://doi.org/10.4230/LIPIcs.ECOOP.2024.38
https://orcid.org/0000-0002-7119-5234
https://doi.org/10.4230/LIPIcs.ECOOP.2024.42
https://orcid.org/0000-0001-7993-302X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.10
https://orcid.org/0000-0002-2966-9889
https://doi.org/10.4230/LIPIcs.ECOOP.2024.39
https://orcid.org/0000-0002-9672-5297
https://doi.org/10.4230/LIPIcs.ECOOP.2024.15
https://orcid.org/0000-0002-9000-1239
https://doi.org/10.4230/LIPIcs.ECOOP.2024.3
https://orcid.org/0009-0007-4235-9328
https://doi.org/10.4230/LIPIcs.ECOOP.2024.43
https://orcid.org/0000-0002-7032-3281
https://doi.org/10.4230/LIPIcs.ECOOP.2024.17
https://orcid.org/0000-0002-8264-7371
https://doi.org/10.4230/LIPIcs.ECOOP.2024.40
https://orcid.org/0000-0003-4850-3312
https://doi.org/10.4230/LIPIcs.ECOOP.2024.8
https://orcid.org/0000-0002-2057-0495
https://doi.org/10.4230/LIPIcs.ECOOP.2024.41
https://orcid.org/0000-0002-5091-9811
https://doi.org/10.4230/LIPIcs.ECOOP.2024.42

Authors 0:xix

Jan Vitek (27)
Charles University, Prague, Czech Republic;
Northeastern University, Boston, MA, USA

Michael Vollmer (38)
University of Kent, UK

Di Wang (39)
Key Lab of HCST (PKU), MOE, School of
Computer Science, Peking University, Beijing,
China

Meng Wang (39)
University of Bristol, UK

Pascal Weisenburger (33)
University of St. Gallen, Switzerland

Scott Wesley (43)
Dalhousie University, Halifax, Canada

Ashton Wiersdorf (44)
University of Utah, Salt Lake City,
UT, USA

Thomas Wies (30)
New York University, NY, USA

Xiaodi Wu (24)
University of Maryland,
College Park, MD, USA

Valentin Wüstholz (43)
ConsenSys, Vienna, Austria

Jingling Xue (18)
University of New South Wales,
Sydney, Australia

Tetsuro Yamazaki (23)
The University of Tokyo, Japan

Ziyi Yang (45)
National University of Singapore, Singapore

Yue Yao (11)
Carnegie Mellon University,
Pittsburgh, PA, USA

Nobuko Yoshida (19, 41)
University of Oxford, UK

David Young (45)
University of Kansas, Lawrence, KS, USA

Danfeng Zhang (46)
Duke University, Durham, NC, USA

Quan Zhou (46)
Penn State University,
University Park, PA, USA

Mingwei Zhu (24)
University of Maryland, College Park, MD, USA

Joseph Zullo (38)
Purdue University, West Lafayette, IN, USA

Aron Zwaan (47)
Delft University of Technology, The Netherlands

ECOOP 2024

https://doi.org/10.4230/LIPIcs.ECOOP.2024.27
https://orcid.org/0000-0002-0496-8268
https://doi.org/10.4230/LIPIcs.ECOOP.2024.38
https://orcid.org/0000-0002-2418-7987
https://doi.org/10.4230/LIPIcs.ECOOP.2024.39
https://orcid.org/0000-0001-7780-630X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.39
https://orcid.org/0000-0003-1288-1485
https://doi.org/10.4230/LIPIcs.ECOOP.2024.33
https://orcid.org/0000-0002-6708-2122
https://doi.org/10.4230/LIPIcs.ECOOP.2024.43
https://orcid.org/0000-0001-5524-7930
https://doi.org/10.4230/LIPIcs.ECOOP.2024.44
https://orcid.org/0000-0003-4051-5968
https://doi.org/10.4230/LIPIcs.ECOOP.2024.30
https://orcid.org/0000-0001-8877-9802
https://doi.org/10.4230/LIPIcs.ECOOP.2024.24
https://doi.org/10.4230/LIPIcs.ECOOP.2024.43
https://orcid.org/0000-0003-0380-3506
https://doi.org/10.4230/LIPIcs.ECOOP.2024.18
https://orcid.org/0000-0002-2065-5608
https://doi.org/10.4230/LIPIcs.ECOOP.2024.23
https://orcid.org/0000-0002-8015-7846
https://doi.org/10.4230/LIPIcs.ECOOP.2024.45
https://orcid.org/0000-0001-8523-5156
https://doi.org/10.4230/LIPIcs.ECOOP.2024.11
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2024.19
https://doi.org/10.4230/LIPIcs.ECOOP.2024.41
https://orcid.org/0009-0006-1193-330X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.45
https://orcid.org/0000-0003-1942-6872
https://doi.org/10.4230/LIPIcs.ECOOP.2024.46
https://orcid.org/0009-0003-3497-7848
https://doi.org/10.4230/LIPIcs.ECOOP.2024.46
https://doi.org/10.4230/LIPIcs.ECOOP.2024.24
https://orcid.org/0000-0002-3908-9853
https://doi.org/10.4230/LIPIcs.ECOOP.2024.38
https://orcid.org/0000-0002-1818-4245
https://doi.org/10.4230/LIPIcs.ECOOP.2024.47

A Sound Type System for Secure Currency Flow
Luca Aceto #

Reykjavík University, Iceland

Daniele Gorla #

Sapienza, Università di Roma, Italy

Stian Lybech #

Reykjavík University, Iceland

Abstract
In this paper we focus on TinySol, a minimal calculus for Solidity smart contracts, introduced
by Bartoletti et al. We start by rephrasing its syntax (to emphasise its object-oriented flavour)
and give a new big-step operational semantics. We then use it to define two security properties,
namely call integrity and noninterference. These two properties have some similarities in their
definition, in that they both require that some part of a program is not influenced by the other part.
However, we show that the two properties are actually incomparable. Nevertheless, we provide a
type system for noninterference and show that well-typed programs satisfy call integrity as well;
hence, programs that are accepted by our type system satisfy both properties. We finally discuss
the practical usability of the type system and its limitations by means of some simple examples.

2012 ACM Subject Classification Theory of computation → Program analysis; Theory of computa-
tion → Type structures

Keywords and phrases smart contracts, call integrity, noninterference, type system

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.1

Related Version Full Version: https://arxiv.org/abs/2405.12976 [1]

Funding Luca Aceto: Supported by the Icelandic Research Fund Grant No. 218202-05(1-3).
Stian Lybech: Supported by the Icelandic Research Fund Grant No. 218202-05(1-3).

Acknowledgements We thank the anonymous reviewers for their constructive attitude and for
the fruitful comments that helped us improve our paper. Luca Aceto and Stian Lybech thank
Mohammad Hamdaqa for sharing his expertise with them during extensive discussions on safety
properties for smart contracts, which helped shape the research agenda for the work reported in this
paper.

1 Introduction

The classic notion of noninterference [12] is a well-known concept that has been applied in a
variety of settings to characterise both integrity and secrecy in programming. In particular,
this property has been defined by Volpano et al. [28] in terms of a lattice model of security
levels (e.g. “High” and “Low”, or “Trusted” and “Untrusted”); the key point being that
information must not flow from a higher to a lower level. Thus, the lower levels are unaffected
by the higher ones, and, conversely, the higher levels are “noninterfering” with the lower
ones.

Ensuring noninterference seems particularly relevant in a setting where not only informa-
tion, but also currency, flows between programs. This is a core feature of smart contracts,
which are programs that run atop a blockchain and are used to manage financial assets
of users, codify transactions, and implement custom tokens; see e.g. [24] for an overview
of the architecture. The code of a smart contract resides on the blockchain itself, and is
therefore both immutable and publicly visible. This is one of the important ways in which the
“smart-contract programming paradigm” differs from conventional programming languages.

© Luca Aceto, Daniele Gorla, and Stian Lybech;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 1; pp. 1:1–1:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca@ru.is
https://orcid.org/0000-0002-2197-3018
mailto:gorla@di.uniroma1.it
https://orcid.org/0000-0001-8859-9844
mailto:stian21@ru.is
https://orcid.org/0000-0001-8219-2285
https://doi.org/10.4230/LIPIcs.ECOOP.2024.1
https://arxiv.org/abs/2405.12976
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 A Sound Type System for Secure Currency Flow

1 contract X { contract Y {
2
3 field called := F; deposit (x) {
4 transfer (z) { x. transfer (this):0
5 if ¬called ∧ this . balance ≥ 1 }
6 then z. deposit (this):1; }
7 this . called := T;
8 else skip
9 }

10 }

Figure 1 Illustration of reentrancy written in the language TinySol.

Public visibility means that vulnerabilities in the code can be found and exploited by a
malicious user. Moreover, if a vulnerability is discovered, immutability prevents the contract
creator from correcting the error. Thus, it is obviously desirable to ensure that a smart
contract is safe and correct before it is deployed onto the blockchain.

The combination of immutability and visibility has led to huge financial losses in the
past (see, e.g., [2, 8, 19, 20, 26]). A particularly spectacular example was the infamous
DAO-attack on the Ethereum platform in 2016, which led to a loss of 60 million dollars [8].
This was made possible because a certain contract (the DAO contract, storing assets of users)
was reentrant, that is, it allowed itself to be called back by the recipient of a transfer before
recording that the transfer had been completed.

Reentrancy is a pattern based on mutual recursion, where one method f calls another
method g whilst also transferring an amount of currency along with the call. If g then
immediately calls f back, it may yield a recursion where f will keep transferring funds to
g. We can illustrate the problem as in Figure 1, using a simple, imperative and class-based
model language called TinySol [3]. This model language, which we shall formally describe
in Section 2, captures some of the core features of the smart-contract language Solidity [10],
which is the standard high-level language used to write smart contracts for the Ethereum
platform. A key feature of this language is that contracts have an associated balance,
representing the amount of currency stored in each contract, which cannot be modified
except through method calls to other contracts. Each method call has an extra parameter,
representing the amount of currency to be transferred along with the call, and a method call
thus represents a (potential) outgoing currency flow.

In Figure 1, X.transfer(z) first does a sanity check to ensure that it has not already
been called and that the contract contains sufficient funds, which are stored in the balance
field. Then it calls z.deposit(this) and transfers 1 unit of currency along with the call,
where z is the address received as parameter. However, suppose the address received is Y.
Then Y.deposit(x) immediately calls X.transfer(z) back, with this as actual parameter;
this yields a mutual recursion, because the field called will never be set to T. A transaction
that invokes X.transfer(Y) with any number of currency units will trigger the recursion.

The problem is that currency cannot be transferred without also transferring control
to the recipient, and the execution of X.transfer(z) comes to depend on unknown and
untrusted code in the contract residing at the address received as the actual parameter.
Simply switching the order of lines 6 and 7 in X solves the problem in this particular case,
but it might not always be possible to move external calls to the last position in a sequence
of statements. Furthermore, the execution of a function f can also depend on external fields,
and not only on external calls. Thus, reentrancy is not just a purely syntactic property.

L. Aceto, D. Gorla, and S. Lybech 1:3

The property of reentrancy in Ethereum smart contracts has been formally characterised
by Grishchenko et al. in [13]. Specifically, they define another property, named call integrity,
which implies the absence of reentrancy (see [13, Theorem 1]) and has been identified in the
literature as one of the safety properties that smart contracts should have. Informally, this
property requires any call to a method in a “trusted” contract (say, X) to yield the exact
same sequence of currency flows (i.e. method calls) even if some of the other “untrusted”
contracts (or their stored values) are changed. In a sense, the code and values of the other
contracts, which could be controlled by an attacker, must not be able to affect the currency
flow from X.

A disadvantage of the definition of call integrity given in [13] is that it relies on a universal
quantification over all possible execution contexts, which makes it hard to be checked in
practice. However, call integrity seems intuitively to be related to noninterference, in the
sense that both stipulate that changes in one part of a program should not have an effect upon
another part. Even though we discover that the two properties are incomparable, one might
hope to be able to apply techniques for ensuring noninterference to also capture call integrity.
Specifically, Volpano et al. [28] show that noninterference can be soundly approximated using
a type system. In the present paper, we shall therefore create an adaptation of this type
system for secure-flow analysis to the setting of smart contracts and show that the resulting
type system also captures call integrity.

To recap, our main contributions in this paper are: (1) a thorough study of the connections
between call integrity and noninterference for smart contracts written in the language
TinySol, and (2) a sound type system guaranteeing (noninterference and) call integrity
for programs written in that language. We choose TinySol because it provides a minimal
calculus for Solidity contracts and thus allows us to focus on the gist of our main contributions
in a simple setting. In doing this, we also provide a simpler operational semantics for this
language; this can be considered a third contribution of our work.

The paper is organised as follows: In Section 2, we describe a revised version of the
smart-contract language TinySol [3]. In Section 3, we adapt the definition of call integrity
from [13] and of noninterference from [25] to this language; we then show that these two
desirable properties are actually incomparable. Nevertheless, there is an overlap between
them. In Section 4, we create a type system for ensuring noninterference in TinySol, along
the lines of Volpano et al. [28], and prove a type soundness result (Theorems 12–15). Our
main result is Theorem 19, which shows that well-typedness provides a sound approximation
to both noninterference and call integrity. This is used on a few examples in Section 5, where
we also discuss the limitations of the type system. We survey some related work in Section 6
and conclude the paper with some directions for future research in Section 7. All proofs and
some technical details are omitted from this paper for space reasons; they can be found in [1].

2 The TinySol language

In [3], Bartoletti et al. present the TinySol language, a standard imperative language (similar
to Dijkstra’s While language [18]), extended with classes (contracts) and two constructs:
(1) a throw command, representing a fatal error, and (2) a procedure call, with an extra
parameter n, denoting an amount of some digital asset, which is transferred along with the
call from the caller to the callee. TinySol captures (some of) the core features of Solidity,
and, in particular, it is sufficient to represent reentrancy phenomena. In this section, we
present a version of TinySol which has been adapted to facilitate our later developments of
the type system. Compared to the presentation in [3], we have, in particular, added explicit
declarations of variables (local to the scope of a method) and fields (corresponding to the
keys in the original presentation) to have a place for type annotations in the syntax.

ECOOP 2024

1:4 A Sound Type System for Secure Currency Flow

DF ∈ DecF ::= ϵ
∣∣ field p := v;DF

DM ∈ DecM ::= ϵ
∣∣ f(x̃) { S } DM

DC ∈ DecC ::= ϵ
∣∣ contract X {

field balance := n; DF

send() { skip } DM

} DC

m ∈ MVar ::= this
∣∣ sender

∣∣ value
L ∈ LVal ::= x

∣∣ this.p

e ∈ Exp ::= v
∣∣ x

∣∣ m | e.balance
∣∣ e.p

∣∣ op(ẽ)
S ∈ Stm ::= skip

∣∣ throw
∣∣ var x := e in S

∣∣ L := e
∣∣ S1;S2∣∣ if e then ST else SF

∣∣ while e do S
∣∣ e1.f(ẽ):e2

v ∈ Val ::= N ∪ B ∪ ANames

where x, y ∈ VNames (variable names), p, q ∈ FNames (field names),
X, Y ∈ ANames (address names), f, g ∈ MNames (method names)

Figure 2 The syntax of TinySol.

2.1 Syntax

The syntax of TinySol is given in Figure 2, where we use the notation ·̃ to denote (possibly
empty) sequences of items. The set of values, ranged over by v, is formed by the sets of
integers N, ranged over by n, booleans B = { T, F }, ranged over by b, and address names
ANames, ranged over by X, Y .

We introduce explicit declarations for fields DF , methods DM , and contracts DC. The
latter also encompasses declarations of accounts: an account is a contract that contains only
the declarations of a special field balance and of a single special method send(), which does
nothing and is used only for transferring funds to the account. By contrast, a contract usually
contains other declarations of fields and methods. For the sake of simplicity, we make no
syntactic distinction between an account and a contract but, for the purpose of distinguishing,
we can assume that the set ANames is split into contract addresses and account addresses.

We have four “magic” keywords in our syntax:
balance (type int), a special field recording the current balance of the contract (or
account). It can be read from, but not directly assigned to, except through method
calls. This ensures that the total amount of currency “on-chain” remains constant during
execution.
value (type int), a special variable that is bound to the currency amount transferred
with a method call.
sender (type address), a special variable that is always bound to the address of the
caller of a method.
this (type address), a special variable that is always bound to the address of the contract
containing the currently executing method.

The last three of these are local variables, and we collectively refer to them as “magic variables”
m ∈ MVar. The declaration of variables and fields are very alike: the main difference is that
variable bindings will be created at runtime (and with scoped visibility), hence we can let the
initial assignment be an expression e; whilst the initial assignment to fields must be values v.

L. Aceto, D. Gorla, and S. Lybech 1:5

The core part of the language is the declaration of expressions e and statements S, that are
almost the same as in [3]. The main differences are: (1) we introduce fields p in expressions,
instead of keys; (2) we explicitly distinguish between (global) fields and (local) variables,
where the latter are declared with a scope limited to a statement S; and (3) we introduce
explicit lvalues L, to restrict what can appear on the left-hand side of an assignment (in
particular, this ensures that the special field balance can never be assigned to directly).

As in the original presentation of TinySol, we can also use our new formulation of the
language to describe transactions and blockchains. A transaction is simply a call, where the
caller is an account A, rather than a contract. We denote this by writing A->X.f(ṽ):n,
which expresses that the account A calls the method f on the contract (residing at address)
X, with actual parameters ṽ, and transferring n amount of currency with the call. We can
then model blockchains as follows:

▶ Definition 1 (Syntax of blockchains). A blockchain B ∈ B is a list of initial contract
declarations DC, followed by a sequence of transactions T ∈ Tr:

B ::= DC T T ::= ϵ
∣∣ A->X.f(ṽ):n,T

Notationally, a blockchain with an empty DC will be simply written as the sequence of
transactions.

2.2 Big-step semantics
To define the semantics, we need some environments to record the bindings of variables
(including the three magic variable names this, sender and value), fields, methods, and
contracts. We define them as sets of partial functions as follows:

▶ Definition 2 (Binding model). We define the following sets of partial functions:

envV ∈ EnvV : VNames ∪ MVar ⇀ Val envS ∈ EnvS : ANames ⇀ EnvF

envF ∈ EnvF : FNames ∪ { balance } ⇀ Val envT ∈ EnvT : ANames ⇀ EnvM

envM ∈ EnvM : MNames ⇀ VNames∗ × Stm

We regard each environment envX , for any X ∈ { V, F, M, S, T }, as a list of pairs (d, c)
where d ∈ dom (envX) and c ∈ codom (envX). The notation envX[d 7→ c] denotes the update
of envX mapping d to c. We write env∅

X for the empty environment. To simplify the notation,
when two or more environments appear together, we shall use the convention of writing the
subscripts together (e.g. envMF instead of envM , envF).

Our binding model consists of two environments: a method table envT , which maps
addresses to method environments, and a state envS , which maps addresses to lists of fields
and their values. Thus, for each contract, we have the list of methods it declares and its
current state; of course, the method table is constant, once all declarations are performed,
whereas the state will change during the evaluation of a program.

2.2.1 Declarations
The semantics of declarations builds the field and method environments, envF and envM ,
and the state and method table envS and envT . We give the semantics in a classic big-step
style; thus, transitions are of the form ⟨DX, envX⟩ →DX env′

X for X ∈ { F, M, C, S, T }, and
their defining rules are given in Figure 3. Notationally, here and in what follows, we denote

ECOOP 2024

1:6 A Sound Type System for Secure Currency Flow

[Dec-F1] ⟨ϵ, envF ⟩ →DF envF

[Dec-M1] ⟨ϵ, envM ⟩ →DM envM

[Dec-C1] ⟨ϵ, envST ⟩ →DC envST

[Dec-C2]
〈
DF, env∅

F

〉
→DF envF

〈
DM, env∅

M

〉
→DM envM ⟨DC, envST ⟩ →DC env′

ST

⟨contract X { DF DM } DC, envST ⟩ →DC (X, envF) : env′
S , (X, envM) : env′

T

[Dec-F2] ⟨DF, envF ⟩ →DF env′
F

⟨field p := v;DF , envF ⟩ →DF (p, v) : env′
F

[Dec-M2] ⟨DM, envM ⟩ →DM env′
M

⟨f(x̃) { S } DM, envM ⟩ →DM (f, (x̃, S)) : env′
M

Figure 3 Semantics of declarations.

[Exp-Var]k ∈ dom (envV) envV (k) = v

envSV ⊢ k →e v

[Exp-Val] envSV ⊢ v →e v

[Exp-Op] envSV ⊢ ẽ →e ṽ op(ṽ) →op v

envSV ⊢ op(ẽ) →e v

[Exp-Field] envSV ⊢ e →e X q ∈ dom (envS(X)) envS(X)(q) = v

envSV ⊢ e.q →e v

Figure 4 Semantics of expressions.

with e : l the list that results from prepending an element e to the list l. We assume that
field and method names are distinct within each contract; therefore, the rules in Figure 3
define partial, finite functions.

2.2.2 Expressions
Figure 4 gives the semantics of expressions e. Expressions have no side effects, so they cannot
contain method calls, but they can access both local variables and fields of any contract.
Thus expression evaluations are of the form envSV ⊢ e →e v, i.e. they are relative to the
state and variable environments. We use k to range over this, sender, value and variables
x (i.e. k ∈ dom (envV)), and q to range over balance and fields p (i.e. q ∈ dom (envF)).

We do not give explicit rules for the boolean and integer operators subsumed under
op, but simply assume that they can be evaluated to a unique value by some semantics
op(ṽ) →op v.1 It follows that each expression evaluates to a unique value relative to some
given state and variable environments. Note that we assume that no operation is defined
for addresses X, so we disallow any form of pointer arithmetic.

2.2.3 Statements
The semantics of statements describes the actual execution steps of a program. In Figure 5
we give the semantics in big-step style, where a step describes the execution of a statement
in its entirety. Statements can read from the method table and they can modify the state
(i.e., the variable and field bindings). The result of executing a statement is a new state, so
transitions must here be of the form envT ⊢ ⟨S, envSV ⟩ →S env′

SV (recall that env′
SV stands

for env′
S , env′

V), since both the field values in envS and the values of the local variables in
envV may have been modified by the execution of S.

1 To simplify the definitions, we assume that all operations are total. If this was not the case, we would
have needed some exception handling for partial operations (e.g., division by zero).

L. Aceto, D. Gorla, and S. Lybech 1:7

[BS-Skip] envT ⊢ ⟨skip, envSV ⟩ →S envSV

[BS-Seq] envT ⊢ ⟨S1, envSV ⟩ →S env′′
SV envT ⊢ ⟨S2, env′′

SV ⟩ →S env′
SV

envT ⊢ ⟨S1;S2, envSV ⟩ →S env′
SV

[BS-If] envSV ⊢ e →e b envT ⊢ ⟨Sb, envSV ⟩ →S env′
SV

envT ⊢ ⟨if e then ST else SF , envSV ⟩ →S env′
SV

(b ∈ { T, F })

[BS-LoopT]

envSV ⊢ e →e T envT ⊢ ⟨S, envSV ⟩ →S env′′
SV

envT ⊢ ⟨while e do S, env′′
SV ⟩ →S env′

SV

envT ⊢ ⟨while e do S, envSV ⟩ →S env′
SV

[BS-LoopF] envSV ⊢ e →e F
envT ⊢ ⟨while e do S, envSV ⟩ →S envSV

[BS-DecV]

x /∈ dom (envV) envSV ⊢ e →e v

envT ⊢ ⟨S, envS , (x, v) : envV ⟩ →S env′
S , (x, v′) : env′

V

envT ⊢ ⟨var x := e in S, envSV ⟩ →S env′
SV

[BS-AssV] x ∈ dom (envV) envSV ⊢ e →e v

envT ⊢ ⟨x := e, envSV ⟩ →S envS , envV [x 7→ v]

[BS-AssF] envV (this) = X envS(X) = envF p ∈ dom (envF) envSV ⊢ e →e v

envT ⊢ ⟨this.p := e, envSV ⟩ →S envS[X 7→ envF [p 7→ v]] , envV

[BS-Call]

envSV ⊢ e1 →e Y envS(Y) = envY
F (envT (Y))(f) = (x̃, S)

|x̃| = |ẽ| = k envSV ⊢ ẽ →e ṽ envSV ⊢ e2 →e n

envV (this) = X envS(X) = envX
F n ≤ envX

F (balance)
env′′

S = envS

[
X 7→ envX

F [balance -= n]
][

Y 7→ envY
F [balance += n]

]
env′′

V = (this, Y) : (sender, X) : (value, n) : (x1, v1) : . . . : (xk, vk) : env∅
V

envT ⊢ ⟨S, env′′
SV ⟩ →S env′

SV

envT ⊢ ⟨e1.f(ẽ):e2, envSV ⟩ →S env′
S , envV

Figure 5 Big-step semantics of statements in TinySol.

Most of the rules are straightforward. The rule [BS-DecV] is used when we declare a
new variable x, with scope limited to the statement S; we implicitly assume alpha-conversion
to handle shadowing of an existing name. In the premise, we evaluate the expression e to a
value v, and then execute the statement S with a variable environment (x, v) : envV , where
we have added the pair (x, v). During the execution of S, this variable environment may of
course be updated (by applications of the rule [BS-AssV]), which may alter any value in the
environment, including v. However, outside of the scope of the declaration, x is not visible
and so the pair (x, v′) is removed from the environment once S finishes. By contrast, any
other change made to env′

V (as well as any change made to the global state envS) is retained.
The [BS-Call] rule is the most complicated, because we need to perform a number of

actions. Some of them are obvious (e.g., evaluate the address and the parameters e1, ẽ and
e2, relatively to the current execution environment envSV ; use the obtained address Y of
the callee to retrieve the field environment envY

F for this contract and, through the method
table, to extract the list of formal parameters x̃ and the body of the method S; and check
that the number of actual parameters is the same as the number of formal parameters).
Then, we also have to check that the balance of the caller is at least n, and, in that case,

ECOOP 2024

1:8 A Sound Type System for Secure Currency Flow

[Genesis]
〈
DC, env∅

ST

〉
→DC envST〈

DC T , env∅
ST

〉
→B ⟨T, envST ⟩

[Trans]
envT ⊢

〈
X.f(ṽ):n, envS , (this, A) : env∅

V

〉
→S env′

S , envV

⟨A->X.f(ṽ):n,T , envST ⟩ →B ⟨T, env′
S , envT ⟩

[Revelation] ⟨ϵ, envST ⟩ →B envST

Figure 6 Semantics of blockchains.

update the state environment by subtracting n from the balance of X and adding n to the
balance of Y , in their respective field environments; this yields a new state env′′

S , where we
write envF [balance -= n] and env′

F [balance += n] for these two operations. Finally, we
create the new execution environment by creating new bindings for the special variables
this, sender and value, and by binding the formal parameters x̃ to the values of the actual
parameters ṽ in env′′

V . Then we execute the statement S in this new environment. This
yields the new state env′

S , and also an updated variable environment env′
V , since S may

have modified the bindings in env′′
V . However, these bindings are local to the method, and

therefore we throw them away once the call finishes. So, the result of this transition is the
updated state env′

S and the original variable environment of the caller envV .
It should be noted that a local method call, i.e. a call to a method within the same

(calling) contract, is merely a special case of the rule [BS-Call]. Such a call would have the
form this.f(ẽ):0, since transferring any amount of currency will not alter the balance of
the contract. Thus, we could introduce some syntactic sugar, omitting both the address and
the value, and instead simply write f(ẽ).

2.2.4 Transactions and blockchains
The semantics for blockchains is given as a transition system defined by the rules given in
Figure 6. Here, the rule [Genesis] describes the “genesis event” where contracts are declared,
whilst [Trans] describes a single transaction. This is thus a small-step semantics, invoking
the big-step semantics for declarations and statements for its premises. We remark that the
rules of the operational semantics for blockchains (as well as those for statements presented
above) define a deterministic transition relation.

Note that, unlike in the original formulation of TinySol, we do not include a rule like
[Tx2] in [3] for rolling back a transaction in case it is non-terminating or it aborts via a
throw command. Such a rule would require a premise that cannot be checked effectively for
a Turing-complete language like TinySol and therefore we omit it, since it is immaterial
for the main contributions we give in this paper.2 In practice, termination of Ethereum
smart contracts is ensured via a “gas mechanism” and is assumed by techniques for the
formal analysis of smart contracts. However, as observed in, for instance, [11], proof of
termination for smart contracts is non-trivial even in the presence of a “gas mechanism.” In
the aforementioned paper, the authors present the first mechanised proof of termination of
contracts written in EVM bytecode using minimal assumptions on the gas cost of operations
(see the study [29] for an empirical analysis of the effectiveness of the “gas mechanism” in
estimating the computational cost of executing real-life transactions). We leave for future
work the addition of a “gas mechanism” to TinySol and the adaption of the results we
present in this paper to that setting.

2 For instance, rule [Tx2] in [3] has an undecidable premise that checks whether the execution of the
body of a contract does not yield a final state. It is debatable whether such rules should appear in an
operational semantics.

L. Aceto, D. Gorla, and S. Lybech 1:9

3 Call integrity and noninterference in TinySol

Grishchenko et al. [13] formulate the property of call integrity for smart contracts written in
the language EVM, which is the “low-level” bytecode of the Ethereum platform, and the
target language to which e.g. Solidity compiles. They then prove [13, Theorem 1] that this
property suffices for ruling out reentrancy phenomena, as those described in the example in
Figure 1. We first formulate a similar property for TinySol; this requires a few preliminary
definitions.

▶ Definition 3 (Trace semantics). A trace of method invocations is given by

π ::= ϵ
∣∣ X->Y .f(ṽ):n, π

where X is the address of the calling contract, Y is the address of the called contract, f is
the method name, and ṽ and n are the actual parameters.

We annotate the big-step semantics with a trace containing information on the invoked
methods to yield labeled transitions of the form π−→S. To do this, we modify the rules in
Table 5 as follows:

in rules [BS-Skip], [BS-LoopF], [BS-AssV] and [BS-AssF], every occurrence of →S

becomes ϵ−→S ;
in rules [BS-If] and [BS-DecV], every occurrence of →S becomes π−→S ;
rules [BS-Seq], [BS-LoopT] and [BS-Call] respectively become:

envT ⊢ ⟨S1, envSV ⟩ π1−→S env′′
SV

envT ⊢ ⟨S2, env′′
SV ⟩ π2−→S env′

SV

envT ⊢ ⟨S1;S2, envSV ⟩ π1,π2−−−→S env′
SV

envSV ⊢ e →e T
envT ⊢ ⟨S, envSV ⟩ π1−→S env′′

SV

envT ⊢ ⟨while e do S, env′′
SV ⟩ π2−→S env′

SV

envT ⊢ ⟨while e do S, envSV ⟩ π1,π2−−−→S env′
SV

. . . envT ⊢ ⟨S, env′′
SV ⟩ π−→S env′

SV

envT ⊢ ⟨e1.f(ẽ):e2, envSV ⟩ X->Y .f(ṽ):n,π−−−−−−−−−−→S env′
S , envV

The full definition is given in [1]. We extend this annotation to the semantics for blockchains
and write π−→B for this annotated relation.

▶ Definition 4 (Projection). The projection of a trace to a specific contract X, written π ↓X ,
is the trace of calls with X as the calling address. Formally:

ϵ ↓X = ϵ (Z->Y .f(ṽ):n, π) ↓X =
{

X->Y .f(ṽ):n, (π ↓X) if Z = X

π ↓X otherwise

Notationally, given a (partial) function f , we write f |X for denoting the restriction of f

to the subset X of its domain.

▶ Definition 5 (Call integrity). Let A denote the set of all contracts (addresses), X ⊆ A
denote a set of trusted contracts, Y ∆= A \ X denote all other contracts, and envX

ST have
domain X . A contract C ∈ X has call integrity for Y if, for every transaction T and
environments env1

ST and env2
ST such that env1

ST (X)|X = env2
ST (X)|X = envX

ST , it holds that〈
T, env1

ST

〉 π1−→B env1′

ST ∧
〈
T, env2

ST

〉 π2−→B env2′

ST =⇒ π1 ↓C = π2 ↓C

The definition is quite complicated and contains a number of elements:
C is the contract of interest.

ECOOP 2024

1:10 A Sound Type System for Secure Currency Flow

X is a set of trusted contracts, which we assume are allowed to influence the behaviour of
C. This set must obviously contain C, since C at least must be assumed to be trusted.
Thus, a contract C can have call integrity for all contracts, if X = { C }.
Conversely, the set Y = A \ X is the set of addresses of all contracts that are untrusted.3

env1
ST and env2

ST are any two pairs of method/field environments that coincide (both in
the code and in the values) for all the trusted contracts.4 The point is that the contracts
in X are assumed to be known, and hence invariant, whereas any contract in Y is assumed
to be unknown and may be controlled by an attacker. Thus, we are actually quantifying
over all possible contexts where the contracts in X can be run.
T is any transaction; it may be issued from any account and to any contract. Thus we
also quantify over all possible transactions, since an attacker may request an arbitrary
transaction, that is thus part of the execution context as well.

Then, the call integrity property intuitively requires that, if we run the trusted part of
the code in any execution context, the behavior of C remains the same, i.e. C must make
exactly the same method calls (and in exactly the same order). Thus, to disprove that C

has call integrity, it suffices to find two environments and a transaction that will induce a
difference in the call trace of C.

The idea in the property of call integrity is that the behaviour of C should not depend on
any untrusted code (i.e. contracts in Y), even if control is transferred to a contract in Y . The
latter could for example happen if C calls a method on B ∈ X , and B then calls a method
on a contract in Y. This also means that C cannot directly call any contract in Y, since
that can only happen if C calls a method on a contract, where the address is received as a
parameter, or if it calls a method on a “hard-coded” contract address. In both cases, we can
easily pick up two environments able to induce different behaviors, for example by choosing a
non-existing address for one context (in the first case), or by ensuring that no contract exists
on the hard-coded address in one context (in the second case). The latter possibility can
seem somewhat contrived, especially if we assume that all contracts are created at the genesis
event, and it might therefore be reasonable to require also that dom

(
env1

ST

)
= dom

(
env2

ST

)
,

such that we at least assume that contracts exist on the same addresses. However, on an
actual blockchain, new contracts can be deployed (and in some cases also deleted) at any
time, and if such a degree of realism is desired, this extra constraint should not be imposed.

The main problem with the definition of call integrity is that it relies on a universal
quantification over all possible executions contexts. This makes it hard to be checked in
practice. However, our previous discussion indicates that call integrity may intuitively be
viewed as a form of noninterference between the trusted and the untrusted contracts. We
now see to what extent this intuition is true and formally compare the two notions.

First of all, we consider a basic lattice of security levels, made up by just two levels,
namely H (for high) and L (for low), with L < H. We tag every contract to be high or
low through a contracts-to-levels mapping λ : A → {L, H}; this induces a bipartition of the
contract names A into the following sets:

L = { X ∈ A | λ(X) = L } H = { X ∈ A | λ(X) = H }

3 Note that this is formulated inversely by Grishchenko et al., who instead formulate the property for a
set of untrusted contracts AC , corresponding to Y in the present formulation. However, using the set of
trusted addresses X seems more straightforward.

4 This too is inversely formulated by Grishchenko et al.

L. Aceto, D. Gorla, and S. Lybech 1:11

In this way, we create a bipartition of the state into low and high, corresponding to the
fields of the low and of the high contracts, respectively. Then, we define low-equivalence =L

to be the equivalence on states such that env1
S =L env2

S if and only if env1
S(X) = env2

S(X),
for every X ∈ L.

We can now adapt the notion of noninterference for multi-threaded programs by Smith
and Volpano [25] to the setting of TinySol.

▶ Definition 6 (Noninterference). Given a contracts-to-levels mapping λ : A → {L, H} and a
contract environment envT , the contracts satisfy noninterference if, for every env1

S and env2
S

and for every transaction T such that

env1
S =L env2

S

〈
T, env1

S , envT

〉
→B env1′

S , envT

〈
T, env2

S , envT

〉
→B env2′

S , envT

it holds that env1′

S =L env2′

S .

▶ Remark 7 (Incomparability). Call integrity and noninterference seem strongly related, in
the sense that the first requires that the behaviour of a contract is not influenced by the
(bad) execution context, whereas the second one requires that a part of the computation
(the “low” one) is not influenced by the remainder context (the “high” one). So, one may try
to prove a statement like: “C ∈ X has call integrity for Y ∆= A \ X if and only if it satisfies
noninterference w.r.t. λ such that L = X and H = Y.” However, both directions are false.

For the direction from right to left, consider:

1 contract X { contract Y {
2 field balance = 0 field balance = v
3 go () { } go() { X.go (): this . balance }
4 } }

where X is trusted and Y untrusted. Since X cannot invoke any method, this example
satisfies call integrity. However, it does not satisfy noninterference. To see this, consider
two environments, one assigning 1 to Y’s balance and the other one assigning 0, and the
transaction Y->Y.go():0.

For the direction from left to right, consider the following:

1 contract X { contract Y {
2 go () { field balance = v;
3 if Y. balance = 0 }
4 then Z.a() :0
5 else Z.b() :0 contract Z {
6 } a() { }
7 } b() { }
8 }

Assuming that both X and Z are low, the example satisfies noninterference: there is no way
for Y to influence the low memory. By contrast, the code does not satisfy call integrity.
Indeed, let v be 0 in one environment and 1 in the other, and consider T to be X->X.go():0:
in the first environment, it generates X->Z.a():0, whereas in the second one it generates
X->Z.b():0.

4 A type system for noninterference and call integrity

As demonstrated in Remark 7, call integrity and noninterference are incomparable properties.
This is so because noninterference is a 2-property on the pair of stores (env1′

S , env2′

S) resulting
from two different executions, whereas call integrity is a 2-property on the pair of call traces

ECOOP 2024

1:12 A Sound Type System for Secure Currency Flow

(π1, π2) generated during two executions. However, the two properties have an interesting
overlap, because an outgoing currency flow (i.e. a method call) may also result, at least
potentially, in a change of the stored values of the balance fields of the sender and recipient.
Every method call is therefore also an information flow between the two, even when no
amount of currency is transferred. In [28], Volpano et al. devise a type system for checking
information flows, which, as they show, yields a sound approximation to noninterference. In
the following, we create an adaptation of this type system to TinySol and show that it may
also be used to soundly approximate call integrity.

4.1 Type syntax
We begin by assuming a finite lattice (S, ⊑) consisting of a set of security levels S, ranged
over by s, and equipped with a partial order ⊑. We write s⊥, and s⊤ for the least and largest
elements in S.

In the simplest setting, we can let S ∆= { L, H } (for “low” and “high”) and define L ⊑ L,
L ⊑ H, and H ⊑ H. This is sufficient for ensuring bi-partite noninterference, but the type
system can also handle more fine-grained security control. With this, we can define the types:

▶ Definition 8. We use the following language of types, where I ∈ TNames is a type name
(or “interface name”):

B ∈ B ::= s | Is T ∈ T ::= B | var(B) | cmd(s) | proc(B̃):s

Γ ∈ G ::= N ⇀ T ∪ G N ::= ANames ∪ FNames ∪ VNames ∪ MNames ∪ TNames

We write T̃ for a tuple of types (T1, . . . , Tn).

Note that for the purpose of the type system, unless otherwise noted, we shall assume
that the four “magic names” MVar are contained in the respective sets of field and variable
names; i.e. balance ∈ FNames and this, sender, value ∈ VNames.

The meaning of the types is as follows:
B is a set of base types, which can either be a security level s, or an interface name I,
annotated with a security level, Is. Security levels are assigned to plain data, i.e. values
of type int or bool, as well as expressions yielding values of these types. The annotated
interface type is assigned to addresses, as well as expressions yielding addresses. In either
case, the meaning of the type s (resp. Is), when given to an expression e, is that all
variables read from within e, are of level s or lower.
Note that for the purpose of the present type system, we do not distinguish between
values of type int and bool, in the sense that we do not check whether these type
constraints are preserved. Instead, we shall just assume that all programs are well-typed
w.r.t. these simple type constraints, such that e.g. expressions in the guards of if and
while constructs indeed yield boolean values. The present type system can easily be
extended to incorporate such a simple type check by extending the set of base types with
annotated value types ints and bools, similar to the annotated interface types.
var(B) is a box type given to value containers, i.e. variables and fields. It denotes that
the container can store data of type B. In the case of var(s), it denotes that the box can
store data of level s or lower, whereas in the case of var(Is) it additionally denotes that
the address stored in the variable must be of type I.
cmd(s) is a phrase type given to code, i.e. commands S. It denotes that all assignments
in the code are made to variables whose security level is s or higher.

L. Aceto, D. Gorla, and S. Lybech 1:13

proc(B̃):s is a procedure type given to methods f(x̃) { S }. It denotes that the body
S can be typed as cmd(s), under the assumption that the formal parameters x̃ have types
var(B̃). We shall discuss the types assigned to the “magic variables” this, sender and
value below.
Note that every method declaration contains an implicit write to the balance field of the
containing contract: hence, given the meaning of cmd(s), this also means that the security
level of balance must always be s or higher than the level of any method declared in an
interface.

Finally, Γ is a type environment, which is a partial function from names to types or type
environments. The latter possibility is included because we shall represent each contract
declaration as its own type environment, containing box types and procedure types for the
fields and methods of the contract, and pointed to by the corresponding interface name.
Thus, if a contract has address X, then Γ(X) = Is for some interface name I and security
level s, and Γ(I) = ΓI , where ΓI is a type environment containing the signatures of the
methods and fields of the contract. We shall use the following simple interface declaration
language for the interfaces of contracts:

IC ::= ϵ
∣∣ interface I { IF IM } IC

IF ::= ϵ
∣∣ field p : var(B); IF

IM ::= ϵ
∣∣ method f : proc(B):s; IM

mirroring the syntax of contract declarations.
We require that all interface declarations be well-formed in the sense that they must at

least contain a declaration for the mandatory members, i.e. the balance field and the send()
method. This ensures that we can define a minimal interface declaration called I⊤, such
that every well-formed interface declaration is a specialisation of I⊤. This minimal interface
contains just the signatures of the mandatory balance field and of the send() method; i.e.

1 interface I⊤ {
2 field balance : var(s⊤);
3 method send : proc():s⊥;
4 }

in the aforementioned interface declaration syntax.
Intuitively, this definition ensures that, for any valid interface definition I (containing

at least balance and send) and any security level annotation s, it must hold that Is is a
subtype of I⊤

s⊤
, thus always allowing us to type Is up to I⊤

s⊤
. In the following section, we

shall give a definition of a subtyping relation that will ensure that this indeed is the case.
The inclusion of a contract “supertype” I⊤

s⊤
is similar to what is done in the type system

developed for Featherweight Solidity by Crafa et al. in [7]. This is necessary to enable us
to give a type to the “magic variable” sender, which is available within the body of every
method, since this variable can be bound to the address of any contract or account. We shall
assume that I⊤ ∈ dom (Γ) for any Γ we shall consider.

We shall also use a typed syntax of TinySol, where local variables are now declared as

var(B) x := e

where B is the type of the value of the expression e. Likewise, we add annotated type names
Is to contract declarations thus:

contract X : Is { DF; DM }

where I is a declared type name. Note that the security level is given on the contract,
rather than on the interface. This is intentional, since multiple contracts may implement the

ECOOP 2024

1:14 A Sound Type System for Secure Currency Flow

[subs-name]Γ ⊢ Γ(I1) <: Γ(I2)
Γ ⊢ I1

s1 <: I2
s2

(s1 ⊑ s2)

[subs-sec]Γ ⊢ s1 <: s2
(s1 ⊑ s2)

[subs-var] Γ ⊢ B1 <: B2

Γ ⊢ var(B1) <: var(B2)

[subs-env]

∀n ∈ dom (Γ2) .

Γ1(n) <: Γ2(n)
Γ ⊢ Γ1 <: Γ2

(dom (Γ2) ⊆ dom (Γ1))

[subs-cmd]Γ ⊢ cmd(s1) <: cmd(s2) (s2 ⊑ s1)

[subs-proc] Γ ⊢ B̃1 <: B̃2

Γ ⊢ proc(B̃1):s1 <: proc(B̃2):s2
(s2 ⊑ s1)

Figure 7 Subtyping rules.

same interface but nevertheless be categorised into different security levels. For the sake of
simplicity, we shall omit the explicit definition of interfaces in the code and merely assume
that an interface declaration ΓI with an associated name I is provided for each contract.

4.2 Subtyping
We shall introduce a parametrised subtyping relation Γ ⊢ · <: · on types. For each choice of
Γ, we define it as the least preorder satisfying the rules given in Figure 7. The parameter
Γ is needed to handle subtyping for interface names I in rule [subs-name]. Note that by
this rule we have, for each well-formed interface Is (with security level s and interface name
I) declared in Γ, that Γ ⊢ Is <: I⊤

s⊤
as expected. Also note that we write Γ ⊢ B̃1 <: B̃2 to

mean Γ ⊢ Bi
1 <: Bi

2 for each i (1 ≤ i ≤ n, where |B̃1| = n = |B̃2|).
By rule [subs-sec], subtyping is covariant in the types of data, i.e. the security level

s, and likewise, the box type constructor var(B) is covariant by rule [subs-var]. On the
other hand, the type constructor for commands, cmd(s), is contravariant by rule [subs-cmd].
Lastly, the type constructor for methods, proc(B̃):s, is covariant in the input parameters B̃

by rule [subs-proc], but contravariant in the “return” type s, which indicates the level of
the underlying command type. These variances are consistent with the intended meaning of
the types:

A box of type var(B) can store something of B or lower (where B is either s or Is).
Hence, if Γ ⊢ B1 <: B2, then a box type var(B2) can safely be used wherever a box type
var(B1) is needed.
A command of type cmd(s) will assign to variables whose level is s or higher. Hence, if
s1 ⊑ s2, then a command type cmd(s1) can safely be used wherever a command type
cmd(s2) is needed.
A method of type proc(B̃):s expects parameters of types B̃ and promises that the method
body will only assign to variables that are level s or higher. Hence, if Γ ⊢ B̃1 <: B̃2
and s2 ⊑ s1, a command type proc(B̃2):s2 can safely be used wherever a command type
proc(B̃1):s1 is needed. This is consistent with the type for the body S since, if S can be
typed to level cmd(s1), then it can also safely be typed to level cmd(s2).

4.3 Type judgments
We can now give the rules for concluding type judgments, starting with the type rules for
declarations given in Figure 8.

Type judgments for contract declarations are of the form Γ ⊢ DC, stating that the
declarations DC are well-typed w.r.t. the environment Γ. This holds if the declarations are
consistent with the type information recorded in Γ, i.e. every field and method must have a

L. Aceto, D. Gorla, and S. Lybech 1:15

[t-dec-c]Γ(X) = Is Γ1 = Γ, this : var(Is) Γ ⊢ DC Γ1 ⊢ DF Γ1 ⊢ DM

Γ ⊢ contract X : Is { DF DM } DC

[t-dec-f]Γ(this) = var(Is) p ∈ dom (Γ(I)) Γ ⊢ DF

Γ ⊢ field p := v; DF

[t-dec-m]

Γ(this) = var(Is1) Γ(I)(f) = proc(B̃):s

Γ1 = Γ, x̃ : var(B̃), value : var(s), sender : var(I⊤
s⊤)

Γ ⊢ this.balance : var(s) Γ1 ⊢ S : cmd(s) Γ ⊢ DM

Γ ⊢ f(x̃) { S } DM

Figure 8 Type rules for declarations.

[t-env-t]Γ, this : Γ(X) ⊢ envM Γ ⊢ envT

Γ ⊢ envT , (X, envM)

[t-env-m]

Γ(this) = var(Is1) Γ(I)(f) = proc(B̃):s

Γ1 = Γ, x̃ : var(B̃), value : var(s), sender : var(I⊤
s⊤)

Γ ⊢ envM Γ ⊢ this.balance : var(s) Γ1 ⊢ S : cmd(s)
Γ ⊢ envM , (f, (x̃, S))

[t-env-s]Γ, this : Γ(X) ⊢ envF Γ ⊢ envS

Γ ⊢ envS , (X, envF)

[t-env-f]Γ(this) = var(Is) p ∈ dom (Γ(I)) Γ ⊢ envF

Γ ⊢ envF , (p, v)

[t-env-v] Γ ⊢ envV

Γ ⊢ envV , (x, v) (x ∈ dom (Γ))

Figure 9 Type rules for environment agreement.

type, and the body of each method must be typable according to the assumptions of the
type. Note that the check here only ensures that every declared contract member has a type;
the converse check (i.e. that every declared type in an interface also has an implementation)
should also be performed. However, we shall omit this in the present treatment.

After the initial reduction step, all declarations are stored in the two environments envST ,
and further reductions also use the variable environment envV for local variable declarations.
Hence, we also need to be able to conclude agreement between these environments and Γ.
These rules are given in Figure 9, closely mirroring those of Figure 8. We omit the type
rules for empty environments (since an empty environment is always well-typed). As with
declarations above, we also omit the rules for ensuring that all declared types in an interface
also have an implementation in any contract claiming to implement that interface.

Next, we consider the type rules for statements appearing in the body of method
declarations; they are given in Figure 10. Here, judgments are of the form Γ ⊢ S : cmd(s),
indicating that s is the lowest level of any variable written to within S. This is derived from
the types of the variables occurring in S, i.e. the types var(B). However, as B can be either
s or Is, we need a way to extract just the security level and drop the interface name. For
this, we write B ⇝ s, defined in the obvious way:

s⇝ s Is ⇝ s

ECOOP 2024

1:16 A Sound Type System for Secure Currency Flow

[t-skip]Γ ⊢ skip : cmd(s⊤)

[t-throw]Γ ⊢ throw : cmd(s⊤)

[t-ass-v]

Γ ⊢ x : var(B)
Γ ⊢ e : B

Γ ⊢ x := e : cmd(s) (B ⇝ s)

[t-seq]

Γ ⊢ S1 : cmd(s)
Γ ⊢ S2 : cmd(s)

Γ ⊢ S1; S2 : cmd(s)

[t-loop] Γ ⊢ e : s Γ ⊢ S : cmd(s)
Γ ⊢ while e do S : cmd(s)

[t-subs-s]Γ ⊢ S : cmd(s1) Γ ⊢ cmd(s1) <: cmd(s2)
Γ ⊢ S : cmd(s2)

[t-decvar]Γ ⊢ e : B Γ, x : var(B) ⊢ S : cmd(s)
Γ ⊢ var(B) x := e in S : cmd(s)

[t-ass-f]

Γ ⊢ e1.p : var(B)
Γ ⊢ e2 : B

Γ ⊢ e1.p := e2 : cmd(s) (B ⇝ s)

[t-call]

Γ ⊢ e1.f : proc(B̃):s

Γ ⊢ this.balance : var(s)
Γ ⊢ ẽ : B̃

Γ ⊢ e2 : s

Γ ⊢ e1.f(ẽ):e2 : cmd(s)

[t-if]Γ ⊢ e : s Γ ⊢ ST : cmd(s) Γ ⊢ SF : cmd(s)
Γ ⊢ if e then ST else SF : cmd(s)

Figure 10 Type rules for statements.

[t-var]Γ ⊢ x : var(B)
Γ ⊢ x : B

[t-field]Γ ⊢ e.p : var(B)
Γ ⊢ e.p : B

[t-subs-e]Γ ⊢ e : B1 Γ ⊢ B1 <: B2

Γ ⊢ e : B2

[t-val]Γ ⊢ v : B

(
B =

{
Γ(v) if v ∈ ANames
s otherwise

)

[t-op]Γ ⊢ e1 : B1 . . . Γ ⊢ en : Bn

Γ ⊢ op(e1, . . . , en) : s

 B1 ⇝ s
...
Bn ⇝ s

Figure 11 Type rules for expressions.

This is used in the rules for assignments (rules [t-ass-v] and [t-ass-f]). Note that in the
rules [t-if] and [t-loop], we know (by our assumption that all contracts are well-typed w.r.t.
simple type preservation) that e will evaluate to a boolean value, which therefore necessarily
will have a type s. Thus, we do not need the extra step of B ⇝ s here.

All rules are straightforward, except for [t-call]. According to the semantics for call
(cf. rule [BS-Call]), every call includes an implicit read and write of the balance field of
the calling contract, since the call will only be performed if the value of e2 is less than, or
equal to, the value of balance (to ensure that the subtraction will not yield a negative
number). There is thus an implicit flow from this.balance to the body S of the method
call, similar to the case for the guard expression e in an if-statement. Furthermore, there is
an implicit write to the balance field of the callee, and thus a flow of information from one
field to the other. This might initially seem like it would require both caller and callee to
have the same security level for their balance field. However, the levels can differ, since by
subtyping we can coerce one up to match the level of the other. For this reason, we have
Γ ⊢ this.balance in the premise, to be explicitly concluded, rather than as a simple lookup.
This enables calls from a lower security level into a higher security level, but not the other
way around.

Next, we consider the type rules for expressions e, given in Figure 11. Here, judgments
are of the form Γ ⊢ e : B. There are a few things to note:

In rule [t-val], the type of a value v can be chosen freely, if v is a value type, i.e. of type
int or bool. This rule is a consequence of the fact that there is no simple relationship
between the datatype of a value and its security level. The actual security level will then
be determined by the type of the variable (resp. field) to which it is assigned.

L. Aceto, D. Gorla, and S. Lybech 1:17

[t-box-x]Γ ⊢ x : var(B) (Γ(x) = var(B))

[t-m-sub]

Γ ⊢ e.f : proc(B̃1):s1

Γ ⊢ proc(B̃1):s1 <: proc(B̃2):s2

Γ ⊢ e.f : proc(B̃2):s2

[t-box-f] Γ ⊢ e : Is

Γ ⊢ e.p : var(B)

(
Γ(I)(p) = var(B)
B ⇝ s

)

[t-meth] Γ ⊢ e : Is

Γ ⊢ e.f : proc(B̃):s

(
Γ(I)(f) = proc(B̃):s

)
Figure 12 Type rules for method, variable and field lookup.

The rules [t-var] and [t-field] simply unwrap the type of the contained value from
the box type of the container. Note that here we assume that x also covers the “magic
variable” names this, sender and value, and that p also covers the field name balance.
Finally, in rule [t-op], we require that all arguments and the return value must be typable
to the same security level s. Note in particular that we assume that no operation is
defined with an address return type; i.e. we do not allow any form of pointer arithmetic.
Operations may be defined on addresses for their arguments, e.g. equality testing, but
the return type must be one of the other value types, which can be given a security level.
Thus, in the rule [t-op], we also need to extract the security level s from the types of the
argument expressions.

Finally, we have the look-up rules for methods, variables and fields, given in Figure 12.
In rule [t-box-x] we assume that x also covers the magic variable names this, sender
and value.
In rule [t-box-f] we assume that p also covers the special field name balance. Fur-
thermore, we require e in e.p to resolve to an interface name rather than variable; i.e.
the expression must yield an address. This is again warranted by our assumption that
expressions are well-typed w.r.t. simple type preservation.
The same is the case in rule [t-meth] for method lookup e.f , which is used in the premise
of the rule [t-call].

In the lookup rules, the expression e is an object path, which must resolve to an address.
As we disallow operations op to return addresses, the object paths form a proper subset of
the set of expressions, since they can only consist of variable lookups, field reads or addresses
given as pure values. Note that, in the rules [t-box-f] and [t-meth], we require that the
object path e must be typable as an interface with the same security level s as the value
(resp. method) that is being looked up. This is necessary to ensure that values residing in a
higher-level part of the memory cannot affect values at lower levels, in this case by altering
the path to the object being resolved.

4.4 Safety and soundness
As is the case for the type system proposed in [28], our type system does not have a now-safety
predicate in the usual sense, since (invariant) safety in simple type systems is a 1-property,
whereas noninterference is a hyper-property (specifically, a 2-property). Instead, the meaning
of “safety” is expressed directly in the meaning of the types. Specifically:

If an expression e has type B such that B ⇝ s, then it denotes that all variables read
from in the evaluation of e are of level s or lower, i.e. no read-up.
If a statement S has type cmd(s), then it denotes that all variables written to in the
execution of S are of level s or higher, i.e. no write-down.

ECOOP 2024

1:18 A Sound Type System for Secure Currency Flow

[eq-env-empty]
Γ ⊢ env∅

X =s env∅
X

(X ∈ { V, S, F, T, M })

[eq-envV] Γ ⊢ env1
V =s env2

V

Γ ⊢ env1
V , (x, v1) =s env2

V , (x, v2)

(
Γ(x) = var(s′)
s′ ⊑ s =⇒ v1 = v2

)

[eq-envS]Γ ⊢ env1
S =s env2

S Γ(Γ(X)) ⊢ env1
F =s env2

F

Γ ⊢ env1
S , (X, env1

F) =s env2
S , (X, env2

F)

[eq-envF] Γ ⊢ env1
F =s env2

F

Γ ⊢ env1
F , (p, v1) =s env2

F , (p, v2)

(
Γ(p) = var(s′)
s′ ⊑ s =⇒ v1 = v2

)

[eq-envT] Γ ⊢ env1
T =s env2

T

Γ ⊢ env1
T , (X, env1

M) =s env2
T , (X, env2

M)

(
Γ(X) = Is′

s′ ⊑ s =⇒ env1
M = env2

M

)

[eq-envSV]Γ ⊢ env1
S =s env2

S Γ ⊢ env1
V =s env2

V

Γ ⊢ env1
SV =s env2

SV

[eq-envST]Γ ⊢ env1
S =s env2

S Γ ⊢ env1
T =s env2

T

Γ ⊢ env1
ST =s env2

ST

Figure 13 Rules for the s-parameterised equivalence relation.

Intuitively, the meaning of these two types together imply that information from higher-
level variables cannot flow into lower-level variables. For a statement such as x := e to be
well-typed, it must therefore be the case that, if Γ ⊢ x : var(s1) and Γ ⊢ e : s2, then s2 ⊑ s1.
Since s2 can be coerced up to s1 through subtyping to match the level of the variable, the
statement itself can then be typed as cmd(s1). We shall prove that our type system indeed
ensures these properties in Theorems 12-14 below.

Before proceeding, we need to define a way to express that two states, i.e. two collections
of variable and field environments envSV , are equal up to a certain security level s. This
relation, written Γ ⊢ env1

SV =s env2
SV , is given by the rules in Figure 13. Note in particular

that the definition implies that env1
SV and env2

SV must have the same domain, and this
carries over to the inner environments envF inside envS . The above definition gives us the
following obvious result, which can be shown by induction on the rules of =s:

▶ Lemma 9 (Restriction). If Γ ⊢ env1
SV =s env2

SV and s′ ⊑ s, then Γ ⊢ env1
SV =s′ env2

SV .

Given our annotation of security levels on interfaces as well, we also extend the =s relation
to method tables envT , and finally to the combined representation of state and code, i.e.
envST .

Next, we need the standard lemmas for strengthening and weakening of the variable
environment:

▶ Lemma 10 (Strengthening). If Γ, x : var(B) ⊢ (x, v1) : env1
V =s (x, v2) : env2

V then also
Γ ⊢ env1

V =s env2
V .

▶ Lemma 11 (Weakening). If Γ ⊢ env1
V =s env2

V and x /∈ dom
(
env1

V

)
and x /∈ dom

(
env2

V

)
,

then also Γ, x : var(B) ⊢ (x, v1) : env1
V =s (x, v2) : env2

V for any B, v, x.

Both results can be shown by induction on the rules of =s. Furthermore, both of the
lemmas can then be directly extended to Γ ⊢ env1

SV =s env2
SV . With this, we can now state

the first of our main theorems:

L. Aceto, D. Gorla, and S. Lybech 1:19

▶ Theorem 12 (Preservation). Assume that Γ ⊢ S : cmd(s), Γ ⊢ envT , Γ ⊢ envSV , and
envT ⊢ ⟨S, envSV ⟩ → env′

SV . Then, Γ ⊢ envSV =s′ env′
SV for any s′ such that s ̸⊑ s′.

The Preservation theorem assures us that the promise made by the type cmd(s) is actually
fulfilled. If Γ ⊢ S : cmd(s), then every variable or field written to in S will be of level s or
higher ; hence every variable or field of a level that is strictly lower than, or incomparable to,
s will be unaffected. Thus, the pre- and post-transition states will be equal on all values
stored in variables or fields of level s′ or lower, since they cannot have been changed during
the execution of S. In other words, what is shown to be “preserved” in this theorem is the
values at levels lower than, or incomparable to, s.

Note that the theorem does not show preservation of well-typedness for the environments
(as is otherwise usually required in preservation proofs for type systems). Indeed, a result
saying that also Γ ⊢ env′

SV would be pointless. As can be seen in Figure 9, the type judgment
Γ ⊢ envSV only ensures that every field and variable in envSV has any type in Γ. The number
of declared fields and variables cannot change between the pre- and post-states of a transition
(this is ensured by the rule [BS-DecV]); only the stored values can change, but there is no
inherent relationship between a value and its assigned security level.

Our next theorem assures us that the type of an expression is also in accordance with
the intended meaning, namely: if Γ ⊢ e : s, then every variable (or field) read from in e will
be of level s or lower (i.e. no read-down of values from a higher level). We express this by
considering two different states, env1

SV and env2
SV , which must agree on all values of level s

and lower. Evaluating e w.r.t. either of these states should then yield the same result.

▶ Theorem 13 (Safety for expressions). Assume that Γ ⊢ e : B where B ⇝ s, Γ ⊢ env1
SV ,

Γ ⊢ env2
SV , and Γ ⊢ env1

SV =s env2
SV . Then, env1

SV ⊢ e → v and env2
SV ⊢ e → v.

Finally, we can use the preceding two theorems to show soundness for the type system.
The soundness theorem expresses that, if a statement S is well-typed to any level s1 and
we execute S with any two states env1

SV and env2
SV that agree up to any level s2, then the

resulting states env1′

SV and env2′

SV will still agree on all values up to level s2. This ensures
noninterference, since any difference in values of a higher level than s2 cannot induce a
difference in the computation of values at any lower levels.

▶ Theorem 14 (Soundness). Assume that Γ ⊢ S : cmd(s1), Γ ⊢ envT , Γ ⊢ env1
SV , Γ ⊢ env2

SV ,
Γ ⊢ env1

SV =s2 env2
SV , envT ⊢

〈
S, env1

SV

〉
→ env1′

SV , and envT ⊢
〈
S, env2

SV

〉
→ env2′

SV . Then,
Γ ⊢ env1′

SV =s2 env2′

SV .

Theorem 14 corresponds to the soundness theorem proved by Volpano, Smith and Irvine [28]
for their While-like language. However, given the object-oriented nature of TinySol, we
can actually take this one step further and allow even parts of the code to vary. Specifically,
given two “method table” environments, env1

T and env2
T , we just require that these two

environments agree up to the same level s2 to ensure agreement of the resulting two states
env1′

SV and env2′

SV . We state this in the following theorem:

▶ Theorem 15 (Extended soundness). Assume that Γ ⊢ S : cmd(s1), Γ ⊢ env1
T , Γ ⊢ env2

T ,
Γ ⊢ env1

T =s2 env2
T , Γ ⊢ env1

SV , Γ ⊢ env2
SV , Γ ⊢ env1

SV =s2 env2
SV , env1

T ⊢
〈
S, env1

SV

〉
→

env1′

SV , and env2
T ⊢

〈
S, env2

SV

〉
→ env2′

SV . Then, Γ ⊢ env1′

SV =s2 env2′

SV .

4.5 Extending the type system to transactions
A transaction is nothing but a method call with real-valued parameters and sender set to an
account address, which corresponds to a minimal implementation of I⊤. Thus, the theorems
from the preceding section can easily be extended to transactions and blockchains.

ECOOP 2024

1:20 A Sound Type System for Secure Currency Flow

A blockchain consists of a set of contract declarations DC, followed by a list of transactions
T̃ . Hence, we can conclude Γ ⊢ DC T̃ : cmd(s), if it holds that Γ ⊢ DC and Γ ⊢ T̃ : cmd(s).
The latter can be simply concluded by the following rules:

[t-empty]Γ ⊢ ϵ : cmd(s) [t-trans]Γ ⊢ X.f(ṽ):n : cmd(s) Γ ⊢ T̃ : cmd(s)
Γ ⊢ A->X.f(ṽ):n,T̃ : cmd(s)

This gives us the following two results:

▶ Lemma 16. If Γ ⊢ DC and
〈
DC, env∅

ST

〉
→ envST , then Γ ⊢ envST .

▶ Lemma 17. If Γ ⊢ A->X.f(ṽ):n,T̃ : cmd(s) and Γ ⊢ envST and〈
A->X.f(ṽ):n,T̃ , envST

〉
→
〈

T̃ , env′
S , envT

〉
then also Γ ⊢ env′

S , envT and Γ ⊢ T̃ .

As the initial step (the “genesis event”) does nothing except transforming the declaration
DC into the environment representation envST , the first result is obvious, and as the rule
[Trans] just unwraps a transaction step into a call to the corresponding method, the second
result follows directly from the Preservation theorem. This can then be generalised in an
obvious way to the whole transaction list. Likewise, the Safety and Soundness theorems can
be extended to transactions in the same manner.

4.6 Noninterference and call integrity
As immediately evident from Definition 6 and Theorem 14, well-typedness ensures noninter-
ference:

▶ Corollary 18 (Noninterference). Assume a set of security levels S ∆= { L, H }, with L ⊑ L,
L ⊑ H and H ⊑ H, and furthermore that Γ ⊢ T̃ : cmd(s), Γ ⊢ env1

ST , Γ ⊢ env2
ST ,

Γ ⊢ env1
ST =L env2

ST ,
〈

T̃ , env1
ST

〉
→∗ env1′

ST , and
〈

T̃ , env2
ST

〉
→∗ env2′

ST . Then, Γ ⊢
env1′

ST =L env2′

ST ,

From Corollary 18, we then obviously also have that Γ ⊢ env1′

S =L env2′

S , regardless of whether
s is L or H. In particular, we can assign security levels to entire contracts, as well as all
their members. Thus, our type system can be used to ensure noninterference according to
Definition 6.

As we previously argued in Remark 7, noninterference and call integrity are incomparable
properties. However, as our next theorem shows, well-typedness actually also ensures call
integrity. This is surprising, so before stating the theorem, we should give some hints as to
why this is the case.

The definition of call integrity (Definition 5) requires the execution of any code in a
contract C to be unaffected by all contracts in an “untrusted set” Y, regardless of whether
parts of the code in Y execute before, meanwhile or after the code in C. This is expressed by
a quantification over all possible traces resulting from a change in Y, i.e. either in the code
or in the values of the fields. Regardless of any such change, it must hold that the sequence
of method calls originating from C be the same.

Noninterference, on the other hand, says nothing about execution traces, but only speaks
of the correspondence between values residing in the memory before and after the execution
step. The two counter-examples used in Remark 7 made use of this fact:

L. Aceto, D. Gorla, and S. Lybech 1:21

The first counter-example had C be unable to perform any method calls at all, thus
obviously satisfying call integrity, but allowed different balance values to be transferred
into it from a “high” context by means of a method call, thereby violating noninterference.
However, this situation is ruled out by well-typedness, because well-typedness disallows
any method calls from a “high” to a “low” context, precisely because every method call
may transfer the value parameter along with each call.
The second counter-example had an if statement in C (the “low” context) depend on a
field value in a “high” context. The two branches then perform two different method calls,
thus enabling a change of the “high” context to induce two different execution traces for
C. Thus, the example satisfies noninterference, because no value stored in memory is
changed, but it obviously does not satisfy call integrity. However, this situation is also
ruled out by well-typedness, because the rule [t-if] does not allow the boolean guard
expression e in a “low” context to depend on a value from a “high” context.

Thus, both of the two counter-examples would be rejected by the type system. With a
setting of L for the “trusted” segment and H for the “untrusted”,5 no values or computations
performed in the untrusted segment can affect the values in the trusted segment, nor the
value of any expression in this segment, nor can it even perform a call into the trusted
segment. On the other hand, the trusted segment can call out into the untrusted part, but
such a call cannot then reenter the trusted segment: it must return before any further calls
from the trusted segment can happen.

▶ Theorem 19 (Well-typedness implies call integrity). Let S ∆= { L, H } with L ⊑ L, L ⊑ H

and H ⊑ H. Fix the two sets of addresses X and Y as in Definition 5, such that A = X ∪ Y
and A = dom (envT). Fix a type assignment Γ such that

∀X ∈ X . Γ(X) = IL for some I where
∀p ∈ Γ(I) . Γ(I)(p) = var(B) where B ⇝ L, and
∀f ∈ Γ(I) . Γ(I)(f) = proc(B̃):L for any B̃

and with the level H given to all other interfaces, fields and methods.

Also assume that Γ ⊢ T : cmd(s), Γ ⊢ env1
ST , Γ ⊢ env2

ST , Γ ⊢ env1
ST =L env2

ST ,
〈
T, env1

ST

〉 π1−→
env1′

ST , and
〈
T, env2

ST

〉 π2−→ env2′

ST . Then, π1 ↓X= π2 ↓X , for any X ∈ X .

Theorem 19 tells us that every contract X in the trusted segment X has call integrity w.r.t.
the untrusted segment Y . This is thus a stronger condition than that of Definition 5, which
only defines call integrity for a single contract C ∈ X , rather than for the whole set. This
means that our type system will reject cases where e.g. C calls another contract Z ∈ X and
Z calls send() methods of different contracts, depending on a “high” value. As send() is
always ensured to do nothing, such calls could never lead to C being reentered, so this would
actually still be safe, even though Z itself would not satisfy call integrity. Thus, this is an
example of what resides in the “slack” of our type system.

However, this situation seems rather contrived, since it depends specifically on the send()
method, which is always ensured to do nothing except returning. For practical purposes, it
would be strange to imagine a contract C ∈ X having call integrity w.r.t. Y , but without the
other contracts in X also satisfying call integrity w.r.t. Y. Thus, our type system seems to
yield a reasonable approximation to the property of call integrity.

5 This counter-intuitive naming can perhaps best be thought of as indicating our level of distrust in a
contract.

ECOOP 2024

1:22 A Sound Type System for Secure Currency Flow

5 Examples and limitations

Let us see a few examples of the application of the type system. To begin with, consider
the first counter-example in Remark 7, which should be ill-typed by the type system. In the
counter-example we say that X is Low and Y is High, so we let them both implement the
interface I<s> defined as follows:

1 interface I<s> { contract X : I<L> { ... }
2 field balance : var(s)
3 method go : proc():s contract Y : I<H> { ... }
4 }

where I<L> (resp. I<H>) is a shorthand for IL (resp. IH) with all occurrences of s within the
interface definition replaced by L (resp. H). A part of the failing typing derivation for the
body of the method Y.go() in the declaration of contract Y is:

Γ(this) = I<H>
Γ ⊢ this : I<H>

Γ(I<H>)(balance)
= var(H)

Γ ⊢ this.balance : var(H)

Γ(X) = I<L>
Γ ̸⊢ X : I<H>

Γ(I<L>)(go)
̸= proc():H

Γ ̸⊢ X.go : proc():H

Γ ̸⊢ X.go():this.balance : cmd(H) (1)

We have that Γ ⊢ this.balance : var(H) in contract Y, so in order for the method
declaration go() { X.go():this.balance } in Y to be well-typed, the body of the method
must be typable as proc():H by rule [t-dec-m]. However, as the derivation in (1) illustrates,
this constraint cannot be satisfied, because the lookup Γ(I<L>)(go) yields proc():L, but
proc():H is needed, and this cannot be obtained through subtyping, because the proc(B̃):s

type constructor is contravariant in s.
The above example is simple, since the name X is “hard-coded” directly in the body of

Y.go(), and therefore the type check fails already while checking the contract definition.
However, suppose X were instead received as a parameter. Then the signature of the method
Y.go would have to be method go : proc(I<H>):H instead, and the type check would then
fail at the call-site, if a Low address were passed. The following shows a part of the failing
typing derivation for the call Y.go(X):this.balance, where the parameter X is assumed to
implement the interface I<L> as before:

Γ(X) = I<L>
Γ ⊢ X : I<L>

L ⊑ H

L ⊑ H

Γ ⊢ L <: H
Γ ⊢ var(L) <: var(H)

H ̸⊑ L

Γ ̸⊢ proc():L <: proc():H

Γ ̸⊢ I<L> <: I<H>
Γ ̸⊢ X : I<H>

Γ ̸⊢ Y.go(X):this.balance : cmd(H) (2)

Here Γ ⊢ Y.go : proc(I<H>):H (not shown). The method call expects a parameter
of type I<H>, but I<L> cannot be coerced up to I<H> through subtyping, because its
definition of the method go() has type proc():L, as given in the code listing above, and
Γ ̸⊢ proc():L <: proc():H due again to contravariance of the type constructor. Thus we
see that the type system indeed prevents calls from High to Low, regardless of whether
the Low address is “hard-coded” or passed as a parameter to a High method. However,
the aforementioned examples also illustrate a limitation of our type system approach to
ensuring call integrity: the entire blockchain must be checked, i.e. both the contracts and
the transactions. This is necessary since the type check can fail at the call-site of a method,
as in the example shown in (2), and the call-site of any method can be a transaction.

L. Aceto, D. Gorla, and S. Lybech 1:23

1 contract X : IBankL { contract Y : IBankH {
2 field owner = A; field credit = 0;
3 transfer (recipient , amount) { deposit (owner) {
4 if this . sender = this .owner then this . credit = this .value ;
5 recipient this .owner = owner
6 . deposit (this . sender): amount }
7 else skip ...
8 } }
9 ...

10 }

Figure 14 A two-bank setup.

Next, we shall briefly consider two examples, reported by Grishchenko et al. in [13], of
Solidity contracts that are misclassified w.r.t. reentrancy by the static analyser Oyente [16];
a false positive and a false negative example.

The false negative example relies on a misplaced update of a field value, just as in the
example in Figure 1 (page 2).6 In this example, suppose X were assigned the level L and Y
the level H. With a transaction A->X.transfer(Y):n (for any address A and any amount
of currency n), the type system would then correctly reject this blockchain because of the
inherent flow from High to Low that is implicit in the call X.transfer(this) issued by Y.
The typing derivation would fail in a similar manner as the situation depicted in (2).

The false positive example of Grishchenko et al. from [13] is also similar to the example in
Figure 1, but this time just with the assignment to the guard variable correctly placed before
the method call (i.e. with lines 6 and 7 switched in Figure 1). This too would be rejected by
our type system, since it does not take the ordering of statements in sequential composition
into account (i.e. rule [t-seq]). Thus, this example constitutes a false positive for our type
system as well, which is hardly surprising.

Finally, let us consider a true positive example. Figure 14 illustrates a part of the code
for two banks, which would allow users to store some of their assets and also to transfer
assets between them.7 We assume both banks implement the same interface IBank, but with
different security settings: X is L and Y is H, meaning the latter is untrusted. There is no
callback from Y, so in this setup a blockchain with a transaction A->X.transfer(Y,1):0
would actually be accepted by the type system, because the Low values from X can safely be
coerced up (via subtyping) to match the setting of High on Y.

6 Related work

In light of the visibility and immutability of smart contracts, which makes it hard to correct
errors once they are deployed in the wild, it is not surprising that there has been a substantial
research effort within the formal methods community on developing formal techniques to

6 It also involves the presence of a “default function”, which is a special feature of Solidity. It is a
parameterless function that is implicitly invoked by send(), thus allowing the recipient to execute code
upon reception of a currency transfer. This feature is not present in TinySol, yet we can achieve a
similar effect by simply allowing the mandatory send() method to have an arbitrary method body,
rather than just skip. This has no effect on the type system and associated proofs, since the send()
method is treated as any other method therein. Hence, this situation is in principle the same as if the
sender had invoked some other method than send(), similarly to the example in Figure 1.

7 TinySol does not have a “mapping” type such as in Solidity, so the setup here is limited to a single
user.

ECOOP 2024

1:24 A Sound Type System for Secure Currency Flow

prove safety properties of those programs – see, for instance, [26] for a survey. The literature
on this topic is already huge and the whole gamut of techniques from the field of verification
and validation has been adapted to the smart-contract setting. For example, this includes
contributions employing frameworks based on finite-state machines to design and synthesise
Ethereum smart contracts [17], a variety of static analysis techniques and accompanying
tools, such as those presented in [9, 15, 23, 27], and deductive verification [5, 6, 21], amongst
others. The Dafny-based approach reported in [6] is able to model arbitrary reentrancy in a
setting with the “gas mechanism”, whereas [4] presents a way to analyse safety properties of
smart contracts exhibiting reentrancy in a gas-free setting.

The study in [14] is close in spirit to ours in that it uses a sound type system to guarantee
the absence of information flows that violate integrity policies in Solidity smart contracts.
That work also presents a type verifier and its prototype implementation within the K-
framework [22], which is then applied to analyse more than one hundred smart contracts.
However, their technique has not been related to call integrity, which, by contrast, is the focus
of our work. Thus, our contribution in the present paper complements this work and serves
to further highlight the utility and applicability of secure-flow types in the smart-contract
setting. However, there are also clear differences between this aforementioned work and the
present one. Most notably, our type system uses a more refined subtyping relation, which
also handles subtyping of method and address types, whereas subtyping is not defined for the
former in [14], and the latter is not given a type altogether. This gives us a more fine-grained
control over the information flow, since it allows us to assign different security levels to a
contract and its members. For example, a High contract might have certain Low methods,
which hence would not be callable from another High contract, whereas High methods would.
This is in line with standard object-oriented principles, e.g. Java-style visibility modifiers.

Another approach to using a type system to ensure smart-contract safety in a Solidity-like
language is presented by Crafa et al. in [7]. This work is indeed related to ours in that
both are based on well-known typing principles from object-oriented languages, especially
subtyping for contract/address types and the inclusion of a “default” supertype for all
contracts, similar to our I⊤. However, the aim of [7] is rather different from ours, in that the
type system offered in that paper seeks to prevent runtime errors that do not stem from a
negative account balance, e.g. those resulting from attempts to access nonexistent members
of a contract. Incidentally, such runtime errors would also be prevented by our type system
(rules [t-call] and [t-field] in particular), due to our use of “interfaces” as address types,
if the converse check (ensuring every declared type in an interface has an implementation)
were also performed. However, our focus has been on checking the currency flow, rather than
preventing runtime errors of this kind.

The aforementioned paper [7] introduced Featherweight Solidity (FS). Like TinySol, FS
is a calculus that formalises the core features of Solidity and, as mentioned above, it supports
the static analysis of safety properties of smart contracts via type systems. Therefore, the
developments in the present paper might conceivably have been carried out in FS instead
of TinySol. Our rationale for using TinySol is that it provided a very simple language
that was sufficient to express the property of call integrity, thus allowing us to focus on
the core of this property. Of course, “simplicity” is a subjective criterion and the choice of
one language instead of another is often a matter of preference and convenience. To our
mind, TinySol is slightly simpler than FS, which includes functionalities such as callback
functions and revert labels. Moreover, the big-step semantics of TinySol provided was more
convenient for the development of our type system than the small-step semantics given for FS.
Furthermore, unlike FS, TinySol also formalises the semantics of blockchains. Having said
so, TinySol and FS are quite similar and it would be interesting to study their similarities

L. Aceto, D. Gorla, and S. Lybech 1:25

in more detail. To this end, in future work, we intend to carry out a formal comparison of
these two core languages and to see which adaptations to our type system are needed when
formulated for FS. In particular, we note that FS handles the possibility of an explicit type
conversion (type cast) of address to address payable by augmenting the address type
with type information about the contract to which it refers. This distinction is not present in
our version of TinySol, as we require all contracts and accounts to have a default send()
function, so all addresses are in this sense “payable”. However, our type system does not
depend on the presence of a send() function, so this difference is not important here.

7 Conclusion and future work

In this paper we studied two security properties, namely call integrity and noninterference,
in the setting of TinySol, a minimal calculus for Solidity smart contracts. To this end,
we rephrased the syntax of TinySol to emphasise its object-oriented flavour, gave a new
big-step operational semantics for that language and used it to define call integrity and
noninterference. Those two properties have some similarities in their definition, in that they
both require that some part of a program is not influenced by the other part. However, we
showed that the two properties are actually incomparable. Nevertheless, we provided a type
system for noninterference and showed that well-typed programs also satisfy call integrity.
Hence, programs that are accepted by our type systems lie at the intersection between call
integrity and noninterference.

A challenging development of our work would be to prove whether the type system exactly
characterises the intersection of these two properties, or to find another characterisation of
this set of programs. Orthogonally, it would be important to devise type inference algorithms
for the present type system, to be used in practical situations where the typing environment
is hard to guess. It would also be interesting to compare our typing-based proof method
with those proposed, e.g., in [13, 16, 23]. Finally, we also aim at applying our static analysis
methodology to many concrete case studies, to better understand the benefits of using a
completely static proof technique for call integrity. To do so, it would be useful to extend
TinySol with a “gas mechanism” allowing one to prove the termination of transactions and
to compute their computational cost.

A potential limitation of the approach presented in this paper is that the entire blockchain
must be checked to show call integrity of a contract. Indeed, since a typing derivation can
fail at the call-site and the call-site of a method can be a transaction, transactions must be
well-typed too. In passing, we note that this kind of problem is also present in [25, 28] (and,
in general, in many works on type systems for security), where the whole code needs to be
typed in order to obtain the desired guarantees. We think that an important avenue for
future work, and one we intend to pursue, is to explore whether, and to what extent, other
typing disciplines can be employed to mitigate this problem. As mentioned earlier, we also
plan to extend the language (and the type system) to enable checking of real-life Solidity
contracts; this will also allow us to better assess how (un)feasible it would be to check the
whole blockchain.

References
1 Luca Aceto, Daniele Gorla, and Stian Lybech. A sound type system for secure currency flow.

CoRR, abs/2405.12976, 2024. doi:10.48550/arXiv.2405.12976.
2 Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on ethereum smart

contracts (sok). In Proc. of POST, volume 10204 of LNCS, pages 164–186. Springer, 2017.
doi:10.1007/978-3-662-54455-6_8.

ECOOP 2024

https://doi.org/10.48550/arXiv.2405.12976
https://doi.org/10.1007/978-3-662-54455-6_8

1:26 A Sound Type System for Secure Currency Flow

3 Massimo Bartoletti, Letterio Galletta, and Maurizio Murgia. A minimal core calculus for
solidity contracts. In Cristina Pérez-Solà, Guillermo Navarro-Arribas, Alex Biryukov, and
Joaquin Garcia-Alfaro, editors, Data Privacy Management, Cryptocurrencies and Blockchain
Technology, pages 233–243, Cham, 2019. Springer International Publishing. doi:10.1007/
978-3-030-31500-9_15.

4 Christian Bräm, Marco Eilers, Peter Müller, Robin Sierra, and Alexander J. Summers.
Rich specifications for Ethereum smart contract verification. Proc. ACM Program. Lang.,
5(OOPSLA):1–30, 2021. doi:10.1145/3485523.

5 Franck Cassez, Joanne Fuller, and Aditya Asgaonkar. Formal verification of the Ethereum 2.0
Beacon Chain. In 28th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 13243 of LNCS, pages 167–182. Springer, 2022. doi:10.
1007/978-3-030-99524-9_9.

6 Franck Cassez, Joanne Fuller, and Horacio Mijail Anton Quiles. Deductive verification
of smart contracts with Dafny. In 27th International Conference on Formal Methods for
Industrial Critical Systems, volume 13487 of LNCS, pages 50–66. Springer, 2022. doi:10.
1007/978-3-031-15008-1_5.

7 Silvia Crafa, Matteo Di Pirro, and Elena Zucca. Is solidity solid enough? In Financial
Cryptography Workshops, 2019.

8 The dao smart contract. http://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72
d3bb8c189413#code, 2016.

9 Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis framework for
smart contracts. In Proceedings of the 2nd International Workshop on Emerging Trends in
Software Engineering for Blockchain, pages 8–15. IEEE / ACM, 2019. doi:10.1109/WETSEB.
2019.00008.

10 Ethereum Foundation. Solidity documentation. https://docs.soliditylang.org/, 2022.
Accessed: 2024-01-15.

11 Thomas Genet, Thomas P. Jensen, and Justine Sauvage. Termination of Ethereum’s smart con-
tracts. In Proc. of the 17th International Joint Conference on e-Business and Telecommunica-
tions - Volume 2: SECRYPT, pages 39–51. ScitePress, 2020. doi:10.5220/0009564100390051.

12 J. A. Goguen and J. Meseguer. Security policies and security models. In 1982 IEEE Symposium
on Security and Privacy, pages 11–11, 1982. doi:10.1109/SP.1982.10014.

13 Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic framework for the
security analysis of ethereum smart contracts. In Lujo Bauer and Ralf Küsters, editors,
Principles of Security and Trust, pages 243–269, Cham, 2018. Springer International Publishing.

14 Xinwen Hu, Yi Zhuang, Shangwei Lin, Fuyuan Zhang, Shuanglong Kan, and Zining Cao. A
security type verifier for smart contracts. Comput. Secur., 108:102343, 2021. doi:10.1016/j.
cose.2021.102343.

15 Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS: analyzing safety
of smart contracts. In 25th Annual Network and Distributed System Security Symposium.
The Internet Society, 2018. URL: https://www.ndss-symposium.org/wp-content/uploads/
2018/02/ndss2018_09-1_Kalra_paper.pdf.

16 Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart
contracts smarter. In Proc. SIGSAC Conf. on Computer and Communications Security, pages
254–269. ACM, 2016. doi:10.1145/2976749.2978309.

17 Anastasia Mavridou and Aron Laszka. Designing secure Ethereum smart contracts: A finite
state machine based approach. In 22nd Conference on Financial Cryptography and Data Secur-
ity, volume 10957 of LNCS, pages 523–540. Springer, 2018. doi:10.1007/978-3-662-58387-6_
28.

18 Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An Appetizer.
Springer-Verlag London, 2007. doi:10.1007/978-1-84628-692-6.

19 The parity wallet breach. https://www.coindesk.com/30-million-ether-reported-
stolen-parity-wallet-breach/, 2017.

https://doi.org/10.1007/978-3-030-31500-9_15
https://doi.org/10.1007/978-3-030-31500-9_15
https://doi.org/10.1145/3485523
https://doi.org/10.1007/978-3-030-99524-9_9
https://doi.org/10.1007/978-3-030-99524-9_9
https://doi.org/10.1007/978-3-031-15008-1_5
https://doi.org/10.1007/978-3-031-15008-1_5
http://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
http://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://docs.soliditylang.org/
https://doi.org/10.5220/0009564100390051
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1016/j.cose.2021.102343
https://doi.org/10.1016/j.cose.2021.102343
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_09-1_Kalra_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_09-1_Kalra_paper.pdf
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-1-84628-692-6
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/

L. Aceto, D. Gorla, and S. Lybech 1:27

20 The parity wallet vulnerability. https://paritytech.io/blog/security-alert.html, 2017.
21 Daejun Park, Yi Zhang, and Grigore Rosu. End-to-end formal verification of Ethereum 2.0

Deposit Smart Contract. In Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided
Verification - 32nd International Conference, CAV Proceedings, Part I, volume 12224 of Lecture
Notes in Computer Science, pages 151–164. Springer, 2020. doi:10.1007/978-3-030-53288-8_
8.

22 Grigore Rosu and Traian-Florin Serbanuta. An overview of the K semantic framework. J. Log.
Algebraic Methods Program., 79(6):397–434, 2010. doi:10.1016/j.jlap.2010.03.012.

23 Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei. ethor: Practical
and provably sound static analysis of ethereum smart contracts. In Proc. of SIGSAC Conf. on
Computer and Communications Security, pages 621–640. ACM, 2020. doi:10.1145/3372297.
3417250.

24 Pablo Lamela Seijas, Simon J. Thompson, and Darryl McAdams. Scripting smart contracts
for distributed ledger technology. IACR Cryptol. ePrint Arch., 2016:1156, 2016.

25 Geoffrey Smith and Dennis M. Volpano. Secure information flow in a multi-threaded imperative
language. In Proc. of 25th POPL, pages 355–364. ACM, 1998.

26 Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. A survey of smart contract
formal specification and verification. ACM Computing Surveys (CSUR), 54(7):148:1–148:38,
2020. doi:10.1145/3464421.

27 Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli,
and Martin T. Vechev. Securify: Practical security analysis of smart contracts. In Proc. of
SIGSAC Conference on Computer and Communications Security, pages 67–82. ACM, 2018.
doi:10.1145/3243734.3243780.

28 Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4, August 2000. doi:10.3233/JCS-1996-42-304.

29 Renlord Yang, Toby Murray, Paul Rimba, and Udaya Parampalli. Empirically analyzing
Ethereum’s gas mechanism. In Proc. of IEEE European Symposium on Security and Privacy
Workshops, pages 310–319. IEEE, 2019. doi:10.1109/EuroSPW.2019.00041.

ECOOP 2024

https://paritytech.io/blog/security-alert.html
https://doi.org/10.1007/978-3-030-53288-8_8
https://doi.org/10.1007/978-3-030-53288-8_8
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3464421
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1109/EuroSPW.2019.00041

Runtime Instrumentation for Reactive Components
Luca Aceto #

Reykjavik University, Iceland
Gran Sasso Science Institute, L’Aquila, Italy

Duncan Paul Attard #

University of Glasgow, UK

Adrian Francalanza #

University of Malta, Msida, Malta

Anna Ingólfsdóttir #

Reykjavik University, Iceland

Abstract
Reactive software calls for instrumentation methods that uphold the reactive attributes of systems.
Runtime verification imposes another demand on the instrumentation, namely that the trace event
sequences it reports to monitors are sound – that is, they reflect actual executions of the system
under scrutiny. This paper presents RIARC, a novel decentralised instrumentation algorithm for
outline monitors meeting these two demands. Asynchrony in reactive software complicates the
instrumentation due to potential trace event loss or reordering. RIARC overcomes these challenges
using a next-hop IP routing approach to rearrange and report events soundly to monitors.

RIARC is validated in two ways. We subject its corresponding implementation to rigorous
systematic testing to confirm its correctness. In addition, we assess this implementation via extensive
empirical experiments, subjecting it to large realistic workloads to ascertain its reactiveness. Our
results show that RIARC optimises its memory and scheduler usage to maintain latency feasible for soft
real-time applications. We also compare RIARC to inline and centralised monitoring, revealing that
it induces comparable latency to inline monitoring in moderate concurrency settings where software
performs long-running, computationally-intensive tasks, such as in Big Data stream processing.

2012 ACM Subject Classification Software and its engineering→ Software verification and validation

Keywords and phrases Runtime instrumentation, decentralised monitoring, reactive systems

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.2

Related Version Extended Version: https://arxiv.org/abs/2406.19904 [8]

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.1
Software (Source Code): https://doi.org/10.5281/zenodo.10634182 [15]

Funding This work is supported by the Reykjavik University Research Fund, the Doctoral Student
Grant (No: 207055) and the MoVeMnt project (No: 217987) under the IRF, and the STARDUST
project (No: EP/T014628/1) under the EPSRC.

Acknowledgements We thank our reviewers and the Artefact Evaluation Committee for their
feedback. Thanks also to Keith Bugeja, Simon Fowler, Simon Gay, and Phil Trinder for their input.

1 Introduction

Modern software is generally built in terms of concurrent components that execute without
relying on a global clock or shared state [87]. Instead, components interact via non-blocking
messaging, creating a loosely-coupled architecture known as a reactive system [9, 94], which

responds in a timely manner (is responsive),
remains available in the face of failure (is resilient),

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and
Anna Ingólfsdóttir;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 2; pp. 2:1–2:33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca@ru.is
https://orcid.org/0000-0002-2197-3018
mailto:duncan.attard@glasgow.ac.uk
https://orcid.org/0000-0002-2448-5394
mailto:adrian.francalanza@um.edu.mt
https://orcid.org/0000-0003-3829-7391
mailto:annai@ru.is
https://orcid.org/0000-0001-8362-3075
https://doi.org/10.4230/LIPIcs.ECOOP.2024.2
https://arxiv.org/abs/2406.19904
https://doi.org/10.4230/DARTS.10.2.1
https://doi.org/10.4230/DARTS.10.2.1
https://doi.org/10.5281/zenodo.10634182
https://doi.org/10.4230/DARTS.10.2.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Runtime Instrumentation for Reactive Components

reacts to inputs from users or their environment (is message-driven), and
grows and shrinks to accommodate varying computational loads (is elastic).

The real-world behaviour of reactive systems is hard to understand statically, and monitoring
is used to inspect their operation at runtime, e.g. for debugging [111], security checking [62],
profiling [76], resource usage analysis [36], etc. This paper considers runtime verification (RV),
an application of monitoring used to detect whether the current execution of a system under
scrutiny (SuS) deviates from its correct behaviour [17, 71, 22]. A RV monitor is a sequence
recogniser [123, 101]: a state machine that incrementally analyses a finite fragment of the
runtime information exhibited by a SuS to reach an irrevocable verdict (see [6, 5] for details).

Instrumentation lies at the core of runtime monitoring [70, 22, 64]. It is the mechanism
by which runtime information from a SuS is extracted and reported to monitors as a stream
of system events called a trace. Software is typically instrumented in one of two ways. Inline
instrumentation, or inlining, modifies the SuS by injecting tracing instructions at specific
joinpoints, e.g. using AspectJ [90] or BCEL [54]. Outline instrumentation, or outlining, uses
an external tracing infrastructure to gather events, e.g. LTTng [56] or OpenJ9 [58], thereby
treating the SuS as a black box. A key requirement setting RV apart from monitoring, e.g.,
telemetry [85] or profiling [121, 26], is that the instrumentation must report sound traces.

▶ Definition 1 (Sound traces). A finite trace T is sound w.r.t. a system component P iff it is
1. Complete. T contains all the events exhibited by P so far, and
2. Consistent. The event sequence in T reflects the order the events occur locally at P . ⌟

Traces violating this soundness invariant are unfit for RV, as omitted, spurious, or out-
of-sequence events incorrectly characterise the system behaviour, nullifying the verdicts
that monitors flag [22, 52]. Reactive software imposes another requirement: that the
instrumentation safeguards the responsive, resilient, message-driven, and elastic attributes of
the SuS. This necessitates an instrumentation method which is itself reactive, in order to
1. not hamper the SuS by inducing unfeasible runtime overhead (is responsive),
2. permit monitors to fail independently of SuS components (is resilient),
3. react to trace events without blocking the SuS (is message-driven), and
4. grow and shrink in proportion to the size of the SuS (is elastic).

Limitations of current RV instrumentation methods. State-of-the-art RV tools use in-
strumentation methods that do not satisfy all of the conditions 1 – 4 above. This renders
them inapplicable to reactive software; see [64, tables 3 and 4] for details. Many approaches,
including [24, 31, 49, 75, 110, 122, 127, 19], assume systems with a fixed architecture where
the number of components remains constant at runtime, failing to meet condition 4. Works
foregoing the assumption of a fixed system size, such as [45, 91, 60, 59, 25, 31, 68, 3], inline
the SuS with monitors statically. Inlining monitors pre-deployment inherently accommodates
systems that grow and shrink (condition 4) as a by-product of the embedded monitor code
that executes on the same thread of system components; see fig. 1a. This scheme, however,
has shortcomings that make it less suited to reactive software. Recent studies [22, 52] observe
that the lock-step execution of the SuS and monitors can impair the operation of the instru-
mented system, e.g. slow runtime analyses manifest as high latencies [37], and faulty monitors
may break the system [69], which do not meet conditions 1 and 2 (e.g. MQ in fig. 1a). Other
works [46, 16] argue that errors, such as deadlocks or component crashes, are hard to detect
since the monitoring logic shares the runtime thread of the affected component. Entwining
the execution of the SuS and monitors may also diminish the scalability, performance, and
resource usage efficiency of the monitored system because inlined monitor code cannot be run
on separate threads [12]. Lastly, inlining is incompatible with unmodifiable software, such as
closed-source components (e.g. R in figs. 1a – 1c), making outlining the only alternative.

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:3

Outline instrumentation can address the limitations of inlining by isolating the SuS
and its monitors (works [45, 37, 38] that view externalised monitors as “outline” embed
tracing code to extract events from the SuS, subjecting them to the cons of inlining). The
latest survey on decentralised RV [71, tables 1 and 2] establishes that outlining-based tools,
e.g. [50, 18, 19, 72, 37, 38, 125, 65], are variations on centralised instrumentation. In this
set-up, events exhibited by SuS components are funnelled through a global trace buffer
(e.g. κ{P ,Q,R} in fig. 1b) that a singleton monitor can analyse asynchronously, meeting
condition 3. Yet, the central buffer introduces contention and sacrifices the scalability of
the SuS [11], violating condition 4. Centralised architectures are prone to single point of
failures (SPOFs) [94, 93] (violating condition 2), which is not ideal for monitoring medium-
scale reactive systems.

Contribution. We propose RIARC, a decentralised instrumentation algorithm for outline
monitors that overcomes the above shortcomings, fulfilling conditions 1 – 4. Outline monitors
minimise latency effects due to slow trace event analyses associated with inlining (meeting
condition 1). While RIARC does not handle monitor failure explicitly, it intrinsically enjoys
a degree of fault tolerance by isolating the SuS and its decentralised monitor components
(meeting condition 2); e.g. monitors M{P} and M{Q,R} in fig. 1c. RIARC uses a tracing
infrastructure to obtain system events passively without modifying the SuS (meeting con-
dition 3). The algorithm equips each isolated monitor with a local trace buffer, using it
to report events based on the SuS components a monitor is tasked to analyse (e.g. buffers
κ{P} and κ{Q,R} in fig. 1c). RIARC reorganises its instrumentation set-up to reflect dynamic
changes in the SuS. It reacts to specific events in traces to instrument monitors for new
SuS components and to remove redundant monitors when it detects graceful or abnormal
component terminations. This enables RIARC to grow and shrink the verification set-up
on demand (meeting condition 4). Given the challenges of fulfilling the conditions 1 – 4, we
scope our work to settings where communication is reliable (i.e., no message corruption,
duplication, and loss) [57] and Byzantine failures do not arise [96].

To the best of our knowledge, the approach RIARC advocates is novel. One reason why
outlining has never been adopted for decentralising monitors are the onerous conditions 1 – 4
imposed by reactive software. Utilising non-invasive tracing makes our set-up necessarily asyn-
chronous. At the same time, this complicates the instrumentation, which must ensure trace
soundness (def. 1), notwithstanding the inherent phenomena arising from the concurrent exe-
cution of the SuS and monitors, e.g. trace event reordering and process crashes. Consequently,
the second reason is that the overhead incurred to uphold this invariant – in addition to
scaling the verification set-up as the SuS executes – is perceived as prohibitive when compared
to inlining. This opinion is often reinforced when the viability of outline instrumentation is
predicated on empirical criteria tied to monolithic, batch-style programs, that may not apply
to reactive software (e.g. percentage slowdown); e.g. see [97, 114, 113, 47, 46, 119, 30, 98].

This paper shows how instrumenting outline monitors under conditions 1 – 4 can be
achieved using a decentralised approach that guarantees def. 1, while also exhibiting overheads
considered feasible for typical soft real-time reactive systems. Concretely, we

(i) recall the benefits of the actor model [82, 10] for building reactive systems and argue
how our model of processes and tracers readily maps to that setting, sec. 2;

(ii) give a decentralised instrumentation algorithm for outline monitors, detailing how the
reactive characteristics of the SuS can be preserved whilst ensuring def. 1, sec. 3;

(iii) show the implementability of our algorithm in an actor language and systematically
validate the correctness of its corresponding implementation w.r.t. def. 1 by exhaustively
inducing interleaved executions for a selection of instrumented systems, sec. 4;

ECOOP 2024

2:4 Runtime Instrumentation for Reactive Components

R

SuS

P MP

Q MQ

(a) MQ fails, Q fails

P

R

Q p1r0 M{P ,Q,R}

SuS

κ{P ,Q,R}

p2

p3

q2q1

r1

...q0p0

(b) Bottleneck or SPOF at κ{P ,Q,R}

P

R

Q

p1p2

r0

M{P}

M{Q,R}

SuS

κ{P}

κ{Q,R}

p3

q2

r1

...p0

...q1q0

(c) κ{Q,R} fails, {Q,R} are unaffected

Figure 1 P,Q,R instrumented in inline (left), centralised (middle) and decentralised (right)
modes.

(iv) back up the feasibility of the implemented algorithm via a comprehensive empirical
study that uses various workload configurations surpassing the state of the art, showing
that the induced overhead minimally impacts the reactive attributes of the SuS, sec. 5.

The extended version [8] contains the full details about RIARC and further discussion of
our experiments and results. That material is ancillary to the one presented in this paper.

2 A computational model for reactive systems

The actor model [82, 10] emerged as the paradigm to design and build reactive systems [33].
Actors – the units of decomposition in this model – are abstractions of concurrent entities
that share no mutable memory with other actors. Instead, actors interact through asyn-
chronous message passing and alter their internal state based on the messages they consume.
Asynchronous communication decouples actors spatially and temporally, which fully isolates
system components and establishes the foundation for resiliency and elasticity [32, 94]. Each
actor is equipped with an incoming message buffer called the mailbox, from which messages
deposited by other actors can be selectively read. Besides sending and receiving messages,
actors can spawn other actors. Actors in a system are addressable by their unique process
identifier (PID), which they use to engage in directed, point-to-point communication. This
idea of addressability is central to the actor model: it enables reasoning about decentralised
computation, as the identity of components or messages can be propagated through a system
and used in handling complex tasks, such as process registration and failure recovery [33]. As
is often the case in decentralised computations, we assume that messages exchanged between
pairs of processes are always received in the order in which they have been sent [43].

Frameworks, notably Erlang [12], Elixir [88], Akka [1] for Scala [117], along with oth-
ers [118, 130], instantiate the actor model. We adopt Erlang since its ecosystem is specifically
engineered for highly-concurrent, soft real-time reactive systems [131, 13, 44]. The Erlang
virtual machine (EVM) implements actors as lightweight processes. It employs per process
garbage collection that, unlike the JVM, does not subject the virtual machine to global unpre-
dictable pauses [86, 116]. This factor minimises the impact on the soft real-time properties of
a system and is also crucial to the empirical evaluation of sec. 5 since it stabilises the variance
in our experiments. The EVM exposes a flexible process tracing API aimed at reactive
software [42]. Erlang provides other components, e.g. supervision trees, message queues, etc.,
for building fault-tolerant distributed applications. While we scope our work to fault-free
settings (see sec. 1), adopting Erlang gives us the foundation upon which our work can be
naturally extended to address these aspects. Henceforth, we follow the established convention
in Erlang literature and use the terms actor, process, and component synonymously.

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:5

2.1 Process tracing and trace partitioning
Processes in a concurrent system form a tree, starting at the root process that spawns child
processes, and so forth1. Concurrency induces inherent partitions to the execution of the
SuS in the form of isolated traces that reflect the local behaviour at each process [19]. RIARC
exploits this aspect to attain several benefits. First, one can selectively specify the SuS
processes to be instrumented. The upshot is that fewer trace events need to be gathered,
improving efficiency. Another benefit of partitioned traces is that each process can be
dynamically instrumented, free from assumptions about the number of processes the SuS is
expected to have. This makes the RV set-up elastic. Lastly, the instrumentation set-up can
partially fail, as faulty SuS or monitor processes do not imperil the execution of one another.

▶ Example 2 (Trace partitions). Trace partitions enable RIARC to instrument a system in
various arrangements. Fig. 2a depicts an interaction sequence for the execution of the SuS
from sec. 1. In this interaction, the root process, P , spawns Q and communicates with it,
at which point Q spawns process R; P and Q eventually terminate. We denote the process
spawning and termination trace events by and , and use ! and ? for send and receive
events respectively. The sound trace partitions for the processes in fig. 2a are “ P .!P . P ” for
P , “?Q . Q . Q” for Q, and the empty trace for R. ⌟

A centralised set-up such as that of fig. 1b can be obtained by instrumenting {P ,Q,R}
with one monitor, M{P ,Q,R}, whereas instrumenting the components {P} and {Q,R} with
monitors M{P} and M{Q,R} gives the decentralised arrangement of fig. 1c. Each of these
instrumentation arrangements generates different executions.

▶ Example 3 (Sound traces). For the case of fig. 1b, RIARC can report to M{P ,Q,R} one
of four possible traces “ P .!P . P .?Q . Q . Q”, “ P .!P .?Q . P . Q . Q”, “ P .!P .?Q . Q . P . Q”, or
“ P .!P .?Q . Q . Q . P ”. These sound traces result from the interleaved execution of processes
P , Q. Any other trace, e.g. “ P . P .?Q . Q . Q” or “ P .!P . P .?Q . Q . Q”, is unsound since it
contradicts the local behaviour at processes P and Q of fig. 2a. The former trace omits the
request !P that P makes to Q (it is incomplete w.r.t. P), and the latter trace inverts Q and

Q, suggesting that Q spawns R after Q terminates (it is inconsistent w.r.t. Q). ⌟

▶ Example 4 (Separate instrumentation). Fig. 2b shows another decentralised set-up, where
P , Q, and R are instrumented separately. In this case, the instrumentation should report to
M{P}, M{Q} and M{R} the events observed locally at each process, as stated in ex. 2. ⌟

RIARC makes two assumptions about process tracing in order to support the instrument-
ation arrangements shown in figs. 1b, 1c, and 2b:
A1 Tracing processes sets. Tracing can gather events for sets of SuS processes, e.g. κ{P ,Q,R}

in fig. 1b gathers the events of {P ,Q,R}, and κ{Q,R} in fig. 1c gathers the events of {Q,R}.
A2 Tracing inheritance. Tracing gathers the events of a SuS process and the children it

spawns by default to eliminate the risk that trace events from child processes are missed.
We opt for tracing inheritance since it follows established centralised RV monitoring tools,

including [18, 41, 50, 110]. In fact, tracing assumptions A1 and A2 mean that centralised
set-ups like that of fig. 1b can be obtained just by tracing the root process P . Tracing
inheritance requires the instrumentation to intervene if it needs to channel the events of a
child process into a new trace partition that is independent from that of its parent, e.g. as in

1 For example, using spawn() in Erlang [42] and Elixir [88], ActorContext.spawn() in Akka [1],
Actor.createActor() in Thespian [118], CreateProcess() in Windows [108], etc.

ECOOP 2024

2:6 Runtime Instrumentation for Reactive Components

P

R

Q

spawn send exit

P

receive spawn exit

Q

P !P

?Q Q

(a) Interaction flow of P , Q and R.

P

R

Q

!PP

?QQ M{Q}

M{P}

M{R}

κ{P}

κ{Q}

κ{R}

Q

P

(b) Trace partitions of P , Q, and
R.

P !P M{Pb}

M{Pa}

M{Pc}

κ{P}

P P

P

P

(c) Event replicas to monitors.

Figure 2 SuS with processes P , Q, and R instrumented with independent monitors.

fig. 1c. In such cases, the instrumentation must first stop tracing the child process, allocate
a fresh trace buffer, and resume tracing the child process. The out-of-sync execution of the
SuS and instrumentation complicates the creation of these new trace partitions because it
can lead to reordered or missed events. This, in turn, would violate trace soundness, def. 1.

We supplement A1 and A2 with the following to keep our exposition in sec. 3 manageable:
A3 Single-process tracing. Any SuS process can be traced at most once at any point in time.
A4 Causally-ordered spawn events. Tracing gathers the spawn trace event of a parent process

before all the events of the child process spawned by that parent, e.g. if P spawns Q,
and Q receives, as in fig. 2a, the reported sequence is “ P .?Q” rather than “?Q . P ”.
The constraint of tracing assumption A3 is easily overcome by replicating trace events for

a process and reporting them to different monitors (e.g. the events in the trace partition of
process P are replicated to monitors M{Pa}, M{Pb}, M{Pc} in fig. 2c). Tracing assumption A4
requires trace buffers to reorder events using the spawner and spawned process information
carried by each event before reporting them to monitors. Sec. 3.3 gives more details.

▶ Example 5 (Unsound traces). Fig. 3a shows one possible configuration that can be reached
by our three-process system introduced in fig. 2a, where the trace buffer κ{P} contains the
events for both P and Q. The trace in buffer κ{Q} is unsound, as it inaccurately characterises
the local behaviour of process Q (the sound trace for Q should be “?Q . Q . Q”, not “ Q”). ⌟

RIARC programs trace buffers to coordinate with one another to ensure that sound traces
are invariably reported to monitors. We refer to a trace buffer and the coordination logic
it encapsulates as a tracer. RIARC employs an approach based on next-hop routing in IP
networks [80, 104] to counteract the effects of trace event reordering and loss by rearranging
and forwarding events to different tracers. Fig. 3b conveys our organisation of tracers (refer
to [8, fig. 10 in app. A] for legend). Sec. 3 details how RIARC dynamically reorganises the
tracer choreography and performs next-hop routing.

2.2 Modelling decentralised instrumentation
Since RV monitors are passive verdict-flagging machines (refer to sec. 1), they are orthogonal to
our instrumentation. We, thus, focus our narrative on tracers and omit monitors, except when
relevant in the surrounding context. The model assumes a set of SuS process, P,Q,R ∈ Prc,
and tracer names, T ∈Trc, together with a countable set of PID values to reference processes.
We distinguish between SuS and tracer PIDs, which we denote respectively by the sets,
pS,qS ∈ PidS and pT,qT ∈ PidT. The variables ıS and ȷS, and ıT and ȷT range over PIDs from
the corresponding sets PidS and PidT. We also assume the function signature sets, fS ∈SigS,
fT ∈ SigT, and, fM ∈ SigM, to denote SuS, tracer, and RV monitor functions, together with

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:7

P

R

Q

!P?QQP

Q M{Q}

M{P}

M{R}

κ{P}

κ{Q}

κ{R}

P

(a) Buffer κ{Q} missing trace prefix “?Q . Q”

P

R

Q

T{P}

T{Q}

T{R}

M{P}

M{Q}

M{R}

P

Q

P

?Q

route(Q) detach(Q)

detach(R)

(b) Coordinating tracers T{P}, T{Q}, and T{R}

Figure 3 Choreographed tracers coordinating to ensure sound traces.

the variables ςS, ςT, and ςM that range over each signature set. New SuS processes are created
via the function spwn(ςS) that accepts the function signature ςS to be spawned, and returns
a fresh PID, ıS. We overload spwn to spawn tracer signatures ςT equivalently, returning
corresponding PIDs, ıT. The function self obtains the PID of the process invoking it. We
write P as shorthand for a singleton process set {P} to simplify notation.

RIARC uses three message types, τ ∈ {evt,dtc,rtd}. These determine when to create or
terminate tracer processes, and what trace events to route between tracers:

evt are trace events gathered via process tracing,

dtc are detach requests that tracers exchange to reorganise the tracer choreography, and

rtd are routing packets that transport evt or dtc messages forwarded between tracers.
We encode messages m as tuples. Trace event messages, ⟨evt,ℓ,ıS ,ȷS ,ςS⟩, comprise the event
label ℓ that ranges over the SuS events (spawn), (exit), ! (send), and ? (receive). The
PID value ıS identifies the SuS process exhibiting the trace event, and is defined for all
events. The SuS PID ȷS and function signature ςS depend on the type of the event. Tbl. 1a
catalogues the values defined for each event. We write trace events in their shorthand form,
omitting undefined values (denoted by ⊥), e.g. ⟨evt, ,ıS⟩ instead of ⟨evt, ,ıS ,⊥,⊥⟩.

Table 1 Trace event (evt), detach request (dtc), and routing packet (rtd) message index names.

(a) Messages encoding spawn, exit, send, and receive events.

Label ℓ Index Description (ıS and ȷS are SuS PIDs)

e.ıS Parent PID spawning new child PID ȷS

e.ȷS Child PID spawned by parent PID ıS

e.ςS Signature ςS spawned by parent PID ıS

e.ıS Terminated PID
e.ȷS,e.ςS Undefined for exit events

!
e.ıS Sending PID
e.ȷS Recipient PID
e.ςS Undefined for send events

?
e.ıS Recipient PID

e.ȷS,e.ςS Undefined for receive events

(b) Detach and routing messages.

Index Description

m.τ
Message type: event (evt)
detach (dtc), routing (rtd)

d.ıT
PID of tracer requesting
detach of SuS PID ıS

d.ıS
PID of SuS process to
stop tracing

r.ıT
PID of tracer that starts
routing message m

r.m
Embedded evt or dtc
message being routed

ECOOP 2024

2:8 Runtime Instrumentation for Reactive Components

Table 2 RIARC approach to ensure trace soundness (def. 1) and reactive instrumentation (sec. 1).

Requirement Approach

R1 Growing the set-up Instrument tracers on-demand to create new trace partitions
R2 Ensuring complete traces Route trace events to deliver them to the correct tracer
R3 Ensuring consistent traces Prioritise routed trace events before others
R4 Isolating tracers Detach tracers from others once all trace events are routed
R5 Minimising overhead Target specific processes to instrument
R6 Shrinking the set-up Garbage collect redundant tracers and monitors

Detach request messages have the form ⟨dtc,ıT ,ıS⟩. A tracer with the PID ıT uses dtc to
request that another tracer stop tracing the SuS PID ıS. Routing packet messages, ⟨rtd,ıT ,m⟩,
move evt and dtc messages between tracers. The PID ıT identifies the tracer that embeds the
message m into the routing packet and dispatches it to other tracers. Tbl. 1b summarises
detach request and routing packet messages.
▶ Note 6 (Notation). We reserve the variables e, d, and r for the messages types evt, dtc, and
rtd respectively. Our model uses the suggestive dot notation (.) to index message fields, e.g.
m.τ reads the message type, e.ℓ reads the trace event label, etc. (see tbl. 1). For simplicity,
we occasionally write the label ℓ in lieu of the full trace event form, e.g. we write instead
of ⟨evt, ,ıS⟩, etc. ⌟

3 Decentralised instrumentation

Our reason for encapsulating trace buffers and their coordination logic as tracers stems from
the actor model. Trace buffers align with actor mailboxes, which localise the tracer state
and enable tracers to run independently. The main logic replicated at each tracer is given in
algs. 1 – 3. Tracers operate in two modes, direct (◦) and priority (•), to counteract the effects
of trace event reordering. We organise our tracer logic in algs. 1 and 3 to reflect these modes,
respectively. Algs. 1 and 3 use the function AnalyseEvt, which analyses events; see [8,
app. C.5.2] for details. Auxiliary tracer logic referenced in this section is given in [8, app. A].

Every tracer maintains an internal state σ consisting of the following three maps:
the routing map, Π, governing how events are routed to other tracers,
the instrumentation map, Λ, that determines which SuS processes to instrument, and
the traced-processes map, Γ, tracking the SuS process set that the tracer currently traces.

Tbl. 2 summarises the challenges that RIARC needs to overcome to attain the reactive
characteristics stated in sec. 1. Requirements R1 and R6 in tbl. 2 oblige the instrumentation
to reorganise dynamically while the SuS executes to preserve its elasticity. Requirement R4
offers a modicum of resiliency between the SuS and tracer processes, whereas R5 minimises
the instrumentation overhead by gathering only the events monitors require. This keeps the
overall set-up responsive. Since RIARC builds on the actor model, it fulfils the message-driven
requirement intrinsically. Trace soundness is safeguarded by requirements R2 and R3.

The operations Trace, Clear and Preempt give access to the tracing infrastructure.
Trace(ıS,ıT) enables a tracer with PID ıT to register its interest in receiving trace events of a
SuS process with PID ıS. This operation can be undone using Clear(ıS,ıT), which blocks the
calling tracer ıT and returns once all the trace event messages for the SuS process ıS that are
in transit to the tracer ıT have been delivered to ıT. It is worth remarking that this behaviour
conforms to our proviso in sec. 1, i.e., no communication faults. Preempt(ıS,ıT) combines

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:9

Clear and Trace. It enables the tracer pre-empting ıT to take control of tracing the SuS
process ıS from another tracer ı′

T that is currently tracing ıS. Tracers use Clear or Preempt
to modify the default process-tracing inheritance behaviour that tracing assumption A2
describes. We refer readers to [8, alg. 5 in app. A] for the specifics of these operations.

We focus our presentation in secs. 3.1 – 3.6 of how RIARC addresses the challenges listed in
tbl. 2 on the set-up of fig. 2b, where the processes P , Q and R, are instrumented separately.
This specific case highlights two aspects. First, it emphasises the complications that RIARC
overcomes to establish the desired set-up while ensuring trace soundness, def. 1. Second,
fig. 2b covers all other possible instrumentation set-ups. Disjoint sets of SuS processes,
including the one shown in fig. 1c, can be obtained when tracers do not act on certain
(spawn) events, as sec. 3.1 explains. Notably, any centralised set-up, e.g. the one in fig. 1b,
emerges naturally when the root tracer disregards all events exhibited by the SuS.
▶ Note 7 (Naming conventions). For clarity, we adopt the convention that a SuS process
P is spawned from the signature fSP

and is assigned the PID pS. A tracer for P is named
TP (short for T{P}) and has the PID pT. Other processes are treated likewise, e.g. the SuS
process Q has signature fSQ

, PID qS, while the tracer TQ for Q has PID qT, etc. ⌟

3.1 Growing the set-up
Fig. 4 illustrates how the hierarchical creation sequence of SuS processes described in sec. 2.1
is exploited to instrument separate tracers. RIARC programs tracers to react to (spawn)
events in the trace. In fig. 4a, the root tracer TP traces process P , step 1 . When P spawns
process Q, Q automatically inherits TP (tracing assumption A2 from sec. 2.1). Steps 2 in
fig. 4a emphasise that tracing inheritance is instantaneous. The event e = ⟨evt, ,pS ,qS ,fSQ

⟩
is generated by P when it spawns its child Q, step 3 in fig. 4a. The PID values of the parent
and child processes carried by e, namely pS and qS, are accessed via the indexes e.ıS and e.ȷS

respectively (see tbl. 1a). Tracer TP uses this PID information to instrument a new tracer
TQ for process Q in step 4 of fig. 4b. By invoking Preempt(qS,qT), TQ takes over tracing
process Q from the former tracer TP going forward. TQ creates a new trace partition for

P Q

TP

P 3

spawn 2

1 2

(a) P spawns Q; TP also traces Q, assumption
A2.

P Q

TP TQ

instr. 4

5

(b) TP instruments tracer TQ for process Q.

P Q R

TP TQ

send 6

!P 10

receive 7

?Q 9 Q 11

spawn 8

8

(c) TP and TQ analyse trace events separately.

P Q R

TP TQ TR

instr. 12

exit 14

Q 15
13

(d) P , Q, R and corresponding tracers.

Figure 4 Growing the tracer instrumentation set-up for processes P , Q and R (monitors omitted).

ECOOP 2024

2:10 Runtime Instrumentation for Reactive Components

P Q R

TP

send 4

receive 5

spawn 6

?Q 7 Q 9

!P 8
6

Trace buffer

κP P

10

?Q

11

!P Q

(a) Trace events for P , Q, and R received by TP .

P Q R

TP TQ TR

instr. 11

?Q 15 Q 19

instr. 22

12 23

Trace buffers and routing maps

κP P

10

?Q

14

!P

17

Q

18

ΠP

PidS PidT

qS qT 13

rS qT 20

κQ ?Q

16

Q

21

ΠQ
PidS PidT

rS rT 24

(b) Trace events for Q routed from TP to TQ.

Figure 5 Next-hop trace event routing using tracer routing maps Π (monitors omitted).

process Q that is independent of the partition of P , step 5 . Meanwhile, TP receives the send
event ⟨evt,!,pS ,qS⟩ in step 10 after P messages Q in step 6 of fig. 4c. Subsequent events
that TP or TQ may gather are handled as described in steps 3 – 5 . Figs. 4c and 4d show
how the final tracer TR is instrumented in step 12 after Q spawns R in step 8 . As before,
TQ traces R automatically in step 8 . TQ receives the event ⟨evt, ,qS ,rS ,fSR

⟩ generated by
Q in step 11 . TR invokes Preempt(rS,rT) to create the trace partition for R in step 13 .

3.2 Ensuring complete traces
The asynchrony between the SuS and tracer processes can induce the interleaved execution
shown in fig. 5, as an alternative execution to that shown in figs. 4b – 4d. In fig. 5a, TP is slow
to handle P it receives in 3 of fig. 4a and fails to instrument TQ promptly. Consequently,
the events ?Q and Q that Q exhibits are sent to TP in steps 7 and 9 of fig. 5a. Step 11

shows the case where ⟨evt,?,qT⟩ is processed by TP , rather than by the intended tracer TQ

that would have been instrumented by TP . This error breaches the completeness property of
trace soundness w.r.t. Q, as the events ?Q and Q meant for Q reach the wrong tracer TP .

To address this issue, RIARC uses a next-hop routing approach, where tracers retain the
events they should handle and forward the rest to neighbouring tracers. We use the term
dispatch tracer (dispatcher for short) to describe a tracer that receives trace events meant to
be handled by another tracer. For instance, TP in fig. 5a becomes the dispatch tracer for
Q when it receives the events ?Q and Q exhibited by Q, steps 7 and 9 . We expect these
events to be handled by TQ once it is instrumented. Dispatchers are tasked with embedding
trace event (evt) or detach requests (dtc) into routing packet messages (rtd) and transmitting
them to the next known hop. In fig. 5b, TP dispatches the events ?Q and Q as follows. It
first instruments TQ with Q in step 11 . Next, TP prepares ⟨evt,?,rS⟩ and ⟨evt, ,qS ,rS ,fSR

⟩
for transmission by embedding each in rtd messages (steps 14 and 18). TP forwards the
resulting routing packets, ⟨rtd,pT ,⟨evt,?,rS⟩⟩ and ⟨rtd,pT ,⟨evt, ,qS ,rS ,fSR

⟩⟩, to its next-hop
neighbour TQ in steps 15 and 19 . The trace event ⟨evt,!,pS ,qS⟩, however, is not forwarded
but handled by TP , as step 17 shows. Concurrently, TQ acts on the forwarded events ?Q and

Q in steps 16 and 21 and instruments TR as a result, step 22 .

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:11

Algorithm 1 Logic handling ◦ trace events, detach request dispatching, and forwarding.
1 def Loop◦(σ,ςM)
2 forever do
3 m← next message from trace buffer κ

4 match m.τ do
5 case evt : σ← HandlEvent◦(σ,ςM,m)
6 case dtc : σ←DispatchDtc(σ,ςM,m)
7 case rtd : σ←ForwdRtd◦(σ,ςM,m)

8 def HandlEvt◦(σ,ςM,e)
9 match e.ℓ do

10 case : return HandlSpwn◦(σ,ςM,e)
11 case : return HandlExit◦(σ,ςM,e)
12 case !,? : return HandlComm◦(σ,ςM,e)

13 def HandlSpwn◦(σ,ςM,e)
14 match σ.Π(e.ıS) do
15 case ⊥ : # No next-hop for e.ıS; handle e

16 AnalyseEvt(ςM,e)
17 σ← Instrument◦(σ,e,self())
18 case ȷT : # Next-hop for e.ıS exists via ȷT

19 Dispatch(e,ȷT)
Set next-hop of e.ȷS to tracer of e.ıS

20 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
21 return σ

22 def HandlExit◦(σ,ςM,e)
23 match σ.Π(e.ıS) do
24 case ⊥ : # No next-hop for e.ıS; handle e

25 AnalyseEvt(ςM,e)
26 σ.Γ←σ.Γ\{⟨e.ıS ,◦⟩}
27 TryGC(σ)
28 case ȷT : Dispatch(e,ȷT)
29 return σ

30 def HandlComm◦(σ,ςM,e)
31 match σ.Π(e.ıS) do
32 case ⊥ : AnalyseEvt(ςM,e)
33 case ȷT : Dispatch(e,ȷT)
34 return σ

35 def DispatchDtc(σ,d)
36 match σ.Π(d.ıS) do
37 case ⊥ : fail dtc next-hop must be defined
38 case ȷT :
39 Dispatch(d,ȷT)

Next-hop for d.ıS no longer needed
40 σ.Π←σ.Π\{⟨d.ıS ,ȷT⟩}
41 TryGC(σ)
42 return σ

43 def ForwdRtd◦(σ,r)
44 m← r.m # Read embedded message in r

45 match m.τ do
46 case dtc : return ForwdDtc(σ,r)
47 case evt : return ForwdEvt(σ,r)

48 def ForwdDtc(σ,r)
49 d← r.m

50 match σ.Π(d.ıS) do
51 case ⊥ : fail dtc next-hop must be defined
52 case ȷT :
53 Forwd(r,ȷT)

Next-hop for d.ıS no longer needed
54 σ.Π←σ.Π\{⟨d.ıS ,ȷT⟩}
55 TryGC(σ)
56 return σ

57 def ForwdEvt(σ,r)
58 e← r.m

59 match σ.Π(e.ıS) do
60 case ⊥ : fail evt next-hop must be defined
61 case ȷT :
62 Forwd(r,ȷT)

For spawn events, tracer also sets a
new next-hop for e.ȷS

Next-hop of e.ȷS to same tracer of e.ıS

63 if (e.ℓ =)
64 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
65 return σ

Tracers determine the events to retain or forward using the routing map, Π: PidS ⇀PidT.
Every tracer queries its private routing map for each message it receives on SuS PID m.ıS.
A tracer forwards a message to its neighbouring tracer with PID ıT if a next-hop for that
message exists, i.e., Π(m.ıS) = ıT. When the next-hop is undefined, i.e., Π(m.ıS) = ⊥, m is
handled by the tracer. HandlSpwn, HandlExit and HandlComm in alg. 1 implement
this forwarding logic on lines 14, 23 and 31.

Dynamically populating the routing map is key to transmitting messages between tracers.
A tracer adds the new mapping e.ȷS 7→ ȷT to its routing map Π in case 1 or 2 below whenever
it processes spawn trace events e = ⟨evt, ,ıS ,ȷS ,ςS⟩. One of two cases is considered for e.ıS:

ECOOP 2024

2:12 Runtime Instrumentation for Reactive Components

Algorithm 2 Tracer instrumentation operations for direct (◦) and priority (•) modes.
Expect: e = ⟨evt, ,ıS ,ȷS ,ςS⟩

1 def Instrument◦(σ,e,ıT)
2 if ((ςM←σ.Λ(e.ςS)) ̸=⊥)

New tracer ȷT for new SuS process e.ȷS

3 ȷT← spwn(Tracer(σ,ςM,e.ȷS,ıT))
4 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
5 else

In ◦ mode, this tracer has detached
all processes from its dispatcher ıT

This tracer traces new SuS process e.ȷS

by tracing inheritance assumption A2

6 σ.Γ←σ.Γ∪{⟨e.ȷS ,◦⟩}
7 return σ

Expect: e = ⟨evt, ,ıS ,ȷS ,ςS⟩
8 def Instrument•(σ,e,ıT)
9 if ((ςM←σ.Λ(e.ςS)) ̸=⊥)

New tracer ȷT for new SuS process e.ȷS

10 ȷT← spwn(Tracer(σ,ςM,e.ȷS,ıT))
11 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
12 else

In • mode, this tracer must detach
SuS process e.ȷS from its dispatcher ıT

13 Detach(e.ȷS,ıT)
This tracer traces new SuS process e.ȷS

14 σ.Γ←σ.Γ∪{⟨e.ȷS ,•⟩}
15 return σ

1. Π(ıS) = ⊥. The next-hop for e is undefined, which cues the tracer to instrument the SuS
process with PID ȷS. When applicable, the tracer processes the event and instruments a
separate tracer with PID ȷT. It then adds the mapping e.ȷS 7→ ȷT to Π. The tracer leaves
Π unmodified and handles the event itself if a separate tracer is not required. Opting for
a separate tracer is determined by the instrumentation map Λ, as discussed in sec. 3.5.

2. Π(ıS) = ȷT. The next-hop for e is defined, and the tracer forwards the event to the
neighbouring tracer ȷT. The tracer also records a new next-hop by adding e.ȷS 7→ ȷT to Π.

The addition of e.ȷS 7→ ȷT in cases 1 and 2 ensures that future events originating from ȷS can
always be forwarded via a next-hop to a neighbouring tracer ȷT (see invariants on lines 37,
51, and 60). Fig. 5b shows the routing maps of the tracers TP and TQ. TP adds qS 7→ qT in
step 13 after processing ⟨evt, ,pS ,qS ,fSQ

⟩ from its trace buffer in 10 . TP then instruments
Q with the tracer TQ in step 11 ; an instance of case 1. The function Instrument in alg. 2
details this on line 4, where the mapping e.ȷS 7→ ȷT is added to Π following the creation of
tracer ȷT, line 3. Step 20 of fig. 5b is an instance of case 2. Here, TP adds rS 7→ qT to ΠP

after processing ⟨evt, ,qS ,rS ,fSR
⟩ for R in step 18 since ΠP (qS) = qT. Crucially, TP does not

instrument a new tracer, but delegates the task to TQ by forwarding Q. Lines 20 and 64 in
alg. 1 (and later line 24 in alg. 3) are manifestations of this, where the mapping e.ȷS 7→ ȷT is
added after the event e is forwarded to the next-hop ȷT. TQ instruments the SuS process
R in step 22 with TR, which has the PID rT. It then adds the mapping rS 7→ rT to ΠQ in
step 24 , as no next-hop is defined for qS, i.e., ΠQ(qS) = ⊥. Henceforth, any events exhibited
by R and received at TP can be dispatched by the latter tracer through TQ to TR.

Note that every tracer is only aware of its neighbouring tracers. This means messages may
pass through multiple tracers before reaching their intended destination. Next-hop routing
keeps the logic inside RIARC straightforward since tracers forward messages based on local
information in their routing map. This approach makes the instrumentation set-up adaptable
to dynamic changes in the SuS and has been shown to induce lower latency when compared to
general routing strategies [80, 104]. The DAG of interconnected tracers induced by next-hop
routing ensures that every message is eventually delivered to the correct tracer if a path
exists or handled by the tracer otherwise. Fig. 5b illustrates this concept, where the next-hop
mappings inside ΠP point to TQ, and the mappings in ΠQ point to TR. Consequently, any
events that R exhibits and that TP receives are forwarded twice to reach the target tracer TR:
from tracer TP to TQ, and from TQ to TR. RIARC relies on the operations Dispatch and
Forwd to achieve next-hop routing (see [8, alg. 4 in app. A]). Dispatch creates a routing
packet, ⟨rtd,ıT ,m⟩, and embeds the trace event or detach message m to be routed. Alg. 1
shows how tracers handle routing packets. For instance, ForwdEvt extracts the embedded

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:13

message from the routing packet on line 58 and queries the routing map to determine the
next-hop, line 59. If found, the packet is forwarded, as Forwd(r,ȷT) on line 62 indicates.
Crucially, the fail invariant on line 60 asserts that the next-hop for a routing packet is always
defined. The cases for DispatchDtc and ForwdDtc in alg. 1 are analogous.

3.3 Ensuring consistent traces
Next-hop routing alone does not guarantee trace consistency, i.e., that the order of events
in the trace reflects the one in which these occur locally at SuS processes, def. 1. Trace
event reordering arises when a tracer gathers events of a SuS process (we call these direct
events) and simultaneously receives routed events concerning said process from other tracers.
Fig. 6a gives another interleaving to the one of fig. 5b to underscore the deleterious effect
such a race condition provokes when events are reordered at TQ. In step 12 TQ takes over
TP to continue tracing process Q. TQ collects the event Q in step 15 , which happens before
TQ receives the routed event ?Q concerning Q in step 17 of fig. 6a. If TQ processes events
from its trace buffer κQ in sequence, as in step 18 , it violates trace consistency w.r.t. Q

(the correct trace ordering should be “?Q . Q . Q”). Naïvely handling before ? erroneously
reflects that Q receives messages after it terminates.

RIARC tracers resolve this issue by prioritising the processing of routed trace events using
selective message reception [42]. In doing so, tracers encode the invariant that “routed events
temporally precede all others that are gathered directly by the tracer”. RIARC tracers operate
in one of two modes, priority (•) and direct (◦), which adequately distinguishes past (i.e.,
routed) and current (i.e., direct) events from the perspective of the tracer receiving them.

Fig. 6b illustrates this concept. It shows that when in priority mode, TQ dequeues the
routed events ?Q and Q labelled by • first. The event ?Q is handled in step 23 , whereas

Q results in the instrumentation of tracer TR in step 25 of fig. 6b. Meanwhile, TQ can
still receive events directly from Q while priority events are being handled. Yet, direct trace
events from Q are considered only after TQ transitions to direct mode. Newly-instrumented
tracers default to • mode to implement the described logic; see [8, line 14 in alg. 4 of app. A].

P Q R

TP TQ

instr. 11

?Q 17

exit 14

Q 15
12

Trace buffers and routing maps

κP P

10

?Q

16

!P Q

ΠP
PidS PidT

pS pT 13

κQ Q

18

?Q

ΠQ PidS PidT

(a) TQ receives event Q before TP dispatches ?Q.

P Q R

TP TQ TR

instr. 11

dtc 13

exit 15

Q 16

?Q 18 Q 21

instr. 25

dtc 29

12 26

31

Trace buffers and routing maps

κP P

10

?Q

17

!P

19

Q

20

dtc

28

ΠP

PidS PidT

qS qT 14

rS qT 22

κQ Q

32

?Q

23

Q

24

dtc

30

ΠQ
PidS PidT

rS rT 27

(b) TQ processes events forwarded by TP first.

Figure 6 Trace event reordering using priority (•) and direct (◦) tracer modes (monitors omitted).

ECOOP 2024

2:14 Runtime Instrumentation for Reactive Components

Algorithm 3 Logic handling • trace events, detach request acknowledgements, and forwarding.
1 def Loop•(σ,ςM)
2 forever do
3 r← next rtd message from trace buffer κ

4 m← r.m # Read embedded message in r

5 match m.τ do
6 case evt : σ← HandlEvt•(σ,ςM,r)
7 case dtc :

dtc ack relayed from dispatch tracer
8 σ←HandlDtc(σ,ςM,r)

9 def HandlEvt•(σ,ςM,r)
10 e← r.m

11 match e.ℓ do
12 case : return HandlSpwn•(σ,ςM,r)
13 case : return HandlExit•(σ,ςM,r)
14 case !,? : return HandlComm•(σ,ςM,r)

15 def HandlSpwn•(σ,ςM,r)
16 e← r.m

17 match σ.Π(e.ıS) do
18 case ⊥ : # No next-hop for e.ıS; handle e

19 AnalyseEvt(ςM,e)
20 ıT← r.ıT # Read PID of dispatch tracer
21 σ← Instrument•(σ,e,ıT)
22 case ȷT : # Next-hop for e.ıS exists via ȷT

23 Forwd(r,ȷT)
Set next-hop of e.ȷS to tracer of e.ıS

24 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
25 return σ

26 def HandlExit•(σ,ςM,r)
27 e← r.m

28 match σ.Π(e.ıS) do
29 case ⊥ : # No next-hop for e.ıS; handle e

30 AnalyseEvt(ςM,e)
31 σ.Γ←σ.Γ\{⟨e.ıS ,•⟩}
32 TryGC(σ)
33 case ȷT : Forwd(r,ȷT)
34 return σ

35 def HandlComm•(σ,ςM,r)
36 e← r.m

37 match σ.Π(e.ıS) do
38 case ⊥ : AnalyseEvt(ςM,e)
39 case ȷT : Forwd(r,ȷT)
40 return σ

41 def HandlDtc(σ,ςM,r)
42 d← r.m

43 match σ.Π(d.ȷS) do
44 case ⊥ :
45 assert d.ıT = self() unexpected dtc ack
46 σ.Γ←

(
σ.Γ\{⟨d.ȷS ,•⟩}

)
∪{⟨d.ȷS ,◦⟩}

47 if ({⟨ıS ,γ⟩ | ⟨ıS ,γ⟩ ∈σ.Γ,γ = •}= ∅)
48 Loop◦(σ,ςM) # Put tracer in ◦ mode
49 case ȷT :
50 assert d.ıT ̸= self() dtc meant for ıT

51 Forwd(r,ȷT)
52 return σ

Loop• in alg. 3 shows the logic prioritising routed events, which are dequeued on line 3
and handled on line 6. HandlSpwn, HandlExit, and HandlComm in Loop◦ and Loop•
handle events differently. A tracer in direct mode performs one of three actions (see alg. 1):
1. it analyses events for RV purposes via the function AnalyseEvt(ςM,e), e.g. line 32,
2. it dispatches events that it directly gathers using Dispatch(e,ȷT), when events ought to

be handled by other tracers, e.g. line 33, or
3. it forwards routed events to the next-hop through Forwd(r,ȷT), e.g. line 62.
Tracers in priority mode exclusively handle routed messages as points 1 and 3 describe, e.g.
lines 38 and 39 in alg. 3. However, no event dispatching is performed.

3.4 Isolating tracers
A tracer in priority mode coordinates with the dispatch tracer of a particular SuS process
it traces. This enables the tracer to determine when all of the events of that process have
been routed to it by the dispatch tracer. The negotiation is effected using dtc, which the
tracer sends to the relevant dispatch tracer. Each tracer records the set of processes it traces
in the traced-processes map, Γ : PidS ⇀ {◦,•}. A SuS process mapping is added to Γ when a
tracer starts gathering trace events for that process and removed once the process terminates.
Lines 6 and 14 in alg. 2 add fresh mappings to Γ; lines 26 in alg. 1 and 31 in alg. 3 purge
mappings from Γ. A tracer in priority mode must issue a dtc request for each process it

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:15

tracks in Γ before it can transition to direct mode and start operating on the trace events it
gathers directly. The detach request, d = ⟨dtc,ıT ,ıS⟩, contains the PIDs of the issuing tracer
and the SuS process to be detached from the dispatch tracer. Once the tracer receives an
acknowledgement to the dtc request for the SuS PID d.ıS from the dispatch tracer, it updates
the corresponding entry d.ıS 7→ • in Γ, marking it as detached, d.ıS 7→ ◦. Alg. 3 shows this
logic on line 46. A tracer transitions from priority to direct mode once all the processes in
its Γ map are marked detached; line 47 in alg. 3 performs this check. Once in direct mode,
tracers are isolated from others in the choreography.

Fig. 6b depicts the tracer TQ in priority mode sending the detach request ⟨dtc,qT ,qS⟩
for SuS PID qS to the dispatch tracer. This happens in step 13 , after TQ starts tracing Q

directly in step 12 . Alg. 2 effects this transaction with the dispatch tracer by the operation
Detach on line 13; see [8, app. A] for definition of Detach. The dtc request issued by TQ

is deposited in the trace buffer of the dispatch tracer TP after the events ?Q and Q. TP

processes the messages in its buffer sequentially in 10 , 17 , 19 , 20 and 28 , and forwards ?Q

and Q to TQ, steps 18 and 21 . Crucially, TP acknowledges the dtc request issued by TQ:
TP dispatches dtc back to tracer TQ, as step 29 indicates. TQ first handles the events ?Q and

Q (tagged with • in fig. 6b) in steps 23 and 24 . Lastly, TQ handles dtc in 30 and marks
process Q as detached from its dispatch tracer TP . The update on the traced-process map Γ
is performed by HandlDtc on line 46 in alg. 3. Tracer TQ in fig. 6b transitions to direct
mode in step 31 , when the only process Q that it traces is detached. TQ resumes handling

Q in step 32 , which is consistent w.r.t. the events exhibited locally at Q, i.e., “?Q . Q . Q”.
An acknowledgement to a detach request sent from a dispatch tracer, ⟨dtc,ıT ,ıS⟩, is

generally propagated through multiple next-hops before it reaches the tracer with PID ıT

issuing the request. Since a dtc request informs the dispatch tracer that ıT is gathering trace
events for the SuS PID ıS directly, the next-hop entries in the routing maps of tracers on the
DAG path from the dispatch tracer to ıT are stale. Each tracer on this DAG path purges
the next-hop entry for the SuS PID ıS in Γ once it forwards dtc to the neighbouring tracer.
DispatchDtc and ForwdDtc in alg. 1 perform this clean-up. Fig. 6b does not illustrate
the latter clean-up flow, which we summarise next. After receiving dtc, the dispatch tracer
TP removes from ΠP the next-hop mapping qS 7→ qT and calls DispatchDtc to acknowledge
the detach request ⟨dtc,qT ,qS⟩ it receives from TQ. Similarly, TP removes rS 7→ qT once it
acknowledges the detach request ⟨dtc,rT ,rS⟩ sent from TR. Once TQ receives the routing
packet ⟨rtd,pT ,⟨dtc,rT ,rS⟩⟩ that embeds the detach acknowledgement TP sends, it removes
the next-hop mapping rS 7→ rT from ΠQ. TQ then forwards this dtc acknowledgement to TR.

RIARC ensures that all routing packets carrying dtc acknowledgements terminate at the
tracers that issued these dtc requests. This requires one of two tracer conditions to hold:
1. either the tracer cannot forward the dtc acknowledgement to a next-hop, meaning that

the tracer sent the dtc request, or
2. the tracer can forward the dtc acknowledgement via a next-hop, in which case the tracer

did not issue the dtc request.
Alg. 3 enforces this invariant on lines 44 and 45 for case 1, and on lines 49 and 50 for case 2.

3.5 Minimising overhead
Instrumenting specific processes – in contrast to fully instrumenting the SuS – reduces the
volume of gathered trace events and helps lower the runtime overhead induced. RIARC uses
the instrumentation map, Λ:SigS⇀SigM, to this end. Λ specifies the SuS function signatures
to instrument and the corresponding RV monitor signatures tasked with the analysis via
AnalyseEvt. RIARC utilises the signature e.ςS carried by spawn events e=⟨evt, ,ıS ,ȷS ,ςS⟩ to

ECOOP 2024

2:16 Runtime Instrumentation for Reactive Components

determine whether the SuS process spawning e.ςS requires a separate tracer. The Instrument
operations in alg. 2 perform this check against Λ (lines 2 and 9). If a separate tracer is
not required, e.ȷS is instrumented using the tracer of its parent process, e.ıS; see tracing
assumptions A1 and A2. This logic caters for all the set-ups shown in figs. 1b, 1c, and 2b.

3.6 Shrinking the set-up
RIARC remains elastic by discarding unneeded tracers. Tracers in direct and priority mode
purge SuS PID references from the traced-process map when handling trace events.
HandlExit◦ and HandlExit• implement this logic in algs. 1 and 3 on lines 26 and 31.
Tracer termination does not occur when the tracer has no processes left to trace, i.e., when
Γ = ∅, since the tracer may be required to forward trace events to neighbouring tracers.
Instead, tracers perform a garbage collection check each time a mapping from Γ or Π is
removed. A tracer terminates when Γ = Π = ∅, indicating that it has no SuS processes left to
trace or any next-hop forwarding to perform. TryGC used on lines 27, 41, and 55 in alg. 1,
as well as on line 32 in alg. 3 encapsulates this check. Note that garbage collection never
prematurely disrupts the RV analysis that tracers conduct, as invocations to AnalyseEvt
always precede TryGC checks in our logic of algs. 1 and 3.

4 Correctness validation

We assess the validity of RIARC in two stages. First, we confirm its implementability by
instantiating the core logic of algs. 1 – 3 to Erlang. Our implementation targets two RV
scenarios: online and offline monitoring [64, 22]. Second, we subject the implementation
to a series of systematic tests using a selection of instrumentation set-ups. These tests
exhaustively emulate the interleaved execution of the SuS and tracer processes by generating
all the valid permutations of events in a set of traces. This exercises the tracer choreography
invariants mentioned in sec. 3, confirming the integrity of the tracer DAG topology under
each interleaving. We also use specialised RV monitor signatures in AnalyseEvt to assert
the soundness (def. 1) of trace event sequences analysed by tracers; see algs. 1 and 3 in sec. 3.

4.1 Implementability
Our implementation of RIARC maps the tracer processes from sec. 3 to Erlang actors.The
routing (Π), instrumentation (Λ), and traced-processes (Γ) maps constituting the tracer state
σ are realised as Erlang maps for efficient access. Trace event buffers κ coincide with actor
mailboxes, while the remaining logic in algs. 1 – 3 translates directly to Erlang code. This
one-to-one mapping gives us confidence that our implementation reflects the algorithm logic.

In online RV, monitors analyse trace events while the SuS executes, whereas the offline
setting defers this analysis until the system terminates; [8, fig. 11 in app. B.1] captures
the distinction in process tracing between online and offline instrumentation in our setting
(showing trace buffers only). The online instrumentation set-up employs the tracing infra-
structure offered by the EVM, which deposits SuS trace event messages in tracer mailboxes.
Erlang tracing complies with tracing assumption A1, enabling RIARC to instrument disjoint
SuS processes sets. We configure the EVM with the set_on_spawn flag so that spawned
processes automatically inherit the same tracer as their parent [42]. This tracer assignment
is atomic, meeting tracing assumption A2. We also use the procs, send, and receive
tracing flags, which constrain the events emitted by the EVM to , , !, and . The EVM
enforces single-process tracing, i.e., tracing assumption A3, and guarantees that events of
descendant processes are causally-ordered [128], i.e., tracing assumption A4.

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:17

The offline counterpart differs only in its tracing layer, where events are read as recorded
runs of the SuS. Recorded runs can be acquired externally, e.g. using DTrace [36] or LTTng [56],
making it possible to monitor systems that execute outside of the EVM. Our bespoke offline
tracing engine of [8, fig. 11b in app. B.1] fulfils tracing assumptions A1 – A4. This is crucial
since it permits the same implementation of RIARC to be used in online and offline settings.
Sec. 4.2 leverages this aspect to validate RIARC exhaustively using trace permutations.

We develop two versions of the Trace, Clear, and Preempt functions of [8, alg. 5 in
app. A] to standardise tracing for online and offline use. The overloads for online use access
the EVM tracing via the Erlang built-in primitive trace [42]. The second set of overloads
wraps around our offline tracing engine to replay files containing specifically-formatted trace
events. Offline tracing relaxes tracing assumption A4, as recorded runs do not generally
guarantee that the events of descendant SuS processes are causally ordered. Our offline
tracing logic relies on the PID information carried by events to rearrange them and recover
the causal ordering per tracing assumption A4. Trace(ıS,ıT) registers a tracer ıT with the
offline tracing engine, which maintains an event buffer for ıT, together with a set of SuS PIDs
that ıT traces. A tracer can use Trace with multiple SuS PIDs to register to obtain events
for a process set, i.e., tracing assumption A1. The tracing engine accumulates the events it
reads from file in each tracer buffer and delivers events to the corresponding tracer mailbox
once the casual ordering between events of descendant SuS processes is established. Our
offline tracing engine implements tracing inheritance (tracing assumption A2) and enforces
single-process tracing (tracing assumption A3); [8, ex. 7 in app. B.1] sketches how the tracing
engine uses its internal tracer buffers to deliver events to tracers.

4.2 Correctness
Conventional testing does not guarantee the absence of concurrency errors due to the different
interleaved executions that may be possible [105]. While subjecting the system under test to
high loads raises the likelyhood of obtaining more coverage, this still depends on external
factors, such as scheduling, which dictate the executions induced in practice. Controlling
the conditions for concurrency testing requires a systematic exploration of all the interleaved
executions [74]. In fact, it is not the size of the testing load that matters, but the choice of
interleaved executions that exhaust the space of possible system states [14]. Concuerror [48]
is a tool for systematic Erlang code testing. Unfortunately, we could not use Concuerror to
test our RIARC implementation, as we were unable to integrate it with Erlang tracing.

We, nevertheless, adopt the systematic scheme advocated by Concuerror. Our approach
uses the offline tracing tool described in sec. 4.1 to induce specific interleaved sequences for
instrumentation set-ups, such as those of figs. 1b, 1c, and 2a. We obtain these sequences
by taking all the sound (def. 1) event permutations of traces produced by the SuS. These
sequences are then replayed by the offline tracing engine to systematically induce interleaved
SuS executions. Our final RIARC implementation embeds further invariants besides those
mentioned in sec. 3, e.g. the assert and fail statements in algs. 1 and 3. Readers are referred
to [8, app. B.2] for the full list. We ascertain trace soundness for each SuS interleaving that
is emulated. This is accomplished via the function AnalyseEvt, which we preload with
monitors that assert the event sequence expected at each tracer. We also use identical tests
in our empirical evaluation of sec. 5 under high loads. It is worth mentioning that while we
systematically drive the execution of the SuS, we do not control the execution of tracers.
Yet, we indirectly induce various dynamic tracer arrangements in the monitor DAG topology
under the different groupings of SuS process sets that tracers instrument. For example,
we fully instrument system depicted in fig. 2a in all its configurations, e.g. C1 = [T{P}⇝

ECOOP 2024

2:18 Runtime Instrumentation for Reactive Components

{P},T{Q}⇝{Q},T{R}⇝{R}], C2 = [T{P ,Q}⇝{P ,Q},T{R}⇝{R}], . . . , C5 = [T{P ,Q,R}⇝{P ,Q,R}],
as well as instrument it partially, e.g. C6 = [T{P}⇝{P}], C7 = [T{P ,Q}⇝{P ,Q}], etc. Each of
these configurations, when individually paired with every fabricated interleaved execution of
the SuS, indicate that our RIARC implementation and corresponding logic of sec. 3 is correct.

5 Empirical evaluation

We assess the feasibility of our RIARC implementation, confirming it safeguards the responsive,
resilient, message-driven, and elastic attributes of the SuS. Sec. 4 targets a small selection of
instrumentation set-ups to induce interleaved execution sequences and validate correctness
exhaustively. We now employ stress testing [109] to investigate how RIARC performs in
terms of the runtime overhead it exhibits. Our study focusses on online monitoring, as
its overhead requirement is far more stringent than offline monitoring [63, 64, 22, 71]. We
evaluate RIARC against inline instrumentation since the latter is regarded as the most efficient
instrumentation technique [62, 61, 22]. This comparison establishes a solid basis for our
results to be generalised reliably. We also compare RIARC to centralised instrumentation to
confirm that the latter approach does not scale under typical loads.

Our experiments are extensive. We use two hardware platforms to model edge-case
scenarios based on limited hardware and general-case scenarios using commodity hardware.
The evaluation subjects inline, centralised, and RIARC instrumentation to high loads that go
beyond the state of the art and use realistic workload profiles. We gauge overhead under
three performance metrics, the response time, memory consumption, and scheduler utilisation,
which are crucial for reactive systems [7, 109]. Our results confirm that the overhead RIARC
induces is adequate for applications such as soft real-time systems [42, 94], where the latency
requirement is typically in the order of seconds [92]. We also show that RIARC yields overhead
comparable to inlining in settings exhibiting moderate concurrency.

5.1 Benchmarking tool
Benchmarking is standard practice for gauging runtime overhead in software [100, 77, 35].
Frameworks, including DaCapo [28] and Savina [84], offer limited concurrency, making them
inapplicable to our case; see [8, app. C.1] for detailed reasons. Industry-proven synthetic load
testing benchmarking tools cater to reactive systems, e.g. Apache JMeter [67], Tsung [115],
and Basho Bench [23]. Their general-purpose design, however, necessarily treats systems as
a black box by gathering metrics externally, which may impact measurement precision [7].
Moreover, these load testers generate standard workloads, e.g. Poisson processes [79, 102, 89],
but lack others, e.g. load bursts, that replicate typical operation or induce edge-case stress.

We adopt BenchCRV [7], another synthetic load testing tool specific to RV benchmarking
for reactive systems. BenchCRV sets itself apart from the tools mentioned above because
it does not require external software (e.g., a web server) to drive tests. Instead, BenchCRV
produces different SuS models that closely emulate real-world software behaviour. These
models are based on the master-worker paradigm [120]: a pervasive architecture in distributed
(e.g. Big Data stream processing frameworks, render farms) and concurrent systems [129,
73, 55, 132]. Like Tsung and Basho Bench, BenchCRV exploits the lightweight EVM process
model to generate highly-concurrent synthetic workloads.

BenchCRV creates master-worker models and induces workloads derived from configurable
parameters. In these models, the master process spawns a series of workers and allocates
tasks. The volume of workers per benchmark run is set via the parameter n. Each worker
task consists of a batch of requests that the worker receives, processes, and echoes back to

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:19

the master process. The amount of requests batched in one task is given by the parameter
w. Workers terminate when all of their allotted tasks are processed and acknowledged by
the master. BenchCRV creates workers based on workload profiles. A profile dictates how
the master spreads its creation of workers along the loading timeline, t, given in seconds.
BenchCRV supports three workload profiles based on ones typical in practice:
Steady models the SuS under stable workload (Poisson process).
Pulse models the SuS under gradually rising and falling workload (Normal distribution).
Burst models the SuS under stress due to workload spikes (Log-normal distribution).
BenchCRV records three performance metrics to give a multi-faceted view of system overhead:
Mean response time in milliseconds (ms), gauging monitoring latency effects on the SuS.
Mean memory consumption in GB, gauging monitoring memory pressure on the SuS.
Mean scheduler utilisation as a percentage of the total processing capacity, showing how

monitors maximise the scheduler use.
The prevalent use of the master-worker paradigm, the veracity with which BenchCRV models
systems, the range of realistic workload profiles, and the choice of runtime metrics it gathers
make this tool ideal for our experiments. We refer readers to [8, app. C.2] and [7] for details.

5.2 Benchmark configuration
The BenchCRV master-worker models we generate take the role of the SuS in our experiments.
We consider edge-case and general-case hardware platform set-ups for the following reasons:
PE Edge-case captures platforms with limited hardware. It uses an Intel Core i7 M620 64-bit

CPU with 8GB of memory, running Ubuntu 18.04 LTS and Erlang/OTP 22.2.1.
PG General-case captures platforms with commodity hardware. It uses an Intel Core i9

9880H 64-bit CPU with 16GB of memory, running macOS 12.3.1 and Erlang/OTP 25.0.3.
The EVMs on platforms PE and PG are set with 4 and 16 scheduling threads, respectively.

These scheduler settings coincide with the processors available on each SMP [12] platform.
We also use the PE and PG platforms with two concurrency scenarios for reactive systems:
CH High concurrency scenarios perform short-lived tasks, e.g. web apps that fulfil thousands

of HTTP client requests by fetching static content or executing back-end commands.
CM Moderate concurrency scenarios engage in long-running, computationally-intensive tasks,

e.g. Big Data stream processing frameworks.
Our benchmark workloads match the hardware capacity afforded by PE and PG:

High concurrency benchmarks on PE set n = 100k workers and w = 100 work requests
per worker. These generate ≈ (n×w requests×w responses) = 20M message exchanges
between the master and worker processes, totalling ≈ (20M× ! events×? events) = 40M
analysable trace events. Platform PG sets n=500k workers batched with w=100 requests
to produce ≈ 100M messages and ≈ 200M trace events. The high concurrency model CH
is studied in sec. 5.4.

Moderate concurrency benchmarks on PG set n = 5k workers and w = 10k work requests
per worker. These settings yield roughly the same number of trace events as on PG with
concurrency scenario CH. The moderate concurrency model CM is studied in sec. 5.5.

All experiments in secs. 5.4 and 5.5 use a total loading time of t = 100s. Each experiment
consists of ten benchmarks that apply Steady, Pulse, and Burst workloads. We repeat every
experiment thrice to obtain negligible variability and ensure the accuracy of our results; see [8,
app. C.4] for a summary of these workloads and [8, app. C.5] for the precautions we take.

The hardware, OS, and Erlang versions of platforms PE and PG, combined with the
workloads of concurrency scenarios CH and CM provide generality to our conclusions.

ECOOP 2024

2:20 Runtime Instrumentation for Reactive Components

5.3 Instrumentation configuration
One challenge in conducting our experiments is the lack of RV monitoring tools targeting
the EVM. To the best of our knowledge [64, tables 3 and 4], detectEr [72, 18, 19, 17, 70, 40]
is the only RV tool for Erlang that implements centralised outline instrumentation2. We are
unaware of inline RV tools besides [38] and [3, 4]. Since the former tool is unavailable, we
use the latter, more recent work3. In our experiments, we instrument the master and each
worker process in the SuS models generated from sec. 5.2 to exert the highest possible load
and capture worst-case scenarios. BenchCRV annotates work requests and responses with a
unique sequence number to account for each message in benchmark runs. We leverage this
numbering to write specialised monitor replicas that ascertain the soundness of trace event
sequences reported to every RV monitor linked with the master and workers; see [8, app. C.5]
for details. Equally crucial, this runtime checking introduces a degree of realistic RV analysis
slowdown that is uniform across all monitors in the inline, centralised, and RIARC monitoring
set-ups. We empirically estimate this slowdown at ≈ 5µs per analysed event.

5.4 High concurrency benchmarks
We study runtime overhead in the high concurrency scenario CH with two aims. First, we show
the effect overhead has on the SuS as it executes. Specifically, we consider how the memory
consumption and scheduler utilisation impact the latency a client of the SuS experiences, e.g.
end-user or application. We use the edge-case platform PE for these experiments; analogous
results obtained on PG are detailed in [8, app. C]. Our second goal targets the general-case
platform PG to assess the scalability of the instrumentation methods through their optimal
use of the additional memory and scheduler capacity afforded by PG.

The charts in secs. 5.4.1 – 5.4.3 plot performance metrics, e.g. memory consumption
(y-axis) against the number of concurrent worker processes or the execution duration (x-axis).
Since inline instrumentation prevents us from delineating the SuS and monitoring-induced
runtime overhead, we follow the standard RV literature practice and include the baseline
plots, e.g. [19, 72, 46, 38, 99, 114, 112]. Baseline plots show the unmonitored SuS to compare
the relative overhead between each evaluated instrumentation method.

5.4.1 Instrumentation overhead
The first set of experiments isolates the instrumentation overhead induced on the SuS: this
is the aggregated cost of tracing and reporting the traces soundly per def. 1 to RV monitors.
Crucially, these experiments omit monitors, as we want to quantify the instrumentation
overhead and understand its impact on the SuS. This enables us to focus on the differences
between inlining – regarded as the most efficient instrumentation method [62, 61, 22] – and
outlining. As far as we know [64, 71], outlining has never been used for decentralised RV in a
dynamic setting such as ours. While we confirm that inline instrumentation uses less memory
and scheduler capacity, RIARC dynamically scales and economises their use without adverse
impact on the latency. In fact, the latency induced by RIARC is a mere 519ms higher than
that of inline instrumentation at the peak stress-inducing loading point of 3.7k workers/s
under Burst workloads. Our experiments indicate that centralised instrumentation manages
resources poorly due to its inability to scale, increasing the chances of failure; see sec. 5.4.2.

2 https://bitbucket.org/duncanatt/detecter-lite
3 https://github.com/ScienceofComputerProgramming/SCICO-D-22-00294

https://bitbucket.org/duncanatt/detecter-lite
https://github.com/ScienceofComputerProgramming/SCICO-D-22-00294

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:21

0

250

500

750

1000

1250

1500

1750

T
im

e
(m

s)

Steady workload

Response

Pulse workload

Response

Burst workload

Response

2.0

2.5

3.0

3.5

C
on

su
m

pt
io

n
(G

B
)

Memory Memory Memory

20 40 60 80 100

Total workers (k)

15

20

25

30

35

U
ti

lis
at

io
n

(%
)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

baseline inline RIARC centralised

Figure 7 Isolated instrumentation overhead (high workload, 100k workers).

Fig. 7 plots our results. Centralised instrumentation carries the largest overhead penalty.
Regardless of the workload applied, it uses the most memory, ≈ 3.8GB, highlighting its
ineptitude to scale. This stems from the backlog of trace event messages that accumulate in
the mailbox of the central tracer and is a manifestation of two aspects. First, the central
tracer does not consume events at the same rate worker processes produce them. Evidence
of this bottleneck is visible as high scheduler utilisation in fig. 7 (bottom). This values settles
at ≈ 36% for the benchmarks with ≈ 40k workers under the Steady workload and ≈ 60k
workers under Pulse and Burst workloads. Interpreting these < 36% scheduler usage values
in isolation may suggest that centralised instrumentation has the potential to scale. However,
its memory consumption plots in fig. 7 (middle) contradict this erroneous hypothesis.

By contrast, RIARC uses fewer resources to yield lower response times across the three
workloads. The scheduler utilisation for RIARC slightly plateaus in the Steady (≈60k workers)
and Pulse (≈ 70k workers) workload charts. This is not owed to scalability limitations of
RIARC but to the intrinsic throttling instigated by the master process [120]. In fact, the
plots for the baseline system and inline instrumentation in fig. 7 (middle) exhibit analogous
signs of throttling. Even at a peak Burst workload of 3.7k workers/s, inline and RIARC
instrumentation consume fairly similar amounts of memory, 1.7GB vs. 1.9GB, respectively.

ECOOP 2024

2:22 Runtime Instrumentation for Reactive Components

0

250

500

750

1000

1250

1500

1750

T
im

e
(m

s)

Steady workload

Response

Burst workload

Response

0.0

1.0

2.0

3.0

4.0

C
on

su
m

pt
io

n
(G

B
)

Memory Memory

20 40 60 80 100

Total workers (k)

0

5

10

15

20

25

30

35

U
ti

lis
at

io
n

(%
)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

inline (instr.) inline (mon.) RIARC (instr.) RIARC (mon.) cent. (instr.) cent. (mon.)

Figure 8 Instrumentation and RV monitoring overhead gap (high workload, 100k workers).

5.4.2 Monitoring overhead

Our second set of experiments extends the results of sec. 5.4.1 and quantifies the cost of RV
monitoring. The runtime monitoring overhead combines the instrumentation and slowdown
due to the RV analysis, established at ≈ 5µs per event in sec. 5.3 for our experiments. Fig. 8
plots the instrumentation (instr.) overhead from sec. 5.4.1 next to the runtime monitoring
overhead (mon.). It shows that the RV analysis slowdown aggravates centralised monitoring
to the point of crashing. Inline and RIARC monitoring are minimally affected. Our results
also reveal that the instrumentation incurs the major overhead portion, not the RV analysis.
Sec. 5.6 comments on this finding in the context of existing RV tools.

Fig. 8 plots our results under the Steady and Burst workloads; [8, fig. 14 in app. C.6.1]
includes all three workloads. The charts for centralised monitoring exhibit a significant
disparity between the instrumentation and runtime monitoring bar plots as the workload
increases. This trend is consistent across both workloads in fig. 8. The lack of scalability
of centralised monitoring in fig. 8 manifests as an increase in memory consumption but
stabilised scheduler usage, as in fig. 7. Memory consumption and scheduler usage for
centralised monitoring grow rapidly beyond ≈ 30k and ≈ 20k workers under the Steady and
Burst workloads, respectively. Bottlenecks led our experiments to crash (shown as missing

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:23

bar plots in fig. 8). Crashes occur at ≈ 70k workers under the Steady and at ≈ 80k under
Burst workload. By analysing the resulting dumps, we could attribute these crashes to
memory exhaustion, which caused the EVM to fail. The dumps indicate severe memory
pressure due to the vast backlog of trace event messages in the mailbox of the central tracer.

Inline and RIARC monitoring scale to accommodate the RV analysis slowdown. This
is confirmed by cross-referencing the memory consumption and scheduler utilisation in
fig. 8 for both monitoring methods. Each displays comparable overhead in their respective
instrumentation and corresponding runtime monitoring bar plots. Fig. 8 (top) shows that
inline and RIARC monitoring increase the latency, albeit for different reasons. The internal
operation of RIARC enables us to deduce that its latency stems from message routing and
dynamic tracer reconfiguration. Its scheduler utilisation plots support this observation. The
latency due to inlining is a direct effect of RV analysis slowdown, provoked by the lock-step
execution of monitors and the SuS. Other works, e.g. [46, 37], offer similar observations.

Dissecting our results uncovers further subtleties. The optimal scheduler utilisation of
RIARC implies that its monitors are only active when triggered by trace events but remain
idle otherwise. This inference is supported by the absence of sudden or continued memory
growth for RIARC in fig. 8 (middle). The instrumentation and runtime monitoring latency
bar plots for inline monitoring exhibit a growing pairwise gap that starts at ≈ 80k workers
in fig. 8 (top right). The respective gap for RIARC at this mark is perceptibly lower. We
credit this lower latency gap to outlining, which absorbs the slowdown effect of RV analyses.
This leads us to conjecture that RIARC could accommodate monitors that perform richer RV
analyses with minimal impact on the SuS. Our calculations from fig. 8 (top right) put the
latency at 1093ms for inline monitoring vs. 1547ms for RIARC at a peak Burst workload of
3.7k workers/s: a 454ms difference, which is lower than the 519ms gap measured in sec. 5.4.1.
Sec. 5.5 shows this gap is negligible in moderate concurrency scenarios.

5.4.3 Resource usage
We employ platform PG with high concurrency CH to confirm that our observations about
inline and RIARC monitoring transfer to general cases. Secs. 5.4.1 and 5.4.2 deem centralised
monitoring to be impractical. We, thus, omit it from the sequel; see [8, app. C.6.3] for results.

Our experiments now use 16 scheduling threads, n = 500k workers, and w = 100 requests
per worker, producing ≈ 100M messages and ≈ 200M trace events; [8, fig. 13 in app. C.4]
render these Steady, Pulse, and Burst workload models. Secs. 5.4.1 and 5.4.2 bound the
memory and scheduler metrics to the period the SuS executes to portray the actual overhead
impact on the system. We refocus that view to assess the monitoring overhead in its entirety
– from the point of SuS launch until monitors complete their RV analysis. Doing so reveals
how inline and RIARC monitoring optimise the use of added memory and processing capacity.
Results show that inline and RIARC monitoring are elastic and dynamically adapt to changes
in the applied workloads; [8, app. C.6.3] confirms that centralised monitoring lacks this trait.

Fig. 9 gives a complete benchmark run under the Steady and Burst workloads. We relabel
the x-axis with the benchmark duration and omit the response time plots since response time
is inapplicable to these experiments (latency is an attribute of the SuS, not the monitors).
In this run, the Steady workload generates a sustained load of ≈ 5k workers/s whereas Burst
peaks at ≈ 17.8k workers/s under maximum load at ≈ 5s; see [8, fig. 13 in app. C.4].

Fig. 9 (top) illustrates the memory consumption patterns for inline and RIARC monitoring,
which exhibit elasticity. This elastic behaviour occurs at different points in the plots. Inline
monitoring peaks at ≈ 3.7GB at ≈ 72s and RIARC at ≈ 5.7GB at ≈ 100s under the
Burst workload. The memory consumption for both methods stabilises at around ≈ 36s
under the Steady workload, with ≈ 2.3GB for inline and ≈ 2.7GB for RIARC monitoring.

ECOOP 2024

2:24 Runtime Instrumentation for Reactive Components

Elasticity in these methods is due to different reasons: it is intrinsic to inline monitoring
(see sec. 1), whereas the RIARC spawns and garbage collects monitors on demand (secs. 3.1
and 3.6). These observations are certified by [8, fig. 16 in app. C.6.3] under the Pulse
workload. Centralised monitoring is insensitive to the workload applied, as [8, figs. 17 and 18
in app. C.6.3] reconfirm.

The effect of dynamic message routing and tracer reconfiguration that RIARC performs is
evident in the scheduler utilisation plots of fig. 9. Under the Steady and Burst workloads,
scheduler utilisation oscillates continually due to the sustained influx of trace events. Oscil-
lations corroborate our observation in sec. 5.4.2 about RIARC, namely, that monitors are
activated by trace events but remain idle otherwise. Active monitor periods manifest as
peaks in fig. 9. Idle periods, where monitors are placed in the EVM waiting queues, are
reflected as regions with low and stable scheduler utilisation. These oscillations showcase the
message-driven aspect of RIARC, which analyses events asynchronously. Inlining exhibits
minimal scheduler utilisation oscillations due to its lock-step execution with the SuS.

5.5 Moderate concurrency benchmarks
Our last experiment studies moderate concurrency scenarios CM. The general-case plat-
form PG sets n = 5k workers and w = 10k requests per worker, and uses 16 EVM schedulers.
We show that under these loads, RIARC induces overhead on par with inline monitoring.

Moderate concurrency alters the execution of the master-worker model, compared to
our benchmarks of secs. 5.4.1 – 5.4.3. In this set-up, the master creates most of its worker
processes at the initial stage of benchmark runs and spends the remaining time allocating
work requests. This change grows the request throughput, e.g. see [8, tbl. 5 in app. C.4]. One
consequence is that centralised monitoring consistently crashes under the rapid accumulation
of messages in its mailbox. We, thus, limit our study to inline and RIARC monitoring.

2.0

3.0

4.0

5.0

C
on

su
m

pt
io

n
(G

B
)

Steady workload

Memory

Burst workload

Memory

0 100 200 300 400 500

Execution duration (s)

0

10

20

30

40

50

U
ti

lis
at

io
n

(%
)

Scheduler

0 100 200 300 400 500

Execution duration (s)

Scheduler

baseline inline RIARC

Figure 9 Inline and RIARC monitoring resource usage (high workload, 500k workers).

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:25

Tbl. 3 compares the results taken on platform PG from sec. 5.4.3 with 500k workers (high
concurrency, CH) against the ones on PG with 5k workers (moderate concurrency, CM). The
figures shown estimate the percentage overhead w.r.t. the baseline systems CH and CM at
this maximum load. Our ensuing discussion is limited to the overhead under the Steady and
Burst workloads since each respectively captures the SuS operation in typical and severe
load conditions. Readers are referred to [8, fig. 20 in app. C.6.4] for the overhead comparison
given in absolute metric values for the entirety of benchmark runs.

Tbl. 3 indicates that the memory consumption overhead due to inline monitoring is not
affected under the Steady workload, which remains at 1% in both the high and moderate
concurrency scenarios CH and CM. However, it decreases from 16% in CH to 1% in CM.
We observe the opposite effect on the scheduler utilisation overhead for inline monitoring.
For the moderate concurrency case CM, the scheduler overhead under the Steady and Burst
workloads increases to 3% and 4% respectively.

Tbl. 3 also shows that under the Steady workload, RIARC induces a 23% memory overhead
in concurrency scenario CH vs. 8% in concurrency scenario CM, a decrease of 15%. Under
the Burst workload, this overhead is reduced by 46%, from 56% in CH to 10% in CM.
The scheduler utilisation overhead for RIARC from CH to CM also registers drops of ≈ 71%
under both Steady and Burst workloads. We attribute these overhead improvements to the
lower number of worker processes the master creates in the moderate concurrency set-up,
CM. The long-running worker processes induce stability in the SuS. RIARC adapts to this
change favourably by performing fewer trace event routing and tracer reconfigurations. The
ramification of this adaptability is perceivable in the latency overhead discussed next.

RIARC inflates the latency overhead from 95% in CH to 194% in CM under the Steady
workload (+99%), and from 97% in CH to 190% in CM under the Burst workload (+93%).
However, RIARC induces less latency overhead than inline monitoring. Tbl. 3 reveals that
the latency overhead for inline monitoring grows from 4% in the high concurrency set-up CH
to 246% in the moderate concurrency set-up CM under the Steady workload (+242%). It
also grows under the Burst workload, from 55% in CH to 193% in CM (+138%). In fact,
our calculations confirm that the absolute response time for inline monitoring is slightly
worse than that of RIARC in CM: 116ms vs. 98ms under the Steady, and 182ms vs. 179ms
under the Burst workloads respectively. This latency degradation for inline monitoring stems
from the ≈ 5µs slowdown induced by the RV analysis, which results in frequent “pausing”
of worker processes. Monitors comprising richer analyses produce longer pauses in worker
processes, which can degrade the response time further [46, 37, 69].

Table 3 Percentage overhead on CH (500k) and CM (5k) w.r.t. baseline at maximum workload.

Concurrency Workload Response time % Memory consumption % Scheduler utilisation %

Inline RIARC Inline RIARC Inline RIARC

CH (500k)
Steady 4 95 1 23 0 123
Burst 55 97 16 56 0 123

CM (5k)
Steady 246 194 1 8 3 52
Burst 193 190 1 10 4 50

ECOOP 2024

2:26 Runtime Instrumentation for Reactive Components

5.6 Discussion
The RIARC scheduler utilisation in tbl. 3 is higher than the reported values for inline
monitoring. This should not be construed as an inefficiency. From a reactive systems
perspective, growth in the scheduler utilisation indicates scalability, as the low memory
consumption in tbl. 3 affirms. RIARC benefits from the ample schedulers to improve the
overall system response time without overtaxing the system. Indeed, [8, fig. 20 in app. C.6.4]
demonstrates that the mean absolute scheduler utilisation in the benchmarks of sec. 5.5 is
just ≈ 10% under both the Steady and Burst workloads. Tbl. 3 shows that the reduction in
latency makes RIARC comparable to inline monitoring in moderate concurrency scenarios.

Sec. 1 names responsiveness as a key reactive systems attribute [94]. RIARC prioritises
responsiveness by isolating its monitors into asynchronous concurrent units. This design
naturally exploits the available processing capacity of the host platform by maximising
monitor parallelism when possible. Inline monitoring reaps fewer benefits in identical settings
because its lock-step execution with the SuS robs it of potential parallelism gains.

Secs. 5.4.1 – 5.4.3 attest to the impracticality of centralised monitoring for reactive systems.
Bottlenecks hinder its ability to scale, compelling it to consume inordinate amounts of memory,
which can lead to failure, as sec. 5.4.2 shows. Despite these shortcomings, many RV tools in
this setting use centralised monitoring, e.g. [50, 18, 126, 65, 81, 110, 72, 37, 41, 38, 2, 103].

6 Conclusion

Reactive software calls for instrumentation methods that uphold the responsive, resilient,
message-driven, and elastic attributes of systems. This is attainable only if the instru-
mentation exhibits these qualities. Runtime verification imposes another demand on the
instrumentation: the trace event sequences it reports to monitors must be sound, i.e., traces
do not omit events and preserve the ordering with which events occur locally at processes.

This paper presents RIARC, a novel decentralised instrumentation algorithm for outline
monitors meeting these two demands. RIARC uses outline monitors to decouple the runtime
analysis from system components, which minimises latency and promotes responsiveness.
Outline monitors can fail independently of the system and each other to improve resiliency.
RIARC gathers events non-invasively via a tracing infrastructure, making it message-driven
and suited to cases where inlining is inapplicable. The algorithm is elastic: it reacts to
specific events in the trace to instrument and garbage collect monitors on demand.

Our asynchronous setting complicates the instrumentation due to potential trace event
loss or reordering. RIARC overcomes these challenges using a next-hop IP routing approach
to rearrange and report events soundly to monitors. We validate RIARC by subjecting its
corresponding Erlang implementation to rigorous systematic testing, confirming its correctness.
This implementation is validated via extensive empirical experiments. These subject the
implementation to large realistic workloads to ascertain its reactiveness. Our experiments
show that RIARC optimises its memory and scheduler usage to maintain latency feasible for
soft real-time applications. We also compare RIARC to inline and centralised monitoring,
revealing that it induces comparable latency to inlining under moderate concurrency.

Related work. Other work on inlining besides that cited in sec. 1, e.g. [78, 25, 50, 49, 53],
does not separate the instrumentation and runtime analysis. This view is commonplace in
monolithic settings, where the instrumentation is often assumed to induce minimal runtime
overhead. As a result, many inline approaches focus on the efficiency of the analysis but
neglect the instrumentation cost (e.g. [63] attributes overhead solely to the analysis). These

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:27

arguments for monolithic systems are often ported to concurrent settings. For instance,
[107, 126, 29, 46, 125, 66, 21] propose efficient runtime monitoring algorithms but do not
account for, nor quantify, the overhead due to gathering trace events. Tools that measure the
runtime overhead, such as [41, 37, 19, 34, 72, 133], coalesce the instrumentation and runtime
analysis costs, making it difficult to gauge the source of inefficiencies. Some literature [39, 52]
even extends the assumption about minimal instrumentation overhead to offline monitoring,
stating that the instrumentation consists of “only” capturing trace events. Sec. 5.4.1 shows
this not to be the case. We are unaware of empirical studies such as ours that concretely
distinguish between and quantify the instrumentation and runtime analysis overhead.

Sec. 5.6 remarks that centralised monitoring is used for concurrent runtime verification
despite its evident limitations. One plausible reason for this is that the empirical scrutiny of
such tools lacks proper benchmarking (e.g. [50, 18, 126, 65, 81]) or uses insufficient workloads
that fail to expose the issues of centralised set-ups (e.g. [110, 72, 37, 41, 38, 2, 103]). Gathering
inadequate metrics can also bias the interpretation of empirical data; see sec. 5.4.1. Works,
such as [38, 19, 34, 124], consider the memory consumption and latency metrics. Our
evaluation of inline, centralised, and RIARC monitoring uses (i) combinations of hardware
and software, with (ii) two concurrency models that test edge-case and general-case scenarios,
under (iii) high workloads that go beyond the state of the art, applying (iv) realistic workload
profiles, interpreted against (v) relevant performance metrics that give a multi-faceted view
of runtime overhead. To the best of our knowledge, this is generally not done in other studies,
e.g. [114, 113, 47, 46, 119, 30, 106, 38, 41, 19, 50, 51, 53, 72, 59, 60, 27, 110, 97, 34].

Outline instrumentation decouples the execution of the SuS and monitor components in
space (i.e., isolated threads) and time (i.e., asynchronous messaging). The tracing infrastruc-
ture outline instrumentation uses mirrors the publish-subscribe (Pub/Sub) pattern [129].
In this set-up, consumers subscribe to a broker that advertises events. Centralised instru-
mentation follows a Pub/Sub approach: the SuS produces trace events and deposits them
into one global trace buffer that tracers receive from (see fig. 1b). Despite similarities, e.g.
tracers register and deregister with the tracing infrastructure at runtime, RIARC differs from
conventional Pub/Sub messaging in three fundamental aspects. Chiefly, Pub/Sub publishers
are unaware of the subscribers interested in receiving messages because this bookkeeping
task is appointed to the broker. By contrast, next-hop routing relies on knowing the explicit
address of recipients to forward messages. Furthermore, in Pub/Sub messaging, subscribers
do not communicate with publishers, whereas RIARC tracers exchange direct detach requests
between one another to reorganise the choreography (refer to sec. 3.4). Lastly, Pub/Sub
brokers are typically predefined and remain fixed, while trace partitioning reconfigures the
tracing topology, creating and destroying brokers in reaction to dynamic changes in SuS.

One assumption we make about process tracing is A4, i.e., tracing gathers the spawn events
of parent processes before all the events of child processes. While A4 induces a partial order
over trace events, it is weaker than happened-before causality [95], as the events gathered
from sets of child SuS processes need not be causally ordered. Demanding the latter condition
would entail additional computation on the part of the tracing infrastructure and could
increase runtime overhead. Maintaining minimal overhead is critical to our instrumentation
because it preserves the responsiveness attribute of reactive systems. Tracing assumption A4
and the RIARC logic detailed in sec. 3 guarantee trace soundness (def. 1), which suffices for
RV monitoring. Since our work targets soft real-time systems [94, 92] scoped in a reliable
messaging setting (see sec. 1), we do not tackle the problem of ensuring time-bounded
causally-ordered message delivery [20] nor implement exactly-once delivery semantics [83].
We will address these challenges in future extensions of this work.

ECOOP 2024

2:28 Runtime Instrumentation for Reactive Components

References
1 Francisco Lopez-Sancho Abraham. Akka in Action. Manning, 2023.
2 Luca Aceto, Antonis Achilleos, Elli Anastasiadi, and Adrian Francalanza. Monitoring Hyper-

properties with Circuits. In FORTE, volume 13273 of LNCS, pages 1–10, 2022.
3 Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza, and

Anna Ingólfsdóttir. A Monitoring Tool for Linear-Time µHML. In COORDINATION, volume
13271 of LNCS, pages 200–219, 2022.

4 Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza,
and Anna Ingólfsdóttir. A Monitoring Tool for Linear-time µhml. Sci. Comput. Program.,
232:103031, 2024.

5 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
Adventures in Monitorability: From Branching to Linear Time and Back Again. PACMPL,
3:52:1–52:29, 2019.

6 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.
An Operational Guide to Monitorability with Applications to Regular Properties. Softw. Syst.
Model., 20:335–361, 2021.

7 Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. On Bench-
marking for Concurrent Runtime Verification. In FASE, volume 12649 of LNCS, pages 3–23,
2021.

8 Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. Runtime
Instrumentation for Reactive Components. CoRR, abs/2406.19904, 2024.

9 Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiří Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, 2007.

10 Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A Foundation for Actor
Computation. JFP, 7:1–72, 1997.

11 Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities. In AFIPS Spring Joint Computing Conference, volume 30 of AFIPS
Conference Proceedings, pages 483–485, 1967.

12 Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf,
2007.

13 Joe Armstrong. Erlang. Commun. ACM, 53(9):68–75, 2010.
14 Stavros Aronis. Effective Techniques for Stateless Model Checking. PhD thesis, Uppsala

University, Sweden, 2018.
15 Duncan Paul Attard. Runtime Instrumentation for Reactive Components (Artefact). Software,

version 2.0. (visited on 2024-08-05). URL: https://doi.org/10.5281/zenodo.10634182.
16 Duncan Paul Attard, Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir,

and Karoliina Lehtinen. Better Late than Never or: Verifying Asynchronous Components at
Runtime. In FORTE, volume 12719 of LNCS, pages 207–225, 2021.

17 Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir.
Introduction to Runtime Verification. In Behavioural Types: from Theory to Tools, Automation,
Control and Robotics, pages 49–76. River, 2017.

18 Duncan Paul Attard and Adrian Francalanza. A Monitoring Tool for a Branching-Time Logic.
In RV, volume 10012 of LNCS, pages 473–481, 2016.

19 Duncan Paul Attard and Adrian Francalanza. Trace Partitioning and Local Monitoring for
Asynchronous Components. In SEFM, volume 10469 of LNCS, pages 219–235, 2017.

20 Roberto Baldoni, Achour Mostéfaoui, and Michel Raynal. Causal Delivery of Messages with
Real-Time Data in Unreliable Networks. Real Time Syst., 10(3):245–262, 1996.

21 Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E. Rydeheard.
Quantified Event Automata: Towards Expressive and Efficient Runtime Monitors. In FM,
volume 7436 of LNCS, pages 68–84, 2012.

https://doi.org/10.5281/zenodo.10634182

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:29

22 Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to Runtime
Verification. In Lectures on Runtime Verification, volume 10457 of LNCS, pages 1–33. Springer,
2018.

23 Basho. Bench, 2017. URL: https://github.com/basho/basho_bench.
24 David A. Basin, Felix Klaedtke, and Eugen Zalinescu. Failure-Aware Runtime Verification of

Distributed Systems. In FSTTCS, volume 45 of LIPIcs, pages 590–603, 2015.
25 Andreas Bauer and Yliès Falcone. Decentralised LTL Monitoring. FMSD, 48:46–93, 2016.
26 André Bento, Jaime Correia, Ricardo Filipe, Filipe Araújo, and Jorge Cardoso. Automated

Analysis of Distributed Tracing: Challenges and Research Directions. J. Grid Comput., 19(1):9,
2021.

27 Shay Berkovich, Borzoo Bonakdarpour, and Sebastian Fischmeister. Runtime Verification
with Minimal Intrusion through Parallelism. FMSD, 46:317–348, 2015.

28 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The
DaCapo Benchmarks: Java Benchmarking Development and Analysis. In OOPSLA, pages
169–190, 2006.

29 Eric Bodden. The Design and Implementation of Formal Monitoring Techniques. In OOPSLA
Companion, pages 939–940, 2007.

30 Eric Bodden, Laurie J. Hendren, Patrick Lam, Ondrej Lhoták, and Nomair A. Naeem.
Collaborative Runtime Verification with Tracematches. J. Log. Comput., 20:707–723, 2010.

31 Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David A. Rosenblueth, and
Corentin Travers. Decentralized Asynchronous Crash-Resilient Runtime Verification. In
CONCUR, volume 59 of LIPIcs, pages 16:1–16:15, 2016.

32 Jonas Bonér, Dave Farley, Roland Kuhn, and Martin Thompson. The Reactive Manifesto,
2014.

33 Jonas Bonér and Viktor Klang. Reactive Programming vs. Reactive Systems. Technical report,
Lightbend Inc., 2016.

34 Christian Bartolo Burlò, Adrian Francalanza, and Alceste Scalas. On the Monitorability of
Session Types, in Theory and Practice. In ECOOP, volume 194 of LIPIcs, pages 20:1–20:30,
2021.

35 Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud Computing: Principles
and Paradigms. Wiley-Blackwell, 2011.

36 Bryan Cantrill. Hidden in Plain Sight. ACM Queue, 4:26–36, 2006.
37 Ian Cassar and Adrian Francalanza. On Synchronous and Asynchronous Monitor Instru-

mentation for Actor-based Systems. In FOCLASA, volume 175 of EPTCS, pages 54–68,
2014.

38 Ian Cassar and Adrian Francalanza. On Implementing a Monitor-Oriented Programming
Framework for Actor Systems. In IFM, volume 9681 of LNCS, pages 176–192, 2016.

39 Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. A Survey of Runtime
Monitoring Instrumentation Techniques. In PrePostiFM, volume 254 of EPTCS, pages 15–28,
2017.

40 Ian Cassar, Adrian Francalanza, Duncan Paul Attard, Luca Aceto, and Anna Ingólfsdóttir.
A Suite of Monitoring Tools for Erlang. In RV-CuBES, volume 3 of Kalpa Publications in
Computing, pages 41–47, 2017.

41 Ian Cassar, Adrian Francalanza, and Simon Said. Improving Runtime Overheads for detectEr.
In FESCA, volume 178 of EPTCS, pages 1–8, 2015.

42 Francesco Cesarini and Simon Thompson. Erlang Programming: A Concurrent Approach to
Software Development. O’Reilly Media, 2009.

43 Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Synchronous, Asynchronous,
and Causally Ordered Communication. Distributed Comput., 9(4):173–191, 1996.

ECOOP 2024

https://github.com/basho/basho_bench

2:30 Runtime Instrumentation for Reactive Components

44 Natalia Chechina, Kenneth MacKenzie, Simon J. Thompson, Phil Trinder, Olivier Boudeville,
Viktoria Fordós, Csaba Hoch, Amir Ghaffari, and Mario Moro Hernandez. Evaluating Scalable
Distributed Erlang for Scalability and Reliability. IEEE Trans. Parallel Distributed Syst.,
28(8):2244–2257, 2017.

45 Feng Chen and Grigore Rosu. Java-MOP: A Monitoring Oriented Programming Environment
for Java. In TACAS, volume 3440 of LNCS, pages 546–550, 2005.

46 Feng Chen and Grigore Rosu. Mop: An Efficient and Generic Runtime Verification Framework.
In OOPSLA, pages 569–588, 2007.

47 Feng Chen and Grigore Rosu. Parametric Trace Slicing and Monitoring. In TACAS, volume
5505 of LNCS, pages 246–261, 2009.

48 Maria Christakis, Alkis Gotovos, and Konstantinos Sagonas. Systematic Testing for Detecting
Concurrency Errors in Erlang Programs. In ICST, pages 154–163. IEEE Computer Society,
2013.

49 Christian Colombo and Yliès Falcone. Organising LTL Monitors over Distributed Systems
with a Global Clock. FMSD, 49:109–158, 2016.

50 Christian Colombo, Adrian Francalanza, and Rudolph Gatt. Elarva: A Monitoring Tool for
Erlang. In RV, volume 7186 of LNCS, pages 370–374, 2011.

51 Christian Colombo, Adrian Francalanza, Ruth Mizzi, and Gordon J. Pace. polyLarva: Runtime
Verification with Configurable Resource-Aware Monitoring Boundaries. In SEFM, volume
7504 of LNCS, pages 218–232, 2012.

52 Christian Colombo and Gordon J. Pace. Runtime Verification - A Hands-On Approach in
Java. Springer, 2022.

53 Christian Colombo, Gordon J. Pace, and Gerardo Schneider. LARVA — Safer Monitoring of
Real-Time Java Programs (Tool Paper). In SEFM, pages 33–37, 2009.

54 Markus Dahm. Byte Code Engineering with the BCEL API. Technical report, Java Informa-
tionstage 99, 2001.

55 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Commun. ACM, 51:107–113, 2008.

56 Mathieu Desnoyers and Michel Dagenais. The LTTng Tracer: A Low Impact Performance and
Behavior Monitor for GNU/Linux. Technical report, École Polytechnique de Montréal, 2006.

57 Jean Dollimore, Tim Kindberg, and George Coulouris. Distributed Systems: Concepts and
Design. Addison-Wesley, 2005.

58 Eclipse/IBM. OpenJ9, 2021. URL: https://www.eclipse.org/openj9.
59 Antoine El-Hokayem and Yliès Falcone. Monitoring Decentralized Specifications. In ISSTA,

pages 125–135, 2017.
60 Antoine El-Hokayem and Yliès Falcone. On the Monitoring of Decentralized Specifications:

Semantics, Properties, Analysis, and Simulation. ACM Trans. Softw. Eng. Methodol., 29:1:1–
1:57, 2020.

61 Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforcement.
PhD thesis, Cornell University, US, 2004.

62 Úlfar Erlingsson and Fred B. Schneider. SASI Enforcement of Security Policies: A Retrospective.
In NSPW, pages 87–95, 1999.

63 Yliès Falcone, Klaus Havelund, and Giles Reger. A Tutorial on Runtime Verification. In
Engineering Dependable Software Systems, volume 34 of NATO Science for Peace and Security
Series, D: Information and Communication Security, pages 141–175. IOS Press, 2013.

64 Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. A Taxonomy for Classifying
Runtime Verification Tools. STTT, 23:255–284, 2021.

65 Yliès Falcone, Hosein Nazarpour, Saddek Bensalem, and Marius Bozga. Monitoring Distributed
Component-Based Systems. In FACS, volume 13077 of LNCS, pages 153–173, 2021.

66 Yliès Falcone, Hosein Nazarpour, Mohamad Jaber, Marius Bozga, and Saddek Bensalem.
Tracing Distributed Component-Based Systems, a Brief Overview. In RV, volume 11237 of
LNCS, pages 417–425, 2018.

https://www.eclipse.org/openj9

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:31

67 Apache Software Foundtation. JMeter, 2020. URL: https://jmeter.apache.org.
68 Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. On the Number of Opinions

Needed for Fault-Tolerant Run-Time Monitoring in Distributed Systems. In RV, volume 8734
of LNCS, pages 92–107, 2014.

69 Adrian Francalanza. A Theory of Monitors. Inf. Comput., 281:104704, 2021.
70 Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar, Dario

Della Monica, and Anna Ingólfsdóttir. A Foundation for Runtime Monitoring. In RV, volume
10548 of LNCS, pages 8–29, 2017.

71 Adrian Francalanza, Jorge A. Pérez, and César Sánchez. Runtime Verification for Decentralised
and Distributed Systems. In Lectures on RV, volume 10457 of LNCS, pages 176–210. Springer,
2018.

72 Adrian Francalanza and Aldrin Seychell. Synthesising Correct Concurrent Runtime Monitors.
FMSD, 46:226–261, 2015.

73 Sukumar Ghosh. Distributed Systems: An Algorithmic Approach. CRC, 2014.
74 Patrice Godefroid. Model Checking for Programming Languages using Verisoft. In POPL,

pages 174–186. ACM Press, 1997.
75 Susanne Graf, Doron A. Peled, and Sophie Quinton. Monitoring Distributed Systems Using

Knowledge. In FORTE, volume 6722 of LNCS, pages 183–197, 2011.
76 Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: A Call Graph Execution

Profiler. In SIGPLAN Symposium on Compiler Construction, pages 120–126. ACM, 1982.
77 Jim Gray. The Benchmark Handbook for Database and Transaction Processing Systems.

Morgan Kaufmann, 1993.
78 Radu Grigore, Dino Distefano, Rasmus Lerchedahl Petersen, and Nikos Tzevelekos. Runtime

Verification Based on Register Automata. In TACAS, volume 7795 of LNCS, pages 260–276,
2013.

79 Duncan A. Grove and Paul D. Coddington. Analytical Models of Probability Distributions for
MPI Point-to-Point Communication Times on Distributed Memory Parallel Computers. In
ICA3PP, volume 3719 of LNCS, pages 406–415, 2005.

80 Eric A. Hall. Internet Core Protocols: The Definitive Guide. O’Reilly Media, 2000.
81 Klaus Havelund, Giles Reger, Daniel Thoma, and Eugen Zalinescu. Monitoring Events that

Carry Data. In Lectures on Runtime Verification, volume 10457 of LNCS, pages 61–102.
Springer, 2018.

82 Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. In IJCAI, pages 235–245, 1973.

83 Yongqiang Huang and Hector Garcia-Molina. Exactly-Once Semantics in a Replicated Mes-
saging System. In ICDE, pages 3–12. IEEE Computer Society, 2001.

84 Shams Mahmood Imam and Vivek Sarkar. Savina - An Actor Benchmark Suite: Enabling
Empirical Evaluation of Actor Libraries. In AGERE!@SPLASH, pages 67–80, 2014.

85 Justin Iurman, Frank Brockners, and Benoit Donnet. Towards Cross-Layer Telemetry. In
ANRW, pages 15–21. ACM, 2021.

86 Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Handbook: The Art
of Automatic Memory Management. CRC, 2020.

87 Nicolai M. Josuttis. SOA in Practice: The Art of Distributed System Design: Theory in
Practice. O’Reilly Media, 2007.

88 Saša Jurić. Elixir in Action. Manning, 2019.
89 Bill Kayser. What is the expected distribution of website response times?, 2017. URL: https:

//blog.newrelic.com/engineering/expected-distributions-website-response-times.
90 Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.

Griswold. An Overview of AspectJ. In ECOOP, volume 2072 of LNCS, pages 327–353, 2001.
91 Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokolsky. Java-

MaC: A Run-Time Assurance Approach for Java Programs. FMSD, 24:129–155, 2004.

ECOOP 2024

https://jmeter.apache.org
https://blog.newrelic.com/engineering/expected-distributions-website-response-times
https://blog.newrelic.com/engineering/expected-distributions-website-response-times

2:32 Runtime Instrumentation for Reactive Components

92 Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applications
(Real-Time Systems Series). Springer, 2011.

93 Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, 2011.

94 Roland Kuhn, Brian Hanafee, and Jamie Allen. Reactive Design Patterns. Manning, 2016.
95 Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commun.

ACM, 21(7):558–565, 1978.
96 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine Generals Problem.

ACM Trans. Program. Lang. Syst., 4:382–401, 1982.
97 Julien Lange and Nobuko Yoshida. Verifying Asynchronous Interactions via Communicating

Session Automata. In CAV, volume 11561 of LNCS, pages 97–117, 2019.
98 Paul Lavery and Takuo Watanabe. An Actor-Based Runtime Monitoring System for Web and

Desktop Applications. In SNPD, pages 385–390. IEEE Computer Society, 2017.
99 Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus Weninger. A Compre-

hensive Java Benchmark Study on Memory and Garbage Collection Behavior of DaCapo,
DaCapo Scala, and SPECjvm2008. In ICPE, pages 3–14, 2017.

100 Bryon C. Lewis and Albert E. Crews. The Evolution of Benchmarking as a Computer
Performance Evaluation Technique. MIS Q., 9:7–16, 1985.

101 Jay Ligatti, Lujo Bauer, and David Walker. Edit Automata: Enforcement Mechanisms for
Run-Time Security Policies. Int. J. Inf. Sec., 4:2–16, 2005.

102 Zhen Liu, Nicolas Niclausse, and César Jalpa-Villanueva. Traffic Model and Performance
Evaluation of Web Servers. Perform. Evaluation, 46:77–100, 2001.

103 Qingzhou Luo and Grigore Rosu. EnforceMOP: A Runtime Property Enforcement System for
Multithreaded Programs. In ISSTA, pages 156–166, 2013.

104 Deep Medhi and Karthik Ramasamy. Chapter 3 - routing protocols: Framework and principles.
In Network Routing (Second Edition), The Morgan Kaufmann Series in Networking, pages
64–113. Morgan Kaufmann, 2018.

105 Silvana M. Melo, Jeffrey C. Carver, Paulo S. L. Souza, and Simone R. S. Souza. Empirical
Research on Concurrent Software Testing: A Systematic Mapping Study. Inf. Softw. Technol.,
105:226–251, 2019.

106 Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Rosu. An
Overview of the MOP Runtime Verification Framework. STTT, 14:249–289, 2012.

107 Patrick O’Neil Meredith and Grigore Rosu. Efficient Parametric Runtime Verification with
Deterministic String Rewriting. In ASE, pages 70–80, 2013.

108 Microsoft. MSDN, 2021. URL: https://msdn.microsoft.com.
109 Ian Molyneaux. The Art of Application Performance Testing 2e. O’Reilly Media, 2014.
110 Menna Mostafa and Borzoo Bonakdarpour. Decentralized Runtime Verification of LTL

Specifications in Distributed Systems. In IPDPS, pages 494–503, 2015.
111 Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavyweight Dynamic

Binary Instrumentation. In PLDI, pages 89–100. ACM, 2007.
112 Rumyana Neykova. Multiparty Session Types for Dynamic Verification of Distributed Systems.

PhD thesis, Imperial College London, UK, 2017.
113 Rumyana Neykova and Nobuko Yoshida. Let it Recover: Multiparty Protocol-Induced Recovery.

In CC, pages 98–108, 2017.
114 Rumyana Neykova and Nobuko Yoshida. Multiparty Session Actors. LMCS, 13, 2017.
115 Nicolas Niclausse. Tsung, 2017. URL: http://tsung.erlang-projects.org.
116 Scott Oaks. Java Performance: In-Depth Advice for Tuning and Programming Java 8, 11,

and Beyond. CRC, 2020.
117 Martin Odersky, Lex Spoon, Bill Venners, and Frank Sommers. Programming in Scala. Artima

Inc., 2021.
118 Kevin Quick. Thespian, 2020. URL: https://thespianpy.com/doc.

https://msdn.microsoft.com
http://tsung.erlang-projects.org
https://thespianpy.com/doc

L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir 2:33

119 Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. MarQ: Monitoring at Runtime
with QEA. In TACAS, volume 9035 of LNCS, pages 596–610, 2015.

120 Sartaj Sahni and George L. Vairaktarakis. The Master-Slave Paradigm in Parallel Computer
and Industrial Settings. J. Glob. Optim., 9:357–377, 1996.

121 Raja R. Sambasivan, Ilari Shafer, Jonathan Mace, Benjamin H. Sigelman, Rodrigo Fonseca,
and Gregory R. Ganger. Principled Workflow-Centric Tracing of Distributed Systems. In
SoCC, pages 401–414. ACM, 2016.

122 Torben Scheffel and Malte Schmitz. Three-Valued Asynchronous Distributed Runtime Verific-
ation. In MEMOCODE, pages 52–61, 2014.

123 Fred B. Schneider. Enforceable Security Policies. ACM Trans. Inf. Syst. Secur., 3:30–50, 2000.
124 Joshua Schneider, David A. Basin, Frederik Brix, Srdan Krstic, and Dmitriy Traytel. Scalable

Online First-Order Monitoring. Int. J. Softw. Tools Technol. Transf., 23:185–208, 2021.
125 Koushik Sen, Grigore Rosu, and Gul Agha. Runtime Safety Analysis of Multithreaded

Programs. In ESEC / SIGSOFT FSE, pages 337–346, 2003.
126 Koushik Sen, Grigore Rosu, and Gul Agha. Online Efficient Predictive Safety Analysis of

Multithreaded Programs. Int. J. Softw. Tools Technol. Transf., 8:248–260, 2006.
127 Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. Efficient Decentralized Monitoring

of Safety in Distributed Systems. In ICSE, pages 418–427, 2004.
128 Eric Stenman. The erlang runtime system, 2023.
129 Sasu Tarkoma. Overlay Networks: Toward Information Networking. Auerbach, 2010.
130 The Pony Team. Ponylang, 2021. URL: https://tutorial.ponylang.io.
131 Ulf T. Wiger, Gösta Ask, and Kent Boortz. World-Class Product Certification using Erlang.

ACM SIGPLAN Notices, 37(12):25–34, 2002.
132 Jiali Yao, Zhigeng Pan, and Hongxin Zhang. A Distributed Render Farm System for Animation

Production. In ICEC, volume 5709 of LNCS, pages 264–269, 2009.
133 Teng Zhang, Greg Eakman, Insup Lee, and Oleg Sokolsky. Overhead-Aware Deployment of

Runtime Monitors. In RV, volume 11757 of LNCS, pages 375–381, 2019.

ECOOP 2024

https://tutorial.ponylang.io

A Dynamic Logic for Symbolic Execution for the
Smart Contract Programming Language Michelson
Barnabas Arvay #

University of Freiburg, Germany

Thi Thu Ha Doan #

University of Freiburg, Germany

Peter Thiemann #

University of Freiburg, Germany

Abstract
Verification of smart contracts is an important topic in the context of blockchain technology. We
study an approach to verification that is based on symbolic execution.

As a formal basis for symbolic execution, we design a dynamic logic for Michelson, the smart
contract language of the Tezos blockchain, and prove its soundness in the proof assistant Agda.
Towards the soundness proof we formalize the concrete semantics as well as its symbolic counterpart
in a unified setting. The logic encompasses single contract runs as well as inter-contract runs chained
in a single transaction.

2012 ACM Subject Classification Software and its engineering → Automated static analysis

Keywords and phrases Smart Contract, Blockchain, Formal Verification, Symbolic Execution

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.3

Supplementary Material
Software (Source Code): https://freidok.uni-freiburg.de/data/255176 [6]

Funding Thi Thu Ha Doan: Supported by the Tezos Foundation, grant COOC.

1 Introduction

Blockchain technology and smart contracts provide decentralized and immutable systems
for secure transactions and automated agreements. Smart contracts have been targets of
spectacular and costly attacks as contracts are immutable and their source code is publicly
available on the blockchain. Hence, it is vital as well as challenging to ensure the correctness of
smart contracts before their deployment. Formal methods and various verification techniques
have been proposed to address this challenge.

The Tezos blockchain [14] and its smart contract language Michelson have been designed
from ground up with verification in mind. Several frameworks have been developed based
on, e.g., interactive theorem proving [10], refinement typing [27], and automated theorem
proving [5]. We are interested in automated verification of Michelson programs, which rules
out interactive approaches. Symbolic execution [20, 11] is one of the standard approaches to
automatically obtain verification conditions like weakest preconditions for failures as well
as normal termination from a program. Next, an SMT-solver discharges these verification
conditions. There is a wide range of approaches that apply symbolic execution combined
with SMT-solving to smart contracts, mostly for the Ethereum blockchain (see Section 6).

While there are many approaches to symbolic execution [12, 13, 30], we choose one based
on dynamic logic. Dynamic logic (DL) [16] is a modal logic for reasoning about programs.
Its signature features are modalities for program execution. These modalities enable the
expression of assertions about program behavior as logical formulas. For instance, the formula

© Barnabas Arvay, Thi Thu Ha Doan, and Peter Thiemann;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 3; pp. 3:1–3:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barnabasarvay@gmail.com
https://orcid.org/0009-0002-2720-7100
mailto:doanha@informatik.uni-freiburg.de
https://orcid.org/0000-0001-7524-4497
mailto:thiemann@informatik.uni-freiburg.de
https://orcid.org/0000-0002-9000-1239
https://doi.org/10.4230/LIPIcs.ECOOP.2024.3
https://freidok.uni-freiburg.de/data/255176
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Dynamic Logic for Symbolic Execution for Michelson

[p]Ψ states partial correctness: if program p terminates, then Ψ is true. That is, a Hoare
triple {Φ} p {Ψ} can be encoded by Φ → [p]Ψ. DL also provides a modality ⟨p⟩ for total
correctness, but we do not consider it in this work.

Dynamic logic comes with proof rules for the modality derived from the structure of
p. For example, if p; q stands for sequential execution of p and q, then the proof rule
[p; q]Ψ ↔ [p][q]Ψ states that execution of p enables execution of q such that Ψ holds in the
end. Similarly, the rule [ε]Ψ ↔ Ψ states that the empty program ε does not modify the
validity of Ψ.

In the past, dynamic logic has been used successfully for as a basis for symbolic execution
in the context of the verification of Java programs [9], as it is particularly well suited to keep
track of a changing environment (i.e., mutable objects on Java’s heap). We design a DL to
model Michelson execution because we want to reason about transactions that span several
contract runs. In Michelson terminology, these transactions are called chained contract
executions, where an externally started contract run initiates further internal contract runs.
Our DL design models the relevant parts of the blockchain run-time system on top of the
purely functional execution of Michelson programs. On the level of the run-time system
contracts are very similar to objects: they are identified by an address and they come with
mutable attributes (state and balance).

The DL treatment of the functional part of Michelson is quite intuitive: programs are
sequences of Michelson instructions, we model the execution state of a Michelson program
by a formula of the form Φ → [p]Ψ, and the proof rules for [i; p]Ψ (where i is a single
instruction) define the semantics of symbolic execution.

Gas is an important aspect of computation on the blockchain. The initial caller of a
contract has to pay for executing the transaction (consisting of one or more chained contract
runs) in terms of gas. A transaction that runs out of gas is rolled back by the run-time system
of the blockchain as if it never happened. As Michelson does not suffer from reentrancy
problems (cf. Section 2), gas does not affect reasoning about the functional correctness of
(chained) contract execution. For that reason, our DL design does not account for gas.

It is the sole goal of this paper to provide a machine verified specification of symbolic
execution for Michelson, rather than an efficient or otherwise realistic implementation.
For that reason, the paper does not cover all instructions, but rather a carefully chosen
representative subset. This is in contrast to related work [10, 27, 5] that describes actual
verification tools. To be useful for a wide range of programs, such a tool must support as
many Michelson instructions as possible1, it must be reasonably efficient, and it must deal
with loops and nontermination in an appropriate way. None of these issues are concerns for
our specification.

Contributions
1. We select a representative subset of Michelson instructions so as to provide proof templates

for all current and future instructions that work similarly.
2. We provide a parameterized semantics definition with instances for the concrete semantics

as well as for an abstract semantics, which implements the dynamic logic for Michelson.
3. We prove the soundness of this logic first for single programs, and then for several

programs chained in a transaction.

The Agda implementation of the contributions is available.2

1 Keeping up with the rapid evolution of the language is challenging for those tools. As of this writing,
most of them support the instruction set available in late 2022.

2 https://freidok.uni-freiburg.de/data/255176, development version https://github.com/
Tezos-Project-Uni-Freiburg/michelson-dynamic-logic.

https://freidok.uni-freiburg.de/data/255176
https://github.com/Tezos-Project-Uni-Freiburg/michelson-dynamic-logic
https://github.com/Tezos-Project-Uni-Freiburg/michelson-dynamic-logic

B. Arvay, T. T. H. Doan, and P. Thiemann 3:3

Overview
Section 2 gives an overview of Michelson, introduces its type system and our intrinsically
typed representation of the language. Section 3 defines the execution model of Michelson,
first for single contracts, and then for the chained execution of several contracts that call each
other. Section 4 introduces dynamic logic and its symbolic execution rules, again first for
single execution, and then for chained execution. Section 5 explains the major components of
the soundness proof of the dynamic logic. Section 6 discusses related work and conclusions.

The paper contains many excerpts from the live, type checked definitions and proofs in
Agda. In particular, all major definitions and statements of theorems are shown in Agda
notation to ensure consistency of the paper with the machine-checked proofs.

2 Michelson

Michelson [25, 28] is the native language for smart contracts on the Tezos blockchain. It is
a low level, stack-based, simply-typed, purely functional programming language. That is,
all computation is driven by transforming an input stack into an output stack. There are
no mutable data structures; blockchain transactions are handled outside of Michelson. All
contracts are statically typed to avoid run-time type errors.

Each Michelson instruction transforms a given input stack into an output stack where
some of its values have been changed, added, or removed. For example, the ADD instruction
accepts any stack whose two topmost elements are numbers, and returns a stack where these
two values have been replaced by their sum. The remaining stack is unchanged.

ADD ∶ 15 ∶∶ 27 ∶∶ remainingStack ↦ 42 ∶∶ remainingStack

2.1 Types
Michelson supports the usual data types like numbers, pairs, and lists as well as some
blockchain-specific types for tokens and contracts. Figure 1a contains Agda definitions for a
select subset of Michelson types Type. As some base types can be treated alike later on, we
represent them with a separate type BaseType.

Most types’ names are self explanatory. The base type ‘mutez stands for tokens, addr
stands for blockchain addresses in Tezos. We introduce shorthand patterns for base types for
readability. The type operation consists of blockchain operations that can be emitted during
contract execution. This mechanism implements token transfers from the current contract to
other accounts or contracts. The type contract P represents such a contract which accepts a
parameter of type ty represented by P: Passable ty. The type predicate Passable : Type →
Set originates from the Michelson specification and characterizes types that can be passed as
parameters to contracts. Its declaration is mutually recursive with Type.

The semantics of types is defined by a mapping to Agda types. Most Michelson types have
obvious Agda counterparts, except addr, contract, and operation. Addresses and contracts
are both represented by natural numbers. The difference is that a value of type contract is
known to be a valid address of a contract of suitable type. We only define one alternative of
the Operation datatype: transfer-tokens v m c, which models a token transfer to contract c

while passing the parameter value v and tokens m.3

3 At the time of writing this paper, full Michelson also supports the operations CREATE-CONTRACT, EMIT
(deliver an event to an external application), and SET-DELEGATE (delegate stakes to another account).

ECOOP 2024

3:4 Dynamic Logic for Symbolic Execution for Michelson

(a) Syntax. (b) Semantics.

Figure 1 Michelson Types.

2.2 Programs and Instructions
Michelson programs are intrinsically typed, that is, only well-typed programs can be written.
Accordingly, they are represented in Agda by a datatype Program indexed by the types on
the input stack and the types on the output stack. We assume that Stack = List Type.

Instructions are indexed in the same way: If instruction inst maps an input stack of
type Si to an output stack of type So and prg maps that output stack So to the final stack
of type Se, then inst ; prg is a program that maps Si to Se. The empty program end
does not transform the stack.

We discuss a representative subset of Michelson instructions shown in Figure 2. The
definition of Instruction+ implements the pattern that most instructions only transform a
fixed number of elements on top of the input stack and are parametric in the rest.

The first group of instructions operates on a fixed number of values on the stack and pushes
the result. All arithmetic operations belong to this group and we just give two examples,
ADDnn and ADDm, which perform addition of natural numbers and tokens, respectively.
Michelson language overloads arithmetic operators, but as overloading is not supported by
Agda, we supply separate instructions. We come back to this issue at the end of this section.

B. Arvay, T. T. H. Doan, and P. Thiemann 3:5

Figure 2 Instructions of Core Michelson.

CAR, CDR, and PAIR are the standard operations on pairs. NONE and SOME are the
constructors for the option datatype, and NIL and CONS construct lists. The constructors
for “empty” containers, NONE and NIL are indexed by the element type, otherwise that type
can be inferred from the context.

The last instruction in this group is TRANSFER-TOKENS. Despite the name, this
instruction does not directly transfer tokens to another account. It rather constructs a value
transfer-tokens v m c of type operation from its arguments.

The instructions in the next group differ in that they push zero or more values on the
output stack. DROP pops the stack, DUP duplicates the top of the stack, SWAP swaps the
top entries, and UNPAIR eliminates a pair and pushes its contents. UNPAIR is a convenience
instruction as it is equivalent to the instruction sequence DUP; CDR; SWAP; CAR.

The next group contains instructions that are blockchain specific. AMOUNT returns the
tokens that were transferred with the currently running contract invocation and BALANCE
returns the tokens currently owned by it. The CONTRACT instruction is indexed by a type t

that must be Passable. It takes an address and checks on the blockchain whether this address
is associated with a contract that accepts arguments of type t. The result is communicated
as an option type. That is, the contract type carries a verified address.

The PUSH instruction pushes a value of type t on the stack. The value is encoded by a
type-indexed datatype Data for pushable values. We elide its straightforward definition.

ECOOP 2024

3:6 Dynamic Logic for Symbolic Execution for Michelson

The last group of instructions showcases control structures and an instruction that
operates in a non-uniform way on the stack. The instruction IF-NONE eliminates a value
of option type from the top of the stack. Its parameters are programs that implement the
branches for case None and Some. The latter takes the value wrapped in the Some constructor
as an argument on top of the stack.

The instruction ITER runs a sub-program on every element of its argument list. The
instruction DIP n runs a sub-program at depth n on the input stack, that is, it skips over
the first n elements of the stack, runs the sub-program, and reattaches those elements. The
extra machinery in the implicit argument of the instruction makes sure that there are at
least n elements on the stack. This mechanism is called reflection in the PLFA textbook [33].

Earlier, we remarked that Agda does not allow overloading of constructors in the same
datatype. However, we can use reflection to define a “smart constructor” that almost suits
the purpose.

The definition exploits the fact that the input stack of an instruction is always known in a
Michelson program. The same fact also enables overloading in Michelson’s implementation to
work. The function overADD specifies the resolution of overloading for the ADD instruction.
If the argument types are both nat, then the result type is nat and the chosen instruction is
ADDnn; and so on.4 If no overloading is known for a combination of arguments, the function
returns nothing. The smart constructor ADD takes a proof that the overloading is defined on
a given pair of input types. Then it extracts the selected instruction from the overloading.

Compared to “real” Michelson, the smart constructor requires an extra argument to work:

exnat : Program [(pair nat nat)] [(pair nat nat)]
exnat = DUP ; UNPAIR ; ADD refl ; DROP ; end

2.3 Blockchain Interface
A contract on the Tezos blockchain is indexed by a parameter type p and a store type s.
The type p must be Passable and the type s must be Storable. Moreover, each contract
comes with a current balance of tokens and a store of type s. The implementation of the
contract is a program that maps a pair p s to a pair (list operation) s, that is, it consumes
the parameter paired with the current store and produces a list of operations (e.g., to invoke
further contracts) paired with the updated store. The program itself is pure; any side effects,
i.e., store update and contract calls, are managed by the blockchain runtime.

4 The full Michelson language has ten different overloadings of ADD.

B. Arvay, T. T. H. Doan, and P. Thiemann 3:7

record Contract (Mode : MODE) (p s : Type) : Set where
constructor ctr
field Param : Passable p

Store : Storable s
balance : M Mode mutez
storage : M Mode s
program : Program [pair p s] [pair (list operation) s]

The Mode argument abstracts over the semantics of types. Its type has three components,
one M for the semantics and the others, F and G, are used by the abstract semantics in
Subsection 4.2.

record MODE : Set1 where
field M : Type → Set ; F : Set ; G : Set

Its instantiation for the concrete semantics installs the standard semantics of types from
Section 2.1. The remaining components are instantiated to the unit type ⊤.

CMode : MODE
CMode = record { M = J_K ; F = ⊤ ; G = ⊤}

With this definition, the contract store of the blockchain is just a partial mapping from
addresses to contracts.

Blockchain : (Mode : MODE) → Set
Blockchain Mode = Addr → Maybe (∃[p] ∃[s] Contract Mode p s)

To start executing a contract, we initiate a blockchain transaction to its address, i.e., we
ask the blockchain runtime to transfer tokens to its address along with its parameter. Once
a contract has terminated, the runtime updates the stored value and processes the list of
operations.

On the Tezos blockchain a normal account with deposit init corresponds to a contract
with a unit parameter, unit store, and a trivial program that issues no operations.

Account : Mutez → Contract CMode unit unit
Account init = ctr unit unit init tt (CDR ; NIL operation ; PAIR ; end)

3 Michelson Reference Implementation

Program execution is defined in a small-step manner by a function that maps the current
execution state of a program to a new state resulting from executing the first instruction:

prog-step : CProgState ro → CProgState ro

The type CProgState ro is a record that contains an input stack type ri, a program that
maps an ri stack to an ro stack, an input stack of type ri, and the execution environment.
prog-step executes the first instruction that must map an ri stack to an intermediate stack of
type re, say. Consequently, the program in the output CProgState maps an re stack to an
ro stack. As instructions as well as programs are intrinsically typed, the intermediate stack
type re is sure to match. Likewise, the typing of prog-step ensures type preservation.

ECOOP 2024

3:8 Dynamic Logic for Symbolic Execution for Michelson

record ProgState (Mode : MODE) (ro : Stack) : Set where
constructor state
field {ri} : Stack

en : Environment Mode
prg : ShadowProg{M Mode} ri ro
stk : All (M Mode) ri
Φ : F Mode

prog-step ρ | fct ft ; p
= record ρ { prg = p ; stk = app-fct ft (H.front (stk ρ)) H.++ H.rest (stk ρ) }

prog-step ρ | DROP ; p
= record ρ { prg = p ; stk = H.rest (stk ρ) }

Figure 3 Program state and single program step execution (excerpt).

3.1 Program Execution
So far we only concerned ourselves with the type of a Michelson stack. For program execution,
both the types and values of stack elements are relevant. To this end, we have to lift the
interpretation of a single type, i.e., a function from Type to Set, to the interpretation of a list
of types. The library predicate All does exactly that: it “maps” a Set-typed function over a
list, which yields (the type of) a heterogeneously typed list.

For example, the value interpretation of a type stack is a value stack where cor-
responding elements t and v are related by the type interpretation, that is, v ∶ JtK.

Int : Stack → Set
Int = All J_K

a-stack : Int (nat ∶∶ unit ∶∶ option addr ∶∶ [])
a-stack = 42 ∶∶ tt ∶∶ nothing ∶∶ []

The definition of a program state (see Figure 3) abstracts over a Mode which contains
a type interpretation that allows us reuse the same structure for concrete execution and
abstract execution. A program state contains the program that is currently executed, the
stack, and an environment which provides the context information to execute blockchain
instructions like AMOUNT and BALANCE. It is parameterized by the output stack type,
which does not change during execution. When executing more than one contract as we
demonstrate in Sec. 3.4, this parameterization ensures that the results from completed
contract executions are well typed.

The function prog-step executes the first instruction of a program on the current state.
We explain two exemplary cases shown in Figure 3. To explain the first stanza of the code
we have to make a confession. As several instructions have very similar semantics, our
internal representation of instructions is a refinement of the datatype shown in Figure 2. For
example, all instructions that just apply a function to the top of the stack are grouped under
a constructor fct and func-type is the type defining these instructions.

fct : func-type args results → Instruction+ args [× results]

The function app-fct applies such a function to a concrete stack. Roughly speaking, if
the underlying function has type a1 → ⋅ ⋅ ⋅→ an → (r1 × ⋅ ⋅ ⋅ × rm) it gets transformed into
a function between heterogeneously typed lists [a1, . . . , an] → [r1, . . . , rm]. We elide the

B. Arvay, T. T. H. Doan, and P. Thiemann 3:9

definition and just remark that the function [×_] implements the transformation between
(r1 × ⋅ ⋅ ⋅ × rm) and [r1, . . . , rm]. The functions H.front and H.rest (in Fig. 3) split the
input stack according to the stack types expected by the function ft. The function H.++ is
concatenation of heterogeneous lists.

The DROP instruction drops the top of the stack.

3.2 Execution of Control Flow Instructions
We have chosen a small-step semantics because its stepwise progression matches the stepwise
proof rules of the dynamic logic. However, the Michelson specification defines the semantics
in terms of a big-step judgment.5

record Configuration (ri : Stack) : Set where
constructor Conf
field cenv : CEnvironment ; stk : Int ri

data [_,_]⇓_ : Configuration ri → Program ri ro → Int ro → Set

It relates a configuration (environment and input stack of type ri) and a program to an
output stack of type ro. The definition of the semantics in the Michelson specification takes
some liberties that require some extra machinery in a small-step execution model. We discuss
these issues with some representative instructions.

The instruction IF-NONE p-none p-some expects a value of type option on top of the
stack. If that value is nothing (the encoding of NONE), the p-none branch is executed on the
rest of the stack:

↓-IF-NONE : ∀ {p-none : Program txs tys} {p-some : Program (tx ∶∶ txs) tys}
→ [Conf ce xs , p-none]⇓ ys
––––––––––––––––––––––––––––
→ [Conf ce (nothing ∶∶ xs) , IF-NONE p-none p-some]↓ ys

If however the top of the stack is just x (encoding SOME x), the p-some branch is executed
on the stack where just x is replaced with x:

↓-IF-SOME : ∀ {p-none : Program txs tys} {p-some : Program (tx ∶∶ txs) tys}
→ [Conf ce (x ∶∶ xs) , p-some]⇓ ys
––––––––––––––––––––––––––––
→ [Conf ce (just x ∶∶ xs) , IF-NONE p-none p-some]↓ ys

To specify the corresponding small-step rule we introduce a type-respecting concatenation
operator ;• on programs. The program IF-NONE p-none p-some ; p-rest either transitions to
p-none ;• p-rest or to p-some ;• p-rest, depending on the value on top of the stack.

The instruction DIP n p executes program p on the stack that results from removing the
first n elements of the current stack and reattaches them afterwards.

↓-DIP : ∀ {n} {q : T (n ≤
b length txs)} {p-dip : Program (drop n txs) tys}

→ [Conf ce (H.drop n xs) , p-dip]⇓ ys
–––––––––––––––––––––––––––-
→ [Conf ce xs , DIP n {q} p-dip]↓ (H.take n xs H.++ ys)

5 For typing reasons the implementation splits it in four judgments for programs ⇓, instructions ↓, shadow
programs ⤋, and shadow instructions ↓

′.

ECOOP 2024

3:10 Dynamic Logic for Symbolic Execution for Michelson

In the small-step version, dropping the first n elements of the stack is easy, but reattaching
them requires extra machinery. Thus, a mechanism for holding on to the top of the stack
while executing the subprogram and retrieving it afterwards is necessary.

Execution of ITER requires the same feature in a slightly different way. It consumes the
list on top of the current stack. If the list is empty, it is dropped from the stack:

↓-ITER-NIL : ∀ {p-iter : Program (t ∶∶ txs) txs}
––––––––––––––––––––-
→ [Conf ce ([] ∶∶ xs) , ITER p-iter]↓ xs

Otherwise the subprogram is applied to the first list element v and then the ITER
instruction is reissued on the rest of the list vs and the current stack:

↓-ITER-CONS : ∀ {v : J t K}{vs : J list t K} {xs ys zs : Int txs} {p-iter : Program (t ∶∶ txs) txs}
→ [Conf ce (v ∶∶ xs) , p-iter]⇓ ys
→ [Conf ce (vs ∶∶ ys) , ITER p-iter]↓ zs
–––––––––––––––––––––––
→ [Conf ce ((v ∶∶ vs) ∶∶ xs) , ITER p-iter]↓ zs

The typing for ITER requires that the type of the underlying stack is preserved, but the
subprogram p-iter is entitled to access and modify the stack beyond the first element x.
Let’s now consider stepwise execution. If the list on top has the form v ∶∶ vs, we need to
stash the tail list vs somewhere while the subprogram processes the stack with v on top.
After execution of the subprogram, we have to recover vs and try again with ITER.

As subprograms can be arbitrarily complex, in particular, they may contain DIP and
ITER, we need a nestable solution. To this end, we add a single new instruction MPUSH1
that pushes a single value on the stack. This instruction is different from the normal PUSH
instruction, which is limited to Pushable values that have a textual representation.

data ShadowInst {M : Type → Set} : Stack → Stack → Set where
MPUSH1 : ∀{t : Type} → M t → ShadowInst rS (t ∶∶ rS)

We call the new instruction a shadow instruction because it does not appear in input
programs. It is indexed by two stack types like any other instruction. A shadow program
is defined like Program, but its first instruction can be a normal instruction or a shadow
instruction. Shadow programs only appear at the top-level, never as subprograms nested in
instructions. We elide the definition of ShadowProg as it is analogous to Program. Moreover,
we provide a utility function mpush to generate a sequence of MUSH1 instructions from a list
of values.

mpush : ∀ {M : Type → Set} {ri}{ro} {front : Stack}
→ All M front → ShadowProg{M} (front ++ ri) ro → ShadowProg{M} ri ro

mpush [] sp = sp
mpush (x ∶∶ xs) sp = mpush xs (MPUSH1 x • sp)

The small-step version of DIP n dp takes the top n elements from the stack and starts
executing the program dp followed by the new instruction mpush front where front is the list
of the n values that were removed from the stack.

prog-step ρ | DIP n dp ; p
= record ρ { prg = dp ;• mpush (H.take n (stk ρ)) p ; stk = H.drop n (stk ρ) }

B. Arvay, T. T. H. Doan, and P. Thiemann 3:11

example-ITER : Program [list nat ; nat] [nat]
example-ITER = ITER (ADDnn ; end) ; end

Figure 4 Simple program using ITER.

Table 1 Program states during execution of Figure 4.

rSI prg
--
[18 , 24] ∶∶ 0 ∶∶ [] ITER (ADD)

18 ∶∶ 0 ∶∶ [] ADD ; MPUSH [24]; ITER (ADD)
18 ∶∶ [] MPUSH [24]; ITER (ADD)

[24] ∶∶ 18 ∶∶ [] ITER (ADD)
24 ∶∶ 18 ∶∶ [] ADD ; MPUSH []; ITER (ADD)

42 ∶∶ [] MPUSH []; ITER (ADD)
[] ∶∶ 42 ∶∶ [] ITER (ADD)

42 ∶∶ [] end

The small-step version of ITER ip just pops the stack if the list is empty. Otherwise,
if the top contains v ∶∶ vs, it pops this value, puts v on top of the stack and executes ip

followed by mpush [vs] and then ITER ip and the rest of the program.

prog-step ρ | ITER ip ; p with stk ρ

... | [] ∶∶ rsi = record ρ { prg = p ; stk = rsi }

... | (v ∶∶ vs) ∶∶ rsi = record ρ { prg = ip ;• (MPUSH1 vs • (ITER ip ; p)) ; stk = v ∶∶ rsi }

For illustration, Table 1 gives the stacks and shadow program of each intermediate state
resulting from applying prog-step to the program in Figure 4 until program termination for
the given input stack interpretation (omitting end for readability). This program adds a list
of numbers on top of the stack to the number below.

3.3 Relation to Big-Step Semantics
Executing a program requires iterating the prog-step function. Our implementation drives
this iteration by a step counter that is counted down at each instruction.

prog-step* : N → CProgState ro → CProgState ro
prog-step* zero ρ = ρ

prog-step* (suc n) ρ = prog-step* n (prog-step ρ)

We prove that the original big-step semantics and our small-step semantics are equivalent
in the usual sense.

bigstep⇒smallstep : ∀ (prg : ShadowProg txs tys)
→ [Conf ce xs , prg]⤋ ys
→ ∃[n] prog-step* n (cstate ce prg xs) ≡ cstate ce end ys

smallstep⇒bigstep : ∀ n → (prg : ShadowProg txs tys) → {xs : Int txs} {ys : Int tys}
→ prog-step* n (cstate ce prg xs) ≡ cstate ce end ys
→ [Conf ce xs , prg]⤋ ys

ECOOP 2024

3:12 Dynamic Logic for Symbolic Execution for Michelson

record PrgRunning (Mode : MODE) : Set where
constructor pr
field {pp ss x y} : Type

self : Contract Mode pp ss
sender : Contract Mode x y
ρ : ProgState Mode [pair (list operation) ss]

record Transaction (Mode : MODE) : Set where
constructor _,_
field pops : (M Mode) (list operation)

psender : Addr

data RunMode (Mode : MODE) : Set where
Run : PrgRunning Mode → RunMode Mode
Cont : F Mode → RunMode Mode
Fail : G Mode → RunMode Mode

record ExecState (Mode : MODE) : Set where
constructor exc
field accounts : Blockchain Mode

MPstate : RunMode Mode
pending : List (Transaction Mode)

Figure 5 Contract execution state.

3.4 Contract Execution and Execution Chains

The prog-step function can execute any Michelson program, not only those that comply to
the typing restrictions of a contract. But it does not provide a mechanism to update the
blockchain after successful contract execution nor one to execute other blockchain operations
which might be emitted by a contract.

To implement these aspects of contract execution, the ProgState is augmented with further
information as shown in Figure 5. The record PrgRunning holds the contracts involved in
the current execution: self is the current contract and sender is the sender (the account that
started the current contract). The ExecState holds the Blockchain, where contract execution
results are saved, and a list of pending blockchain transactions to be executed. A value
of type Transaction comprises a list of operations and the address of the sender of these
operations. The field MPstate encodes the current mode of execution. Run indicates that a
contract is currently executing the program in PrgRunning where we can take a step. Cont
indicates the transition between one contract and the next; execution proceeds with the
next pending blockchain operation. The F argument is used by the abstract execution to
propagate information between contract invocations. Fail indicates a failure along with an
error code in its G argument.

B. Arvay, T. T. H. Doan, and P. Thiemann 3:13

exec-step σ@(exc accts (Run (pr self _ (state en end [new-ops , new-storage] _))) pend)
= record σ{ accounts = set (self-address en) (upd-storage self new-storage) accts

; MPstate = Cont tt
; pending = (new-ops , self-address en) ∶∶ pend }

exec-step σ@(exc _ (Run ρr@(pr _ _ ρ)) _)
= record σ{ MPstate = Run (record ρr{ ρ = prog-step ρ }) }

Figure 6 Program execution.

The function exec-step : CExecState → CExecState maps an execution state to its successor
state just like prog-step did for program states. It only implements the features mentioned
above that cannot be modeled by the program state alone. Its definition is too big to include
it in full; instead we briefly explain its implementation, giving each case in the same order as
in the implementation.

Figure 6 contains the cases when a contract is executing.
1. When execution of the current contract has terminated (i.e., MPstate is Run pr and

ProgState.prg matches end), then intrinsic typing ensures that the stack interpretation
contains the emitted blockchain operations new-ops paired with the new storage value
new-storage. We add the emitted operations to the pending field, update the terminated
contract’s storage on the blockchain, and switch to RunMode Cont.

2. In all other cases of a running program, its ProgState evolves using prog-step.
In the remaining cases MPstate is Cont tt which means that no contract is currently executed.
In this case pending is checked for other operations to be executed. Our model only implements
the TRANSFER-TOKENS operation that initiates a new contract execution. We perform the
following checks in this case:

we fail unless the operation was emitted from a valid account;
we fail unless the type of the parameter matches the input type of the called contract;
we fail unless the target is a valid account;
we fail unless the sender’s balance contains sufficient tokens to support the transfer.

The first three cases can never occur during an actual execution of a Michelson smart
contract execution chain: The TRANSFER-TOKENS instruction only works for values of
type contract t, which ensures validity of the target address and that the parameter type
is t. Moreover, operations can only be emitted by valid accounts. The checks are needed
in our model because it does not maintain information about which addresses are valid
contract addresses. We chose not to include this information as it adds complexity without
contributing to our goal of proving the soundness of symbolic execution.

4 Dynamic Logic for Michelson

To obtain a dynamic logic suitable for symbolic execution we follow the Key approach [9]
and extend first order logic with a modality [p], where p is a program state. The intuitive
meaning is that [p]Ψ holds for a formula Ψ, if running p terminates in a state such that Ψ
holds. That is, the formula Φ → [p]Ψ has a similar meaning as the Hoare triple {Φ} p {Ψ}.

In the following, we concentrate on the proof rules for the modality. For instance
(and ignoring the details of the program state for now), Φ → [end]Ψ ≡ Φ → Ψ if the
program is empty. Many simple proof rules have the form Φ → [i; p]Ψ ≡ Φi ∧ Φ → [p]Ψ
where the formula Φi describes the effect of instruction i. If the instruction is a branch
instruction on a predicate Q, like if Q p1 p2, the resulting formula is a disjunction as in
Φ → [(if Q p1 p2); p]Ψ ≡ Q ∧ Φ → [p1; p]Ψ ∨ ¬Q ∧ Φ → [p2; p]Ψ.

ECOOP 2024

3:14 Dynamic Logic for Symbolic Execution for Michelson

data _⊢_ (Γ : Context) : Type → Set where
var : t ∈ Γ → Γ ⊢ t
const : J base bt K → Γ ⊢ base bt
contr : ∀ {P : Passable t} → Addr → Γ ⊢ contract P
func : 1-func args result → Match Γ args → Γ ⊢ result

data Formula (Γ : Context) : Set where
‘false : Formula Γ
:= : t ∈ Γ → Γ ⊢ t → Formula Γ
<m : mutez ∈ Γ → mutez ∈ Γ → Formula Γ
≥m : mutez ∈ Γ → mutez ∈ Γ → Formula Γ

Figure 7 Terms and formulas.

We start by defining the formulas of the logic in Subsection 4.1.

4.1 Terms and Formulas
At the core of any symbolic execution there are symbolic (i.e., logical) variables representing
the unknown operands. We represent such variables by a typed deBruijn index into a given
Context = List Type. An abstract stack is then a list of typed variables:

Match : Context → Stack → Set
Match Γ = All (_∈ Γ)

Any knowledge that we have about the values on the stack is encoded in the list of
formulas (over the variables on the stack) that we maintain in the program state. Figure 7
shows the terms and formulas used for the logic. Term comprise variables, constants of base
type and of contract type, and simple functions. Here, “function” stands for proper functions
as well as data constructors. For convenience, we restrict function arguments to variables
and rely on variable equality in the formulas to specify complex terms.

As an example for the interplay between context, stack, and formulas, suppose the context
defines three variables of type nat like this Γ1 = nat ∶∶ nat ∶∶ nat ∶∶ []. An abstract stack for
this context might just contain a single variable x = 0∈, where the 0 ∈ refers to the first
variable in Γ1.

a-stack : Match Γ1 (nat ∶∶ [])
a-stack = [x]

If we further want to enforce that x = y + 3 (on natural numbers), then we have to encode
that in two simple formulas, one that associates 3 to variable v, and another that states
x = y + v. We do not impose a constraint on y, so it serves as an unconstrained symbolic
variable.

x=y+3 : List (Formula Γ1)
x=y+3 = x := func ‘ADDnn (y ∶∶ v ∶∶ [])

∶∶ v := const 3
∶∶ []

B. Arvay, T. T. H. Doan, and P. Thiemann 3:15

Formulas are mainly used to express equality of a variable with a term. The inequalities
express the ordering on tokens. The latter is used for token transfers where we have to know
that the sender has sufficiently many tokens to satisfy the requirements of the transfer. The
reader may wonder about conjunction and disjunction: the proof rules only generate them in
the form of a disjunction of conjunctions of simple formulas. We represent this structure as
a list of lists of simple formulas. Repetition does not matter in this representation for two
reasons: 1. disjunction and conjunction are both idempotent; 2. we are only interested in
validity of a formula, but do not transform it in any way.

4.2 Representing Michelson Program State in DL
We simplify the handling of formulas of the form Φ → [p]Ψ by reusing our previous definition
of the type ProgState in a different mode as an abstract state.

AMode : Context → MODE
AMode Γ = record { M = _∈ Γ

; F = List (Formula Γ)
; G = List (Formula Γ) ⊎ List (Formula Γ)
}

That is, we replace the normal representation of values in M by symbolic variables, in F we
maintain a list (i.e., conjunction) of formulas, and in G we maintain a tagged list of formulas
to represent different modes of failure.

The meaning of an abstract state is a conjunction that specifies the value for AMOUNT
and BALANCE in the environment, it specifies the size of the stack and all values on it, and
it collects further constraints generated by application of the proof rules.

Informally, an abstract program state represents Θ ⟹ [prg]Ψ where

Θ ≡ state of environment = en ∧ state of stack = stk ∧ ⋀
ϕ∈Φ

ϕ

The encoding of the implication in the abstract program state corresponds exactly to
the abstract instance of the ProgState type (see Figure 3). Reusing the type in this way
makes the formalization of symbolic execution very similar to the concrete execution model
presented in Section 3. This similarity in turn makes the soundness proof easier and more
concise. All constructs for concrete execution are reused in the abstract by instantiating
their MODE parameter. Thus, they are automatically parameterized by a Context Γ and
the names of the structures are the same as for concrete execution but prefixed with an α

(only the abstract blockchain is called βlockchain).
Symbolic execution of control flow can lead to disjunctions over such states, which is

represented using a list of abstract program states. Each of the branch comes with its own
state, which requires existential quantification over the types of the variables in Γ.

⊎Prog-state : Stack → Set
⊎Prog-state ro = List (∃[Γ] αProg-state Γ ro)

Using Agda lists to represent conjunctions and disjunctions is convenient for two reasons.
1. Conjunctions and disjunctions do not mix: Φ always represents a conjunction over its

elements and disjunctions can only occur as a result of some symbolic execution rules
that implement control flow. In this case, the disjunction always affects every aspect of
the abstract program state (i.e., the remaining programs will always differ).

2. Agda’s “element of” relation for lists makes the implementation of the rules of the calculus
simple and efficient.

ECOOP 2024

3:16 Dynamic Logic for Symbolic Execution for Michelson

4.3 Proof Rules for Michelson
The rules for symbolic execution are formalized by a function that maps an abstract program
state into a set (list) of abstract program states.

αprog-step : ∀ {Γ ro} → αProg-state Γ ro → ⊎Prog-state ro

It mimics prog-step and gives a deterministic way of symbolic execution. Every (non-
environmental) functional instruction can be executed concretely with a single rule as shown
in Figure 6. During symbolic execution, the only thing that is guaranteed is that the stacks
contain values of the expected type. For example, if the next instruction is ADDnn, we can
conclude that there are two values of type nat on top of the stack before the instruction and
one value of type nat afterwards. Moreover, we can say that this value is the sum of the two
values that were on top of the stack before, but we have to express that with a constraint,
i.e., a logical formula.

That is, symbolic execution of ADDnn introduces a new variable vr that replaces the
variables vx and vy from the top of the stack, and adds a clause that equates this new variable
with the sum of the former two:

vr ∶= ADDnn vx vy

In this way, we can give a single symbolic execution rule for all functional instructions
that return a single result.

αprog-step {Γ} (state αen (fct (D1 {result = result} f) ; prg) αst Φ)
= [(result ∶∶ Γ)

, state (wkαE αen) (wkSP prg) (0∈ ∶∶ wkM (H.rest αst))
(0∈ := wk⊢ (func f (H.front αst)) ∶∶ wkΦ Φ)]

Let’s decompress this definition. We pattern match against the current (abstract) state
to obtain the environment αen, the current instruction, the rest of the program prg, the
stack αst, and the formula Φ. The constructor fct indicates a functional instruction and the
constructor D1 indicates that f returns a single result of type result.

As the instruction does not implement any control flow, there is only a single next state.
Its description starts with the extended context result ∶∶ Γ, which introduces a new variable
of type result for the result. The name, rather the deBruijn address, of this variable is 0∈,
which denotes the first entry in the context. The second component describes the new state,
which (ignoring the wk functions for the moment) keeps the environment, moves to the rest
of the program, pushes the result on the stack after removing the arguments using H.rest,
and pushes a new equation that defines the value of 0∈ as the result of applying f to the
front of the stack. The functions H.front and H.rest operate on heterogenous lists and are
defined such that αst ≡ H.front αst H.++ H.rest αst where the actual division is driven by
the type of f . The operation H.++ is concatenation of heterogenous lists. The wk functions
are a consequence of using deBruijn indices for variables: if we introduce new variables, all
existing variables have to be incremented by the number of new variables (i.e., weakened).
We do not show their definition, as this manipulation of deBruijn indices is standard.

We do not have a general mechanism for the other functional instructions (see Figure 8),
as they behave very differently in a symbolic context: UNPAIR requires two new variables
and clauses, while SWAP only changes the position of two stack values. No new variables or
clauses are necessary because SWAP only reconfigures the stack.

The instruction PUSH needs special treatment because it can handle arbitrarily complex
compound values. When pushing a value x of primitive type, it is sufficient to add a new
variable and a clause which sets this variable equal to the term const x. But if x has a list

B. Arvay, T. T. H. Doan, and P. Thiemann 3:17

αprog-step {Γ} (state αen (fct (Dm (‘UNPAIR {t1} {t2})) ; prg) (p∈ ∶∶ αst) Φ)
= [(t1 ∶∶ t2 ∶∶ Γ)

, state (wkαE αen) (wkSP prg) (0∈ ∶∶ 1∈ ∶∶ wkM αst)
(0∈ := func ‘CAR [wk∈ p∈] ∶∶ 1∈ := func ‘CDR [wk∈ p∈] ∶∶ wkΦ Φ)]

αprog-step α@(state αen (fct (Dm ‘SWAP) ; prg) (x∈ ∶∶ y∈ ∶∶ αst) Φ)
= [-, record α{ prg = prg ; stk = y∈ ∶∶ x∈ ∶∶ αst }]

αprog-step {Γ} (state αen (fct (‘PUSH P x) ; prg) αst Φ)
= [(expandΓ P x ++ Γ)

, state (wkαE αen) (wkSP prg) ((∈wk (0∈exΓ P)) ∶∶ wkM αst)
(Φwk (unfold P x) ++ wkΦ Φ)]

Figure 8 Functional instructions (excerpt).

type or an option type, its value cannot be expressed with a const term. In general, the
symbolic execution of a single PUSH instruction may create arbitrarily many (but linear in
the size of the pushed value) new variables and clauses.

To this end, the function unfold P x creates all clauses required to express the value x.
This process defines a list of new variables of types defined by expandΓ P x.6 For example,
PUSH {list ty} P (y ∶∶ ys) gives rise to two new variables ry of type ty for y and rys of
type list ty for ys and an equation r ∶= func (CONS [ry, rys]), where r is the variable for
the result. The function unfold proceeds recursively: if ys = [], its variable can be set to
func (NIL ty) [], otherwise it will be further decomposed. Similarly for y: if ty is a primitive
type, it can be set to const y, otherwise it must be further decomposed as well.

As an example, we show the result of unfolding the list [0, 1] ∶ list nat. The generated
context is Γ2 = list nat ∶∶ list nat ∶∶ list nat ∶∶ nat ∶∶ nat ∶∶ [] and the generated list of equations
to represent the list is as follows.

eqn : List (Formula Γ2)
eqn = c1 := func ‘CONS (x0 ∶∶ c2 ∶∶ [])

∶∶ c2 := func ‘CONS (x1 ∶∶ c3 ∶∶ [])
∶∶ c3 := func (‘NIL nat) []
∶∶ x0 := const 0
∶∶ x1 := const 1
∶∶ []

We finish with the abstract execution of the conditional instruction IF-NONE (see Figure 9).
This instruction expects a value of type option t on top of the stack. Here we have two
possible next states, depending on whether the value is present. The first disjunct deals with
the case where the value is NONE. In this case, the stack is popped, the thn branch is taken,
and the equation enforcing the value to be NONE is added. There are no new variables, so
there is no weakening in this disjunct.

6 We do not include the tedious definitions of these auxiliary functions here, but encourage the interested
reader to check the supplementary material.

ECOOP 2024

3:18 Dynamic Logic for Symbolic Execution for Michelson

αprog-step {Γ} (state αen (IF-NONE {t = t} thn els ; prg) (o∈ ∶∶ αst) Φ)
= [Γ , state αen (thn ;• prg) αst (o∈ := func (‘NONE t) [] ∶∶ Φ)

; (t ∶∶ Γ) , state (wkαE αen) (els ;• wkSP prg) (0∈ ∶∶ wkM αst)
(wk∈ o∈ := func ‘SOME [0∈] ∶∶ wkΦ Φ)]

Figure 9 Symbolic execution of IF-NONE.

The second disjunct models the case where the value on top of the stack is SOME y. Here
we need a new variable of type t for y, pop the stack and push the new variable, we take the
els branch, and add an equation that forces the value to be SOME y.

4.4 Proof Rules for the Blockchain Run-time
Just like the symbolic execution rules for the Michelson DL, those for the DL on blockchain
operations are given analogously.

⊎ExecState : Set
⊎ExecState = List (∃[Γ] αExecState Γ)

αexec-step : ∀ {Γ} → αExecState Γ → ⊎ExecState

The switch from concrete to abstract execution state is achieve by changing the Mode

parameter of the ExecState (see Figure 5). Its F field replaces concrete semantics by abstract
semantics throughout all state components.

Unfortunately αexec-step cannot represent exec-step exactly, if MPstate is Cont Φ, that
is: a contract has terminated and we need to check the pending field for further operations
to be executed. At this point, the predicate Φ has to supply sufficient information about
the values of the variables representing the pending operations to proceed in a meaningful
way. The pending list contains pairs of a list of operations and a sender address. While
the latter is a concrete address, the former is a variable of type list operation ∈ Γ. To
proceed, we have to know if the list is empty (so that we can proceed to the next block of
pending operations) or not. In the latter case, we need to ensure that the first element of
the operation list is a TRANSFER-TOKENS, and so on.

To this end, we defined several auxiliary functions to inspect the constraints in Φ for
patterns that restrict the models sufficiently. For example, the function find-tt-list takes a
conjunction of formulas and a variable of type list t and tries to find a formula that restricts
this variable to NIL or CONS:

find-tt-list : ∀ {Γ}{t} → List (Formula Γ) → list t ∈ Γ
→ Maybe (Match Γ [] ⊎ Match Γ [t ; list t])

find-tt-list-soundness : ∀ {Γ}{t} → (Φ : List (Formula Γ)) → (l∈ : list t ∈ Γ)
→ find-tt-list Φ l∈ ≡ just (inj1 [])
→ ∀ (γ : Int Γ) → γ ⊧Φ Φ
→ lookup γ l∈ ≡ []

B. Arvay, T. T. H. Doan, and P. Thiemann 3:19

val⊢ : ∀ {ty Γ} → Int Γ → Γ ⊢ ty → J ty K
val⊢ γ (var v∈) = lookup γ v∈
val⊢ γ (const b) = b
val⊢ γ (contr adr) = adr
val⊢ γ (func f args) = appD1 f (map (lookup γ) args)

⊧φ : ∀ {Γ} → Int Γ → Formula Γ → Set
γ ⊧φ ‘false = ⊥

γ ⊧φ (v∈ := trm) = lookup γ v∈ ≡ val⊢ γ trm
γ ⊧φ (x <m x1) = lookup γ x < lookup γ x1

γ ⊧φ (x ≥m x1) = lookup γ x ≥ lookup γ x1

Figure 10 Semantics of terms and formulas.

We only show the soundness lemma for NIL, as the one for CONS is analogous. This
approach is not complete as the implementation of find-tt-list is tailored to the constraints as
they are produced by symbolic execution.

The full implementation is quite involved and relies on several further lemmas that
examine constraints (for example if the current balance of a sender is sufficient for a token
transfer) in a similar way. We refer the interested reader to the supplement.

The remaining cases deal with a terminated contract execution where the new state
is written back to the blockchain or the execution of an abstract program step for the
contract under execution. The first case is similar to the concrete implementation where
new variables are introduced for the updated values. The second case is more complicated
because the context extensions from the abstract program step are encoded in the list of
resulting disjunctions, so an additional term has to be supplied proving that these contexts
are actually an extension of the original context.

5 Semantics and Soundness

5.1 Values and Models
As a context is just a list of types like a stack, its interpretation is also a heterogeneous list
of values as defined by Int. For a given context interpretation γ, the semantics of a term and
a formula is defined as usual (see Figure 10).

For a given context interpretation γ and abstract and concrete (program or execution)
states, the predicates modρ and modσ express that under this interpretation the given
abstract state models the concrete state. This is the case when the formulas in Φ are true
under γ and the real and variable values are the same for the stacks and every other element.

MODELING : Context → (MODE → Set) → Set1

MODELING Γ F = Abstract F Γ → Concrete F → Set

modρ : ∀ {Γ} → Int Γ → MODELING Γ λ M → Prog-state M ro
modρ γ (state {ri = αri} αen αprg rVM Φ)

(state {ri} en prg stk tt)
= Σ (αri ≡ ri) λ{ refl →

modE γ αen en × modprg γ αprg prg × modS γ rVM stk × modΦ γ Φ}

ECOOP 2024

3:20 Dynamic Logic for Symbolic Execution for Michelson

soundness γ (state αen (IF-NONE thn els ; aprg) (o∈ ∶∶ rVM) Φ)
(state en (.IF-NONE thn els ; cprg) (just x ∶∶ stk) tt)
(modρ〈 mE , (o≡ , mrS) , (refl , refl , mPRG) , mΦ 〉)

= _ , [x] , _ , 1∈ , (refl , wkmodE mE , modprg-extend els (wkmodprg mPRG) ,
(refl , wkmodS mrS) , (o≡ , wkmodΦ mΦ))

soundness γ (state αen (IF-NONE thn els ; aprg) (o∈ ∶∶ rVM) Φ)
(state en (.IF-NONE thn els ; cprg) (nothing ∶∶ stk) tt)
(modρ〈 mE , (o≡ , mrS) , (refl , refl , mPRG) , mΦ 〉)

= _ , [] , _ , 0∈ , (refl , mE , modprg-extend thn mPRG , mrS , (o≡ , mΦ))

Figure 11 Prog-step soundness for IF-NONE (excerpt).

They all have a similar structure expressed by the MODELING function as they relate
an abstract thing with a concrete thing. They are implemented by several auxiliary modX

predicates for every subcomponent of program and execution states. For example, ModE
relates execution environments, modprg relates shadow programs, modS relates stacks, and
modΦ checks that the formulas are all true. The definition of modσ is similar.

To show that a disjunction of abstract states models a concrete state, we show that one
of the states in the disjunction models the state:

mod⊎σ : ∀ {Γ} → Int Γ → ⊎ExecState → CExecState → Set
mod⊎σ {Γ} γ ⊎σ σ = ∃[ασ] (Γ , ασ) ∈ ⊎σ × modσ γ ασ σ

5.2 Soundness of the DL
We prove the soundness of the logic by showing that when an abstract state models a concrete
one, the result of one-step symbolic execution models the result from concrete execution of
the same step. Here are the types of the proof terms for program steps and execution steps.

soundness : ∀ {Γ ro} γ αρ ρ → modρ {ro} {Γ} γ αρ ρ

→ ∃[Γ‘] ∃[γ‘] mod⊎ρ {Γ = Γ‘ ++ Γ} (γ‘ H.++ γ) (αprog-step αρ) (prog-step ρ)

soundness : ∀ {Γ} (γ : Int Γ) → ∀ ασ σ → modσ γ ασ σ

→ ∃[Φ] ExecState.MPstate ασ ≡ APanic Φ
⊎ ∃[Γ‘] ∃[γ‘] mod⊎σ {Γ‘ ++ Γ} (γ‘ H.++ γ) (αexec-step ασ) (exec-step σ)

The first soundness statement addresses soundness of αprog-step. As the modeling
relation is mostly composed of equalities, the proof gets accepted by Agda, once we supply
sufficiently precise arguments to match the cases in the definition of αprog-step. We pattern
match against refl and parts of the arguments, as well as we show that the weakened parts of
the formula are still modeled with the extended context (if new variables were introduced in
the case).

Figure 11 shows the case for the IF-NONE instruction. Without going into details, it is
easy to spot the handling of the concrete and abstract stack and that the outcome of the
test determines which of the possibilities of the abstract outcome is chosen (cf. 0 ∈ and 1 ∈).

The most complicated case of this proof establishes soundness for any scalar function (see
Figure 12). It works by showing that applying the front of the previous stack interpretation
to the given function yields the same result as applying the extended interpretation of the
top of the previous stack matching to it.

B. Arvay, T. T. H. Doan, and P. Thiemann 3:21

soundness γ (state αen (fct (D1 f) ; aprg) rVM Φ)
(state en (.fct (D1 f) ; cprg) stk tt)
(modρ〈 mE , mrS , (refl , refl , mPRG) , mΦ 〉)

with modS++ rVM stk mrS
... | mfront , mrest =

let result = appD1 f (H.front stk) in
_ , [result] , _ , 0∈ , (refl ,
wkmodE mE , wkmodprg mPRG , (refl , wkmodS mrest) ,
(cong (appD1 f) (trans (sym (modIMI mfront)) (wkIMI {γ‘ = [result]})) , wkmodΦ mΦ))

Figure 12 Prog-step soundness for scalar functions (excerpt).

The second soundness statement establishes soundness for those cases of αexec-step where
a contract execution is active. This part appears simple because it only covers two cases:
Either we are in the middle of running a contract, in which case we reuse the soundness
proof for program state execution, or the current contract execution has terminated and we
have to prove that the blockchain and the pending list are updated correctly. The first case
is straightforward, but tedious because we need to copy parts of the previous proof. The
second case is fairly technical as it involves getting the proof in sync with the definitions of
concrete and abstract execution.

6 Related Work

Research on formal verification of blockchain-based applications has experienced rapid growth
in the last decade. Various techniques and frameworks have been applied to enhance the
safety of smart contracts. In this section, we discuss some key approaches, particularly those
employing symbolic execution in the context of smart contracts.

6.1 Verification of Smart Contracts
Symbolic execution is a powerful technique for systematically exploring program paths and
identifying potential vulnerabilities in smart contracts. Most of the existing tools focus on the
Ethereum platform. Tsankov et al. introduced SECURIFY [32], a tool that utilizes symbolic
execution to perform practical security analysis on Ethereum smart contracts. It targets
common vulnerability security patterns specified in a designated domain-specific language.
SECURIFY symbolically encodes the dependence graph of the contract in stratified Datalog
to extract semantic information from the code. After obtaining semantic facts, it checks
whether the security patterns hold or not. Similarly, Manticore [26] and KEVM [18] use
symbolic execution to analyze Ethereum smart contracts. KEVM is an executable formal
specification built with the K Framework for the Ethereum virtual machine’s bytecode (EVM),
a stack-based and low-level smart contract language for the Ethereum blockchain. Since
tokens can hold a significant amount of value, they are often targeted for attacks. Therefore,
several tools [18, 29] conduct case studies for the implementations of token standards.

Several approaches use existing formal verification frameworks to ensure the correctness
and security of smart contracts. Amani et al. [3] proposed the formal verification of Ethereum
smart contracts in Isabelle/HOL. Hirai [19] formalizes the EVM using Lem, a language to
specify semantic definitions. The formal verification of smart contracts is achieved using

ECOOP 2024

3:22 Dynamic Logic for Symbolic Execution for Michelson

the Isabelle proof assistant. Mi-cho-Coq [10] is a framework for the proof assistant Coq to
verify functional correctness of Michelson smart contracts. They formalize the semantics of
a Michelson in Coq using a weakest precondition calculus and verify several contracts. It
provides full coverage of the language whereas our goal is to give a blueprint for a soundness
proof of symbolic execution.

There are several tools for automated verification including solc-verify [15], VerX [4],
and Oyente [22]. solc-verify processes smart contracts written in Solidity and discharges
verification conditions using modular program analysis and SMT solving. It operates at
the level of the contract source code, with properties specified as contract invariants and
function pre- and post-conditions provided as annotations in the code by the developer.
This approach offers a scalable, automated, and user-friendly formal verification solution for
Solidity smart contracts. The core of solc-verify involves translating Solidity contracts to
Boogie IVL (Intermediate Verification Language), a language designed for verification.

Nishida et al. [27] developed HELMHOLTZ, an automated verification tool for Michelson.
While both research efforts aim to build a verification tool for smart contracts written
in Michelson, HELMHOLTZ is based on refinement types, whereas we consider symbolic
execution. HELMHOLTZ has better coverage of Michelson instructions than we currently
have, but it can only verify a single contract whereas our model and soundness proof covers
full inter-contract verification. The HELMHOLTZ developers plan to extend Helmholtz with
inter-contract behavior.

Bau et al. [8] implement a static analyzer for Michelson within the modular static analyser
MOPSA that is based on abstract interpretation. It is able to infer invariants on a contract’s
storage over several calls and it can prove the absence of errors at run time.

Da Horta et al. [5] aim at automating as much of the verification process as possible by
automatically translating a Michelson contract into an equivalent program for the deductive
program verification platform WHY3. However, they found that sometimes user intervention
was required, and their tool can only verify single contracts individually.

6.2 Symbolic Execution for Bytecode Interpretation
As there are some parallels between Michelson and bytecode languages, we discuss symbolic
execution methods for some seleted bytecode languages.

Albert et al. [2] transform Java bytecode into a logic program to utilize analysis techniques
from logic programming, specifically symbolic semantics, for the formal verification of the
bytecode. They verify properties such as termination and run-time error freeness and infer
resource bounds. The dynamic aspects of bytecode, such as control flow and data flow, are
effectively handled through the analysis performed on the logic program. Balasubramanian,
Daniel et al. [7] include dynamic symbolic execution tailored for Java-based web server
environments. Their tool analyzes the bytecode interactions within the Java Virtual Machine
and focuses on bytecode instructions, method calls, object manipulations and memory
interactions to detect vulnerabilities and bugs.

Several approaches address formal semantics and analysis for WebAssembly (Wasm) [24,
21, 34]. Watt, Conrad et al. [34] present Wasm Logic, a formal program logic for WebAssembly.
The authors mechanize Wasm logic and its proof of correctness in Isabelle/HOL. To this
end, they propose an alternative semantics. Just like our work (we propose a logic on an
alternative semantics, mechanize it, and prove its soundness in Agda), their aim is to provide
a logical basis for static analysis tools.

Marques et al. [24] present a concolic execution engine that systematically explores
different program paths by combining concrete and symbolic execution to enable automated
testing and fault detection. It models execution behavior and uses constraint solvers to

B. Arvay, T. T. H. Doan, and P. Thiemann 3:23

generate inputs and explore paths, taking into account the complexity of Wasm’s stack-based
execution and binary format. Unlike our work, their work is geared towards implementing a
realistic tool.

6.3 Related Uses of Dynamic Logic

The idea of using dynamic logic for symbolic execution can be traced back to Heisel et al. [17].
They formalize Burstall’s verification method [11] using symbolic execution and induction in
the framework of dynamic logic.

Maingaud et al. [23] define a program logic for imperative ML programs based on dynamic
logic and prove its soundness. Their goal is to use this logic as a basis for symbolic execution.

Similar to our approach, the research of Ahrendt et al. [1] emphasizes data integrity in
Solidity smart contracts. This framework verifies smart contracts and ensures strong data
integrity and functional correctness under various conditions. It introduces a specification
language for defining contract properties and behaviors that are critical for security and
reliability. Similar approaches to ours aim to verify the correctness and security of smart
contracts, but differ in methodology and target languages. Their approach uses dynamic
logic for invariant-based specifications with prototype-based tools, while our approach uses
dynamic logic for symbolic execution and focuses on formal proofs.

Abstract execution [31] is a static verification framework based on symbolic execution. It
is geared at schematic programs, i.e., programs with placeholders for program fragments,
so that it can be used to prove certain program transformations correct. Its logical basis is
dynamic logic extending earlier work for Java [9].

7 Conclusion

We presented a dynamic logic for Michelson as well as its extension to blockchain operations
on a small but representative subset of Michelson. The goal was to create a core model
that covers instances of all kinds of operations and that can be easily extended with further
Michelson instructions. We achieved full coverage of scalar functional instructions, the
majority of Michelson instructions. To include any further scalar instruction, one only has to
specify its typing rule and its implementation in Agda. The symbolic execution rule and
the soundness proof for that rule is already provided by our model. Further instructions
that retrieve information from the execution environment can be added easily as well by
extending the Environment record and its subcomponents to include such information.

We cover three exemplary instructions for control flow, because most other conditional
and looping instructions are either very similar or very simple and thus easy to include in
the presented model. One aspect of Michelson that is not covered is first-class functions.
Including them might require some reworking of the current model to store such values on
the stack.

Efficient symbolic execution is not a goal of this work: Agda can normalize a concrete or
symbolic execution state to enable inspection of the state after one or more execution steps,
but in our experiments normalization was sometimes infeasible after less than ten symbolic
execution steps. Nevertheless, we plan to use our soundness proof as the basis for an efficient
symbolic interpreter for Michelson in ongoing work.

ECOOP 2024

3:24 Dynamic Logic for Symbolic Execution for Michelson

References
1 Wolfgang Ahrendt and Richard Bubel. Functional verification of smart contracts via strong

data integrity. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of
Formal Methods, Verification and Validation: Applications, pages 9–24, Cham, 2020. Springer
International Publishing.

2 Elvira Albert, Miguel Gómez-Zamalloa, Laurent Hubert, and Germán Puebla. Verification of
java bytecode using analysis and transformation of logic programs. In Michael Hanus, editor,
Practical Aspects of Declarative Languages, pages 124–139, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

3 Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. Towards verifying Ethereum
smart contract bytecode in Isabelle/HOL. In Proceedings of the 7th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs (CPP), pages 66–77, January 2018.
doi:10.1145/3167084.

4 Permenev Anton, Dimitrov Dimitar, Tsankov Petar, Dana Drachsler-Cohen, and Martin
Vechev. Verx: Safety verification of smart contracts. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1661–1677, 2020. doi:10.1109/SP40000.2020.00024.

5 Luís Pedro Arrojado da Horta, João Santos Reis, Simão Melo de Sousa, and Mário Pereira. A
tool for proving michelson smart contracts in why3. In 2020 IEEE International Conference on
Blockchain (Blockchain), pages 409–414, 2020. doi:10.1109/Blockchain50366.2020.00059.

6 Barnabas Arvay, Thi Thu Ha Doan, and Peter Thiemann. Contract Orchestration for Michelson.
Software, version 0.5 (visited on 2024-08-29). URL: https://freidok.uni-freiburg.de/
data/255176.

7 Daniel Balasubramanian, Zhenkai Zhang, Dan McDermet, and Gabor Karsai. Dynamic
symbolic execution for the analysis of web server applications in java. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing, SAC ’19, pages 2178–2185, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3297280.3297494.

8 Guillaume Bau, Antoine Miné, Vincent Botbol, and Mehdi Bouaziz. Abstract interpretation of
michelson smart-contracts. In Proceedings of the 11th ACM SIGPLAN International Workshop
on the State Of the Art in Program Analysis, SOAP 2022, pages 36–43, New York, NY, USA,
2022. Association for Computing Machinery. doi:10.1145/3520313.3534660.

9 Bernhard Beckert, Vladimir Klebanov, and Benjamin Weiß. Dynamic logic for java. In
Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and
Mattias Ulbrich, editors, Deductive Software Verification – The KeY Book: From Theory
to Practice, pages 49–106. Springer International Publishing, Cham, 2016. doi:10.1007/
978-3-319-49812-6_3.

10 B. Bernardo, R. Cauderlier, Z. Hu, B. Pesin, and J. Tesson. Mi-Cho-Coq, a framework for
certifying Tezos smart contracts. In Formal Methods. FM 2019 International Workshops - Porto,
Portugal, October 7-11, 2019, Revised Selected Papers, Part I, volume 12232 of Lecture Notes
in Computer Science, pages 368–379. Springer, 2019. doi:10.1007/978-3-030-54994-7_28.

11 Rod M. Burstall. Program proving as hand simulation with a little induction. In Jack L. Rosen-
feld, editor, Information Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm,
Sweden, August 5-10, 1974, pages 308–312. North-Holland, 1974.

12 Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In Richard Draves and
Robbert van Renesse, editors, 8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings,
pages 209–224. USENIX Association, 2008. URL: http://www.usenix.org/events/osdi08/
tech/full_papers/cadar/cadar.pdf.

13 Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy: dynamic symbolic
execution for invariant inference. In Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn,
editors, 30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, pages 281–290. ACM, 2008. doi:10.1145/1368088.1368127.

https://doi.org/10.1145/3167084
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1109/Blockchain50366.2020.00059
https://freidok.uni-freiburg.de/data/255176
https://freidok.uni-freiburg.de/data/255176
https://doi.org/10.1145/3297280.3297494
https://doi.org/10.1145/3520313.3534660
https://doi.org/10.1007/978-3-319-49812-6_3
https://doi.org/10.1007/978-3-319-49812-6_3
https://doi.org/10.1007/978-3-030-54994-7_28
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/1368088.1368127

B. Arvay, T. T. H. Doan, and P. Thiemann 3:25

14 L. Goodman. Tezos-a self-amending crypto-ledger, 2014. URL: https://www.tezos.com/
static/papers/white-paper.pdf.

15 Á. Hajdu and D. Jovanović. solc-verify: A modular verifier for solidity smart contracts. In
S. Chakraborty and J. A. Navas, editors, Verified Software. Theories, Tools, and Experiments,
pages 161–179. Springer International Publishing, 2020.

16 David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cambridge, MA,
USA, 2000.

17 Maritta Heisel, Wolfgang Reif, and Werner Stephan. Program verification by symbolic execution
and induction. In Katharina Morik, editor, GWAI-87, 11th German Workshop on Artificial
Intelligence, Geseke, Germany, September 28 - October 2, 1987, Proceedings, volume 152 of
Informatik-Fachberichte, pages 201–210. Springer, 1987. doi:10.1007/978-3-642-73005-4_
22.

18 Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip Daian, Dwight
Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei Stefanescu, and Grigore Rosu. KEVM:
A complete formal semantics of the Ethereum virtual machine. In 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), pages 204–217, 2018. doi:10.1109/CSF.2018.00022.

19 Y. Hirai. Defining the Ethereum virtual machine for interactive theorem provers. In Financial
Cryptography and Data Security, pages 520–535. Springer International Publishing, 2017.

20 James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,
1976. doi:10.1145/360248.360252.

21 Daniel Lehmann and Michael Pradel. Wasabi: A framework for dynamically analyzing
webassembly. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’19, pages 1045–1058,
New York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3297858.
3304068.

22 Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 254–269, 2016.

23 Séverine Maingaud, Vincent Balat, Richard Bubel, Reiner Hähnle, and Alexandre Miquel.
Specifying imperative ML-like programs using dynamic logic. In Bernhard Beckert and
Claude Marché, editors, Formal Verification of Object-Oriented Software - International
Conference, FoVeOOS 2010, Paris, France, June 28-30, 2010, Revised Selected Papers, volume
6528 of Lecture Notes in Computer Science, pages 122–137. Springer, 2010. doi:10.1007/
978-3-642-18070-5_9.

24 Filipe Marques, José Fragoso Santos, Nuno Santos, and Pedro Adão. Concolic Execution for
WebAssembly. In Karim Ali and Jan Vitek, editors, 36th European Conference on Object-
Oriented Programming (ECOOP 2022), volume 222 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 11:1–11:29, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2022.11.

25 Michelson: The language of smart contracts in Tezos. URL: https://tezos.gitlab.io/
alpha/michelson.html.

26 Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco, Josselin
Feist, Trent Brunson, and Artem Dinaburg. Manticore: A user-friendly symbolic execution
framework for binaries and smart contracts. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 1186–1189, 2019. doi:10.1109/ASE.2019.
00133.

27 Yuki Nishida, Hiromasa Saito, Ran Chen, Akira Kawata, Jun Furuse, Kohei Suenaga, and
Atsushi Igarashi. HELMHOLTZ: A verifier for Tezos smart contracts based on refinement
types. New Generation Computing, 40:507–540, 2022. doi:10.1007/s00354-022-00167-1.

28 Nomadic Lab. Michelson: the language of smart contracts in tezos, 2018-2023. Last accessed
17 October 2023. URL: https://tezos.gitlab.io/michelson-reference/.

29 Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Ros,u. A formal verification
tool for Ethereum VM bytecode. In Proceedings of the 2018 26th ACM Joint Meeting on

ECOOP 2024

https://www.tezos.com/static/papers/white-paper.pdf
https://www.tezos.com/static/papers/white-paper.pdf
https://doi.org/10.1007/978-3-642-73005-4_22
https://doi.org/10.1007/978-3-642-73005-4_22
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1007/978-3-642-18070-5_9
https://doi.org/10.1007/978-3-642-18070-5_9
https://doi.org/10.4230/LIPIcs.ECOOP.2022.11
https://tezos.gitlab.io/alpha/michelson.html
https://tezos.gitlab.io/alpha/michelson.html
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1007/s00354-022-00167-1
https://tezos.gitlab.io/michelson-reference/

3:26 Dynamic Logic for Symbolic Execution for Michelson

European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 912–915, October 2018. doi:10.1145/3236024.3264591.

30 Corina S. Pasareanu. Symbolic Execution: The Basics, pages 5–20. Springer International
Publishing, Cham, 2020. doi:10.1007/978-3-031-02551-8_2.

31 Dominic Steinhöfel and Reiner Hähnle. Abstract execution. In Maurice H. ter Beek, Annabelle
McIver, and José N. Oliveira, editors, Formal Methods - The Next 30 Years - Third World
Congress, FM 2019, Porto, Portugal, October 7-11, 2019, Proceedings, volume 11800 of Lecture
Notes in Computer Science, pages 319–336. Springer, 2019. doi:10.1007/978-3-030-30942-8_
20.

32 Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, and
Martin Vechev. Securify: Practical security analysis of smart contracts. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pages 67–82,
October 2018. doi:10.1145/3243734.3243780.

33 Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming language foundations in Agda,
August 2022. URL: https://plfa.inf.ed.ac.uk/22.08/.

34 Conrad Watt, Petar Maksimović, Neelakantan R. Krishnaswami, and Philippa Gardner. A
Program Logic for First-Order Encapsulated WebAssembly. In Alastair F. Donaldson, editor,
33rd European Conference on Object-Oriented Programming (ECOOP 2019), volume 134 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:30, Dagstuhl, Germany,
2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2019.
9.

https://doi.org/10.1145/3236024.3264591
https://doi.org/10.1007/978-3-031-02551-8_2
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1145/3243734.3243780
https://plfa.inf.ed.ac.uk/22.08/
https://doi.org/10.4230/LIPIcs.ECOOP.2019.9
https://doi.org/10.4230/LIPIcs.ECOOP.2019.9

Dynamically Generating Callback Summaries for
Enhancing Static Analysis
Steven Arzt #

Fraunhofer SIT | ATHENE – National Research Center for Applied Cybersecurity,
Darmstadt, Germany

Marc Miltenberger #

Fraunhofer SIT | ATHENE – National Research Center for Applied Cybersecurity,
Darmstadt, Germany

Julius Näumann #

TU Darmstadt | ATHENE – National Research Center for Applied Cybersecurity,
Darmstadt, Germany

Abstract
Interprocedural static analyses require a complete and precise callgraph. Since third-party libraries
are responsible for large portions of the code of an app, a substantial fraction of the effort in
callgraph generation is therefore spent on the library code for each app. For analyses that are
oblivious to the inner workings of a library and only require the user code to be processed, the
library can be replaced with a summary that allows to reconstruct the callbacks from library code
back to user code. To improve performance, we propose the automatic generation and use of precise
pre-computed callgraph summaries for commonly used libraries. Reflective method calls within
libraries and callback-driven APIs pose further challenges for generating precise callgraphs using
static analysis. Pre-computed summaries can also help analyses avoid these challenges.

We present CGMiner, an approach for automatically generating callgraph models for library
code. It dynamically observes sample apps that use one or more particular target libraries. As we
show, CGMiner yields more than 94% of correct edges, whereas existing work only achieves around
33% correct edges. CGMiner avoids the high false positive rate of existing tools. We show that
CGMiner integrated into FlowDroid uncovers 40 % more data flows than our baseline without
callback summaries.

2012 ACM Subject Classification Software and its engineering → Dynamic analysis

Keywords and phrases dynamic analysis, callback detection, java, android

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.4

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.2
Software (Source Code): https://github.com/Fraunhofer-SIT/DynamicCallbackSummaries/

archived at swh:1:dir:774fc1c198c94da21f9d9dc21f9a9721c9ac233c

Funding This research work has been funded by the German Federal Ministry of Education and
Research and the Hessian Min- istry of Higher Education, Research, Science and the Arts within
their joint support of the National Research Center for Applied Cybersecurity ATHENE.

1 Introduction
Static analyses are commonly used for checking software for security vulnerabilities, quality
defects, privacy leaks, and other properties. The callgraph is a core data structure of
interprocedural static analysis. It encodes which statements in the code call which methods.
When an analysis encounters a method call, it queries the callgraph for the set of callees
in which to continue the analysis. If the callgraph misses edges, the respective callees are
not considered and the analysis is incomplete. If the callgraph, on the other hand, contains
spurious edges, irrelevant subtrees in the callgraph must be processed. This may not only
impact performance and scalability, but may also lead to false positives.

V1.1

A
rt
ifa

cts Available

ECOOP

© Steven Arzt, Marc Miltenberger, and Julius Näumann;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 4; pp. 4:1–4:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Steven.Arzt@sit.fraunhofer.de
https://orcid.org/0000-0002-5807-9431
mailto:Marc.Miltenberger@sit.fraunhofer.de
https://orcid.org/0000-0002-3806-0522
mailto:Julius.Naeumann@tu-darmstadt.de
https://orcid.org/0000-0002-5162-3334
https://doi.org/10.4230/LIPIcs.ECOOP.2024.4
https://doi.org/10.4230/DARTS.10.2.2
https://doi.org/10.4230/DARTS.10.2.2
https://github.com/Fraunhofer-SIT/DynamicCallbackSummaries/
https://archive.softwareheritage.org/swh:1:dir:774fc1c198c94da21f9d9dc21f9a9721c9ac233c;origin=https://github.com/Fraunhofer-SIT/ECOOP2024-DynamicCallbackSummaries;visit=swh:1:snp:1337542ad7ff0dc037a7be087584e5602d09382f;anchor=swh:1:rev:2b236099e63269496b7d2420c8964f002dfb70ec
https://doi.org/10.4230/DARTS.10.2.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Dynamically Generating Callback Summaries for Enhancing Static Analysis

Computing a complete and precise callgraph is non-trivial due to virtual dispatch and
exceptional control flow. Approaches such as SPARK [16] already handle polymorphism
well. SPARK builds upon the Escape Analysis in Soot [14] to handle exceptional control flow
precisely. Nevertheless, several problems remain unsolved. Firstly, software commonly [17]
uses third-party libraries, which can contribute significant amounts of code. Large code
bases, in turn, pose scalability challenges for callgraph generation. Secondly, libraries can be
complex and, e.g., use reflective method calls, contain asynchronous control flow, or manage
callbacks in collections. A callgraph analysis must be able to handle all these language
features correctly. Some libraries such as the popular OKHTTP3 library have separate
callbacks for successful and failed requests. The failure callback is only executed when an
exception is thrown within the library code. An approach without support for exceptional
flows misses these callbacks. In practice, existing callgraph analyses apply approximations
that lead to spurious or missing edges, or are too complex to scale to large programs.

We observe that, from the perspective of most client analyses, only the interface of a
library is relevant. Callgraph edges inside the library only need to be computed as a means
to obtain edges that cross the library’s interface through callbacks. We therefore argue that
these API edges can be summarized once as a one-time effort. Only the information which
API calls trigger which callbacks must be retained. Intuitively, the summary is a list of
such target callbacks. When a client analysis encounters a call to an API method for which
a summary is available, it plugs in the summary instead of analyzing the library. More
precisely, it adds a callgraph edge to each callback described in the summary. A similar
reasoning has already been applied to the data flow behavior of libraries [2].

Manually assembling these summaries is inefficient, since many libraries use callbacks.
Furthermore, each new version of each library would need to be studied to reflect the changes
made to the library API in the model. Consequently, the generation of these callback models
must be automated. Static approaches [8] share the shortcomings of static callgraph analyses
and require coarse approximations, leading to false positives as we show.

Our approach CGMiner is based on dynamic analysis instead. CGMiner takes a set of
programs that use libraries of interest. It statically instruments these programs such that
each call to a library function reports dynamic callgraph data to an analyzer. CGMiner
executes all instrumented programs and combines the resulting execution traces into a callback
summary for the respective library. It abstracts away from all program-specific behavior
and reduces the summaries to edges between methods in the public interface of the library,
omitting calls within the library itself leading eventually to the execution of a callback. If a
library, for example, takes a callback as the first argument on an API call and then invokes a
method on the object passed as the first argument, there is an edge between this API method
and its first parameter. This edge exists regardless of which program uses the API and
what the concrete callback implementation is. CGMiner captures such abstract callback
semantics on the API level. With its focus on dynamic analysis, CGMiner avoids many of
the common challenges in static analysis such as precisely modeling reflective method calls
and complex collection types.

In this work, we focus on Android apps. On Android, libraries are compiled into the
apps that use them, rather than being shared between apps. Consequently, a wide variety
of libraries is used in apps [26], and handling them efficiently is vital for each app analysis.
Furthermore, almost 2 million apps are available in the official Play Store. Since for each
library, CGMiner requires a sample set of apps that use the respective library, such a
freely accessible data source is beneficial. In addition, Android is widely used for dealing
with sensitive data and functions, making client analyses that depend on callgraphs for,

S. Arzt, M. Miltenberger, and J. Näumann 4:3

e.g., finding data leaks, highly relevant in practice. We show that CGMiner can identify
efficiently complex callback edges. While other approaches lead to true positive rates of
more than 33% with an additional 20% of edges being incomplete, CGMiner achieves more
than 91% correct edges. Note that CGMiner focuses on control flow and is intended to
be combined with analysis-specific summaries such as StubDroid [2] for data flow analysis.
Even with a simple integration approach, CGMiner summaries lead to 28% more correct
flows being discovered than without callback summaries.

The remainder of this paper is structured as follows. Section 2 contains some background
information about Android. Section 3 shows a motivating example. Section 4 explains the
CGMiner approach. We describe implementation details in Section 5, before explaining
CGMiner’s limitations in Section 6. Our empirical research questions and evaluation data
is contained in Section 7. Finally, we present related work in Section 8 and conclude in
Section 9.

2 Android Background

Android applications are written predominately in Java and Kotlin. The compiler translate
this code into Dalvik byte code, which is similar to Java byte code used by the JVM. After
compilation, the Dalvik byte code is written into one or multiple classes.dex files. The dex
files as well as the necessary resource files of the app are packaged in an APK file, which is
ultimately just a ZIP file. Android apps may use system classes from the java(x) and android
packages. The implementation of these system classes are shared between different apps and
reside on the device. On the host computer, the Android SDK installs a stubbed version of
this Android system classes, which only contains the method signatures and class hierarchies
of the actual implementation. This stub jar is used to link against during compilation, but
does not contain the actual implementation code. In contrast to the system implementation,
all other third party libraries and their transitive dependencies are compiled to Dalvik byte
code as well and placed alongside the application code in the same dex files, so that each
application is self-contained.

3 Running Example

Listing 1 shows a program that uses a simplified API for communicating with a remote server
once the app’s main activity is launched. The library is a slightly adapted version of the
OKHttp library. For the sake of brevity, we omit the implementation of the library and
instead explain it using the code of the example program.

The library’s main class HttpLibrary is responsible for communicating with the server.
Each request is represented by an instance of the HttpTask class. Each task is scheduled for
execution using the schedule method. Once all requests are scheduled, the program invokes
the runAll method to run them against the remote server. Once a task is complete, i.e.,
the server has responded with results or an error, the respective callback is invoked. The
implementation of the error callback is omitted in Listing 1 for brevity.

For demonstration purposes, we assume the following simplified implementation of the
library. The constructor of HttpTask stores the callback that it receives as a parameter
into a field in HttpTask. The schedule method adds the HttpTask to a list. Still, for not
freezing the UI thread, the library is multi-threaded and performs the http request in the
background. The runAll method spawns a worker thread that regularly polls the scheduled

ECOOP 2024

4:4 Dynamically Generating Callback Summaries for Enhancing Static Analysis

Listing 1 Motivating Example Code.
1 ICompleted onComplete = new ICompleted (){
2 @Override
3 public void onCallback(String results){
4 Log.i("Web", "Results:␣" + results);
5 }
6 };
7 IHttpFailed onFailed = ...;
8 HttpTask task = new HttpTask("/api/do", onComplete , onFailed);
9 HttpLibrary lib = new HttpLibrary("http :// www.company.com");

10 lib.schedule(task);
11 lib.runAll ();

tasks, takes the task at the top of the worklist, and processes it. The worker thread sends
the requests to the server, collects the results, and then invokes the callback. The callbacks
are invoked on a different thread than the original call to schedule or runAll.

Callgraph algorithms traditionally do not model the delayed behavior of the callback
and instead insert an edge from the call site that causes the callback to be executed to
the callback implementation, e.g., from Thread.start to the run() method of the thread.
CGMiner adopts the same behavior. Its callback summaries model an edge from runAll to
the onCallback method of both completion and error callback. In other words, our model
assumes that runAll immediately invokes both callbacks. The challenge in this example,
which is not handled by existing approaches, arises because the callbacks are not in the scope
of the call site for runAll. Instead, the summary generator must automatically infer the link
to the HttpTask instances that were scheduled, and then to the actual callbacks that were
passed to the constructor of the HttpTask.

Existing approaches such as EdgeMiner [8] model the callgraph edges in Line 8. This
reduces the complexity of the example, because the callback is not passed across multiple
classes. On the other hand, such a model is incompatible with a flow-sensitive analysis.
To illustrate this, we change the example slightly as shown in Listing 2. For this example,
suppose that the source method call in Line 9 returns sensitive information. Further assume
that the parameter of the sink method (called in Line 4) is sent to a remote server. This
example uses the field data to save the sensitive information, which is leaked in the callback
method.

Consider we are running a flow-sensitive taint analysis such as FlowDroid [5] to detect
this data flow from source to sink. FlowDroid starts at the source [4] statement in Line 9
and advances forward through the control-flow graph until it reaches a sink. It reports a
leak when the sink is reached with a tainted parameter. During the propagation, it keeps
track of all variables that may contain sensitive information (“tainted“).

Notice that the callback is passed to the library in Line 8, before the source method is
called. During execution, the call to runAll in Line 12 invokes the callback which leaks the
data. Nonetheless, EdgeMiner inserts an edge at Line 8 to the onCallback method. Because
the call to source happens after the callback registration, FlowDroid does not encounter
the sink statement when using the EdgeMiner summary. Consequently, the leak is missed.
In this example, FlowDroid needs an edge from the runAll call in Line 12 to the callback
method in order to reach the sink and thus detect the dataflow.

S. Arzt, M. Miltenberger, and J. Näumann 4:5

Listing 2 Flow-Sensitivity Example.
1 ICompleted onComplete = new ICompleted (){
2 @Override
3 public void onCallback(String results){
4 sink(data);
5 }
6 };
7 IHttpFailed = ...;
8 HttpTask task = new HttpTask("/api/do", onComplete , onFailed);
9 data = source ();

10 HttpLibrary lib = new HttpLibrary("http :// www.company.com");
11 lib.schedule(task);
12 lib.runAll ();

Such approximations as in existing work have even greater negative consequences. In yet
another modification of the example, imagine that the runAll method never calls onFailed,
but throws an exception instead. The onFailed callback only exists for a second method
tryRun that calls onFailed in the case of an error and that never throws an exception. In
that case, EdgeMiner would still model the edge from the HttpTask constructor call in Line 8
to onFailed. This edge is clearly invalid if the program never calls tryRun. The EdgeMiner
model does not contain any notion of runAll and tryRun and, hence, cannot make this
distinction.

4 Approach

To avoid the inherent challenges of static analysis described in Section 1, CGMiner relies
on dynamic analysis for inferring the callgraph summaries on libraries. Figure 1 shows the
architecture of the analysis. CGMiner takes as input the original APK file and a list of
classes that correspond to libraries. These apps are then instrumented with three analyses: a
general-purpose dynamic callgraph analysis, a general-purpose dynamic taint analysis and a
specialized callback analysis into the app. Since libraries (except for the Android Framework)
are part of the application code in Android, library code can be instrumented as well.

App
Instrumenter

Library List

Instrumented
App

Runner

Device

Analyzer

• Dynamic Callgraph
• Dynamic Taints
• Callback Events

Callback
Summaries

Figure 1 CGMiner Approach. The app is instrumented and then executed on a device, with
runtime events being routed to the callgraph analysis. Events include dynamic callgraph, dynamic
taint tracking, and specific callback analysis events.

The instrumented app is passed to the runner, which installs it on a device, and establishes
a communication channel with the app. It forwards all events sent by the analysis code
injected into the app to the analyzer. The analyzer is responsible for processing the events

ECOOP 2024

4:6 Dynamically Generating Callback Summaries for Enhancing Static Analysis

and for inferring the callback summaries while the app is running. In the remainder of this
section, we explain how the analyzer derives the callback summaries and how the different
components (dynamic callgraph, dynamic taint analysis, callback analyzer) interact.

4.1 General Idea
CGMiner needs to identify which statements trigger which callbacks. The app is instru-
mented with event tracing that reports back to the analysis computer whenever a potential
callback method is invoked on the phone. When such a method is invoked, CGMiner uses
a combination of dynamic control flow analysis and dynamic taint tracking to identify all
API calls between the point where the callback class was originally passed to the library
(constructor of HttpTask in the example) and the callback method.

When arriving inside a callback, CGMiner must find the API call that triggered the
callback (method runAll in the example). Intuitively, this can be done by searching backwards
through the dynamic control flow graph. This approach, however, does not identify the
necessary state changes to the HttpLibrary object. Recall from Section 3 that the runAll
method would not invoke any callback unless the callback has previously been registered
with the library using the schedule method. In other words, the inner state of the HttpTask
object must be changed before calling runAll. More generally, the callback is passed through
several objects along the way, and CGMiner must identify the API calls that lead to
these state changes, i.e., that copy the callback around. In the example, the constructor of
HttpTask assigns the callback to a field and the schedule method adds the task to the list,
which is finally processed by runAll (see Section 3). We call such methods transfer methods.
The user code must call this method for the callback to be registered, and it must therefore
be part of the callback summary.

Intuitively, when an API method stores a callback in a field or collection inside of some
object, the transfer method is the last API call that transitively lead to the assignment. To
find the relevant assignments, CGMiner relies on dynamic data flow analysis. CGMiner
taints each callback object when it is first passed to an API call (constructor of HttpTask in
the example), i.e., each callback object is considered a source for the dynamic taint tracking
algorithm. It then follows this taint through the library, until it arrives at the this object
inside a callback method. The start of a potential callback method is considered a sink.

The taint state on the device is always mirrored to the analysis computer. When the
analyzer observes that a callback has been called, it retrieves the taint paths, i.e., all
statements that have passed the taint from one object to another on the path between the
callback registration and the invocation of the callback method. Whenever a new object is
tainted, e.g., through an assignment to a field, CGMiner searches the dynamic callgraph
backwards to find the API call that triggered this taint transfer, i.e., the methods that user
code must call before runAll.

4.2 Overview of the Approach
We define a border edge as an edge that is from library code to user code or vice versa. In
other words, the caller is in library code and the callee is user code (i.e., a callback), or the
caller is in user code and the callee is library code (traditional call to a library method).
Edges in the first case, i.e., callbacks, are denoted out edges, whereas edges in the second
case, i.e., normal library calls, are in edges. Figure 2 shows an abbreviated control flow
graph for Listing 1. It further shows the in and out edges for the motivating sample. In
the example, the HttpTask and HttpLibary constructor calls and the calls to schedule and

S. Arzt, M. Miltenberger, and J. Näumann 4:7

runAll are in edges, because these calls in the application code directly call library methods.
The runAll method iterates over all scheduled tasks, which were registered in the schedule
method, and calls a library-internal run method. The run method calls the onComplete on
the callback. Thus, this method call constitutes an out edge.

Figure 2 Shows in and out edges for Listing 1. in edges are regular arrows. The out edge is
denoted by a white tip.

As a pre-analysis, CGMiner statically over-approximates the potential callback imple-
mentations, i.e., potential targets of out edges. We call these methods callback candidates.
Afterwards, CGMiner statically approximates a set of all possible callback classes. In
Listing 1, the constructor HttpTask may register a callback. All classes that (transitively)
implement the interfaces ICompleted and IHttpFailed are potential callbacks. Specifically,
we have the anonymous inner class implementing ICompleted and the (omitted) correspond-
ing inner class for IHttpFailed. These classes override the interface methods, in this case
only onCallback. These overriden methods represent the potential targets of out edges.
These steps for identifying callback registration sites and potential callbacks are static
over-approximations, which are used to bootstrap the dynamic analysis that follows later.

The dynamic analysis is used to determine which callback candidates are reached and to
perform dynamic taint tracking in order to track which API calls (such as the schedule and
the constructor calls in Listing 1) are necessary.

At the start of each callback candidate, we statically instrument a call to a method we
call reporting method. This reporting method sends an event with information about the
triggered callback to the analyzer. Because irrelevant callback candidates or spurious callback
implementations will later not be reached during dynamic analysis, they will not become
false positives. We provide details on how potential callbacks are identified in Section 4.3.

When a callback is invoked at runtime and the respective callback event is triggered, the
analyzer uses the dynamic callgraph to find the corresponding in edge. The call site at the in
edge represents the API method that triggers the callback. Note that the analyzer skips the
library-internal calls between in and out edge. The in and out edges are trivial to identify
based on the classes in which the respective calls and their corresponding callees are located.
In the example from Listing 1, the analyzer deduces that a call to HttpLibrary.runAll
invokes IHttpCompleted.onCallback. Further, CGMiner uses dynamic taint tracking to
find the transfer methods. Therefore, the statements at the beginning of all potential callback

ECOOP 2024

4:8 Dynamically Generating Callback Summaries for Enhancing Static Analysis

methods are marked as sinks for the dynamic taint analysis. To build the list of sources,
CGMiner first collects all API sites that receive instances of potential callback classes as
arguments. These API calls are then registered as sources in the dynamic taint analysis such
that the respective potential callback classes, i.e., the call arguments, are tracked at runtime.
Note that this approach is an over-approximation. When generating the callback summaries,
CGMiner only relies on the taint paths that were actually taken at runtime. Therefore,
marking too many classes as potential callbacks or registering too many APIs as sources
does not reduce CGMiner’s precision. CGMiner assigns an unique ID number to each
taint source in order to distinguish different sources.

Transfer methods do not need to operate on the original heap object. The schedule
method in Listing 1 never touches the callback object. It operates on the HttpTask that
encapsulates the callback. An approach based on object identity alone would miss the
schedule method. Dynamic taint tracking, on the other hand, can taint the HttpTask
object when it encounters the assignment inside the constructor of HttpTask. Recall that
this constructor receives the callback and stores it in a field. Afterwards, the dynamic
taint tracker follows the HttpTask object as well. Similar reasoning must be applied for the
schedule method, which stores the HttpTask object in a list, i.e., the list must be tainted
as well.

With this taint tracking information, CGMiner can identify all border edges by looking
at the taint transfers. Recall that the first statement inside the callback is a sink. CGMiner
can query the taint analysis for the corresponding source and all statements in between at
which taint was transferred to fields or collections (details in Section 4.5). For each statement
on the taint path, it queries the dynamic callgraph to identify the corresponding in edge,
i.e., the call from the user code that lead to the taint transfer. In the example, this allows
CGMiner to identify the call to the constructor of HttpTask (transfer: field assignment)
and to schedule (transfer: collection). Approaches that only inspect the call chain that
ends at the callback (runAll in the example) would miss these intermediate calls.

4.3 Identifying Potential Callbacks
Recall that the callback analysis is started when a callback is invoked. Consequently, each
possible callback method must be instrumented with an event that notifies the analyzer
about which method has been called at runtime. This section shows the static analysis phase
of the CGMiner approach. In this phase, CGMiner first determines possible callbacks and
then instruments code in order to be notified when a callback happens.

To find the potential callbacks, CGMiner identifies all statements in the app that call
library methods. The approach then checks whether a reference to a callback object is
passed as an argument. We define a callback argument as follows. The declared type of the
respective parameter is a reference type from the library, i.e., a class or an interface, which
must be non-final and accessible to user code according to its access modifiers. Further, if
the library class is a class and not an interface, it must have a non-private constructor. The
type of the argument that is passed must be a class type from the user code that (potentially
indirectly) inherits from the library class or implements the library interface. This class
type represents a potential callback implementation. The type of the callback class can be
approximated statically, either by identifying the allocation site at which the callback object
was instantiated, or by looking at the declared type of the callback variable that is passed
as an argument. To be complete, CGMiner applies a Variable Type Analysis (VTA) style
analysis [24] to identify all possible types based on the declared type if no precise allocation
site is available. Considering too many potential callbacks only leads to more instrumentation
effort and does not affect the precision of CGMiner, as these spurious callbacks are not
triggered at runtime.

S. Arzt, M. Miltenberger, and J. Näumann 4:9

CGMiner only identifies a set of potential library classes in this step. The concrete
library method to which the callback object is passed is irrelevant for the analysis in this
stage and is discarded.

Potential callbacks must be instrumented. Since this is not possible for Android and
Java system classes, CGMiner automatically wraps these classes. For example, when
java.lang.ArrayList is instantiated in the application code, CGMiner replaces the call
so that a wrapped version of ArrayList is called, which can then be instrumented. The
wrapped variant inherits from ArrayList and forwards all protected and public methods to
their corresponding super class implementations. CGMiner not only wraps constructor
calls, but also values returned by system classes, e.g. ArrayList.iterator().

4.4 Dynamic Callgraph Analysis
For building the dynamic call graph, CGMiner instruments the app as follows. Before each
call, a CALL event is sent from the device to the analyzer with the unique ID of the call
site. After the call site, i.e., when the call has returned, a RETURN event is sent for the same
ID. At the beginning of each method, a ENTER event is sent. Before each return or throw
statement, a LEAVE event is sent. These events allow the analyzer to reconstruct the call
edges taken on the device. Due to memory and performance constraints, CGMiner does not
build the dynamic callgraph on the device. Once the events are sent, they are immediately
discarded on the device.

The analyzer maintains a separate call stack for each thread. For each CALL event, the
respective call site is put on the stack. When the analyzer receives an ENTER event, it creates
a call edge from the top call site on the stack to the method that was entered. Note that a
CALL event may be followed by multiple pairs of ENTER and LEAVE events before the RETURN
event occurs. The Dalvik / Java runtime calls the static initializer of a class when the class
is loaded. Therefore, each call may first invoke the static initializer before the actual callee is
called. CGMiner captures this semantic by leaving the call site of the static initializer on
the stack until the RETURN event is encountered. CGMiner does not consider implicit calls
to static initializers from statements that are not call sites, e.g., from assignments to static
variables. In this case, the static initializer generates an ENTER event, but has no matching
call site on the stack. Therefore, the ENTER event is discarded. As CGMiner reconstructs
call chains to callbacks, non-call initializations are not relevant.

4.5 Dynamic Taint Analysis
As explained in Section 4.2, CGMiner uses dynamic taint tracking to track the callback
object through the program, including all container objects that hold this callback object.
Note that only heap objects are tracked, no primitives. Therefore, the runtime code that gets
instrumented into the app can uniquely distinguish each tainted object by its identity hash
code (System.identityHashCode()). The instrumented runtime code stores a map between
the unique ID of the taint source and the identity hash code1, and also transmits this map
to the analyzer on every change, i.e., whenever a new object is tainted. These transmissions
occur on the background based on a transmission queue. The events are sent as one message
whenever a certain number of events have accumulated. Therefore, the transmissions do not
affect the performance of the original app.

1 The implementation takes care of checking referential equality in case of hash collisions.

ECOOP 2024

4:10 Dynamically Generating Callback Summaries for Enhancing Static Analysis

All field assignments are instrumented to perform taint transfers. If a variable is assigned
to a field, the runtime code checks whether the variable on the right side of the assignment
is tainted, i.e., its identity hash code is in the taint map. If so, the base object that contains
the field is tainted as well, i.e., its identity hash code is written into the map with the same
source ID as the variable. These derived taints are field-insensitive by design. If a library
stores two different callbacks in two fields of the same object, this object is associated with
both sources.

Recall that the dynamic taint tracking in CGMiner is special, since the object that
is tainted at the source (the callback object) is always the same object that arrives at the
sink (the this object inside the callback). The taint tracking is only used to track the path
between where the callback was registered in the library and where the control flow arrives
inside the callback. This allows for some imprecision in the taint tracking, because flows
where source and sink object are not identical can be discarded.

The Java Standard Library cannot be instrumented, because it is pre-installed on the
device and not part not part of the app. For such cases, CGMiner relies on the static
taint data flow summaries from StubDroid [2]. Based on these summaries, CGMiner adds
instrumentation at the call site in the user code rather than instrumenting the library itself.

4.6 Callback Summary Modelling
In this section, we describe the model that we use for the callback summaries throughout the
rest of the paper. Note that this section only contains the general principle of a summary.
We will use this model in Section 4.7, where we describe the algorithm for generating the
callback summaries.

In the simplest case, we model callback summaries as a single “fake” call edge a → ⟨b, c⟩
from an API call a to a callback method b. The target is a pair ⟨b, c⟩, where c describes
the object on which method b is called at the call site a. Recall that applying a callback
summary corresponds to a virtual dispatch in the context of the original API call. In
other words, the target method is called either on the same base object as the original
API method, or an object passed to the original API call as a parameter. As an example,
consider AsyncTask. AsyncTask is a class that is commonly used in Android, which is
part of Android’s standard library, which is automatically available to every app. It is
used to perform an action asynchronously, similar to a Java thread. Developers extend the
AsyncTask class and override the doInBackground method, which is the callback method
called in a background thread. In order to start the task, developers invoke the execute
method on their AsyncTask instance. In the case of the AsyncTask class, the summary would
be AsyncTask.execute → ⟨AsyncTask.doInBackground, −1⟩. The special value c = −1
stands for the base object of the call to execute, i.e., the AsyncTask object itself. A c ≥ 0
would denote the cth parameter object of the caller statement using zero-indexing. Note
that there may be more than one edge that originates in the same API method a. In the
example, the Android OS also calls methods such as onPostExecute and onPreExecute,
each of which is modelled as a separate summary edge.

The case from the example in Listing 1 is more complex, since the callback object is
passed through multiple intermediate API calls, i.e. transfer functions. When applying the
callback summary in a callgraph algorithm, i.e., when identifying the method that shall
receive calls to HttpLibrary.runAll, the intermediate edges are processed in reverse order.
The method schedule is called on the base object (index -1) of the previous call to runAll.
The constructor of HttpTask, is called on the object that was the first argument (index 0)
on the previous call to schedule. The original callback method onCallback is invoked on
the object that was the second argument (index 1) in the previous call to the constructor of
HttpTask.

S. Arzt, M. Miltenberger, and J. Näumann 4:11

In the callback summary, these intermediate calls are modelled as intermediate edges:
HttpLibrary.runAll →⟨HttpLibrary.schedule, −1⟩ →⟨HttpTask.cons, 0⟩ →
⟨IHttpCompleted.onCallback, 1⟩.

4.7 Callback Reconstruction
Algorithm 1 shows the details of how callback summaries are created. Function Build-
CallbackSummaries is the main entry point that builds the callback summaries. It is called
when the analyzer receives an event that callback method m has been called at runtime.

BuildCallbackSummaries uses the method GetLastLibraryCallSite to get the last
library call site. GetLastLibraryCallSite in turn uses a helper method GetDynamicTraces,
which returns a set of call traces that end in statement s by performing a graph search on
the dynamic callgraph. The call graph is flattened into a set T of sequences of call sites c.
Recursions are unrolled once in GetDynamicTraces, since repeating the same sub-sequence
of calls does not provide any additional insights for the purpose of callgraph analysis. For
not bloating the description, we do not present the implementation of the helper method
GetDynamicTraces in the pseudocode.

Given a statement inside library code, method GetLastUserCodeCallSite uses the traces
returned by GetDynamicTraces and returns the last user code statement that happened
before and that transitively triggered the given library code statement. Similarly, method
GetLastUserCodeCallSite takes a statement inside a callback in user code and identifies the
last library statement that happened before and (transitively) invoked the given statement
from the callback method. The helper method Predecessor takes a statement and returns
the predecessor statement on the dynamic callgraph. For simplifying the presentation, we
assume that this statement is unique. Our implementation can handle multiple candidates.

The main summary generator BuildCallbackSummaries first obtains the last statement
in the library code before the callback was invoked (line 20). This is the last statement
in the library before the control flow is passed back to user code, i.e., the out edge. The
relevant interactions between user code and library API occur between this statement and
the statement that originally passed the callback to the library (the in edge and source for
the dynamic data flow analysis). We will explain the special case of Sc = ϵ (first branch in
line 21) later. In line 25, CGMiner uses the method GetPathsBetween to query the dynamic
taint graph for all taint paths between the two statements. A taint path is a sequence of
statements that assigns a tainted variable or field to another variable or field, i.e., passes
around a reference to a tainted object. This definition implies that method calls are part of
the taint path as well, because they assign the value of the tainted argument at the call site
to the corresponding parameter variable inside the callee. Note that there can be more than
one path between source and sink, so P is a set of lists of statements. CGMiner first iterates
over all paths and then over the statements in each path. It builds a new summary for each
path. Hence, the initialization of the summary (line 27) is inside the loop over the paths.

The summary starts with the statement that passes the callback object to the library,
i.e., the in edge. This statement is simply the source from which taints arrive in the callback
method, as shown in line 27. Method GetSource returns the API at which the source was
registered. The assignment statements on the taint path that copy around the callback
object inside the library are not directly visible to the user code. Instead, the user code
calls API methods that transitively trigger these statements through library-internal call
chains. In the example, an assignment somewhere inside schedule or one of its transitive
callees assigns the parameter with the task to a field. This assignment is on the taint
path, but only the preceding call to the transfer method schedule is relevant as a part

ECOOP 2024

4:12 Dynamically Generating Callback Summaries for Enhancing Static Analysis

Algorithm 1 Callback Reconstruction Algorithm.

1 Function GetLastUserCallSite(s):
INPUT: s – the first statement in the callback
OUTPUT: The last statement in user code

T = GetDynamicTraces (s)
2 foreach t ∈ T do
3 foreach c ∈ t do
4 c′ = Predecessor (c)
5 if not IsLibrary (GetMethod (c′)) then
6 if IsLibrary (GetMethod (c)) then
7 return c′

8 return ϵ

9

10 Function GetLastLibraryCallSite(s):

INPUT: s – the first statement in the callback
OUTPUT: The last statement in library code

T = GetDynamicTraces (s)
11 foreach t ∈ T do
12 foreach c ∈ t do
13 c′ = Predecessor (c)
14 if not IsLibrary (GetMethod (c)) then
15 if IsLibrary (GetMethod (c′)) then
16 return c′

17 return ϵ

18

19 Function BuildCallbackSummaries(m):

INPUT: m – the callback method
OUTPUT: A set of callback summaries

∆ = ∅
20 Sc = GetLastLibraryCallSite (FirstStmt (m))
21 if Sc = ϵ then
22 ϕ =GetSource (m)
23 ∆ = {ϕ → ⟨m, γ(m)⟩}
24 else
25 P = GetPathsBetween (GetSource (m), Sc)
26 foreach p ∈ P do
27 δ = ω(m)
28 foreach s ∈ p do
29 Su =GetLastUserCallSite (s)
30 δ = δ ◦ ⟨ω(Su), γ(Su)⟩
31 ∆ = ∆ ∪ {δ}
32 return ∆
33

S. Arzt, M. Miltenberger, and J. Näumann 4:13

of the summary. In line 29, CGMiner uses the helper method GetLastUserCallSite to
identify this corresponding API method by conducting a backward search in the dynamic
callgraph. For statements that are already in user code, i.e., the first statement on the path,
GetLastUserCallSite is an identity function.

Each identified transfer statement in user code maps to one fragment of a summary. In
line 30 the current API method is concatenated to the summary built so far. For example,
if the summary HttpLibrary.runAll → ⟨HttpLibrary.schedule, −1⟩ existed before, a new
right arrow is appended to the next method and parameter index. As explained above, for
the last statement of a taint path, Su = Sc holds, i.e., a taint path always ends with the API
call that finally invokes the callback. Sc is the last library call site (line 20 in Algorithm 1),
i.e., the last statement that was executed in the library before invoking the callback.

For extending the summary, CGMiner uses two helper functions: ω and γ. The ω

method performs the generalization from concrete statements and methods to API interfaces.
For call sites, ω retrieves the API signature. For callback methods, ω retrieves the name
of the interface or abstract API class that declares the method. The γ method takes a call
statement and identifies the tainted parameter, i.e., the parameter that contains the callback
object, by querying the dynamic data flow graph. As explained in section 4.6, CGMiner
uses the special value −1 if the base object of the call is tainted.

Note that Algorithm 1 also works for cases without transfer methods. Android’s
AsyncTask.execute method is part of the Android SDK, i.e., a pre-installed library on
the device. It cannot be instrumented. Conceptually, the in edge points to a fake node (a
method for which we have no implementation) and the out edge points from this node to
the callback method doInBackground. In this case, the summary is a simple edge from a
single API call site to a single callee method as explained in Section 4.6. In the algorithm,
Sc = ϵ holds, and the first branch is taken in line 21. CGMiner retrieves the taint source,
i.e., the in edge and construct an edge to the callback method m. The parameter index is
derived from the taint graph using an overload of γ that processes the parameter variables of
m instead of the call arguments at a call site.

4.8 Extensions and Special Cases
For simplicity, the algorithm presented in the pseudocode assumes that a single callback
method is only connected to a single source, i.e., GetSource returns a single method. In
other words, the developer does not re-use the same callback implementation for different
independent API calls. Our implementation supports such re-uses.

Further, recall from Section 4.5 that CGMiner uses StubDroid summaries to model the
effects of methods that cannot be instrumented in the dynamic taint analysis. In these cases,
the transfer method cannot be found using a backwards search on the dynamic callgraph as
shown in line 29. Instead, CGMiner marks these statements and directly uses statement s

in such a case.

4.9 Applying Summaries
Many static analysis approaches require a callgraph. Computing the callgraph on the
application code as well as the code of all libraries required by the application can require
significant computational resources and time. Therefore, it makes sense to replace the
libraries by summaries. These summaries must capture the control flow of the library with
respect to its external interface, i.e., it must correctly model callbacks back to the application
code. CGMiner generates such summaries. They can applied whenever a callgraph is
needed on an application that uses a library for which a summary was previously computed.

ECOOP 2024

4:14 Dynamically Generating Callback Summaries for Enhancing Static Analysis

As such, we want to apply the generated callback summaries during the callback construc-
tion. In the case of the motivating sample in Listing 1, we want to apply the edge summary
HttpLibrary.runAll →⟨HttpLibrary.schedule, −1⟩ →⟨HttpTask.cons, 0⟩ →
⟨IHttpCompleted.onCallback, 1⟩. In this section, we introduce Algorithm 2. In the case
of the motivating example, the algorithm outputs an edge from runAll to the anonymous
implementation referenced by onComplete and onFailed, resulting in a precise callgraph. This
shows that we need the intermediate edges in order to determine the link between the
implementation supplied at the constructor call (referenced by onComplete in the sample)
and the call to runAll. Without these intermediate edges we have no information on the
actual type of the callback object at the callback invocation site. Without such information,
we would need to create edges from runAll to all possible implementations of ICompleted,
even if they are not used as a callback.

Given a call site s and a set of callback summaries ∆, method FindReceivers in
Algorithm 2 enumerates the potential callees at s. FindReceivers performs a traditional
callgraph search via QueryCallgraph. It then augments these callees with the callbacks that
are found by applying the callback summaries.

Algorithm 2 Summary Application Algorithm.

1 Function FindReceivers(s, ∆):
INPUT: s – the call site for which to find the receivers,
δ := ⟨α1, β1⟩ → ... → ⟨αn, βn⟩
– the callback summaries
OUTPUT: The potential callees for the given call site

2 R = { QueryCallgraph (s) }
3 foreach (δ := (ω(s) → ... → ⟨αn, βn⟩)) ∈ ∆ do
4 δ̂ := ⟨α1, β1⟩ → ... → ⟨α1, β1⟩
5 R = R∪ApplySummary (s, δ̂, −1)
6 return R
7

8 Function ApplySummary(s, δ, i):

INPUT: s – the call site for which to find the receivers, δ – the summary, i – the
argument index
OUTPUT: The potential callees for the given call site

9 δ̂ := ⟨α2, β2⟩ → ... → ⟨αn, βn⟩
10 v = VariableOf(s, i)
11 S = GetCallsOn(v)
12 R = ∅
13 foreach ŝ ∈ S do
14 if δ̂ = ϵ then
15 R = R ∪ {κ(ŝ, v)}

else
16 FindReceivers (ŝ, δ̂, γ(ŝ, v)))
17 return R
18

S. Arzt, M. Miltenberger, and J. Näumann 4:15

For applying the callback summaries, line 3 iterates over all summaries δ in the database ∆.
It looks for those summaries that reference the API call from the given statement. Recall from
Section 4.7 that ω(s) extracts the generic API method signature from a concrete statement.
Each summary is applied using method ApplySummary. Note that the source statement ω(s)
is removed from the sequence of calls inside the summary and only the remaining calls are
passed. Method ApplySummary processes these intermediate calls recursively and removes
one call per iteration until the final call, i.e., the one that invokes the callback method, is
found. We included the structure of δ in line 1 for clarity. Line 9 shows the derived δ̂ with
the first element removed from the summary.

For the structure of the individual calls on the summary, recall from Section 4.6 that the
first element a encodes the API method, and b encodes the base object on which the API
method is called. b = −1 refers to a call on the base object, b ≥ 0 references the parameter
with the respective index.

Method VariableOf in line 10 obtains the variable v that corresponds to index i in the
context of statement s. CGMiner then obtains all virtual call sites ŝ ∈ S where variable v is
the base object using method GetCallsOn. For each of these call sites, CGMiner continues
the search for the element of the call summary using a recursive call to ApplySummary in
line 16. Method γ takes a statement, which must be a call site, and a variable, and returns
the index of that variable in the argument list of the call (or -1 if the variable is the variable
is the base object of the call).

The recursion ends if the summary has no further calls to analyze (line 14). Method κ

takes a statement and a variable, e.g., s.onCallback() and s. It returns the method that
is called (onCallback in this case), which is the final callee that is added to the callgraph.
Note that ApplySummary calls FindReceivers again once the statement and variable of the
callback are known. This is necessary, because callbacks usually rely on virtual dispatch,
i.e., the actual receiver depends on the possible types of the base object. In the example
from Listing 1, multiple classes could implement IHttpCompleted and depending on some
conditional, variable completedCallback could be any one of them at line 11. CGMiner
detects that completedCallback.onCallback is line 11. Finding the final receivers of this
virtual call is an orthogonal problem and CGMiner relies on the existing callgraph algorithm.

CGMiner only summarizes callgraph data and must be extended with summaries that
capture the semantics of the client analysis. CGMiner integrates well with StubDroid [2],
which summarizes data flow, but does not address control flow.

5 Implementation

We run the sample apps on real devices using DFarm [19]. For instrumenting the code and
interacting with the devices, we rely on the VUSC commercial code analyzer. VUSC provides
an API for instrumenting value requests into Jimple [25] code and for associating the events
received at runtime with the Jimple statements at which they were generated. The device
communication is derived from FuzzDroid [23] and uses Soot for instrumentation [3].

The runtime overhead of the additional code injected by CGMiner is not relevant as
long as the app does not crash with an Application Not Responsive (ANR) exception. The
Android system automatically sends ANRs when foreground threads (such as the UI thread)
are blocked for an extended amount of time. In order to avoid ANRs, we queue events in the
corresponding thread in which they occur and sent them asynchronously. The communication
with the control computer happens in a separate thread controlled by an Android Service.

ECOOP 2024

4:16 Dynamically Generating Callback Summaries for Enhancing Static Analysis

For the list of library classes that serves as an input to CGMiner, we crawled the Maven
central repository as well as the Google Gradle repository. To limit the size of the database,
we only include libraries that are referenced by at least five other Maven artifacts. For these
relevant libraries, we extract the package names of all classes contained in the respective JAR
file. When running CGMiner, we consider a class to be a library class when its is contained
in one of these known library packages. Note that library identification is orthogonal to the
callback analysis, and CGMiner is agnostic to how the list of library classes is built.

6 Limitations

CGMiner instruments the Dalvik code inside an app. If parts of the control flow between
API call and callback are implemented in native code, no runtime data can be obtained from
these parts. If the native code contains border edges, the callback summary will be incomplete.
If a taint transfer occurs in native code, CGMiner relies on StubDroid summaries, which
exist for methods from the Java Standard Library, such as System.arrayCopy.

Note that Android requires each APK file to be signed. Therefore, when instrumenting
an app, the app needs to be resigned. Since CGMiner modifies the app for the dynamic
analysis, it must be signed anew before it can be installed on the device. If the app performs
integrity checking, these checks will fail. While the individual app cannot be analyzed in
this case, the CGMiner approach still works if, for each library, enough apps that use the
respective library can be processed.

Not every callback may be invoked in each run of each app. In our example in Listing 1,
the error callback is only invoked if the HTTP connection fails. Since the callback summaries
are merged over many apps in CGMiner, we consider edges that are never triggered even
with dozens of apps to be irrelevant in practice.

Our evaluation is partly based on Monkey [10] for exploring the apps’ user interface.
Monkey is part of the official Android SDK and randomly clicks on the screen for a given
amount of time. Note that CGMiner is agnostic to the input generation tool. It can be
replaced with a more capable approach in future work. We also used manual exploration in
order to augment the automatic analysis.

We currently do not consider Android lifecycle methods such as onCreate, as they are
few, well-known, change rarely, and are already precisely modeled, e.g., in FlowDroid [5].

7 Evaluation

In this section, we evaluate CGMiner with regard to the following research questions:
RQ1 How many callback edges does CGMiner identify?
RQ2 Are the callback summaries correct and complete?
RQ3 How long does the instrumentation take?
RQ4 How often do transfer functions occur?
RQ5 How does CGMiner compare to EdgeMiner?
RQ6 Which summaries have been found (case study)?
RQ7 How do summaries affect data flow analysis?

7.1 Experiment Setup
We used a machine with 144 Intel Xeon Gold 6154 CPU cores and 3 TB of physical memory
using OpenJDK 16. A maximum of 50 GB was assigned as Java heap space. The machine was
chosen due to the performance requirements of FlowDroid for RQ6. Our DFarm installation

S. Arzt, M. Miltenberger, and J. Näumann 4:17

is equipped with around 90 devices in total, comprising Samsung Galaxy XCover Pro phones
distributed over 9 device controller boards and a single master controller. Note that each
run of CGMiner only uses a single device. We use a combination of manual and automatic
exploration. For automatic exploration, we used the Monkey tool from the Android SDK to
explore the user interface of the app at runtime. Despite its simplistic approach, Monkey
achieves code coverage results comparable to more complex approaches [9]. We run each app
for five minutes with automatic and the same time using manual exploration. In apps where
a login was needed in order to proceed the exploration of the app, we manually created user
accounts.

For our callback generation, we randomly collected 700 apps from the Google Play Store
between 2008 and 2021, augmented with apps from AndroZoo [1]. We include older apps to
merge the callback summaries over multiple versions of a library, and to also include error
cases, e.g., failing HTTP connections due to the server no longer being operational. In our
experience, newer versions of libraries return the old methods (including their callbacks) for
backwards compatibility. On the other hand, new versions may introduce new additional
methods with callbacks, requiring us to run CGMiner again on the new version.

For research questions 2 and 5, we inspected callback summaries manually. Two researchers
conducted the manual inspection. Upon disagreeing, a third researcher has been involved
and these cases were discussed until a consensus was reached.

7.2 Baseline over the Dataset
To better understand the performance of CGMiner, we measure the sizes of the original
apps in our dataset, i.e., before the instrumentation. The number of classes ranges from 6 to
37,175 with an average of 14,371 and a median of 13,136. The apps contain between 108 and
226,966 methods, with an average of 85,270 and a median of 69,360 methods. In the Jimple
intermediate representation, the apps contain between 693 and 2,793,272 units (i.e., Jimple
instructions), with an average of 1,107,276 and a median of 1,008,848 units.

7.3 RQ1: Number of Generated Callbacks
From the 700 apps in our dataset, CGMiner created callback summaries for 338 apps.
Not all apps contain callback-driven libraries according to our definition. Hybrid apps, for
example, implement their logic in JavaScript and only present HTML content to the user
via Android’s WebView component. Other apps use libraries that our library detection does
not recognize, or simply do not use callbacks. Some apps contain native code, which is not
supported in CGMiner. Recall that CGMiner creates summaries for libraries rather than
apps. Furthermore, some apps are merely add-ons such as themes for other applications
and do not have any launchable main activity. Therefore, as long as a single app uses the
library’s callback-driven API, a summary can be generated.

In total, CGMiner constructed 1,476 summaries, which is around 8 summaries per app
on average. Figure 3 shows the cumulative distribution of the number of callbacks found per
app. The x axis is the number of edges, and the y axis shows how many apps lead to the
given number of edges. The maximum number of edges obtained from one app is 67, the
minimum is zero, with a median of 5. For each summary, we recorded the number of API
methods that must be called to invoke the callback. On average, one call is required, with a
maximum of 2 calls and a minimum of one call. The median is one call.

To augment our callback summaries, we automatically generated artificial apps in an
attempt to trigger the callback candidates for which CGMiner did not yield an edge on
our original app set. This is a best effort approach. We accept that some of these apps will

ECOOP 2024

4:18 Dynamically Generating Callback Summaries for Enhancing Static Analysis

0 100 200 300

0

20

40

60

Number of edges

N
um

be
r

of
ap

ps

Figure 3 Distribution of callback edge counts over the apps.

crash or fail to invoke the callback. Recall that callback candidates are over-approximated,
i.e., it may be impossible to generate a working app for some candidates. However, since
CGMiner is a dynamic approach, broken apps do not lead to false positives in the callback
summaries generated by observing these apps. The generated artificial apps yielded 1,871
edges.

7.4 RQ2: Correctness of Generated Callbacks
We manually verified the callback summaries generated by CGMiner. We merged the
summaries from apps in the dataset with the generated apps mentioned in RQ1. We found
94.62% of all callback summaries to be correct. 38 edges out of 2046 were false positives.
Transfer statements were missing in 72 cases.

Since CGMiner is a dynamic approach, it is inherently an underapproximation. To
better understand the degree of unsoundness, we manually inspected a random subset of 100
callback candidates which for which CGMiner did not find an edge. We found that 95% of
these callback candidates are indeed not callback methods. 5% were callback candidates that
were missed due to not triggering the respective method in an app at runtime,i.e., actual
false negatives.

Another approach to check for missing callbacks is to use benchmark suites. To our best
knowledge, there is no ground truth benchmark specifically for callback edges. Therefore,
we used the artificially generated apps introduced in Section 7.3 as a base. On these apps,
CGMiner retrieved edges for 82 % of the callback candidates. For 5%, the generated apps
missed at least one method call to actually trigger the callback. For the rest, these are not
valid callbacks, i.e. these are true negatives.

7.5 RQ3: Instrumentation Performance
Our implementation of CGMiner integrates into an analysis framework that schedules jobs
for processing and performs them when free capacity is available on a system consisting of
analysis server, DFarm device farm server, DFarm controllers, etc. We therefore measure the
performance of the relevant parts of the analysis individually, because the overall time is
dominated by the infrastructure.

First, an APK file is imported into the analysis framework and its code is transformed to
Jimple. This step takes 59 seconds on average (minimum: 8s, maximum: 130s, median: 54s).
Note that this time also includes decoding the app’s resource files and manifest, because

S. Arzt, M. Miltenberger, and J. Näumann 4:19

the instrumentation framework assumes that they can be modified as well. In fact, the
framework injects an application class (if not yet present), services, and permissions as part
of the communication infrastructure between device and analysis server.

After the app has been imported, the instrumentation is performed, which takes 9 seconds
on average (minimum: 4s, maximum: 14s, median: 4s). This time includes the part specific to
CGMiner, i.e., defining the callback events. The CGMiner part alone never takes more than
one second with an average of 0.3 seconds and a mean of 0.2 seconds. Translating the callback
event definitions into statements, along with the other required modifications to establish
the connection between device and analysis host, is part of the VUSC analysis framework. It
counts into the 9 seconds and not the one second. On average, the overall analysis performs
432,000 instrumentation steps (maximum: 556,000 steps, minimum: 302,000 steps, median:
396,000 steps). Each step can be a single statement added or removed, a change to a value
in a statement, etc.

Next, the transformed Jimple code and resource files including the manifest are written
back into an APK file. This step takes 44 seconds on average (maximum: 52s, minimum:
27s, mean: 43s). The total time spent before running the app is 112 seconds on average
(minimum: 40s, maximum: 208s, median: 106s). After building, we run the apps for a
fixed period of time and send inputs manually and afterwards by using Monkey. Therefore,
measuring the runtime performance is not informative. We observe that the apps still meet
the responsiveness requirements of the Android operating system.

We conclude that CGMiner’s runtime is dominated by the dynamic exploration (5
minutes in our configuration), and not by the analysis and instrumentation beforehand
(roughly 2-3 minutes). Note that CGMiner is intended to be used as a tool to generate
callback summaries as a one-time effort. The performance numbers shown correspond to
the time needed to generate the summaries. In contrast, applying the callback summaries
generated by CGMiner does not require any dynamic analysis.

7.6 RQ4: Prevalence of Transfer Functions
In contrast to previous approaches from the literature [8], CGMiner supports complex
callback registration that require transfer functions. In this research question, we evaluate
how important transfer edges are in real-world apps. Conceptually, disregarding transfer
functions via approximations may to lead to a loss of flow-sensitivity as well as false positive
callgraph edges as shown in Section 3.

During callback identification (see Section 7.3), CGMiner discovered CGMiner 2046
edges, 146 of which require transfer functions (6.00%). Note that these numbers are on API
level. Even a single transfer edge can be highly important if the respective API is used
frequently in apps.

To measure the impact of these 146 edges, we therefore check how often these APIs
that require transfer functions are called in real-world apps. To avoid any bias from the
apps on which the transfer edges were originally identified, we chose a separate evaluation
dataset. We randomly picked 1988 apps from the same Play Store and AndroZoo data source
explained in Section 7.1. On this app set, 1928 apps (96.98 %) use transfer functions in their
code. On average, each app uses 103.65 different transfer functions. For comparison, apps in
the dataset use 1089.24 callbacks on average. These results show that transfer functions are
highly relevant in practice.

Table 2 shows the ten most frequently-used transfer functions and their edges together
with the number of times the respective transfer function was encountered in our evaluation
app set. Six of the most found functions are related to wrapped IO calls. For example, a read
method call on an BufferedReader instance triggers the read callback on the reader which
was specified during the construction of the BufferedReader object.

ECOOP 2024

4:20 Dynamically Generating Callback Summaries for Enhancing Static Analysis

Listing 3 Transfer Function Code.
1 StringReader sr = new StringReader(str) {
2 public void close() {
3 // additional callback code
4 super.close ();
5 }
6 };
7 BufferedReader br = new BufferedReader(sr);
8 br.read();

In other words, the constructor of the BufferedReader is a transfer function. Listing 3
shows a code example for such a case. Without modeling the transfer function, approaches
such as EdgeMiner must model an edge from the call to the BufferedReader constructor in
Line 7 to all methods of the Reader that is passed as the first argument. In the example,
this would even be a call to close, even though the StringReader is never closed2.

In total, 19.55 % of the callbacks that EdgeMiner has identified require transfer functions.
All of them are missed. In contrast, CGMiner only misses 3.52% of the transfer functions
that are required for the callbacks identified by CGMiner.

7.7 RQ5: Comparison with EdgeMiner
For a comparison on the Android system we used Android 4.2, since the since the Edgeminer
paper used Android 4.2 for evaluation. EdgeMiner yields 5,125,472 edges in total for
Android 4.2, whereas CGMiner yields 2046 edges. We found that the EdgeMiner output
contains reference to non-existing parameters or callbacks with incompatible types. First,
we removed these edges automatically. Furthermore, we noticed that EdgeMiner’s output
may contain multiple callback edges overloads referencing all implementations albeit an edge
for the abstract superclass or interface was enough. We therefore removed the edges of
these overloads automatically and made sure that the removal process does not change the
semantics. After this cleanup, 17298 callback edges remain (0,36% of the original edge set).
This constitutes as our new base set for EdgeMiner, which we verified manually.

On this base set we compute a false positive rate of 47.42% for EdgeMiner. Manually
checking the CGMiner edges only yields a false positive rate of 1.86%. CGMiner’s dynamic
analysis avoids the false positives that arise from EdgeMiner’s VTA callgraph and the
resulting imprecise points-to set for that is used to derive the types of registers / variables
that store callback objects. We make available the annotated outputs of EdgeMiner and
CGMiner as part of our data package. We removed Android APIs not present in Android
4.2 from CGMiner results, since EdgeMiner cannot possibly have results involving these
APIs and apps in RQ1 may use newer API methods than those present in Android 4.2.

Note that EdgeMiner’s data is based on the Android system’s implementation JAR
alone without third-party libraries. For a fair comparison, we used the library detector
integrated in VUSC to obtain maven coordinates of libraries used in apps in RQ1. We
downloaded the JAR files of the library and executed EdgeMiner on these JARs. Table 1
shows the results for the Android system (comprising the Android SDK and the Java
standard library) as well as third party libraries. While EdgeMiner has more edges on

2 The StringReader has no finalizer either that would call close.

S. Arzt, M. Miltenberger, and J. Näumann 4:21

the Android system jar, it has significantly more false positives and significantly more
incomplete edges than CGMiner. Incomplete edges are edges that lack one or more
necessary transfer functions. For example, in the motivating example of Section 3, an edge
⟨HttpTask.cons, 0⟩ → ⟨IHttpCompleted.onCallback, 1⟩ would be incomplete, because it is
missing the necessary transfer edges to schedule and runAll.

To get a better understanding of the sources of imprecision, we analyzed the false positives
and the incomplete edges produced by EdgeMiner in detail. Setters and constructors are
particularly relevant sources of imprecision. In total, EdgeMiner reports 2826 constructor
edges and 1516 setter edges. EdgeMiner places edges from these methods to the callbacks.
In reality, however, these methods do not invoke any callback function, neither directly or
transitively. Instead, the references to callback objects are saved into fields. Only later, when
other methods are called, these references are read back from the field and the respective
callback is invoked.

Table 1 Results on different libraries for CGMiner and EdgeMiner. TP: true positive edges, FP:
false positive edges, IE: incomplete edges (missing transfers). Regarding “Other“: We have included
several other libraries, which we made sure to supply to EdgeMiner as well.

CGMiner EdgeMiner
Library TP FP IE TP FP IE

Android 1051 27 21 4957 7704 2586
Java 574 8 46 702 494 709
Apache HttpClient 59 0 0 14 1 0
kotlin 46 0 0 0 0 0
Xml Pull Parser 36 0 0 41 4 86
Apache HttpCore 12 0 0 0 0 0
Rxjava 9 0 0 0 0 0
play-services-ads-lite 8 0 0 0 0 0
Gson 7 1 0 0 0 0
Firebase 5 0 0 0 0 0
Google common 4 2 5 0 0 0
play-services-basement 2 0 0 0 0 0
play-services-maps 2 0 0 0 0 0
C3DEngine 1 0 0 0 0 0
AndEngine 1 0 0 0 0 0
Cocos2dx 1 0 0 0 0 0
Other 118 0 0 0 0 0

Total 1936 38 72 5714 8203 3381
Rate 94.62% 1.86% 3.52% 33.03% 47.42% 19.55%

We next describe some examples of such false edges. One constructor of the ConcurrentSkip
ListSet class, for example, takes a Comparator as a parameter. A ConcurrentSkipListSet is
a sorted set, which orders elements according to this comparator. The constructor only saves
the comparator instance to a field, and the callback is triggered when a new element is inserted
into the set using the add or addAll methods. EdgeMiner places an edge from the constructor
to the Comparator’s compare method, although these methods are only called upon adding
an element. In total, EdgeMiner reports incomplete edges in 1734 out of the 2826 constructor
edges, and 779 are false positives (11.08 % correctness rate). In contrast, CGMiner

ECOOP 2024

4:22 Dynamically Generating Callback Summaries for Enhancing Static Analysis

yields only 13 incomplete and 16 false positive edges on 323 constructor edges (91.02 %).
Similarly, most setters set a field to a specific value and do trigger callbacks. For example,
EdgeMiner assumes an edge from LayoutInflater.setFactory(LayoutInflater$Factory) to
LayoutInflater$Factory.onCreateView, although this is only the registration site of the call.
Android calls the callback only upon inflating a layout using the inflate method. Since
EdgeMiner does not support transfer edges, it misses the corresponding transfers on these
edges. For EdgeMiner, out of 1516 setter edges, 663 are incomplete and 195 are false positives.
This constitutes a correctness rate of 43.4 % on these edges for EdgeMiner. On 467 edges on
setter methods reported by CGMiner, 21 are incomplete and 0 false positive, resulting in a
correctness rate of 95.5 %.

7.8 RQ6: Case Study on Individual Callbacks
Using CGMiner, we have identified non-obvious multi-step callbacks. The ActionBarSh-
erlock3 library allows a developer to integrate a tab view into his app. New tabs are
added using addTab on an ActionBar object which takes the tab as a parameter. With
Tab.setTabListener, the developer can register a callback that is notified when the user
selects the tab. Therefore, addTab, which automatically opens the new tab, triggers the
the onTabSelected callback previously registered on the tab. This callback involves two
interactive objects, ActionBar and Tab. Other tools such as EdgeMiner [8] cannot pre-
cisely identify and model such a callback. In case of the AsyncTask, CGMiner detects
that a call to AsyncTask.execute results in several callbacks being called: onPreExecute,
doInBackground, onPostExecute.

CGMiner identifies similar API calls that trigger multiple callbacks in the API for the
SQLite database engine. A call to getWritableDatabase or getReadableDatabase triggers
the callbacks onOpen, onConfigure and onCreate. Some callbacks are triggered by the
operating system upon external events, such as new sensor data. In this case, the last user
code call site for this callback is the statement the registered the callback. Even though this
statement does not immediately invoke the callback, modeling an edge from the registration
site to the callback is still a common and useful approximation. CGMiner, for example,
finds a connection between Android’s registerListener method and the onSensorChanged
of the SensorEventListener interface.

7.9 RQ7: Effect on Client Analysis
We next evaluate the effect of callback summaries on data flow analysis. We ran FlowDroid
on 200 randomly selected apps, chosen from the same data source already explained in
Section 7.1. Note that this data flow analysis is distinct from the data flow analysis we
perform in our approach in Section 4.5. The purpose of the data flow analysis in Section 4.5 is
to track all container objects that hold callback objects. This is only relevant when generating
new summaries. In contrast, this section performs data flow analysis to determine sensitive
flows. For this, we use already computed summaries from Section 7.3 to extend the call graph.
We configured a timeout of 3 minutes for callgraph construction and 15 minutes for the main
data flow analysis. The analysis was assigned 250 GB of heap space and a maximum of 7
cores. This configuration allowed us to parallelize multiple runs on the same machine. We
evaluated three different configurations. As our baseline, we perform the FlowDroid data flow

3 http://actionbarsherlock.com/

http://actionbarsherlock.com/

S. Arzt, M. Miltenberger, and J. Näumann 4:23

Table 2 The ten most found transfer functions in apps.

Count Transfer function & Edge

1161 BufferedReader.readLine → ⟨BufferedReader.cons, −1⟩ →
⟨InputStreamReader.read, 0⟩

1071 Runnable.run → ⟨F utureT ask.cons, −1⟩ → ⟨Callable.call, 0⟩
1031 BufferedInputStream.cons → ⟨GZIP InputStream.cons, 0⟩ →

⟨AutoCloseable.close, 0⟩
995 InputStream.read → ⟨BufferedInputStream.cons, −1⟩ →

⟨F ileInputStream.read, 0⟩
983 P rintW riter.print → ⟨P rintW riter.cons, −1⟩ → ⟨OutputStreamW riter.write, 0⟩
980 V iew.layout → ⟨V iew.addOnLayoutChangeListener, −1⟩ →

⟨V iew$OnLayoutChangeListener.onLayoutChange, 0⟩
977 Executor.execute → ⟨ScheduledT hreadP oolExecutor.cons, −1⟩ →

⟨T hreadF actory.newT hread, 1⟩
963 OutputStream.write → ⟨CipherOutputStream.cons, −1⟩ →

⟨ByteArrayOutputStream.write, 0⟩
945 P rintStream.println → ⟨P rintW riter.cons, −1⟩ → ⟨F ileW riter.write, 0⟩
920 P arcel.writeBundle → ⟨P arcel.writeStrongBinder, −1⟩ →

⟨ffm.dispatchT ransaction, 0⟩

analysis without any callback edges. We then ran FlowDroid again with callback summaries
generated by EdgeMiner and with summaries generated by CGMiner. For each run, we
recorded the discovered flows.

Listing 4 Callback Parameter Analysis.
1 class MyTaskRunnable implements Runnable {
2 public String data;
3 public void run() {
4 sink(data);
5 }
6 }
7 ThreadPoolExecutor executor = new ThreadPoolExecutor (...);
8 Runnable r = new MyTaskRunnable ();
9 r.data = source ();

10 executor.execute(r);

Recall that CGMiner and EdgeMiner only model control flow, but not data flow. In the
example in Listing 4, the first parameter of Line 10 becomes the base object inside the callee
run. This relationship is important, because the field data inside the callback object, i.e.,
the access path r.data, is tainted in Line 9. When the data flow analysis processes the sink
call in Line 4, the taint must be available as this.data. In other words, FlowDroid’s IFDS
call edge must re-write the access path from r.data to this.data.

Neither CGMiner nor EdgeMiner create data flow summaries. Therefore, our initial
runs had the required callgraph edges, but could not track data flows across the callback
edges. With this configuration, our baseline yielded 2021 flows. With EdgeMiner summaries,
FlowDroid found 3575 flows (77 % more than baseline). With CGMiner summaries, 2554
flows were detected, which is 26 % more than the baseline. As expected, FlowDroid discovers

ECOOP 2024

4:24 Dynamically Generating Callback Summaries for Enhancing Static Analysis

more flows when provided with callback summaries. Further, since EdgeMiner has more
(true positive) callback edges than CGMiner as shown in Table 1, it is unsurprising that
EdgeMiner leads to more flows as well. FlowDroid tracks flows across the interprocedural
data flow graph. Every additional callgraph edge has the potential to lead to more flows.

We next augment the callgraph summaries with data flow information using heuristics.
Firstly, we map the base object on which the callback is invoked (which is known from the
callback summary) to the this object of the callee. In the example in Listing 4, this leads to
a data flow edge from variable r to the this object of the callback. This allows FlowDroid to
map r.data to this.data. Secondly, if there is an edge from a call site to a callback method
and the call site accepts a parameter that is cast-compatible to a parameter of the callback
method, we assume a data flow edge. We stress that these heuristics are not meant to be
complete. We use them as part of our evaluation to better estimate the effect of callback
edges for data flow analyses.

With these data flow mappings, FlowDroid finds 2717 flows with EdgeMiner and 2830
flows (40 % more than the baseline) with CGMiner. In the baseline without callback
summaries, no data flow mapping is possible. We observe that when we use parameter
mappings, FlowDroid with CGMiner finds more data flows than FlowDroid with EdgeMiner,
although CGMiner has vastly fewer callgraph summary edges than EdgeMiner. The number
of flows found using EdgeMiner callbacks drops from 3575 flows when using no parameter
mapping to 2717 when using parameter mappings. The explanation lies in FlowDroid’s sanity
checking. For example, when FlowDroid propagates taints along edges in the interprocedural
control flow graph, it propagates types along as well. In each propagation step, these
propagated types are checked for cast-compatibility with the target variables. EdgeMiner’s
spurious callback edges lead to many cast-incompatible propagations. This leads to taints
being discarded. For EdgeMiner with many false positive edges or incomplete edges, i.e., edges
placed at the wrong statement, this leads to a significant amount of flows being discarded.
On the other hand, the increase in data flows with CGMiner summaries represents actual
taint propagation along the callback edges. This is expected for examples such as the one
shown in Listing 4. Since CGMiner only has few false positives, it is almost unaffected by
FlowDroid’s type checks, but benefits from parameter mappings being available. We then
analyzed the correctness of the data flows. Due to the large amount of data flow results, we
only looked at a subset of 50 flows of each evaluation run. EdgeMiner shows a precision of
94.34% on these flows. Recall that FlowDroid already discards flows with cast-incompatible
assignments along the taint propagation path. Therefore, it can eliminate some false-positive
flows during propagation. CGMiner delivers a true positive rate of 100%.

As stated in the beginning of this section, we evaluated on FlowDroid using 200 randomly
selected apps. From these apps, we found that 94 % invoke at least one callback method.
Filtering apps with no callback methods yields the following results: Without data flow
mappings, the baseline has 1,987 flows (compared to 2,021 flows w/o filtering). With
EdgeMiner summaries, FlowDroid finds 3,505 flows (compared to 3,575). With CGMiner
summaries, FlowDroid finds 2,511 flows (compared to 2,554). With data flow mappings and
EdgeMiner summaries, FlowDroid then finds 2,681 flows (compared to 2,717). With data
flow mappings and CGMiner summaries, FlowDroid finds 2,787 flows (compared to 2,830).

8 Related Work

EdgeMiner [8] statically analyzes the Android framework to build models for callbacks in API
methods. Due to the large code size of the Android framework, EdgeMiner over-approximates
virtual dispatch using a CHA callgraph. It further suffers from the inherent challenges

S. Arzt, M. Miltenberger, and J. Näumann 4:25

of static analysis, such as dealing with reflective method calls. CGMiner avoids such
imprecision and only generates edges that are possible at runtime. EdgeMiner tries to find
registration and callback pairs using def-use chains. The search starts at a potential callback
and follows the definitions of the base object through the library code until it reaches the
start of a method that has no more potential callers within the library. In case the callback
object is read from a field on the path, all writes to the field are considered as potential
definitions and are thus followed, regardless of their context. EdgeMiner does not provide
support for collections or arrays and would not be able to generate a correct summary for
our example from Listing 3. Perez and Le [20] present Predicate Callback Summaries (PCS)
that model under which conditions a callback or Android lifecycle method is invoked. Their
static tool Lithium works on the Android source code and suffers from the same challenges
of large-scale static callgraph analysis as EdgeMiner. It does not support our complex
example either. Callback Control Flow Automata (CCFA) [21] integrates PCS and Window
Transition Graphs (WTGs) [27], and focuses mainly on UI callbacks and lifecycle methods.
We consider integrating a predicate analysis into CGMiner as future work. Zhang and
Ryder [31] propose a static library analysis based on data reachability. Similarly, Guo et al.
present an approach based on backward data dependency analysis [12]. These analyses must
be conducted for each call site, which is costly in practice [15].

Some work has focused on Android UI callbacks [28], e.g., for context-sensitive linking of
parameterized callbacks to their respective UI elements. The same callback may be used
for multiple buttons. The clicked button is passed to the callback as a parameter, and the
shared implementation may follow different control flow paths depending on that parameter
value. The information which API methods may trigger callbacks is usually an external input
to these algorithms, which CGMiner can provide. Other work has increased the coverage of
dynamic analyses by reasoning about UI callbacks using a combination of static and dynamic
analysis [6, 29]. CGMiner is more generic and therefore cannot exploit specific properties
of Activities or Intents. TamiFlex [7] uses dynamic analysis to record the runtime values at
reflective method calls and build models of known callees for such call sites. Harvester [22]
uses static slicing and dynamic execution to extract runtime values at reflective call sites.
It rewrites these call sites into explicit calls to deobfuscate apps. The outputs of these
approaches are specific to a concrete target program and do not generalize over re-usable
libraries. HeapDL [11] uses heap dumps to reconstruct callgraph edges. It can be used do
discover callback registration methods, which directly or transitively call callback methods
when such a call is present on the stack of some thread in the heap dump. However, when
a callback is saved as a field during callback registration and used later on, this approach
would require multiple heap dumps taken at precisely the correct timings. Otherwise, either
the callback registration, the callback invocation or both are missed. StubDroid [2] statically
generates data flow summaries for libraries. It requires a complete and precise callgraph of
the library to work properly and can therefore benefit from the callgraph models generated by
CGMiner. Our callback summaries are relevant for various analyses (power analysis, privacy
analysis, injection analysis, etc.) that currently rely on manual callback models [5, 30, 18, 13].

9 Conclusion

We have presented CGMiner, an approach for dynamically monitoring apps to derive
callback summaries for commonly-used libraries. These summaries can then be applied to
static analyses that require a callgraph. We have shown that CGMiner yields a precision
of more than 94%. With the CGMiner summaries, FlowDroid detects 40 % more flows in
comparison to our baseline. In the future, we will run CGMiner on more apps to generate
and provide to the community summaries of lesser-used libraries.

ECOOP 2024

4:26 Dynamically Generating Callback Summaries for Enhancing Static Analysis

Data Availability. The data and implementation have been published to https://github.com/
Fraunhofer-SIT/DynamicCallbackSummaries/. Since CGMiner is built upon the VUSC com-
mercial scanner, you need to apply for a free academic license for VUSC to build and run
CGMiner.

References
1 Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo: Collecting

millions of android apps for the research community. In 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR), pages 468–471. IEEE, 2016.

2 Steven Arzt and Eric Bodden. Stubdroid: automatic inference of precise data-flow summaries
for the android framework. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pages 725–735. IEEE, 2016.

3 Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Instrumenting android and java applications
as easy as abc. In International Conference on Runtime Verification, pages 364–381. Springer,
2013.

4 Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Susi: A tool for the fully automated
classification and categorization of android sources and sinks. University of Darmstadt, Tech.
Rep. TUDCS-2013-0114, 2013.

5 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. Acm Sigplan
Notices, 49(6):259–269, 2014.

6 Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for systematic testing
of android apps. In Proceedings of the 2013 ACM SIGPLAN international conference on
Object oriented programming systems languages & applications, pages 641–660, 2013.

7 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In 2011 33rd
International Conference on Software Engineering (ICSE), pages 241–250. IEEE, 2011.

8 Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Giovanni
Vigna, and Yan Chen. Edgeminer: Automatically detecting implicit control flow transitions
through the android framework. In NDSS, 2015.

9 Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Automated test input
generation for android: Are we there yet? (e). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 429–440, 2015. doi:10.1109/
ASE.2015.89.

10 Google, Inc. Ui/application exerciser monkey, 2023. URL: https://developer.android.com/
studio/test/other-testing-tools/monkey.

11 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis. Heaps don’t
lie: countering unsoundness with heap snapshots. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):1–27, 2017.

12 Chenkai Guo, Quanqi Ye, Naipeng Dong, Guangdong Bai, Jin Song Dong, and Jing Xu.
Automatic construction of callback model for android application. In 2016 21st International
Conference on Engineering of Complex Computer Systems (ICECCS), pages 231–234. IEEE,
2016.

13 Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cristiano L Pereira, Gilles A
Pokam, Peter M Chen, and Jason Flinn. Race detection for event-driven mobile applications.
ACM SIGPLAN Notices, 49(6):326–336, 2014.

14 Patrick Lam, Eric Bodden, Ondrej Lhotak, and Laurie Hendren. The soot framework for
java program analysis: a retrospective. In Cetus Users and Compiler Infastructure Workshop
(CETUS 2011), oktober 2011.

https://github.com/Fraunhofer-SIT/DynamicCallbackSummaries/
https://github.com/Fraunhofer-SIT/DynamicCallbackSummaries/
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/ASE.2015.89
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey

S. Arzt, M. Miltenberger, and J. Näumann 4:27

15 Ondrej Lhoták. Comparing call graphs. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages 37–42, 2007.

16 Ondřej Lhoták and Laurie Hendren. Scaling java points-to analysis using spark. In Görel
Hedin, editor, Compiler Construction, volume 2622 of Lecture Notes in Computer Science,
pages 153–169. Springer Berlin Heidelberg, 2003. doi:10.1007/3-540-36579-6_12.

17 Li Li, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. An investigation into the
use of common libraries in android apps. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages 403–414, 2016.
doi:10.1109/SANER.2016.52.

18 Yepang Liu, Chang Xu, and Shing-Chi Cheung. Where has my battery gone? finding sensor
related energy black holes in smartphone applications. In 2013 IEEE international conference
on pervasive Computing and Communications (PerCom), pages 2–10. IEEE, 2013.

19 Marc Miltenberger, Julien Gerding, Jens Guthmann, and Steven Arzt. Dfarm: massive-
scaling dynamic android app analysis on real hardware. In Proceedings of the IEEE/ACM 7th
International Conference on Mobile Software Engineering and Systems, pages 12–15, 2020.

20 Danilo Dominguez Perez and Wei Le. Generating predicate callback summaries for the android
framework. In 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering
and Systems (MOBILESoft), pages 68–78. IEEE, 2017.

21 Danilo Dominguez Perez and Wei Le. Specifying callback control flow of mobile apps using
finite automata. IEEE Transactions on Software Engineering, 47(2):379–392, 2021. doi:
10.1109/TSE.2019.2893207.

22 Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Harvesting runtime
values in android applications that feature anti-analysis techniques. In NDSS, 2016.

23 Siegfried Rasthofer, Steven Arzt, Stefan Triller, and Michael Pradel. Making malory behave
maliciously: Targeted fuzzing of android execution environments. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE), pages 300–311. IEEE, 2017.

24 Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick Lam,
Etienne Gagnon, and Charles Godin. Practical virtual method call resolution for java.
In Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA ’00, pages 264–280, New York, NY, USA,
2000. Association for Computing Machinery. doi:10.1145/353171.353189.

25 Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying java bytecode for analyses and
transformations, 1998.

26 Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of google play. In
The 2014 ACM international conference on Measurement and modeling of computer systems,
pages 221–233, 2014.

27 Shengqian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swaminathan, Dacong
Yan, and Atanas Rountev. Static window transition graphs for android. Automated Software
Engineering, 25(4):833–873, 2018.

28 Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. Static control-flow
analysis of user-driven callbacks in android applications. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages 89–99. IEEE, 2015.

29 Wei Yang, Mukul R Prasad, and Tao Xie. A grey-box approach for automated gui-model
generation of mobile applications. In International Conference on Fundamental Approaches to
Software Engineering, pages 250–265. Springer, 2013.

30 Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X Sean Wang. Appintent:
Analyzing sensitive data transmission in android for privacy leakage detection. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security, pages 1043–1054,
2013.

31 Weilei Zhang and Barbara G Ryder. Automatic construction of accurate application call
graph with library call abstraction for java. Journal of Software Maintenance and Evolution:
Research and Practice, 19(4):231–252, 2007.

ECOOP 2024

https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1109/SANER.2016.52
https://doi.org/10.1109/TSE.2019.2893207
https://doi.org/10.1109/TSE.2019.2893207
https://doi.org/10.1145/353171.353189

Behavioural Up/down Casting For
Statically Typed Languages
Lorenzo Bacchiani #

University of Bologna, Italy

Mario Bravetti #

University of Bologna, Italy

Marco Giunti #

University of Oxford, UK

João Mota #

NOVA LINCS, Nova University Lisbon, Portugal
NOVA School of Science and Technology, Caparica, Portugal

António Ravara #

NOVA LINCS, Nova University Lisbon, Portugal
NOVA School of Science and Technology, Caparica, Portugal

Abstract
We provide support for polymorphism in static typestate analysis for object-oriented languages with
upcasts and downcasts. Recent work has shown how typestate analysis can be embedded in the
development of Java programs to obtain safer behaviour at runtime, e.g., absence of null pointer
errors and protocol completion. In that approach, inheritance is supported at the price of limiting
casts in source code, thus only allowing those at the beginning of the protocol, i.e., immediately
after objects creation, or at the end, and in turn seriously affecting the applicability of the analysis.

In this paper, we provide a solution to this open problem in typestate analysis by introducing a
theory based on a richer data structure, named typestate tree, which supports upcast and downcast
operations at any point of the protocol by leveraging union and intersection types. The soundness
of the typestate tree-based approach has been mechanised in Coq.

The theory can be applied to most object-oriented languages statically analysable through
typestates, thus opening new scenarios for acceptance of programs exploiting inheritance and casting.
To defend this thesis, we show an application of the theory, by embedding the typestate tree
mechanism in a Java-like object-oriented language, and proving its soundness.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Object oriented constructs; Theory of computation → Program verification

Keywords and phrases Behavioural types, object-oriented programming, subtyping, cast, typestates

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.5

Supplementary Material Software (Coq Proofs Artifact): https://zenodo.org/records/7712822
Software (JaTyC Tool Artifact): https://zenodo.org/records/7712915
Software (JaTyC Tool on GitHub): https://github.com/jdmota/java-typestate-checker

archived at swh:1:dir:69edd64b73a190021dd96ee97c7192722edfd00f

Funding This work was partially supported by the EU H2020 RISE programme under the Marie
Skłodowska-Curie grant agreement No. 778233 (BehAPI).
Marco Giunti: EPSRC (EP/T006544/2).
João Mota: NOVA LINCS (UIDB/04516/2020) via the Portuguese Fundação para a Ciência e a
Tecnologia (doi:10.54499/2021.05297.BD).

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and
António Ravara;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 5; pp. 5:1–5:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lorenzo.bacchiani2@unibo.it
https://orcid.org/0000-0002-4305-7491
mailto:mario.bravetti@unibo.it
https://orcid.org/0000-0001-5193-2914
mailto:marco.giunti@cs.ox.ac.uk
https://orcid.org/0000-0002-7582-0308
mailto:jd.mota@campus.fct.unl.pt
https://orcid.org/0000-0003-3182-2245
mailto:aravara@fct.unl.pt
https://orcid.org/0000-0001-8074-0380
https://doi.org/10.4230/LIPIcs.ECOOP.2024.5
https://zenodo.org/records/7712822
https://zenodo.org/records/7712915
https://github.com/jdmota/java-typestate-checker
https://archive.softwareheritage.org/swh:1:dir:69edd64b73a190021dd96ee97c7192722edfd00f;origin=https://github.com/jdmota/java-typestate-checker;visit=swh:1:snp:8c144fa96d2c09b3471e534f7a5140c5fe393943;anchor=swh:1:rev:e3664b0e9a625f379e29ba1788bb7ab40c2beee7
https://doi.org/10.54499/2021.05297.BD
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Behavioural Up/down Casting for Statically Typed Languages

1 Introduction

Modern software engineering practices, e.g., Continuous Delivery [21], produce reliable
software at high pace, through automatic pipelines of building, testing, etc. However,
programming errors such as dereferencing null pointers [19] or using objects wrongly (e.g.
reading from a closed file; closing a socket that timed out1) are often subtle and difficult to
catch, even during the automated testing process. As put by Dijkstra [14]: “program testing
can be used to show the presence of bugs, but never to show their absence”. So, tools to
(statically) catch bugs are essential. Formal methods like deductive verification are difficult
to adopt given the effort required [26], but lightweight static program analysis techniques
can greatly improve the quality of the source code by detecting at compile-time logic errors,
i.e., an unexpected action or behaviour. Beckman et al. [6] observe:

In the open-source projects in our study [...] approximately 7.2% of all types defined
protocols, while 13% of classes were clients of types defining protocols. [...] This
suggests that protocol checking tools are widely applicable.

To tackle the challenge of finding bugs in object-oriented code, where objects naturally
have protocols, in this paper we provide a protocol checking approach, supported by a tool,
based on typestates [31, 15]. The work we present is applicable to most object-oriented
languages, following the approach in closely related work [18, 11]: attach protocols (essentially,
allowed orders of method calls) to classes and type check classes (i.e., their method bodies)
following the protocol, thus gaining typestate-based nullness checking (ensuring memory-
safety), protocol compliance, and protocol completion (under program termination).

In our previous work [3], we applied the approach to Java, proposing the JaTyC tool,
exploiting the seminal simulation-based notion of subtyping [16] to check that the protocol of
a class was a subtype of the protocol of its superclass. However, only upcasts and downcasts
at the beginning of an object protocol (i.e., just after object creation) or at the end (i.e., in
the end state) were allowed. Additionally, to determine if a typestate was a subtype of
another, the simulation was only applied to the initial typestates of the protocols. It is
crucial to overcome these limitations to make JaTyC applicable to real-world scenarios since,
as shown in the study of Mastrangelo et al. [25], casts are widely used. The type checker was
developed following a research methodology based on an iterative/incremental approach (see
figure in Appendix A for details), based on the theory, which together with motivating
examples, drove the type checker implementation (built upon the Checker Framework [30]).

Running example. To emphasise the relevance of our contribution, consider an example
inspired from the automotive sector where driving dynamics control allows to customise
the drive mode2; for SUVs, in particular, we consider a Comfort and a Sport modalities,
where each allows specific features: EcoDrive and FourWheelsDrive, respectively.3 List. 1
and List. 2 describe the behaviours of the controllers of a Car and a SUV, respectively, where
class SUV extends Car. All cars have two base states: OFF, which models a powered off
car, and ON, which represents a powered on car that can perform certain actions, e.g., set
a concrete speed. In OFF, it is possible to turnOn the car and then access features like
setSpeed. Dually, in ON, it is possible to turnOff the car. The turnOn action may, by some

1 https://github.com/redis/jedis/issues/1747.
2 BMW Sport vs Comfort modes: bmwofstratham.com/bmw-sport-mode-vs-comfort-mode-stratham-nh
3 Code online: github.com/jdmota/java-typestate-checker/tree/master/examples/car-example

https://github.com/redis/jedis/issues/1747
https://www.bmwofstratham.com/bmw-sport-mode-vs-comfort-mode-stratham-nh
https://github.com/jdmota/java-typestate-checker/tree/master/examples/car-example

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:3

Listing 1 Car protocol.
1 typestate Car {
2 OFF = {
3 boolean turnOn ():
4 <true :ON , false :OFF >,
5 drop : end
6 }
7 ON = {
8 void turnOff (): OFF ,
9 void setSpeed (int): ON

10 }
11 }

Listing 2 SUV protocol (SUV extends Car).
1 typestate SUV {
2 OFF = {
3 boolean turnOn (): <true :COMF_ON , false :OFF >,
4 drop : end
5 }
6 COMF_ON = {
7 void turnOff (): OFF ,
8 void setSpeed (int): COMF_ON ,
9 Mode switchMode (): <SPORT :SPORT_ON , COMFORT :COMF_ON >,

10 void setEcoDrive (boolean): COMF_ON
11 }
12 SPORT_ON = {
13 void turnOff (): OFF ,
14 void setSpeed (int): SPORT_ON ,
15 Mode switchMode (): <SPORT :SPORT_ON , COMFORT :COMF_ON >,
16 void setFourWheels (boolean): SPORT_ON
17 }
18 }

technical reason, fail, and so, depending on the returned value, either the resulting case is ON
or OFF. SUVs are described by the protocol in Listing 2: when they are successfully powered
on by means of turnOn, they are set in Comfort mode (COMF_ON), and in turn they enjoy
specific operations, e.g., setEcoDrive. The mode can be changed by executing switchMode,
whose result depends on the reached mode being still Comfort (as the operation may fail,
e.g., if the speed is too high), or Sport (SPORT_ON). Similarly, the Sport mode provides the
switchMode actions and also specific ones, e.g., setFourWheels. Note that setSpeed is
overridden in the SUV class: if eco-drive is active, the speed must respect a given threshold,
otherwise it can be set to any value. As we will see, in Section 6, overriding correctness is
checked based on typestate variance, thus dynamic dispatch is guaranteed to work safely.
Section 8 explains how our work compares with others dealing with inheritance.

Each protocol is defined by a set of typestates (e.g., in List. 1, OFF and ON), each one
defining a set of callable methods and subsequent states, possibly depending on return values:
e.g., if turnOn returns true in state OFF of the SUV protocol, then the next state is COMF_ON.
By applying the subtyping algorithm by Gay and Hole [17] to the initial typestates (i.e., OFF
in Car and SUV protocols), we see that the SUV protocol is a subtype of the Car one.

Listing 3 upcast/downcast limitation protocol.
1 public static void dispatch (@Requires ("ON") Car c) { · · · }
2 public static void providePoweredSUV (@Requires ("OFF") SUV c) {
3 if (c. turnOn ()) dispatch (c); // Upcast rejected by current typestate analysis
4 }

Key insight. Even for simple classes as Car and SUV, limiting casts only at the beginning/end
of the protocols seriously reduces the programs we are able to typestate-check, such as the
one in List. 3, where an automotive system dispatches already powered on cars (i.e., required
in typestate ON), whether they are SUVs or not. Removing this limitation is challenging.
The solution relies on the key insight that one has to run the subtyping algorithm not only
on the pair of initial typestates, but on all pairs, to find all typestates in both protocols that
are in a subtyping relation. For example, the limitSpeed method in List. 4 expects a Car in
typestate ON. Since SPORT_ON is a subtype of ON, code passing a SUV in typestate SPORT_ON
to limitSpeed is type-safe. However, if we run the subtyping algorithm starting from the
pair of initial typestates of the given protocols (i.e., (OFF,OFF)), the generated simulation
relation [4, 17] (in Figure 1, where boxes represent input states, and diamonds output ones),
will not include (SPORT_ON,ON) (leftmost graph). If we provide (SPORT_ON,ON), we realise
that this pair is in the typestate subtyping relation (rightmost graph).

ECOOP 2024

5:4 Behavioural Up/down Casting for Statically Typed Languages

Listing 4 Limitation of the Subtyping Algorithm Application.
1 void limitSpeed (@Requires ("ON") Car c, int speed) {
2 c. setSpeed (Math.min(speed , 50));
3 }

Figure 1 Subtyping simulations starting with (OFF,OFF) (left) and (SPORT_ON,ON) (right). Blue
depicts typestates of the SUV protocol and red those of Car.

A theory of typestate upcast and downcast. With this key insight, we devise the following
mechanism: when downcasting, we look for the typestates (in the protocol of the target class)
that are subtypes of the current one; when upcasting, we look for the typestates that are
supertypes of the current one. Since multiple typestates may be found, we need a structured
notion of types to combine them. When downcasting, we combine the subtypes in a union
type [5, 29] (modelling the fact that the actual type is unknown) so that a method call is
allowed only if it is permitted by both elements of the union. Union types are also useful to
allow branching code to be typed with different types so that subsequent code, complying
with either branch, is accepted (e.g., after an if statement). This is more flexible than some
other approaches (like session types ones [32]), which require both branches to have the same
type. When upcasting, dually, we combine the supertypes in an intersection type so that a
method call is allowed if it is permitted by at least one element of the intersection.

However, we need more than just intersection and union types. To illustrate the problem,
consider a class for an Electric Car (ECar) which also extends Car. Consider the code in
List. 5. After the if statement, is c an instance of SUV or ECar? Because of these scenarios,
we associate classes with types and track all possibilities. To that end, we introduce typestate
trees, which resemble the class hierarchy. Herein, the typestate tree would have a root for
class Car, with child nodes for SUV and ECar. Each node corresponds to a class and maps
to the type of the object, accounting for the case in which the object is indeed an instance
of that class. In this way, in case of a future downcast to the SUV or ECar classes, we just
consider the corresponding subtree corresponding to that class.

Listing 5 Typestate Tree motivation.
1 Car c;
2 if (cond) c = new SUV ();
3 else c = new ECar ();

Discussion. The solution we devise is language agnostic, applicable to many object-oriented
languages. To test its expressiveness, we applied it to Java, extending JaTyC to now
support (up/down)casting in the middle of a protocol. By doing this, we advance related
work (Section 8). Kouzapas et al. [24] mention, in the future work section, that to cope

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:5

with protocol inheritance between two classes one just needs “a subtyping relation between
their typestate specifications”. This is enough if one is only concerned with extending class
inheritance but, as we showed, is not adequate to deal with casting, a very common feature.

Furthermore, we support droppable typestates (see typestate OFF in List. 1), the final
typestates of a protocol – where one can either safely stop using the protocol or perform
more actions (if there are any). A droppable typestate with no actions is similar to the
end state in session types. To fully support droppable typestates, we provide a definition of
subtyping over these, extending Gay and Hole’s session type subtyping definition.

Contributions. In short, the main contributions of this work are:

sound support for safely performing upcasts and downcasts at any point of a protocol
(assuming class downcasts are performed to a class of which an object is a subtype of);
formalisation of subtyping over droppable typestates (generalising Gay and Hole’s
session type subtyping);
mechanisation of all definitions and proofs of our results in Coq (artifact available);
implementation of the presented concepts in our type checker for Java, JaTyC, where
we successfully run all examples included in this paper.

Advances with respect to the state of the art. As far as we know, no previous work deals
with casts in the middle of protocols. Moreover, droppable states allow to mark states when
the protocol can be safely stopped, another key concept. So, our work advances the state
of the art with expressive support for inheritance and casting in object-oriented languages,
leveraging on behavioural types [2, 22].

Structure of the paper. Section 2 presents the subtyping relation, shown to be a pre-order,
and a complete and sound algorithm to check typestates subtyping (Theorems 8 and 9).
Section 3 presents upcast and downcast, and the crucial result that each operation preserves
subtyping (Theorems 23 and 28). Moreover, we show that, as expected, each operation
reverses the other (Corollaries 29 and 30). Finally, we show that method calls make the
typestates evolve, preserving subtyping (Theorem 33), and evolution on types commutes
with upcast and downcast (Theorems 34 and 35). Section 4 presents typestate trees, the
crucial structure to allow up/down-casting in the middle of a protocol, and main results
(Theorem 46 and 51). Section 5 presents a key result to safely equip a programming
language with our subtypestate mechanism – operations on typestate trees preserve their
soundness (Theorem 54). Section 6 discusses how to safely develop a type checking system
with typestate trees. Notice that the main contribution of this paper is the provably
safe subtypestates theory, paving the way to its use in (most) object-oriented languages.
Section 7 explains how the example presented in List. 6 is type checked with our tool
and describes a suite of examples showing the expressiveness of our approach. Section 8
discusses related work. Section 9 concludes by envisioning future challenges, e.g., the
mechanisation of a type(state tree)-safe object calculus with inheritance to use as basis for
our Java implementation. Appendix A provides insights on the research methodology we
adopted, while Appendix B provides a glossary listing all the notations used in the paper.

2 Types and subtyping

In this section, we present the types one can assign to terms of an object-oriented language
taken into account, and the corresponding subtyping relations. We first describe typestates,
which encode the current state of an object and specify the available methods (Section 2.1).

ECOOP 2024

5:6 Behavioural Up/down Casting for Statically Typed Languages

Then, we compose these in union and intersection types (Section 2.2). Unions track the
possible typestates an object might be in, and intersections combine behaviour of two distinct
typestates. These will be important when we present how casting works (Section 3).

2.1 Typestates
The following grammar (Def. 1) defines our typestates language. It is very similar to the
one presented by Bravetti et al. [11]. The meta-variable m ranges over the set of method
identifiers MNames, o ranges over the set of output values ONames, and s ranges over the
set of typestate names SNames. The wide tilde stands for a sequence of values.

States are basically of two forms: input and output states. Input states d{m̃ : w} denote a
set like {m1:w1, m2:w2, . . . , mn:wn} offering methods (being n ≥ 0 a natural number), seen
as input actions (i.e., external choices), followed by arbitrary states; the meaning is that by
selecting method mi, the input state transitions to state wi. Input states may optionally be
marked as droppable (with the subscript drop at the left of the set). This marks which input
states are final. For example, in List. 1, the typestate OFF is defined as a droppable input
state (which in the user defined protocol associated with the Java code is represented by the
drop:end option). Output states ⟨õ : u⟩ denote a set like ⟨o1:u1, o2:u2, . . . , on:un⟩, presenting
all possible outcomes of a method call (values o1 to on, being n a positive natural number),
seen as output actions (i.e., internal choices), followed by input states or typestate names.
We only consider boolean and enumeration values as outputs.

To deal with recursive behaviour, protocols use equational definitions of typestates.

▶ Definition 1. Typestates, ranged over by meta-variable u, are terms generated by the
following grammar. States are terms ranged over by meta-variable w.

u ::= d{m̃ : w} | s

w ::= u | ⟨õ : u⟩
d ::= ε | drop
E ::= s = d{m̃ : w}

We assume that in ⟨õ : u⟩ we have at least one output, while in d{m̃ : w}, we can have
no inputs: drop{} represents the protocol ending state, also denoted by end. Moreover, in
an equation E, typestate names s do not occur unguarded (i.e., we disregard equations like
s = s′). We write wẼ to denote state w associated with a set of defining equations. Therefore,
we assume that each typestate name s that is used in w and in the body of equations Ẽ has
a unique defining equation in Ẽ. Let W be the set of terms wẼ and U be the set of terms
uẼ . Furthermore, let X be the subset of W containing only input states d{m̃ : w} and Y be
the subset of W with only output states ⟨õ : u⟩. Meta-variables x and y range over X and Y ,
respectively. Hereafter, whenever the finite set of equations Ẽ is clear from the context, we
consider states w implicitly associated with Ẽ. Moreover, we omit writing ε.

We can use the grammar introduced in Def. 1 to formally specify protocols associated
to classes. A protocol is represented by sẼ , with s being the initial typestate name. For
example, the protocol associated with class Car (List. 1) is OFFECar with ECar being:

OFF = drop{ turnOn : ⟨ true : ON, false : OFF ⟩ }
ON = { turnOff : OFF, setSpeed : ON }

The OFF typestate is marked as droppable and offers a single method (i.e., turnOn) which,
depending on the returned value (true or false), leads to either ON or OFF, respectively. The
ON typestate offers two methods, turnOff and setSpeed, leading to OFF and ON, respectively.

State subtyping is key to support behavioural casting. In our setting, subtypes offer a
superset of the supertype methods (input contravariance), and a subset of the supertype
outputs (output covariance). To define it properly (with the intended properties), we follow

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:7

the work by Gay and Hole on session types subtyping [17]. Therefore, we define the subtyping
relation as a simulation one (as protocols can be infinite state systems), and present a sound
and complete algorithm to check if one state is a subtype of another. We first introduce
function def to unfold typestate name definitions. The simulation relation follows.

▶ Definition 2 (Typestate name definitions). Function def : W → W \ SNames is such
that, given a state wẼ ∈ W, if it is a typestate name, def(wẼ) yields the body of its defining
equation; otherwise, def(wẼ) yields the given state wẼ. Formally,

def(wẼ) =
{

xẼ if wẼ = sẼ′∪{s=x} for some s, E′, x

wẼ otherwise

▶ Definition 3 (State simulation). A relation R ⊆ W × W is a state simulation, if
(w1

E1 , w2
E2) ∈ R implies the following conditions:

1. If def(w1
E1) = d1{m̃ : w}1

E1 then def(w2
E2) = d2{m̃ : w}2

E2 and:
a. for each m′:w′

2 in {m̃ : w}2, there is w′
1 such that m′:w′

1 in {m̃ : w}1 and
(w′

1
E1 , w′

2
E2) ∈ R.

b. if d2 = drop then d1 = drop.
2. If def(w1

E1) = ⟨õ : u⟩1
E1 then def(w2

E2) = ⟨õ : u⟩2
E2 and:

a. for each o′:u1 in ⟨õ : u⟩1, there is u2 such that o′:u2 in ⟨õ : u⟩2 and (u1
E1 , u2

E2) ∈ R.

Now we define subtyping, following standard approaches.

▶ Definition 4 (Subtyping on states). We say w1 is a subtype of w2, i.e., w1
E1 ≤S w2

E2 , if
and only if there exists a state simulation R such that (w1

E1 , w2
E2) ∈ R.

An example of a state simulation (Def. 3) follows (also depicted in rightmost graph of
Figure 1). It is then easy to check, using Definition 4, that SPORT_ONESUV ≤S ONECar .

{(SPORT_ONESUV , ONECar), (OFFESUV , OFFECar),
(⟨true : COMF_ON, false : OFF⟩ESUV , ⟨true : ON, false : OFF⟩ECar),
(COMF_ONESUV , ONECar)}

Notice that the common rule for session type subtyping of end states (i.e., end ≤S end)
is derivable from the previous definitions by just picking the relation R = {(drop{}, drop{})}
and observing that it is a state simulation (Def. 3), thus drop{} ≤S drop{} holds by Def. 4.

As a sanity check, we show basic subtyping properties on states: reflexivity and transitivity.

▶ Lemma 5 (Reflexivity). For all w, then w ≤S w.

▶ Lemma 6 (Transitivity). For all w1
E1 , w2

E2 , w3
E3 , if w1

E1 ≤S w2
E2 and w2

E2 ≤S w3
E3 ,

then also w1
E1 ≤S w3

E3 .

Defining an algorithm to check state subtyping is crucial, not only because it shows
that subtyping is decidable, but also for implementing a type checking procedure (Def. 7).
To obtain an algorithm for checking state subtyping, we guarantee termination by always
applying Assump, whenever applicable. The initial goal of the algorithm is the judgement
∅ ⊢ w1

E1 ≤Salg
w2

E2 . This approach is similar to the session type subtyping algorithm
presented by Gay and Hole [17]. We also show in Theorems 8 and 9 that the subtyping
algorithm is complete and sound with respect to the coinductive definition ≤S (Def. 4).

ECOOP 2024

5:8 Behavioural Up/down Casting for Statically Typed Languages

▶ Definition 7 (Algorithmic state subtyping). The following inference rules define judgements
Σ ⊢ w1

E1 ≤Salg
w2

E2 in which Σ is a set of typestate pairs, containing assumed instances of
the subtyping relation.

(w1
E1 , w2

E2) ∈ Σ
Σ ⊢ w1

E1 ≤Salg w2
E2

Assump

def(w1
E1) = d1{m̃ : w}1

E1 def(w2
E2) = d2{m̃ : w}2

E2

∀ m′:w′
2 ∈ {m̃ : w}2 . ∃ w′

1 . m′:w′
1 ∈ {m̃ : w}1 ∧ Σ, (w1

E1 , w2
E2) ⊢ w′

1
E1 ≤Salg w′

2
E2

d2 = drop =⇒ d1 = drop

Σ ⊢ w1
E1 ≤Salg w2

E2
Input

def(w1
E1) = ⟨õ : u⟩1

E1 def(w2
E2) = ⟨õ : u⟩2

E2

∀ o′:u1 ∈ ⟨õ : u⟩1 . ∃ u2 . o′:u2 ∈ ⟨õ : u⟩2 ∧ Σ, (w1
E1 , w2

E2) ⊢ u1
E1 ≤Salg u2

E2

Σ ⊢ w1
E1 ≤Salg w2

E2
Output

▶ Theorem 8 (Algorithm completeness). If w1
E1 ≤S w2

E2 then ∅ ⊢ w1
E1 ≤Salg

w2
E2 .

▶ Theorem 9 (Algorithm soundness). If ∅ ⊢ w1
E1 ≤Salg

w2
E2 then w1

E1 ≤S w2
E2 .

2.2 Types
To statically track the possible typestates an object might be in, we combine them in union
types. We also combine them in intersection types to describe combined behaviour from both
typestates in the intersection. Their usefulness will be made clearer when we see the result of
upcasting a type. Our type hierarchy is a lattice, thus supporting ⊤ and ⊥ types. Note that
types do not include class information. Typestate Trees will be used for that (Section 4).

▶ Definition 10 (Types grammar). We call types, ranged over by meta-variable t, the terms
generated by the following grammar. Recall that u refers to typestate terms (Definition 1).

t ::= t ∪ t | t ∩ t | uẼ | ⊤ | ⊥

For example, the union type COMF_ONESUV ∪ SPORT_ONESUV describes an object that might be
in typestate COMF_ON or SPORT_ON.

Let T be the set of types produced by rule t. Now we need to define a subtyping notion
to apply to types. The setting is inspired in work by Muehlboeck and Tate [27], in particular,
their definition of reductive subtyping.

▶ Definition 11 (Subtyping on types). Let ≤ ⊆ T × T be the relation defined by the following
inductive rules.

t ≤ ⊤
Top

⊥ ≤ t
Bot

u1
E1 ≤S u2

E2

u1
E1 ≤ u2

E2
Typestates

t ≤ ti

t ≤ t1 ∪ t2
Union_R (i ∈ {1, 2})

ti ≤ t

t1 ∩ t2 ≤ t
Intersection_L (i ∈ {1, 2})

t1 ≤ t t2 ≤ t

t1 ∪ t2 ≤ t
Union_L

t ≤ t1 t ≤ t2

t ≤ t1 ∩ t2
Intersection_R

As a sanity check, we show basic subtyping properties on types: reflexivity and transitivity.

▶ Lemma 12 (Reflexivity). For all t, then t ≤ t.

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:9

▶ Lemma 13 (Transitivity). For all t, t′, t′′, if t ≤ t′ and t′ ≤ t′′, then t ≤ t′′.

An algorithm to check that two types are in a subtyping relationship (i.e., t ≤ t′) can be
implemented by proof search on the inference rules in Def. 11. For these, one can observe that
the combined syntactic height of the two types being tested always decreases [27]. Therefore,
every recursive search path is guaranteed to always reach a point in which both types being
compared are typestates u ∈ U . Since the algorithm to test u1

E1 ≤S u2
E2 terminates, the

overall algorithm to check subtyping also terminates. For example, it is easy to check that
COMF_ONESUV ≤ COMF_ONESUV ∪ SPORT_ONESUV , using the UNION_R rule in Def. 11.

3 Basic operations on types

In this section, we start by describing some preliminary assumptions on the hierarchy of
classes, and then proceed to present the three main operations on types performed during
type checking: upcast (Section 3.1), downcast (Section 3.2), and evolve (Section 3.3). To
showcase these, we use the code in List. 6 that creates an object of type SUV, calls the method
turnOn, switches mode and finally passes the object to method setSpeed (lines 3-6).

Listing 6 ClientCode class.
1 public class ClientCode {
2 public static void example () {
3 SUV suv = new SUV ();
4 while (! suv. turnOn ()) { System .out. println (" turning on ..."); }
5 suv. switchMode ();
6 setSpeed (suv);
7 }
8 private static void setSpeed (@jatyc .lib. Requires ("ON") Car car) {
9 if (car instanceof SUV && ((SUV) car). switchMode () == Mode. SPORT)

10 ((SUV) car). setFourWheels (true);
11 car. setSpeed (50);
12 car. turnOff ();
13 }
14 }

The method setSpeed takes a Car in the ON state, enforced by the @Requires annotation
(line 8). The behaviour provided by the ON state is also available in COMF_ON and SPORT_ON,
so the method should be prepared to work with a Car in the ON state or a SUV (in COMF_ON
or SPORT_ON). The method tests if the car is a SUV and tries to switch to the sport mode
(line 9); if it succeeds, it proceeds to set the four wheels drive (line 10). Then, it sets the
speed to a given value (line 11) and finishes the protocol by turning off the car (line 12).

Throughout this paper, C is the set of class names and c is a meta-variable ranging over its
elements. Additionally, assume all classes belong to a single-inheritance hierarchy associated.

▶ Definition 14 (Super relation on classes). Super is a partial function such that, given a
class c, Super(c) is the unique direct super class of c, if there is one.

▶ Definition 15 (Subtyping relation on classes). The relation ≤C ⊆ C × C is the reflexive
and transitive closure of the Super relation.

With classes and their Super relation, we now need to map classes to their corresponding
protocols, containing only useful states (i.e., reachable states from the initial one).

▶ Definition 16 (Reachable states). The immediate state reachability relation is a relation
over W × W, defined as follows: w′Ẽ is immediately reachable from wẼ, if:
1. w = d{m̃ : w} and ∃ m′ . m′:w′ in d{m̃ : w};
2. w = ⟨õ : u⟩ and ∃ o′ . o′:w′ in ⟨õ : u⟩;
3. w = s and Ẽ includes the equation s = w′.

The state reachability relation is the reflexive and transitive closure of the immediate state
reachability relation.

ECOOP 2024

5:10 Behavioural Up/down Casting for Statically Typed Languages

Recall that each class c has an associated protocol sẼ , where s is its initial typestate
name. We enforce that for any classes c and c′ such that Super(c′) = c, the protocols of c

and c′ are subtypes (i.e., the initial typestate of c′ is a subtype of the initial typestate of c).

▶ Definition 17 (Protocol input states). ProtInputs(c) is the set of all input states d{m̃ : w}
that are reachable from protocol sẼ of class c.

By only considering reachable input states from the initial typestate name of the protocol,
we perform an optimisation that avoids dealing with useless typestates.

To refer to the typestates occurring in a type, we introduce a dedicated auxiliary function.

▶ Definition 18 (Typestates in a type). Function typestates : T → P(U) is such that, given
a type t ∈ T , typestates(t) yields the set of typestates occurring in t. Formally,

typestates(t) =

typestates(t1) ∪ typestates(t2) if t = t1 ∪ t2 or t = t1 ∩ t2

{t} if t ∈ U
{} if t = ⊤ or t = ⊥

3.1 Upcast
To upcast a typestate from class c to class c′, we take all typestates in the protocol of c′ that
are supertypes of the original typestate, and combine them in an intersection type, combining
behaviour from different types. If no supertypes are found, the “empty intersection” yields ⊤,
signalling an error.4 Since we take supertypes, upcast builds a new type that is a supertype
of the original (guaranteed by Theorem 21); and because we intersect the supertypes, we
build the most “precise” type possible with typestates in c′ (guaranteed by Theorem 22).

▶ Definition 19 (Upcast on types). Function upcast : T × C × C → T is such that, given a
type t, a class c whose protocol the typestates in t belong to, and a class c′ we want to upcast
to; upcast(t, c, c′) yields the type obtained by taking the intersection of all supertypes (in the
protocol of class c′) of typestates included in t. The domain of upcast only includes triples
(t, c, c′) such that typestates(t) ⊆ ProtInputs(c) and c ≤C c′. Formally,

upcast(t, c, c′) =

upcast(t1, c, c′) ∪ upcast(t2, c, c′) if t = t1 ∪ t2

upcast(t1, c, c′) ∩ upcast(t2, c, c′) if t = t1 ∩ t2⋂
{u′ ∈ ProtInputs(c′) | t ≤ u′} if t ∈ U

t if t = ⊤or t = ⊥

To see how upcast works, consider the setSpeed call in List. 6. In line 6, after call-
ing switchMode, the type of suv is COMF_ON ∪ SPORT_ON (since we ignore the output of
switchMode, we do not know the actual typestate). To compute the type of the object passed
as parameter, we use the upcast function, using as input: (i) COMF_ON ∪ SPORT_ON as the
type to be upcast; (ii) SUV as the starting class; (iii) Car as the target class. Since the given
type is a union type composed by two elements, the upcast function initially unfolds it and
creates one intersection for each element (i.e., COMF_ON and SPORT_ON) containing all their
supertypes. In this case, there is just one supertype for each: ON. Thus,

upcast(COMF_ON ∪ SPORT_ON, SUV, Car) = ON ∪ ON = ON .

4 In general, upcast operations are always possible, since they produce a supertype of the original type.
The issue here is that no operations are safely allowed on ⊤, so in practise, even if an error is not
immediately reported on upcast, there will be an error when trying to use an object with ⊤ type.

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:11

As a sanity check, we show that upcast builds a type where the typestates composing
it belong to the class we upcast to. Recall that Def. 19 has constraints typestates(t) ⊆
ProtInputs(c) and c ≤C c′ (the following results assume them). To improve readability we
omit stating the constraints explicitly and simply quantify universally types and classes.

▶ Lemma 20 (Upcast preserves protocol membership). For all t, c and c′, then

typestates(upcast(t, c, c′)) ⊆ ProtInputs(c′).

To ensure upcast correctness, we show that the result: (i) is a supertype of the given
type (Theorem 21); (ii) is the “closest” type to the original with typestates in the protocol
of the target class (Theorem 22); and (iii) preserves the subtyping relation (Theorem 23),
i.e., upcast on types in a subtyping relation produces types that are still in such relation.

▶ Theorem 21 (Upcast Consistency). For all t, c and c′, we have t ≤ upcast(t, c, c′).

▶ Theorem 22 (Upcast Least Upper Bound). For all t, t′, c and c′, such that
typestates(t′) ⊆ ProtInputs(c′) and t ≤ t′, we have upcast(t, c, c′) ≤ t′.

▶ Theorem 23 (Upcast Preserves Subtyping). For all t, t′, c and c′, such that t ≤ t′, we have
upcast(t, c, c′) ≤ upcast(t′, c, c′).

3.2 Downcast
To downcast a typestate from class c to c′, we take all typestates in the protocol of c′ that are
subtypes of the original typestate, and combine them in a union type. We use a union type
because we need to account for all possible typestates an object might be in. Since we take
the subtypes, downcast builds a new type that is a subtype of the original one (guarantee
given by Theorem 26); and because we make the union of them, we build the “closest” type
possible with typestates in c′ (guarantee given by Theorem 27).

▶ Definition 24 (Downcast on types). Function downcast : T ×C ×C → T is such that, given
a type t, the class c whose protocol the typestates in t belong to, and the class c′ we want to
downcast to; downcast(t, c, c′) yields the type obtained by taking the union of all subtypes (in
the protocol of class c′) of typestates included in t. The domain of downcast only includes
triples (t, c, c′) such that typestates(t) ⊆ ProtInputs(c) and c′ ≤C c. Formally,

downcast(t, c, c′) =

downcast(t1, c, c′) ∪ downcast(t2, c, c′) if t = t1 ∪ t2

downcast(t1, c, c′) ∩ downcast(t2, c, c′) if t = t1 ∩ t2⋃
{u′ ∈ ProtInputs(c′) | u′ ≤ t} if t ∈ U

t if t = ⊤or t = ⊥

Note that downcast only yields ⊥ if given ⊥. Consider the third case of Def. 24. The
union only yields ⊥ if no sub-typestates in the protocol of c′ are found. But that is impossible.
If we downcast from a typestate t (in c) to a subclass c′, and since the protocol of c′ is a
subtype of the one of c, there will necessarily be at least one typestate in c′ subtype of t.
Moreover, Theorem 54 will show that our overall approach is sound.

To see how downcast works, consider the downcast performed in line 9 of List. 6. To
compute the type of (SUV) car, we use downcast, defined in Def. 24, passing as parameter:
(i) ON as the type to be downcast (given the Requires annotation); (ii) Car as the starting
class; (iii) SUV as the target class. Since the type passed as parameter is a simple typestate,
the downcast function just creates a union containing all the subtypes of ON. Concretely,

downcast(ON, Car, SUV) = COMF_ON ∪ SPORT_ON .

ECOOP 2024

5:12 Behavioural Up/down Casting for Statically Typed Languages

As a sanity check, we show that downcast builds a type where the typestates composing
it belong to the class we downcast to. Recall that Def. 24 has constraints typestates(t) ⊆
ProtInputs(c) and c′ ≤C c. (the following results assume them). To improve readability,
the constraints are implicit and we simply quantify universally types and classes.

▶ Lemma 25 (Downcast preserves protocol membership). For all t, c and c′, we have

typestates(downcast(t, c, c′)) ⊆ ProtInputs(c′).

To ensure downcast correctness, we show that the result: (i) is a subtype of the given
type (Theorem 26); (ii) is the “closest” type to the original with typestates in the protocol
of the target class (Theorem 27); and (iii) preserves the subtyping relation i.e., downcast on
types in a subtyping relation produces types that are still in such relation (Theorem 28).

▶ Theorem 26 (Downcast Consistency). For all t, c and c′, we have downcast(t, c, c′) ≤ t.

▶ Theorem 27 (Downcast Greatest Lower Bound). For all t, t′, c and c′, such that
typestates(t′) ⊆ ProtInputs(c′) and t′ ≤ t, we have t′ ≤ downcast(t, c, c′).

▶ Theorem 28 (Downcast Preserves Subtyping). For all t, t′, c and c′, such that t ≤ t′, we
have downcast(t, c, c′) ≤ downcast(t′, c, c′).

Additionally, we relate the result of upcasting and then downcasting with the original type,
as well as, the result of downcasting and then upcasting. The first follows from Theorems 21
and 27, the second from Theorems 22 and 26. These corollaries are also important to ensure
the soundness of the approach (Theorem 54).

▶ Corollary 29 (Downcast reverses upcast). For all t, c and c′, we have

t ≤ downcast(upcast(t, c, c′), c′, c).

▶ Corollary 30 (Upcast reverses downcast). For all t, c and c′, we have

upcast(downcast(t, c, c′), c′, c) ≤ t.

3.3 Evolve
Whenever we perform a method call on an object with a given type, we need to compute the
new type representing the typestates the object might be in after the call. To compute such
type and rule out misconduct, we define the evolve function, which yields ⊤ when a method
is not callable in the given type. Retm is the set of outputs returnable by method m.

▶ Definition 31 (Evolve). Function evolve : T × M × O → T is such that, given a type t, a
method m, and an object o ∈ Retm; evolve(t, m, o) yields the new type obtained by executing
m on any object currently with type t, where o is the value returned by m. Its definition relies
on the auxiliary functions evolveU : U × M × O → U and evolveY : Y × O → U . Formally,

evolve(t, m, o) =

evolve(t1, m, o) ∪ evolve(t2, m, o) if t = t1 ∪ t2

evolve(t1, m, o) ∩ evolve(t2, m, o) if t = t1 ∩ t2

evolveU(t, m, o) if t ∈ U
t if t = ⊤or t = ⊥

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:13

evolveU(u, m, o) =

w if def(u) = d{m : w, m̃ : w} ∧ w ∈ U
evolveY(w, o) if def(u) = d{m : w, m̃ : w} ∧ w ∈ Y
⊤ otherwise

evolveY(y, o) =
{

u y = ⟨o : u, õ : u⟩
⊥ otherwise

Since evolve is deterministic, it is defined as a function, not as a labelled transition system.
To see how evolve works, consider the switchMode call in line 9 of List. 6. To compute

the type of car, we use evolve, defined in Def. 31, passing as parameter: (i) the type
COMF_ON ∪ SPORT_ON be evolved (given the result of the downcast function); (ii) the method
switchMode to make the type evolve; (iii) the expected output Mode.SPORT to enter the if
branch. Since the type, passed as parameter, is a union type composed by two elements,
the evolve function is called recursively, and then the auxiliary function evolveU is called
for COMF_ON and SPORT_ON. Since the switchMode action leads to an output state, for both
COMF_ON and SPORT_ON (see List. 2), the auxiliary function evolveY is invoked. Concretely,

evolve(COMF_ON ∪ SPORT_ON, switchMode, Mode.SPORT) = SPORT_ON ∪ SPORT_ON

that can be simplified to SPORT_ON. Notice that the evolved type has the same structure of
the one before calling the evolve function i.e., a union type.

As a sanity check, we show that evolve produces a type containing only typestates
belonging to the initial class.

▶ Lemma 32 (Evolve preserves protocol membership). For all t, m, o, c,

typestates(t) ⊆ ProtInputs(c) implies typestates(evolve(t, m, o)) ⊆ ProtInputs(c)

To ensure evolve correctness, we show that the result preserves the subtyping relation:
evolve on types in a subtyping relation produces types that still are in such relation.

▶ Theorem 33 (Evolve preserves subtyping). For all t and t′ such that t ≤ t′, we have that

evolve(t, m, o) ≤ evolve(t′, m, o).

We also relate evolve with upcast and downcast showing that: (i) upcast after evolve
produces a subtype of the inverse sequence of operations (Theorem 34); and (ii) downcast
after evolve produces a supertype of the inverse sequence of operations (Theorem 35). These
theorems are key to ensure soundness (Theorem 54). For readability, we omit the constraints
on the universally quantified variables needed to use upcast and downcast.

▶ Theorem 34 (Evolve and upcast). For all t, m, o, c and c′, we have that

upcast(evolve(t, m, o), c, c′) ≤ evolve(upcast(t, c, c′), m, o).

▶ Theorem 35 (Evolve and downcast). For all t, m, o, c and c′, we have that

evolve(downcast(t, c, c′), m, o) ≤ downcast(evolve(t, m, o), c, c′)

ECOOP 2024

5:14 Behavioural Up/down Casting for Statically Typed Languages

4 Typestate Trees

In this section, we describe Typestate Trees, the crucial data structure we use to solve the
problem of casting in the middle of a protocol. These trees associate classes with types
containing only states in the protocol of those classes (i.e., typestates(t) ⊆ ProtInputs(c)).
The tree root indicates the static type of a variable and the corresponding type (in T) at a
given program point. All other nodes describe what should be the type if we downcast to the
corresponding class. The type in the root is always a sound approximation of the runtime
execution. The types in other nodes are also sound only if the object is an instance of the
corresponding class. This will imply that type safety is guaranteed up-to class downcasts
being performed to a class of which an object is a subtype of. Hereafter we define well-formed
typestate trees and auxiliary functions. Sections 4.1, 4.2, 4.3, and 4.4, describe the main
operations on typestate trees: upcastTT, downcastTT, evolveTT, and mrgTT, respectively.

▶ Definition 36 (Typestate Trees). Recall that c ranges over classes (C) and t ranges over
types (T). Let T T be the smallest set of triples satisfying the following rules:

(c, t, {}) ∈ T T
n ≥ 1 ∀ i, 1 ≤ i ≤ n . tti ∈ T T

(c, t, {tti | 1 ≤ i ≤ n}) ∈ T T

Notice that triples in T T represent trees and are composed of: the class c and the type t

of the root, and a set of subtrees (again triples in T T), one for each root child. Such a set is
empty if the tree root has no children (i.e., the tree simply represents a leaf). Throughout
this paper, tt ranges over elements of T T and tts ranges over sets of elements of T T . We
need functions to destroy an element of T T (which is a triple). Let cl((c, t, tts)) = c,
ty((c, t, tts)) = t, and children((c, t, tts)) = tts.

▶ Definition 37 (No duplicate classes). The predicate nodup over P(T T) asserts that, given
a set tts ∈ P(T T), no two typestates trees in tts have the same associated class. Formally,
nodup(tts) holds if: ∀ tt, tt′ ∈ tts . cl(tt) = cl(tt′) ⇒ tt = tt′.

▶ Definition 38 (Well-formedness Of Typestate Trees). The predicate ⊢ over T T asserts that,
given a typestate tree (c, t, tts), it is correctly constructed. Formally,

typestates(t) ⊆ ProtInputs(c)
nodup(tts) ∀tt ∈ tts . Super(cl(tt)) = c ∧ upcast(ty(tt), cl(tt), c) ≤ t ∧ ⊢ tt

⊢ (c, t, tts)

So, a typestate tree (c, t, tts) is well-formed under the following conditions: (i) all the
typestates of type t belong to the protocol of class c; (ii) there are no two children with the
same class; (iii) the classes associated with each child tree are direct subclasses of c; (iv) if
we upcast a type of a child tree, we get a subtype of t; and (v) each child is also well-formed.
Condition (iv) ensures that the type of a child tree is never less “precise” than the type of
the parent. From now on, we only consider well-formed typestate trees.

To illustrate the concept, suppose that in line 3 of List. 6, instead of assigning the newly
created object to a SUV variable, we assign it to a Car one, performing an upcast. Since the
static and actual type are different, we need a typestate tree to handle future casts. Given
Def. 36 and Def. 38, the resulting typestate tree is (Car, OFF, {(SUV, OFF, {})}).

4.1 Upcast
Upcasting a typestate tree to class c′ ensures that the resulting root class is c′, by recursively
following the Super relation and building up new tree roots until the root class is c′.

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:15

▶ Definition 39 (Upcast on typestate trees). Function upcastTT : T T × C → T T is such
that upcastTT((c, t, tts), c′) performs an upcast on typestate tree (c, t, tts) to class c′. The
domain of upcastTT only includes pairs ((c, t, tts), c′) such that c ≤C c′. Formally,

upcastTT((c, t, tts), c′) ={
(c, t, tts) if c = c′

upcastTT((Super(c), upcast(t, c, Super(c)), {(c, t, tts)}), c′) otherwise

Notice that, under the assumption on the domain of the upcastTT, the function terminates
since the distance between c and c′ decreases with each recursive step.

▶ Theorem 40 (Typestate Trees Well-formedness Preserved By Upcast). For all c′′, tt, such
that ⊢ tt and cl(tt) ≤C c′′, it holds that ⊢ upcastTT(tt, c′′).

To see how upcastTT works, consider the setSpeed call in List. 6. In line 8, after calling
switchMode, the object suv has the following typestate tree (SUV, COMF_ON ∪ SPORT_ON, {}).
When passing suv to setSpeed, we need to upcast from SUV to Car. To do that, we use the
upcastTT function, defined in Def. 39, passing as parameter: (i) (SUV, COMF_ON∪SPORT_ON, {})
as the typestate tree to be upcast; and (ii) Car as the target class. Thus,

upcastTT((SUV, COMF_ON∪SPORT_ON, {}), Car) = (Car, ON, {(SUV, COMF_ON∪SPORT_ON, {})}) .

It is crucial to notice that to upcast a typestate tree, we must perform multiple upcasts,
incrementally building up new tree roots, not only to preserve the well-formedness property,
but also to ensure soundness. For readability sake, we show the problem with an abstract,
but simple example. Take classes A, B and C, where Super(C) = B, Super(B) = A, and the
protocol equations associated with each class listed below. Recall that end = drop{}.

A1 = { m1 : end }
B1 = { m1 : end, m2 : end }

C1 = { m1 : end, m2 : end, m3 : C2 }
C2 = { m1 : end, m4 : end }

Given the protocols above and according to Def. 4 we have:

C1 ≤S B1 ≤S A1 and C2 ≤S A1, but C2 ̸≤S B1 .

C2 not being a subtype of B1 is not a problem per se, but it may be when upcasting, if
we define it to go directly to the root instead of going level-by-level, as downcasting after
upcasting should lead to the original state.5 To see that, consider the code in List. 7, which
contains an unsafe method call, but would be accepted. At first, we create an object c of
class C and we call its method m3, producing a new typestate, i.e., C2. Then, we assign c to
variable a performing an upcast from class C to A (and from typestate C2 to A1). We finally
perform a sequence of downcasts on a leading the object to class C (and to typestate C1).

Listing 7 Direct upcast example.
1 C c = new C(); // C1
2 c.m3 (); // C2
3 A a = c; // A1: unsound upcast !
4 B b = (B) a; // B1: downcast level -by - level
5 C c = (C) b; // C1: incorrect ! the state should be C2 (that of line 2)
6 c.m2 (); // unsafe !

5 Technically, downcasting after upcasting returns an over-approximation of the original state.

ECOOP 2024

5:16 Behavioural Up/down Casting for Statically Typed Languages

In detail (for those interested), notice that the result of upcasting C2 directly to class A
(line 3, List. 7) is A1, since it is the only supertype of C2, i.e., C2 ≤S A1. To downcast A1
to class B, we check all the typestates in the protocol of B subtypes of A1. Since only B1 is
subtype of A1, that is the downcast result (line 4). Similarly, since only C1 is a subtype of
B1, it is the result of downcasting from B1 (line 5). Notice how a direct upcast to A, followed
by a downcast to B, and then to C, results in a different typestate with respect to the initial
one. This is unsound: C1 and C2 are unrelated. The issue is that a direct upcast to A makes
us lose the information about C1 not having supertypes among typestates in B. Since we first
upcast C2 to B, getting ⊤ as result, we find out that C2 has no supertypes among typestates
in B. Additionally, since we use typestate trees, downcasting to C leads back to C2.

4.2 Downcast
When downcasting a given typestate tree tt to class c, we ensure that the root class of the
resulting tree is c. If we find a subtree in tt whose class is c, we pick it as the result (by
well-formedness, it is unique). Otherwise, we build a new tree downcasting from the most
“precise” type information in tt. For this, we use the closestSubT function to look for the
subtree whose class is hierarchically the “closest” to c.

▶ Definition 41 (Closest subtree). The function closestSubT : T T × C → T T is such that
closestSubT(tt, c) yields the subtree associated with the closest superclass of c occurring in
tt. The domain of closestSubT only includes pairs (tt, c) such that c ≤C cl(tt). Formally,

closestSubT(tt, c) =
{

closestSubT(tt′, c) if c ≤C cl(tt′) ∧ tt′ ∈ children(tt)
tt otherwise

To illustrate the use of closestSubT, consider classes A, B, and C, where Super(B) = A
and Super(C) = B. Let tt be (A, t, {(B, t′, {})}). Then the following equalities hold:
closestSubT(tt, A) = tt; closestSubT(tt, B) = (B, t′, {}); and closestSubT(tt, C) =
(B, t′, {}). The first two cases are easy to understand: the function yields the subtree
whose class is precisely the one we are looking for. In the third case, since there is no subtree
in tt whose class is C, closestSubT(tt, C) yields the subtree corresponding to B, which is the
“closest” superclass of C present in tt, i.e., (B, t′, {}). Now, suppose instead that Super(B) = A
and Super(C) = A (i.e., B and C are “siblings”). Then closestSubT(tt, C) would yield the
entire tree tt whose class is A, which is the “closest” superclass of C present in tt. Lemma 42
ensures the correctness of closestSubT and is useful for the soundness proof (Theorem 54).

▶ Lemma 42 (Closest correctness). For all tt and c, if c ≤C cl(tt) then

c ≤C cl(closestSubT(tt, c)).

▶ Definition 43 (Downcast on typestate trees). Function downcastTT : T T × C → T T is
such that downcastTT(tt, c) performs a downcast on typestate tree tt to class c. The domain
of downcastTT only includes pairs (tt, c) such that c ≤C cl(tt). Formally,

downcastTT(tt, c) ={
tt′ if tt′ = closestSubT(c, tt) ∧ c = cl(tt′)
(c, downcast(ty(tt′), cl(tt′), c), {}) otherwise tt′ = closestSubT(c, tt)

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:17

▶ Theorem 44 (Typestate Trees Well-formedness Preserved By Downcast). For all c, tt, such
that ⊢ tt and c ≤C cl(tt), it holds that ⊢ downcastTT(tt, c).

To see how downcastTT works, observe how (SUV) car would be checked (in List. 6).
To compute its typestate tree, we use downcastTT, defined in Def. 43, passing as parameter:
(i) (Car,ON,{}) as the typestate tree to downcast; (ii) SUV as the target class. Notice
that, in the case the root is also a leaf, we need to replace it with the result of downcastTT.
Concretely, downcastTT((Car, ON, {}), SUV) = (SUV, COMF_ON ∪ SPORT_ON, {}) .

4.3 Evolve
To compute the typestate tree of an object after a call, we define the evolveTT function.

▶ Definition 45 (Evolve on typestate trees). Function evolveTT : T T ×M×O → T T is such
that evolveTT(tt, m, o) yields a new typestate tree resulting from applying evolve(t, m, o)
(Def. 31) to all the nodes of tt. The domain of evolveTT only includes triples (tt, m, o) such
that o ∈ Retm (i.e. the set of outputs returnable by method m). Formally,

evolveTT((c, t, tts), m, o) = (c, evolve(t, m, o),
⋃

tti∈tts

evolveTT(tti, m, o)).

Notice that, when the set tts is empty, evolveTT((c, t, tts), m, o) = (c, evolve(t, m, o), {})

▶ Theorem 46 (Typestate Trees Well-formedness Preserved By Evolve). For all tt, m, o, such
that ⊢ tt, it holds that ⊢ evolveTT(tt, m, o).

Listing 8 EvolveTT example.
1 Car c = new SUV ();
2 if (c. turnOn ()) c. turnOff ();

To see how evolveTT works, consider the code presented in List. 8 (where the pro-
tocols of Car and SUV are presented in List. 1 and List. 2). The typestate tree of c is
(Car, OFF, {(SUV, OFF, {})}). When the turnOn call occurs, we need to “evolve” each node
of the typestate tree. To compute the resulting tree, we use evolveTT, defined in Def. 45,
passing as parameter: (i) the typestate tree of c; (ii) turnOn as the method called; (iii)
true as the expected output to enter the if branch. Concretely,

evolveTT((Car, OFF, {(SUV, OFF, {})}), turnOn, true) = (Car, ON, {(SUV, ON, {})}) .

Notice that every node of the typestate tree is “evolved” using the evolve function.

4.4 Merge
In the case of branching code, one has to merge type information coming from all different
branches, so that subsequent code can be properly analysed by considering all possibilities
(e.g., merging type information coming from both branches of an if statement). To this end,
we define the mrgTT function, which merges two typestate trees. Before presenting mrgTT,
we define some auxiliary functions, crucial for the formalisation.

▶ Definition 47. Function height : P(T T) → N is such that height(tt) yields the greatest
number of nodes traversed, in tt, from the root to one of the leaves (both included).

▶ Definition 48. Function clss : P(T T) → P(C) is such that clss(tts) yields the set of
classes associated with the typestate trees in tts. Formally, clss(tts) = {cl(tt) | tt ∈ tts}.

ECOOP 2024

5:18 Behavioural Up/down Casting for Statically Typed Languages

▶ Definition 49. Function find : C × P(T T) → T T is such that, given a class c and set of
typestate trees tts with c ∈ clss(tts) and nodup(tts), find(c, tts) yields the unique typestate
tree in set tts whose class is c.

▶ Definition 50 (Merge). Function mrgTT : T T × T T → T T is such that, given typestate
trees tt and tt′, mrgTT(tt, tt′) yields the typestate tree obtained by merging tt and tt′. The
domain of mrgTT only includes pairs (tt, tt′) such that cl(tt) = cl(tt′). Formally,

mrgTT((c, t, tts), (c, t′, tts′)) = (c, t ∪ t′, tts1 ∪ tts2 ∪ tts3)

where tts1 =
⋃

ci∈clss(tts)∩clss(tts′)

mrgTT(find(ci, tts), find(ci, tts′))

tts2 =
⋃

ci∈clss(tts)\clss(tts′)

mrgTT(find(ci, tts), (ci, downcast(t′, c, ci), {}))

tts3 =
⋃

ci∈clss(tts′)\clss(tts)

mrgTT((ci, downcast(t, c, ci), {}), find(c, tts′))

Note that mrgTT terminates since height(tt) + height(tt′) decreases with each recursive
step. Moreover, mrgTT is symmetric, i.e., mrgTT(tt, tt′) gives the same result as mrgTT(tt′, tt).

▶ Theorem 51 (Typestate Trees Well-formedness Preserved By Merge). For all tt, tt′, such
that cl(tt) = cl(tt′), ⊢ tt, and ⊢ tt′, it holds that ⊢ mrgTT(tt, tt′).

To see how mrgTT works, consider the if statement in List. 6 (lines 12-14). Notice that,
although the else-branch is missing, in the process of computing the typestate tree of car, we
need to consider it to be there (to account for all possible outputs returned by switchMode).
To compute such typestate tree, we use mrgTT, defined in Def. 50, passing as parameters:
(i) (SUV, SPORT_ON, {}) and (ii) (SUV, COMF_ON, {}). Since neither of the parameters have
children nodes, it is enough to make the union of the root types. Concretely,

mrgTT((SUV, SPORT_ON, {}), (SUV, COMF_ON, {})) = (SUV, SPORT_ON ∪ COMF_ON, {}) .

5 Typestate Trees Soundness

In this section, we discuss why we consider type-safe a programming language equipped with
our subtypestate mechanism. Such result relies on the key property that given a typestate
tree that soundly approximates the current runtime typestate of an object, operations on
it result in new typestate trees that still soundly approximate the runtime typestate. This
assumes that class downcasts are performed to a class of which the object is a subtype of.
So, we do not provide static guarantees that class downcasts will not throw at runtime.

▶ Definition 52 (Sequence of upcasts on types). Function upcast∗ : T ×C×C → T is such that
upcast∗(t, c, c′) performs zero or more upcasts from c to c′ step-by-step, following the class
hierarchy. The domain of upcast∗ only includes triples (t, c, c′) such that typestates(t) ⊆
ProtInputs(c) and c ≤C c′. Formally,

upcast∗(t, c, c′) =
{

t if c = c′

upcast∗(upcast(t, c, Super(c)), Super(c), c′) otherwise

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:19

Since the distance between c and c′ decreases with each recursive step, upcast∗ terminates.
The next relation describes a typestate tree where type information is sound with respect

to class c′ and type t′. That is, assuming c′ and t′ represent the exact runtime type of a
given object, a sound typestate tree correctly approximates such type. Note that the root
has to be necessarily sound with respect to runtime, while the other nodes only need to be
sound if the initialising class of the object is a subclass of the class associated with that node.
Thus, all non-root nodes describe the type of the object if indeed the object is an instance of
the corresponding class. This implies that if we downcast, possibly turning a non-root node
into the new root, we preserve soundness only if the runtime downcast succeeds.

▶ Definition 53 (Soundness Of Typestate Trees). The predicate ⊢c′,t′ over T T , with
typestates(t′) ⊆ ProtInputs(c′), asserts that, given a (well-formed) typestate tree (c, t, tts),
it is sound with respect to class c′ and type t′. Formally,

c′ ≤C c upcast∗(t′, c′, c) ≤ t ∀tt ∈ tts . c′ ≤C cl(tt) ⇒ ⊢c′,t′ tt

⊢c′,t′ (c, t, tts)

The next theorem shows that soundness is preserved by typestate tree operations. Note
that soundness after downcast is only preserved if at runtime the downcast does not throw
an exception (thus the assumption c ≤C c′ ≤C cl(tt) on the second item of Theorem 54).

▶ Theorem 54 (Typestate Trees Soundness Preservation). Soundness is preserved by:
upcast – for all c, t, c′, tt, such that ⊢c,t tt and cl(tt) ≤C c′, it holds that

⊢c,t upcastTT(tt, c′)
downcast – for all c, t, c′, tt, such that ⊢c,t tt and c ≤C c′ ≤C cl(tt), it holds that

⊢c,t downcastTT(tt, c′)
evolve – for all c, t, tt, m, o, such that ⊢c,t tt, it holds that

⊢c,evolve(t,m,o) evolveTT(tt, m, o)
merge – for all c, t, tt1, tt2, such that ⊢c,t tt1 or ⊢c,t tt2, and cl(tt1) = cl(tt2), it holds

that ⊢c,t mrgTT(tt1, tt2).
Having shown our approach sound, the following section explains how the functions

defined in Section 4 are used during type checking.

6 Application to type checking

We believe the setting presented is quite general and applicable to many object-oriented
languages. In this section, we explain, how in detail, assuming a common syntax.6 We start
by describing how declarations are analysed in JaTyC, followed by expressions, and then
statements. We use the Kleene star to denote (possibly empty) sequences.

Class declarations and overriding. First, it is crucial to guarantee that protocols are well-
formed and the relation between classes and their protocols makes sense. To this, we ensure
that all methods mentioned in the protocol are declared in the class. Similarly, we check that
all mentioned outputs are return values of the corresponding methods. Additionally, we check
typestate input contravariance and output covariance in overridden methods, since these may
include @Requires and @Ensures annotations in parameters and return types, respectively,
which limit the typestates received/returned. Finally, we ensure that the subclass protocol is

6 Formalising a type checking system for one particular language, mechanising, and proving it sound is a
matter for another paper. Doing that for a core Java-like language is work-in-progress.

ECOOP 2024

5:20 Behavioural Up/down Casting for Statically Typed Languages

a subtype of the superclass one (i.e., the initial state of the former is a subtype of the initial
state of the latter according to Def. 4). Thanks to these checks, dynamic dispatch works
transparently: if a method is callable on a supertype, it is also callable on its subtypes.

To type check a class, we analyse each method following the sequences of calls allowed
by the protocol, similarly to the approach by Bravetti et al. [11], so that method analysis
benefits from type information coming from the analyses of methods called before. Type
information is stored in a map from locations (local variables, fields of the this object, and
code expressions) to typestate trees (Def. 36). We also store the typestate trees of expressions
since these may evaluate to typestated-objects, which must be tracked. Moreover, type
information of final states is checked to ensure all fields either correspond to a terminated
protocol or are aliased (explained later), to ensure protocol completion of references in fields.

Method declarations: @Ensures(s) type m((@Requires(s) type x)*) {st}. To check
a method, we build a control flow graph [1] with the Checker Framework [30]. Then, we
traverse it, visiting each expression or statement, and propagate type information. For each
expression, we take the type information obtained from analysing the previous one, and
produce new information. Expression or statement analysis is described later.

The initial type information (i.e., the initial input of the graph traversal) is composed
by the types of the parameters, expressed via the @Requires annotation, combined with
information about fields (coming from previous method analysis, as explained before). If a
@Requires annotation is omitted, it means we expect an aliased reference. Return statements
are analysed like assignments, while making sure the returned expression type is a subtype
of the one declared via the @Ensures annotation. If no annotation is provided, we return an
aliased reference. At the end of a method body, we ensure variables and code expressions are
either aliased or in a final state, guaranteeing protocol completion.

Variable declarations or assignments: [type] x = exp. To check a variable declaration
or assignment, we call upcastTT (Def. 39) on the typestate tree of the right-hand-side, and
associate the result with the variable (or field) in the left-hand-side. If upcastTT yields a
typestate tree with ⊤ as root type, the assignment is not allowed and we report an error.
Given how the control flow graph is built, the expression on the right-side was already checked
when we reach this point. If we override a typestate tree corresponding to a non-terminated
protocol, we also report an error, since the assignment may compromise protocol completion
of the overridden reference. Assignments may produce aliasing among variables. Since
an object’s state could be modified via multiple aliases, we restrict aliasing to allow us to
statically track object states. We enforce a linear discipline: only one variable is “active”,
while the others are marked as aliased (and cannot call protocol methods). We also mark
the right-hand-side expression as aliased when checking a variable declaration or assignment.

Method call expressions: exp.m(exp*). To check a call, we first ensure the receiver
expression is not null. We can do this because we distinguish between nullable and non-null
types. Then, we analyse each parameter assignment applying the same rules explained before.
This ensures that calls like obj.m(x,x) do not create unintended aliases. We also ensure
that the root types of the typestate trees associated with the parameter expressions are
subtypes of the expected types in the method signature. Following this, we proceed to check
the call itself. We ensure the receiver expression is a non-aliased reference and use evolveTT
(Def. 45) to compute the typestate tree associated with the receiver after the call, passing
the current typestate tree, the method name, and a possibly returned output (if the method
call appears in an if or switch statement). Note that evolveTT might be called several
times to consider all possible outputs. If evolveTT yields a typestate tree where the root
type is ⊤, then the method is not available to be called in that state, so we report an error.

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:21

Cast expressions: (C) exp. When checking a cast, we know that the inner expression was
already checked, similarly to what happens to other expressions. To check it, we must use
either upcastTT (Def. 39) or downcastTT (Def. 43), passing the inner expression typestate
tree and the target class. We test if we are upcasting or downcasting by comparing the inner
expression static type with the target class. The result is associated with the cast expression
and the inner one is marked as aliased. As for assignments, if upcastTT yields a typestate
tree with ⊤ in the root, we report an error. However, downcastTT does not produce errors
because we provide type safety up-to downcasts not throwing runtime exceptions.

One key detail about cast expressions is that if a cast expression is the receiver object of a
method call, after checking the call, the new type of the receiver object is associated with the
most inner expression which is not a cast, not with the cast expression itself. For example,
if the receiver is (A) ((B) x), the new type information is associated with x directly, not
with (A) ((B) x), so that x can be used again later (instead of being aliased). This will
require an upcast to the class of x, but no information is lost, thanks to typestate trees.

New expression: new C(exp*). The initialisation of a new object is analysed similarly to
a method call (since we are calling the constructor), except that it returns a new object. So,
we associate the expression with a typestate tree with only a root: the class is the object
type we are constructing, and the type (from Def. 10) is the initial typestate of the protocol.

If statements: if (exp) { st } else { st’ }. For simplicity, up until now we omit-
ted an implementation detail crucial to type check if statements (and switch statements):
during the control flow graph traversal, we do not simply propagate a map from locations
to typestate trees; we keep track of type information depending on the values of other
expressions. For instance, to analyse a method call in a condition of an if, we track the type
information for when the condition is true separately from the one when it is false. So,
when checking an if, we just propagate the former to the first branch, and the latter to the
second branch. We also make sure to invalidate such “conditional” type information once it
is no longer relevant. Finally, the typestate trees associated with each location after the if
are the result of merging type information from both branches, using mrgTT (Def. 50).

Switch statements: switch (exp) { (case val : st)* }. We analyse a switch
statement similarly to an if one. A method call in the expression of a switch state-
ment produces type information different for each case, but we consider enumeration values
that may be returned instead of boolean values. So, to check a switch statement, we just
need to propagate the information that holds when a given case is matched to the related
branch. Again, we invalidate this “conditional” type information once it is no longer relevant.

While statements: while (exp) { st }. While statements are analysed like if ones,
except the flow graph is different: after the body is executed, execution returns to the
condition. Because of this, we might traverse the same expression or statement in the graph
more than once. If that occurs, we merge the new gathered information with the previous
one. To ensure that the static analysis terminates, we avoid analysing an expression again if
no new type information was gathered. This is guaranteed to occur because the number of
all possible typestates is finite. In the worst case, when merging, we might produce a union
of all typestates. Typestate trees are also finite because the number of classes is finite.

ECOOP 2024

5:22 Behavioural Up/down Casting for Statically Typed Languages

7 Use Cases

To showcase the applicability and expressiveness of our approach, we start by explaining
how the code in List. 6 is type checked in detail. Then, we present a suite of examples
with polymorphic code7, inspired from cyber-physical systems, showing that: (i) JaTyC
detects errors the standard Java type checker does not detect; (ii) our setting is flexible and
expressive enough to model interesting and intricate scenarios.

Type checking List. 6. To type check the ClientCode class (which has no protocol), we
analyse the static methods example and setSpeed, independently (since static methods are
not part of a class protocol). The list of steps to type check the example method follows:

Check the expression new SUV(), associating it with a leaf typestate tree with class SUV
and type OFF (i.e., (SUV, OFF, {}));
Check the assignment, associating the previous typestate tree with the variable suv, and
marking the expression on the right as aliased;
Check the call suv.turnOn(), allowed in type OFF, generating “conditional” type inform-
ation: if true, suv has typestate tree (SUV, COMF_ON, {}), otherwise it has (SUV, OFF, {});
Check the negating expression which “inverts” the conditional information;
Inside the body of the while statement, suv is associated with (SUV, OFF, {}), and after
exiting the while, suv is associated with (SUV, COMF_ON, {});
Check the call suv.switchMode(), which is allowed in type COMF_ON, generating “condi-
tional” type information: suv has the typestate tree (SUV, SPORT_ON, {}) if the call returns
Mode.SPORT, and if the call returns Mode.COMFORT, it has (SUV, COMF_ON, {}). Since the
returned value is not checked in a switch statement, we combine both typestate trees
into (SUV, SPORT_ON ∪ COMF_ON, {});
Check the parameter assignment of suv by upcasting from SUV to Car, generating the
typestate tree (Car, ON, {(SUV, SPORT_ON ∪ COMF_ON, {})}). Since the root type ON is a
subtype of the required type in the @Requires annotation, the parameter assignment is
allowed. Additionally, variable suv is marked as aliased: the setSpeed method is now
the one responsible to complete the protocol of the given instance;
No further checks are necessary for the call expression on setSpeed since it is a static
method and methods are checked in a modular way;
Type checking the example method finishes by checking protocol completion. Since all
locations are marked as aliased at the end, no error about completion is reported.

To finish checking the class, we analyse setSpeed. The list of steps taken follows:
We associate car with typestate tree (Car, ON, {}), according to the @Requires annotation;
Downcast from Car to SUV, resulting in the typestate tree (SUV, COMF_ON ∪ SPORT_ON, {});
Check the call ((SUV)car).switchMode(), which is allowed in type COMF_ON ∪
SPORT_ON, generating “conditional” type information: (SUV)car has typestate tree
(SUV, SPORT_ON, {}), if the call returns Mode.SPORT, and if the call returns Mode.COMFORT,
it has (SUV, COMF_ON, {});
To make car usable again, upcast to Car, associating car with the typestate tree
(Car, ON, (SUV, SPORT_ON, {})), if the call returned Mode.SPORT; and
(Car, ON, (SUV, COMF_ON, {})) if the call returned Mode.COMFORT;

7 The repository of our tool includes an examples folder containing such examples.

https://github.com/jdmota/java-typestate-checker/tree/master/examples

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:23

Check the if statement by propagating the type information corresponding to each
branch;
In the body of the if statement, downcast (again) from Car to SUV, resulting in the
typestate tree (SUV, SPORT_ON, {});
Check the call ((SUV)car).setFourWheels(true), which is allowed in type SPORT_ON,
in a similar fashion as before, associating car with (Car, ON, (SUV, SPORT_ON, {}));
Merge type information from both branches, resulting in car being associated with
typestate tree (Car, ON, (SUV, SPORT_ON ∪ COMF_ON, {}));
Check the call car.setSpeed(50), which is allowed in type ON, leading to ON;
Check the call car.turnOff(), which is allowed in type ON, leading to OFF;
Finish by checking protocol completion. Since all locations are marked as aliased or are
in a final state (car is in the droppable typestate OFF), no completion error is reported.

Examples suite. We report the most significant examples of our suite in Table 1: Directory
indicates the sub-directory; Features highlights the key features; Checks says if the example
is accepted by our tool or not; and, Runtime describes the runtime error exhibited, if any.

In Iterator (1), Alarms and Cars (1), the examples test how our approach behaves with
polymorphic code: as expected, the code compiles and no errors are thrown.

In Drones (1) and Robots (1), the examples are more complex: we introduce a typestated
data structure to increase the degree of flexibility (storing an arbitrary number of typestated
objects, i.e., Drones and Robots). A key feature showcased here is the interaction between
typestated objects: every time an object is used, it needs to be extracted from the data
structure and put back once it has finished its task. In Drones (2), the interaction between
the data structure and the objects is even more articulate: we do not wait for the object to
finish its task, but we immediately put it in the data structure and move to the next one,
simulating a parallel tasks execution. The Drones (3) example is similar to the previous
one, but it relies in a test for null being incorrectly negated in the return expression of an
instance method, which causes a null pointer error in subsequent calls. The tool correctly
propagates type information in the order methods may be called and catches this problem.

In Iterator (2) and Cars (2), we show two problematic scenarios: index out of bounds
and null-pointer exceptions, respectively. The former is caused by getting the next element
without checking whether there are remaining elements or not. The latter is caused due to a
field usage before initialising it. We are able to statically catch both cases.

Finally, in Robots (2), we have another example of null-pointer error. The exception now
is caused by a field being assigned to null in the subclass and used in the superclass, after
performing an upcast. Thanks to our work, we are able to detect that, after assigning the
field to null, the object is in a typestate with no supertypes, thus we raise an error.

In short, the provably sound theory presented in this paper is expressive and applicable
to a mainstream object-oriented language, dealing with realistic code.

8 Related work

Fugue [13] allows checking typestates (seen as predicates over fields) by annotating methods
with contracts and checking invariants. It handles casting and subclassing, where subclasses
are allowed to introduce additional states with respect to superclasses. If an object ends up
in a state unknown to its supertype, Fugue prohibits upcasting - as in our approach. To
handle inheritance, frame typestates are introduced. Each frame is a set of fields declared in a
particular class. An object typestate is the collection of frames. In our approach, our protocols

ECOOP 2024

5:24 Behavioural Up/down Casting for Statically Typed Languages

Table 1 Summary of examples.

Name Directory Features Checks Runtime
Iterator (1) removable-iterator Polymorphic safe code Y Ok
Iterator (2) removable-iterator2 Wrong method call order N Out Of Bounds
Alarms alarm-example Polymorphic safe code Y Ok
Cars (1) car-example Polymorphic safe code Y Ok
Cars (2) car-example2 Wrong method call order N Null-pointer
Drones (1) drone-example Typestated data structure Y Ok
Drones (2) drone-example2 Typestated data structure

Complex objects interaction
Y Ok

Drones (3) drone-example3 Same as Drones (2) and
Incorrect test for null

N Null-pointer

Robots (1) robot-example Typestated data structure
Simple objects interaction

Y Ok

Robots (2) robot-example2 Wrong typestate upcast N Null-pointer

are globally defined with automata (e.g., List. 1 and 2), instead of method contracts, which
we believe is more natural. Moreover, instead of using frames, we treat each class as a whole.
This is enough since we view typestates as defining sequences of calls, not as predicates over
fields, which simplifies the approach when dealing with overriding and dynamic dispatch.

Plural [8] statically checks that clients follow usage protocols based on typestates. It
is based on earlier work [7] addressing the problem of substitutability of subtypes, while
guaranteeing behavioural subtyping in an object-oriented language. Subtyping is supported
by the programmer explicitly specifying which states “refine” (i.e., are substates of) others
in the superclass. In our approach, we do not need to explicitly define subtyping relations:
we define protocols in terms of state machines and automatically find all subtyping pairs.

Obsidian [12] is a language for smart contracts with a type system to statically detect
bugs. It uses typestates to check state changes and has a permissions system for safe aliasing.
It supports parametric polymorphism, but not casting to preserve strong static guarantees.

Gay et al. [18] extend earlier work on session types for object-oriented languages by
attaching a protocol in the form of a session type to a class definition, and presenting an
unification of communication channels and their session types, distributed object-oriented
programming, and a form of typestates supporting non-uniform objects. The formal language
includes a subtyping relation on session types [17] but does not include class inheritance
(subtyping is just for channel communication). This approach has two implementations:
Papaya [23] and Mungo [24]. Papaya considers protocols as in Gay et al. [18], but uses Scala
as the target language with the same limitation of not coping with inheritance. Mungo
considers protocols along the lines of Gay et al. [18], but uses Java (as we do) as the target
object-oriented language. Inheritance is not supported apart from classes without protocols.

Bravetti et al. [11] present a type system for a Java-like language, where objects are
annotated with usages, typestate-like specifications stating the allowed sequences of method
calls. The type-based analysis ensures protocol compliance and completion, and memory
safety (no null pointer dereferencing). However, subtyping (hence casting) is not supported.

Bouma et al. [10] develop a tool called BGJ that takes a global type, modelling the
behaviour of processes in a multiparty session typing setting [20], and automatically generates
Java classes modelling the APIs of projected local types. The state is encoded with a state
field and transitions are encoded with methods annotated with preconditions and post-

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:25

conditions. To verify the clients of these APIs, the programmer writes Java code annotated
with logical formulas. All annotations are statically checked by VerCors [9]. In our approach,
one does not need to spread annotations throughout the code to specify or use protocols,
we simply associate them with classes and the type system ensures memory-safety, protocol
compliance and completion (properties the developer would need to specify for each program).

Table 2 Comparison of related work.

Work How protocols are defined Casting approach
Fugue Typestates are seen as predicates over fields

and methods annotated with contracts
Handles casting with frame
typestates

Plural States defined as “refinements” of superclass
states and methods annotated with contracts

Explicit specification of sub-
typing relations

Obsidian States defined explicitly and methods annot-
ated with contracts

Casting disallowed for strong
safety guarantees

Papaya Usage types (i.e., automata-like) Not supported
Mungo Usage types (i.e., automata-like) Not supported
BGJ Scribble notation [28] projected to local types

implemented as Java classes with state fields
Not supported

JaTyC (ours) Usage types (i.e., automata-like) Fully supported

9 Conclusions and future work

We overcome one of the main obstacles to the adoption of typestates in static analysis of
object-oriented programs – the inability of performing cast operations freely at any point
of the protocol – by introducing a novel theory based on typestate trees. We equip the
theory with a set of functions to manage the typestate tree abstraction, and we mechanise
soundness in the Coq proof system. We argue that typestate trees can be applied in
various program analysers for object-oriented languages with inheritance, being thus language
agnostic, opening the door for acceptance of several programs and features that were rejected
until now in this kind of language. To support this claim, we implement a type checker for
Java and assess the expressiveness of our approach. The relevance of the theory and of its
applications is showcased by typestate-checking realistic Java code of an automotive system
with driving dynamics control that allows to customise the drive mode of SUVs.

As future work, we plan to formally establish the runtime soundness of typestate trees by
devising a core object-calculus with inheritance, static typestate semantics, and dynamic
operational semantics, and by mechanising a type safety result: well-typed programs at
runtime comply objects’ protocol with respect to both the order of method calls and its
completion, and do not raise null-pointer exceptions. Additionally, we will study how these
concepts can be adapted to a setting with multi-inheritance and generics.

References
1 Frances E Allen. Control flow analysis. ACM Sigplan Notices, 5(7):1–19, 1970. doi:10.1145/

390013.808479.
2 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-

Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nich-
olas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral Types
in Programming Languages. Found. Trends Program. Lang., 3(2-3):95–230, 2016. doi:
10.1561/2500000031.

ECOOP 2024

https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479
https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031

5:26 Behavioural Up/down Casting for Statically Typed Languages

3 Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and António Ravara. A Java
typestate checker supporting inheritance. Science of Computer Programming, 221:102844,
2022. doi:10.1016/j.scico.2022.102844.

4 Lorenzo Bacchiani, Mario Bravetti, Julien Lange, and Gianluigi Zavattaro. A Session
Subtyping Tool. In Proc. of Coordination Models and Languages (COORDINATION),
volume 12717 of Lecture Notes in Computer Science, pages 90–105. Springer, 2021. doi:
10.1007/978-3-030-78142-2_6.

5 Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Intersection and
Union Types: Syntax and Semantics. Information and Computation, 119:202–230, 1995.

6 Nels E Beckman, Duri Kim, and Jonathan Aldrich. An Empirical Study of Object Protocols
in the Wild. In Proc. of European Conference on Object-Oriented Programming (ECOOP),
pages 2–26. Springer, 2011. doi:10.1007/978-3-642-22655-7_2.

7 Kevin Bierhoff and Jonathan Aldrich. Lightweight object specification with typestates. In
Proceedings of the 10th European Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2005, pages
217–226. ACM, 2005. doi:10.1145/1081706.1081741.

8 Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2007, pages 301–320. ACM, 2007. doi:
10.1145/1297027.1297050.

9 Stefan Blom and Marieke Huisman. The VerCors Tool for Verification of Concurrent Programs.
In Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun, editors, FM 2014: Formal Methods - 19th
International Symposium. Proceedings, volume 8442 of Lecture Notes in Computer Science,
pages 127–131. Springer, 2014. doi:10.1007/978-3-319-06410-9_9.

10 Jelle Bouma, Stijn de Gouw, and Sung-Shik Jongmans. Multiparty Session Typing in Java, De-
ductively. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 29th International Conference, TACAS 2023,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Proceedings, Part II, volume 13994 of Lecture Notes in Computer Science, pages 19–27.
Springer, 2023. doi:10.1007/978-3-031-30820-8_3.

11 Mario Bravetti, Adrian Francalanza, Iaroslav Golovanov, Hans Hüttel, Mathias Jakobsen,
Mikkel Kettunen, and António Ravara. Behavioural Types for Memory and Method Safety
in a Core Object-Oriented Language. In Asian Symposium on Programming Languages and
Systems, volume 12470 of Lecture Notes in Computer Science, pages 105–124. Springer, 2020.
doi:10.1007/978-3-030-64437-6_6.

12 Michael J. Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles Baker, Yannick Bloem,
Brad A. Myers, Joshua Sunshine, and Jonathan Aldrich. Obsidian: Typestate and Assets for
Safer Blockchain Programming. ACM Trans. Program. Lang. Syst., 42(3):14:1–14:82, 2020.
doi:10.1145/3417516.

13 Robert DeLine and Manuel Fähndrich. Typestates for Objects. In Martin Odersky, editor,
ECOOP 2004 - Object-Oriented Programming, 18th European Conference, Proceedings, volume
3086 of Lecture Notes in Computer Science, pages 465–490. Springer, 2004. doi:10.1007/
978-3-540-24851-4_21.

14 Edsger W. Dijkstra. The humble programmer, 1972. ACM Turing Award acceptance speech.
doi:10.1145/355604.361591.

15 Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations of Typestate-
Oriented Programming. ACM Transactions on Programming Languages and Systems, 36(4):12,
2014. doi:10.1145/2629609.

16 Simon J. Gay and Malcolm Hole. Types and Subtypes for Client-Server Interactions. In Proc.
of Programming Languages and Systems (ESOP), volume 1576 of Lecture Notes in Computer
Science, pages 74–90. Springer, 1999. doi:10.1007/3-540-49099-X_6.

https://doi.org/10.1016/j.scico.2022.102844
https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1007/978-3-642-22655-7_2
https://doi.org/10.1145/1081706.1081741
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/978-3-031-30820-8_3
https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1145/3417516
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/2629609
https://doi.org/10.1007/3-540-49099-X_6

L. Bacchiani, M. Bravetti, M. Giunti, J. Mota, and A. Ravara 5:27

17 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi-calculus. Acta
Informatica, 42(2-3):191–225, 2005. doi:10.1007/s00236-005-0177-z.

18 Simon J. Gay, Vasco Thudichum Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z.
Caldeira. Modular session types for distributed object-oriented programming. In Proceedings
of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, pages 299–312. ACM, 2010. doi:10.1145/1706299.1706335.

19 Tony Hoare. Null References: The Billion Dollar Mistake, 2009. Presentation at QCon London.
URL: https://tinyurl.com/eyipowm4.

20 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Type.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

21 Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation. Addison-Wesley Professional, 2010.

22 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of Session Types and Behavioural Contracts.
ACM Comput. Surv., 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

23 Mathias Jakobsen, Alice Ravier, and Ornela Dardha. Papaya: Global Typestate Analysis
of Aliased Objects. In Proceedings of the 23rd International Symposium on Principles and
Practice of Declarative Programming (PPDP’21), pages 19:1–19:13. ACM, 2021. doi:10.1145/
3479394.3479414.

24 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J Gay. Typechecking protocols
with Mungo and StMungo. In Proc. of Principles and Practice of Declarative Programming
(PPDP), pages 146–159. ACM, 2016. doi:10.1145/2967973.2968595.

25 Luis Mastrangelo, Matthias Hauswirth, and Nathaniel Nystrom. Casting about in the
dark: an empirical study of cast operations in Java programs. Proc. ACM Program. Lang.,
3(OOPSLA):158:1–158:31, 2019. doi:10.1145/3360584.

26 João Mota, Marco Giunti, and António Ravara. On Using VeriFast, VerCors, Plural, and KeY
to Check Object Usage (Experience Paper). In 37th European Conference on Object-Oriented
Programming, ECOOP 2023, July 17-21, 2023, Seattle, Washington, United States, volume
263 of LIPIcs, pages 40:1–40:29. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.ECOOP.2023.40.

27 Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with integrated
subtyping. Proc. ACM Program. Lang., 2(OOPSLA):112:1–112:29, 2018. doi:10.1145/
3276482.

28 Rumyana Neykova and Nobuko Yoshida. Featherweight Scribble. In Michele Boreale, Flavio
Corradini, Michele Loreti, and Rosario Pugliese, editors, Models, Languages, and Tools for
Concurrent and Distributed Programming - Essays Dedicated to Rocco De Nicola on the
Occasion of His 65th Birthday, volume 11665 of Lecture Notes in Computer Science, pages
236–259. Springer, 2019. doi:10.1007/978-3-030-21485-2_14.

29 Jens Palsberg and Pavlopoulou Chirstina. From Polyvariant flow information to intersection
and union types. Journal of Functional Programming, 11(3):263–317, 2001. doi:10.1017/
S095679680100394X.

30 Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D Ernst.
Practical pluggable types for Java. In Proc. of Software Testing and Analysis (ISSTA), pages
201–212. ACM, 2008. doi:10.1145/1390630.1390656.

31 R. E. Strom and S. Yemini. Typestate: A programming language concept for enhancing
software reliability. IEEE Transactions on Software Engineering, SE-12(1):157–171, 1986.
doi:10.1109/TSE.1986.6312929.

32 Vasco T. Vasconcelos. Sessions, from Types to Programming Languages. Bull. EATCS,
103:53–73, 2011. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/136.

ECOOP 2024

https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1145/1706299.1706335
https://tinyurl.com/eyipowm4
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/3360584
https://doi.org/10.4230/LIPICS.ECOOP.2023.40
https://doi.org/10.1145/3276482
https://doi.org/10.1145/3276482
https://doi.org/10.1007/978-3-030-21485-2_14
https://doi.org/10.1017/S095679680100394X
https://doi.org/10.1017/S095679680100394X
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1109/TSE.1986.6312929
http://eatcs.org/beatcs/index.php/beatcs/article/view/136

5:28 Behavioural Up/down Casting for Statically Typed Languages

A Research Methodology
01/07/24, 11:03

Pagina 1 di 1file:///Users/lorenzobacchiani/Downloads/ecoop_jatyc-2-2.drawio.svg

class Car

class SUV
extends Car

{...}
New language

constructs

Formal Setting

Typestate Tree
Upcast
Downcast
....

Motivating Examples

Verify

Coq Theorem Prover

Drives Implementation

class TypestateTree(...)

fun upcastTT(...): TypestateTree

fun downcastTT(...): TypestateTree

fun evolveTT(...): TypestateTree
Validation

class Robot

class Drone

class Alarm
Test Suite

Figure 2 Research methodology behind the behavioural analysis support.

The iterative process in Figure 2 shows our methodology to support behavioural analysis
within our type checker: we extract, from motivating examples, the language features to
include in the static analysis; we build a formal setting (verified in the Coq theorem prover) to
drive the JaTyC implementation; finally, we validate our approach with a suite of examples.

B Glossary

m A meta-variable ranging over the set of method identifiers MNames
o A meta-variable ranging over the set of output values ONames
s A meta-variable ranging over the set of typestate names SNames
Ã The wide tilde stands for a sequence of values
d{m̃ : w} An input state (Definition 1)
⟨õ : u⟩ An output state (Definition 1)
w A meta-variable ranging over input and output states, and typestate names (Definition 1)
u A meta-variable ranging over input states and typestate names (Definition 1)
Ẽ A set of defining equations
wẼ, uẼ A meta-variable to denote a state w (resp. u) with a set of defining equations
W, U The set of terms wẼ (resp. uẼ)
X A subset of wẼ containing only input states d{m̃ : w}
Y A subset of wẼ containing only output states ⟨õ : u⟩
≤S A subtyping relation between states (Definition 4)
≤Salg The algorithmic version of the subtyping relation between states (Definition 7)
t A meta-variable ranging over the set of types T (Definition 10)
≤ A subtyping relation between types (Definition 11)
c A meta-variable ranging over the set of class names C
≤C A subtyping relation between classes (Definition 15)
Retm The set of outputs returnable by a method m

tt A meta-variable ranging over the set of typestate trees T T (Definition 36)
tts A meta-variable ranging over P(T T)
⊢ Well-formedness of typestate trees (Definition 38)
⊢c,t Soundness of typestate trees (Definition 53)

Cross Module Quickening – The Curious Case of C
Extensions
Felix Berlakovich #

University of the Bundeswehr Munich, Neubiberg, Germany

Stefan Brunthaler #

University of the Bundeswehr Munich, Neubiberg, Germany

Abstract

Dynamic programming languages such as Python offer expressive power and programmer productivity
at the expense of performance. Although the topic of optimizing Python has received considerable
attention over the years, a key obstacle remains elusive: C extensions. Time and again, optimized
run-time environments, such as JIT compilers and optimizing interpreters, fall short of optimizing
across C extensions, as they cannot reason about the native code hiding underneath.

To bridge this gap, we present an analysis of C extensions for Python. The analysis data indicates
that C extensions come in different varieties. One such variety is to merely speed up a single thing,
such as reading a file and processing it directly in C. Another variety offers broad access through an
API, resulting in a domain-specific language realized by function calls.

While the former variety of C extensions offer little optimization potential for optimizing
run-times, we find that the latter variety does offer considerable optimization potential. This
optimization potential rests on dynamic locality that C extensions cannot readily tap. We introduce
a new, interpreter-based optimization leveraging this untapped optimization potential called Cross-
Module Quickening. The key idea is that C extensions can use an optimization interface to register
highly-optimized operations on C extension-specific datatypes. A quickening interpreter uses these
information to continuously specialize programs with C extensions.

To quantify the attainable performance potential of going beyond C extensions, we demonstrate
a concrete instantiation of Cross-Module Quickening for the CPython interpreter and the popular
NumPy C extension. We evaluate our implementation with the NPBench benchmark suite and report
performance improvements by a factor of up to 2.84.

2012 ACM Subject Classification Software and its engineering → Runtime environments; Software
and its engineering → Interpreters

Keywords and phrases interpreter, optimizations, C extensions, Python

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.6

Supplementary Material
Software (Docker image for Artifact Evaluation): https://doi.org/10.5281/zenodo.11174717 [6]
Software (WIP code of the NumPy part of CMQ): https://github.com/fberlakovich/cmq-numpy-ae [5]
Software (Updated code of the CPython part of CMQ): https://github.com/fberlakovich/cmq-ae [4]

Funding The research reported in this paper has been funded by the Federal Ministry for Climate
Action, Environment, Energy, Mobility, Innovation and Technology (BMK), the Federal Ministry for
Labour and Economy (BMAW), and the State of Upper Austria in the frame of the COMET Module
Dependable Production Environments with Software Security (DEPS) [FFG grant no. 888338] and the
SCCH competence center INTEGRATE [FFG grant no. 892418] within the COMET – Competence
Centers for Excellent Technologies Programme managed by Austrian Research Promotion Agency
FFG.

© Felix Berlakovich and Stefan Brunthaler;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 6; pp. 6:1–6:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:felix.berlakovich@unibw.de
https://orcid.org/0000-0003-0132-3728
mailto:brunthaler@unibw.de
https://orcid.org/0000-0001-9766-4871
https://doi.org/10.4230/LIPIcs.ECOOP.2024.6
https://doi.org/10.5281/zenodo.11174717
https://github.com/fberlakovich/cmq-numpy-ae
https://github.com/fberlakovich/cmq-ae
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Cross Module Quickening – The Curious Case of C Extensions

1 Motivation

Productivity or performance? Despite the ever-increasing performance of computers, software
developers are faced with this conundrum. They can either choose a high-level language like
Python to benefit from abstractions like dynamic typing or garbage collection, but sacrifice
performance. Alternatively, they can resort to low-level programming languages like C or
C++ to gain better performance, but at the cost of developer productivity and safety.

According to the TIOBE index, the popularity of high-level languages such as Python or
Ruby is unbroken1 [36]. At the same time, however, the poor performance of these high-level
languages remains an ongoing problem for, e.g., Python or Ruby [2, 39, 31]. Recent efforts
address the performance issues of Python and Ruby [16, 38, 37, 40, 10, 9, 11, 12, 15, 14, 34, 35].

Besides the language VMs themselves, Ruby and Python, also have a thriving ecosystem
of C extensions. C extensions, however, do not profit from optimizing the language VM.
With the ongoing VM optimization efforts and the ensuing increase in performance of the
core language, the performance of C extensions could come into focus in the near future.

C extensions also pose an optimization barrier for JIT compilers like PyPy or YJIT [17].
Due to the lack of semantics, JIT compilers cannot reason across the boundary of the core
language. As a result, JIT compilers cannot fully optimize at the interface to C extensions or
even into the extension code. A common workaround is to reimplement the entire extension
in the host language (e.g., Python), thus removing the lack of semantics and closing the
gap between VM and extension. For example, the PyPy project includes a pure Python
implementation of a subset of NumPy to enable more aggressive optimizations. This approach
has improved performance substantially in some cases, but requires a full or at least partial
rewrite of the extension.

The two approaches of (i) not optimizing extensions at all, or (ii) rewriting them in
the host language to make them accessible for JIT compilers, occupy two extremes on the
design spectrum. In this paper, we explore an additional way of optimizing the interaction
of high-level language code with C extensions.

We first provide a short analysis of the different C extension varieties, based on popular2

C extensions for Python (see Section 3). Our analysis indicates that some C extensions
focus on a single, isolated task, which is implemented in optimized C. This variety does
not lend itself well to optimization and would also not profit from JIT compilation in many
cases. The other variety provides a broader API and custom datatypes, effectively exposing
a domain-specific language through an API. This second variety offers a larger optimization
potential.

To tap this potential, we introduce a new, interpreter-based optimization technique called
Cross-Module Quickening, or Cmq for short (see Section 4). Cmq allows the interpreter, in
collaboration with the C extension, to extend the interpreter’s optimization effort into the
extension. The key idea is to provide the C extension with an interface to register specialized,
extension-specific interpreter instructions. These specialized derivatives allow extension
authors to exploit, for example, type locality within the C extension that would otherwise
be invisible to the interpreter. Our technique does not require any changes, such as type
annotations, in the Python program. Cmq also does not depend on runtime code-generation
and is, thus, suitable for resource-constrained devices.

To demonstrate our idea, we analyze the optimization potential in NumPy, a popular
Python C extension (see Section 5.2.5 and Section 6). We provide specialized derivatives for
a number of NumPy operations and achieve a speedup of up to 2.84x in NPBench, a collection
of compute-intensive NumPy programs (see Section 7).

1 Python, for example, has continuously gained in popularity since 2018 and even leads the trends for
2024, so far

2 The PyPI statistics range back only one month.

F. Berlakovich and S. Brunthaler 6:3

Summing up, this paper contributes the following
We present Cross-Module Quickening, or Cmq for short, a new interpreter-based op-
timization architecture to optimize across C extensions. Cmq introduces a so-called
Optimization Interface that allows C extensions to provide optimized instructions, thereby
enabling cross-module type feedback via inline caching.
We classify different use cases of C extensions with respect to their performance potential.
We find that it is presently impossible to conduct an extensive quantitative analysis. The
key obstacle is due to each C extension requiring varying amounts of domain expertise,
usually provided by a human that has experience in using a given C extension. To shed
light into the C extension “black box,” we conduct a qualitative analysis on the top ten
C extensions instead.
We describe the relevant details of a concrete Cmq implementation for the CPython
interpreter and the NumPy extension. This concrete implementation introduces novel
interpreter optimization techniques, such as extension-delimited superinstructions, and
per-instruction caches for C extensions.
We report the results of a comprehensive evaluation that encompasses the following
dimensions: dynamic locality, performance, and implementation effort. Specifically, an
in-depth analysis of NPBench on NumPy finds:

Quantitative dynamic locality of about 99%.
Performance improvements by a factor of up to 2.84.
Moderate implementation effort of less than 4,000 lines of code in CPython and NumPy.

2 Background

2.1 C Extensions
Most language VMs offer a way to interact with native code, typically called foreign function
interface. Several language VMs go one step further by allowing native code extensions.
These extensions are not limited to merely providing functions that can be called from the
host language via a foreign function interface. Instead, an extension can define arbitrary host
language types and modules, and even manipulate the VMs runtime state through an API.
Extension means that the language VM loads the code dynamically at runtime, as opposed
to code that is integrated at build time (e.g., CPython’s sqlite3 extension). For example,
Python, Ruby, and Lua all offer such extension APIs.

In principle, native extensions can be written in any language that compiles to native
code and can access the VM’s APIs. Since C is the most popular language for native
extensions, however, we will refer to native extensions collectively as C extensions from now
on. Nonetheless, the principles described in this paper apply to native extensions written in
any language.

2.2 Type Feedback via Inline Caching
Inline caching, first introduced by Deutsch and Schiffmann in 1984, is a technique for
optimizing dynamic languages [18]. The technique is particularly useful for language VMs
featuring generic operations. Many language VMs, for example, have a generic BINARY_ADD
operation that can add two operands with arbitrary types, such as integers or floats.

To deal with the different semantics of, e.g., adding integers compared to adding floats, the
language VM needs to resolve the concrete implementation dynamically based on the operand
types. Depending on the number of supported types and implementations, this lookup

ECOOP 2024

6:4 Cross Module Quickening – The Curious Case of C Extensions

process can be expensive. The important observation behind inline caching is that even for
dynamically typed programs, the operand types for an operation hardly ever change, if at
all. Deutsch and Schiffmann called this principle dynamic locality of type usage [1, 18, 40].

A language VM can leverage this locality and cache the result of the expensive lookup
process. In the example of BINARY_ADD above, the language VM could cache a pointer
to the concrete implementation of e.g., integer addition. Since this cache typically resides
inline with the instructions, i.e., no additional redirection is needed to access the cache, it is
called an inline cache. Next time the language VM encounters this particular occurrence of
BINARY_ADD, it can use the cached pointer instead of resolving the concrete implementation
again. Before using the cache, however, the language VM needs to check that the operand
types are equal to the expected types. In the unlikely case that the operand types have
changed, the runtime would invalidate the inline cache.

2.3 Quickening: Instruction Rewriting to Capture Runtime Knowledge

Another interpreter optimization technique is called quickening. Quickening describes a
process where an interpreter uses runtime feedback, such as type usage, to rewrite generic
instructions to more concrete ones. This principle was originally used for efficiently resolving
classpool references in tha Java virtual machine [29]. The more concrete instructions are
sometimes called optimized derivatives or just derivatives.

An example is a generic BINARY_OP instruction, whose operation depends on its operand.
BINARY_OP with argument 1 performs an addition, whereas with argument 2 it performs
a subtraction. If the language VM observes that a particular BINARY_OP always performs
a subtraction, it can rewrite the instruction to BINARY_SUBTRACT. A BINARY_SUBTRACT no
longer has to consult its argument value, but can perform a subtraction directly.

Quickening is a way for the language VM to encode temporal locality in its instruction set.
Depending on the observed information, the encoded state is either permanent or transient,
but with a high likelihood. If the state is permanent, the quickened instruction does not
need to check any assumptions. If it is only likely, however, the language VM needs to
validate the assumptions under which the quickening occurred. If the program invalidates an
assumption, the language VM needs to rewrite affected instructions back to their original,
generic form. For example, if a quickened instruction depends on specific operand types, and
the operand types change, the language VM, needs to revert the instruction to a type-generic
instruction. As the language VM speculates on the stability of the observed information,
this optimization is typically called speculative optimization. This reversal of an optimized
instruction back to its original form typically called deoptimization.

2.4 Inline Caching and Quickening in Python

Our implementation of Cmq builds on top of CPython and its existing optimization in-
frastructure. To aid the understanding of our implementation, we give a short overview of
the related techniques here. CPython uses a combination of inline caching and quickening.
Specifically, CPython uses specialized instructions, some of which also have an inline cache.
The instructions with inline cache, such as LOAD_GLOBAL_MODULE, store assumption-related
data in the cache that allows them to deoptimize if any of the assumptions change. Other
instructions, like BINARY_ADD_INT, validate the assumptions without an inline cache (e.g., by
directly checking the operand types). That is, their assumptions are directly encoded in the
instruction set [13].

F. Berlakovich and S. Brunthaler 6:5

Extension Categories

brotli binder
cryptography binder
matplotlib optimizer,binder
Pillow optimizer
PyYAML optimizer

(a) Python extensions with little room for C
extension optimization.

Extension Categories

Tensorflow extender,optimizer
NumPy extender
Pandas extender
CuPy extender
PyTorch extender,optimizer

(b) Python extensions with custom datatypes,
operator overloading and new surface syntax
(extenders).

Figure 1 Overview of the Python C extensions we considered for Cmq. The extensions on the
left are binders and/or optimizers. The extensions on the right are extenders.

A peculiarity of CPython is that it uses the inline cache also to store profiling data
that controls the quickening process. Specifically, instructions with specialized derivatives,
store a counter in the inline cache. Every generic instruction derivative (e.g., LOAD_GLOBAL)
decreases the counter upon execution. Once the counter reaches zero, the instruction tries to
quicken itself to one of the specialized derivatives (e.g., LOAD_GLOBAL_MODULE). Thus, the
counter implements a warmup phase in which the involved operands and types can stabilize.
Likewise, when a specialized derivative has to deoptimize due to an invalidated assumption, it
increases the counter by a certain backoff value. The backoff value ensures that an instruction
with varying operand types does not continuously swap between two derivatives.

CPython organizes generic instructions and their specialized derivatives in instruction
families. Each member of an instruction family has the same inline cache size. The inline
cache is located directly after the instruction in the instruction stream. Each instruction is
responsible for skipping the cache after instruction execution.

3 C extensions of Dynamic Languages

In this section we describe the results of our investigation of Python’s C extension ecosystem.
Although we focus explicitly on Python, we believe that our findings generalize to similar
ecosystems, such as Ruby or Lua.

3.1 Domain Specificity of C Extensions

Our initial plan was to conduct a large-scale, quantitative analysis of C extensions. After some
experimentation and manual investigation, however, we found this goal to be elusive. This
failure is due to C extensions being domain specific. They solve a single, well-defined problem,
but do so in radically different ways. Ways that do not generalize from one C extension to
another, and, therefore, pose a substantial obstacle to automation, the prerequisite for a
large-scale analysis and quantitative investigation.

The domain specificity of C extensions not only frustrates generalized analysis attempts.
Our performance analysis of C extensions identified a symmetric problem: If one lacks the
domain expertise to tell what a “good use case” for a C extension is, it is nigh impossible to
perform unbiased experiments.

These initial findings led us to conduct a qualitative analysis using manual investigation
instead.

ECOOP 2024

6:6 Cross Module Quickening – The Curious Case of C Extensions

3.2 Of Optimizers, Binders, and Extenders
We analyzed the C extensions for Python in Figure 1 and found that they fall, broadly
speaking, into three categories:
1. Optimizers: These C extensions could in principle be written in Python, and some of

them probably were initially Python libraries. Due to the proverbial need for speed,
however, these libraries are written in C, thereby eliminating a lot of the performance
overhead associated with Python. Often, these C extensions offer just a single point of
entry, execute efficiently in machine code, and return Python-processable data.
Consider the PyYAML extension as an example: The interface is just one call to the parse
routine, which performs all the parsing in C, and returns the corresponding configuration
data.

2. Binders: These C extensions usually cannot be written in Python, because they provide
bindings to existing libraries to the Python ecosystem. These libraries are written in
another language, such as C and C++, and bindings are the intermediary layer that
translates from one world to another. The functionality corresponds to the external
library, or a subset thereof that is reasonable to use from within Python.
Consider the lxml extension as an example: The interface corresponds to the libxml
library, which implements efficient, feature-rich, and standards-compliant XML parsing.

3. Extenders: These C extensions extend Python with functionality not readily present
in Python itself. These extensions define custom datatypes, overload and/or misuse
operators, and at times resort to a custom embedded-DSL modeled through function
calls. Note that extensions in this category are not mutually exclusive to others, as they
can also embed existing libraries into their functionality.
Consider the NumPy extension as an example: NumPy defines its own datatype, a multi-
dimensional array mapped to contiguous memory . This feature extends Python, as in
Python a list or an array behaves similar to Java jagged arrays, i.e., each dimension is
just a single array, which maps to another dimension, being a single dimensional array
again. In contrast to Python lists, NumPy’s array representation enables high-performance
operations on these arrays.

Through the performance optimization lens, the first two categories offer little potential
for performance optimization. This lack of potential is due to their inner workings. PyYAML,
for example, slurps a YAML file into C, parses the file efficiently using native-machine code,
and creates the corresponding Python objects. Since this has been highly optimized already,
no optimization opportunity presents itself. Similarly, lxml is just a small layer that invokes
libxml to do the heavy lifting. No complex and expensive processing is done within the C
extension. Both of these effects are amplified further by the old adage that time spent in
libraries is lost w.r.t. optimization [20].

3.3 Exploring Extenders
Extenders, i.e., C extensions enriching the Python programming language do so in various
ways. These extensions provide custom data types, such as NumPy providing a multi-
dimensional array that is mapped to contiguous memory. Since our target languages are
dynamically typed, manipulation of custom data types relies upon operator overloading. On
top of these data types, C extensions have the possibility to (ab-)use existing functionality
to introduce surface syntax. NumPy, for example, (ab-)uses Python’s tuples to provide a way
to encode multi-dimensional array index access. Where no such surface syntax is available,
Extender C extensions resort to using function calls. In combination these properties form a
type of embedded DSL.

F. Berlakovich and S. Brunthaler 6:7

Without CMQ

(a) Using NumPy in CPython without Cmq.

With CMQ

(b) Using NumPy in CPython with Cmq and opti-
mized derivatives.

Figure 2 Without Cmq (left), C extension-calls need to go through a cascade of function calls
before reaching the core logic. With Cmq (right), the language VM calls optimized derivatives
directly.

In contrast to Optimizers and Binders, programs using Extenders frequently cross the
boundary between language VM and C extension. Context such as type locality established by
the language VM or the C extension does not cross this boundary, leading to redundant checks
and missed optimization potential. In Section 4 we discuss how Cmq lifts this optimization
potential. To give concrete examples, we will now focus on the NumPy C extension, which
adds high-performance numeric processing to Python.

3.4 Summary of Observations
Let us briefly summarize our findings, which are of vital importance for the following Sections.

C extensions require domain expertise to analyze and evaluate.
Only one of three categories offers dormant optimization potential.
The Extenders category of C extensions form a kind of embedded DSL, by providing
custom types, operator overloading, or introducing surface syntax.

4 Design of Cross-Module Quickening

The goal of Cmq is to enable optimizations across extension boundaries. Figure 2 gives an
overview of Cmq. Without Cmq (Figure 2a), each operation involving a C extension must
go through a cascade of function calls. At present, the interface between language VM and
C extension poses an optimization boundary. As a result, the function calls are necessary
to reestablish context that was already established previously, or on the other side of the
optimization boundary (language VM vs C extension).

To eliminate this overhead, Cmq proceeds as follows (see Figure 2b):
1. Cmq provides a dedicated Optimization Interface or OINT for short, which enables C

extensions to provide domain-specific optimizations.
2. Based on context information, the C extension can use quickening-based optimization

through optimized interpreter instructions.

ECOOP 2024

6:8 Cross Module Quickening – The Curious Case of C Extensions

3. The interpreter provides an interface to replace single generic instructions or entire
instruction sequences with optimized ones.

4. Optimized instructions validate that their assumptions hold and deoptimize upon miss-
speculation.

5. Additional optimization opportunities for C extensions exist, for example, through having
per-instruction caches.

The following sections explain the relevant conceptual design details with examples
from CPython and NumPy. Each section also contains forward references to the relevant
implementation details in Cmq. Although we discuss implementation details primarily for
the NumPy C extension, the principles underlying this specific implementation generalize not
only to other C extensions, but also to C extension ecosystems of other dynamic programming
languages. For brevity, we call our modified NumPy Cmq-NumPy.

4.1 Optimization Interface

C extensions for language VMs such as Ruby or Python are implemented as dynamically
loadable modules. This means that C extensions and the language VM communicate via a
predefined interface. Typically, the interface consists of both, public APIs in the language
VM and hooks in the C extension called by the language VM. For example, CPython
automatically calls public PyInit_* functions exposed in a loaded C extension. These
functions create module objects for each module provided by the C extension. At the same
time, CPython exposes functions to e.g., query the type of objects or to create new objects
such as dictionaries.

We extend this interface between language VM and C extensions with an optional
Optimization Interface, or OINT for short. The goal of the OINT is to expand the interpreter’s
optimization capabilities with domain-specific optimizations. To that end, the OINT allows
a C extension to register an instruction optimization hook. One goal of the OINT is to shield
the C extension from as many language VM specific implementation details as possible.

Whenever the language VM tries to optimize an instruction, it calls all registered
instruction optimization hooks. When exactly an optimization attempt happens, depends
on the concrete architecture of the language VM. For example, optimization can happen
either as part of an instruction’s execution (as is common for quickening) or in a dedicated
optimization phase (as is common in JIT compilation). CPython performs instruction
quickening as part of the generic instruction’s execution, once an optimization counter
reaches zero (see Section 2.4).

The exact contract of the instruction optimization hook depends on the concrete language
VM implementation. In general, the language VM needs to provide the C extension with
enough information to decide which optimizations are applicable. For example, in Cmq-
NumPy, the instruction optimization hook receives a pointer to the current instruction and a
pointer to the operand stack.

The optimization of an instruction through a C extension is optional. Based on the
instruction and its operands, a C extension can decide which optimizations are applicable, if
any. For example, the C extension can query the operand types to leverage dynamic-type
locality. Cmq-NumPy uses this principle to optimize certain BINARY_OP occurrences. We give
a more detailed description of the BINARY_OP optimization in Section 6.2. In addition to
type checks, the C extension can inspect further properties of the operands to decide whether
optimizations are applicable. In Section 6.2 we describe how Cmq-NumPy inspects the name
of NumPy ufunc objects to decide whether it can optimize specific CALL instructions.

F. Berlakovich and S. Brunthaler 6:9

4.1.1 Validating Assumptions and Deoptimization
As discussed in Section 2.3, quickening optimizations can be speculative. To guarantee
correctness, the language VM needs a way to detect invalid assumptions and restore the
original instructions. One strategy of validating assumptions is as part of the optimized
instruction’s execution. For example, our BINARY_OP derivatives verify that the operands on
the stack have the expected types.

Performing the assumption validation in the operation itself works well for assumptions
about operands, such as their types, but is less suited for assumptions concerning global
properties. For example, in addition to specific operand types, our BINARY_OP derivatives
assume NumPy’s default arithmetic implementations for e.g., adding and subtracting arrays.
While a user can change the implementations by overriding fields in the NumPy module, it
happens rarely. Similar to operand types, each optimized derivative could validate this
assumption before execution. However, with such an implementation each derivative suffers
from a small performance overhead to check for an event that occurs infrequently. To mitigate
this cost, the OINT offers an alternative way to validate assumptions. Specifically, the OINT
allows C extensions to record deoptimization triggers for optimized instructions. Any code
within a C extension that modifies properties previously optimized derivatives depend on,
needs to notify the OINT . The OINT then deoptimizes all affected optimized instructions.
Code that changes any of NumPy’s default arithmetic implementations, for example, triggers
an deoptimization event. In response, Cmq deoptimizes all BINARY_OP derivatives. This
approach shifts the burden of assumption validation to the infrequent path of changing
arithmetic implementations.

A hybrid between the previous two approaches of deoptimization is to combine multiple
object properties into a meta-property. For example, our CALL derivatives optimize calls
of NumPy universal functions, or ufunc for short. The ufunc object is a stack operand
of the corresponding CALL derivative. In addition to validating the ufunc operand’s type,
the CALL derivative needs to verify several additional properties. For example, the CALL
derivative is only valid for ufuncs without custom user loops. Verifying all these properties
individually causes a performance overhead and, thus, reduces the profit of the CALL derivative
optimization. Instead, we change the ufunc object to maintain a meta-property in the form
of a specializable flag. The specializable flag represents the state of all individual
properties combined. Code that updates any of the individual properties, also updates the
specializable flag accordingly. Instead of validating all ufunc properties individually, the
CALL derivative now has to validate only the specializable flag. Figure 3a illustrates this
process graphically. With this approach, the burden of assumption validation is shared
between code that modifies ufunc properties and the CALL derivatives.

We describe our implementation of the specialization infrastructure for CPython in more
detail in Section 5.2.5.

4.2 Cross-Module Optimization Opportunities
4.2.1 Type-specialized Instructions
In Section 2.2 and Section 2.3 we discussed the principle of locality of type usage. CPython
leverages this principle to quicken type-generic instructions to type-dependent instructions.
For example, CPython quickens BINARY_OP to BINARY_OP_ADD_INT, a derivative that directly
adds the two integer operands. Compared to the generic instruction, the derivative’s call
stack contains three fewer frames when reaching the final _PyLong_Add function. In addition,
the derivative saves multiple intermediate calls needed to resolve the concrete function that
adds Python integers. More specifically, the derivative saves the following steps performed
by the generic instruction:

ECOOP 2024

6:10 Cross Module Quickening – The Curious Case of C Extensions

(a) Cmq uses meta-properties to efficiently vali-
date assumptions (see Section 4.1.1).

(b) Cmq allows to quicken instructions with
domain-specific derivatives.

Figure 3 Overview of meta-properties (left) and type-specialized instructions (right) in Cmq.

1. Check if any of the operands has an implementation for the + slot.
2. Check if the left operand is a number and has the + slot.
3. Check if the right operand is a number of a different type than the left operand and has

a different + slot.
4. Depending on whether the right operand has a different + slot and is a subtype of the

left operand, call the left or right operand’s + slot.
5. In the slot implementation, ensure that both operands are actually Python Longs.

List 1 Steps for resolving the implementation for adding two integers in CPython.

Under the assumption that both operands are Python Longs, the final operation (_-
PyLong_Add) is known immediately and the intermediate steps in List 1 become redundant.
However, a language VM can only leverage locality of type usage, if it knows the types and
operations involved. For example, the special handling of integer addition in CPython is only
possible if both operands are non-subtyped Python Longs. If the language VM cannot reason
about a type, such as a type provided by a C extension, quickening is no longer possible.

This issue is exacerbated by C extension types. Depending on the domain and the
extension, the C extension has to check additional properties to the ones in List 1. We
describe the additional checks that NumPy performs in more detail in Section 6.1. Similarly to
the checks in List 1, the additional checks in NumPy are strongly connected to the operands’
types. That is, under the assumption of specific operand types, the majority of checks become
redundant.

Based on this observation, Cmq enables type-specialized instructions that depend on
C extension types. Cmq-NumPy, for example, provides specialized instructions that add
two double precision floating point arrays. As a result, starting from the interpreter loop,
the call stack for adding two such arrays collapses from 13 frames to 2. In addition, the
specialized instructions save several intermediate checks. These checks are subsumed by the
fixed number and types of operands involved.

4.2.2 Extension-delimited Superinstructions
Replacing generic instructions with type-specialized instructions renders many of the checks
performed by the generic instruction redundant (see Section 4.2.1). With the OINT, a C
extension is not limited to replacing a single instruction at a time, however. In certain

F. Berlakovich and S. Brunthaler 6:11

array[1:, 2:]

(a) Cmq can replace instruction sequences, such
as custom array subscripts, with a single opti-
mized instruction (see Section 4.2.2).

(b) Caching data between instruction executions (see
Sections 4.2.3 and 6.4).

Figure 4 Illustration of extension-delimited superinstructions (left) and per-instruction caches
(right).

cases, a specialized instruction subsumes the result of an entire sequence of instructions. For
example, for BINARY_SUBSCRIPT instructions with constant indices, such as array[1:, 2:],
Cmq-NumPy precomputes the index structure during specialization. With the index structure
computed, all the index operands become redundant. As a result, the instructions pushing
these operands onto the operand stack are now dead code in program analysis terminology.
To account for such cases, the OINT allows to replace entire sequences of instructions with
specialized derivatives, as show in Figure 4a.

By subsuming multiple unoptimized instructions, the optimized derivative represents a
type of superinstructions. Unlike conventional superinstructions however, the boundaries of
the superinstructions enabled by Cmq are domain-specific and defined by the C extension.
Thus, we call this type of superinstruction extension-delimited superinstruction.

4.2.3 Caching Between Instruction Executions

Specialized instructions can efficiently encode type membership and similar properties with
a low information density (see Section 4.2.1). For example, type membership is representable
as a single bit in the instruction encoding. Some optimizations, however, depend on data that
is hard to encode in an instruction, but instead need a dedicated cache. NumPy’s arithmetic
instructions, for example, frequently allocate new arrays, which are deallocated only a few
instructions later. At the expense of a little additional memory, optimized derivatives can
keep a cached result array to avoid repeated allocations and deallocations. To that end,
the OINT provides a mechanism to store data in a cache space specific to an instruction
occurrence. We call this cache occurence cache. Conceptually, the occurence cache allows
an instruction to communicate data between instruction executions or between specialization
time and execution. We describe instantiations of both variants in more detail in Section 6.4.

The occurence cache acts like an inline cache, but it is implementation-specific. To the
C extension it is opaque whether the language VM actually stores the cache inline. Also, in
contrast to the typical usage of an inline cache, i.e., storing function pointers, the occurence
cache can store arbitrary data, including data pointers. We describe our implementation of
the cache space in more detail in Section 5.2.3 and how we use the cache in Section 6.4.

ECOOP 2024

6:12 Cross Module Quickening – The Curious Case of C Extensions

5 Implementation of Cross-Module Quickening in CPython

In this section, we start with a short overview of CPython’s internal implementation and
then describe the integration with Cmq.

5.1 CPython in a Nutshell
The CPython interpreter is a stack machine with instructions that consist of an opcode
and an oparg. The opcode specifies what an instruction does and is one byte long. The
oparg serves different purposes, depending on the instruction, and is also one byte long. For
example, in the LOAD_FAST instruction, the oparg specifies which local-variable slot to push
onto the operand stack.

Instructions with inline caches are grouped into families. All members of the same family
are specializations of a generic instruction that is also part of the family. Family members
have an equally sized inline cache (see Section 2.4 for more details).

The snippets of code that implement an instruction’s semantics are called opcode handler.
CPython uses indirect threading, which means that each opcode handler jumps to the next
handler through a dispatch table [21]. A compiler feature called computed gotos allows an
efficient compilation of such dispatch patterns.

5.2 Integration with Cross-Module Quickening
Cmq enables C extensions to replace generic interpreter instructions with optimized deriva-
tives. When integrating Cmq with CPython’s dispatch routine, we faced a number of
competing constraints:
1. Specialization should happen as soon as possible to unlock additional performance.

However, the language VM should not repeatedly try to specialize an instruction if no
specialization is possible or if the instruction deoptimized recently.

2. Considering that specialization happens for hot code, the execution of external, optimized
derivatives should be as fast as possible.

3. Cmq needs to avoid consuming too much of CPython’s already limited opcode space.
4. CPython can load multiple C extensions simultaneously, each of which could potentially

register optimized derivatives. In addition, each C extension can register multiple different
derivatives for the same generic instruction. Therefore, Cmq must allow the registration
of as many derivatives as possible.

5. While specialization and deoptimization happens infrequently compared to an instruction’s
execution, the time spent on these tasks must eventually be amortized. Thus, specialization
and deoptimization must be reasonably fast, or they defeat the purpose of optimization.

In the following subsections, we describe our design choices for Cmq and how each decision
relates to the aforementioned challenges.

5.2.1 Specializing Hot Instructions
For Cmq, we extend CPython’s existing quickening mechanism to consider not only CPython
derivatives, but to also call registered instruction optimization hooks (if any). Extending the
existing mechanism allows Cmq to leverage CPython’s optimization counter infrastructure.
The optimization counter ensures that Cmq (1) only attempts to specialize hot instructions
and (2) that each failed optimization attempt delays further attempts by an increasing value.
Specifically, if both, CPython’s internal optimizations and the optimization function, fail to
optimize an instruction, CPython increases the optimization counter by a backoff value (see
Section 2.4).

F. Berlakovich and S. Brunthaler 6:13

5.2.2 External opcode handlers

Ideally, C extensions could register opcode handlers that resemble internal opcode handlers.
Computed gotos, however, are only possible within a single function. The C standard
considers jumps into the middle of a function from outside the function undefined behavior.
In CPython, therefore, an exact resemblance of internal opcode handlers is not possible.
Instead, we resort to subroutine-threading for the external opcode handlers, i.e., we implement
each handler as a function in the C extension.

5.2.3 Dealing with a Limited Opcode Space

CPython’s small opcode encoding of one byte means that few opcodes remain for specialization
through C extensions. Specifically, CPython 3.12 has 208 opcodes, leaving 47 opcodes
undefined. As new CPython releases regularly introduce new opcodes, consuming a large
number of the undefined opcodes for Cmq is undesirable. Thus, we cannot introduce a new
opcode for each optimized derivative a C extension provides. Instead, we define one additional
opcode for each optimizable generic instruction. In other words, we add one opcode for each
generic instruction for which a C extension can provide one or many optimized derivatives.
For example, we add the BINARY_OP_EXTERNAL opcode since C extensions can specialize
BINARY_OP.

One additional opcode is not sufficient, however, to differentiate between different deriva-
tives. For example, our modified NumPy adds several derivatives for BINARY_OP, depending
on the operation and the operand types involved. To that end, when C extensions register
their specialized derivatives, Cmq assigns each derivative for the same instruction a unique
id. Cmq stores the ids in a table to map each id to an external opcode handler. During
specialization, Cmq repurposes the oparg of the corresponding *_EXTERNAL instruction to
hold the id and, thus, to identify the exact derivative. For example, assume that NumPy
wants to specialize an occurrence of BINARY_OP with a derivative NP_ADD_FLOAT_FLOAT.
During the initial registration, Cmq assigns the derivative NP_ADD_FLOAT_FLOAT the id 5.
During specialization, Cmq replaces the generic BINARY_OP with BINARY_OP_EXTERNAL and
its original oparg with 5. During execution of the BINARY_OP_EXTERNAL occurrence, Cmq
looks up the external opcode handler with the oparg and calls the external handler.

This approach has advantages as well as disadvantages and is specific to CPython’s
internal implementation. One advantage is that this approach consumes only a small number
of opcodes. Another advantage is that Cmq has to rewrite only the replaced instruction,
as opposed to multiple instructions affected by a layout change. Since the *_EXTERNAL
instructions have the same inline cache size as their generic counterparts, the layout of
the instructions remains the same. If Cmq instead, e.g., changed the inline cache size, all
jumps crossing the affected instruction as well as exception-handling tables would have to be
rewritten.

A disadvantage of this approach is that it introduces an additional indirection. The
opcode handlers of the *_EXTERNAL instructions have to lookup the external function with
the oparg. For CPython with NumPy we found this overhead to be negligible and prioritized
the benefit of saving opcode space. In language VMs with a larger opcode space, or in
cases where the indirection negatively affects performance, specialized derivatives can be
mapped directly to opcodes. A hybrid approach is possible as well. For example, particularly
performance-critical derivatives can receive their own opcode, whereas other derivatives are
grouped according to the scheme above.

ECOOP 2024

6:14 Cross Module Quickening – The Curious Case of C Extensions

5.2.4 Implementing Extension-Delimited Superinstructions

In Section 4.2.2 we discussed the concept of extension-delimited superinstructions. We im-
plemented extension-delimited superinstructions by allowing C extensions to indicate unused
arguments during specialization. For example, our modified NumPy specializes BINARY_-
SUBSCRIPT by precomputing its index datastructure and replacing it with a NP_BINARY_-
SUBSCRIPT_CONSTANT derivative (see Section 6.4). As a result, all the index operands
required by BINARY_SUBSCRIPT become unused. Cmq-NumPy marks the operands as unused
via the OINT and Cmq automatically takes care of skipping the operand setup during later
executions.

In a first step, Cmq determines the instructions responsible for pushing the unused
operands onto the stack. We call these instructions operand originators. As the operand
originators are no longer needed, their operands become unused as well. In a second step,
Cmq recursively finds the operand originators of the now unused operands. This process
continues until Cmq has found the first unused instruction in the sequence. Cmq then
replaces the first instruction with a JUMP that jumps directly to the optimized derivative,
e.g., NP_BINARY_SUBSCRIPT_CONSTANT. Note, however, that such an optimization is only
possible if the skipped instructions are side-effect-free. If, for example, one of the instructions
is a CALL instruction, Cmq does not optimize the argument setup.

5.2.5 Deoptimization in CPython

As optimization assumptions can become invalid, Cmq needs a way to restore the original
instructions in such a case. To that end, Cmq records a deopt structure for each instruction
optimized. The deopt structure contains a pointer to the optimized instruction and the
original opcode and oparg. The approach described in Section 5.2.3 requires Cmq to replace
the original oparg during specialization. The backup copy in the deopt structure enables
Cmq to restore the oparg upon deoptimization. Once the original instruction is restored,
Cmq executes the original instruction instead of the derivative.

For extension-delimited superinstructions (see Section 4.2.2), the deopt structure stores
the entire list of instructions that were replaced with the superinstruction. When deoptimizing
extension-delimited superinstructions it is not enough to restore the original instructions, how-
ever. Once the language VM reaches the deoptimizing extension-delimited superinstruction,
the instruction pointer is already past the instructions that would have pushed the operands
to the stack (see Section 5.2.4). Since the extension-delimited superinstruction does not
expect the same number of stack operands as the original instruction, executing the original
instruction would fail. Thus, after deoptimizing an extension-delimited superinstruction,
Cmq replays all instructions responsible for the stack operands of the restored instruction.
Replaying is possible because we limit the related optimization to side-effect-free instructions
(see Section 5.2.4).

6 Implementation of Cross-Module Quickening in NumPy

To demonstrate the optimizations enabled by Cmq, we extended NumPy to use the OINT and
implemented various optimized derivatives. On module initialization, Cmq-NumPy registers its
optimization hook with CPython and later optimizes instructions related to array operations.
To understand these optimizations we first give a short overview of NumPy in Section 6.1. In
Sections 6.2–6.4 we outline how we implemented the Cmq-NumPy optimizations.

F. Berlakovich and S. Brunthaler 6:15

6.1 NumPy in a Nutshell
NumPy is one of the most popular CPython C extensions and consistently among the top 20
downloaded PyPi packages [22]. The NumPy package provides multidimensional arrays, called
ndarrays, of different data types that optionally can be contiguous, aligned and iterated in
different iteration orders. In addition to data representation via arrays, NumPy also contains
a variety of mathematical functions operating on those arrays. NumPy is also a cornerstone
of several other CPython packages, such as Pandas, SciPy, scikit-learn and PyTorch. To
integrate seamlessly with Python, NumPy makes extensive use of operator overloading and,
e.g., allows to add, subtract, multiply or divide arrays. Behind the scenes, NumPy takes
care of transforming the arrays as necessary to perform the desired operation. For example,
through a mechanism called broadcasting, NumPy allows to transparently add two arrays with
a different number of dimensions:

>>> np.array([1, 2, 3]) + np.array([[5, 6, 7], [1, 2, 3]])
array([[6, 8, 10],

[2, 4, 6]])

NumPy implements many of these operations on ndarrays as so called universal
functions or ufunc for short. A ufunc object represents a mathematical function that
operates element-wise on ndarrays. Each ufunc can have multiple underlying implementa-
tions of the mathematical function, called array methods. Which array method a ufunc uses
depends, among other factors, on the input operand types. Internally, NumPy implements
array methods as tuned C loops to exploit available hardware features (e.g., vectorization).
Before calling any array method, ufuncs are responsible for type casting, broadcasting and
several other standard NumPy features.

NumPy determines the ufunc and subsequently the array method responsible for performing
an ndarray operation in a multistep process. First, NumPy determines the responsible ufunc
object. For binary operations with operator overloading, NumPy reads the ufunc from a
module-wide table. For other operations, such as minimum or maximum, the ufunc object
is a callable Python object and pushed onto the operand stack. The subsequent steps are
identical for both cases, and we summarize them in List 2.

6.2 Exploiting ufunc Type Stability
NumPy’s flexibility and extensibility has allowed it to become a building block in a number of
different domains. For example, NumPy allows users to customize almost any step in List 2.
This flexibility comes at a cost, however. For every array addition, CPython first performs
the steps in List 1 and then the steps in List 2. A crucial observation is that many of the
steps in List 2 can be eliminated or simplified by fixating the types and number of inputs
to the ufunc. For example, when adding exactly two arrays in a BINARY_OP, the following
simplifications are possible.

If both input arrays are of type ndarray, Step 1 and Step 5 become redundant. If, in
addition, the array element types are known, Step 3 becomes redundant. Type-specialized
instructions described in Section 4.2.1 allow Cmq to efficiently speculate on these properties.
By additionally speculating that the user has not changed the default ufunc for adding
arrays, Step 2 and Step 3 become redundant. Cmq enables this type of speculation with the
deoptimization strategies outlined in Section 4.1.1.

ECOOP 2024

6:16 Cross Module Quickening – The Curious Case of C Extensions

1. Check if any of the operands overrides the ufunc. NumPy allows any operand participating
in a ufunc operation to override the responsible ufunc object, effectively implementing a
form of multi-dispatch;

2. Determine the exact casting rules and perform any necessary casting. For example, in
this step NumPy converts scalar values participating in an array operation into arrays;

3. Based on the resulting types from the previous step, resolve the array method;
4. With the array method, resolve the operation types, in particular the result type;
5. Call array preparation functions, if any;
6. Check if a single iteration of the array method loop is possible by analyzing the properties

of the participating arrays. Such a simplified case is possible for certain configurations of
input arrays. We skip the exact details here for brevity.

7. If a single loop is sufficient, allocate the output array (if necessary) and call the array
method loop

8. Otherwise, allocate an iterator and call the array method as many times as dictated by
the iterator.

List 2 Steps for resolving NumPy ufunc and array methods. For more details see the NumPy
Enhancement Proposals 13 and 18 [8, 27], the NumPy manual on ufuncs [19] and the function
ufunc_generic_fastcall in ufunc_object.c in the NumPy codebase.

To unlock these optimizations, Cmq-NumPy provides specialized BINARY_OP derivatives for
several array type combinations. For example, Cmq-NumPy specializes BINARY_OP occurrences
that add or subtract two float arrays, effectively eliminating Step 1–5. While the case
distinction in Step 6 and the last step (either Step 7 or Step 8) remain, the specialized
derivatives simplify Step 6 to a few comparisons. In the original NumPy, Step 6 is handled
by a function that needs to handle several corner cases and deal with potentially more
than two input arguments. The added assumptions in the derivatives allow us to partially
evaluate the function and to inline the remaining checks directly into the derivatives. As the
optimized derivative is represented as BINARY_OP_EXTERNAL in CPython (see Section 5.2.3),
the optimization also eliminates the BINARY_OP dispatching steps (see List 1).

A similar optimization is possible for calls of ufuncs objects via CALL instructions. As an
example, consider a call to the minimum function of the NumPy package: numpy.minimum([1,
2], [3, 4]). CPython first loads the minimum ufunc object from the NumPy module and
pushes the object to the stack. Next, CPython pushes the argument lists onto the stack.
Finally, CPython calls the ufunc object via the Vectorcall protocol for calling into C
extensions. Like for the BINARY_OP instructions, Cmq-NumPy provides a derivative that
skips many of the steps in List 2 and calls the appropriate array method directly. During
specialization, Cmq-NumPy not only validates the operand types, but also ensures that the
ufunc object represents the expected minimum function. Once specialized, the loading of the
ufunc object becomes redundant (see Section 4.2.2).

6.3 Automatic Generation of Derivatives
During the implementation of BINARY_OP derivatives, we noticed that the code of different
derivatives differs only at select locations. Specifically, each derivative validates its type-
specific assumptions and calls a type-specific array method. All other aspects of the code,
such as the simplified Step 6 are identical between the derivatives. For example, all derivatives
analyze certain properties of the input arrays, such as dimensions and strides, to decide
whether Step 7 or Step 8 is necessary. Similarly, the code to decide whether a derivative is
suitable for an instruction occurrence differs only in details.

F. Berlakovich and S. Brunthaler 6:17

BinOp(
operation="add",
left_type="adouble",
right_type="adouble",
result_type="NPY_DOUBLE",
loop_function="DOUBLE_add",
commutative=True,

)

(a) Specification of a derivative that adds two
double arrays.

if((PyArray_CheckExact(lhs) &&
PyArrayHasType(NPY_DOUBLE) &&
PyFloat_CheckExact(rhs)) ||
// symmetrical commutative case
{
// Specialize for adding
// double arrays
}

(b) Automatically generated condition for spe-
cializing float array addition. The highlighted
parts are taken from the derivative description.

Figure 5 Derivative description (left) and the automatically generated specialization condition
(right).

To reduce code duplication, we wrote a code generator in Python that uses Mako templates
to generate the various cases and derivatives. The code generator takes a specification of
the derivatives produces specialization conditions and derivative implementations. Figure 5a
shows an example of the double-array addition derivative specification. The specification
defines the required types and the concrete array method to use in the derivative implemen-
tation. The code generator automatically generates derivative implementations and their
corresponding specialization conditions. Figure 5b shows an example of a generated condition.
Since addition is a commutative operation, the code generator automatically generates the
symmetric case as well.

The code generator not only reduced the amount of duplicate code, but also allowed
us to experiment with different implementation variants. For example, we tested a variant
that forcefully inlines all function calls within the derivative implementations and found the
performance difference to be negligible.

6.4 Per-Instruction Caches in NumPy

In Section 4.2.3 we described how Cmq enables an instruction-occurrence-specific caching
via an occurence cache. Cmq-NumPy uses the occurence cache in optimized BINARY_OP
and BINARY_SUBSCRIPT derivatives. Specifically, the occurence cache we implemented in
the OINT in CPython allows Cmq-NumPy to store a pointer for each optimized instruction.

The BINARY_OP derivatives use the occurence cache keep a scratch array for results.
The idea is based on the observation that BINARY_OP instructions often allocate short-lived
arrays for the operation result and, thus, cause pressure on the memory subsystem. We
gauge the effectiveness of the occurence cache in Section 7.4. Whenever our optimized
BINARY_OP derivatives allocate a new result array, they store a pointer to the array in the
occurence cache. In subsequent executions, the derivatives try to reuse the cached array
instead of allocating a new one. Reusing a cached array is possible whenever the cached
array has a reference count of 1, meaning that the cache is the only reference to the object.
The result cache trades memory for CPU cycles by avoiding the recurring allocation and
deallocation of frequently used objects.

In contrast, the BINARY_SUBSCRIPT derivatives use the occurence cache to store infor-
mation precomputed at specialization time. In CPython, a BINARY_SUBSCRIPT instruction
uses a subscript object to access subscriptable, such as lists or NumPy arrays. NumPy extends

ECOOP 2024

6:18 Cross Module Quickening – The Curious Case of C Extensions

CPython’s subscripting mechanism with the notion of multidimensional subscripts. For exam-
ple, the expression array[1:, 2:] selects all sub-arrays beginning at the second and from
each selected subarray all elements beginning at the third. Under the hood, the expression
[1:, 2:] is a syntactic sugar for [(slice(1, None, None), slice(2, None, None)]. In
other words, the subscript object is a tuple consisting of two slice objects. While this syntax
is highly expressive and makes it easy to navigate nested arrays, the flexibility comes at a
cost. For every such subscript access, CPython needs to construct the participating objects,
i.e., the slices and the tuple, and then call NumPy to handle the subscript on a NumPy array.
The subscript object construction alone constitutes 7 instructions. Next, NumPy needs to
deconstruct the subscript object again to compute an index structure that is later used to
access the array. Similar to the case of resolving ufuncs (see List 2), the computation in
NumPy is generic and needs to handle several corner cases.

An important observation is that all objects participating in the above subscript operation,
except the array, are constant. To that end, Cmq-NumPy move the computation of the
index structure from instruction execution to specialization time. During specialization
of a BINARY_SUBSCRIPT instruction, Cmq-NumPy analyzes the instructions constructing
the subscript object. If the subscript object is constant, Cmq-NumPy precomputes the
index structure and stores a pointer to the structure in the occurence cache. Instead of
recomputing the structure, the specialized BINARY_SUBSCRIPT derivatives read the index
structure from the cache.

7 Evaluation

7.1 System Configuration
Our changes are based on CPython 3.12.0 and NumPy 1.26.4. To guarantee a fair comparison
and equal compilation parameters, we also built the baseline, i.e., CPython 3.12.0 and NumPy
1.26.4, from source.

We perform our evaluation on three different machines, summarized in Table 2. Machine
EPYC is equipped with an AMD EPYC Rome 7H12 CPU running at 3.2 GHz, 1TB DDR4
RAM running at 3200 MHz, and Debian 12. Machine i7 is equipped with an Intel Core
i7-8559U CPU running at 2.7 GHz, 64GB DDR4 RAM running at 2667 MHz, and Debian
12. Machine M3 is equipped with an Apple 16 core M3 CPU running at 4.05 GHz, 128GB
RAM, and macOS 14. On each machine we compiled CPython and NumPy with the bundled
GCC (12.2.0) and GNU linker (2.40).

7.2 Experimental Design
Cmq consists of a modified CPython instance that supports the Optimization Interface and
a modified NumPy package that leverages the Optimization Interface.

We evaluate the performance improvements of Cmq based on the NPBench benchmark
framework [41]. NPBench includes compute-intensive NumPy benchmarks and aims to com-
pare the performance of NumPy-specific optimizing compilers. While our technique is not
NumPy-specific, these benchmarks allow us to properly evaluate the afforded performance
improvement. In addition to the benchmarks already included with NPBench, we integrated
NumPy Phoronix benchmarks from openbenchmarking [33]. Like the included benchmarks,
the Phoronix benchmarks consist of scientific kernels that make intensive use of NumPy.

NPBench supports differently sized input presets for the included benchmarks. For our
evaluation, we used the paper preset, which was also used during the evaluation of NPBench
itself [41]. The Phoronix benchmarks have their input sizes hardcoded into the benchmark.

F. Berlakovich and S. Brunthaler 6:19

We run all benchmarks with the NPBench test runner. The runner starts each benchmark
in a new CPython process and repeats the benchmark a given number of times with the
CPython timeit package. In addition, NPBench verifies that the results of an optimized
implementation and the NumPy default implementation are equal. We modified NPBench to
use our customized CPython and NumPy while measuring Cmq’s performance.

To reduce noise, we limit NumPy to a single thread and pin the benchmark run to a single
CPU with cset. Note that this restriction does not influence Cmq’s relative performance
improvement over standard NumPy. Distributing workloads to multiple threads happens
in NumPy components unaffected by Cmq. We verified this experimentally by comparing
runs with and without threading and found the differences to be within measurement noise
(2-3%). Without limiting the number of threads (e.g., to 16) in our experiments, NumPy used
all available logical CPUs, even for trivial tasks. For the EPYC Rome machine this meant
distributing tasks to 256 logical CPUs, effectively overloading the machine synchronization
overhead.

We repeat each NPBench benchmark 20 times and limit the execution time of a single
run to 120s. Since the Phoronix are short-running, we repeat each benchmark run 100
times. We kept the internal iteration count of 40 for the Phoronix benchmarks. With this
configuration, one benchmark (3mm) timed out in the baseline on all machines.

7.3 Performance
Figure 6 and Figure 7 shows the performance improvement of Cmq over the baseline for the
NPBench and Phoronix benchmarks, respectively. Due to space constraints, we show only
benchmarks where Cmq-NumPy could specialize at least one instruction. We give a complete
list of benchmark results in Appendix A.

Whereas some NPBench benchmarks, such as adist, show no improvement, Cmq improves
the performance of other benchmarks by a factor of up to 2.84. The improvements are similar
on different machines, with the notable differences of heat3d and floydwar. On these two
benchmarks, Cmq achieves no measurable performance improvement on M3. For the NPBench
benchmarks, we report a geometric mean improvement for the machines EPYC, i7, and M3 of
1.11x, 1.10x and 1.08x, respectively.

For the Phoronix benchmarks the situation is similar. Some benchmarks, such as
periodic_dist, show an improvement of up to 1.94, whereas other benchmarks, such as
eucl_dist show no improvement. One difference to the NPBench benchmarks is that certain
benchmarks show a slight decrease in performance, most notably pairwise and rosen. For
the Phoronix benchmarks, we report a geometric mean improvement for the machines EPYC,
i7, and M3 of 1.10x, 1.08x and 1.06x, respectively.

We discuss these differences in Section 8.1.

7.4 Dynamic Locality Analysis
To analyze type locality and cache stability, we collected various statistics on the EPYC
machine over all NPBench benchmarks with 20 repetitions. We found the operand types on
which the specialized derivatives speculate to be 100% stable except for resnet. In resnet,
3 operations had to deoptimize due to a changed operand type.

Table 1 shows relevant metrics for the BINARY_SUBSCRIPT result cache (see Section 6.4).
The other derivatives (e.g., BINARY_SUBSCRIPT) cache only static data (e.g., the computed
index structure) and, therefore, never need to invalidate the cache. For brevity, Table 1 shows
only benchmarks in which cache invalidations occurred. REFCNT means the cached array had
a reference count greater than one. SHAPE means the array did not have the expected shape.

ECOOP 2024

6:20 Cross Module Quickening – The Curious Case of C Extensions

ad
i

ad
is

t
ca

vt
fl

ow
ch

an
fl

ow
ch

ol
es

ky
2

co
rr

el
at

co
va

ri
an

de
ri

ch
e

du
rb

in
fd

td
_2

d
fl

oy
dw

ar
ge

mm
ge

mv
er

ge
su

mm
v

1.0

1.1

1.2

1.3

1.4

1.5
Im

p r
ov

em
en

t

2.
82

1.
56

2.
55

2.
5

EPYC
i7
M3

gr
am

sc
hm

hd
if

f
he

at
3d

ja
co

bi
1d

ja
co

bi
2d

ma
nd

el
1

mv
t

nb
od

y
se

id
el

2d

sy
mm

sy
r2

k

sy
rk

va
dv

Benchmark

1.0

1.1

1.2

1.3

1.4

1.5

Im
p r

ov
em

en
t

1.
5

Geometric mean
1.11 1.10 1.08

Figure 6 The performance improvement of Cmq-NumPy over the baseline for NPBench benchmarks
with at least one specialized instruction. The black lines at the top of the colored bars show the
95% bootstrapping confidence interval with 1000 samples. For the bars that do not fit within the
figure, a label on top of the bar shows their value.

In cavtflow, chanflow and heat3d a cached array had a reference count greater than 1,
indicating that the array is not in fact temporary. In syr2k, the cached array’s properties
did not match the properties required for the result. Cmq-NumPy keeps a cache counter to
detect cases where the cache is invalidated frequently and disables an instruction cache after
100 invalidations. The counter disabled the cache in syr2k for one instruction and in vadv
in 8 instructions. We found this optimization to improve cavtflow’s performance by about
10%.

7.5 Implementation Effort

The changes in CPython consist of 1,136 insertions and 51 deletions across 27 files. These
changes include the code for statistics, debugging routines, comments and newlines, but
exclude files generated by the CPython build. The OINT consists of a hook used by C
extensions to register, two callbacks provided by the C extension and three functions the C
extension can use to specialize instructions.

F. Berlakovich and S. Brunthaler 6:21

ar
cd

is
t

di
ff

us
io

n
eu

cl
_d

is
t

ev
ol

ve
gr

ay
sc

ot
t

ha
rr

is

l1
no

rm

l2
no

rm
la

pl
ac

ie
n

lo
g_

li
ke

ls
ts

qr

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Im
p r

ov
em

en
t

EPYC
i7
M3

ma
ke

_d
ec

is
io

n
mu

lt
ip

le
_s

um
pa

ir
wi

se
pe

ri
od

ic
_d

is
t

ro
se

n
sl

ow
pa

rt
s

sp
ec

ia
lc

on
vo

lv
e

vi
br

_e
ne

rg
y

wa
ve

wd
is

t

Benchmark

0.9
1.0
1.1
1.2
1.3
1.4
1.5

Im
p r

ov
em

en
t

1.
79

1.
9

1.
94

Geometric mean
1.10 1.08 1.06

Figure 7 The performance improvement of Cmq-NumPy over the baseline for Phoronix benchmarks
with at least one specialized instruction. The black lines at the top of the colored bars show the
95% bootstrapping confidence interval with 1000 samples.

The changes in NumPy consist of roughly 1200 lines of C, 400 lines of Python and 900 lines of
template code. These changes include the code for statistics and performance measurements,
derivative templates, debugging routines, comments and newlines, but exclude generated
files. Implementing these changes took us roughly 3 months, with no prior experience with
NumPy. NumPy consists of roughly 163,000 lines of code, which means that our extension
(the C and template code) comprise less than 1% of NumPy’s code base. The template
code for our optimized derivatives contains primarily rearrangements of existing NumPy code
(e.g., applying a ufunc to an array with an iterator).

8 Discussion

This section discusses the evaluation results, in particular the varying performance results,
as well as what we believe to be relevant threats to validity.

8.1 Performance
Figure 6 and Figure 7 detail the performance results obtained on three different CPU
architectures. Although the performance is promising in some cases, it is indistinguishable
from measurement noise in other cases. A closer look to what happens under the hood is
required to analyze these differences.

ECOOP 2024

6:22 Cross Module Quickening – The Curious Case of C Extensions

Table 1 Cmq-NumPy result cache statistics
(see Section 7.4).

Benchmark Misses Reason

cavtflow 308 REFCNT
chanflow 308 REFCNT
heat3d 132 REFCNT
syr2k 100 SHAPE
vadv 844 REFCNT

Table 2 Configuration of the benchmarking
machines used in Section 7.3.

Machine CPU RAM

EPYC AMD EPYC 7H12 1 TB
i7 Intel Core i7-8559U 64 GB
M3 Apple M3 Max 128 GB

An analysis of the executed interpreter instruction frequencies shows that Cmq-indifferent
benchmarks execute fewer interpreter instructions. This difference also reduces the impact
of Cmq optimizations. The adi benchmark, for example, executes most of its instructions in
the kernel function, with each interpreter instruction executed about 20,000 times, with
20 iterations. In the fdtd_2d benchmark, on the other hand, the comparative interpreter
execution count is only 500 times. This order-of-magnitude difference provides part of the
answer.

The interpreter instruction execution frequency aside, the fdtd_2d benchmark provides
another part of the answer. With the paper preset, fdtd_2d operates on large matrices
having 1,000 rows of 1,200 columns. With an element size of a double floating point number,
such a matrix spans 9,600,000 bytes, which is roughly 9 megabytes. Since this size exceeds the
limits of both most operating system page sizes, and CPU data caches, the overall execution
time is dominated by these caching effects.

To demonstrate the effect of these two variables on Cmq’s optimization potential, we
manually changed the parameters of fdtd_2d. Instead of 500 repetitions on 1,000 by 1,200
matrices, we experimented with 10,000 iterations on 200 by 220 matrices. With these
parameters, performance improved by about 20%.

On the Phoronix benchmark set (Figure 7), Cmq’s impact is less than on the NPBench
benchmarks (Figure 6). The primary reason is that many of the Phoronix benchmarks
operate on types for which we have not yet added optimized derivatives, such as 32bit floats
and NumPy’s scalar types. In other words, these benchmarks pay the small, but non-zero price
of attempted specializations without profiting from Cmq. The futile specialization attempts
are also the reason for a slight decrease in performance for e.g., the pairwise benchmark.
Compared to the NumPy benchmarks, the Phoronix benchmarks are short-running. As a
result, the overhead of specialization attempts is high compared to the benchmark runtime.
We confirmed this theory by increasing the internal iteration count, such that a single
benchmark run takes longer. We found that with longer run times, the slowdown for all but
one benchmarks approached zero. Only the slowdown of grouping remained at roughly 10%.
The slowdown remained even when disabling specialization attempts entirely and the exact
cause requires further analysis.

8.2 Implementation Effort

8.2.1 CPython

Integrating an Cmq into a language VM consists of two tasks. First, allowing C extensions
to register and subsequently calling the C extension to attempt the specialization of hot
instructions (see Section 5.2). Second, providing functionality to the C extension via the
OINT to analyze, specialize and deoptimize instructions.

F. Berlakovich and S. Brunthaler 6:23

In the case of CPython, we could reuse much of CPython’s optimization-counter infras-
tructure to trigger the optimization of hot instructions Section 5.2.1. As a result, the first
task, amounted to only about 200 lines of code. The OINT functionality for the second task
consists of analyses (e.g., for finding the originator of an argument, see Section 5.2.4) and
code for handling the optimization and deoptimization. The implementation of the OINT
made up the majority of the implementation effort in CPython and amounts to roughly 800
lines of code.

8.2.2 NumPy

In general, the implementation effort for implementing optimizations depends largely on the C
extension in question. As non-experts in NumPy, we spent the majority of the implementation
time (see Section 7.5) with understanding NumPy’s architecture as well as debugging our
implementation errors. We believe that domain experts (e.g., NumPy core developers) could
implement the optimizations not only in substantially less time, but also with less code. For
our research prototype we explicitly specified each derivative (see Section 6.3), leading to
a larger amount of boilerplate code. Instead, developers with an intimate understanding
of NumPy could generate the specifications from the ufunc operation specifications already
present in NumPy. Future research could focus on automating parts of the optimization
implementation, and thus reducing burden on C extension authors.

8.3 Threats to Validity
Although we spent a great deal of effort on making sure that both design/implementation and
evaluation are unbiased and representative of the general principle explored and demonstrated
by Cmq, the following threats to validity apply.

8.3.1 Generalization Beyond Python
Our analysis and findings focus on the CPython ecosystem. Although we believe that
these findings hold equally well for similar ecosystems, such as Lua, Ruby, or even WASM,
only a comparative investigation will be able to close this gap. Note that neither our
analysis, nor our implementation, rely on specifics of the Python interpreter. Python,
for example, uses a stack-based virtual machine interpreter architecture. Our extension-
delimited superinstructions observation and optimization (cf. Section 4.2.2) hold equally well
for register-based architectures.

The standard3 Ruby interpreter YARV is architecturally similar to Python. Both are
written in C, both have bytecode interpreters, and although the YARV does not currently
perform runtime specialization, a prototype for a specializing interpreter exists [30]. We thus
believe that porting Cmq to Ruby would be relatively straightforward.

Another language VM with C extension support is the Lua VM and its optimized variant
LuaJIT. The LuaJIT VM has both a profiling interpreter and a JIT compiler and retains
compatibility with Lua C extensions. Unlike Python and Ruby, however, the LuaJIT VM
is register-based and the interpreter is written in assembly. While certainly possible, the
different architecture and low-level nature of the LuaJIT interpreter would pose an obstacle
to porting Cmq to Lua.

3 As with Python, many different Ruby implementations exist. With “standard” we are referring to the
interpreter that is part of the official Ruby distribution.

ECOOP 2024

6:24 Cross Module Quickening – The Curious Case of C Extensions

8.3.2 Generalization Beyond NumPy

Based on the domain-specificity of C extensions (cf. Section 3.1), our findings cannot
translate to other C extensions verbatim. The qualitative analysis results apply in general
(cf. Section 3.2), and also to other C extension ecosystems. The corresponding optimization
techniques explored and demonstrated for the extenders-category also translate to other C
extensions.

Our analysis for lxml Python extension indicates, for example, that lxml would benefit
from extension-delimited superinstructions that operate on native types. Note in this context
that our OINT design and implementation is not closed, but can be extended for other
use cases, and indeed we expect future work, also by other researchers, to uncover more
optimization features.

8.3.3 Performance Bias Through NPBench

We evaluate Cmq with NPBench that consists of a suite of compute-intensive scientific kernels.
These benchmarks cannot be representative of other workloads for different C extensions.
No claim to the expected speedup potential can be made on a sound scientific basis.

8.3.4 Performance Result Interpretation
The authors are not experts in optimization of mathematical kernels. The reported results
are, thus, merely indicative. An expert possessing the relevant domain expertise may see,
and actually uncover, more optimization potential.

9 Related Work

In the Python ecosystem, Numba is one way to speed up scientific Python programs, in
particular programs using NumPy. Numba is a Python JIT compiler based on the LLVM JIT
compiler framework [28]. As shown by Ziogas et al., Numba’s JIT-approach enables impressive
performance improvements for some benchmarks [41]. However, Numba supports only a
subset of Python and cannot optimize functions with incomplete type information. Cython
is a compiler that compiles a superset of Python to optimized C code and aims to narrow the
gap between writing Python code and C extensions [3]. In addition to lowering the burden of
writing C extensions, an extension to Cython could help to automatically generate optimized
derivatives for Cmq.

Grimmer et al. take a different approach to dealing with C extensions [25]. Their Truffle
Multi-Language Runtime runs both, the host language and the C extension, on the same
language VM, on top of the Truffle framework. Running the C extension is possible through
a C interpreter implemented in Truffle [23]. In lack of a benchmark suite for C extensions,
the authors evaluate the peak performance of the Multi-Language Runtime with two Ruby
programs. A later paper suggests that the performance depends on the exact language
combination and benchmark [24]. The approach of running C extensions with a Truffle
C-Interpreter was later generalized with Sulong [32].

The work closest to ours is “Dr Wenowdis”, a system to communicate function type
information from C extensions to PyPy [7]. In their paper, the authors focus primarily
on boxing and unboxing overhead, but the principles are similar to our type-specialized
instructions (see Section 4.2.1). We believe that our work is mutually beneficial with “Dr
Wenowdis” and that the principles of Cmq could be extended to JIT compilers as well.

F. Berlakovich and S. Brunthaler 6:25

The WebAssembly Garbage Collector (WASM GC) proposal is similar in spirit to
Cmq [26]. With WASM GC, a language implementation running on a WASM engine can com-
municate information about its object layout to the WASM host engine. This additional
communication enables the WASM garbage collector to reason about and to collect guest
objects. Thus, the guest language implementation is no longer a black box to the WASM
host engine. While WASM does not have C extensions, the proposed WASM System Interface
(WASI) fulfills a similar purpose. We believe, therefore, that Cmq’s principles could benefit
WASI as well.

10 Conclusions

We present the first analysis and exploration of C extensions for dynamic languages, ex-
emplified by the Python ecosystem. Based on this analysis, we find that the key obstacle
of a large-scale quantitative analysis is that many C extensions require their own domain
expertise. This domain specificity of C extensions makes them both difficult to compare and
difficult to evaluate performance against, since the domain specificity also implies a lack of
generalizable benchmark suites.

Due to this negative result, we instead focus on a qualitative analysis of Python’s C
extension ecosystem. We find that C extensions fall into three categories: (i) optimizers, (ii)
binders, and (iii) extenders. Optimizers are C extensions that could be written in Python,
but are written in C to speed up the processing. Binders are C extensions that essentially
bind Python to existing C libraries. Extenders add functionality to Python that does not
readily exist.

From a performance perspective, we find that the first two categories provide few op-
timization opportunities. This lack of opportunities is rooted in the fact that most time
is spent in the C extensions themselves. The third category, however, offers optimization
potential as evidenced by the speedups demonstrated by Cmq. Based on the example of
NumPy, we illustrate a total of three orthogonal optimization techniques.

Since our work represents, to the best of our knowledge, the first foray into optimization
across module boundaries, we expect future work efforts that extend and generalize the ideas
presented herein. We believe that a natural step would be to try integrating our findings into
just-in-time compilers. A generalization, on the other hand, would try to apply our ideas to
another dynamic language ecosystem, such as Ruby, Lua, PHP, or Perl. We furthermore
expect that the presented system will be adapted and extended by performance-conscious
extension authors, leading to new optimization opportunities down the road. Finally, even a
closed ecosystem such as JavaScript may benefit from our ideas: the runtime system and the
browser represent a form of C extension for the JavaScript virtual machine. Through similar
APIs, JavaScript engines could, thus, benefit from optimizations.

References
1 Scott B. Baden. High Performance Storage Reclamation in an Object-Based Memory System.

Technical Report, University of California at Berkeley, USA, May 1982.
2 Gergö Barany. Python interpreter performance deconstructed. In Proceedings of the Workshop

on Dynamic Languages and Applications, Dyla 2014, Edinburgh, United Kingdom, June 9-11,
2014, pages 5:1–5:9, Edinburgh United Kingdom, June 2014. ACM. doi:10.1145/2617548.
2617552.

3 Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcín, Dag Sverre Seljebotn, and
Kurt Smith. Cython: The best of both worlds. Comput. Sci. Eng., 13(2):31–39, March 2011.
doi:10.1109/MCSE.2010.118.

ECOOP 2024

https://doi.org/10.1145/2617548.2617552
https://doi.org/10.1145/2617548.2617552
https://doi.org/10.1109/MCSE.2010.118

6:26 Cross Module Quickening – The Curious Case of C Extensions

4 Felix Berlakovich. CMQ CPython implementation. Software (visited on 2024-08-29). URL:
https://github.com/fberlakovich/cmq-ae.

5 Felix Berlakovich. CMQ Numpy implementation. Software (visited on 2024-08-29). URL:
https://github.com/fberlakovich/cmq-numpy-ae.

6 Felix Berlakovich and Stefan Brunthaler. Cross-Module Quickening. Software (visited on
2024-08-29). URL: https://doi.org/10.5281/zenodo.11174717.

7 Maxwell Bernstein and CF Bolz-Tereick. Dr wenowdis: Specializing dynamic language C
extensions using type information. CoRR, abs/2403.02420(arXiv:2403.02420), March 2024.
doi:10.48550/arXiv.2403.02420.

8 Blake Griffith. A mechanism for overriding Ufuncs. URL: https://numpy.org/neps/
nep-0013-ufunc-overrides.html.

9 Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, Michael Leuschel, Samuele Pedroni,
and Armin Rigo. Allocation removal by partial evaluation in a tracing JIT. In Siau-Cheng
Khoo and Jeremy G. Siek, editors, Proceedings of the 2011 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, PEPM 2011, Austin, TX, USA, January
24-25, 2011, PEPM ’11, pages 43–52, New York, NY, USA, January 2011. ACM. doi:
10.1145/1929501.1929508.

10 Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, Michael Leuschel, Samuele Pedroni,
and Armin Rigo. Runtime feedback in a meta-tracing JIT for efficient dynamic languages.
In Ian Rogers, Eric Jul, and Olivier Zendra, editors, Proceedings of the 6th Workshop on
Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and
Systems, ICOOOLPS 2011, Lancaster, United Kingdom, July 26, 2011, ICOOOLPS ’11, pages
9:1–9:8, New York, NY, USA, July 2011. ACM. doi:10.1145/2069172.2069181.

11 Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing the meta-level:
Pypy’s tracing JIT compiler. In Ian Rogers, editor, Proceedings of the 4th workshop on the
Implementation, Compilation, Optimization of Object-Oriented Languages and Programming
Systems, ICOOOLPS 2009, Genova, Italy, July 6, 2009, ICOOOLPS ’09, pages 18–25, New
York, NY, USA, July 2009. ACM. doi:10.1145/1565824.1565827.

12 Stefan Brunthaler. Virtual-machine abstraction and optimization techniques. Electronic Notes
in Theoretical Computer Science, 253(5):3–14, December 2009. doi:10.1016/j.entcs.2009.
11.011.

13 Stefan Brunthaler. Inline caching meets quickening. In Theo D’Hondt, editor, ECOOP 2010
– Object-Oriented Programming, 24th European Conference, Maribor, Slovenia, June 21-25,
2010. Proceedings, volume 6183 of Lecture Notes in Computer Science, pages 429–451, Berlin,
Heidelberg, 2010. Springer. doi:10.1007/978-3-642-14107-2_21.

14 Stefan Brunthaler. Multi-level quickening: Ten years later. CoRR, abs/2109.02958, 2021.
doi:10.48550/arXiv.2109.02958.

15 Lin Cheng, Berkin Ilbeyi, Carl Friedrich Bolz-Tereick, and Christopher Batten. Type freez-
ing: exploiting attribute type monomorphism in tracing JIT compilers. In CGO ’20: 18th
ACM/IEEE International Symposium on Code Generation and Optimization, San Diego, CA,
USA, February, 2020, CGO 2020, pages 16–29, New York, NY, USA, February 2020. ACM.
doi:10.1145/3368826.3377907.

16 Maxime Chevalier-Boisvert, Noah Gibbs, Jean Boussier, Si Xing (Alan) Wu, Aaron Patterson,
Kevin Newton, and John Hawthorn. YJIT: a basic block versioning JIT compiler for cruby.
In Gregor Richards and Manuel Rigger, editors, VMIL 2021: Proceedings of the 13th ACM
SIGPLAN International Workshop on Virtual Machines and Intermediate Languages, Virtual
Event / Chicago, IL, USA, 19 October 2021, pages 25–32, Chicago IL USA, October 2021.
ACM. doi:10.1145/3486606.3486781.

17 Maxime Chevalier-Boisvert, Takashi Kokubun, Noah Gibbs, Si Xing (Alan) Wu, Aaron
Patterson, and Jemma Issroff. Evaluating yjit’s performance in a production context: A
pragmatic approach. In Rodrigo Bruno and Eliot Moss, editors, Proceedings of the 20th
ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes,
MPLR 2023, Cascais, Portugal, 22 October 2023, MPLR 2023, pages 20–33, New York, NY,
USA, October 2023. ACM. doi:10.1145/3617651.3622982.

https://github.com/fberlakovich/cmq-ae
https://github.com/fberlakovich/cmq-numpy-ae
https://doi.org/10.5281/zenodo.11174717
https://doi.org/10.48550/arXiv.2403.02420
https://numpy.org/neps/nep-0013-ufunc-overrides.html
https://numpy.org/neps/nep-0013-ufunc-overrides.html
https://doi.org/10.1145/1929501.1929508
https://doi.org/10.1145/1929501.1929508
https://doi.org/10.1145/2069172.2069181
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1016/j.entcs.2009.11.011
https://doi.org/10.1016/j.entcs.2009.11.011
https://doi.org/10.1007/978-3-642-14107-2_21
https://doi.org/10.48550/arXiv.2109.02958
https://doi.org/10.1145/3368826.3377907
https://doi.org/10.1145/3486606.3486781
https://doi.org/10.1145/3617651.3622982

F. Berlakovich and S. Brunthaler 6:27

18 L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of the smalltalk-80 system.
In Ken Kennedy, Mary S. Van Deusen, and Larry Landweber, editors, Conference Record of
the Eleventh Annual ACM Symposium on Principles of Programming Languages, Salt Lake
City, Utah, USA, January 1984, pages 297–302, New York, New York, USA, 1984. ACM Press.
ISSN: 07308566. doi:10.1145/800017.800542.

19 NumPy Developers. Universal functions (ufunc) basics – NumPy v1.26 Manual. URL:
https://numpy.org/doc/1.26/user/basics.ufuncs.html#type-casting-rules.

20 M. Anton Ertl and David Gregg. The behavior of efficient virtual machine interpreters
on modern architectures. In Rizos Sakellariou, John A. Keane, John R. Gurd, and Len
Freeman, editors, Euro-Par 2001: Parallel Processing, 7th International Euro-Par Conference
Manchester, UK August 28-31, 2001, Proceedings, volume 2150 of Lecture Notes in Computer
Science, pages 403–412, Berlin, Heidelberg, 2001. Springer. doi:10.1007/3-540-44681-8_59.

21 M. Anton Ertl and David Gregg. Optimizing indirect branch prediction accuracy in virtual
machine interpreters. In Ron Cytron and Rajiv Gupta, editors, Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation 2003, San
Diego, California, USA, June 9-11, 2003, PLDI ’03, pages 278–288, New York, NY, USA,
May 2003. ACM. doi:10.1145/781131.781162.

22 Christopher Flynn. PyPI Download Stats. URL: https://pypistats.org/top.
23 Matthias Grimmer, Manuel Rigger, Roland Schatz, Lukas Stadler, and Hanspeter Mössenböck.

Trufflec: dynamic execution of C on a java virtual machine. In Joanna Kolodziej and Bruce R.
Childers, editors, 2014 International Conference on Principles and Practices of Programming
on the Java Platform Virtual Machines, Languages and Tools, PPPJ ’14, Cracow, Poland,
September 23-26, 2014, PPPJ ’14, pages 17–26, New York, NY, USA, September 2014. ACM.
doi:10.1145/2647508.2647528.

24 Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Würthinger, and Mikel Luján.
Cross-language interoperability in a multi-language runtime. ACM Trans. Program. Lang.
Syst., 40(2):8:1–8:43, May 2018. doi:10.1145/3201898.

25 Matthias Grimmer, Chris Seaton, Thomas Würthinger, and Hanspeter Mössenböck. Dynami-
cally composing languages in a modular way: supporting C extensions for dynamic languages. In
Robert B. France, Sudipto Ghosh, and Gary T. Leavens, editors, Proceedings of the 14th Interna-
tional Conference on Modularity, MODULARITY 2015, Fort Collins, CO, USA, March 16–19,
2015, pages 1–13, Fort Collins CO USA, March 2015. ACM. doi:10.1145/2724525.2728790.

26 WebAssembly Community Group and Andreas (editor) Rossberg. WebAssembly Core Specifi-
cation. Technical report, W3C, 2024.

27 Stefan Hoyer, Matthew Rocklin, Marten van Kerkwijk, and Hameer Abbasi. A dis-
patch mechanism for numpy’s high level array functions. URL: https://numpy.org/neps/
nep-0018-array-function-protocol.html.

28 Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A LLVM-based python JIT
compiler. In Hal Finkel, editor, Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, LLVM 2015, Austin, Texas, USA, November 15, 2015, LLVM ’15,
pages 7:1–7:6, New York, NY, USA, November 2015. ACM. doi:10.1145/2833157.2833162.

29 Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java Series.
Addison-Wesley, Reading, Mass., 1. print edition, 1997.

30 Vladimir Makarov. A Faster CRuby interpreter with dynamically specialized IR. URL:
https://rubykaigi.org/2022.

31 Nagy Mostafa, Chandra Krintz, Calin Cascaval, David Edelsohn, Priya Nagpurkar, and Peng
Wu. Understanding the Potential of Interpreter-based Optimizations for Python. Technical
report, University of California, Santa Barbara, September 2010.

32 Manuel Rigger, Matthias Grimmer, and Hanspeter Mössenböck. Sulong – Execution of
LLVM-based languages on the JVM: position paper. In Proceedings of the 11th Workshop
on Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and
Systems, ICOOOLPS@ECOOP 2016, Rome, Italy, July 17-22, 2016, ICOOOLPS ’16, pages
7:1–7:4, New York, NY, USA, July 2016. ACM. doi:10.1145/3012408.3012416.

ECOOP 2024

https://doi.org/10.1145/800017.800542
https://numpy.org/doc/1.26/user/basics.ufuncs.html#type-casting-rules
https://doi.org/10.1007/3-540-44681-8_59
https://doi.org/10.1145/781131.781162
https://pypistats.org/top
https://doi.org/10.1145/2647508.2647528
https://doi.org/10.1145/3201898
https://doi.org/10.1145/2724525.2728790
https://numpy.org/neps/nep-0018-array-function-protocol.html
https://numpy.org/neps/nep-0018-array-function-protocol.html
https://doi.org/10.1145/2833157.2833162
https://rubykaigi.org/2022
https://doi.org/10.1145/3012408.3012416

6:28 Cross Module Quickening – The Curious Case of C Extensions

33 Victor Rodriguez Bahena. Numpy Benchmark Benchmark – OpenBenchmarking.org. URL:
https://openbenchmarking.org/test/pts/numpy.

34 Christopher Graham Seaton. Specialising dynamic techniques for implementing the Ruby
programming language. PhD thesis, University of Manchester, UK, 2015. URL: https:
//ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.674722.

35 Mark Shannon. The construction of high-performance virtual machines for dynamic languages.
PhD thesis, University of Glasgow, UK, 2011. URL: http://theses.gla.ac.uk/2975/.

36 Tiobe. index ert TIOBE – The Software Quality Company, 2021. URL: https://www.tiobe.
com/tiobe-index/.

37 Christian Wimmer and Stefan Brunthaler. Zippy on truffle: a fast and simple implementation of
python. In Antony L. Hosking and Patrick Th. Eugster, editors, SPLASH’13 - The Proceedings
of the 2013 Companion Publication for Conference on Systems, Programming, & Applications:
Software for Humanity, Indianapolis, IN, USA, October 26-31, 2013, pages 17–18, Indianapolis
Indiana USA, October 2013. ACM. doi:10.1145/2508075.2514572.

38 Qiang Zhang, Lei Xu, and Baowen Xu. Regcpython: A register-based python interpreter
for better performance. ACM Trans. Archit. Code Optim., 20(1):14:1–14:25, March 2023.
doi:10.1145/3568973.

39 Qiang Zhang, Lei Xu, Xiangyu Zhang, and Baowen Xu. Quantifying the interpretation
overhead of python. Sci. Comput. Program., 215:102759, March 2022. doi:10.1016/j.scico.
2021.102759.

40 Wei Zhang, Per Larsen, Stefan Brunthaler, and Michael Franz. Accelerating iterators in
optimizing AST interpreters. ACM SIGPLAN Notices, 49(10):727–743, December 2014.
doi:10.1145/2660193.2660223.

41 Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and Torsten Hoefler. Npbench:
a benchmarking suite for high-performance numpy. In Huiyang Zhou, Jose Moreira, Frank
Mueller, and Yoav Etsion, editors, ICS ’21: 2021 International Conference on Supercomputing,
Virtual Event, USA, June 14-17, 2021, ICS ’21, pages 63–74, New York, NY, USA, June 2021.
ACM. doi:10.1145/3447818.3460360.

A All Benchmarks

Table 3 All NPBench benchmark results.

benchmark EPYC i7 M3 benchmark EPYC i7 M3 benchmark EPYC i7 M3

adi 2.82 2.55 2.50 durbin 1.02 1.07 1.02 mvt 0.98 1.00 1.00
adist 0.98 1.01 1.03 fdtd_2d 0.98 0.98 0.99 nbody 1.04 1.04 1.07
atax 1.00 1.01 1.10 floydwar 1.37 1.40 1.00 npgofast 1.00 1.00 1.01
azimhist 0.99 0.97 1.00 gemm 1.00 1.00 1.00 nussinov 0.95 0.99 0.99
azimnaiv 1.01 0.96 1.01 gemver 1.03 0.96 1.03 resnet 0.99 0.96 1.00
bicg 0.99 1.00 0.96 gesummv 1.00 1.00 0.93 seidel2d 0.99 1.02 0.98
cavtflow 1.24 1.09 1.22 gramschm 1.09 1.11 1.07 softmax 1.00 1.02 0.97
chanflow 1.56 1.33 1.36 hdiff 0.99 1.11 1.50 spmv 1.02 1.08 1.03
cholesky 0.97 0.99 1.00 heat3d 1.17 1.06 0.98 sselfeng 0.99 1.15 0.99
cholesky2 1.17 1.18 1.00 jacobi1d 1.08 1.09 1.04 sthamfft 1.03 1.00 1.01
clipping 1.00 1.00 1.01 jacobi2d 1.07 1.00 0.99 symm 1.07 1.19 1.05
coninteg 1.00 0.99 1.00 lenet 0.98 1.05 1.00 syr2k 1.09 1.12 1.10
correlat 1.01 0.99 1.00 lu 1.00 1.06 0.98 syrk 1.14 1.24 1.14
covarian 1.01 1.01 1.00 ludcmp 0.99 1.01 0.98 trisolv 1.00 1.02 0.83
crc16 1.01 0.96 0.97 mandel1 0.93 1.00 1.00 trmm 0.96 0.93 0.99
deriche 1.04 1.01 1.04 mandel2 0.91 0.99 0.96 vadv 1.01 0.98 0.99
doitgen 1.01 1.02 0.99 mlp 1.00 1.03 0.96

Geomean 1.05 1.06 1.04

https://openbenchmarking.org/test/pts/numpy
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.674722
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.674722
http://theses.gla.ac.uk/2975/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/2508075.2514572
https://doi.org/10.1145/3568973
https://doi.org/10.1016/j.scico.2021.102759
https://doi.org/10.1016/j.scico.2021.102759
https://doi.org/10.1145/2660193.2660223
https://doi.org/10.1145/3447818.3460360

F. Berlakovich and S. Brunthaler 6:29

Table 4 All Phoronix benchmark results.

benchmark EPYC i7 M3 benchmark EPYC i7 M3 benchmark EPYC i7 M3

arc_dist. 1.00 1.01 1.10 l1norm 1.00 1.00 0.96 repeating 0.93 1.00 0.97
check_mask 0.98 1.07 0.98 l2norm 0.96 1.01 1.04 rev._cumsum 1.00 1.00 1.54
create_grid 1.05 1.00 1.00 laplacien 0.93 1.08 0.98 rosen 1.14 0.86 1.00
cronbach 0.97 0.96 0.97 local_max 0.97 0.96 0.98 slowparts 1.12 1.10 1.13
diffusion 1.16 1.07 1.13 log_like 1.00 1.00 1.02 spec.conv. 1.43 1.45 0.99
eucl-dist 1.00 0.97 0.97 lstsqr 1.13 0.85 1.04 vibr_energy 1.04 1.01 1.00
evolve 0.97 1.00 1.03 make_dec 1.06 1.12 1.08 wave 1.36 1.32 1.34
grayscott 0.97 1.04 1.01 mult_sum 1.12 1.17 1.09 wdist 1.36 1.35 1.29
grouping 0.91 0.99 0.99 norm-comp 0.99 0.99 0.99
harris 0.94 0.98 0.72 pairwise 0.94 0.82 0.92
hasting 1.00 1.00 0.95 perio_dist 1.79 1.90 1.94

Geomean 1.06 1.05 1.05

ECOOP 2024

HOBBIT: Hashed OBject Based InTegrity
Matthias Bernad # Ñ

µCSRL – Munich Computer Systems Research Lab, Research Institute CODE,
University of the Bundeswehr Munich, Neubiberg, Germany

Stefan Brunthaler # Ñ

µCSRL – Munich Computer Systems Research Lab, Research Institute CODE,
University of the Bundeswehr Munich, Neubiberg, Germany

Abstract
C vulnerabilities usually hold verbatim for C++ programs. The counterfeit-object-oriented program-
ming attack demonstrated that this relation is asymmetric, i.e., it only applies to C++. The problem
pinpointed by this COOP attack is that C++ does not validate the integrity of its objects. By
injecting malicious objects with manipulated virtual function table pointers, attackers can hijack
control-flow of programs. The software security community addressed the COOP-problem in the
years following its discovery, but together with the emergence of transient-execution attacks, such as
Spectre, researchers also shifted their attention.

We present Hobbit, a software-only solution to prevent COOP attacks by validating object
integrity for virtual function pointer tables. Hobbit does not require any hardware specific features,
scales to multi-million lines of C++ source code, and our LLVM-based implementation offers a
configurable performance impact between 121.63% and 2.80% on compute-intensive SPEC CPU
C++ benchmarks. Hobbit’s security analysis indicates strong resistance to brute forcing attacks
and demonstrates additional benefits of using execute-only memory.

2012 ACM Subject Classification Security and privacy → Software security engineering; Software
and its engineering → Compilers

Keywords and phrases software security, code-reuse attacks, language-based security, counterfeit-
object-oriented programming, object integrity, compiler security

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.7

Supplementary Material Software: https://doi.org/10.5281/zenodo.11046716 [8]
Software: https://github.com/mbernad/hobbit-artifact [7]

Funding The research reported in this paper has been funded by the Federal Ministry for Climate
Action, Environment, Energy, Mobility, Innovation and Technology (BMK), the Federal Ministry
for Labour and Economy (BMAW), and the State of Upper Austria in the frame of the COMET
Module Dependable Production Environments with Software Security (DEPS) [(FFG grant no.
888338)] within the COMET - Competence Centers for Excellent Technologies Programme managed
by Austrian Research Promotion Agency FFG.

1 Motivation

Among the myriad of security exploits, control-flow hijacking is the most severe problem, as
it allows the attacker to execute arbitrary code. A buffer overflow, for example, allows an
attacker to overwrite the return address stored in a function’s stack frame, and thus divert
control-flow to a location of her choice. Many other similar vulnerabilities exist and have
been both explored and exploited over the past two decades. Most of these vulnerabilities
affect both C and C++ alike.

The feasibility of an attack focusing exclusively on the C++ superset was demonstrated
by Schuster et al. in 2015 [45]. By injecting malicious objects into a C++ application the
attack hijacks control-flow and allows Turing-complete, arbitrary computation. In analogy
to other similar attacks, such as return-oriented programming, this attack is known as
counterfeit-object-oriented programming, COOP for short.

© Matthias Bernad and Stefan Brunthaler;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 7; pp. 7:1–7:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.bernad@unibw.de
https://www.unibw.de/ucsrl
https://orcid.org/0009-0003-1171-2601
mailto:brunthaler@unibw.de
https://www.unibw.de/ucsrl
https://orcid.org/0000-0001-9766-4871
https://doi.org/10.4230/LIPIcs.ECOOP.2024.7
https://doi.org/10.5281/zenodo.11046716
https://github.com/mbernad/hobbit-artifact
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 HOBBIT: Hashed OBject Based InTegrity

Due to the prevalence of C++ in systems and application software, researchers focused on
devising mitigations against COOP. To prevent control-flow hijacking, prior defenses apply
principles from effective C defenses. The principle of WˆX limits attacker capabilities to
inject code through new hardware features, such as Intel’s NX bits [52]. CFIXX, for example,
uses the MPX extension to secure a bookkeeping table it relies upon [12]. By applying
cryptography to encode and decode control-flow data, adversaries cannot know a priori
how target addresses are encoded. CCFI, for example, uses Intel’s AES-NI instructions to
cryptographically secure program addresses, such as return addresses, function-, and vtable
pointers [31].

Although both of these defenses thwart COOP attacks, they, too, have drawbacks.
Reliance on Intel’s MPX is problematic for three reasons. First, MPX may not be available in
a system’s target environment, such as in embedded systems or IoT contexts. Second, Intel
could decide to abandon the MPX instruction set extensions. Consider the MPK instruction
set extension, which was discontinued rather abruptly, rendering defenses relying on it
incapacitated. Third, MPX is non-compositional: A defense cannot protect an application
that already relies on MPX for its business logic, as the MPX registers are already taken.

Cryptographic protection of pointers is desirable due to strong security guarantees, but
suffers from prohibitive performance penalties. CCFI’s use of AES-NI reserves x86-64’s
vector registers, i.e., SSE, AVX, AVX2, or AVX512, blocking their use for other purposes.
Unavailability affects video processing, cryptographic operations, and a variety of other tasks.

Hobbit neither requires specific hardware extensions nor blocks vector registers and,
thus, addresses both of these challenges. Instead, Hobbit modifies the C++ object layout
to embed an integrity signature when an object is constructed. This signature is validated
before executing each virtual method’s body.

A Clang/LLVM-based implementation of Hobbit compiles large programs, such as the
WebKit browser, and allows parameterization to balance security with performance. The key
factor affecting performance is the choice of hashing technique to create an object’s signature.
Our evaluation shows that choosing strong hashing techniques can lead to substantial
overheads. To eliminate this overhead, Hobbit implements two different optimizations. First,
Hobbit applies a class-sensitive optimization to restrict its protection to classes that are
essential to the COOP attack. Second, Hobbit applies the idea of MAC algorithm parameter
randomization, thereby increasing overall security. For many application contexts, Hobbit
is thus the only viable defense against COOP.

Our contributions are as follows:
We present Hobbit, a software-only defense that thwarts counterfeit-object-oriented
programming (COOP, for short).
We describe the implementation of a fully-fledged Clang/LLVM-based prototype that
supports all C++ features, such as multiple inheritance (see Sections 5 and 6).
We discuss two new Hobbit optimization techniques that enable users to balance their
security needs with the available performance budget. We introduce Gadget-directed
optimization (see Sections 5.5 and 7.5), to apply protections specifically to COOP gadgets,
and Class-Hierarchy-driven Seed Randomization (see Sections 5.3 and 6.4).
We evaluate Hobbit w.r.t. performance, scalability, and security (see Section 7). Specifi-
cally, we report:

Performance: A configurable performance impact between 121.63% and 2.80%.
Scalability: Hobbit compiles complex real-world software, such as the WebKit web
browser.
Security: Hobbit provides comprehensive security through either strong hashing
techniques or randomizing parameters of weaker hashing techniques.

M. Bernad and S. Brunthaler 7:3

B::v4

B::v3

A::v2

A::v1

vptr 0

1

2

3

4

structure
from
class

values
from
object

.rodata.text

B::m4

B::m1

A::m2

A::m1 0

1

2

3

A a = new B()

a->m2()

(*a[0][1])(a,...)

B::new()
11

22

33 44

m2:
m2 code
...

55

heap

Figure 1 Overview of polymorphism and dynamic binding in C++. 1 constructors allocate
objects and set vptr and field values, 2 . Method calls require resolving of the vtable, 3 , and then
the corresponding fixed method id, 4 , before being able to call the method, 5 .

2 Background

In this section, we will introduce the background needed to understand the Counterfeit
Object-Oriented Programming (COOP) attack. Since COOP is a high-level attack targeting
specific C++ semantics, we will briefly explain the C++ object layout, polymorphism, and
dynamic dispatch mechanism. Finally, we need to cover some preliminary concepts used in
Hobbit.

2.1 C++ Polymorphism and Dynamic Binding
In object-oriented programming languages, such as C++, programs are organized around
classes and objects. Classes in C++ define the fields of objects and the methods operating
upon them. A concrete instance of a class is called object and consists of values for the
defined data fields residing in a contiguous memory region. To create and initialize newly
created objects, programmers call special methods, so-called constructors.

Figure 1 illustrates these concepts. Instantiating a new B object triggers a call to its
constructor 1 , which allocates a contiguous memory region and sets the vptr due to the
concrete dynamic type 2 . The class determines the structure of each object, while the object
holds values specific to the instance.

To dynamically bind a method call, C++ uses so-called vtable-based method dispatch
(see Figure 1). For each class, C++ generates a corresponding vtable that holds the addresses
of each callable method on it. If a class inherits a method, its address will merely be copied
into the corresponding method slot. If a class overrides a method, a new address will be
written into the corresponding method slot. A method call, then, consist of two steps: (i)
resolving the vtable by dereferencing an object an accessing the first entry, which holds
the vtable reference 3 , and (ii) resolving the method by dereferencing the proper method
through a callsite-fixed method identifier 4 .

2.2 Counterfeit-Object-Oriented Programming (COOP)
Over the past four decades, the memory unsafe nature of C and C++ lead to an “Eternal
War in Memory” [51]. In the beginning, attackers were able to insert instructions as data
in writable memory. By facilitating a buffer overflow to overwrite the return address,

ECOOP 2024

7:4 HOBBIT: Hashed OBject Based InTegrity

attackers could hijack the control-flow of a program to execute injected code, resulting in
Arbitrary Code Execution (ACE). Simple defenses, such as Write exclusive-or Execute (WˆX)
– marking memory as either writable or executable, but not both – render such code injection
attacks impossible. Therefore, attackers adapted and began reusing existing code, residing in
executable memory. Attackers either reused whole functions (e.g., return-into-libc [21, 35]) or
performed arbitrary computations by chaining together small pieces of code, called gadgets,
as in Return-Oriented Programming (ROP) [46, 42, 49] and its variations [10, 19, 15, 44].
Many defenses targeting mentioned Code Reuse Attacks (CRAs) exist [28, 37, 1, 2, 11]. A
more recent CRA targeting high-level C++ semantics is COOP [45].

COOP exploits the dynamic dispatch mechanism and escapes mentioned defenses above.
Instead of introducing new invalid control-flows like in ROP or return-into-libc, COOP
misuses existing callsites. To illustrate this point, consider the example from the previous
section, but from the perspective of the CPU. A callsite merely fixes the method identifier,
but accepts any vtable and will, thus, invoke any method identified by the fixed method
identifier (see Figure 1, 5 .)

COOP abuses this property of vtable-based method dispatch, by injecting malicious
objects, so-called counterfeit objects. These objects use invalid vtable entries, to abuse
method invocation. Instead of abusing gadgets as in return-oriented programming, COOP
abuses whole functions. Since the notion of code-reuse attacks is tied to the nomenclature of
gadgets, COOP, too, defines whole-function reuse gadgets.

These COOP gadgets are methods that can be abused for a specific malicious purpose.
Not all COOP gadgets are equally important, though. The most important gadget is the
so-called main-loop gadget, or ML-G for short. Consider the following C++ method:

1 virtual void removeElement(Element x) {
2 for (int i= 0; i < this.N; i++) {
3 this.L[i].remove(x);
4 }
5 }

Listing 1 Example of a COOP main-loop gadget (ML-G).

As shown in Listing 1, the removeElement method will loop over an array, namely the
field L and invoke the virtual method remove on every object stored in the field L. From an
adversarial COOP perspective, this means that the attacker can inject arbitrary malicious
objects and store them in the corresponding L field. Once she can invoke the removeElement
method, the attack will be launched.

More advanced variants of COOP relax this requirement for a container object holding
references to other objects. Crane et al., for example, describe Recursive- and Unrolled
COOP variants that allow different patterns of repetition [20]. By applying control-flow
integrity, valid control-flow transfers can be restricted to the program’s call-graph. Chen et
al. demonstrates that COOP can still succeed despite this constrain [16]

2.3 Execute-Only Memory (XOM)
Machine code in the text section of a program usually possesses read and execute privileges.
The read privilege is required to process inlined data, such as jump tables for switch
statements. But the read privilege requirement is not strict. The only essential privilege for
code is the ability to execute. Inlined data must then move to another section with read
privileges.

M. Bernad and S. Brunthaler 7:5

The principle of least privilege – a core tenet of computer security policies – prescribes
that reducing privileges improves security. Thus, in the 60s the Multics project already
supported execute-only memory [18]. Over the past decade, the idea of execute-only memory
saw a revival [4, 47, 19, 20, 24, 6]. The revival was due to advanced, sophisticated multi-stage
attacks that used memory leaks to (i) read a processes code layout, and then to (ii) relocate a
generic attack to the specific code layout used by a program. These specific code layouts were
derived from an active research area called “software diversity,” and complementing existing
methods with execute-only memory begot the new class of defenses called leakage-resilient
diversity.

2.4 Message Integrity Through MACs
To verify the authenticity and integrity of a message sent over an untrusted medium, people
use so-called message-authentication codes, MACs for short. Both sender and receiver
agree on a message authentication code (MAC) algorithm, based on a shared secret key
k. Then, the sender computes the MAC checksum, also known as tag t, for every message
m: t = MAC(m, k) and sends this tag t along with the message. At the receiving end, we
recompute the tag t′ for the received message m′: t′ = MAC(m′, k). Then, by comparing
both tags t and t′ for equality, we verify the message m’s integrity. Since the MAC algorithm
is based on a secret key k, only shared between sender and receiver, third-parties cannot
compute valid tags. Typically, secure MAC algorithms are based on cryptographic keyed-hash
functions.

Counterfeit-object-oriented programming exploits the fact that control data, such as
vptrs are mixed with non-control data. Similar to buffer overflows, mixing both types
of data proves to be a security problem when adversaries inject malicious objects.

3 Related Work

Due to the severity of counterfeit-object-oriented programming as an attack vector, a variety
of defenses [26, 20, 40, 57, 5, 16] has been proposed. Prior work, thus, considers multiple
different design criteria. These design criteria include: software-only [20, 5] vs hardware-
based [31, 54], hardening applied to binaries [41, 56, 23, 22] vs software-only, differences
w.r.t. protected program parts (such as, protecting vtables, vtable-pointers, or dynamic
dispatch). Due to these differences, giving an exhaustive treatment is in direct conflict within
traditional scope restrictions. We therefore focus on the most directly related work, and skip,
e.g., prior work dealing with securing C++ programs without source code access.

Most closely related to Hobbit is CFIXX, which uses Intel’s discontinued MPX extension
to protect vptrs [12]. At its core, CFIXX separates vptrs from vtables and stores them
into a dedicated memory area protected by MPX. In 2022, Xie et al. demonstrated a CFIXX
version building on Intel’s Control-Flow Enforcement Technology (CET) [54]. Recently,
many defenses proposed the use of Intel’s MPK extension. Unfortunately, using MPK is
not compositional: If an application uses MPK itself, it cannot share its MPK use with any
other component, such as a defense.

Compared to Hobbit, CFIXX highlights the need for a software-only approach that
does not require specific hardware extensions beyond extended-page table support to enable
execute-only memory.

ECOOP 2024

7:6 HOBBIT: Hashed OBject Based InTegrity

CCFI, short for cryptographically-secured control-flow integrity, is another closely related
defense – not specifically aimed at preventing COOP attacks, but providing comprehensive
protection against essentially all forms of control-flow hijacking [31]. CCFI pioneers the use
of MACs to protect code pointers. Unfortunately, to secure the keys from leaking, the system
proposed to reserve vector registers (i.e., SSE’s xmm registers), thus slowing down application
relying on their use, such as media en- or decoders.

Compared to Hobbit, CCFI highlights the need to preserve performance characteristics
of programs, primarily by finding alternatives to protect secret keys that do not result in
prohibitive performance impacts.

Hardware-based approaches are inextricably bound to the hardware mechanism
and thus prone to sun-setting, as in the case of Intel’s MPX instructions, or lack of
compositionality, as in the case of MPK extensions.

Defenses based on cryptographic primitives often suffer from poor performance,
e.g., by effectively blocking vector registers, and the security-prerequisite of having
cryptographic primitives not spill data onto the stack.

4 Threat Model

COOP is a rather sophisticated attack and will, thus, often be a last resort for attackers. We
assume, consequently, that proper defenses against simpler attacks, such as code injection,
ROP [46, 42], and return-into-libc [21] are in place. Since Hobbit aims to prevent COOP
attacks, we assume a strong threat model in line with previous work [45, 20, 31, 12].

In general, launching a COOP attack requires an attacker to hijack an initial object,
including its virtual table pointers (vptrs) and data, and inject new counterfeit objects. To
that end, an attacker needs to read or infer addresses of Virtual Tables (vtables) and write
object-like data, including vptrs and other data, to specific memory regions. A variety of
vulnerabilities provide such capabilities, including buffer overflows [38] and use-after-free
vulnerabilities [51]. Although a restricted read- and write capability might suffice, we assume
an attacker capable of reading arbitrary readable memory and writing to arbitrary writable
memory.

Our system relies on WˆX, marking memory either as writable or executable, but not
both at the same time. Writing to code residing in executable memory or execute written
data is not possible. Therefore, injecting new code or modifying existing code is not possible.

The attacker’s arbitrary read capability renders defenses relying on secrets in readable
memory ineffective. For example, protecting against overflowing into control data, such as
return addresses or vptrs with (stack) canaries, is not effective. An attacker can easily read
these values and embed them in her payload, or – assuming an arbitrary write capability
– skip canaries at all. To mitigate this issue, we assume Execute-Only Memory (XOM),
therefore, we consider values or functions in XOM as secret.

Finally, we assume an attacker with specific knowledge about the target program and
system. First, he has access to the target program’s source code. Second, she is able to
infer the base address of the initial object, and the addresses of virtual function gadgets
(vfgadgets) located in C++ modules. Although COOP relies primarily on high-level C++

semantics, some vfgadgets rely on specific instructions or registers, e.g., vfgadgets for loading
argument registers to pass arguments to other vfgadgets. An attacker requires at least partial
knowledge of the binary layout to use some vfgadgets. Third, the attacker knows about the
system’s configuration, including deployed defenses, software versions, and hardware features.

M. Bernad and S. Brunthaler 7:7

vptr 0

heap.rodata.text

A a = new B()

a->m2()

(*a[0][1])(a,...)

B::new()
11

22

33 44

A::v1 2A::v1 2

A::v2 3A::v2 3

......

MAC tag 1

m2:
check MAC
m2 code
...

B::m4

B::m1

A::m2

A::m1 0

1

2

3

55

Figure 2 Hobbit changes to C++. 1 constructors allocate objects, set vptr and field values and
compute a MAC value, 2 . Method calls are resolved as before, see Figure 1, but all method prologs
now validate the MAC value, 5 .

5 Design Aspects of Hobbit

Hobbit is, broadly speaking, a defense that monitors and validates integrity. Whenever
this integrity is violated by an adversary, we know that the program is under attack. A
direct consequence of any integrity-protection mechanism also holds for Hobbit: we protect
neither the injection, nor the modification of objects; subsequent method calls trying to act
on maliciously-modified objects will detect integrity violations.

The integrity monitored by Hobbit is the object to vptr binding. One could just add
a random value into an object and repeatedly validate its value. Since our threat model
includes a powerful attacker with memory read capabilities, choosing a simple random value
is insecure. Instead, Hobbit considers objects, more specifically vptrs, between constructors
and methods as messages, and secures them by applying message-authentication codes.

The following sections provide an in-depth discussion of the relevant design aspects of
Hobbit. Section 5.1 discusses C++ relevant aspects of object lifetime and changing the object
layout to add the MAC tag. Sections 5.2 and 5.3 describe the benefits of using execute-only
memory, and MAC-algorithm diversification. Section 5.4 lists possible locations for verifying
signatures. Finally, we introduce the concept of gadget-directed optimization in Section 5.5.

5.1 C++ Object Lifetime and Layout

Objects in C++ live between construction and destruction, i.e., by constructors and destructors,
respectively. Constructors instantiate an object by initializing, or assigning concrete values
to its fields, which themselves are prescribed by their corresponding class definitions. Since a
vptr is merely a field itself, at least from a run-time perspective, the constructor assigns the
vptr of the called dynamic type. Destructors clean up object instances and, finally, free the
allocated memory.

Hobbit changes the C++ object layout by adding a machine-word per vptr that holds
the computed MAC tag (see Figure 2 1). Besides requiring an extra word per vptr, such a
change breaks the application binary interface (ABI), and we discuss the implications thereof
in Section 6.

ECOOP 2024

7:8 HOBBIT: Hashed OBject Based InTegrity

5.2 Message-Authentication Codes and Execute-Only Memory
In Hobbit, we consider vptrs as messages sent from constructors (see Figure 2 1) and
received by virtual methods (see Figure 2 5). The key security aspect of MAC functions
is the shared-secret key between senders and receivers. If an attacker retrieves this secret
key, she can craft valid signatures for malicious messages, thus violating the authenticity
property of sent messages. To prevent leakage of this shared-secret key, Hobbit piggybacks
on execute-only memory’s leakage-resilience property.

Execute-only memory means that the adversary is precluded from reading code memory.
As a result, we can hide privileged information directly in code memory. Hobbit hides two
privileged pieces of information there: (i) keys as intermediate constants, and (ii) MAC
algorithm implementations. Hiding implementations from adversaries forces them to guess,
thus further frustrating attacks.

MAC algorithm parameters, too, are important for security. Consider the following
parameterization to compute object-vptr tags:

t = MAC(vptr ⊕ r) (1)

Although we include a random parameter r to the MAC computation, our attacker can use
their memory-read primitive to read an object – including its vptr and the corresponding
tags – and, use it later on during an attack at a different location. Such a staged attack is
called a “replay” attack. To counter these replay attacks, we need to add the vptr location
to the computation:

t = MAC(vptr ⊕ &vptr ⊕ r) (2)

By making MAC tags location-dependent, the attacker cannot trivially replay the object
layout she read at a different location.

Prior defenses reserve registers to hold the key and exclude them from register alloca-
tion [31, 39]. Since the compiler then never allocates these registers, the key stored therein is
considered safe from attackers. Although simple, this solution suffers from two drawbacks.
First, reserving registers increases register pressure, which is particularly problematic on
architectures with few registers, such as x86. Second, whether a key stored in registers is
actually safe, depends on additional measures and precautions for context switches. Through
its use of execute-only memory, Hobbit bypasses these shortcomings.

5.3 Class-Hierarchy-Driven Seed Randomization
By using just a single random parameter r in our MAC tag computation, the adversary
can bypass Hobbit, once he identifies both the secret MAC algorithm and the value of r.
Hobbit counters this problem by using as many random parameters r as possible. In theory,
different random parameters r can be randomly assigned across an application. In practice,
however, we need to preserve C++ semantics across type-compatible call-sites. A conservative
way to ensure semantics preservation is to map a single random parameter r to a subgraph
in the class hierarchy graph (see Section 6.4). A more aggressive way would be to factor in
run-time information, e.g., through profiling.

Due to this additional security mechanism, we can also loosen the strength requirements
for our MAC algorithm. By choosing small, but efficient pseudo hash functions, such as
moremur-hash [32], Hobbit users favor performance over security, and vice versa. Since
MAC algorithm implementations are protected by execute-only memory (see Section 2.3),
the perceptible loss of security is minimal.

Hobbit supports a wide variety of MAC hashing algorithms, such as blake3,
highwayhash, xxhashct, moremur, and moremur-random.

M. Bernad and S. Brunthaler 7:9

5.4 Validating MAC Tags

Hobbit recomputes and validates tags stored in objects in function prologs of virtual
functions (see Figure 2, 5). Although an attacker can inject malicious objects, Hobbit
will detect tampering with a tag after resolving the dynamic type, but before executing
the actual method body. Alternatively, Hobbit can also validate tags already at virtual
call sites, but this implies embedding MAC hash computation into every call site, thus
increasing the amount of machine instructions for each call site. Depending on the chosen
MAC function implementation (e.g., inlined), these additional machine instructions might
result in a considerable binary size increase.

In C++, most compilers use vptrs for other run-time related features besides dynamic
dispatch. The use of run-time type information (RTTI), for example, requires loading the
rtti pointer from the vtable. Similarly, dynamic casts use information stored in vtables,
such as offsets to access/identify sub-objects for multiple inheritance. Although Hobbit
could validate tags in these cases, too, we choose to focus protection on dynamic dispatch,
which is the key objective for COOP attacks.

5.5 Gadget-Directed Optimization

For performance-critical systems, such as real-time applications, Hobbit can relax security
and optimize for speed. Since COOP relies on special gadgets for dispatching other gadgets,
we can embed integrity checks only in methods acting as such gadgets. To prevent attackers
from executing Main Loop Virtual Function Gadgets (ML-Gs), Hobbit can perform static
analysis on source code to identify methods iterating over a collection of objects and calling
virtual functions on them (see Section 6.5.)

Hobbit could also analyze binaries to identify gadgets relying on binary instructions.
Muntean et al., for example, created a tool for identifying gadgets and automating a COOP
attack [34]. In general, identifying all gadgets is difficult and since variants of COOP exist,
the resulting defense may not be complete [20, 16].

6 Hobbit Implementation

We implemented our prototype of Hobbit as compile-time transformations on top of
LLVM/Clang 17.0.3 [17] for the x86_64 Linux platform and Itanium ABI [25]. Most
researchers implement their prototypes as passes in LLVM that operate on and modify the
LLVM specific intermediate representation, short LLVM IR. However, we implemented most
parts of Hobbit in Clang, since compilation is a lossy transformation and high-level C++

information, e.g., virtual methods and their callsites, are not – at least without complex
analysis – available in LLVM IR.

First, Hobbit extends the object layout to reserve space for the newly introduced MAC
tag fields. After reserving space for MAC tags, we add instructions for computing and
storing MAC tags in objects to constructors. For the final part of the vptr validation, we
implement MAC tag checks in virtual methods. In Section 6.3 we describe our different
MAC function implementations, Section 6.4 shows Hobbit’s diversification implementation,
and Section 6.5 demonstrates a prototype of our Gadget-directed Optimization. Section 6.6
lists the limitations of our prototype implementation of Hobbit.

ECOOP 2024

7:10 HOBBIT: Hashed OBject Based InTegrity

6.1 Extending Object Layouts
Extending the object layout requires us to change the size of objects in a special data structure
called RecordLayouts. Clang uses the type CXXRecordDecl to represent C++ structs, unions,
and classes. RecordLayouts store information about fields, their offsets, paddings, and
lengths, (virtual) bases, and other layout-related information. Since Hobbit introduces a
new MAC tag field, we have to increase the size of the layout accordingly. On x64 systems,
pointers are eight byte long. Therefore, we add eight bytes to the (data-) layout size for
dynamic CXXRecordDecls that do not inherit vptr (and consequently the MAC tag field) from
a parent class in AST/RecordLayoutBuilder (ItaniumRecordLayoutBuilder::LayoutNon
VirtualBases). Later, during the lowering of records, we add the field information for our
MAC tag field, right after the vptr (see Listing 2).

1 void CGRecordLowering::accumulateVPtrs() {
2 if (Layout.hasOwnVFPtr()) {
3 auto vfptr = ...;
4 Members.push_back(vfptr);
5 auto HobbitMACField = MemberInfo(getSize(vfptr.Data),
6 MemberInfo::Field,
7 getIntNType(64));
8 Members.push_back(HobbitMACField);
9 }

10 ...
11 }

Listing 2 Add MAC tag field while lowering records.

Extending the object layout breaks the C++ ABI compatibility. By recompiling the entire
toolchain, including a standard C++ library, we still can compile and run programs with
our C++ ABI modifications. We encountered one error in the libunwind library regarding
macro definitions for the size of libunwind::UnwindCursor. libunwind::UnwindCursor is
a dynamic class, therefore, consists of a vptr and with Hobbit also a MAC tag field. To fix
this error we have to account for the new tag field and thus add one to all macro definitions
defining the constant _LIBUNWIND_CURSOR_SIZE in __libunwind_config.h. With this
simple fix, Hobbit can compile even the largest C++ programs.

6.2 Computing and Validating MAC Tags
C++ programs adhering to the C++ standard create objects solely by calling constructors.

Therefore, we decided to implement the MAC tag computation and storing of the results
in constructors. Constructors already perform the vptr initialization in a function called
CodeGenFunction::InitializeVTablePointer. Likewise, Hobbit initializes the MAC tags
right after vptr initialization. Listing 3 shows the resulting assembly code of a constructor
compiled with Hobbit. A standard clang compiler emits the three assembly instructions
(lines 3–5) initializing the vptr of an object of a class B. Since _ZTV1B points to the beginning
of the vtable – the first two entries in the vtable are the offset-to-top and the RTTI pointer
– the compiler adds 16 bytes to the vtable such that the vptr points to the first virtual
function and finally saves the vptr in the designated field at the beginning of the given object.
The remaining instructions (lines 7–12) are emitted by Hobbit and responsible for loading

M. Bernad and S. Brunthaler 7:11

1 _ZN1BC2Ev:
2 ...
3 leaq _ZTV1B(%rip), %rcx # load address of vtable
4 addq $16, %rcx # add 2 qwords for 1st virt. function = vptr
5 movq %rcx, (%rax) # store vptr at beginning of object
6 # HOBBIT START #
7 movq (%rax), %rdx # load vptr into rdx register
8 movq %rax, %rcx # load this into rdx register
9 xorq %rdx, %rcx # vptr xor this

10 movabsq $random, %rdx # load secret value r to rdx
11 xorq %rdx, %rcx # xor secret value r = mac tag
12 movq %rcx, 8(%rax) # save mac tag to designated field
13 # Possible inlined hashing or call to compiler-rt hash function
14 # HOBBIT END #
15 ...

Listing 3 x86_64 assembly for an exemplary constructor of a dynamic class B emitted by
Hobbit.

1 _ZN1A2m2Ev:
2 # start function prolog:
3 # save callee-saved registers
4 # set up stack for local variables
5 # ...
6 # HOBBIT START #
7 movq (%rcx), %rdx # load vptr to rdx
8 movq %rcx, %rax # load this ptr to rax
9 xorq %rdx, %rax # vptr xor this

10 movabsq $random, %rdx # load secret value r to rdx
11 xorq %rdx, %rax # xor secret value r = mac tag'
12 movq 8(%rcx), %rcx # load saved mac tag
13 cmpq %rcx, %rax # check if tag' = tag
14 jne .LBB4_2 # on mismatch jump to trap
15 ... # actual function # actual function body
16 .LBB4_2: # %MACMismatchBlock # block with trap for mac tag mismatch
17 movl $147, %edi # store result code 147 to edi
18 callq exit@PLT # exit(147) on mac tag mismatch
19 # HOBBIT END #

Listing 4 x86_64 assembly for an exemplary virtual method of a dynamic class B emitted by
Hobbit.

both vptr and this in registers, followed by the xor instruction. The movabsq instruction
loads an immediate – the random secret r – to a register and xor it to the previous result.
Finally, the xor result is written to the MAC tag field, 8 bytes after the vptr.

Hobbit inserts MAC tag validation checks in virtual functions (see Listing 4). These
validation checks protect against attackers calling virtual functions on objects with fake
or altered vptrs, therefore mitigating COOP attacks. If Hobbit should protect dynamic

ECOOP 2024

7:12 HOBBIT: Hashed OBject Based InTegrity

Table 1 Details of implemented MAC functions used for benchmarking.

Name MAC Function Implementation

baseline – –
no-hash none; only xor(vptr, &vptr, random_secret) –
blake3 C implementation of BLAKE3 static lib
highwayhash highwayhash shared lib
xxhashct compile-time implementation of xxhash static lib
moremur pseudo hash function based on moremur inlined
moremur-random diversified version (random parameter) of moremur inlined

casts or RTTI access, we could insert MAC validation checks at those locations as well. To
prevent the execution from virtual function bodies Hobbit inserts the following instructions
in CodeGenFunction::StartFunction:
1. We retrieve all vptrs for the current object.
2. For each vptr, we compute the MAC tag again.
3. For each vptr, we load the stored MAC tag value.
4. Then, we compare the computed and loaded MAC tag values.
5. If these tags match, we start executing the function body.
6. Otherwise, we detect an ongoing COOP attack and can launch counter-measures. In our

prototype implementation, we simply exit the program with status 147.
Listings 3 and 4 show the resulting assembly code for both constructors and virtual methods
of a class with 1 vptr without any hashing (no-hash).

6.3 MAC Function Implementations
We implemented different MAC functions in Hobbit and extended the baseline, an unmod-
ified Clang/LLVM 17.0.3. Table 1 shows the different hash implementations for the MAC
function. The simplest approach is no-hash (as shown in Listings 3 and 4) that uses the
identity function as MAC in Equation (2). Therefore, tag t is the unhashed result of the xor
operations.

In contrast, moremur [32] implements a pseudo-hash function as MAC. These pseudo hash
functions should be small, such that Hobbit inlines these hash functions in both constructors
and virtual functions. With XOM, immediate values used in such hash functions are resistant
to leakage and can thus be considered secret. Section 6.4 describe moremur-random, a
diversified implementation variant of moremur.

1 ... # preceding instructions from Listing 3
2 movabsq $random, %rax # load random value to rax
3 xorq %rax, %rdi # xor random value = mac tag
4 callq coop_hash@PLT # call to compiler-rt hash function
5 movq %rax, %rcx # store result of coop_hash to rcx
6 movq -16(%rbp), %rax # reload this pointer
7 movq %rcx, 8(%rax) # save mac tag to designated field
8 ...

Listing 5 Constructor calling a hash function in rt-lib.

M. Bernad and S. Brunthaler 7:13

We implemented the remaining MAC functions, all including larger and more complex
hash functions, as compiler run-time libraries, short compiler-rt. LLVM provides and links
these libraries for run-time support in compiled binaries. We implemented different versions
of such a compiler-rt for the remaining MAC variants blake3 [9], highwayhash [3], and
xxhashct [55]. Hobbit links the compiler-rt libraries for blake3 and xxhashct statically
to the program under compilation. Highwayhash, in contrast, is dynamically linked as a
shared library.

With run-time hashing support enabled, Hobbit simply inserts a call to the hash function
located in the run-time library, according to Equation (2). Listing 5 shows the resulting
instructions. After the initial xor instructions, the result is passed as an argument to the
coop_hash function. The function coop_hash computes a hash according to the chosen hash
function (Table 1), namely blake3, highwayhash, or xxhashct. Finally, after loading the
this pointer again, the returned result is stored in the designed MAC tag field.

6.4 Class-Hierarchy-Driven Seed Randomization
In its current implementation, the random parameter r of Equation (2) is fixed over the
whole program. We implemented a naive diversification approach diversifying this random
parameter. Ideally, we would choose a different parameter for each class, however, due to the
polymorphic nature of C++, the diversification degree is limited. We create MAC tags in
constructors and validate them in virtual functions, therefore, both MAC functions must
use the same random parameter. With subtyping, methods must be callable for different
classes, according to the inheritance graph. Therefore, our diversified implementation chooses
a random parameter for each weakly connected subcomponent of the inheritance graph.
The inheritance graph is, in fact, a directed acyclic graph1, since C++ has the concept of
multi-inheritance, hence the famous diamond problem.

We implemented moremur-random in the following steps:
1. In an initial compilation step, Hobbit outputs all classnames with the corresponding

(virtual-) bases.
2. We implemented a Python script that constructs the inheritance DAG.
3. Our script assigns each weak component2 a different random parameter r.
4. Hobbit then use this class assignment to diversify the MAC tag computation.

By enabling link-time optimization, we could implement the inheritance graph anal-
ysis and the diversification assignment in Clang/LLVM.

6.5 Gadget-Directed Optimization
We implemented a simple gadget-directed optimization that identifies simple main-loop
gadgets. With this optimization enabled, Hobbit performs a static analysis to identify
potential main-loop gadgets. Our naive analysis checks whether a virtual method belongs to
a class declaring any fields of C++ standard container type [13], either directly or indirectly,
by inheriting from classes with such fields. This prototype gadget-directed optimization
only identifies simple main-loop gadgets, but fails to identify other forms of dispatcher
gadgets, serving as a main-loop gadget [45, 20]. Other dispatcher gadgets include recursive
gadgets, unrolled COOP, or iterators over linked lists. Hobbit could use COOP exploit
automation frameworks, such as iTOP, to identify additional gadgets and feed them into our
gadget-directed optimization [34].

1 Not a tree, as one would expect.
2 All connected subgraphs, also called components, ignoring the direction of edges.

ECOOP 2024

7:14 HOBBIT: Hashed OBject Based InTegrity

Table 2 Benchmark system configuration.

EPYC 7H12 i7-8559U Ryzen 9 5900X

Processor AMD EPYC 7H12 Intel 8559U AMD Ryzen 9 5900X
RAM 1 TB DDR4 64 GB DDR4 64 GB DDR4
OS Debian 12 Debian 12 Ubuntu 22.04.4 LTS
Kernel 6.1.0-16-amd64 6.1.0-16-amd64 6.5.0-27-generic
gcc 12.2.0 12.2.0 11.4.0
glibc 2.36 2.36 2.35
linker gold (2.38) gold (2.38) GNU ld (2.38)

6.6 Limitations
Hobbit does not protect RTTI objects. RTTI objects are dynamic types, but not created by
calling constructors at run-time. Instead, Clang initializes RTTI objects during compilation,
therefore, Hobbit does not compute and store MAC tags for such objects. At load-time,
vtables and RTTI objects alike are loaded into .rodata. However, protecting RTTI objects
is still possible but requires extra effort. We could, for example, create initialization code
similar to our MAC tag initialization in constructors and call this RTTI object initializer
when the address of both vtables and RTTI objects is known, at load-time. Since Hobbit
does not create MAC tags for RTTI objects, we do not emit integrity checks in virtual
functions belonging to RTTI classes.

7 Evaluation

We present the evaluation of our prototype implementation of Hobbit. In Section 7.1,
we describe the machines used for our evaluation. Sections 7.2–7.4 show the performance
evaluation, including measurements of run-time, memory-usage, and code-size. We evaluate
our implemented prototype of gadget-directed optimization in Section 7.5. In Section 7.6,
we evaluate the scalability of Hobbit by compiling real-world applications with Hobbit.
Finally, Section 7.7 shows the evaluation of the class-hierarchy-driven seed randomization.

7.1 System Configuration
We perform our evaluation of Hobbit on three different machines listed in Table 2.

We used machines EPYC 7H12 and i7-8559U for the performance evaluation in Section 7.2
and the gadget-directed optimization evaluation in Section 7.5. The scalability evaluation in
Section 7.6 and the evaluation of the diversification statistics in Section 7.7 were done on
Ryzen 9 5900X.

Our prototype of Hobbit is based on the LLVM/Clang version 17.0.3 (see Section 6),
which we call baseline in the following evaluation. Since Hobbit breaks the C++ ABI, we
have to build and use a custom-built version of the LLVM C++ standard library libc++ [29]
(same as LLVM/Clang: 17.0.3). To improve comparability – although not strictly necessary –
we build and use a custom-built libc++ for the baseline as well.

7.2 Performance
As common in performance evaluations, we evaluate the performance of Hobbit by building
the SPEC CPU 2017 benchmark with our compiler modifications. In particular, since Hobbit
only applies changes to C++ programs, we run the four C++ benchmarks of the SPECspeed™

M. Bernad and S. Brunthaler 7:15

620.omnetpp

623.xalancbmk

631.deepsjeng
641.leela geomean

100

101

102

R u
n-

tim
e

ov
er

he
ad

(%
)

no-hash
blake3
highwayhash
xxhashct
moremur
moremur-rnd

(a) EPYC 7H12.

620.omnetpp

623.xalancbmk

631.deepsjeng
641.leela geomean

10−1

100

101

102

R u
n-

tim
e

ov
er

he
ad

(%
)

no-hash
blake3
highwayhash
xxhashct
moremur
moremur-rnd

(b) i7-8559U.

Figure 3 Run-time overhead introduced by Hobbit for C++ benchmarks of the SPECspeed™
2017 Integer test suite, relative to baseline on log-scale.

2017 Integer test suite, namely 620.omnetpp, 623.xalancbmk, 631.deepsjeng, and 641.leela.
The remaining non-C++ benchmarks showed – as expected – no measurable overhead. As
mentioned in Section 7.1, we use the custom-built libc++ instead of the bundled version of
the Linux distribution. Each experiment compiles all relevant benchmarks and runs the
compiled benchmark afterwards. We repeated each experiment 10× on EPYC 7H12 and 6×
on i7-8559U and calculated the geometric mean over those repetitions.

Run-time, a key metric within SPEC, quantifies the time in seconds required for a
benchmark to execute. Figure 3 shows the results for all evaluated MAC functions (see
Table 1).

For the i7-8559U machine, the geometric mean overhead over all benchmarks, are
107.62% (blake3), 40.40% (highwayhash), 12.21% (xxhashct), 2.83% (moremur), and 2.80%
(moremur-random). In comparison, on EPYC 7H12, the benchmarks show a higher per-
formance impact over all benchmarks, namely 121.63% (blake3), 47.81% (highwayhash),
16.02% (xxhashct), 4.49% (moremur), and 4.54% (moremur-random). Both, 620.omnetpp
and 623.xalancbmk, show the most performance impact on both machines. On i7-8559U,
620.omnetpp shows the highest run-time increase consistently for all benchmarked MAC
functions. In contrast, on EPYC 7H12, we see a significantly higher run-time overhead
on 623.xalancbmk for blake3 and highwayhash compared to 620.omnetpp. The remaining
hash functions (xxhashct, moremur, and moremur-random) on EPYC 7H12 show the same
trend as on i7-8559U, namely, a higher performance overhead for 620.omnetpp rather than
623.xalancbmk.

We also evaluated a stripped down version that does not compute MAC tags to measure
the minimum overhead (no-hash in Figure 3). On i7-8559U no-hash introduces a geometric
mean overhead of 0.55%, with a maximum performance impact of 4.00% (620.omnetpp). In
contrast to “correct” hash functions, the implementation of no-hash is 7.27% faster on EPYC
7H12 (overall 0.51%; 620.omnetpp 2.66%) when compared to i7-8559U.

7.3 Memory
Since Hobbit extends object layouts, therefore, increases the size of objects, we are interested
in the maximum resident set size (RSS). RSS is a metric indicating the memory usage
of a process in RAM. Swapped memory does not count to RSS. By querying the rusage
counters [43], our benchmarking environment measures the maximum RSS maxrss.

ECOOP 2024

7:16 HOBBIT: Hashed OBject Based InTegrity

620.omnetpp

623.xalancbmk

631.deepsjeng
641.leela geomean

0

1

2

3

4

Re
sid

en
tS

et
Si

ze
in

cr
ea

se
(%

)
no-hash
blake3
highwayhash
xxhashct
moremur
moremur-rnd

(a) Run-time memory increase.

620.omnetpp

623.xalancbmk

631.deepsjeng
641.leela geomean

0

10

20

30

40

50

60

Bi
na

ry
siz

e
in

cr
ea

se
(%

)

no-hash
blake3
highwayhash
xxhashct
moremur
moremur-rnd

(b) Binary code size increase.

Figure 4 Memory effects of Hobbit for C++ benchmarks of the SPECspeed™ 2017 Integer suite,
relative to baseline (EPYC 7H12).

Table 3 Binary sizes of benchmarks and run-time libraries for both machines EPYC 7H12 and
i7-8559U.

(a) Binary sizes of baseline benchmarks.

Name Size in Bytes

620.omnetpp 2,915,320
623.xalancbmk 7,362,408
631.deepsjeng 118,120
641.leela 254,936

(b) Binary sizes of hashing run-time libraries.

Name Size in Bytes

blake3 90,618
highwayhash 15,816
xxhashct 1,874

Figure 4 shows the benchmarking results for machines EPYC 7H12 and i7-8559U. On
both machines, our benchmarks show an overall geometric maxrss overhead of 2.2% and
2.18%, respectively. We see the highest maxrss overhead for 623.xalancbmk (EPYC 7H12
4.64%, i7-8559U 4.65%). 620.omnetpp has a similar maxrss overhead (EPYC 7H12 3.99%,
i7-8559U 3.88%), whereas Hobbit has a low maxrss impact on 641.leela (EPYC 7H12 0.41%,
i7-8559U 0.32%). For 631.deepsjeng, our defense does not increase the maxrss on neither
machine at all.

7.4 Code Size

Hobbit inserts instructions for creating and validating MAC tags and, for some MAC
functions, links run-time libraries and creates function calls to these libraries. These additional
instructions (and libraries) increase the binary size of compiled programs. To that end, we
evaluate the binary size of each benchmark. Table 3 shows the binary sizes of the baseline
benchmarks (see Table 3a) and the run-time hashing libraries (see Table 3b).

The binary size increase on both machines is identical and shown in Figure 4b. Hobbit,
in its blake3 variant, introduces the highest geometric mean increase in binary size of 26.90%
over all benchmarks, ranging from 10.50% for 623.xalancbmk up to 61.87% for 631.deepsjeng.
Blake3 is a big hashing library (see Table 3b). Since Hobbit links blake3 statically to the
compiled program, the big library size, compared to small benchmarks as in 631.deepsjeng
and 641.leela, contributes to the significant increase in the resulting hardened binary. On
the other hand, for highwayhash, nearly 8.5× bigger than xxhashct, accounts for roughly

M. Bernad and S. Brunthaler 7:17

620.omnetpp

623.xalancbmk

631.deepsjeng
641.leela geomean

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ru
n-

tim
e

ov
er

he
ad

(%
)

blake3-mlg
highwayhash-mlg
xxhashct-mlg
moremur-rnd-mlg

(a) EPYC 7H12.

620.omnetpp

623.xalancbmk

631.deepsjeng
641.leela geomean

−2

−1

0

1

2

3

4

Ru
n-

tim
e

ov
er

he
ad

(%
)

blake3-mlg
highwayhash-mlg
xxhashct-mlg
moremur-rnd-mlg

(b) i7-8559U.

Figure 5 Reduction of performance impact through gadget-directed optimization.

the same binary size increase as xxhashct. The reason for this similar increase in binary
size – despite a different library size itself – results from a different linkage. Highwayhash is
dynamically linked, whereas blake3 and xxhashct are statically linked, therefore, embedded
in the binary. Hobbit variants that inline MAC functions in constructors and virtual
functions, namely mormeur and moremur-random, introduce the highest increase in binary
size for 620.omnetpp (13.54%) and 623.xalancbmk (13.36%).

7.5 Gadget-Directed Optimization
We evaluated our naive implementation for the main-loop gadget analysis optimization
(see Section 6.5), that only creates and validates MAC tags for classes having a standard C++

container field.
Although our gadget-directed optimization finds no main-loop gadgets for benchmarks

623.xalancbmk, 631.deepsjeng, and 641.leela, it finds 12 instances of classes having – directly
or indirectly – at least one container-type field. Hobbit inserts MAC tag integrity validation
logic in 137 methods of these 12 classes.

Figure 5 shows the run-time overhead introduced by Hobbit with gadget-directed
optimization enabled.

7.6 Scalability
To evaluate the scalability of Hobbit, we compiled WebKit, a web browser engine consisting
of millions of lines of C and C++ code (see Table 5). Specifically, we built the GTK version
of Webkit, WebKitGTK [53], a full-featured port of WebKit for GTK-based Linux desktop
systems. Although Hobbit breaks the C++ ABI through its object-layout extension, we
only needed a single change to successfully compile WebKit, shown in Listing 6. Since
ScrollableArea is a dynamic class, Hobbit inserts a field for the MAC tag, thus we have
to add 8 to this static_assert to account for the increased object size.

After the compilation, we evaluated the run-time overhead introduced by our defenses
with the following browser benchmarks: (i) Kraken, (ii) MotionMark, (iii) Octane, and (iv)
Speedometer.

As this evaluation requires a GUI, we performed the experiments on Ryzen 9 5900X.
With only a terminal window opened, we started the MiniBrowser, a minimal browser based
on WebKitGTK. After each benchmark execution, we closed the MiniBrowser, waited for ten

ECOOP 2024

7:18 HOBBIT: Hashed OBject Based InTegrity

1 #if CPU(ADDRESS64)
2 -static_assert(sizeof(ScrollableArea) == sizeof(
3 SameSizeAsScrollableArea),
4 "ScrollableArea should stay small");
5 +static_assert(sizeof(ScrollableArea) == sizeof(
6 SameSizeAsScrollableArea) + 8,
7 "ScrollableArea should stay small");
8 #endif

Listing 6 Fix required to compile WebKitGTK.

Table 4 Performance impact on browser benchmarks.

Benchmark blake3 highwayhash xxhashct moremur-random

Kraken 1.1 [27] 2.72% 0.70% 0.77% −2.05%
MotionMark 1.3 [33] 14.64% 1.67% 1.87% 3.03%
Octane 2.0 [36] 53.54% 17.32% 2.83% 1.34%
Speedometer 2.1 [50] 161.74% 43.24% 7.85% 2.54%

seconds and repeated the experiment. In total, we executed each benchmark three times.
Table 4 shows the geometric mean performance impact of our evaluation. Kraken measures
the time needed to finish the benchmark, therefore, an induced overhead means an increase in
run-time. In contrast, the other benchmarks measure score points, meaning that an induced
overhead decreases the achieved score.

These real-world benchmark results confirm the results obtained from compute-intensive
programs. Hobbit allows balancing security and performance, and we did not notice
perceptible delays in daily browsing activities.

To further show that Hobbit scales to other real-world programs, we successfully compiled
the following programs listed in Table 5. We included the version of the compiled programs
as well as their C++ source lines of code (SLOC). The selected programs range from small
web frameworks to fully fledged web browsers and compiler. For measuring SLOCs we used
the tool sloccount [48].

Table 5 Source lines of code (SLOC) of real-world programs compiled with Hobbit.

Program Description Version SLOC (C++)

crow C++ Web framework 1.2.0 25,203
json JSON library for C++ 3.11.3 102,977
llvm Collection of compiler tools 17.0.6 2,201,374
webkitgtk GTK port of WebKit 2.41.1 4,444,590
620.omnetpp SPECspeed®2017 Integer suite SPEC CPU 2017 63,100
623.xalancbmk SPECspeed®2017 Integer suite SPEC CPU 2017 243,046
631.deepsjeng SPECspeed®2017 Integer suite SPEC CPU 2017 7,284
641.leela SPECspeed®2017 Integer suite SPEC CPU 2017 30,473

M. Bernad and S. Brunthaler 7:19

Table 6 Top-5 and overall weakly connected component set size for libc++, C++ benchmarks of
SPECspeed™ 2017 Integer, and WebKitGTK.

Top 5 libc++ omnetpp xalanc deepsjeng leela WebKitGTK

1. 78 193 442 78 78 3,916
2. 45 78 93 45 45 1,962
3. 27 52 78 27 27 1,541
4. 13 45 62 13 14 1,066
5. 12 34 49 12 13 427

Overall 197 379 539 197 252 30,438

7.7 Class-Hierarchy-Driven Seed Randomization

We evaluated the number of diversified random parameters for our implementation from
Section 6.4. Table 6 shows the Top-5 weakly connected components, that constitute the
diversification unit. Each of these units is a set of classes for whom we must choose the same
random parameter. All C++ benchmarks of SPECspeed™ 2017 Integer and WebKitGTK
depend on libc++ and, thus, include and extends libc++’s inheritance graph. 631.deepsjeng
does not introduce any new dynamic classes to the inheritance graph, whereas WebKitGTK
adds 30, 241 new weakly connected components.

8 Discussion

We discuss and interpret the relevant findings of our evaluation.

8.1 Performance

Our performance evaluation shows that the performance impact depends primarily on the
choice of the MAC algorithm. Although blake3 offers the highest security, its performance
impact, too, is the highest. To improve performance, Hobbit offers two complementary
options. First, users can opt to use simpler MAC algorithms, such as moremur, which is more
performance friendly. Second, users can apply our gadget-directed optimization to reduce
performance impact of even the most expensive MAC algorithms.

Since we did not find any impact on large, real-world software, such as the WebKit
browser, we argue that Hobbit can be used in a wide variety of contexts.

8.2 Security

We compiled the CFIXX-Suite [14] with our Hobbit compiler. This exploit coverage test
suite, created by Burow et al., demonstrates several scenarios for attacks on the dynamic
dispatch mechanism [12]. Our security evaluation of Hobbit is shown in Table 7. Hobbit, in
its initial version, only protects against scenarios 3–5 (namely VTxchg, VTxchg-hier, COOP),
but fails to detect scenarios 1–2 (namely FakeVT, FakeVT-sig).

The initial Hobbit implementation prevents malicious execution of virtual function
bodies by validating the integrity of vptrs in the function prologue. Since scenarios 1–2
insert fake vtables that contain pointers to non-virtual functions, therefore unprotected by
our defense, our prototype implementation does not prevent this form of attacks.

ECOOP 2024

7:20 HOBBIT: Hashed OBject Based InTegrity

Table 7 Results of testing different vtable related attack building blocks against LLVM, LLVM
CFI, and different configurations of HOBBIT.

Exploit LLVM LLVM-CFI Hobbit Hobbit+LLVM-CFI Hobbit-VFCS

FakeVT ✗ ✓ ✗ ✓ ✓

FakeVT-sig ✗ ✓ ✗ ✓ ✓

VTxchg ✗ ✓ ✓ ✓ ✓

VTxchg-hier ✗ ✗ ✓ ✓ ✓

COOP ✗ ✗ ✓ ✓ ✓

However, Hobbit is compatible and composable with other defenses such as LLVM
CFI [30]. We compiled the exploit coverage test suite with Hobbit again, this time with
vcall sanitizer enabled. To enable LLVM CFI, we provided the following compiler flags:

-fsanitize=cfi-vcall -flto -fuse-ld=lld -fvisibility=hidden

LLVM CFI succeeds in defending against fake vtable attacks and limits successful virtual
calls to valid subtypes of the dispatched object’s static type. Still, LLVM CFI fails to prevent
an attacker from maliciously changing vptrs adhering to the type hierarchy or inserting fake
objects without calling the appropriate constructor – the core principle of COOP. Combining
Hobbit with LLVM CFI protects against all five exploit types evaluated in the exploit
coverage test suite.

To account for situations where CFI cannot be used, we implemented an extension of
Hobbit, namely Hobbit-VFCS. This Hobbit extension moves validation code from the
function prologue of virtual functions to their call sites. Hobbit-VFCS validates vptrs after
loading the vptr (Figure 2 3), but before invoking the method call (Figure 2 4). Emitting
validation checks at each call site increases the binary size, but mitigates all five exploits. In
future work, we can apply the same principle – checking the validity of vptrs immediately
after loading – to protect other vtable related mechanisms, such as dynamic casts, too.

8.2.1 Balancing Performance and Security

Hobbit has, essentially, two orthogonal compile-time parameters: (i) hash function algorithm
selection, and (ii) validation code granularity. By selecting a strong hash function, such as
blake3, the overall security improves at the cost of performance. Conversely, selecting a
more efficient hash function, such as moremur, decreases security and increases performance.

To offset the performance penalties, Hobbit offers users to parameterize the granularity
of validation code insertion. Either all virtual functions or only COOP-relevant call sites are
protected. By protecting all call sites, Hobbit achieves the highest security at the potentially
highest performance impact (i.e., by selecting an “expensive” hash function). Conversely,
by selecting only the COOP-relevant call sites, Hobbit reduces performance impact to a
negligible level.

Although four different levels can be specified, we recommend the following settings in
practice. A strong hash function, such as blake3, should be combined with COOP-relevant
gadget granularity. A weak hash function, such as moremur, can be used to protect all virtual
functions.

M. Bernad and S. Brunthaler 7:21

8.2.2 Uniformly Distributed Vtables
A method to perform cryptanalysis is to correlate input with output characteristics. Known-
plaintext attacks are a form where the attacker knows the plaintext and infers a model from
the outputs. In our model both inputs and outputs are either known or can be read directly
through a memory-read primitive. The MAC algorithm used is hidden away effectively
through execute-only memory. Yet, some of the input characteristics may allow attackers to
launch a known-plaintext attack.

Consider, for example, that the attacker knows the addresses of vtables v1, v2, and v3.
Let’s assume that although the addresses of these vtables vi are different, their distances
may remain constant. An adversary could, therefore, rely on such constant inter-table
differences to infer properties about the concrete hash MAC algorithm used by Hobbit.

Although our present implementation does not address this issue, we can achieve uniform
distribution of inter-table differences by way of randomizing the order of emitting vtables.
If this randomization proves to be insufficient, padding entries can be added in between
emitted vtables to increase the entropy of vtable addresses.

9 Conclusions

Hobbit presents an integrity-protection mechanism to thwart counterfeit-object-oriented
programming attacks. At its core, this attack shares a symmetry to classical buffer overflows,
in the sense that the underlying problem is the mixing of control with non-control data. For
buffer overflows, this mix consists of keeping return addresses among stack frame data. For
COOP attacks, this mix consists of keeping the vptr among object field data. By injecting
malicious objects, the adversary can thus hijack control-flow and initiate illegitimate method
calls.

To stop this type of whole-function code-reuse attack, Hobbit changes the object layout
to embed a tag value. This tag is computed by MAC functions that encode vptr information,
vptr location, and a random secret. By leveraging execute-only memory, Hobbit provides
additional security. Due to complementary optimizations, users gain the ability to balance
performance and security.

A comprehensive analysis provides evidence of both (i) configurable performance impact
between 121.63% and 2.80% and (ii) scalability to multi-million lines of C and C++ code.
At the same time, Hobbit does not depend on MPX and does not inhibit performance by
reserving registers. Without any hardware requirements, Hobbit is applicable to embedded-
and IOT devices.

References

1 Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity. In
Vijay Atluri, Catherine Meadows, and Ari Juels, editors, Proceedings of the 12th ACM
Conference on Computer and Communications Security, CCS 2005, Alexandria, VA, USA,
November 7-11, 2005, pages 340–353, New York, New York, USA, April 2005. ACM. doi:
10.1145/1102120.1102165.

2 Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf. Syst. Secur., 13(1):4:1–4:40, November
2009. doi:10.1145/1609956.1609960.

3 Jyrki Alakuijala, Bill Cox, and Jan Wassenberg. Fast keyed hash/pseudo-random function
using SIMD multiply and permute. CoRR, abs/1612.06257, December 2016. doi:10.48550/
arXiv.1612.06257.

ECOOP 2024

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.48550/arXiv.1612.06257
https://doi.org/10.48550/arXiv.1612.06257

7:22 HOBBIT: Hashed OBject Based InTegrity

4 Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürnberger,
and Jannik Pewny. You can run but you can’t read: Preventing disclosure exploits in
executable code. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, pages 1342–1353, New York, New York, USA, 2014. ACM.
doi:10.1145/2660267.2660378.

5 Markus Bauer and Christian Rossow. Novt: Eliminating C++ virtual calls to mitigate
vtable hijacking. In IEEE European Symposium on Security and Privacy, EuroS&P 2021,
Vienna, Austria, September 6-10, 2021, pages 650–666. IEEE, September 2021. doi:10.1109/
EuroSP51992.2021.00049.

6 Felix Berlakovich and Stefan Brunthaler. R2C: aocr-resilient diversity with reactive and
reflective camouflage. In Giuseppe Antonio Di Luna, Leonardo Querzoni, Alexandra Fedorova,
and Dushyanth Narayanan, editors, Proceedings of the Eighteenth European Conference on
Computer Systems, EuroSys 2023, Rome, Italy, May 8-12, 2023, pages 488–504, New York,
NY, USA, May 2023. ACM. doi:10.1145/3552326.3587439.

7 Matthias Bernad. HOBBIT implementation. Software (visited on 2024-08-29). URL: https:
//github.com/mbernad/hobbit-artifact.

8 Matthias Bernad and Stefan Brunthaler. HOBBIT. Software (visited on 2024-08-29). URL:
https://doi.org/10.5281/zenodo.11046716.

9 BLAKE3/c at master · BLAKE3-team/BLAKE3. URL: https://github.com/BLAKE3-team/
BLAKE3/tree/master/c.

10 Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai Liang. Jump-oriented
programming: a new class of code-reuse attack. In Bruce S. N. Cheung, Lucas Chi Kwong
Hui, Ravi S. Sandhu, and Duncan S. Wong, editors, Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, ASIACCS 2011, Hong Kong, China,
March 22-24, 2011, pages 30–40, New York, New York, USA, 2011. ACM. doi:10.1145/
1966913.1966919.

11 Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler, and
Mathias Payer. Control-flow integrity: Precision, security, and performance. ACM Comput.
Surv., 50(1):16:1–16:33, April 2017. doi:10.1145/3054924.

12 Nathan Burow, Derrick Paul McKee, Scott A. Carr, and Mathias Payer. CFIXX: object type
integrity for C++. In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018, Reston, VA, February 2018.
The Internet Society. doi:10.14722/ndss.2018.23279.

13 C++ Containers. URL: https://cplusplus.com/reference/stl/.
14 CFIXX Suite. URL: https://github.com/HexHive/CFIXX/tree/master/CFIXX-Suite.
15 Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham,

and Marcel Winandy. Return-oriented programming without returns. In Ehab Al-Shaer,
Angelos D. Keromytis, and Vitaly Shmatikov, editors, Proceedings of the 17th ACM Conference
on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8,
2010, pages 559–572, New York, New York, USA, 2010. ACM. doi:10.1145/1866307.1866370.

16 Kaixiang Chen, Chao Zhang, Tingting Yin, Xingman Chen, and Lei Zhao. Vscape: As-
sessing and escaping virtual call protections. In Michael D. Bailey and Rachel Greenstadt,
editors, 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, pages
1719–1736. USENIX Association, August 2021. URL: https://www.usenix.org/conference/
usenixsecurity21/presentation/chen-kaixiang.

17 Release LLVM 17.0.3 · llvm/llvm-project. URL: https://github.com/llvm/llvm-project/
releases/tag/llvmorg-17.0.3.

18 Fernando J. Corbató and Victor A. Vyssotsky. Introduction and overview of the multics
system. In Robert W. Rector, editor, Proceedings of the 1965 fall joint computer conference,
part I, AFIPS 1965 (Fall, part I), Las Vegas, Nevada, USA, November 30 - December 1, 1965,
pages 185–196. ACM, November 1965. doi:10.1145/1463891.1463912.

https://doi.org/10.1145/2660267.2660378
https://doi.org/10.1109/EuroSP51992.2021.00049
https://doi.org/10.1109/EuroSP51992.2021.00049
https://doi.org/10.1145/3552326.3587439
https://github.com/mbernad/hobbit-artifact
https://github.com/mbernad/hobbit-artifact
https://doi.org/10.5281/zenodo.11046716
https://github.com/BLAKE3-team/BLAKE3/tree/master/c
https://github.com/BLAKE3-team/BLAKE3/tree/master/c
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/3054924
https://doi.org/10.14722/ndss.2018.23279
https://cplusplus.com/reference/stl/
https://github.com/HexHive/CFIXX/tree/master/CFIXX-Suite
https://doi.org/10.1145/1866307.1866370
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-kaixiang
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-kaixiang
https://github.com/llvm/llvm-project/releases/tag/llvmorg-17.0.3
https://github.com/llvm/llvm-project/releases/tag/llvmorg-17.0.3
https://doi.org/10.1145/1463891.1463912

M. Bernad and S. Brunthaler 7:23

19 Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen, Ahmad-Reza
Sadeghi, Stefan Brunthaler, and Michael Franz. Readactor: Practical code randomization
resilient to memory disclosure. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015, volume 2015-July, pages 763–780. IEEE Computer
Society, May 2015. doi:10.1109/SP.2015.52.

20 Stephen J. Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen, Lucas
Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael Franz. It’s a trap:
Table randomization and protection against function-reuse attacks. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-16, 2015, pages
243–255, New York, New York, USA, 2015. ACM. doi:10.1145/2810103.2813682.

21 Solar Designer. lpr LIBC RETURN exploit, August 1997. URL: https://insecure.org/
sploits/linux.libc.return.lpr.sploit.html.

22 Mohamed Elsabagh, Dan Fleck, and Angelos Stavrou. Strict virtual call integrity checking
for C++ binaries. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi,
editors, Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017, pages 140–154,
New York, NY, USA, April 2017. ACM. doi:10.1145/3052973.3052976.

23 Robert Gawlik and Thorsten Holz. Towards automated integrity protection of C++ virtual
function tables in binary programs. In Charles N. Payne Jr., Adam Hahn, Kevin R. B. Butler,
and Micah Sherr, editors, Proceedings of the 30th Annual Computer Security Applications
Conference, ACSAC 2014, New Orleans, LA, USA, December 8-12, 2014, pages 396–405, New
York, New York, USA, 2014. ACM. doi:10.1145/2664243.2664249.

24 Jason Gionta, William Enck, and Peng Ning. Hidem: Protecting the contents of userspace
memory in the face of disclosure vulnerabilities. In Jaehong Park and Anna Cinzia Squicciarini,
editors, Proceedings of the 5th ACM Conference on Data and Application Security and Privacy,
CODASPY 2015, San Antonio, TX, USA, March 2-4, 2015, pages 325–336. ACM, March
2015. doi:10.1145/2699026.2699107.

25 Itanium C++ ABI. URL: https://itanium-cxx-abi.github.io/cxx-abi/abi.html.
26 Dongseok Jang, Zachary Tatlock, and Sorin Lerner. Safedispatch: Securing C++ virtual calls

from memory corruption attacks. In 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014. The Internet
Society, 2014. doi:10.14722/ndss.2014.23287.

27 Kraken JavaScript Benchmark (version 1.1). URL: https://mozilla.github.io/
krakenbenchmark.mozilla.org/index.html.

28 Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. Sok: Automated software
diversity. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA,
May 18-21, 2014, pages 276–291. IEEE Computer Society, May 2014. doi:10.1109/SP.2014.
25.

29 “libc++” C++ Standard Library – libc++ documentation. URL: https://libcxx.llvm.org/.
30 LLVM: Control Flow Integrity. URL: https://clang.llvm.org/docs/ControlFlowIntegrity.

html.
31 Ali José Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. CCFI: cryptographi-

cally enforced control flow integrity. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, volume 2015-October, pages 941–951. ACM,
October 2015. doi:10.1145/2810103.2813676.

32 Mostly mangling: Stronger, better, morer, Moremur; a better Murmur3-
type mixer. URL: https://mostlymangling.blogspot.com/2019/12/
stronger-better-morer-moremur-better.html.

33 MotionMark 1.0. URL: https://browserbench.org/MotionMark/.

ECOOP 2024

https://doi.org/10.1109/SP.2015.52
https://doi.org/10.1145/2810103.2813682
https://insecure.org/sploits/linux.libc.return.lpr.sploit.html
https://insecure.org/sploits/linux.libc.return.lpr.sploit.html
https://doi.org/10.1145/3052973.3052976
https://doi.org/10.1145/2664243.2664249
https://doi.org/10.1145/2699026.2699107
https://itanium-cxx-abi.github.io/cxx-abi/abi.html
https://doi.org/10.14722/ndss.2014.23287
https://mozilla.github.io/krakenbenchmark.mozilla.org/index.html
https://mozilla.github.io/krakenbenchmark.mozilla.org/index.html
https://doi.org/10.1109/SP.2014.25
https://doi.org/10.1109/SP.2014.25
https://libcxx.llvm.org/
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://doi.org/10.1145/2810103.2813676
https://mostlymangling.blogspot.com/2019/12/stronger-better-morer-moremur-better.html
https://mostlymangling.blogspot.com/2019/12/stronger-better-morer-moremur-better.html
https://browserbench.org/MotionMark/

7:24 HOBBIT: Hashed OBject Based InTegrity

34 Paul Muntean, Richard Viehoever, Zhiqiang Lin, Gang Tan, Jens Grossklags, and Claudia
Eckert. itop: Automating counterfeit object-oriented programming attacks. In Leyla Bilge and
Tudor Dumitras, editors, RAID ’21: 24th International Symposium on Research in Attacks,
Intrusions and Defenses, San Sebastian, Spain, October 6-8, 2021, pages 162–176. ACM,
October 2021. doi:10.1145/3471621.3471847.

35 Nergal. Advanced return-into-lib(c) exploits (PaX case study), December 2001. URL: http:
//phrack.org/issues/58/4.html#article.

36 Octane 2.0 JavaScript Benchmark. URL: https://chromium.github.io/octane/.
37 Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda. G-free:

defeating return-oriented programming through gadget-less binaries. In Carrie Gates, Michael
Franz, and John P. McDermott, editors, Twenty-Sixth Annual Computer Security Applications
Conference, ACSAC 2010, Austin, Texas, USA, 6-10 December 2010, pages 49–58, New York,
New York, USA, 2010. ACM. doi:10.1145/1920261.1920269.

38 Aleph One. Smashing the stack for fun and profit. Phrack magazine, 7(49):14–16, 1996.
39 Taemin Park, Julian Lettner, Yeoul Na, Stijn Volckaert, and Michael Franz. Bytecode

corruption attacks are real - and how to defend against them. In Cristiano Giuffrida, Sébastien
Bardin, and Gregory Blanc, editors, Detection of Intrusions and Malware, and Vulnerability
Assessment - 15th International Conference, DIMVA 2018, Saclay, France, June 28-29, 2018,
Proceedings, volume 10885 of Lecture Notes in Computer Science, pages 326–348. Springer,
2018. doi:10.1007/978-3-319-93411-2_15.

40 Andre Pawlowski, Victor van der Veen, Dennis Andriesse, Erik van der Kouwe, Thorsten
Holz, Cristiano Giuffrida, and Herbert Bos. VPS: excavating high-level C++ constructs from
low-level binaries to protect dynamic dispatching. In David M. Balenson, editor, Proceedings
of the 35th Annual Computer Security Applications Conference, ACSAC 2019, San Juan,
PR, USA, December 09-13, 2019, pages 97–112, New York, NY, USA, December 2019. ACM.
doi:10.1145/3359789.3359797.

41 Aravind Prakash, Xunchao Hu, and Heng Yin. vfguard: Strict protection for virtual function
calls in COTS C++ binaries. In 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015, Reston, VA,
November 2015. The Internet Society. doi:10.14722/ndss.2015.23297.

42 Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-oriented program-
ming: Systems, languages, and applications. ACM Trans. Inf. Syst. Secur., 15(1):2:1–2:34,
March 2012. doi:10.1145/2133375.2133377.

43 getrusage(2) - Linux manual page. URL: https://man7.org/linux/man-pages/man2/
getrusage.2.html.

44 AliAkbar Sadeghi, Salman Niksefat, and Maryam Rostamipour. Pure-call oriented program-
ming (PCOP): chaining the gadgets using call instructions. J. Comput. Virol. Hacking Tech.,
14(2):139–156, May 2018. doi:10.1007/s11416-017-0299-1.

45 Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi,
and Thorsten Holz. Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in C++ applications. In 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015, volume 2015-July, pages 745–762. IEEE
Computer Society, May 2015. doi:10.1109/SP.2015.51.

46 Hovav Shacham. The geometry of innocent flesh on the bone: return-into-libc without function
calls (on the x86). In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson,
editors, Proceedings of the 2007 ACM Conference on Computer and Communications Security,
CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, pages 552–561, New York, New
York, USA, 2007. ACM. doi:10.1145/1315245.1315313.

47 Zhuojia Shen, Komail Dharsee, and John Criswell. Fast execute-only memory for embedded
systems. In IEEE Secure Development, SecDev 2020, Atlanta, GA, USA, September 28-30,
2020, pages 7–14. IEEE, September 2020. doi:10.1109/SecDev45635.2020.00017.

48 SLOCCount. URL: https://dwheeler.com/sloccount/.

https://doi.org/10.1145/3471621.3471847
http://phrack.org/issues/58/4.html#article
http://phrack.org/issues/58/4.html#article
https://chromium.github.io/octane/
https://doi.org/10.1145/1920261.1920269
https://doi.org/10.1007/978-3-319-93411-2_15
https://doi.org/10.1145/3359789.3359797
https://doi.org/10.14722/ndss.2015.23297
https://doi.org/10.1145/2133375.2133377
https://man7.org/linux/man-pages/man2/getrusage.2.html
https://man7.org/linux/man-pages/man2/getrusage.2.html
https://doi.org/10.1007/s11416-017-0299-1
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/SecDev45635.2020.00017
https://dwheeler.com/sloccount/

M. Bernad and S. Brunthaler 7:25

49 Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen,
and Ahmad-Reza Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained address
space layout randomization. In 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, pages 574–588. IEEE Computer Society, May 2013.
doi:10.1109/SP.2013.45.

50 Speedometer 2.1. URL: https://browserbench.org/Speedometer2.1/.
51 Laszlo Szekeres, Mathias Payer, Tao Wei, and R. Sekar. Eternal war in memory. IEEE Secur.

Priv., 12(3):45–53, May 2014. doi:10.1109/MSP.2014.44.
52 Arjan Van De Ven. New security enhancements in red hat enterprise linux v.3, update 3, 2004.

URL: https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf.
53 WebKit/WebKit at webkitgtk-2.41.1. URL: https://github.com/WebKit/WebKit/tree/

webkitgtk-2.41.1.
54 Mengyao Xie, Chenggang Wu, Yinqian Zhang, Jiali Xu, Yuanming Lai, Yan Kang, Wei Wang,

and Zhe Wang. CETIS: retrofitting intel CET for generic and efficient intra-process memory
isolation. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022,
Los Angeles, CA, USA, November 7-11, 2022, CCS ’22, pages 2989–3002, New York, NY,
USA, 2022. ACM. doi:10.1145/3548606.3559344.

55 ekpyron/xxhashct: Compile time implementation of the 64-bit xxhash algorithm as C++11
constexpr expression. URL: https://github.com/ekpyron/xxhashct.

56 Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn Song. Vtint:
Protecting virtual function tables’ integrity. In 22nd Annual Network and Distributed System
Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015, pages
8–11, Reston, VA, 2015. The Internet Society. doi:10.14722/ndss.2015.23099.

57 Chao Zhang, Dawn Song, Scott A. Carr, Mathias Payer, Tongxin Li, Yu Ding, and Chengyu
Song. Vtrust: Regaining trust on virtual calls. In 23rd Annual Network and Distributed System
Security Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016, Reston,
VA, 2016. The Internet Society. doi:10.14722/ndss.2016.23164.

ECOOP 2024

https://doi.org/10.1109/SP.2013.45
https://browserbench.org/Speedometer2.1/
https://doi.org/10.1109/MSP.2014.44
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://github.com/WebKit/WebKit/tree/webkitgtk-2.41.1
https://github.com/WebKit/WebKit/tree/webkitgtk-2.41.1
https://doi.org/10.1145/3548606.3559344
https://github.com/ekpyron/xxhashct
https://doi.org/10.14722/ndss.2015.23099
https://doi.org/10.14722/ndss.2016.23164

Understanding Concurrency Bugs in Real-World
Programs with Kotlin Coroutines
Bob Brockbernd #

Delft University of Technology, The Netherlands

Nikita Koval #

JetBrains, Amsterdam, The Netherlands

Arie van Deursen #

Delft University of Technology, The Netherlands

Burcu Kulahcioglu Ozkan #

Delft University of Technology, The Netherlands

Abstract
Kotlin language has recently become prominent for developing both Android and server-side ap-
plications. These programs are typically designed to be fast and responsive, with asynchrony and
concurrency at their core. To enable developers to write asynchronous and concurrent code safely
and concisely, Kotlin provides built-in coroutines support. However, developers unfamiliar with the
coroutines concept may write programs with subtle concurrency bugs and face unexpected program
behaviors. Besides the traditional concurrency bug patterns, such as data races and deadlocks, these
bugs may exhibit patterns related to the coroutine semantics. Understanding these coroutine-specific
bug patterns in real-world Kotlin applications is essential in avoiding common mistakes and writing
correct programs.

In this paper, we present the first study of real-world concurrency bugs related to Kotlin coroutines.
We examined 55 concurrency bug cases selected from 7 popular open-source repositories that use
Kotlin coroutines, including IntelliJ IDEA, Firefox, and Ktor, and analyzed their bug characteristics
and root causes. We identified common bug patterns related to asynchrony and Kotlin’s coroutine
semantics, presenting them with their root causes, misconceptions that led to the bugs, and strategies
for their automated detection. Overall, this study provides insight into programming with Kotlin
coroutines concurrency and its pitfalls, aiming to shed light on common bug patterns and foster
further research and development of concurrency analysis tools for Kotlin programs.

2012 ACM Subject Classification Computing methodologies → Concurrent programming languages;
Software and its engineering → Software testing and debugging

Keywords and phrases Kotlin, coroutines, concurrency, asynchrony, software bugs

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.8

Acknowledgements We thank our shepherd, Elisa Gonzalez Boix, and anonymous reviewers for
their suggestions for improving the paper.

1 Introduction

Kotlin is a cutting-edge programming language that has recently become a primary language
for Android development. Its modern syntax, seamless interoperability with Java, and
enhanced features have positioned Kotlin as the preferred language for creating mobile
and server-side applications for many developers. A standout feature amongst Kotlin’s
diverse functionalities is the built-in coroutines [14] support, which significantly simplifies
asynchronous programming. Coroutines offers developers a streamlined approach to handling
background tasks, thus enabling more intuitive and readable code.

Kotlin coroutines enables writing asynchronous code in a sequential style, thus avoiding
the complexity of multithreaded programs. One may think of coroutines as lightweight
threads. Following the notion of coroutines in the literature [12], Kotlin coroutines can

© Bob Brockbernd, Nikita Koval, Arie van Deursen, and Burcu Kulahcioglu Ozkan;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 8; pp. 8:1–8:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:B.J.Brockbernd@student.tudelft.nl
mailto:parusnikita@gmail.com
mailto:Arie.vanDeursen@tudelft.nl
https://orcid.org/0000-0003-4850-3312
mailto:b.ozkan@tudelft.nl
https://orcid.org/0000-0002-7038-165X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines

suspend and resume their execution, and they do that through the suspending functions.
Suspending functions (marked with the suspend keyword in Kotlin) are similar to async
functions in other asynchronous languages and frameworks [37, 33], which encapsulate
asynchronous computations but look like synchronous code, and calling them looks similar
to calling regular functions. A suspending function indicates that it can be suspended in
the middle of computation and resumed later. By suspending and resuming at predefined
points, they yield computing resources to other coroutines and coordinate their execution.
For example, when a suspending function encounters a long-running task and suspends, the
underlying thread does not block but takes another coroutine to execute.

While coroutines simplify writing asynchronous programs and increase performance
by asynchronously running long-running tasks, asynchronous programming comes with
additional challenges. Besides the inherent concurrency non-determinism of multithreading,
which causes traditional classes of concurrency bugs (such as data races, deadlocks, order
violations, and atomicity violations), utilizing coroutine requires developers to reason about
the asynchronous interactions between the concurrent components due to coroutine semantics,
synchronous/asynchronous execution contexts, suspension and resumption of coroutines.
Developers unfamiliar with the Kotlin coroutine semantics can use coroutines and suspending
functions improperly, resulting in subtle concurrency bugs.

Kotlin is a relatively new language, so we know little about common misconceptions and
bug patterns in programs with Kotlin coroutines. This work aims to shed light on them.

Our contribution. In this study, we explored real-world concurrency bugs in programs that
use Kotlin coroutines. We collected concurrency bugs from popular open-source code reposit-
ories and identified common patterns in these bugs, their root causes, and misconceptions
that might cause them. The results are available in the following GitHub repository [6].

Our analysis shows that some concurrency bugs are related to bridging synchronous and
asynchronous executions. While asynchronous functions can only be called on a coroutine
and the syntax of suspendable functions helps function coloring by marking asynchronous
functions, composing synchronous parts of the program with asynchronous functions remains
a challenge to programmers inexperienced in asynchronous programming. As a quick remedy
for calling asynchronous functions from synchronous functions, they may call these functions
in blocking coroutines, which in turn may affect the program’s performance or even introduce
deadlocks in case of nested blocking calls. On the other hand, when calling synchronous
functions from asynchronous functions, they should be aware that the called function may
run in an asynchronous context. Calling asynchronous functions from such functions can
demand manual bookkeeping of coroutine scopes or omitting one of Kotlin’s core concurrency
principles: structured concurrency [34, 9]. In addition to nested blocking calls, we identified
classes of bug patterns where the developers may violate structured concurrency by improper
scope passing, querying asynchronous objects, synchronization with asynchronous objects, and
improper coroutine exception handling.

In summary, our work makes the following contributions:
We present the first (to the best of our knowledge) comprehensive study of real-world
concurrency bugs in programs that use Kotlin coroutines, examining 55 concurrency bugs
selected from 7 popular open-source repositories that use Kotlin coroutines.
We identify common bug patterns related to Kotlin coroutines, presenting real-world
examples and possible corrections for each, providing root causes and misconceptions
that lead to these bugs, and discussing strategies for their automated detection.

B. Brockbernd, N. Koval, A. van Deursen, and B. K. Ozkan 8:3

Moreover, we communicated our findings to Kotlin developers. Our initial discussions
show that our findings align with some of their observations, e.g. [29, 27]. We are in contact
with them to develop inspection tools for identified bug patterns and have already contributed
to IntelliJ IDEA with an inspection that detects one of the identified bug patterns [7].

Impact. We envision our findings contributing to developing reliable Kotlin programs
targeting multiple audiences. They can help (i) Kotlin programmers better understand
concurrency bugs and write correct programs, (ii) increase the awareness of programmers
using Kotlin libraries about the potential asynchrony in the functions they use, (iii) provide
insights to the Kotlin language team about possible misconceptions of programmers and (iv)
researchers develop suitable concurrency analysis and testing tools for Kotlin programs.

2 Background on Kotlin Coroutines

Essentially, coroutines are lightweight threads that are relatively cheap to suspend and
resume. They also support efficient cancellation, which, in sum, makes them very powerful
for asynchronous programming. This section briefly introduces coroutines in Kotlin. dis-
cussing important differences compared to traditional threads and the features necessary to
understand the bug patterns we present in our study.

Launching a coroutine. A coroutine is a computation unit not bound to any particular
thread. Instead, coroutines run on threads and reuse them. When a coroutine gets suspended
(pauses in the middle of computation), the underlying thread does not park but takes another
coroutine and executes it, utilizing resources more efficiently. In this essence, coroutines can
be considered a framework for managing expensive threads.

When launching a new coroutine, we can specify a coroutine dispatcher, which determines
how to schedule the coroutine. The default dispatcher (Dispatchers.Default) is essentially
a thread pool, where the number of threads is bound to the number of CPUs. It is also
possible to launch coroutines on the Main dispatcher, ensuring that they are executed on
the Main (UI) thread, or the IO dispatcher when the code does not compute something but
blocks the running thread with an I/O operation.

Listing 1 shows an example with one coroutine launching another and printing “Hello”,
and the second suspending for one second and printing “World!”. The main() function starts
with a runBlocking call, which bridges the non-coroutine and coroutine worlds, blocking
the current thread for the duration of the coroutine it runs. The launch call starts a
new coroutine concurrently with the rest of the code on Dispatchers.Default coroutine
dispatcher, which means this coroutine will run on a shared pool of threads. The delay call
in the launched coroutine suspends it for one second. As result, this code prints “Hello”
followed by “World!”.

Listing 1 Launching a new coroutine in Kotlin.
1 fun main () = runBlocking { // launches a coroutine on this thread
2 launch (Dispatchers . Default) { // launch a new coroutine
3 printWorldWithDelay ()
4 }
5 println ("Hello ")
6 }
7

ECOOP 2024

8:4 Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines

8 suspend fun printWorldWithDelay () {
9 delay (1000L) // non - blocking delay for 1 second

10 println ("World !")
11 }

Suspending functions. To utilize coroutines, Kotlin provides the suspending function
concept. Suspending functions, marked with suspend modifier, can be paused and resumed
later without blocking the underlying thread. In Listing 1, printWorldWithDelay() and
delay(..) are suspending functions, which might pause (in this case, the underlying
thread switches to executing another coroutine). A suspending function can only be called
from another suspending function, providing a structured way to write asynchronous and
non-blocking code.

To summarize, the suspend keyword in Kotlin is used to mark a function that can be
asynchronously completed – it can suspend its execution at some point, being resumed where
it left off later, without blocking the underlying execution thread.

Structured concurrency. Coroutines follow a principle of structured concurrency, which
means that new coroutines can only be launched in a specific scope, delimiting the lifetime
of the coroutine. Structured concurrency ensures that they are not lost and do not leak.
An outer scope cannot be completed until all its children’s coroutines are complete, while
cancellation of one of the coroutines in a scope instantly aborts the others within the scope.

In Listing 1, runBlocking launches a new coroutine and establishes a coroutine scope
(accessible by this in the code block), so any coroutine launched within this block will
cause this runBlocking call to wait until the launched coroutine finishes. This is why the
runBlocking call does not complete until the second coroutine that prints “World!” finishes.

One may also specify a custom CoroutineScope to ensure that launched coroutines
do not get lost and do not leak. Specifically, the scope finishes when all the coroutines
launched within it are completed, while canceling the scope results in the cancellation of
all the coroutines within it. Listing 2 contains the printHelloWorld() suspending function
that, similarly to the code in Listing 1, launches a new coroutine and prints “Hello”, while
the launched coroutine suspends for one second and prints “World!”. The coroutine scope
here ensures that printHelloWorld() finishes only when the launched coroutine finishes. At
the same time, in case the launched coroutine gets canceled, the whole scope gets canceled,
resulting in printHelloWorld() cancellation.

Listing 2 Creating a custom CoroutineScope in Kotlin.
1 suspend fun printHelloWorld () = coroutineScope {
2 launch {
3 delay (1000L)
4 println ("World !")
5 }
6 println ("Hello ")
7 }

Cancellation. Kotlin coroutines provide a built-in cancellation mechanism, which is es-
pecially useful for long-running applications. For example, a user might have closed the
page that launched a coroutine, so its result is no longer needed, and the coroutine can be
canceled. If a coroutine gets canceled while suspending, the respective suspend function
throws CancellationException – the user code must not catch and always propagate it.

B. Brockbernd, N. Koval, A. van Deursen, and B. K. Ozkan 8:5

Listing 3 Coroutine communication via channel.
1 fun main () = runBlocking {
2 val channel = Channel <Int >(capacity = 1)
3 launch {
4 for (x in 1..5) channel .send(x * x) // sends to channel
5 }
6 repeat (5) {
7 println (channel . receive ()) // receives from channel
8 }
9 }

With structured concurrency, when a coroutine is canceled, all the coroutines operating
within the scope get canceled, too, thus ensuring that all the related computations are safely
canceled and do not leak.

Channels. When programming with coroutines, developers typically use channels for implicit
synchronization and communication instead of manipulating shared memory. A channel is a
blocking queue of bounded capacity with receive operation suspending if the channel is
empty and send suspending when the channel is full. Listing 3 illustrates an inter-coroutine
communication via channel. One coroutine sends square numbers to the channel, and the
main coroutine reads these numbers from the same channel and prints them.

Coroutines and threads. Coroutines do not introduce a new concurrency model but enable
cooperative concurrency and efficient and safe thread management, with the structured
concurrency feature and explicit communication primitives in particular. However, one
may still program with coroutines in a way similar to programming with threads, sharing a
mutable state (e.g., a concurrent cache) and using the same synchronization primitives (e.g.,
mutex).

Discussion. Programming with coroutines varies significantly from traditional thread-based
programming. These differences might give rise to unique bugs distinct from those typically
encountered when manipulating threads and shared memory. This work sheds light on popular
concurrency bug patterns discovered in real-world applications with Kotlin coroutines.

3 Bug Study Methodology

Our bug study targets seven open-source repositories listed in Table 1 together with the
numbers of Kotlin code lines, commits, and GitHub stars. The repositories are selected based
on three criteria: (i) the repository mainly contains Kotlin code, (ii) the project depends
on the Kotlin coroutines library, and (iii) the repository has a high number of commits,
indicating its active development and high number of stars indicating its popularity and the
interest of the community.

As Kotlin is the primary language for Android development, we started with identifying
top-starred Android projects on GitHub and eliminated the projects that have less than
1,000 commits and lack descriptive commit messages. As a result, we obtained two repos-
itories: the Shadowsocks proxy client [31] and the Tachiyomi comic reader [35]. Next, we
determined the Android repositories with the highest commit count. After elimination, the

ECOOP 2024

8:6 Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines

Table 1 The selected GitHub repositories for the bug analysis.

Repository Commits Stars Kotlin LOC Total LOC
JetBrains/intellij-community 427.4 K 16.1 K 1 603.4 K 9 805.0 K
wordpress-mobile/WordPress-Android 83.2 K 2.9 K 243.5 K 4 561.7 K
woocommerce/woocommerce-android 46.8 K 259 250.5 K 367.6 K
mozilla-mobile/firefox-android 30.2 K 1.3 K 431.1 K 717.0 K
jshaw29/tachiyomi-backup 1 6.2 K 25.8 K 66.1 K 114.1 K
ktorio/ktor 5.1 K 11.8 K 152.5 K 152.6 K
shadowsocks/shadowsocks-android 3.6 K 34.3 K 7.8 K 12.2 K

following three were selected: the WordPress website builder [3], the WooCommerce webshop
manager [2], and the Firefox web browser [25]. Additionally, we selected the Ktor [18]
framework for building asynchronous server-side and client-side applications and IntelliJ
IDEA Community Edition [17], both developed by JetBrains – the main maintainers of
Kotlin coroutines.

To collect concurrency bugs related to Kotlin coroutines, we analyzed all commits in the
selected repositories. Specifically, (1) we filtered the commits based on whether the commit
messages contained specific concurrency-related keywords, and (2) manually reviewed the
sifted commits. Finally, (3) we categorized the identified bugs by the root causes of the errors.

Filtering the commits based on the commit messages. Following prior research on
concurrency bug studies [38, 40, 23], we selected the commits that include at least one
of the following keywords: race, deadlock, synchronization, concurrency, lock, mutex,
atomic, compete, or semaphore. With our work focusing on Kotlin coroutines, we expanded
the filter with the coroutine-related keywords: runBlocking, Dispatcher, CoroutineScope,
cancel, and CancellationException. For the feasibility of the manual analysis, we limited
the number of selected commits associated with each keyword to the most recent 30 commits.

Manual analysis of the selected commits. After filtering the commits in the repositories, we
had 1353 commits to analyze. We manually reviewed them, examining their commit messages
and code changes. We selected the commits that fixed a concurrency bug involving Kotlin
coroutine primitives, with the change being comprehensible without in-depth knowledge of
the codebase. Thus, we also filtered out the classic concurrent bugs unrelated to coroutines.
We ended up with 55 bugs that involve Kotlin coroutine constructs.

Manual analysis and categorization of the bugs. Finally, we categorized the filtered 55
bugs by their root causes, analyzing the programming patterns that led to the errors. The
source code links to the studied bugs are available in our GitHub repository [6].

Classic concurrency bugs. As the goal of this work is to analyze concurrency bugs that are
related to Kotlin coroutines, the study does not cover traditional multithreaded concurrency
bug patterns [23] such as data races, order violations, or atomicity violations. Rather, we
focus on the bug patterns related to and introduced by using Kotlin coroutines constructs.

1 The Tachiyomi repository has been taken down since January 2024: https://tachiyomi.org/news/2024-
01-13-goodbye, so we reference a backup repository instead.

https://github.com/JetBrains/intellij-community
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/woocommerce/woocommerce-android
https://github.com/mozilla-mobile/firefox-android
https://gitlab.com/jshaw29/tachiyomi-backup
https://github.com/ktorio/ktor
https://github.com/shadowsocks/shadowsocks-android
https://tachiyomi.org/news/2024-01-13-goodbye
https://tachiyomi.org/news/2024-01-13-goodbye

B. Brockbernd, N. Koval, A. van Deursen, and B. K. Ozkan 8:7

Table 2 Collected bugs and their categorization into bug patterns of nested runBlocking,
scope passing, querying asynchronous objects, synchronizing with cancellation, and
CancellationException bugs. All observed bugs that did not fall into one of these categories
are listed under “Uncategorized”.

Repository Nested
runBlocking

Scope
Passing

Querying
Async

Sync
Cancel

Cancellation
Exception Uncategorized

Intellij 6 0 1 1 10 5
Firefox 2 2 2 2 0 4
Tachiyomi 2 0 0 0 3 1
Ktor 0 0 1 0 0 3
Shadowsocks 0 0 1 0 1 1
Wordpress 1 0 0 0 0 0
Woocommerce 0 2 0 1 0 3
Total 11 4 5 4 14 17

4 Categorization of Bugs

In this section, we analyze the bug patterns and root causes of the concurrency bugs and
categorize them based on their characteristics. We discuss possible developer misunderstand-
ings that lead to these mistakes, offer insight into possible remedial steps to rectify these
errors and suggest methods for their automatic detection.

Table 2 lists the number of bugs in the repositories that fall into each of the bug
categories. Based on our analysis of the Kotlin-specific concurrency primitives that are
commonly involved in bugs and their root causes, we categorized the concurrency bugs in
Kotlin programs into the classes of bugs due to (1) nested runBlocking calls (Section 4.1),
(2) coroutine scope passing (Section 4.2), (3) querying asynchronous objects (Section 4.3),
and (4) synchronizing with cancellation (Section 4.4). A special class of bugs occurs when a
CancellationException is accidentally caught or incorrectly rethrown (Section 4.5). While
it is not strictly a concurrency bug, it is caused by the Kotlin coroutines machinery, so we
included it in our analysis.

Lastly, not all bugs found in the collection phase can be categorized into one of the
categories. These bugs are displayed in Table 2 in the “Uncategorized” column. We omit
these bugs in our analysis.

4.1 Calling runBlocking in a Coroutine
A common concurrency bug in Kotlin manifests when runBlocking coroutine builder is
called from a coroutine and blocks the underlying coroutine dispatcher thread. Such a pattern
can lead to a deadlock. We observed 11 bugs caused by this.

Root cause. The root cause of this bug is an improper use of the runBlocking coroutine
builder designed to bridge non-coroutine and coroutine worlds and not expected to be called
from another coroutine. Such an improper use can block the underlying scheduler thread,
which might lead to a deadlock. Figure 1 and Listing 4 provide program examples with this
bug pattern.

Figure 1 provides the code and the deadlock illustration. The program launches Coroutine
A on the Dispatcher.Main dispatcher (line 2), dispatching the coroutine onto the UI
thread. Then, coroutine A calls nonSuspendingFunction(). In turn, this function calls

ECOOP 2024

8:8 Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines

runBlocking (line 8) which launches a coroutine B scheduled on Dispatcher.Main (line 9).
The runBlocking builder blocks the UI thread and, due to structured concurrency, waits
for coroutine B to finish. However, coroutine B cannot be dispatched until the UI thread is
free. In other words, coroutine A blocks the thread that needs to execute coroutine B, while
coroutine A also waits for coroutine B completion, which results in a deadlock.

The same deadlock might also occur in a multi-thread scenario. Listing 4 provides such
an example, using the Default multi-threaded dispatcher to schedule coroutines. Similarly
to the code in Figure 1, the program gets into a deadlock when all threads are executing the
coroutines launched in main(), schedule new coroutines in nonSuspendingFunction() calls.
However, these new coroutines cannot be executed – all the scheduler threads are occupied
with the coroutines launched in main() and wait for the completion of these coroutines
launched in nonSuspendingFunction().

Figure 1 A program with a deadlock due to a runBlocking call from a coroutine on a single-
threaded dispatcher.

Misconceptions. A common misconception is that the runBlocking builder can safely be
used in non-suspending functions. However, a non-suspending function can be called from
an asynchronous context; there is no guarantee that it runs outside a coroutine. Even if
developers know they are working inside a coroutine, they might be unaware that the function
they call contains a runBlocking builder. It is not always trivial to determine whether
a piece of code runs inside a coroutine or whether a function call reaches a runBlocking,
especially when the call stack is large.

When developers need to call a suspending function from a non-suspending function, they
tend to call runBlocking, especially when the developer is unaware that this synchronous
function actually runs in a coroutine. The right course of action, however, is not always
clear and requires careful consideration by the developer. In the example program, turning
nonSuspendingFunction into a suspendingFunction by adding the suspend keyword does
the trick, as given as a potential solution in Listing 5. By turning the function into a suspend
function, the developer can call coroutineScope, which allows for a normal launch. Note
that this requires all functions calling suspendingFunction also to be suspending. In other
cases, one might prefer to acquire a coroutine scope created elsewhere. This scope, however,
comes with its own set of challenges, which we explain in Section 4.2.

B. Brockbernd, N. Koval, A. van Deursen, and B. K. Ozkan 8:9

Listing 4 A program with a deadlock due to a runBlocking call from a coroutine on a multith-
readed dispatcher.

1 fun main () = runBlocking {
2 for(i in 1..1000) { // 1000 > max number of scheduler threads
3 launch (Dispatchers . Default) {
4 nonSuspendingFunction ()
5 }
6 }
7 }
8

9 fun nonSuspendingFunction () {
10 runBlocking {
11 launch (Dispatchers . Default) {
12 println ("Done")
13 }
14 }
15 }

Listing 5 A potential solution to the bug with nested runBlocking calls.
1 fun main () = runBlocking {
2 launch (Dispatchers .Main) { // launch coroutine A
3 suspendingFunction () // safe to call
4 }
5 }
6

7 suspend fun suspendingFunction () {
8 coroutineScope { // suspends execution until coroutine B is done
9 launch (Dispatchers .Main) { // launch coroutine B

10 println ("Done")
11 }
12 }
13 }

Ultimately, both runBlocking and coroutineScope will pause the execution of the
function calling it. The difference is that runBlocking does this by blocking the underlying
thread and coroutineScope by suspending the coroutine, which releases the thread in the
meantime.

A situation where it is nontrivial to identify parts of the codebase that run in coroutines
and they may introduce unintended nested runBlocking calls might occur when the codebase
is gradually migrated to use coroutines [10].

Possible automated detection. A static analysis can inspect the program’s call graph and
detect situations when runBlocking is called from a suspend function. This analysis could
also be implemented as an IDE inspection, and we have successfully added one into IntelliJ
IDEA [7].

ECOOP 2024

8:10 Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines

4.2 Scope Passing
Scope passing is a coding pattern in which a function launches a coroutine in a coroutine
scope created outside the function. This situation can lead to an unexpected execution order
of program statements, which may violate their intended order. While passing the coroutine
scope is not incorrect and sometimes might be necessary, it makes it difficult to reason about
the execution order.

Root cause. The root cause is the nondeterminism in the completion time of the coroutines
launched on an external scope. Listing 6 provides a program example for the bug pattern.
Consider the function loadTopPerformers (line 4), which is responsible for loading some data
and storing it in the lastUpdateTopPerformers variable (line 2). The developer expects the
data to be available in the lastUpdateTopPerformers variable once the loadTopPerformers
function returns. However, this is not necessarily the case: the coroutine scope used to launch
the coroutine on line 5 is not bound by the function loadTopPerformers; it is inherited
from the DashBoardViewModel class.

As illustrated in Figure 2, the this object in the loadTopPerformers function refers to
class DashboardViewModel, which extends CoroutineScope. This results in the coroutine
unexpectedly outliving the function it was created in.

Figure 2 Visual clarification of coroutine scope origin and usage for Listing 6. Left shows the
situation where the spawned coroutine can outlive the function it was created in. Right shows how
this can be solved by creating a scope in the same function.

The problem can be fixed by ensuring that loadTopPerformersStats returns after the
lastUpdateTopPerformers variable is set. As given in Listing 7, the example bug can be
fixed by starting a coroutineScope call wrapping the function body (line 5). Then, the scope

Listing 6 An example scope passing bug, which is a simplified version of the bug in [32].
1 class DashboardViewModel : CoroutineScope {
2 var lastUpdateTopPerformers : Long? = null
3

4 suspend fun loadTopPerformers () {
5 launch {
6 lastUpdateTopPerformers = observeLastUpdate ()
7 }
8 }
9 }

B. Brockbernd, N. Koval, A. van Deursen, and B. K. Ozkan 8:11

Listing 7 A potential solution to example scope passing bug in Listing 6.
1 class DashboardViewModel : CoroutineScope {
2 var lastUpdateTopPerformers : Long? = null
3

4 suspend fun loadTopPerformers () {
5 coroutineScope {
6 launch {
7 lastUpdateTopPerformers = observeLastUpdate ()
8 }
9 }

10 }
11 }

Listing 8 An example for a scope passing bug, which is a simplified version of the bug in [28].
1 class ProductShippingClassViewModel (): CoroutineScope {
2 private var loadJob : Job? = null
3

4 fun load () {
5 waitForCurrentLoadJob ()
6 loadJob = launch { /* loading logic */ }
7 }
8

9 fun waitForCurrentLoadJob () {
10 launch { // launch since join cannot be called from normal fun
11 loadJob ?. join () // join suspends until load job is done
12 }
13 }
14 }

suspends the function loadTopPerformersStats until all its children are completed. Note
that this solution would not have been an option if loadTopPerformers was a non-suspending
function since the coroutineScope can only be called from a suspending function.

Another example of a coroutine unexpectedly outliving its calling function due to launch-
ing on an external scope is provided in Listing 8. The function load starts an expens-
ive load operation by spawning a coroutine (line 6). To ensure this operation only runs
once at a time, the developer keeps a reference to its Job (line 2). Next, he creates a
function waitForCurrentLoadJob that performs a join operation. Then, at line 5, this
waiting function is called before the expensive load operation is started. However, since
waitForCurrentLoadJob is a normal function, it cannot call the suspending join method.
In order to access this join operation, a coroutine is launched (line 10). However, this
coroutine is launched on a scope that is defined outside the waitForCurrentJob function.
The wait function will, therefore, return immediately, allowing a new load job to be started
before the old one is completed.

Misconceptions. A developer might expect a function that launches a coroutine to wait
for the coroutine to finish since that is often the case due to structured concurrency. This,
however, only holds when the coroutine scope is created in that same function. In the
example of Listing 6, the loadTopPerformersStats sits in between scope creation and

ECOOP 2024

8:12 Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines

coroutine launch. Listing 8 shows that a normal function waitForCurrentLoadJob calls
a join operation by spawning a coroutine. As discussed in Section 4.1, a problem arises
when a suspend function needs to be called from a non-suspending function that runs in a
coroutine. The developer needs to choose between calling runBlocking, passing scope, or
refactoring all depending code to suspend functions.

Automated detection. Detecting this bug pattern is challenging since there can be valid
reasons for passing the scope. However, the problem is that the developer might be unaware
that, in some cases, a launched coroutine outlives the function that launched it. A simple
analysis can be made that checks whether the scope used to launch a coroutine is created
in the same function or not. A simple and non-intrusive visual indication might aid the
developer in understanding the lifetime and scope of the launched coroutine.

4.3 Querying Asynchronous Objects
A race condition that commonly occurs with many languages is the result of querying the
state of an object in shared memory and, based on that, deciding how to act on it. Listing 9
provides such an example where the developer checks if the channel is closed and sends a
message if it is not closed.

Root cause. The root cause for this bug is simple and similar to race conditions in classical
multithreaded programs. When an object is shared among threads, its state might change
between checking its state and acting on it depending on the accesses to the object. In
the example of Figure 9, the channel can be closed between the check isClosedForSend
(line 1) and sending the message (line 2). A visual representation of this particular example
is provided in Figure 3.

Misconceptions. The misconception is that the state of such an object will not change
between the query and the action, disregarding the possibility of interleavings from other
threads. The fix for the bug is to avoid sending if the channel is closed. As locking is
undesired in Kotlin coroutines, the bug fix does not introduce explicit synchronization but
wraps the send call in a try/catch block. A call on a closed channel should throw a
ClosedSendChannelException, which allows the developer to handle it gracefully.

Automated detection. As the bug occurs in the case of a race condition on the channels,
detecting this pattern can benefit from existing data race detectors.

4.4 Synchronizing with Cancellation
Synchronization with Cancellation is an attempt to ensure that a certain coroutine only runs
once at a time by canceling the previous coroutine before the next is launched.

Root cause. The cancel method of a coroutine returns before the coroutine actually cancels
or stops. In other words, cancel cannot be used to synchronize executions. In the example of
Listing 11 there is a coroutine launched on line 7. The desired behavior is that this coroutine
runs only once at a time. Otherwise, there exists a possible data race between the read (line
8) and write (line 11) actions. The refresh function (line 3) might be called again before
the coroutine on line 7 is finished. To prevent a second coroutine from running in parallel,
the developer keeps a reference to the Job of that coroutine and cancels it before a new

B. Brockbernd, N. Koval, A. van Deursen, and B. K. Ozkan 8:13

Listing 9 Race condition on channel status, taken from
the bug fix in [24].

1 if (! channel . isClosedForSend) {
2 channel .send(message)
3 }

Listing 10 Potential solution to Listing 9.
1 try {
2 channel .send(message)
3 } catch (e: ClosedSendChannelException) {
4 // handle closed channel if needed
5 }

Figure 3 Visual representation
of the execution order that could
lead to a send operation over an
unexpected closed channel.

Listing 11 Missed synchronization with Job.cancel, a simplified version of the bug in [5].
1 var pendingJob : Job? = null
2

3 suspend fun refresh () {
4 pendingJob ?. cancel () // does not wait for the coroutine to stop
5 coroutineScope {
6

7 pendingJob = launch (Dispatchers .IO) {
8 val result = read(someVar)
9

10 launch (Dispatchers .Main) {
11 write(someVar , result)
12 }
13 }
14 }
15 }

coroutine is started. This should ensure that the coroutine only runs once at a time. However,
cancellation does not guarantee that execution will stop immediately, and the cancel() call
does return immediately. Therefore, this coroutine can exist in parallel. Primitives that
allow for synchronization are mutexes, joins, and channels. In this case, a potential solution
is provided in Listing 12, a mutex that wraps the scope of the launched coroutine will make
sure this coroutine can only be launched once the previous one is finished.

Misconceptions. A developer might be unaware that canceling of coroutines is cooperative,
meaning that they can only cancel and stop when they reach a suspension point or manually
check their cancellation status. Therefore, canceling the coroutine never guarantees that
it actually stops. Additionally, the cancel method does not wait for the coroutine to be
stopped.

4.5 Swallowing CancellationException

Incorrect handling of CancellationExceptions can introduce bugs manifesting in the
executions with exceptions. While these bugs are not strictly concurrency bugs, they are
specific to Kotlin coroutines. Therefore, we cover them in this section.

ECOOP 2024

8:14 Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines

Listing 12 A potential solution to the synchronizing with cancel example in Listing 11.
1 val mutex = Mutex ()
2 var pendingJob : Job? = null
3

4 suspend fun refresh () {
5 pendingJob ?. cancel () // optional
6 mutex. withLock { // waits for coroutine to stop
7 coroutineScope {
8

9 pendingJob = launch (Dispatchers .IO) {
10 val result = read(someVar)
11

12 launch (Dispatchers .Main) {
13 write(someVar , result)
14 }
15 }
16 }
17 }
18 }

Root cause. A CancellationException is thrown to signal that a coroutine is canceled.
When this exception is caught, it interferes with the canceling mechanism of the coroutines. In
Listing 13, a call to suspendingFunction is wrapped in a try/catch block to log any occurred
errors. However, when the coroutine gets canceled while executing suspendingFunction
a CancellationException is thrown which is then caught and logged. While logging a
cancellation might be unfortunate, a bigger problem is that the cancellation is swallowed,
since for it to work the exception needs to be propagated. A solution is given in Listing 14.
The CancellationException is specifically caught and rethrown. We observed 14 bugs
caused by accidentally swallowing CancellationException. This is also one of the most
discussed issues in the Kotlin Coroutines issue tracker [29].

A bug that we did not observe but can occur involving CancellationException is when
older Java frameworks throw these exceptions that could potentially run in a coroutine,
making it stop silently when it shouldn’t. In the example of Listing 15, a coroutine is
launched on line 2. This coroutine calls a function libraryCall (line 3), which in this
example is part of the same file but, in practice, can be any java library that throws a
CancellationException. When this code example is executed, it will never reach the
println statement on line 4. However, the program does finish gracefully (exit code 0).
This is discussed in greater detail in the article ”The Silent Killer That’s Crashing Your
Coroutines” [11].

Listing 13 Swallowed CancellationException.
1 suspend fun foo () {
2 try {
3 suspendingFunction ()
4 } catch (e: Exception) {
5 Log. error (e)
6 }
7 }

B. Brockbernd, N. Koval, A. van Deursen, and B. K. Ozkan 8:15

Listing 14 A potential solution to swallowed CancellationException in Listing 13.
1 suspend fun foo () {
2 try {
3 suspendingFunction ()
4 } catch (e: CancellationException) {
5 throw e
6 } catch (e: Exception) {
7 Log.error(e)
8 }
9 }

Listing 15 A library call throws a CancellationExcpetion and incorrectly cancels the coroutine.
1 fun main () = runBlocking {
2 launch {
3 libraryCall ()
4 println (" Unreachable ")
5 }
6 }
7

8 fun libraryCall () { // Anything that throws CancellationException
9 throw CancellationException () // Exception unrelated to coroutines

10 }

Misconceptions. The developer might forget or not be aware of the canceling mechanism
of coroutines. Accidentally catching a CancellationException is the result of that.

Possible automated detection. One may implement a static analysis that inspects the call
graph and searches for try-catch blocks that can call a suspend in the try block and catch
CancellationExcetion (or a more generic one, e.g., Exception or Throwable) without
propagating it by rethrowing outside the catch block. However, one should be careful when
other constructs from the standard Java library that may throw CancellationException
are used in the try block.

5 Threats to Validity

Potential threats to the validity include the representativeness of the studied concurrency
bugs and our study methodology. Similar to other bug studies, our work analyzes a limited
set of project repositories and a limited set of their commits.

We studied the Kotlin repositories based on our selection criteria for well-maintenance
and popularity, which are based on the lines of code, number of commits, and stars. However,
these criteria can potentially miss some Kotlin repositories with concurrency bugs. Similarly,
we study a subset of commits in the selected repositories filtered by some keywords. We
do not include some Kotlin framework keywords in our repository search, such as “channel”
and “suspend”, which are frequently used during development with coroutines, appear in
many of the commits, and introduce noise in the search results. Hence, the search results
may potentially miss some bugs. Moreover, some bugs may not be explicitly discussed in the
repositories’ commit messages or may not even have been diagnosed or fixed; therefore, they

ECOOP 2024

8:16 Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines

may be missed by a repository search. Finally, our methodology involves a manual analysis
of the commit source codes. While we aimed the analysis to be comprehensive, it may have
missed some concurrency bugs studied or fixed in the commits.

While the study has limitations, some of which are inherent to real-world bug studies, we
believe the studied bugs provide a useful sample of real-world concurrency bugs to shed light
on misunderstandings and bug patterns in Kotlin programs with coroutines.

6 Key Takeaways and Discussion

While Kotlin coroutines provide a robust and straightforward mechanism for writing asyn-
chronous programs, our study shows that developers can introduce specific concurrency bugs
if they need to correctly use the asynchrony features.

Key takeaways. Our main observation is that developers may find it hard to identify
function coloring, i.e., distinguishing which parts of their code run in asynchronous contexts,
bridging asynchronous and synchronous parts of their code, and they may be unaware of
or disregard the semantics and mechanisms of some coroutine features (e.g., the coroutine
cancellation mechanism).

While the Kotlin Coroutines framework helps developers identify asynchrony in their code
by marking suspendable functions, programmers should be aware of regular functions that
are called by asynchronous functions. Such functions, in turn, can run in an asynchronous
context, and it can be hard to follow if they run in synchronous or asynchronous context,
especially in large programs with deep execution call stacks.
Developers should be careful when bridging the synchronous and asynchronous parts of
their programs. Our analysis shows that when they need to call a suspend function from
a synchronous context, they may tend to use runBlocking calls as a quick solution. This
mistake is understandable since a suspend function calling a synchronous one is unaware
that it might reach a runBlocking, while the synchronous function is unaware it is called
from a coroutine. However, this unawareness can lead to dangerous runBlocking calls,
which can result in serious concurrency errors such as deadlocks.
When developers are aware of the asynchronous execution context but still need to call
a suspend function from a normal one, they might choose to pass a coroutine scope.
This solution, however, can introduce unexpected executions: the suspend function can
outlive the synchronous function that called it. Incorrect reasoning about the function
scopes and making incorrect assumptions about the completion of functions can result in
unexpected execution orders of the program’s statements.
Similarly, the developers should be aware of the asynchronous objects and use the correct
library structures to access or run operations on them. Incorrect assumptions (e.g., on the
synchronization with channels) and ignorance of possible interference from other threads
result in concurrency errors.
Finally, developers should be aware of the semantics and guarantees of the programming
abstractions and features they use. For example, we observed that there is common
confusion about the canceling behavior of coroutines. Canceling a coroutine is cooperative
and, therefore, does not guarantee it will be canceled. Similarly, the developers unaware
of the cancellation exception handling mechanism of coroutines can introduce serious
problems as incorrectly catching for these exceptions potentially silences critical exceptions
in their programs.

B. Brockbernd, N. Koval, A. van Deursen, and B. K. Ozkan 8:17

Discussion. Besides increasing developers’ awareness of common misconceptions, under-
standing common bug patterns can lead to the development of suitable program analysis
tools for Kotlin programs. We communicated our findings to the Kotlin and IntelliJ teams
at JetBrains. Our findings have led to the development of an inspection tool for detecting
problematic runBlocking calls, which is currently part of the IntelliJ source code [7].

7 Related Work

7.1 Studies of Real-world Concurrency Bugs
Similar studies have been conducted that collect and categorize concurrency bugs in different
programming languages and frameworks. Earlier work analyses of C/C++ concurrency bugs
from server and client applications [23, 15], and report that most non-deadlock concurrency
bugs are caused by atomicity and order violations. Focusing on misuse of asynchronous
constructs in C# programs, the work in [26] identifies problems due to misuse or unnecessary
use of asynchronous methods, invocation of long-running tasks in asynchronous methods and
some anti-patterns specific to C#’s async and await model. Another study on real-world
concurrency bugs [40] targets asynchronous and event-driven Node.js programs. The work
identifies the concurrency bug patterns in Node.js programs as atomicity violations, order
violations, and starvation in the execution of event handlers.

For Golang, the studies in [8] and [38] collect and analyze real-world concurrency bugs.
The bug study in [8] focuses on data races in Go programs, and [38] focuses on the inter-thread
communication mechanisms, i.e., whether message passing or shared memory concurrency is
less error-prone. The findings of these works successfully led to the research and development
of multiple concurrency bug analysis techniques for Go [39, 21, 13, 20, 36].

Targeting the actor model of concurrency, bug studies in [16, 22, 4] focus on actor
programs, where a program consists of a set of actors that concurrently operate on their local
states and communicate by exchanging asynchronous messages.The work in [16] categorizes
the bugs in actor programs into communication bugs (problems in handling messages or
due to delivery orderings of messages) and coordination bugs (e.g., ungraceful shutdown or
recovery of actors). Following the categorization of classical shared-memory concurrency bugs,
the work in [22] categorizes the actor program bugs into lack of progress and message protocol
violations and defines specific subclasses of each category for actor programs. The study of
actor concurrency bugs in [4] focuses on real-world Akka actor programs and analyzes their
symptoms, root causes, and API usage. The bug characteristics in actor programs differ
from classical shared memory programs and coroutine programs we study in this work since
actors provide a high-level concurrency model without a shared state, and the concurrency
nondeterminism is in the order of asynchronous events.

Different from these works, which identify the classical bug patterns of atomicity and
order violations in the shared memory accesses [23, 15, 1], atomicity and order violations
in the handling of events [40], message protocol violations in actor programs [16, 22, 4], or
misuses and bugs in asynchronous programming in C# [26] or Go [8, 38], in this work, we
focus on concurrency bugs in Kotlin programs and identify new bug patterns specifically
related to Kotlin coroutines.

7.2 Analysis of Kotlin Programs
Kotlin is a relatively new programming language and only some recent research addresses the
analysis of Kotlin programs. A related work targeting channel-based concurrent programs [30],
which tests channel-based systems through fuzzing, has found and led to the resolution of a

ECOOP 2024

8:18 Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines

bug in the Kotlin coroutine implementation. Another related work, Lincheck [19], provides a
testing framework for concurrent algorithms that run on the JVM, which has been adopted
in Java and Kotlin communities.

The bug patterns we discovered in this work can be useful for designing and developing
program concurrency analysis tools for Kotlin programs.

8 Conclusion

This paper introduces the first real-world concurrency bug study for Kotlin coroutines,
shedding light on the typical patterns of concurrency bugs. Having examined 55 concurrency
bugs selected from 7 popular open-source repositories that use Kotlin coroutines, we identified
common bug patterns related to Kotlin coroutine semantics. We distilled suggestions for
Kotlin developers to avoid these programming errors and discussed possible techniques to
detect such issues automatically. We reported our findings to the Kotlin and IntelliJ teams
at JetBrains, and we believe our findings will help future research and development of
concurrency analysis tools for Kotlin.

References
1 Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, Hans Hansson, and Wasif Afzal.

10 years of research on debugging concurrent and multicore software: a systematic mapping
study. Softw. Qual. J., 25(1):49–82, 2017. doi:10.1007/S11219-015-9301-7.

2 Automattic. Woocommerce Android app, 2023. URL: https://github.com/shadowsocks/
shadowsocks-android.

3 Automattic. Wordpress for android, 2023. URL: https://github.com/wordpress-mobile/
WordPress-Android.

4 Mehdi Bagherzadeh, Nicholas Fireman, Anas Shawesh, and Raffi Khatchadourian. Actor con-
currency bugs: a comprehensive study on symptoms, root causes, API usages, and differences.
Proc. ACM Program. Lang., 4(OOPSLA):214:1–214:32, 2020. doi:10.1145/3428282.

5 Jeff Boek. Bugfix commit, firefox for android, November 2018. URL: https://github.com/
mozilla-mobile/firefox-android/commit/d18bfe9f1bb5f0ed0f85e5fa36cddfaee84b5d47.

6 Bob Brockbernd. Found bugs per bug type, April 2024. URL: https://github.com/
bbrockbernd/kotlin-coroutine-bugs.

7 Bob Brockbernd. Runblocking inspection implementation, June 2024. URL:
https://github.com/JetBrains/intellij-community/commit/ea8296d53925ec87ddbee66f
37412793d3fbdb14.

8 Milind Chabbi and Murali Krishna Ramanathan. A study of real-world data races in Golang. In
Ranjit Jhala and Isil Dillig, editors, PLDI ’22: 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, San Diego, CA, USA, June 13 - 17,
2022, pages 474–489. ACM, 2022. doi:10.1145/3519939.3523720.

9 Yi-An Chen and Yi-Ping You. Structured concurrency: A review. In Workshop Proceedings of
the 51st International Conference on Parallel Processing, ICPP Workshops 2022, Bordeaux,
France, 29 August 2022 - 1 September 2022, pages 16:1–16:8. ACM, 2022. doi:10.1145/
3547276.3548519.

10 Sam Cooper. How I fell in Kotlin’s runblocking deadlock trap, and how you can avoid it, Oc-
tober 2023. URL: https://betterprogramming.pub/how-i-fell-in-kotlins-runblocking-
deadlock-trap-and-how-you-can-avoid-it-db9e7c4909f1.

11 Sam Cooper. The silent killer that’s crashing your coroutines, February 2023. URL:
https://medium.com/better-programming/the-silent-killer-thats-crashing-your-
coroutines-9171d1e8f79b.

https://doi.org/10.1007/S11219-015-9301-7
https://github.com/shadowsocks/shadowsocks-android
https://github.com/shadowsocks/shadowsocks-android
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/wordpress-mobile/WordPress-Android
https://doi.org/10.1145/3428282
https://github.com/mozilla-mobile/firefox-android/commit/d18bfe9f1bb5f0ed0f85e5fa36cddfaee84b5d47
https://github.com/mozilla-mobile/firefox-android/commit/d18bfe9f1bb5f0ed0f85e5fa36cddfaee84b5d47
https://github.com/bbrockbernd/kotlin-coroutine-bugs
https://github.com/bbrockbernd/kotlin-coroutine-bugs
https://github.com/JetBrains/intellij-community/commit/ea8296d53925ec87ddbee66f37412793d3fbdb14
https://github.com/JetBrains/intellij-community/commit/ea8296d53925ec87ddbee66f37412793d3fbdb14
https://doi.org/10.1145/3519939.3523720
https://doi.org/10.1145/3547276.3548519
https://doi.org/10.1145/3547276.3548519
https://betterprogramming.pub/how-i-fell-in-kotlins-runblocking-deadlock-trap-and-how-you-can-avoid-it-db9e7c4909f1
https://betterprogramming.pub/how-i-fell-in-kotlins-runblocking-deadlock-trap-and-how-you-can-avoid-it-db9e7c4909f1
https://medium.com/better-programming/the-silent-killer-thats-crashing-your-coroutines-9171d1e8f79b
https://medium.com/better-programming/the-silent-killer-thats-crashing-your-coroutines-9171d1e8f79b

B. Brockbernd, N. Koval, A. van Deursen, and B. K. Ozkan 8:19

12 Ana Lúcia de Moura and Roberto Ierusalimschy. Revisiting coroutines. ACM Trans. Program.
Lang. Syst., 31(2):6:1–6:31, 2009. doi:10.1145/1462166.1462167.

13 Nicolas Dilley and Julien Lange. Automated verification of go programs via bounded model
checking. In 36th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2021, Melbourne, Australia, November 15-19, 2021, pages 1016–1027. IEEE, 2021.
doi:10.1109/ASE51524.2021.9678571.

14 Roman Elizarov, Mikhail A. Belyaev, Marat Akhin, and Ilmir Usmanov. Kotlin coroutines:
design and implementation. In Wolfgang De Meuter and Elisa L. A. Baniassad, editors,
Onward! 2021: Proceedings of the 2021 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, Virtual Event / Chicago,
IL, USA, October 20-22, 2021, pages 68–84. ACM, 2021. doi:10.1145/3486607.3486751.

15 Rui Gu, Guoliang Jin, Linhai Song, Linjie Zhu, and Shan Lu. What change history tells us
about thread synchronization. In Elisabetta Di Nitto, Mark Harman, and Patrick Heymans,
editors, Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, pages 426–438. ACM, 2015.
doi:10.1145/2786805.2786815.

16 Brandon Hedden and Xinghui Zhao. A comprehensive study on bugs in actor systems. In
Proceedings of the 47th International Conference on Parallel Processing, ICPP 2018, Eugene,
OR, USA, August 13-16, 2018, pages 56:1–56:9. ACM, 2018. doi:10.1145/3225058.3225139.

17 JetBrains. Intellij idea community edition, 2023. URL: https://github.com/JetBrains/
intellij-community.

18 JetBrains. Ktor, 2023. URL: https://github.com/ktorio/ktor.
19 Nikita Koval, Alexander Fedorov, Maria Sokolova, Dmitry Tsitelov, and Dan Alistarh. Lincheck:

A practical framework for testing concurrent data structures on JVM. In Constantin Enea
and Akash Lal, editors, Computer Aided Verification - 35th International Conference, CAV
2023, Paris, France, July 17-22, 2023, Proceedings, Part I, volume 13964 of Lecture Notes in
Computer Science, pages 156–169. Springer, 2023. doi:10.1007/978-3-031-37706-8_8.

20 Ziheng Liu, Shihao Xia, Yu Liang, Linhai Song, and Hong Hu. Who goes first? detecting
go concurrency bugs via message reordering. In Babak Falsafi, Michael Ferdman, Shan
Lu, and Thomas F. Wenisch, editors, ASPLOS ’22: 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, 28 February 2022 - 4 March 2022, pages 888–902. ACM, 2022. doi:10.1145/
3503222.3507753.

21 Ziheng Liu, Shuofei Zhu, Boqin Qin, Hao Chen, and Linhai Song. Automatically detecting
and fixing concurrency bugs in go software systems. In Tim Sherwood, Emery D. Berger, and
Christos Kozyrakis, editors, ASPLOS ’21: 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Virtual Event, USA, April 19-23,
2021, pages 616–629. ACM, 2021. doi:10.1145/3445814.3446756.

22 Carmen Torres Lopez, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter Mössenböck. A
study of concurrency bugs and advanced development support for actor-based programs. In
Alessandro Ricci and Philipp Haller, editors, Programming with Actors - State-of-the-Art and
Research Perspectives, volume 10789 of Lecture Notes in Computer Science, pages 155–185.
Springer, 2018. doi:10.1007/978-3-030-00302-9_6.

23 Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a compre-
hensive study on real world concurrency bug characteristics. In Susan J. Eggers and James R.
Larus, editors, Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2008, Seattle, WA, USA, March
1-5, 2008, pages 329–339. ACM, 2008. doi:10.1145/1346281.1346323.

24 Sergey Mashkov. Bugfix commit, ktor, October 2020. URL: https://github.com/ktorio/
ktor/commit/7dfa6d9f1650430738e76cba165eb3529687be3c.

25 Mozilla. Firefox for android, 2023. URL: https://github.com/mozilla-mobile/firefox-
android.

ECOOP 2024

https://doi.org/10.1145/1462166.1462167
https://doi.org/10.1109/ASE51524.2021.9678571
https://doi.org/10.1145/3486607.3486751
https://doi.org/10.1145/2786805.2786815
https://doi.org/10.1145/3225058.3225139
https://github.com/JetBrains/intellij-community
https://github.com/JetBrains/intellij-community
https://github.com/ktorio/ktor
https://doi.org/10.1007/978-3-031-37706-8_8
https://doi.org/10.1145/3503222.3507753
https://doi.org/10.1145/3503222.3507753
https://doi.org/10.1145/3445814.3446756
https://doi.org/10.1007/978-3-030-00302-9_6
https://doi.org/10.1145/1346281.1346323
https://github.com/ktorio/ktor/commit/7dfa6d9f1650430738e76cba165eb3529687be3c
https://github.com/ktorio/ktor/commit/7dfa6d9f1650430738e76cba165eb3529687be3c
https://github.com/mozilla-mobile/firefox-android
https://github.com/mozilla-mobile/firefox-android

8:20 Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines

26 Semih Okur, David L. Hartveld, Danny Dig, and Arie van Deursen. A study and toolkit for
asynchronous programming in c#. In Pankaj Jalote, Lionel C. Briand, and André van der
Hoek, editors, 36th International Conference on Software Engineering, ICSE ’14, Hyderabad,
India - May 31 - June 07, 2014, pages 1117–1127. ACM, 2014. doi:10.1145/2568225.2568309.

27 Daniil Ovchinnikov. Runblocking should let go of CPU token before parking the thread,
December 2023. URL: https://github.com/Kotlin/kotlinx.coroutines/issues/3983.

28 Ondrej Ruttkay. Bugfix commit, woocommerce android app, January 2021. URL: https://
github.com/woocommerce/woocommerce-android/commit/6156420791b1e78067cd5dacbe5a1
5d0cc24979d.

29 Anton Spaans. Provide a runcatching that does not handle a cancellationexception but re-
throws it instead, February 2020. URL: https://github.com/Kotlin/kotlinx.coroutines/
issues/1814.

30 Quentin Stiévenart and Magnus Madsen. Fuzzing channel-based concurrency runtimes using
types and effects. Proc. ACM Program. Lang., 4(OOPSLA):186:1–186:27, 2020. doi:10.1145/
3428254.

31 Mygod Studio. Shadowsocks for android, 2023. URL: https://github.com/shadowsocks/
shadowsocks-android.

32 Petr Surkov. Bugfix commit, woocommerce android app, March 2024. URL: https://
github.com/woocommerce/woocommerce-android/commit/5dbb3b1834f67f097be7db96cab04
c3ca99d7294.

33 Don Syme, Tomas Petricek, and Dmitry Lomov. The f# asynchronous programming model. In
Ricardo Rocha and John Launchbury, editors, Practical Aspects of Declarative Languages - 13th
International Symposium, PADL 2011, Austin, TX, USA, January 24-25, 2011. Proceedings,
volume 6539 of Lecture Notes in Computer Science, pages 175–189. Springer, 2011. doi:
10.1007/978-3-642-18378-2_15.

34 Martin Sústrik. Structured concurrency, February 2016. URL: https://250bpm.com/blog:71/.
35 Tachiyomiorg. Tachiyomi, 2023. URL: https://github.com/tachiyomiorg/tachiyomi.
36 Saeed Taheri and Ganesh Gopalakrishnan. Automated dynamic concurrency analysis for go,

2021. arXiv:2105.11064.
37 Andrew Troelsen and Andy Olsen. Pro C# 5.0 and the. NET 4.5 Framework, volume 6.

Springer, 2012.
38 Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. Understanding real-world concurrency

bugs in go. In Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck, editors,
Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April
13-17, 2019, pages 865–878. ACM, 2019. doi:10.1145/3297858.3304069.

39 Oskar Haarklou Veileborg, Georgian-Vlad Saioc, and Anders Møller. Detecting blocking errors
in Go programs using localized abstract interpretation. In 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2022, Rochester, MI, USA, October
10-14, 2022, pages 32:1–32:12. ACM, 2022. doi:10.1145/3551349.3561154.

40 Jie Wang, Wensheng Dou, Yu Gao, Chushu Gao, Feng Qin, Kang Yin, and Jun Wei. A com-
prehensive study on real world concurrency bugs in node.js. In Grigore Rosu, Massimiliano Di
Penta, and Tien N. Nguyen, editors, Proceedings of the 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November
03, 2017, pages 520–531. IEEE Computer Society, 2017. doi:10.1109/ASE.2017.8115663.

https://doi.org/10.1145/2568225.2568309
https://github.com/Kotlin/kotlinx.coroutines/issues/3983
https://github.com/woocommerce/woocommerce-android/commit/6156420791b1e78067cd5dacbe5a15d0cc24979d
https://github.com/woocommerce/woocommerce-android/commit/6156420791b1e78067cd5dacbe5a15d0cc24979d
https://github.com/woocommerce/woocommerce-android/commit/6156420791b1e78067cd5dacbe5a15d0cc24979d
https://github.com/Kotlin/kotlinx.coroutines/issues/1814
https://github.com/Kotlin/kotlinx.coroutines/issues/1814
https://doi.org/10.1145/3428254
https://doi.org/10.1145/3428254
https://github.com/shadowsocks/shadowsocks-android
https://github.com/shadowsocks/shadowsocks-android
https://github.com/woocommerce/woocommerce-android/commit/5dbb3b1834f67f097be7db96cab04c3ca99d7294
https://github.com/woocommerce/woocommerce-android/commit/5dbb3b1834f67f097be7db96cab04c3ca99d7294
https://github.com/woocommerce/woocommerce-android/commit/5dbb3b1834f67f097be7db96cab04c3ca99d7294
https://doi.org/10.1007/978-3-642-18378-2_15
https://doi.org/10.1007/978-3-642-18378-2_15
https://250bpm.com/blog:71/
https://github.com/tachiyomiorg/tachiyomi
https://arxiv.org/abs/2105.11064
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1145/3551349.3561154
https://doi.org/10.1109/ASE.2017.8115663

A Language-Based Version Control System for
Python
Luís Carvalho #

NOVA LINCS, NOVA School of Science and Technology, Caparica, Portugal

João Costa Seco #

NOVA LINCS, NOVA School of Science and Technology, Caparica, Portugal

Abstract
We extend prior work on a language-based approach to versioned software development to support
versioned programs with mutable state and evolving method interfaces. Unlike the traditional
approach of mainstream version control systems, where a textual diff represents each evolution step,
we treat versions as programming elements. Each evolution step, merge operation, and version
relationship is represented explicitly in a multifaceted code representation. This provides static
guarantees for safe code reuse from previous versions and forward and backwards compatibility
between versions, allowing clients to use newly introduced code without needing to refactor their
program manually. By lifting versioning to the language level, we pave the way for tools that interact
with software repositories to have more insight into a system’s behavior evolution. We instantiate
our work in the Python programming language and demonstrate its applicability regarding common
evolution and refactoring patterns found in different versions of popular Python packages.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Program semantics

Keywords and phrases Software evolution, type theory

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.9

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.3

Funding This work is supported by EU Horizon Europe under Grant, Agreement no. 101093006
(TaRDIS), NOVA LINCS UIDB/04516/2020 (https://doi.org/10.54499/UIDB/04516/2020) and
UIDP/04516/2020 (https://doi.org/10.54499/UIDP/04516/2020) with financial support of
FCT.IP.

1 Introduction

The evolution of software systems is an essential aspect of software development and its life-
cycle. As requirements from stakeholders change, software systems must evolve to conform to
such changes. These changes may include bug fixing, implementing new features, porting code
to new hardware, updating business requirements, and other tasks that represent activities in
the life-cycle of a software system. As the release cycles in the software development process
become shorter [20] the overhead of managing multiple versions increases. On the one hand,
software maintainers have to reason more frequently about what changes to backport and
whether the changes they introduced break existing client code. On the other hand, the
stakeholders of a product will need to consider more frequently whether or not to upgrade.
Integrating a release with breaking changes leads to runtime errors and requires manual
intervention, while missing a critical update may lead to software vulnerabilities.

Given the manual effort required for semantic software versioning, which is largely rooted
in the fact that version control systems (VCS, e.g. git, svn, mercurial) operate on text
rather than programs, we extend prior work on a language-based VCS for a core functional
language, Versioned Featherweight Java [5], by adding support for programs with mutable
state and side effects, and versioning of class methods.

V1.1

A
rt
ifa

cts Available

ECOOP

© Luís Carvalho and João Costa Seco;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 9; pp. 9:1–9:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:la.carvalho@campus.fct.unl.pt
https://orcid.org/0000-0003-3445-939X
mailto:jrcs@fct.unl.pt
https://orcid.org/0000-0002-2840-3966
https://doi.org/10.4230/LIPIcs.ECOOP.2024.9
https://doi.org/10.4230/DARTS.10.2.3
https://doi.org/10.4230/DARTS.10.2.3
https://doi.org/10.54499/UIDB/04516/2020
https://doi.org/10.54499/UIDP/04516/2020
https://doi.org/10.4230/DARTS.10.2.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 A Language-Based Version Control System for Python

The current industry practices for software evolution advocate the use of version control
systems. However, while very good at managing changes to information, VCS give no
semantic meaning to each program delta (diff). Each evolution step is typically defined by
1) the new code it introduces and 2) an accompanying natural language message describing
the change. To issue a new version of the software, the developer includes one or more of
these steps and generates a changelog, naming the version according to some convention.

A widely adopted convention is Semantic Versioning [26], where the increment of each
version identifier denotes the nature of the introduced changes. Clients can then define their
update policy according to this convention. There is no guarantee that the code effectively
follows the versioning policy (e.g. the developer unknowingly introduced an unexpected
breaking change), thus VCS allow for inconsistent versions to be committed, and still require
work from developers in identifying the kind of changes made [33, 27].

In this work, we embed the versioning in the programming language, so that the developer
specifies as code what each delta is, and also how it relates to other versions. This allows for
(formal) verification on if and how the different versions interact with each other; it allows for
clients to use newly introduced code without changing their existing program; it is well-suited
for targeting software for a specific version, producing artifacts containing only the necessary
code; for providing a version-aware development environment (drawing inspiration from [23])
in which a developer may edit a snapshot and have the changes automatically committed
with the appropriate version tags. We extend previous work [5] to provide a language-based
VCS for Python programs, where versions and their relations are specified as code in the
program. The features that strictly extend [5] are:

A mechanism for defining transformations (which we call lenses) between method interfaces
in different, related, versions. This allows the developer to specify how the evolution of a
method interface is to be handled by clients, so that they do not have to manually adapt
their code to account for the new definition.
Support for mutability and side-effects. Featherweight Java (FJ) is a functional language
and, as such, does not model side effects. In this work, we instantiate our core calculus
in Python, a mainstream language with new challenges in comparison to FJ, particularly
concerning mutability. To do so, we ensure that mutability and side-effects are well
reflected when transitioning between versions with different state representations.

In this setting, the developer of a versioned program defines how the versions of the
program relate to each other, and provides each evolution step as code, to define how clients
should evolve between versions. As such, clients can then get new features from other versions
without their code breaking, and without any need for manual refactoring: the evolution
steps provided by the developer are used to adapt the code to the client version, so that they
can use it without breaking.

The diagram in Figure 1 provides the intuition on the parallels between traditional version
control systems and our approach. With the developer providing each evolution step as code,
we allow clients to migrate automatically, thus removing the need for migration tools (which
can also introduce bugs) to help clients do that. The traditional repository operations, such as
committing a file, or merging two branches, are well supported in our setting, by defining the
appropriate version graph. Finally, we provide a slicing procedure to allow developers to issue
a release for a given version, without having to manually perform operations on the repository
(e.g. backporting a security fix to another branch). The resulting slice, corresponding to a
release for a given version, ensures that the release conforms to the versioning graph, i.e. it
does not introduce unintended breaking changes.

L. Carvalho and J. C. Seco 9:3

Figure 1 Diagram describing the parallels between version control systems and our approach.

The main contributions of this paper are as follows:
Extending the work in [5], with method lenses and programs with state and side-effects.
Instantiating the core calculus in Python to add support for versioned programs.
Extending a type system for Python to account for versioned programs.
Introducing a slicing compiler that can generate a projection of a versioned Python
program for a single target version.

We expect this approach to provide static guarantees of safe code reuse from previous
snapshots, as well as ensuring forward and backward compatibility between related versions
through type-safe state transformation functions.

The remainder of this document is structured as follows: section 2 provides a running
example to illustrate the ideas in this work; section 3 describes in detail our technical
approach; section 4 evaluates the approach using public Python packages and provides the
empirical results; section 5 discusses the related work in this space; section 6 discusses the
limitations of this work and how we plan to address them; section 7 summarises our results.

2 Example

In Figure 2, we present examples of two Python programs: a versioned library program
(Figure 2a) and a client program that uses a specific version of that library (Figure 2b). The
versioned program (Figure 2a) contains a version graph describing how the different versions
relate to each other (lines 1-3). The class Name of this program contains versioned definitions
of methods, which are annotated with the version in which they are introduced.

In this example, there are three different versions of the library program, the class Name.
The program starts with the definition of a version graph for class Name. Version init is
the starting point of the example, and includes the definitions of fields first and last, and
of methods display and set_last. Note that, in version bugfix, the developer introduces
a new definition of method display (lines 15-17), but otherwise makes no changes. This
new definition supersedes the previous one for clients running in the context of version init.
This is indicated by the replaces relationship between versions bugfix and init.

Finally, in version full the developer introduces a new constructor (lines 9-11), where
they change the internal state representation of the class (line 11), and a new method,
get_full_name (lines 21-23). Contrary to version bugfix, these new definitions are only
meant for clients that are specifically running in the context of version full, and does not
affect clients in other versions. The code from version init is available in the new versions,
allowing it to be safely reused.

ECOOP 2024

9:4 A Language-Based Version Control System for Python

1 @version(’init’)
2 @version(’bugfix’, replaces=[’init’])
3 @version(’full’, upgrades=[’init’])
4 class Name:
5 @at(’init’)
6 def __init__(self, first: str, last: str):
7 self.first = first
8 self.last = last
9 @at(’full’)

10 def __init__(self, full: str):
11 self.fname = full
12 @at(’init’)
13 def display(self):
14 return f’{self.first}, {self.last}’
15 @at(’bugfix’)
16 def display(self):
17 return f’{self.last}, {self.first}’
18 @at(’init’)
19 def set_last(self, name: str):
20 self.last = name
21 @at(’full’)
22 def get_full_name(self):
23 return self.fname

(a) Example of a versioned Python class.

1 @run(’full’)
2 def main():
3 n = Name(’Bob Dylan’)
4 n.set_last(’Marley’)
5 print(n.display())
6 print(n.fname)

(b) Client code for version full.

1 @get(’full’, ’init’, ’first’)
2 def lens_first(self) -> str:
3 if ’ ’ in self.fname:
4 return self.fname.split(’ ’

)[0]
5 return self.fname
6 @get(’full’, ’init’, ’last’)
7 def lens_last(self) -> str:
8 if ’ ’ in self.fname:
9 return self.fname.split(’ ’

)[1]
10 return ’’
11 @get(’init’, ’full’, ’fname’)
12 def lens_full(self) -> str:
13 return f’{self.first} {self.

last}’

(c) Lenses for fields between different
versions.

Figure 2 Client and library code.

The version graph (lines 1-3) is a set of version decorators defining a name for a new
version and the type of relationship (upgrades or replaces) they have with other versions.
The type of relationship describes how the new version affects the existing version graph,
including versions introduced earlier: if the code is to be implicitly available for clients in
previous (related) versions, then the type replaces is used. This ensures clients running
in a previous version will have the new definitions available without having to update their
code (e.g. bug or security fixes). Otherwise, if the new version is a backward-incompatible
extension of a previous one (c.f. class inheritance), then the type upgrades is used. This
ensures that definitions introduced in an upgrade version are only available for clients running
explicitly in that version. These decorators can be provided by the developer (i.e. while
developing the program) or, for existing programs, they can be (naively) inferred from the
repository (e.g. the version graph for the repository in Figure 3a is depicted in Figure 3b).

The library program also contains several versioned programming elements, such as
constructors (lines 5-11) and methods (lines 15-23), which are decorated with the version in
which they are introduced.

The client program (Figure 2b) uses version full of the library. It uses the __init__
method (line 3) introduced in version full; the set_last (line 4) and display (line 5)
methods introduced in previous versions; and the attribute fname, which is the only field of
class Name in version full.

L. Carvalho and J. C. Seco 9:5

(a) Example of a git repository with two commits
(init, bugfix), one branch (full), and one merge
(final).

1 @version(’init’)
2 @version(’bugfix’
3 , replaces=[’init’])
4 @version(’full’
5 , upgrades=[’init’])
6 @version(’final’
7 , upgrades=[’full’]
8 , replaces=[’bugfix’])

(b) Version graph inferred from a git repository.

Figure 3 Repository and its corresponding version graph.

To resolve methods for the client at version full, we perform a method lookup operation
taking the version graph into account: the available definition of method set_last is the
one introduced in version init; the definition of method display is the one from version
bugfix, because it replaces the definition in version init. Given that these definitions are
available at version full, clients should be able to safely use them in that context.

However, since these methods use a different internal representation of class Name, we can
not use them as-is in version full, as that would result in an error since the class fields do
not match. We propose that, instead of re-implementing all the methods missing from the
new representation (of version full), the developer provides a mapping between the fields of
versions init and full. This mapping, which we call a get lens (Figure 2c), represents the
inner semantics of the evolution step.

A get lens is introduced by a method with a decorator of the form @get(v,v’,f), that
maps how field f of version v’ is derived from the state in version v. For instance, the lens
from version full to version init of field first (Figure 2c, lines 4-8) defines how the field
first, in version init, is obtained from the state of version full. Lenses are the building
blocks for developers to express evolution steps in the form of code.

The versioning-aware method lookup policy coupled with lenses allows clients to use code
from different versions at runtime in a way that respects the version graph and the evolution
semantics specified by the developer.

It is also possible to obtain a static, self-contained, slice of a versioned program for a
specific target version. This slice will include all code available throughout the version graph
for that target version, using the lookup policy described earlier. Again, since this can
include code that uses different internal state representations, the slicing procedure rewrites
such expressions using the corresponding lenses so that they are correct in the context of the
target version, as hinted at earlier.

For example, at version init, the available definition for method display is the one
introduced in the bugfix version. As such, this definition must be included in the slice
for version init (Listing 1). Since both versions init and bugfix share the same internal
representation of class Name (version bugfix does not define its own class fields), in the slice
for version init we do not need to rewrite the method display, as it already complies with
the state of version init.

1 class Name:
2 def __init__(self, first: str, last: str):
3 self.first = first
4 self.last = last
5 def display(self):
6 return f’{self.last}, {self.first}’

Listing 1 Slice of a versioned Python class for version init.

ECOOP 2024

9:6 A Language-Based Version Control System for Python

At version full, the available definition for methods display and set_last are intro-
duced in versions bugfix and init, respectively. These definitions must be included in
the slice for version full (Listing 2). In this case, since version full introduces a new
internal representation of class Name (by changing the fields from version init), then the
definitions of methods display and set_last do not conform to this representation, as
they are defined in the context of other versions. As such, we need to rewrite the methods
using the corresponding lenses for fields first and last (Listing 2, lines 12-21), so that they
match the context of version full.

1 class Name:
2 def __init__(self, full: str):
3 self.fname = full
4 def display(self):
5 return f’{self.lens_last()}, {self.lens_first()}’
6 def set_last(self, name: str):
7 __name = name
8 self.fname =
9 self.lens_full(first=self.lens_first(), last=__name)

10 def get_full_name(self):
11 return self.fname
12 def lens_full(self, first, last):
13 return f’{first} {last}’
14 def lens_first(self):
15 if ’ ’ in self.fname:
16 return self.fname.split(’ ’)[0]
17 return self.fname
18 def lens_last(self):
19 if ’ ’ in self.fname:
20 return self.fname.split(’ ’)[1]
21 return ’’

Listing 2 Slice of a versioned Python class for version full.

Both the library and client programs are valid Python programs1. The library program
can be fed as input to our compiler to extract a projection for a given version. The result of
this is a valid Python program without any version annotations. The client program, when
fed to an interpreter, is executed following the operational semantics described in this work
for multi-version program execution.

3 Design

The ideas presented in this work are mainly language-agnostic, provided the language has
support for objects and mutability. To implement these ideas, we instantiate this work in
the Python programming language [1]. We chose Python for the following reasons:

Being a mainstream and widely adopted language facilitates the evaluation of the approach
using publicly available repositories of both software libraries and their corresponding
clients.

1 For brevity, the statement to import the decorators, which is necessary for the code to run, is omitted
here

L. Carvalho and J. C. Seco 9:7

In comparison with other mainstream languages that provide similar features (e.g. Java,
C#), Python’s less complex syntax usually results in simpler programs [22]. This, again,
facilitates the empirical evaluation of the approach, as the code patterns will be simpler
to grok.
From an implementation point of view, Python’s dynamic nature allows us to quickly
prototype a solution that implements the ideas discussed in this work.

Our implementation works with a large subset of the Python language. Particularly, we
do not provide semantics for the versioning of: async/await statements, yield statements,
list comprehensions, and modules2. The implementation also works under the assumption
that the program is typed, either manually or with the help of automated type inference
tools [6, 17, 32, 21]. This requirement should not be deemed too restrictive, since the practice
of providing type annotations in Python programs is becoming increasingly common [7].

On top of this, we provide a type-checker and a slicing procedure for versioned Python
programs. The type-checker is an extension of Pyanalyze, a type-checker developed by Quora
that also annotates the AST nodes with their corresponding types. We extend Pyanalyze
with support for versioned lookup of fields and methods, ensuring the correct type are
inferred. The type-checker ensures the soundness of the program against its version graph,
and provides the following guarantees for well-typed programs:

A client that follows the versioning policy, defined in the version graph, will never have
their code break.
If a method needs to be rewritten for a different, related, version, it will always succeed
and never produce a type error.

The slicing procedure allows for the projection of code to a specific version, inspired by
software product lines and other technical approaches, such as programming variability and
CI/CD pipelines. This procedure is implemented on top of a rewriting mechanism to allow
library developers to release the code targeting a specific version. For well-typed programs,
the slicing procedure ensures that:

All necessary code for the target version, according to the specification in the version
graph, is included.
All the code included from other, related versions, is well-typed in the context of the
target versions, by applying state or method transformations when necessary (using
lenses).
Client code that targets the sliced projection will always type-check, even if the resulting
slice includes code from other versions.

The remainder of this section is structured as follows:
Section 3.1 describes how to define versioned elements in a program.
Sections 3.2 and 3.3 describe the versioned lookup disciplines for fields and methods
respectively.
Section 3.4 describes the use of lenses, particularly how they affect the result of a slice
for a version to ensure that it is well-typed in the presence of elements from different,
related versions.
Section 3.5 describes the rewriting procedure, which is crucial to ensure that code from
different versions included in a slice is always well-typed.
Section 3.6 describes the details of the slicing procedure, that allows library developers to
produce the code that targets a specific version.

2 Although we do not provide versioning semantics for these elements, they can still be used in a versioned
program; however, they will not follow the semantics described here.

ECOOP 2024

9:8 A Language-Based Version Control System for Python

3.1 Versioned programming elements in Python
To add support for versioning elements in Python programs, we provide the following class
and function decorators3. The motivation for using decorators is that they are enough to
implement the semantics described here, without requiring changes to the language syntax:

1 @version(<version>, <replaces>, <upgrades>)
2 @at(<version>)
3 @get(<from>, <at>, <name>)
4 @run(<version>)

Listing 3 Decorators for versioned Python programs.

These decorators allow programmers to define new versions of a class (line 1) by providing
a name (<version>) and the relation to other versions, if any (<replaces> and <upgrades>);
to introduce class methods in a version (line 2); to define class lenses that map how a field or
a method (<name>), defined in the context of a version (<at>), is mapped to the context of
another version (<from>) (line 3); and to indicate that a function should run in the context
of some version (<version>) (line 4).

The type-checker ensures the soundness of the decorators presented here. It ensures that
all version references are defined; that the version graph is acyclic; that the attribute specified
in a lens (<name>) exists in the context of its <at> version, if it corresponds to a field name,
and that it exists on both versions, if it corresponds to a method name; that the return type of
a get lens matches the type of its corresponding field, or the type of its corresponding method
(<name>); and that a class method defined at some version (<version>) is type-checked
against the context of that same version (namely, when resolving field and method types).

The @run decorator defines the operational semantics to provide an environment for
multi-version program execution. Additionally, we provide static semantics for versioned
program slicing, so that developers are able to extract a static projection of code for a
specific version. This is based on the concepts of class field and method lookup, version
lenses (provided by the developer), and program slicing. We present these concepts in greater
detail in the following sections.

3.2 Class field lookup
When type-checking a method of a class defined at some version v, we might encounter field
access expressions (e.g. return self.f). To check such expressions, we need to know 1) if
the field exists in that version of the class and 2) what its type is. Since fields can be defined
across multiple versions of the same class, the standard (syntactic) field lookup discipline
will not yield the correct field set for a given version.

As such, to be able to type-check a program, we need to define a lookup policy for class
fields at a given version (fields(C, v)), so that we know which fields are or are not available
at that version, and what their types are.

In our setting, a version (v) of a class (C) may either redefine its fields (e.g. by introducing
or removing a field) or inherit the fields of related versions. The version(s) in which the fields
of v are defined are called the base versions of v. Each version in the graph has one or more
corresponding base versions for a given class (bases(C, v)).

3 For readers unfamiliar with Python, decorators are a method of applying a transformation to a function
or a class. Except for the run decorator, none changes the decorated function or class (i.e. they act as
syntactic hints to infer the version context.)

L. Carvalho and J. C. Seco 9:9

A field is defined in a version of a class by assigning, in any method at that version,
a value to an attribute of the method caller4 (this is the first parameter of the method,
typically named self).

This is expressed in rule (Fields-At) (Figure 4). We start by collecting methods available
at version v (methods(C, v)) and selecting only those tagged for version v (at(m) = v, where
at performs a syntactic lookup of the method version decorator). Then, we collect all
parameters to this method (parameters(m)), and inspect the method’s body to check if
there is an assignment to an attribute of the first parameter (A0.f = e ∈ body(m)), which
corresponds the class instance, and, if so, we collect it’s type (T). Finally, we check all
previous related versions (W) to ensure that, if f is defined in a previous version, its type is
different than the type defined at v (C ⊢w f : T ′ ∧ T ̸= T ′). If the type is the same, the field
is considered to be inherited, and not explicitly defined at v.

Note that, in this and all subsequent inference rules, we use some helper functions (at,
args, parameters, upgrades, replaces, and body) that perform standard syntactic lookup of
nodes in the AST (e.g. parameters returns all parameters for a given method definition).

For instance, in Figure 2a (lines 7 and 8), fields first and last are introduced in
version init, in the constructor of that version. Note that the field is only considered to be
introduced in this version (as opposed to inherited) if it is not a field, with the same type,
of any parent version. We make a small exception (not expressed in rule (Fields-At) for
brevity) for the constructor: there, a developer can redefine fields with the same name and
type from other related versions5.

To lookup the bases of a version v, we start by collecting the fields defined explicitly at
that version given the procedure described earlier (fields_at(C, v)). If this set is not empty,
then the base of version v is simply itself (rule (Base-Self)). Otherwise ((rule (Bases))),
the bases of v are the union of bases from the versions it upgrades and replaces (W), using
the same lookup logic.

Finally, to lookup the (versioned) fields for a class C in version v (fields(C, v)), we collect
the union of fields in all base versions of v (rules (Fields), (Fields-Self)).

Note that, in this setting, these lookup rules are different from those presented in [5]. In
particular, in this work, a version of a class can have multiple base versions, as opposed to a
single one: as such, the lookup logic for fields is also slightly different, since we can lookup
fields on multiple base versions.

In the example of Figure 2a, the base version of bugfix, in which no fields are explicitly
defined, is init; the base version of full is itself. If we were to add a new version to this
program, final, that merges versions full and bugfix

@version(’final’, upgrades=[’full’, ’bugfix’])

then the base versions of final would be versions full (the base of itself) and init (the
base of bugfix); its fields would be the union of all fields in these versions (first, last,
and fname).

The base versions are used in all typing and reduction rules to ensure that the version
graph is respected when resolving class fields..

4 This follows the approach of most Python type-checkers, such as MyPy.
5 This is to account for the semantic (as opposed to syntactic) evolution of a field, when its name and

type are still preserved.

ECOOP 2024

9:10 A Language-Based Version Control System for Python

m ∈ methods(C, v) at(m) = v A = parameters(m)
A0.f = e ∈ body(m) Γ ⊢v e : T W = upgrades(v) ∪ replaces(v)

∀w∈W : f ∈ fields_at(C, w) ⇒ C ⊢w f : T ′ ∧ T ̸= T ′

f ∈ fields_at(C, v)
(Fields-At)

#fields_at(C, v) ̸= 0
v ∈ bases(C, v)

(Base-Self)

#fields_at(C, v) = 0
W = upgrades(v) ∪ replaces(v)

∀w∈W : bases(C, w) ⊂ bases(C, v)
(Bases)

bases(C, v) ̸= { v } W = bases(C, v)
∀w∈W : fields(C, w) ⊂ fields(C, v)

(Fields)

bases(C, v) = { v }
fields(C, v) = fields_at(C, v)

(Fields-Self)

Figure 4 Inference rules for field and base version lookup.

3.3 Method lookup
Similar to class fields, class methods can be defined across multiple versions of the same
class. As such, the standard method lookup discipline will not yield the correct definition of
a method for a given version, since there can be multiple definitions with the same name
across different versions. Consider the following (abstract) example of a class with three
related versions. Version 1 introduces a definition for methods n and m. The other versions
introduce a definition for method m:

@version(‘1’)
@version(‘2’, upgrades=[‘1’])
@version(’2.1’, replaces=[‘2’])
class C:

@at(‘1’)
def n(self): ...
@at(‘1’)
def m(self, x): ...
@at(‘2’)
def m(self, x): ...
@at(’2.1’)
def m(self, y): ...

Listing 4 Evolution of a method between versions.

The intuition here is that clients running at version 1 should use the definition of m
introduced in that version, since there is no definition of m that replaces the one from version
1. Clients at version 2 should use the definition of m introduced at version 2.1, since this is
declared as a replacement over version 2; and clients at version 2.1 should use the definition
of m introduced in that version. For method n, all versions use the definition from version 1,
which is local to version 1 and inherited in version 2 (and, subsequently, in version 2.1).

To comply with the version graph, we must also define a lookup policy for class methods
at a given version, as illustrated above. The reader may notice that the definition of m
introduced in version 2.1 – which should be available to clients in version 2 – has a different
interface from the local definition of m at version 2 (parameter x is renamed to y). Intuitively,
this means that client code is written for version 2, which may call method m using keyword

L. Carvalho and J. C. Seco 9:11

arguments (i.e. C().m(x=...)), which type-checks against the local interface, cannot simply
use the new definition, as that would introduce a type error (no parameter named x, missing
parameter y).

As such, the lookup of a method m at version v must return both the interface (to comply
with clients targeting v) and its implementation (to comply with new definitions introduced
in replacement versions). The lookup discipline for methods works in the following order:
Local definition. Search for a local definition of m introduced at version v. If any is found,

that definition corresponds to the interface and implementation of m for version v.
Parent definition. If no local definition was found, search all versions that v either upgrades

or replaces for a definition of m. If any is found, that definition corresponds to the interface
and implementation of m for version v. If there are multiple matches, they must be the
same definition. Otherwise, a conflict occurs, and the program is not well-typed.

Replacement definition. Finally, search all replacement versions of v for an implementation
of m. If no interface was found yet (either locally or inherited from a parent version), it
means m was introduced in a replacement version, so that interface is the one available to
clients at version v. In any case, if there are multiple matches, they must be the same
definition. Otherwise, a conflict occurs and the program is not well-typed.

This lookup policy is illustrated in the example above, where, for version 2, the interface
of m is the one from the local definition at 2, and the implementation is from the definition
at version 2.1. Later in this section, we describe how to use one interface with a different
implementation. For now, it’s important to retain that the lookup of methods must respect
the version graph, and take into account how the client code is typed (i.e., against which
interface). For method n, the interface and implementation at version 2 is the one inherited
from version 1.

This lookup policy is used to type-check function calls at a given version; to detect missing
lenses between methods of different versions, when the interface differs from the interface of
the implementation (e.g. method m at version 2 in the previous example); to detect conflicts
in the version graph; to select method definitions when providing a slice for a target version;
and to find the code to execute at runtime.

3.4 Version lenses
The lookup policy for class methods, described earlier, allows for a version v of a class to use
methods introduced in another (parent or replacement) version t. In such cases, there are
two situations where we need to pay special attention:

The implementation provided by the lookup policy is defined at another version, t, which
has a different state representation (i.e. different base versions from v).
The interface provided by the lookup policy is different than the interface of the imple-
mentation, and the signatures of the interfaces differ (e.g. method m in version 2 of the
previous example).

In the first case, since the state representation of the class is different, the method body
may not comply with the representation of version v: this is illustrated in Figure 2a, where
method display, available for version full, complies with the state of another version
(init). Intuitively, this means that, to use such implementations, we must introduce a
mapping between the fields used in the method body and the fields of the target version (in
this case, version full), otherwise we would introduce type errors.

ECOOP 2024

9:12 A Language-Based Version Control System for Python

In the second case, since the interface of the method is different from the interface available
for clients at version v, we can not simply use the new definition, since client code is typed
against a different interface (as such, doing so would introduce a type error). Intuitively, this
means that, to use the new implementation, while preserving the type correctness of clients
at v, we must introduce a mapping between the two interfaces.

These mappings, called lenses, for fields and methods, are described in more detail in the
remainder of this subsection.

3.4.1 Field lenses
Consider again the example in Figure 2a, where the interface and implementation of method
display for version full is from version bugfix (Figure 2a, line 17). In version full, class
Name has no first nor last field, so this definition of method display is not well-typed in
version full. For a client in version full to correctly use this code, we need to rewrite the
method body, so that it complies with the desired state.

The type system requires that the developer defines the necessary lenses at version full
for the fields at version init (Figure 2c). Intuitively, these lenses express how each field
evolved from the state of version full. In this case, the lenses are simple: split the full name
on a whitespace, if any, and return the corresponding component (if it exists). Later, when
projecting the code for version full, the lenses are used to rewrite field expressions in the
method body so that they are well-typed in the context of version full.

Each field lens is a standard class method, annotated with a @get decorator, of the form
@get(<at>, <from>, <name>) (Listing 3, line 3), with a single argument (the method caller,
self). In practical terms, the implementation of the lens answers the question: “In the
context of version <at>, how do I represent the field <name> of version <from>?”. The type
system ensures that the body of a lens is type-checked in the context of its <at> version (in
this case, version full); that <name> is a field in version <at>; and that the return type of
the lens matches the type of field <name> in version <at> (in this case, str).

Field lenses are a suitable mechanism for modelling common software evolution patterns,
such as renaming a field, changing its type, or refactoring its representation (as in the example
of Figure 2a, where we join both fields in a single one).

Evolution patterns that mostly concern text manipulation (as opposed to program
semantics), are typically considered breaking changes (e.g. changing the name of a field in
a class). In our setting, these patterns are well supported, as it is always possible for the
developer to express such a pattern in the form of a lens. If they do so, then these patterns
can be applied successfully without introducing breaking changes.

For instance, a lens to rename a field (f, to t) from version 1 to 2 is expressed by:

1 @get(‘1’, ‘2’, ‘t’)
2 def rename_f_t(self):
3 return self.f
4 @get(‘2’, ‘1’, ‘f’)
5 def rename_t_f(self):
6 return self.t

and allows clients in version 1 to use code from version 2, thus making it a non-breaking
change; and for code in version 2 to reuse code from version 1, so that the developer does
not need to rewrite methods that use field f. In these cases, the lenses can be synthesised
with the help of editor tools, instead of manually implemented by developers (c.f. refactoring
tools in Bides)6.

6 This is discussed in greater detail in section 6.

L. Carvalho and J. C. Seco 9:13

Evolution patterns that concern program semantics, such as changing the type of a
field, are not always possible to model with a lens. For instance, in the previous example
(Figure 2c), we showed how to model such a pattern (refactoring two fields into one).

However, consider the case where we want to refactor a list (in version 1) into a dictionary
(in version 2, that replaces 1). Assuming the semantics of the program dictate that the
elements of the list correspond to the values in the dictionary, then we can devise a lens
that maps the dictionary to the list (e.g. return list(self.data.values()), where data
is the dictionary), which allows the developer to reuse code from version 1 while working in
the context of version version 2. But what about the other way around? If we want to map
the list to a dictionary, it may not be possible to infer the keys7 (for instance, if they are
provided by the client when creating the dictionary).

In such cases, the type system detects an error: the replaces relationship between the
two versions defined in the graph implies that clients in version 1 should be able to use all
code from version 2 – but without a lens this is not possible.

In such cases, where the developer can not define a lens for a field (e.g. data), then the
code does not comply with the version graph, as the lens is missing. Intuitively, this indicates
that the developer introduced a breaking change from version 1 to version 2, so clients can
not migrate automatically. To fix this, the developer must change the version graph and use
the upgrades relationship between both versions instead.

This typing discipline reflects the nature of a breaking change when evolving class fields,
as it prevents the developer from issuing such a change in a replacement release, which, in
the absence of a lens, would make the client code crash. Instead, by using the upgrades
relationship, the developer instructs clients to adapt manually, by migrating to the new
version and then type checking their code in that context, correcting manually for any errors.

3.4.2 Method lenses
Similar to field lenses, method lenses map how (possibly different) interfaces of the same
method evolve between different, related versions.

Consider again the example in Listing 4, where method m is refactored in version 2.1 by
renaming parameter x to y.

In this case, the replaces relationship implies that clients in version 2, whose code is
written using the interface from that version (i.e. with parameter x), should be able to use
the new implementation of m automatically, without their code breaking:

1 @at(’2’)
2 def client():
3 return C().m(x=...)

Since the client code is written against the interface defined at version 2, to use the
new implementation, the type system requires that the developer define a method lens at
version 2 for method m at version 2.1. This lens expresses how the method evolved from one
version to the other, so that clients can safely use this new definition without rewriting their
code. Later, when projecting the code for version 2, the lenses are used to rewrite method
definitions, so that they conform to the interface of version 2 while using the implementation
from version 2.1. The following is an example of a method lens that renames argument x to
y, while otherwise preserving the semantics:

7 Whether this is possible or not depends on the program’s intended semantics.

ECOOP 2024

9:14 A Language-Based Version Control System for Python

1 @get(‘1’, ‘2’, ‘m’)
2 def lens_m(self, f: Callable[[C, P], T], x: P) -> T:
3 return f(y=x)

Listing 5 Method lens to rename a parameter

A method lens is a standard class method, annotated with a @get decorator (Listing 3,
line 3). The body of each lens function is type-checked in the context of the <from> version.
The type system ensures that the method (<name>) is available in both versions (<from> and
<at>), and that the return type of the lens function (T’) matches the return type of method
<name> in version <from>.

A method lens takes a reference to the instance object (first parameter, self); a reference
to the method definition in version <from> (f), whose signature matches the type of method
<name> in version <at> (in the example, the signature of f corresponds to the type of m at
version 2.1); and all positional and keyword arguments that method <name> takes in version
<at> (in this case, x). The parameter f is to aid the developer statically expressing how the
calls map between the two versions.

In the above example, f is a reference to the definition of m in version 2. As such, the
developer can express how a method call from a client in version 1 maps to the corresponding
method in version 2, in this case by calling f and passing x as the value to y.

Method lenses are a suitable mechanism for modelling common software evolution patterns,
such as adding/removing/reordering parameters, changing the type of parameters, and
changing a method’s return type.

Evolution patterns that mostly concern text manipulation (as opposed to program
semantics), are typically considered breaking changes (e.g. changing the name of a parameter
in a method). In our setting these patterns are well supported, as it is always possible for
the developer to express such a pattern in form of a lens, as hinted in the previous example.
If they do so, then these patterns can be applied successfully without introducing breaking
changes for clients.

The same approach can be used for methods that evolve semantically, not just textually.
Consider the following example, of a method that returns a boolean, and is refactored to
return 0 instead of True and 1 instead of False (the implementation details are omitted
here as they are not relevant):

1 @at(‘2’)
2 def m(self) -> bool: ...
3 @at(‘2.1’)
4 def m(self) -> int: ...

Again, the replaces relationship between version 2 and 2.1 indicates the developer
wants clients in version 2 to use the refactored method introduced in 2.1. As such, the
type system requires that they provide a lens expressing how the result of a call to the
new implementation, defined in version 2.1, can be mapped to the type of the interface,
introduced in version 2. The lens takes as parameter f a function that returns an int,
matching the definition in version 2.1, and returns a value of type bool, matching the
definition at version 2:

1 @get("2", "2.1", "m")
2 def lens_m(self, f: Callable[[C], int]) -> bool:
3 return f() == 0

L. Carvalho and J. C. Seco 9:15

Figure 5 Diagram describing the pipeline of the rewriting procedure.

A client using method m in version 2, such as:

1 @at(’2’)
2 def client():
3 return not C().m()

can use the new code from version 2.1 without refactoring their code, since the mapping
from int to bool (the expected return type for clients in version 2) is provided by the lens.

Similar to field lenses, notice how, when a method evolves semantically, it may not always
be possible to devise a lens that models the evolution step, depending on the semantics of
the change. Once again, in those cases, to fix the typing error (missing lens), the developer
must change the version graph, and define the new version as an upgrade, indicating to client
that they must migrate manually and refactor their code to adjust to the new interface.

Method lenses allow clients to use new code without any need for manually refactoring, so
developers can express versioning workflows with typical breaking changes, such as changing
method signatures, and automatically have clients complying with the versioning policy
established in the respective version graph.

3.5 Rewriting procedure
The concept of lenses, described in the previous subsection, allows clients to use code from a
version different than the one their code is targeting, even in the presence of different state
representations (i.e. class fields) and different method interfaces, respecting the evolution
pattern specified by the developer. To do so, we must rewrite the methods that are defined
in different versions, so that they conform to the client’s version context.

This section describes the procedure to rewrite methods defined at some version v so that
they match the context of the client version t. By doing so, we allow clients to use the new
methods without introducing type errors, accounting for side effects and ensuring they are
preserved across different version contexts.

The diagram in Figure 5, illustrates the pipeline of the rewriting procedure to rewrite a
definition of method m from version v (where it is defined) to version t (which the client is
running). Below, we describe each step of this pipeline in detail.

3.5.1 Collecting aliases
In Python, object references are passed by value. When we assign the value of an instance
field to a variable, if the variable is mutated, the changes will be reflected back in the instance
field. As such, to (statically) detect side-effects on instance fields, we first need to keep track
of aliases (to fields) in a given method. Consider the following example of a method m at
version v that appends an element to a list field:

1 @at(’v’)
2 def m(self):
3 x = self.f
4 x.append(1)

ECOOP 2024

9:16 A Language-Based Version Control System for Python

In this example, simple static analysis would not be enough to detect that self.f is
mutated (since the append method is called on a variable, not on a field). So, we need to
known that x is an alias to a class field (in this case, f). To do so, we perform static analysis
on assignment statements to collect the aliases of class fields in scope in each method.

From the assignment statement in the above example, we can infer that x is an alias to
the field f of the method caller’s class. In some cases, we can also detect if assigning the
result of other types of expressions such as a variable, the result of a function call, a list
index expression, and so on, also results in a reference to a mutable object field.

We collect all aliases of mutable object fields in a method to use in the next steps, so
that we can ensure that the side effects in the code for version v are correctly applied when
we rewrite it for version t.

3.5.2 Detecting side-effects
Now that we have collected all aliases to fields within a method, we can start performing
static analysis to detect side-effects. This is crucial to ensure that side-effects on fields of
other versions are correctly carried over to the target version, t, to which we are rewriting
the code. Conversely, detecting cases where no side-effects are produced, avoids having
redundant rewrites of such expressions.

The intuition here is the following: we will be using field lenses (in this case, from version
v to t) to rewrite fields (this is detailed further in this section); but, since field lenses are
pure functions (i.e. they do not mutate the object calling them), the side effects would be
lost if we simply replaced the field by its corresponding lenses – in which case, the side effect
would apply to the result of the lens, but not to the current state representation of the class
in version t.

Consider the following example of method m defined at version v, where the call to method
pop will have a side effect on the state of the object (by removing the first element of the list
stored in field f).:

1 @at(’v’)
2 def m(self):
3 x = self.f.pop()

We detect side effects to object fields by identifying expressions where the field is passed
as a mutable reference to a method8(in this case, method pop), so that we can preserve them
when rewriting.

To do so, we start by extracting the field to a (new) local variable, rewriting its occurrence
in the assignment, and then assigning back to the field the value of the local variable:

1 @at(’v’)
2 def m(self):
3 _x = self.f
4 _x.pop()
5 self.f = _x

This logic is expressed in the following rules. In rule (Rw-Field-Call), we rewrite
method calls that mutate the calling object. We start by collecting all methods available in
the target version t (methods(C, t)), and selecting those defined at a version other than t (i.e.

8 It is not always possible to do so by static analysis. For instance, the functions from the Python
standard library, such as pop, are compiled from C code, which we can not analyse statically. In these
cases, we naively assume that function mutates its arguments.

L. Carvalho and J. C. Seco 9:17

those that need rewriting). Then, for each method, we inspect its body to check if there is a
method called on an object (obj.m′(A) ∈ body(m), where A are the arguments passed in the
call). Finally, we check if method m′ mutates its caller: this is given by the helper function
mutates(T, m′, P0), where T is the object’s type and P0 is the first parameter of method
m′ (i.e. its caller). If so, we need to rewrite the method call. As shown in the previous
example, we start by declaring a new, unused, variable (x = fresh()) and assign the object
to it (x = obj). Then, we call the method on this variable, passing the same arguments
rewritten for the context of version t (x.m′(A′), where A′ is the result of rewriting arguments
A). Finally, we assign the value of x back to the object.

In rule (Rw-Field-Args) (Figure 6), we rewrite method calls that mutate their arguments.
Similar to the previous rule, we start by collecting all methods available in the target version
t (methods(C, t)), and selecting those defined at a version other than t (i.e. those that need
rewriting). Then, for each method, we inspect its body to check if there is a method called
on an object (obj.m′(A) ∈ body(m), where A are the arguments passed in the call)9. Finally,
we select all arguments which are mutated by m′ (A′), and we create a fresh variable for each
of these arguments (X). To rewrite the call, we start by assigning to each fresh variable the
current value of its corresponding argument (xi = A′

i). Then, we call the method, replacing
each (mutated) argument with its corresponding variable ({A′

/X}). Finally, we assign to the
arguments the value of their corresponding variable (which was mutated in the method call).

m ∈ methods(C, t) v = at(m) v ̸= t

obj.m′(A) ∈ body(m) Γ ⊢v obj : T P = parameters(m′)
mutates(T, m′, P0) A ⇝v t A′ x = fresh()

obj.m′(A) ⇝v t x = obj; x.m′(A′); obj = x
(Rw-Field-Call)

m ∈ methods(C, t) v = at(m) v ̸= t obj.m′(A) ∈ body(m)
Γ ⊢v obj : T A′ = { a ∈ A | mutates(T, m′, a) }

X = { fresh() | a′ ∈ A′ }
obj.m′(a) ⇝v t xi = A′

i; obj.m′({A′
/X}); A′

i = xi

(Rw-Field-Args)

Figure 6 Rules to rewrite fields.

Notice how the code is still typed for the context of version v. This procedure is used
whenever object fields (or aliases) are passed as mutable arguments to functions, as described
earlier, and also across all language statements, such as loops, return, try-raise, and so on.
For example, consider the following example, where an object field is mutated as a condition
of an if statement:

1 @at(’v’)
2 def m(self):
3 if self.f.pop():
4 return True

To rewrite this statement, we create two new references: one for the object’s fields (_x, as
described earlier); and another for the condition value of the if statement (_y). Finally, to

9 Note that this rule also applies for functions (e.g. sort, which sorts a list in place) and not just methods.
For brevity, that case is elided here, although it follows the same logic

ECOOP 2024

9:18 A Language-Based Version Control System for Python

apply the side effects of the method call (pop), we assign the value of this reference back
to the object’s field, before executing the if statement. This ensures the semantics of the
(original) code in version v are preserved:

1 @at(’v’)
2 def m(self):
3 _x = self.f
4 _y = _x.pop()
5 self.f = _x
6 if _y:
7 return True

By the end of this step we should have all side effects to fields expressed as simple
assignments of the form self.f = _v, where _v is the variable holding the value after
side-effects are applied.

3.5.3 Rewriting assignments to fields
Following up on the previous step, we now have all side effects expressed as assignments to
fields. To rewrite the assignments to the target version t, we use the corresponding lenses.

The intuition here is the following: when the developer defines a lens (from v to t) for
a field (f), the lens expresses how to compute the value of the field given the state of the
object at version t. As such, any fields of v that appear in the lens will be affected by an
assignment to field f in the context of version v.

Consider the example of method set_last (Figure 2a), that assigns a value to field last.
Since this method is available at version full, we must have a way to express how a change
to field last, in version init, affects the state of this version. This is called a put lens.

By analysing the lenses from version init to version full we see that field last appears
in the lens for field fname:

1 @get(’init’, ’full’, ’fname’)
2 def lens_full(self):
3 return f"{self.first} {self.last}"

In practice, this indicates that the value of the field fname, in version full, is affected by
the value of field last, in version init: if we run the code for this lens, replacing self.last
with the value that we are assigning to the field, we obtain the matching side effect in field
fname that results from the assignment. As such, the developer need not provide a definition
for a put lens, as we can synthesise one from its corresponding get lens.

To do so, we add a parameter for each field referenced in the get lens, and replace the
field reference in the lens body with the (matching) function parameter. The synthesised put
lens for field fname at version full is:

1 @put(’init’, ’full’, ’fname’)
2 def lens_full(self, first, last):
3 return f’{first} {last}’

To rewrite an assignment for field f, we start by synthesising all necessary put lenses.
These are synthesise from the corresponding get lenses defined at version v, for any field (f’)
from version t, that make a reference to field f in their body (rule (Synth-Put-Lenses)).
This ensures that a change to field f, in version v, has its side effects applied to fields f’ of
version t.

L. Carvalho and J. C. Seco 9:19

In the previous example there was only one lens in version init using field last, so
that is the one that is synthesised; in cases where there is more than one, we synthesised
all necessary put lenses and unfold the original assignment into multiple assignments, each
using a put lens for the affected fields. For instance, in Figure 2c, in the lenses from version
full to version init, field fname appears in two lenses. This means that both lenses would
be needed to correctly apply side effects to field fname when rewriting such an assignment to
version init (which would reflect on fields first and last, using the same logic).

Now that we have the necessary put lenses synthesised, we can use them to rewrite the
assignment. For example, to rewrite method set_last for version full, we can use the
synthesised put lens (lens_full) to apply the side effects resulting from the assignment. To
do so, we pass the assigned value (name) as the argument to the corresponding field (last).
To all other unaffected field parameters (i.e. first), we pass their current value (in the
context of the version where the method is defined, i.e. self.f for field f).

Finally, to ensure that this code is well-typed in the context of version t, we replace
all field references (in this case, self.first) using the corresponding get lens (Figure 2c,
line 2), as described in the next subsection. This is expressed in rule (Rw-Assignment),
where we start by detecting assignments to fields in the method’s body (obj.f = e), then
we rewrite the right-hand side to match the context of version t (e), and finally collect all
put lenses that affect field f (P). To rewrite the assignment, for each field of t affected by
the assignment (F ′′

i), we assign the result of its corresponding put lens (Pi), passing the
rewritten value for all unaffected fields (Fi = F ′

i), and the rewritten assigned value for the
assigned field (f = e′). The translation of the assignment for version t is then:

1 def set_last(self, name):
2 self.fname = self.lens_full(first=self.lens_first(), last=name)

m ∈ methods(C, t) v = at(m) obj.f = e ∈ body(m)
Γ ⊢v obj : T e ⇝v t e′ F = { fi | fi ∈ fields(C, v) ∧ fi ̸= f }

F ′ = { fi ⇝v t f ′
i | fi ∈ F }

F ′′, P = { f ′, put_lenses(T, v, t, f) | f ′ ∈ fields(C, t) }
obj.f = e ⇝v t obj.F ′′

i = obj.Pi(Fi = F ′
i , f = e′)

(Rw-Assignment)

3.5.4 Rewriting field references
As described earlier (section 2), if the method at version v contains expressions of references
to class fields (e.g. obj.f), we need to rewrite these expressions, using the corresponding get
lens, so they comply with the state of version t.

In this step, we do not account for field references to which the previous cases apply as
those are already compliant with the target version (i.e. assignments, aliases, and function
call arguments).

For example, in Figure 2a, the implementation of method display for version full is
defined in the context of another version, bugfix. This definition makes references to fields
(first and last) that are not defined in the context of version full. As such, we need to
rewrite these references so that they comply with the state of version full.

To do so, we replace field occurrences with a call to their corresponding get lens provided
by the developer (Figure 2c, lines 1-10). This ensures that the code is well-typed in the
context of the target version full, and that it respects the evolution semantics described by
the developer in the implementation of the lenses (rule (Rw-Field)):

ECOOP 2024

9:20 A Language-Based Version Control System for Python

1 def display(self):
2 return f’{self.lens_last()}, {self.lens_first()}’

m ∈ methods(C, t) v = at(m) obj.f ∈ body(m)
Γ ⊢v obj : T f ∈ fields(T, v) l = lens(T, t, v, f)

obj.f ⇝v t obj.l()
(Rw-Field)

3.5.5 Rewriting method definitions
As described earlier, method lenses allow clients to use new method interfaces and implement-
ations without any need for manually refactoring, allowing developers to express versioning
workflows with typical breaking changes and making them non-breaking. This mechanism
applies to cases where the method signature or semantics have changed between versions.

Consider again the example in Listing 4 with two implementations of the same method,
m, where a parameter is renamed from x to y, a typical breaking change. The semantics of
this change is expressed in the lens provided by the developer for this method (Listing 5).
With this lens, we can allow the clients of version 2 to use the definition of m introduced in
version 2.1 without refactoring their code.

To do so, we use the method lens to rewrite the implementation of method m when
extracting a slice for version 2. The intuition here is that we want to preserve the interface of
version 2, since that is what the client code is written against, while using the implementation
of version 2.1, which the developer introduced as a replacement for the old definition.

To rewrite the definition using the method lens, we start by adding the new definition of
method m (from version 2.1) to the program and renaming it, so that we don’t introduce
a conflict (line 2). Then, we rewrite the body of this method, according to the rewriting
procedure described in this subsection, so that it complies with the state of 2. Then, we
rewrite the lens function, by removing the parameter f (line 4) and replacing it in the body
with a reference to the (renamed) method from version 2.1 (line 5). Finally, we rewrite the
body of method m in version 2 to make a call to the method lens (line 7).

1 class C:
2 def __v2_1_m(self, y: int) -> int: ...
3 def lens_m(self, x: int) -> int:
4 return self.__v2_1_m(y=x)
5 def m(self, x: int):
6 return lens_m(x=x)

The rewriting of method definitions across different versions ensures that clients can write
their code against the old interface while taking advantage of the new implementation. This
concludes the presentation of the rewriting procedure, which we will use to produce a slice of
the program that targets a specific version, as described in the following subsection.

3.6 Program slicing
We propose a slicing procedure, built on top of the rewriting procedure described earlier,
applying static program transformations, to extract code for a specific target version from a
versioned program. The result should include all code available in that version according to
the versioning policy provided by the version graph.

The intuition for the slicing procedure is to be able to project code for a specific release,
similar to techniques used in software product lines or variability programming settings.

L. Carvalho and J. C. Seco 9:21

Figure 7 Diagram describing the pipeline of the slicing procedure.

At its core, the slicing procedure relies on the rewriting procedure to ensure that any
code that is reused from other versions is safe to use in the context of the target version t,
respecting the evolution semantics specified by the developer in the lenses.

Now that we have defined our rewriting procedure, we can use it to produce a slice for a
target version t. In Figure 7, we present a diagram with the pipeline of the slicing procedure.
Below, we describe each step of this pipeline in detail:
Select methods. We start by selecting the method definitions (their interface and corres-

ponding implementation, as defined by the lookup policy described earlier) of C that are
available at version t, according to the versioning policy of the version graph and the
lookup functions described in subsection 3.3. This is expressed in rule (Sl-Methods).

M = methods(C, t)
M ⊂ methods(slice(C, t))

(SL-Methods)

Rewrite methods. Given the methods selected in the previous step, we rewrite those that
either 1) have an implementation defined at a (base) version other than t or 2) the
developer has provided a lens for (i.e. the methods whose semantics have changed).
We rewrite these methods using the procedure described earlier so that they match the
context of the target version t.

Select lenses. Since the rewriting procedure may need lenses to rewrite expressions for the
context of t, we will need to include those (and only those) in the final result. We collect
all necessary get and put lenses (rules (Sl-Get-Lenses) and (Sl-Put-Lenses)) that
are required for the rewriting procedure, rewrite them to match the context of version t,
and include them in the resulting slice for this version. Rule (Sl-Get-Lenses) expresses
the logic for including get lenses: we check each method (m) of the target version (t) that
is defined in a different version (v) and, if its body contains a field access expression on an
object (obj.f) of type T , and a lens is defined between versions v and t of class T for field
f (lens(T, t, v, f)), we include it in the final slice of T . Rule (Sl-Put-Lenses) expresses
the logic for including put lenses: we check each method (m) of the target version (t) that
is defined in a different version (v) and, if its body contains a field assignment expression
on an object (obj.f = e) of type T we iterate over all (get) lenses for fields of version t in
class T (L), and finally we include the ones where field f is used (Lf).

m ∈ methods(C, t) v = at(m) v ̸= t obj.f ∈ body(m)
Γ ⊢v obj : T l = lens(T, t, v, f) C ′ = slice(T, t)

l ∈ methods(C ′)
(Sl-Get-Lenses)

m ∈ methods(C, t) v = at(m) v ̸= t obj.f = e ∈ body(m)
Γ ⊢v obj : T L = { lens(T, v, t, f ′) | f ′ ∈ fields(T, t) }

Lf = { l | l ∈ L ∧ self.f ∈ l } C ′ = slice(T, t)
Lf ⊂ methods(T ′)

(Sl-Put-Lenses)

l = lens(C, v, t, f)
F = { f | s ∈ body(l) ∧ s = self.f } l′ = l{ args = F }

put_lens(C, v, t, f) = l′ (Synth-Put-Lenses)

ECOOP 2024

9:22 A Language-Based Version Control System for Python

Remove version annotations. Finally, to produce the slice for version t, we remove any
version annotations that may exist, so that the end result is a standard Python program
that can be fed to the interpreter to be executed.

In Listing 2, we present the slice of the program in Figure 2a for version full. The
resulting slice includes the fields and methods of version full as defined by the lookup
policies described earlier, and any lenses that are necessary to rewrite statements from other
versions (e.g. lines 5 and 9).

4 Evaluation

In this section, we empirically evaluate the applicability of our approach by answering the
following research questions:
RQ1. Can library developers mitigate the occurrence of breaking changes in common evolu-

tion patterns?
RQ2. Can clients update a library dependency without having to manually refactor their

code to account for breaking changes?

4.1 Evaluation design
To setup the evaluation, we started by gathering a set of publicly available Python software
libraries with at least two major version releases, v and t. We opted for popular packages,
since, given their widespread adoption, these are likely to affect a higher number of clients.
We also took care to select packages with different kinds of changes such as renaming methods,
fields, or changing method signatures, to better illustrate the applicability of our approach.

For each library, L, we start by defining the version graph. Since we are trying to turn
major versions into minor (i.e. so that clients can upgrade transparently without breaking),
we define the later version as a replacement of the previous (major) version:

1 @version(‘v’)
2 @version(‘t’, replaces=[‘v’])

Then, we select the commit tagged for versions v and t and add the respective version
annotations (at(‘v’), at(‘t’)) to the methods in each commit. Now that we have the
version graph defined and all elements annotated with their corresponding versions, we run
the type-checker to detect any missing lenses. We implement the missing lenses, if possible,
according to the description stated in the migration guide for L, which corresponds to the
semantics the developers intend for each change.

At this stage, we should have a program that type-checks against its version graph (again,
if the lenses are possible to implement). Finally, we extract a slice of library L for version v.
Now, we can evaluate the applicability of our approach in two ways:
Using client code. In some cases, we were able to use a client program (C) to check if the

slice of L for version v conforms to the migration semantics the library developer defined.
To do so, we select the commit of C that targets version v of L and type-check this against
the slice of L for version v. If the program type-checks, the approach is validated.

Guided by examples in migration guide. As the reader may have understood by now, this
evaluation requires a bit of manual labour to setup. This is expected, since the ideas
described in this work are more suitable to be applied throughout the development cycle,
instead of applied to existing codebases. As a result, it was not feasible to validate some
libraries against existing client code. In those cases, we simply used the examples stated
in the migration guide (or modelled them ourselves if there are none), and validated the
approach in the same way described in the previous point.

L. Carvalho and J. C. Seco 9:23

4.2 Evaluation results
We conducted our experiments using the libraries listed in Table 1, using client code where
possible. The table shows the selected library, the start and target versions we chose, the
client used to validate the approach (if any), the number of breaking changes10, and how
many we were able to successfully model.

Table 1 Libraries and clients selected for the experimental evaluation.

Library Start version Target version Client Changes Successful
tensorflow 1 2 gpt-2 19 14
emoji 1.7 2 ntfy 1 1
metaapi-python-sdk 22 23 — 2 2
netbox 3.5 3.6 — 5 4
twillio-python 7 8 — 17 14

The following is a summary of the results we obtained for each library:
tensorflow. Out of 19 breaking changes that affected the gpt-2 package, forcing its de-

velopers to migrate manually to support version 2.0 of tensorflow, we were able to
model 14 successfully. The changes we were unable to model relate to the refactors
of tensforflow between the two versions, that essentially force the developer to re-
structure (and not just rewrite) their code – and our approach does not provide any
mechanism for specifying such changes (i.e. clients must always migrate manually).
The most relevant example in this case study is the removal of the tf.multinomial
method. The migration guide points client developers to use another method instead,
tf.random.categorical. This change can be modelled in our approach by providing a
method lens for the tf.multinomial method from version 1 to version 2, and implement
the lens to use the tf.random.categorical method instead.

emoji. Version 2 of the emoji package introduces 2 breaking changes, one of which affects the
client package ntfy. This change involves removing a boolean parameter, use_aliases,
which defaults to False, from method emojize. In version 2, client developers should
pass language=‘alias’ instead of use_aliases=True. Our approach is able to model
this successfully, by defining a method lens for emojize that passes the appropriate value
to language depending on the value of use_aliases. As such, the client package does
not need to manually refactor to use the new version.

metaapi-python-sdk. The 2 breaking changes introduced in version 23 of this pack-
age involve the rename of a method (enableMetastatsHourlyTarification
is renamed to enableMetaStatsApi), and the rename of a field
(metastatsHourlyTarificationEnabled is renamed to metastatsApiEnabled).
Both are supported in our setting and can be successfully implemented, by using a
method and a field lens respectively, to allow clients to migrate without refactor.

netbox. Out of the 5 breaking changes introduced in version 3.6, we were able to model 4.
The change we were unable to model concerns a dependency (PostgreSQL) that must
be upgraded. Since we do not yet support versioning of modules, this is not possible
in our setting. The remainder of the changes involve: renaming a field (device_role
field on the Device class is renamed to role); changing the name and type of a field

10 When determining the number of breaking changes, we ignored some which fall outside of the scope of
this work, particularly when concerning external dependencies.

ECOOP 2024

9:24 A Language-Based Version Control System for Python

(field choices from the CustomField class is renamed to choice_set, and its type is
changed from a dictionary to CustomFieldChoiceSets); removing fields from a class
(fields napalm_driver and napalm_args are removed from the Platform class); and
changing the return type of a method (reports and scripts are returned within a results
list). All of these were successfully modelled in our setting.

twillio-python. Out of the 17 breaking changes introduced in version 8, we were able to
model 14. The changes we were unable to model concern the renaming of classes:
class ConversationsGrant is replaced by VoiceGrant; and class IpMessagingGrant is
replaced by ChatGrant). We can not model such cases since our type system restricts
method lenses (in this case, the constructor method __init__) to return the same type
as the original definition11. The remainder of the changes involve renaming methods (12
instances) and changing the signature of a method, by removing a parameter (2 instances).
All of these were successfully modelled in our setting.

4.3 Evaluation answers
From the results presented in the previous section, we answer the research questions with:
RQ1. Yes, library developers can mitigate (and in some cases, eliminate) the occurrence of

breaking changes using our approach.
RQ2. Yes, in most cases clients can update without refactoring their code manually.

5 Related work

Program slicing. In his seminal paper, Weiser [31] describes program slicing as a method
for automatically decomposing a program, starting from a subset of its behaviour, and
reducing it to a minimal form which still produces that behaviour. This technique is
employed in many software engineering activities such as debugging, testing, maintenance
and parallelization.
Komondoor et al. [16] propose using slicing to identify duplication in source code, by using
program dependence graphs and program slicing to find clones (instances of duplicated
code) that are then displayed to the programmer. In the same thread, Gupta et al. [11]
suggest a new approach for locating faulty code, with the use of a delta debugging
algorithm to identify a minimal failure-inducing input which is then used to compute a
forward dynamic slice that is intersected with the statements in the backward dynamic
slice of the erroneous output, to compute a failure-inducing chop.
More recently, Maras et al. [18] have applied program slicing to extract the code im-
plementing a certain behaviour for a client-side web application, based on a web page
dependency graph. Maruyama et al. [19] propose a slicing mechanism to extract code
changes necessary to construct a particular class member of a Java program, based on
the history of past code changes which are represented by edit operations recorded on
source code of a program, helping programmers avoid replaying edit operations that are
non-essential to the construction of class members they are analysing.
To the best of our knowledge, ours is the first attempt to use slicing techniques to handle
program variability and versioning.

Update programming. Erwig and Ren [9], Apel and Hutchins [3] introduce an extension to
Haskell that supports update programming, where a program is an abstract data type
whose building blocks are language terms. They provide a mechanism to script changes in

11 This is detailed later on, in section 6.

L. Carvalho and J. C. Seco 9:25

programs, creating new terms and changing existing ones. Hazelnut [24] is a core calculus
that builds on typed “holes” and a gradual type theory that features a type system
for expressions with holes and a language of edit actions ensuring that every edit state
has static meaning. Both these approaches allows for progressive program construction,
as well as giving semantic meaning to incomplete code. We maintain the history of
programming versions, well-formed by construction, instead of defining semantics for
partial programs [25]. Such history is a guide to the program slicing procedure in VFJ,
unlike others where an edit calculus is needed to understand changes ([19]).

Delta-oriented programming. Schaefer et al. [28] introduce DOP, a programming language
for designing software product lines based on the concept of program deltas. The
implementation of software product lines is divided into a core module, comprising a
complete valid product, and a set of delta modules, changes to be applied to the core
module to target other products/variations. The language further ensures that all product
variations are well typed.

Multiversion systems analysis. The analysis of multiversion systems is usually a project
management activity that tries to detect change patterns in the code, and assessing
risks of interference between development threads that may result in the introduction of
vulnerabilities [14], code repetition [15] and maintenance hurdles [4, 13, 8, 30], and the
other difficulties in the management of multiple versions [10, 34, 12, 29]. Our approach
acts preventively by detecting illegal evolution steps in the development history and also
complements update and delta oriented programming approaches [2, 9, 28] by recording
a modification history and allowing (legal) branching in the code base.

6 Limitations and future work

Support for versioned modules. Currently, we do not support versioning of modules. In
doing so, we would be able to 1) declared versioned elements at the module level (e.g.
functions, constants, variables) and 2) defined versioned imports of packages (i.e. at some
version v, we want to import version t of package p). The main challenge is devising a
syntax for declaring a module-level version graph (since we use decorators, which are
only valid for classes and functions), and devising a syntax for versioned imports.

Structural typing for lenses. Currently, the type system requires that method lenses return
the same type (or a subtype) of the original method definition. This forbids us from, for
example, defining a lens to rename a class C to D (which would be reflected on the lens of
__init__ method of C, by returning an object of type D). Since our type checker uses
nominal sub-typing, this is not possible (since D is not syntactically declared as a subtype
of C). As such, we intend to define a structural sub-typing discipline for method lenses.

Inlining for lenses. The rewriting procedure for methods and fields replaces their occurrences
with calls to the corresponding lenses. However, from the experiments we conducted, it’s
clear that these are, more frequently than not, single line expressions (e.g. when renaming
a method argument, or renaming a field). To declutter and optimize the resulting slice,
we intend to implement an @inline decorator for lenses whose body is a single return
statement, to indicate that the lens can be inlined instead of rewriting to a function call.

Version-aware development environment. From a user experience perspective, we believe
this approach is not yet suitable for adoption. As such, we intend on implementing tools
for a version-aware development environment that would automate most of the common
refactoring practices (e.g. moving a method, renaming a field). We are working on an
extension for VS-Code to do so, and also plan on extending rope, a refactoring library for
Python, to account for refactoring of versioned programs. Ideally, the developer would

ECOOP 2024

9:26 A Language-Based Version Control System for Python

apply the refactor from the extension in the IDE, and the versioned program would be
changed accordingly to include the proposed refactor (for instance, renaming a method
would introduce a new definition and its corresponding lens).

7 Conclusions

We build on prior work that presents a language-based approach for a version control system
incorporating semantic knowledge of the evolution steps in the code and allowing code sharing
and reuse across versions of a software product. We extend it with support for method
transformations, and for state and side-effects in an imperative setting.

We instantiate this approach in a large subset of the Python programming language, and
demonstrate its applicability by evaluating it against different versions of popular Python
packages. We show that this approach is suitable for capturing common software evolution
steps, rich versioning workflows, and streamlining the delivery of a snapshot for a given
version. We provide a type system to detect conflicts and unintended breaking changes, that
operates on a semantic level on top of the entire version graph and its classes, and a slicing
compiler to extract the Python code targeting a single version.

References
1 ast - Abstract Syntax Trees, 2023. URL: https://docs.python.org/3/library/ast.html.
2 Edward Amsden, Ryan Newton, and Jeremy Siek. Editing Functional Programs Without

Breaking Them. In IFL 2014, 2014.
3 Sven Apel and Delesley Hutchins. A calculus for uniform feature composition. ACM Transac-

tions on Programming Languages and Systems (TOPLAS), 32(5):1–33, 2008.
4 Keith H Bennett and Václav T Rajlich. Software maintenance and evolution: a roadmap. In

Proceedings of the Conference on the Future of Software Engineering, 2000.
5 Luís Carvalho and João Costa Seco. Deep semantic versioning for evolution and variability. In

PPDP 2021, pages 1–13, 2021.
6 Siwei Cui et al. PYInfer: Deep Learning Semantic Type Inference for Python Variables, 2021.

arXiv:2106.14316.
7 Luca Di Grazia et al. The evolution of type annotations in python: an empirical study. In

ESEC/FSE 2022, pages 209–220. ACM, 2022.
8 S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus. Does code decay? Assessing

the evidence from change management data. IEEE Transactions on Software Engineering,
2001.

9 Martin Erwig and Deling Ren. A rule-based language for programming software updates. In
Proceedings of the 2002 ACM SIGPLAN workshop on Rule-based programming - RULE ’02,
Pittsburgh, Pennsylvania, 2002.

10 T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy. Predicting fault incidence using software
change history. IEEE Transactions on Software Engineering, 2000.

11 Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Locating faulty code using
failure-inducing chops. In Proceedings of the 20th IEEE/ACM International Conference On
Automated Software Engineering - ASE ’05, page 263, Long Beach, CA, USA, 2005. ACM
Press. doi:10.1145/1101908.1101948.

12 P. Hosek and C. Cadar. Safe software updates via multi-version execution. In 2013 35th
International Conference on Software Engineering (ICSE), May 2013. doi:10.1109/ICSE.
2013.6606607.

13 C. Izurieta and J. M. Bieman. How Software Designs Decay: A Pilot Study of Pattern Evolution.
In First International Symposium on Empirical Software Engineering and Measurement (ESEM
2007), 2007.

https://docs.python.org/3/library/ast.html
https://doi.org/10.1145/1101908.1101948
https://doi.org/10.1109/ICSE.2013.6606607
https://doi.org/10.1109/ICSE.2013.6606607

L. Carvalho and J. C. Seco 9:27

14 J. Kim, Y. K. Malaiya, and I. Ray. Vulnerability Discovery in Multi-Version Software Systems.
In 10th IEEE High Assurance Systems Engineering Symposium (HASE’07), 2007.

15 Miryung Kim and David Notkin. Program element matching for multi-version program
analyses. In Proceedings of the 2006 international workshop on Mining software repositories -
MSR ’06, 2006.

16 Raghavan Komondoor and Susan Horwitz. Using Slicing to Identify Duplication in Source
Code. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Patrick Cousot, editors,
Static Analysis, volume 2126, pages 40–56. Springer Berlin Heidelberg, Berlin, Heidelberg,
2001. doi:10.1007/3-540-47764-0_3.

17 Li Li et al. Scalpel: The python static analysis framework. arXiv preprint, 2022. arXiv:
2202.11840.

18 Josip Maras, Jan Carlson, and Ivica Crnkovic. Client-side web application slicing. In 2011
26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011),
pages 504–507, Lawrence, KS, USA, 2011. IEEE. doi:10.1109/ASE.2011.6100110.

19 Katsuhisa Maruyama, Eijiro Kitsu, Takayuki Omori, and Shinpei Hayashi. Slicing and
replaying code change history. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pages 246–249. ACM, 2012.

20 Stuart McIlroy et al. Fresh apps: an empirical study of frequently-updated mobile apps in the
Google play store, 2016.

21 Raphaël Monat et al. Static type analysis by abstract interpretation of python programs. In
ECOOP 2020, 2020.

22 Kashif Munawar and Muhammad Shumail Naveed. The impact of language syntax on the
complexity of programs: A case study of java and python. Int. J. Innov. Sci. Technol,
4:683–695, 2022.

23 Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A Hammer. Live functional programming
with typed holes. In Proceedings of the ACM on Programming Languages, volume 3, pages
1–32. ACM New York, NY, USA, 2019.

24 Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. Live functional programming
with typed holes. Proceedings of the ACM on Programming Languages, 2019.

25 Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer.
Hazelnut: A Bidirectionally Typed Structure Editor Calculus. ACM SIGPLAN Notices, 2017.

26 Tom Preston-Werner. Semantic Versioning 2.0.0, 2023. URL: https://www.semver.org.
27 S. Raemaekers, A. Van Deursen, and J. Visser. Semantic versioning and impact of breaking

changes in the Maven repository. Journal of Systems and Software, 129:140–158, 2017.
28 Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella. Delta-

Oriented Programming of Software Product Lines. In Software Product Lines: Going Beyond.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

29 Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic software updates: A
vm-centric approach. SIGPLAN Not., 44(6):1–12, June 2009. doi:10.1145/1543135.1542478.

30 Rick Wash, Emilee Rader, Kami Vaniea, and Michelle Rizor. Out of the loop: How automated
software updates cause unintended security consequences. In 10th Symposium On Usable
Privacy and Security ({SOUPS} 2014), 2014.

31 Mark Weiser. Program slicing. In Proceedings of the 5th international conference on Software
engineering, pages 439–449. IEEE Press, 1981.

32 Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. Python probabilistic type
inference with natural language support. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 607–618. ACM,
November 2016.

33 Lyuye Zhang et al. Has My Release Disobeyed Semantic Versioning? Static Detection Based
on Semantic Differencing, 2022. arXiv:2209.00393.

34 Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl. Mining version
histories to guide software changes. IEEE Transactions on Software Engineering, 2005.

ECOOP 2024

https://doi.org/10.1007/3-540-47764-0_3
https://arxiv.org/abs/2202.11840
https://arxiv.org/abs/2202.11840
https://doi.org/10.1109/ASE.2011.6100110
https://www.semver.org
https://doi.org/10.1145/1543135.1542478
https://arxiv.org/abs/2209.00393

Indirection-Bounded Call Graph Analysis
Madhurima Chakraborty #

University of California, Riverside, CA, USA

Aakash Gnanakumar #

University of California, Riverside, CA, USA

Manu Sridharan #

University of California, Riverside, CA, USA

Anders Møller #

Aarhus University, Denmark

Abstract
Call graphs play a crucial role in analyzing the structure and behavior of programs. For JavaScript and
other dynamically typed programming languages, static call graph analysis relies on approximating
the possible flow of functions and objects, and producing usable call graphs for large, real-world
programs remains challenging.

In this paper, we propose a simple but effective technique that addresses performance issues
encountered in call graph generation. We observe via a dynamic analysis that typical JavaScript
program code exhibits small levels of indirection of object pointers and higher-order functions. We
demonstrate that a widely used analysis algorithm, wave propagation, closely follows the levels of
indirections, so that call edges discovered early are more likely to be true positives. By bounding
the number of indirections covered by this analysis, in many cases it can find most true-positive call
edges in less time. We also show that indirection-bounded analysis can similarly be incorporated
into the field-based call graph analysis algorithm ACG.

We have experimentally evaluated the modified wave propagation algorithm on 25 large Node.js-
based JavaScript programs. Indirection-bounded analysis on average yields close to a 2X speed-up
with only 5% reduction in recall and almost identical precision relative to the baseline analysis, using
dynamically generated call graphs for the recall and precision measurements. To demonstrate the
robustness of the approach, we also evaluated the modified ACG algorithm on 10 web-based and 4
mobile-based medium sized benchmarks, with similar results.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases JavaScript, call graphs, points-to analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.10

Supplementary Material Software: https://zenodo.org/doi/10.5281/zenodo.12720724

Funding This research was partially sponsored by the OUSD(R&E)/RT&L and was accomplished
under Cooperative Agreement Number W911NF-20-2-0267. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the ARL and OUSD(R&E)/RT&L or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

1 Introduction

The construction of accurate call graphs is crucial for various static analysis tasks. Call
graphs provide a comprehensive representation of the calling relationships between functions,
enabling analysis techniques such as vulnerability and bug detection, program comprehension,
and refactorings [7, 20, 18, 3, 29]. Static call graph analyzers aim to over-approximate,
meaning that they may include false positives, i.e., unexecutable call edges. Analysis time

© Madhurima Chakraborty, Aakash Gnanakumar, Manu Sridharan, and Anders Møller;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mchak009@ucr.edu
mailto:agnan001@ucr.edu
mailto:manu@cs.ucr.edu
https://orcid.org/0000-0001-7993-302X
mailto:amoeller@cs.au.dk
https://orcid.org/0000-0003-1333-2314
https://doi.org/10.4230/LIPIcs.ECOOP.2024.10
https://zenodo.org/doi/10.5281/zenodo.12720724
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Indirection-Bounded Call Graph Analysis

tends to correlate with the number of call edges produced, so improving precision can
also improve analysis time. Although soundness is desirable, all existing practical whole-
program analyses by design sacrifice some amount of soundness to achieve useful precision
and scalability [15]. This perhaps makes them unsuitable for code optimization purposes,
but other use cases can tolerate false negatives (e.g., many bug finding and vulnerability
detection tools aim to expose issues but not to prove their absence). Nevertheless, achieving
high accuracy and low analysis time for large, real-world programs is challenging due to the
inherent complexity of call graph generation. Analysis time is often prohibitively large, so it
is important to explore new approaches that can substantially reduce analysis time even if
the price is slightly more false negatives.

As JavaScript has both objects and functions as first-class values, and it has no static type
system, constructing call graphs for JavaScript programs generally requires reasoning about
the possible flow of objects and functions through the program being analyzed. Functions
frequently appear both as arguments and return values of other functions and as values of
object fields. State-of-the-art call graph analyzers for JavaScript are based on subset-based
flow-insensitive analysis techniques [2]. Objects are typically modeled using allocation-site
abstraction [20, 6], or more coarsely using field-based analysis [7, 8]. Functions are tracked
using variations of control-flow analysis [17]. In general, the analyses can be expressed using
conditional subset constraint systems, which are solved using cubic-time algorithms [21, 25].

Such algorithms build a call graph for a given program iteratively until a fixpoint is
reached. Iteration is necessary because of indirections that may occur. For example, if a
higher-order function f contains a call g(. . .) to a function that is provided via a parameter g
of f, then the call edges for that call site cannot be resolved until the analysis has inferred the
calls to f. Similarly, the possible values at an object field read operation x.a generally cannot
be obtained until the analysis has inferred which objects x may reference. Different analysis
algorithms solve the analysis constraints in different orders, but there is one algorithm, the
wave propagation algorithm by Pereira and Berlin [21], that directly follows the levels of
indirections, as we explain in detail in Section 4. That algorithm was designed for points-to
analysis but is also well suited for call graph analysis.

Interestingly, in real-world code, we observe that function values typically do not flow
through many levels of indirection, which means that call graph analysis only needs few
iterations to infer most of the possible call edges. In Section 2 we show that creating call
graphs for higher-order functions (if not involving objects) requires only as many iterations as
the maximum order of the functions, and a similar property holds when objects are involved.
Therefore, when wave propagation-style analysis has reached a certain number of iterations,
all call edges that are discovered after that point must be false positives that arise only due to
analysis imprecision (assuming an idealized sound analysis). Thus, simply by terminating the
wave propagation algorithm after a fixed number of iterations, we can reduce analysis time
while only missing the relatively few call edges that involve high levels of indirection. This
also works when objects are involved; however, due to the asymmetric nature of field read
and field write operations (see Section 2) it is beneficial to leave analysis constraints for field
read operations and method calls unbounded. This is the first work to utilize observations
about low levels of indirection in data flows to achieve a more scalable static analysis.

Another program analysis technique that has proven effective for JavaScript programs is
the approximate call graphs (ACG) algorithm of Feldthaus et al. [7]. This algorithm applies
field-based analysis, meaning that objects are modeled more abstractly, which generally
leads to faster but also less accurate analysis compared to techniques that use allocation-site
abstraction of objects. We demonstrate that the ACG algorithm can also easily be adapted
to indirection-bounded analysis.

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:3

The proposed approach is inspired by the recent work of Mathiasen and Pavlogiannis [16]
on the complexity of Andersen’s pointer analysis. One of their key results is that a version of
pointer analysis where the number of store operations (corresponding to field write operations
in our setting) in witnesses of points-to relations is bounded can be solved in sub-cubic time.
They conjecture that the level of indirection of store operations is typically small in practice,
but they have left the practical realizations and an experimental evaluation for future work,
which we explore here in the context of call graph analysis for JavaScript.

Compared to ad hoc approaches to reduce analysis time, for example, stopping analysis
after a time-out, the proposed indirection-bounded approach gives more predictable and
interpretable outcomes because of the connection to the program semantics. That is, the
results of indirection bounding under a particular bound are deterministic, and one can give
a precise semantic characterization of the types of data flows that will be missed due to the
bound. Also, instead of tuning time-outs for individual programs, indirection-bound analysis
gives good results with a fixed bound applied uniformly for all programs.

In summary, the contributions of this paper are:
We propose the use of indirection-bounded analysis (Section 4) for achieving faster call
graph analysis while with little sacrifice in recall, which can be a useful compromise when
analyzing large, real-world programs.
We demonstrate via a dynamic analysis (Section 3) that typical JavaScript programs
tend to exhibit small levels of indirections of object pointers and higher-order functions,
thereby semantically justifying the use of indirection-bounded analysis.
By incorporating indirection-bounded analysis into an existing state-of-the-art call graph
analyzer for JavaScript that uses the wave propagation algorithm, we present experimental
results (Section 5) on 25 large open source programs, showing that the approach on
average (geometric mean) results in a 2X speed-up of the analysis with only 5% reduction
in recall (and nearly identical precision) relative to the baseline analysis when using
dynamically generated call graphs for measuring recall and precision. For many use cases,
this can be a valuable trade-off between analysis time and recall. Applying the technique
on 10 web-based and 4 mobile-based medium-sized benchmarks using the modified ACG
algorithm similarly resulted in an approximately 2X speed-up in analysis time, with only
a 1% reduction in recall (again with nearly identical precision).

2 Motivating Examples

In a call graph, call sites and functions are represented as nodes, and a directed edge from
node a to node b indicates that call site a may invoke function b at runtime. Sometimes,
individual call sites are abstracted by their enclosing function, so that the call edges are from
functions to functions.

The accuracy of a call graph construction technique can be measured by its precision and
recall relative to the (noncomputable) semantically correct call graph for a given program,
or using a call graph produced via one or more dynamic executions of the program as an
approximation. (A sound analysis will have perfect recall, but as noted in Section 1, practical
analyses are not fully sound.) Different use cases have motivated different metrics in the
literature [5]. With the call site targets metric [7], precision for a specific call site is computed
as the percentage of true (i.e., semantically possible) call targets among those predicted by
the static analysis, and recall is the percentage of predicted targets among the true targets.
The precision and recall for an entire program are then computed as the averages over all
call sites that are semantically reachable. A variant is the call edge sets metric [30], which
computes precision and recall by comparing the sets of call edges produced by the static

ECOOP 2024

10:4 Indirection-Bounded Call Graph Analysis

1 function f1() { }
2 function f2(p1) {
3 p1(); // #5a
4 }
5 function f3(p2) {
6 p2(f1); // #4a
7 }
8 function f4(p3) {
9 p3(f2); // #3a

10 }
11 function f5(p4) {
12 p4(f3); // #2a
13 }
14 f5(f4); // #1a

(a) Function arguments.

15 function g1() { }
16 function g2() { return g1; }
17 function g3() { return g2; }
18 function g4() { return g3; }
19 function g5() { return g4; }
20 var t5 = g5(); // #1b
21 var t4 = t5(); // #2b
22 var t3 = t4(); // #3b
23 var t2 = t3(); // #4b
24 t2(); // #5b

(b) Function return values.

Figure 1 Example programs that illustrate indirection levels for function calls.

25 var x = {
26 f: function() {}
27 };
28 x.a = x;
29 var f1 = x.f;
30 var f2 = x.a.f;
31 var f3 = x.a.a.f;
32 var f4 = x.a.a.a.f;
33 var f5 = x.a.a.a.a.f;
34 f1(); // #1c
35 f2(); // #2c
36 f3(); // #3c
37 f4(); // #4c
38 f5(); // #5c

(a) Field reads.

39 var x0 = {
40 f: function() {}
41 };
42 x0.f(); // #1d
43 x0.f1 = x0;
44 x0.f1.f(); // #2d
45 var x1 = x0.f1;
46 x1.f2 = x0;
47 x0.f2.f(); // #3d
48 var x2 = x1.f2;
49 x2.f3 = x0;
50 x0.f3.f(); // #4d
51 var x3 = x2.f3;
52 x3.f4 = x0;
53 x0.f4.f(); // #5d

(b) Field writes.

54 var x = {
55 m1: function() { return this; },
56 m2: function() { return this; },
57 m3: function() { return this; },
58 m4: function() { return this; },
59 m5: function() { return this; }
60 };
61 var t1 = x.m1(); // #1e
62 var t2 = t1.m2(); // #2e
63 var t3 = t2.m3(); // #3e
64 var t4 = t3.m4(); // #4e
65 t4.m5(); // #5e

(c) Method calls.

Figure 2 Example programs that illustrate indirection levels for object field accesses.

analysis and the dynamic analysis. The reachable functions metric [26] and the reachable
edges metric [10] instead compare the sets of functions or call edges, respectively, that are
reachable from the program entry points (e.g., application modules).

Figures 1 and 2 contain five small example JavaScript programs that illustrate the
indirections that can arise when computing call graphs. The red edges show the call edges,
pointing from call sites to functions. In Figure 1a, function f5 is a higher-order function,
which is called at line 14 with f4 as argument. The function f4 is itself a higher-order
function that is then called at line 12 with f3 as argument, etc., until finally line 3 calls f1.
In other words, f5 is a 5’th-order function, f4 is a 4’th-order function, etc. This means that
the call edge from the call site marked #1a must be discovered before the call edge for #2a,
etc., until after a total of 5 indirections have been resolved, the call edge for #5a can be found.
Figure 1b shows a similar example of a 5’th-order function where also 5 levels of indirections
arise, but this time due to return values rather than arguments. As we explain in Section 4,
analysis algorithms like wave propagation [21], ACG [7], or 0-CFA [24] can compute the call
graphs for these programs in 5 iterations. 5’th-order functions are not common in real-world
code, which we can exploit to terminate analysis early and save time without risking too
many missed call edges (i.e., false negatives).

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:5

A similar situation arises when objects and field access operations are involved. In
Figure 2a, lines 25–28 set up a simple object structure. The variables f1–f5 all refer to the
same function in this case, but via different levels of indirections. Specifically, discovering
the call edge for f5 at call site #5c requires 5 levels of indirection because of the chain of field
reads at line 33. Such long chains of field reads operations (sometimes split into smaller parts
with variables holding intermediate results) are not uncommon in real-world code, which is
why we give special treatment to these operations in the following sections.

On the other hand, it is perhaps less obvious how field write operations can lead to
high levels of indirections. Figure 2b shows an example where call site #5d has 5 levels of
indirection. That call site cannot be resolved until the analysis has discovered that x0.f4
is an alias of x0. This in turn requires discovering that the field write on the previous line
updates x0.f4, since x0 and x3 are aliases, and so on through each of the aliasing relations
established by the preceding lines.1

Finally, Figure 2c shows an example with chains of method calls, combining objects
and functions. Since each method call consists of a pair of a field read and a function call,
this example involves a total of 10 levels of indirection to resolve call site #5e. As with
chains of field reads, this pattern is also common in real code (e.g., with fluent interfaces [9]),
which suggests that method calls should be treated in the same way as field reads in
indirection-bounded analysis.

3 Dynamic Indirection Bound Estimation

To confirm the intuitions from Section 2 regarding the depth of indirections encountered
in real code, we designed a dynamic analysis to estimate the minimum indirection bound
required for a static analysis to discover each function call observed during execution. With
this dynamic analysis, we can observe the true bound under which function values flow to their
invocations in an execution, independent of any static analysis limitation or approximation.
If these minimum indirection bounds are observed to typically be low, that provides good
evidence that using low indirection bounds in a static analysis will preserve most analysis
recall. Here we present the design of the dynamic analysis and give results from a study
across a large set of benchmarks.

3.1 Language
The first column of Table 1 defines the types of canonical statements in a core language. (The
constraint rules in the second column will be explained in Section 4.1.) The statement types
are standard for a flow- and context-insensitive Andersen-style points-to analysis [2] for a
JavaScript-like language. A program is a set of functions, each of which contains statements
of the types shown in the table (more complex assignments and expressions can be normalized
to these forms via temporary variables). We elide details of standard language constructs like
conditionals, loops, etc., as they are not relevant given our focus on flow-insensitive static
analysis. We assume for simplicity that local variable names are unique across functions.

The values in the language are either object values, written {} (like a JavaScript object
literal) or (first-class) function values, written p => {. . .} (using JavaScript arrow syntax).
Without loss of generality we assume every function has one parameter and returns some

1 One might expect that nested object initialization would yield a high level of indirections via field writes,
e.g.: x = { f: ... }; y = {}; z = {}; y.b = x; z.a = y; z.a.b.f(); But, this code has only
one level of indirection due to field writes, as objects are copied to the base variables for all field writes
without indirection. The indirection level due to field reads is 3, due to the call.

ECOOP 2024

10:6 Indirection-Bounded Call Graph Analysis

Table 1 Statement types for our analysis and the corresponding static analysis constraint rules
(discussed in Section 4).

Statement Type Constraint Rule

x = {}i {oi} ⊆ pt(x)

x = p =>i { . . .} {fi} ⊆ pt(x)

x = y pt(y) ⊆ pt(x)

x = y.f
oi ∈ pt(y)

pt(oi.f) ⊆ pt(x)

x.f = y
oi ∈ pt(x)

pt(y) ⊆ pt(oi.f)

x = y(z)
fi ∈ pt(y)

pt(z) ⊆ pt(pi) pt(reti) ⊆ pt(x)

returni x pt(x) ⊆ pt(reti)

value. The first two statement types respectively allocate a new object or new function value
and assign it to a variable; each such statement has a unique label i. An x = y statement
copies between variables. For object fields, x = y.f loads field f and x.f = y stores to field
f. We assume a JavaScript-like semantics where writing to a non-existent object field f
creates f on the object (obviating the need for field declarations). Finally, we have x = y(z)
statements for calling functions, and return x statements for returning values. The label i

on each return statement identifies the containing function.

3.2 Dynamic Analysis
Here we present our dynamic analysis to estimate minimum indirection bounds. The analysis
does not provide an exact value for these bounds; it may under-estimate due to lack of
input coverage or unhandled language features, and it may over-estimate due to an imperfect
simulation of the static analysis. Still, we have found its results to be accurate in practice
(via manual inspection) and useful for understanding indirection levels in real programs.

Algorithm 1 gives pseudocode for our dynamic analysis. We assume the analysis is
implemented via an interface similar to that provided by frameworks like Jalangi [23], where
a callback provided by the analysis is invoked before and possibly after the execution of
each program statement. In Algorithm 1, the callback is the HandleStmt procedure. For
all statement types, we assume HandleStmt is invoked before the statement s executes,
except for calls x = y(z), where we require the callback both before and after (to respectively
handle parameter passing and returns).

The dynamic analysis relies on a function α that given an expression e, first evaluates e

to a value v and then returns the allocation site for v (i.e., the label of the statement that
allocated v). The dynamic analysis tracks bounds for allocation sites instead of individual
dynamic values to match the finite abstraction of values typically used by static call graph
builders. For readability, in the remainder of this section we refer to values and their
allocation sites interchangeably.

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:7

Algorithm 1 Dynamic bounds estimation.

1: selective: boolean
2: V : map from variable and value to indirection level bound
3: F : map from object field and value to indirection level bound
4: procedure HandleStmt(s)
5: match s

6: case x = {}i or x = p =>i {. . .}:
7: V [x, i]← 0
8: case x = y:
9: v ← α(y)

10: V [x, v]← min(V [x, v], V [y, v])
11: case returni x:
12: v ← α(x)
13: V [reti, v]← min(V [reti, v], V [x, v])
14: case before x = y(z):
15: fi ← α(y), v ← α(z)
16: t← max(V [y, fi] + 1, V [z, v])
17: V [pi, v]← min(V [pi, v], t)
18: case after x = y(z):
19: fi ← α(y), v ← α(reti)
20: t← max(V [y, fi] + 1, V [reti, v])
21: V [x, v]← min(V [x, v], t)
22: case x = y.f:
23: b← α(y), v ← α(y.f)
24: if selective then
25: t← max(V [y, b], F [b.f, v])
26: else
27: t← max(V [y, b] + 1, F [b.f, v])
28: V [x, v]← min(V [x, v], t)
29: case x.f = y:
30: b← α(x), v ← α(y)
31: t← max(V [x, b] + 1, V [y, v])
32: F [b.f, v]← min(F [b.f, v], t)
33: end match
34: end procedure

Algorithm 1 computes two maps, V and F . The V map records for each variable x and
value v the minimum observed indirection bound under which v flowed to x in the execution.
Retaining only the minimum bound for each variable x and value v makes sense for our use
case, as a sound static analysis models all possible data flows, and hence would discover the
flow of v to x under that minimum bound. F is similar but is keyed on object fields b.f,
where b is a value and f is a field name. After the analysis completes, the minimum observed
indirection bound for discovering that call x = y(z) invokes function f is simply V [y, f].

We now describe the handling of each type of statement in turn. For a creation of an
object or function at allocation site i (line 6), V [x, i] is set to 0, as the flow does not involve
any indirections. For an assignment x = y (line 8), where v is the value of y, V [x, v] is set to
be the minimum of its current value and V [y, v] (since we aim to find minimum observed
indirection bounds). Return statements (line 11) are handled just like assignments, updating
the bound for the synthetic reti variable for the enclosing function.

ECOOP 2024

10:8 Indirection-Bounded Call Graph Analysis

The next case (line 14), handling parameter passing, is the first involving an indirection,
here via a call. Here, fi is the function value being invoked, and v is the value of the
parameter. Recall from the discussion of Figure 1a in Section 2 that to discover data flow
into a formal parameter from a call site, the analysis must first discover the data flow of
the invoked function to the call; the parameter flow occurs at an increased indirection level.
Hence, to discover the parameter data flow from this call, the indirection bound must be at
least V [y, fi] + 1. Note that finding the flow also requires discovering that v flows to actual
parameter z, so the true bound for this flow is the maximum of these two flows (line 16).
Finally, line 17 updates the bound for formal parameter pi to be the minimum observed thus
far. Handling of the return value after a call completes (line 18) is analogous to handling of
parameters.

Handling of field reads (line 22) and field writes (line 29) is also similar to that for
parameter passing. Here, as discussed in Section 2, the increase in indirection level occurs
because the static analysis must first observe the data flow of the relevant object into the
base variable of the dereference. For both reads and writes, the base object is named b

in the pseudocode, and we add 1 to the bound for the flow of b to the statement in each
case (line 27 for reads, line 31 for writes). Recall from Figures 2a and 2b that writing code
with a high indirection level for field reads is more natural than doing the same for field
writes. Accordingly, the pseudocode has a flag selective to control whether reads should be
treated as bounded when computing estimates. If selective is true, reads are not treated
as bounded, and 1 is not added to the bound for the flow of b to the base variable y (see
line 25). In our implementation, selective also controls bounding of method calls; this
is not shown in Algorithm 1 since our core language (Table 1) contains only function calls
(with no receiver argument), not method calls.

Algorithm 1 may over-estimate the bounds required of a static analysis since it does not
propagate information from later assignments to previous calls. Consider this JavaScript
example:
1 x = function f1() { ... };
2 y = /* some flow with minimum bound 2 yielding f1 */
3 z = y;
4 z();
5 y = x;

After Algorithm 1 completes, V [z, f1] will be 2, since f1 was initially copied to y via a flow
of bound 2 (line 2) and then copied to z. However, due to line 5, there exists a flow of f1 to
y with bound 0. The algorithm updates V [y, f1] accordingly, but does not propagate this
update to V [z, f1]. This issue could be addressed by tracing the execution operations and
computing a fixed point over that trace; we used the single-pass approach as we did not
observe this over-estimation to occur in practice.

3.3 Study Results
Here we present results of applying our dynamic analysis to a suite of Node.js benchmarks
to measure minimum indirection bounds in practice.
Implementation. We implemented the analysis atop the NodeProf framework for Node.js
dynamic analysis [28]. For scalability, we separated the analysis into a trace generation phase
that runs during program execution, followed by a post-processing phase to compute the
bounds. For trace generation, NodeProf does not invoke a single callback for assignments,
but instead invokes separate callbacks for reads and writes of both variables and object fields.
To adapt Algorithm 1 to this structure, we maintain an additional map S from each value

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:9

Table 2 Number of call edges with each minimum bound across all benchmarks, for configurations
with selective enabled and disabled, respectively.

Configuration 0 1 2 3 4 5 6 7 8 9 10-19 20+
selective enabled 40,087 16,560 5,958 2,207 356 29 16 - - - - -
selective disabled 37,589 10,064 5,825 3,610 2,214 1,705 992 442 644 676 1,311 141

v to the bound t for v corresponding to the location (variable or field) from which it was
most recently read. Then, t is used when updating the bound at the next variable or field
write. So, for a statement x = y, the analysis first sees a read of v from y, and it sets S[v] to
V [y, v]. Then, when handling the subsequent write of v to x, it uses S[v] instead of V [y, v]
for the bound update (line 10 in Algorithm 1).

Benchmarks and methodology. We created a suite of 74 Node.js benchmarks for our study,
as no standard benchmark suite was available. These were randomly selected among the
top 1,000 highest ranked JavaScript projects on GitHub which both had unit tests available
and that worked correctly with our dynamic analysis infrastructure and implementation. We
exercised each benchmark by running its unit test suite. In total, these runs executed calls
at 60,601 distinct call sites.

Results. Table 2 gives the results from our study. We present results for two configurations.
The first is our preferred configuration, with selective enabled, so reads and method
calls are treated as unbounded. The second row gives results when all indirections are
bounded. Each column shows how many dynamic call graph edges (from call site to callee
function) could be discovered within that bound. The numbers are aggregated across all the
benchmarks, for a total of 65,213 call edges (greater than the number of distinct call sites,
since some sites invoke different functions on different execution paths).

The results show that in both configurations, most call graph edges can be found within a
small bound; more than 57% of edges are discoverable within a bound of 0, i.e., the function
data flow involves no indirections. Note, however, that with selective enabled, significantly
more edges are discoverable within bound 1 (6,496 more than with selective disabled),
and the long tail of call edges with minimum bound 7 or higher is eliminated. In fact, with
selective disabled, we discovered calls with a bound as high as 75. This result confirms the
intuition from Section 2 that long chains of field reads and method calls can occur regularly
in real-world programs, justifying special handling.

Overall, the data from our study provide promising evidence that an indirection-bounded
static analysis could discover most true call graph edges within a small bound. For the
selective configuration, roughly 96% (62,605 / 65,213) of calls are reached within bound 2.
These insights guided our static analysis design, described in Section 4.

Examples. For the configuration with selective enabled, below is an example of a call that
involves 4 levels of indirections, from the express-react-views benchmark (heavily simplified
for readability). Calls that require even higher indirection bounds are rare, as depicted in
Table 2, and are challenging to extract due to their complexity.

ECOOP 2024

10:10 Indirection-Bounded Call Graph Analysis

1 // in async.js library
2 function series(tasks) {
3 /*0*/_parallel(eachOfSeries, tasks);
4 }
5 function _parallel(eachfn, tasks) {
6 /*1*/eachfn(tasks, function cb1(task) {
7 /*3*/task(function cb2() {});
8 });
9 }

10 function eachOfSeries(tasks, task_cb) {
11 for (var task of tasks) { /*2*/task_cb(task); }
12 }
13 // in client code
14 /*0*/series([function f(next) { /*4*/next(); }]);

The async.js library provides a function series for running all task callbacks in a provided
array. Internally, this functionality is implemented using layers of higher-order functions,
leading to the high bound. The calls above are commented /*0*/ through /*4*/ to show
their bounds. The layered implementation inside async.js does enable code reuse within the
library, but it leads to convoluted and hard-to-understand control flow, as shown above. As
the data in Table 2 show, calls like these requiring bound 4 or greater are quite rare across
our benchmarks (only 0.6% of call edges).

In contrast, with selective disabled, natural code patterns can lead to high bounds, as
discussed in Section 2. For example, consider the following code from the express benchmark:
1 block.paragraph = edit(block._paragraph)
2 .replace(’hr’, block.hr) /*2*/
3 .replace(’heading’, ’ {0,3}#{1,6} +’) /*4*/
4 .replace(’|lheading’, ’’) /*6*/
5 .replace(’blockquote’, ’ {0,3}>’) /*8*/
6 .replace(’fences’, ’ {0,3}(?:‘{3,}|~{3,})[^‘\\n]*\\n’) /*10*/
7 .replace(’list’, ’ {0,3}(?:[*+-]|1[.)]) ’) /*12*/
8 .replace(’html’, ’</?(?:tag)(?: +|\\n|/?>)|<(?:script|pre|style|!--)’) /*14*/
9 .replace(’tag’, block._tag) /*16*/

10 .getRegex(); /*18*/

This code uses a fluent interface [9]: the edit and replace methods both return this, allowing
for chaining of method calls. Each step in the chain involves a field read (to access the
method) followed by a call, thereby adding 2 to the minimum bound for this configuration.
So, the final call to getRegex has 18 levels of indirection. We studied calls with higher bounds
and found that they involved a complex mix of field reads and method calls, often spread
across multiple functions and files.

4 Indirection-Bounded Call Graph Construction

In this section, we present static call graph construction algorithms that allow for indirection
bounding. We first describe a constraint-based formulation of the wave propagation algo-
rithm [21] (Section 4.1), and then present a simplified version for solving the constraints
(Section 4.2). In Section 4.3 we extend the algorithm with indirection bounding. Finally, in
Section 4.4 we show how further simplifications yield a bounded version of the ACG algorithm
of Feldthaus et al. [7]. The static analyses presented in this section work independently of the
dynamic analysis presented in Section 3. The purpose of the dynamic analysis was to provide
evidence and insights that support the static analysis design by showing how indirection
works in different scenarios. This semantic justification helps validate the conclusions drawn
from static analysis and ensures the bounding approach is reliable.

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:11

4.1 Analysis Formulation
The second column of Table 1 gives constraint rules for computing an Andersen-style points-
to analysis for our statement types. The rules are standard; see [25] for a more detailed
description. The constraints define what values (objects or functions) must be present in
the points-to set of each variable and object field. Given a solution to the constraints, a call
graph can be extracted by adding an edge from each call site x = y(z) (or from the function
containing the call site) to each function fi ∈ pt(y).

Concrete values are abstracted using allocation sites; we write oi or fi for an object or
function, respectively, allocated at site i. As in the dynamic analysis formulation (Section 3.2),
we assume a formal parameter variable pi and a return variable reti for each function fi.
The constraints for field read, field write, and call statements are conditional constraints [1] –
they each impose new subset constraints based on the contents of another points-to set. For
example, the constraint for x = y(z) checks if fi is present in pt(y), which indicates that y(z)
may invoke fi. In this case, new subset constraints are imposed to capture the data flow from
actual parameter z to formal pi and from the returned value reti to x. These conditional
constraints correspond directly to the notion of indirections discussed in Sections 2 and 3.
Our approach implements indirection bounds by bounding the handling of these conditional
constraints, leveraging the structure of the wave propagation algorithm, to be described next.

4.2 Simplified Wave Propagation
Algorithm 2 presents pseudocode for a simplified version of the wave propagation algo-
rithm [21], the basis of our bounding technique. The pseudocode eschews many optimizations
critical to the efficiency of the full wave propagation algorithm, including worklists, cycle
elimination, and topological sorting. We simplify the pseudocode to clearly expose the
two alternating phases of the algorithm, propagation and edge addition, the aspect of the
algorithm most critical to bounding.

Algorithm 2 computes the points-to relation pt using a flow graph G. Each node in
G represents a variable or an object field, and each edge n → n′ in G represents a subset
constraint pt(n) ⊆ pt(n′) from Table 1. The main entry point is the Analyze procedure at
line 4.

The algorithm begins with the Init procedure (line 12), which initializes pt and G

based on the simple (non-conditional) constraints for value creation, variable copy, and
return statements in Table 1. Then, at lines 6–11, the algorithm alternates between calls
to Propagate and AddEdges until pt and G reach a fixed point. Propagate (line 22)
uses a fixed-point loop to ensure that for each edge n → n′ currently in G, pt(n) ⊆ pt(n′).
Then, AddEdges (line 29) processes each field read, field write, and call statement and
updates G with new edges based on the current value of pt and the corresponding conditional
constraints in Table 1. The clean separation between propagation and edge addition is a key
characteristic of wave propagation; it leverages this structure to efficiently eliminate cycles in
the constraint graph and compute a topological ordering to minimize propagation work [21].

4.3 Adding Bounds
Given the structure of the wave propagation algorithm, adding bounding of all indirections is
straightforward. Algorithm 2 already separates its handling of conditional constraints, which
correspond to indirections, into the AddEdges procedure. So, bounding indirections simply
requires limiting the number of times that AddEdges runs to be less than the bound. We
have found that in real implementations that use the wave propagation structure, adding
bounding is similarly straightforward.

ECOOP 2024

10:12 Indirection-Bounded Call Graph Analysis

Algorithm 2 Simplified wave propagation algorithm.

1: P : program to analyze
2: pt: points-to relation, initially empty
3: G: flow graph, initially empty
4: procedure Analyze()
5: Init()
6: repeat
7: pt′ ← pt, G′ ← G

8: Propagate()
9: AddEdges()

10: until pt′ = pt ∧G′ = G

11: end procedure
12: procedure Init()
13: for each x = {}i ∈ P do
14: pt(x)← pt(x) ∪ {oi}
15: for each x = p =>i {. . .} ∈ P do
16: pt(x)← pt(x) ∪ {fi}
17: for each x = y ∈ P do
18: G← G ∪ {y→ x}
19: for each returni x ∈ P do
20: G← G ∪ {x→ reti}
21: end procedure
22: procedure Propagate()
23: repeat
24: pt′ ← pt

25: for each edge n→ n′ in G do
26: pt(n′)← pt(n′) ∪ pt(n)
27: until pt′ = pt

28: end procedure
29: procedure AddEdges()
30: for each x = y.f ∈ P , oi ∈ pt(y) do
31: G← G ∪ {oi.f → x}
32: for each x.f = y ∈ P , oi ∈ pt(x) do
33: G← G ∪ {y→ oi.f}
34: for each x = y(z) ∈ P , fi ∈ pt(y) do
35: G← G ∪ {z→ pi, reti → x}
36: end procedure

Recall that Section 3.3 showed that field reads often require higher bounds than other
indirections, matching the intuition of Section 2. Algorithm 3 is a variant that only bounds
indirections via field writes and calls, while leaving handling of field reads unbounded; the
changes compared to Algorithm 2 are emphasized with blue (lines 4, 7 and 12). Variables
bound and i are introduced, and only the AddEdges procedure of Algorithm 2 is modified.
The modified code first adds edges to G based on field reads without checking the bound
(lines 5–6). Then, field write and call statements are processed, but only if the field read
processing added no new edges to G (the G′ = G check on line 7). If handling of reads
adds new edges to G, then AddEdges returns without incrementing i, and another phase
of propagation is run (see line 8). Hence, the algorithm only handles stores and calls and
increments i (lines 8–12) once propagation and edge addition from field reads have iterated
to a fixed point.

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:13

Algorithm 3 Algorithm 2 modified to bound indirections except for field reads.

1: bound: bound on indirections
2: i: current iteration, initially 0
3: procedure AddEdges()
4: G′ ← G

5: for each x = y.f ∈ P , oi ∈ pt(y) do
6: G← G ∪ {oi.f → x}
7: if G′ = G ∧ i < bound then
8: for each x.f = y ∈ P , oi ∈ pt(x) do
9: G← G ∪ {y→ oi.f}

10: for each x = y(z) ∈ P , fi ∈ pt(y) do
11: G← G ∪ {z→ pi, reti → x}
12: i← i + 1
13: end procedure

The G′ = G check on line 7 is crucial for getting the full benefit of unbounded field reads.
Consider the following example:
1 var y = {...};
2 var x = y.a.b.c;
3 x.m = p => {...};
4 x.m(...);

We have three nested field reads at line 2 and one field write on the resulting object at line 3.
With unbounded field reads, one would expect the call at line 4 could be discovered with
an indirection bound of 1. But, without checking for G′ = G at line 7, the counter i for
writes and calls would still be incremented while handling the reads, exhausting the bound
before the relevant data flow from reads was discovered. Algorithm 3 discovers the call with
bound = 1, as desired. In our implementation, constraints from JavaScript method calls (see
Figure 2c in Section 2) are also handled in an unbounded manner, similar to handling of
field reads in Algorithm 3.

4.4 Bounded ACG
The ACG algorithm of Feldthaus et al. [7] is a well-known technique for building JavaScript
call graphs. ACG uses a field-based modeling of field accesses, unlike the field-sensitive
formulation of Table 1. In ACG, reads and writes of object fields are modeled as assignments
to and from global variables, and hence they do not introduce indirections for the analysis.
Algorithmically, both the original ACG analysis and an indirection-bounded variant can be
phrased as a simplified version of wave propagation. Pseudocode for indirection-bounded
ACG is given in Algorithm 4; code related to bounding is again shown in blue (lines 12 and 15).
The Analyze and Propagate procedures (elided) are identical to those in Algorithm 2.
Field reads and writes are now handled similarly to assignments in Init (line 6). AddEdges
is modified to remove all handling of field accesses. The only remaining indirections to
handle in AddEdges are calls, as in 0-CFA [24]. Bounding is also simplified compared to
Algorithm 3, as field reads do not require any special treatment.

5 Evaluation

We have implemented the techniques of Section 4 in two different analysis frameworks. The
first, Jelly [19, 12], implements a field-sensitive call graph analysis using an algorithm like
wave propagation [21], and is targeted at Node.js programs. The second, WALA [8], has

ECOOP 2024

10:14 Indirection-Bounded Call Graph Analysis

Algorithm 4 Bounded ACG algorithm [7], as a modified version of Algorithm 2.

1: bound: bound on indirections
2: i: current iteration, initially 0
3: procedure Init()
4: for each x = p =>i {. . .} ∈ P do
5: pt(x)← pt(x) ∪ {fi}
6: for each x = y, x = z.y, or z.x = y ∈ P do
7: G← G ∪ {y→ x}
8: for each returni x ∈ P do
9: G← G ∪ {x→ reti}

10: end procedure
11: procedure AddEdges()
12: if i < bound then
13: for each x = y(z) ∈ P , fi ∈ pt(y) do
14: G← G ∪ {z→ pi, reti → x}
15: i← i + 1
16: end procedure

an implementation of the ACG algorithm and is targeted at browser-based applications.
We modified these implementations to optionally use bounding as described in Sections 4.3
and 4.4.

With these implementations, we performed an experimental evaluation to assess the
effectiveness of indirection-bounded call graph construction. We designed our evaluation to
answer the following main research questions:
1. How are analysis running time, recall and precision impacted by different values of the

indirection bound?
2. How does bounding of field reads and method calls (disabling the selective flag of

Section 3.2) impact the overall effectiveness of the analysis?

5.1 Benchmarks
For Node.js benchmarks, we further filtered the benchmarks used in the dynamic study
(Section 3.3) based on the following three criteria. Initially, we required the dynamic call
graph to contain at least 50 call edges to provide a sufficient basis for comparing the precision
and recall of the static call graph. Then, we required Jelly could compute a static call
graph with a recall of at least 20% as compared to the dynamic call graph; this eliminated
some benchmarks where Jelly analyzed only a small portion of the code (typically due to
unsupported test frameworks). This criterion also eliminated cases where Jelly ran out of
memory. Second, we required that Jelly took at least 15 seconds to analyze the benchmark;
for benchmarks that can be analyzed quickly, there is no need for bounding.

This filtering led to a set of 25 benchmarks, whose details are given in Table 3. The
benchmarks are large, with thousands of functions and ranging up to more than 9.8MB of
code. For each benchmark, the table gives the numbers of packages, modules and functions,
the code size, and the analysis time, precision, and recall for Jelly when run without bounding.

For assessing WALA, we constructed a suite of 14 web and mobile benchmarks, shown
in Table 4. We included the 10 programs from the TodoMVC suite that were used by
Chakraborty et al. in their study [4], and we re-used their test harness to exercise the
programs. We also included four sample React Native applications, encompassing the starter

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:15

Table 3 Node.js benchmarks used for indirection-bounded static analysis experiments with Jelly.

Benchmark #Pkgs #Mods #Funs Code Size
(kB)

Analysis Time
(secs)

Precision
(%)

Recall
(%)

node-glob 42 186 2,621 1,103 22.38 88.01 90.14
kraken-js 130 303 3,192 1,416 19.62 96.85 37.95
tern 22 233 3,318 1,469 17.67 92.69 80.70
doctoc 96 322 3,212 1,515 15.25 93.97 74.18
js-yaml 59 479 4,440 1,900 28.86 96.42 95.38
react-loadable 55 138 3,192 1,952 405.44 99.35 81.50
babel-plugin-module-resolver 67 537 4,886 2,063 55.55 99.70 91.82
scrape-it 198 390 4,337 2,297 32.80 95.71 80.08
express-react-views 64 489 4,987 2,390 79.19 96.30 98.81
node-oauth2-server 36 262 4,588 2,448 461.66 75.43 95.53
lost 71 994 4,597 2,670 34.28 96.13 98.66
json2csv 112 428 6,743 2,692 29.99 97.24 81.45
homebridge 91 378 5,680 2,787 27.15 92.86 76.51
sharedb 37 266 5,630 3,164 47.64 76.54 65.95
big.js 1 26 1,718 3,306 15.88 96.02 100.00
normalizr 142 747 9,845 3,694 136.44 85.77 81.45
react-refetch 86 408 7,691 3,829 643.23 97.78 90.60
baobab 113 618 9,081 3,957 125.39 92.51 92.79
react-fontawesome 84 410 7,487 4,015 98.99 99.25 99.10
You-Dont-Need-Momentjs 63 742 8,024 5,404 48.10 85.91 84.43
eslint-plugin-compat 80 1,349 7,625 5,513 32.81 97.05 96.20
rewire 103 837 12,316 6,813 82.47 94.62 89.38
bootlint 110 741 10,022 6,835 57.96 96.85 80.46
webpacker 92 922 13,048 6,930 317.69 98.67 83.71
webpack-dashboard 122 1,182 17,783 9,823 834.18 96.31 76.44

app, a to-do app, a chat app, and a bidding app, all gathered from GitHub. We chose apps
we could run successfully in a simulator and that worked with our analysis infrastructure,
and we manually developed a test harness for each to exercise the code. For these apps, we
constructed call graphs for the final shipping version of the code, which is bundled as a single
file; hence, package and module counts are omitted in the table. The mobile benchmarks
are much larger and more complex than the web benchmarks, explaining the higher analysis
times and lower recall for those programs. While some of the smaller benchmarks in this
suite can be analyzed very quickly, we retained them in the suite due to the challenge of
manually exercising dynamic behaviors in web and mobile apps.

5.2 Experimental Configuration

In our experiments we measure precision and recall using the call site targets metric described
in Section 2, i.e., by comparing sets of possible call targets at call sites. We found that
this metric most robustly captured the data flows discovered by the static analysis. We
also experimented with the reachable functions and reachable edges metrics (see Section 2).
These metrics showed similar trends as for the call site targets metric, but are also more
fragile since discovery of one additional call graph edge sometimes dramatically impacts
overall reachability, making the results harder to interpret.

ECOOP 2024

10:16 Indirection-Bounded Call Graph Analysis

Table 4 Web and Mobile benchmarks used for experiments with WALA.

Benchmark #Pkgs #Mods #Funs Code Size
(kB)

Analysis Time
(secs)

Precision
(%)

Recall
(%)

Vanillajs 2 8 131 30 0.32 90.13 98.64
Mithril 3 8 136 57 0.35 82.77 90.83
Vue 4 6 623 247 0.68 88.70 95.64
Knockoutjs 4 4 586 308 0.69 89.65 97.31
Jquery 5 5 869 371 2.51 82.75 98.27
Backbone 6 11 950 387 3.93 78.93 97.77
Canjs 5 7 1,105 559 10.15 76.55 97.49
Knockback 8 11 1,798 764 29.25 80.49 96.35
Angularjs 5 9 1,488 1,093 17.08 83.53 95.87
React 5 10 1,876 1,168 45.73 67.67 97.65
Blank-app – – 5,203 2,030 309.77 62.33 67.45
Chat-app – – 7,119 3,185 1,537.29 55.12 64.85
Bidding-app – – 7,073 3,194 1,627.19 55.18 65.02
Todolist-app – – 11,678 5,704 8,340.14 57.98 68.28

We ran the Jelly experiments on a machine with an 8-core Intel Core i7-11700 processor
and 32GB of RAM, running Ubuntu 20.04.6 LTS. For the WALA experiments we used a
Google Cloud virtual machine with a 4-core Intel Broadwell Xeon CPU and 64GB RAM
running Ubuntu 20.04.6 LTS.

5.3 Results
Figure 3 presents our main results for the Jelly experiments. For these experiments, field
read and method call indirections were unbounded, the preferred configuration as discussed
in Sections 2 and 3.3. The box plots give analysis time and recall relative to the unbounded
Jelly analysis. The ideal for a bounded analysis would be to have recall as close to 1.0 as
possible, so no recall is lost compared to unbounded, with analysis time as close to 0.0 as
possible, maximizing performance. The analysis time data points sometimes extend above
1.0 primarily due to noise in the running time measurements. Additionally, the number of
cycle elimination runs in wave propagation [21] can be affected by the use of different types
of bounds in the analyzer. This variance can slightly increase or decrease overall analysis
running time, depending on the number of cycles in the constraint graph.

Studying Figures 3a and 3b, indirection bound 2 gives the best balance of analysis time
improvement and recall. The average analysis time speed-up is roughly 2X (ranging from
0.9X–23.9X), while the average relative recall is 95% (82%–100%) of the unbounded analysis.
The high relative recall matches the results of our dynamic study (Section 3.3), where we
observed that 96% of dynamic calls were discoverable within a bound of 2. At bound 1,
recall loss is significant at 17%, whereas bound 3 shows a minimal recall loss of only 1%,
although the analysis time increases significantly. At bound 2, the recall loss is moderate at
5%, offering a balance between recall and analysis time.

Figure 4 gives results for our WALA experiments. Here, we see that bound 1 yields a
good overall trade-off, with a roughly 2X average speed-up (1.1X–21.4X) with an average
relative recall of 99% (91%–100%). Bound 2 yields 99.99% relative recall on average with
a smaller average speedup of 1.6X. We believe the higher recall numbers at lower bounds
compared to Jelly are due to the fact that the ACG algorithm has fewer types of indirections

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:17

(a) Analysis time. (b) Recall.

Figure 3 Analysis time and recall for Jelly with different indirection bounds and selective
enabled, relative to Jelly’s unbounded analysis.

(a) Analysis time. (b) Recall.

Figure 4 Analysis time and recall for WALA with different indirection bounds, relative to
WALA’s unbounded analysis.

(a) Analysis time. (b) Recall.

Figure 5 Relative analysis time and recall for Jelly with reads and methods calls also bounded
(selective disabled).

to bound (see Section 4.4), and hence more data flow is discovered within a lower bound. For
the web benchmarks, the largest observed performance improvements were for the largest
benchmarks (e.g., for React we saw a 21X improvement). It would be useful future work
to evaluate bounding on a suite of larger web and mobile benchmarks, but exercising such
benchmarks to get good coverage of dynamic behaviors can be challenging (due to many
user interactions, server-side state, etc.).

ECOOP 2024

10:18 Indirection-Bounded Call Graph Analysis

Finally, Figure 5 gives data for our second research question, showing results for Jelly
with all indirections bounded, including field reads and method calls. Here, the bound with
the closest analysis time / recall trade-off to our main configuration is bound 5, with a relative
recall distribution fairly similar to bound 2 in Figure 3b. However, at this bound we see some
higher outliers in analysis time, ranging up to 89% of the unbounded analysis time. Further,
as shown in Section 3.3, with this configuration there is a long tail of calls that require
a much higher bound to discover; in Figure 5b, even at bound 5, there is one benchmark
with relative recall below 80% and five below 90%. Given these considerations, and the
naturalness of code patterns with high numbers of field read and method call indirections
(Sections 2 and 3.3), we believe analysis with selective bounding is the better choice for more
robust results.

Without indirection bounding, there were 31 benchmarks that could not be analyzed
because they caused the analyzer to run out of memory. With indirection bounding, 7 of
those benchmarks can be successfully analyzed without running into memory issues.

5.4 Threats to Validity
A threat to the external validity of our evaluation is our choice of benchmarks. For Node.js
we chose a large set of realistic benchmarks in a principled manner (see also Section 3.3).
For web and mobile we have smaller sets of benchmarks, due to challenges in exercising
such benchmarks to collect dynamic data. It is possible that on other types of benchmarks,
bounding will be less effective. Our results may also be internally invalid due to bugs in our
implementation. We have a variety of regression tests to check correctness of our results and
we have done extensive manual inspection of complex examples, reducing this threat. Finally,
our choice of call site targets as the precision/recall metric is another threat to external
validity. We chose this metric since it best measures the overall effectiveness of the static
analysis in capturing function data flows. But, there could be scenarios where a client relies
on certain critical edges being present in the static call graph, and those particular edges
require a bound greater than 2 to discover. In such cases, a higher indirection bound (or
other heuristics) would be required to produce a useful static call graph, leading to higher
analysis time.

6 Related Work

The most closely related work is the recent study by Mathiasen and Pavlogiannis [16] on the
complexity of different variants of Andersen’s classic pointer analysis. Most importantly, they
presented an algorithm for solving Andersen-style pointer analysis instances with bounded
numbers of store operations in witnesses of points-to relations, and proved that the algorithm
runs in almost quadratic time. In comparison, the indirection-bounded analysis that is
based on wave propagation or ACG remains cubic time for a fixed bound. As mentioned in
Section 1, Mathiasen and Pavlogiannis conjecture that the level of indirection is typically
small but without giving empirical evidence and without experimentally evaluating the
effects on analysis time, precision and recall. Furthermore, their work focuses on a C-like
language with field-insensitive analysis and without involving higher-order functions, whereas
we consider field-sensitive hybrid call graph and pointer analysis for JavaScript. It remains
an open problem whether their complexity results can be adapted to field-sensitive analysis.
The algorithm and theoretical complexity results by Mathiasen and Pavlogiannis are based
on Dyck reachability and matrix multiplications, whereas we base our approach on the wave
propagation algorithm that is known to work well in practice. For example, wave propagation
is used in the SVF analysis tool for LLVM [27] and also constitutes the core of the PUS
constraint solver [14].

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:19

Mathiasen and Pavlogiannis [16] additionally showed that their bounded analysis technique
is perfectly parallelizable, in contrast to ordinary Andersen pointer analysis. It will be
interesting in future work to investigate whether that theoretical property can be exploited
in practice to parallelize indirection-bounded call graph analysis.

Horwitz [11] studied a similar notion of levels of pointer indirection, but for reasoning
about the analysis precision loss that may occur when normalizing pointer operations, which
is not immediately related to bounded analysis techniques.

Utture and Palsberg [31] introduced a mechanism for analyzing library code only partially
to speed up whole-program static analysis of application code. Their technique retains
precision but, like indirection-bounded analysis, may lose some recall. We believe such
approaches could be combined with indirection-bounded analysis to speed up analysis even
further.

Utture et al. [30] (and follow-up work [13]) propose the notion of a call-graph pruner,
which aims to improve analysis precision by eliminating call edges that are likely to be false
positives. Like indirection-bounded analysis, that technique may negatively affect recall but
in practice often achieves a good balance between precision and recall. The technique works
as a post-processing phase and as such does not improve analysis time, and it relies on a
learning algorithm that does not provide semantics-based, predictable outcomes.

Bounds have often been used in configuring the abstraction used by a static analysis,
e.g., k-limiting for context sensitivity or access path length [25]. Indirection bounding is
fundamentally different, in that it heuristically terminates the core fixpoint computation
of the analysis before a fixed point is reached. Hence, unlike the aformentioned types of
k-limiting, indirection bounding impacts analysis soundness, trading off a small amount of
recall for improved scalability.

As pointed out in Section 1 it is well known that practically all whole-program static
analyzers have imperfect recall [15], but the analysis results are still useful for many use cases.
Reif et al. [22] and Sui et al. [26] investigated this phenomenon empirically for state-of-the-art
analyzers for Java, and Antal et al. [3] have made a similar study for JavaScript call graph
analysis tools. The more recent work by Chakraborty et al. [4] introduced a method for
quantifying the root causes of missing edges in call graphs produced by a field-based static
analysis for JavaScript [7]. The dynamic analysis used by Chakraborty et al. inspired the
technique presented in Section 3.

7 Conclusion

Indirection-bounded analysis is a simple but effective approach for speeding up call graph
analysis while missing relatively few call edges. The approach complements the theoretical
results of Mathiasen and Pavlogiannis by providing a practical algorithm and empirical
evidence, and it generalizes their bounded mechanism to a language with higher-order
functions and to field-sensitive analysis. The results of the dynamic analysis presented in
Section 3 indicate that real-world JavaScript code tends to have low levels of indirection
of function calls and field writes, which gives a semantic justification of the approach. We
have demonstrated that indirection-bounded analysis is straightforward to incorporate into
Pereira and Berlin’s wave propagation algorithm and also into the field-based ACG algorithm
by Feldthaus et al., and that it can be advantageous to choose a fixed bound independent of
the individual programs being analyzed.

For future work, it may be interesting to explore the potential of indirection-bounded
analysis for other programming languages, and to investigate whether the parallelizability
results of Mathiasen and Pavlogiannis also hold in presence of higher-order functions and
field-sensitive analysis.

ECOOP 2024

10:20 Indirection-Bounded Call Graph Analysis

Data Availability. The supplementary material at https://zenodo.org/doi/10.5281/
zenodo.12720724 contains the benchmarks used in the experimental evaluation and instruc-
tions for using indirection-bounded analysis with the open source analysis tools Jelly and
WALA.

References
1 Alexander Aiken. Introduction to set constraint-based program analysis. Science of Computer

Programming, 35(2-3):79–111, 1999.
2 Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD

thesis, University of Copenhagen, 1994.
3 Gábor Antal, Péter Hegedüs, Zoltán Herczeg, Gábor Lóki, and Rudolf Ferenc. Is javascript

call graph extraction solved yet? A comparative study of static and dynamic tools. IEEE
Access, 11:25266–25284, 2023. doi:10.1109/ACCESS.2023.3255984.

4 Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi. Auto-
matic root cause quantification for missing edges in JavaScript call graphs. In 36th European
Conference on Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Ger-
many, volume 222 of LIPIcs, pages 3:1–3:28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ECOOP.2022.3.

5 Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi. Au-
tomatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs (Extended
Version). CoRR, 2022. URL: https://arxiv.org/abs/2205.06780.

6 David R. Chase, Mark N. Wegman, and F. Kenneth Zadeck. Analysis of pointers and structures.
In Proceedings of the ACM SIGPLAN’90 Conference on Programming Language Design and
Implementation (PLDI), White Plains, New York, USA, June 20-22, 1990, pages 296–310.
ACM, 1990. doi:10.1145/93542.93585.

7 Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Efficient
construction of approximate call graphs for JavaScript IDE services. In 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013,
pages 752–761. IEEE Computer Society, 2013. doi:10.1109/ICSE.2013.6606621.

8 Stephen Fink et al. WALA. https://github.com/wala/WALA, 2024.
9 Martin Fowler. FluentInterface. https://www.martinfowler.com/bliki/FluentInterface.

html, 2005. Accessed: 2023-09-24.
10 Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet, and Ryan Berg.

Saving the world wide web from vulnerable JavaScript. In Proceedings of the 20th International
Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21,
2011, pages 177–187. ACM, 2011. doi:10.1145/2001420.2001442.

11 Susan Horwitz. Precise flow-insensitive may-alias analysis is NP-hard. ACM Trans. Program.
Lang. Syst., 19(1):1–6, 1997. doi:10.1145/239912.239913.

12 Mathias Rud Laursen, Wenyuan Xu, and Anders Møller. Reducing static analysis unsound-
ness with approximate interpretation. Proceedings of the ACM on Programming Languages
(PACMPL), 4(PLDI):194:1–194:24, 2024.

13 Thanh Le-Cong, Hong Jin Kang, Truong Giang Nguyen, Stefanus Agus Haryono, David Lo,
Xuan-Bach Dinh Le, and Huynh Quyet Thang. AutoPruner: transformer-based call graph
pruning. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, Singapore,
Singapore, November 14-18, 2022, pages 520–532. ACM, 2022. doi:10.1145/3540250.3549175.

14 Peiming Liu, Yanze Li, Bradley Swain, and Jeff Huang. PUS: A fast and highly efficient solver
for inclusion-based pointer analysis. In 44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pages 1781–1792.
ACM, 2022. doi:10.1145/3510003.3510075.

https://zenodo.org/doi/10.5281/zenodo.12720724
https://zenodo.org/doi/10.5281/zenodo.12720724
https://doi.org/10.1109/ACCESS.2023.3255984
https://doi.org/10.4230/LIPIcs.ECOOP.2022.3
https://arxiv.org/abs/2205.06780
https://doi.org/10.1145/93542.93585
https://doi.org/10.1109/ICSE.2013.6606621
https://github.com/wala/WALA
https://www.martinfowler.com/bliki/FluentInterface.html
https://www.martinfowler.com/bliki/FluentInterface.html
https://doi.org/10.1145/2001420.2001442
https://doi.org/10.1145/239912.239913
https://doi.org/10.1145/3540250.3549175
https://doi.org/10.1145/3510003.3510075

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:21

15 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nelson Amaral,
Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dimitrios
Vardoulakis. In defense of soundiness: a manifesto. Communications of the ACM, 58(2):44–46,
2015. doi:10.1145/2644805.

16 Anders Alnor Mathiasen and Andreas Pavlogiannis. The fine-grained and parallel complexity
of Andersen’s pointer analysis. Proc. ACM Program. Lang., 5(POPL):1–29, 2021. doi:
10.1145/3434315.

17 Jan Midtgaard. Control-flow analysis of functional programs. ACM Comput. Surv., 44(3):10:1–
10:33, 2012. doi:10.1145/2187671.2187672.

18 Anders Møller, Benjamin Barslev Nielsen, and Martin Toldam Torp. Detecting locations
in JavaScript programs affected by breaking library changes. Proc. ACM Program. Lang.,
4(OOPSLA):187:1–187:25, 2020. doi:10.1145/3428255.

19 Anders Møller and Oskar Haarklou Veileborg. Jelly. https://github.com/cs-au-dk/jelly,
2024.

20 Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. Modular call graph
construction for security scanning of Node.js applications. In ISSTA ’21: 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, Virtual Event, Denmark, July
11-17, 2021, pages 29–41, 2021. doi:10.1145/3460319.3464836.

21 Fernando Magno Quintão Pereira and Daniel Berlin. Wave propagation and deep propagation
for pointer analysis. In Proceedings of the CGO 2009, The Seventh International Symposium
on Code Generation and Optimization, Seattle, Washington, USA, March 22-25, 2009, pages
126–135. IEEE Computer Society, 2009. doi:10.1109/CGO.2009.9.

22 Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and Mira Mezini. Judge:
identifying, understanding, and evaluating sources of unsoundness in call graphs. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2019, Beijing, China, July 15-19, 2019, pages 251–261. ACM, 2019. doi:10.1145/3293882.
3330555.

23 Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. Jalangi: a selective
record-replay and dynamic analysis framework for JavaScript. In Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013, pages 488–498. ACM, 2013. doi:10.1145/2491411.2491447.

24 Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis, Carnegie Mellon
University, 1991.

25 Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. Alias anal-
ysis for object-oriented programs. In David Clarke, Tobias Wrigstad, and James Noble, editors,
Aliasing in Object-Oriented Programming. Springer, 2013. doi:10.1007/978-3-642-36946-9_
8.

26 Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. On the recall of static call
graph construction in practice. In ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020, pages 1049–1060. ACM, 2020.
doi:10.1145/3377811.3380441.

27 Yulei Sui and Jingling Xue. SVF: interprocedural static value-flow analysis in LLVM. In Pro-
ceedings of the 25th International Conference on Compiler Construction, CC 2016, Barcelona,
Spain, March 12-18, 2016, pages 265–266. ACM, 2016. doi:10.1145/2892208.2892235.

28 Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. Efficient dynamic
analysis for Node.js. In Christophe Dubach and Jingling Xue, editors, Proceedings of the 27th
International Conference on Compiler Construction, CC 2018, February 24-25, 2018, Vienna,
Austria, pages 196–206. ACM, 2018. doi:10.1145/3178372.3179527.

29 Kwangwon Sun and Sukyoung Ryu. Analysis of JavaScript programs: Challenges and research
trends. ACM Comput. Surv., 50(4):59:1–59:34, 2017. doi:10.1145/3106741.

ECOOP 2024

https://doi.org/10.1145/2644805
https://doi.org/10.1145/3434315
https://doi.org/10.1145/3434315
https://doi.org/10.1145/2187671.2187672
https://doi.org/10.1145/3428255
https://github.com/cs-au-dk/jelly
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1109/CGO.2009.9
https://doi.org/10.1145/3293882.3330555
https://doi.org/10.1145/3293882.3330555
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.1145/3106741

10:22 Indirection-Bounded Call Graph Analysis

30 Akshay Utture, Shuyang Liu, Christian Gram Kalhauge, and Jens Palsberg. Striking a
balance: Pruning false-positives from static call graphs. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022,
pages 2043–2055. ACM, 2022. doi:10.1145/3510003.3510166.

31 Akshay Utture and Jens Palsberg. Fast and precise application code analysis using a partial
library. In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE
2022, Pittsburgh, PA, USA, May 25-27, 2022, pages 934–945. ACM, 2022. doi:10.1145/
3510003.3510046.

https://doi.org/10.1145/3510003.3510166
https://doi.org/10.1145/3510003.3510046
https://doi.org/10.1145/3510003.3510046

Regrading Policies for Flexible Information Flow
Control in Session-Typed Concurrency
Farzaneh Derakhshan #

Illinois Institute of Technology, Chicago, IL, USA

Stephanie Balzer #

Carnegie Mellon University, Pittsburgh, PA, USA

Yue Yao #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Noninterference guarantees that an attacker cannot infer secrets by interacting with a program.
Information flow control (IFC) type systems assert noninterference by tracking the level of information
learned (pc) and disallowing communication to entities of lesser or unrelated level than the pc. Control
flow constructs such as loops are at odds with this pattern because they necessitate downgrading the
pc upon recursion to be practical. In a concurrent setting, however, downgrading is not generally
safe. This paper utilizes session types to track the flow of information and contributes an IFC type
system for message-passing concurrent processes that allows downgrading the pc upon recursion. To
make downgrading safe, the paper introduces regrading policies. Regrading policies are expressed in
terms of integrity labels, which are also key to safe composition of entities with different regrading
policies. The paper develops the type system and proves progress-sensitive noninterference for
well-typed processes, ruling out timing attacks that exploit the relative order of messages. The type
system has been implemented in a type checker, which supports security-polymorphic processes.

2012 ACM Subject Classification Theory of computation → Linear logic; Security and privacy →
Logic and verification; Theory of computation → Process calculi

Keywords and phrases Regrading policies, session types, progress-sensitive noninterference

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.11

Related Version Technical Report: https://doi.org/10.48550/arXiv.2407.20410

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.4

Funding Stephanie Balzer : Supported in part by the Air Force Office of Scientific Research under
award number FA9550-21-1-0385 (Tristan Nguyen, program manager). Any opinions, findings and
conclusions or recommendations expressed here are those of the author(s) and do not necessarily
reflect the views of the U.S. Department of Defense.

1 Introduction

With the emergence of new applications, such as Internet of Things and cloud computing,
today’s software landscape has become increasingly concurrent. A dominant computation
model adopted by such applications is message passing, where several concurrently running
processes connected by channels exchange messages. A further common aspect is the need
for security, ensuring that confidential information is not leaked to a (malevolent) observer.

Information flow control (IFC) type systems [36, 39, 42] rule out information leakage
by type checking. These systems statically track the level of information learned by an
entity and disallow propagation to parties of lesser or unrelated levels, given a security
lattice. The ultimate property to be asserted by an IFC type system is noninterference,
a program equivalence statement up to the confidentiality level of an observer. The gold
standard is progress-sensitive noninterference (PSNI) [24], which treats divergence as an

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Farzaneh Derakhshan, Stephanie Balzer, and Yue Yao;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 11; pp. 11:1–11:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fderakhshan@iit.edu
https://orcid.org/0000-0002-2156-2606
mailto:balzers@cs.cmu.edu
https://orcid.org/0000-0002-8347-3529
mailto:yueyao@cs.cmu.edu
https://orcid.org/0000-0001-8523-5156
https://doi.org/10.4230/LIPIcs.ECOOP.2024.11
https://doi.org/10.48550/arXiv.2407.20410
https://doi.org/10.4230/DARTS.10.2.4
https://doi.org/10.4230/DARTS.10.2.4
https://doi.org/10.4230/DARTS.10.2.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Regrading Policies for Flexible IFC in Session-Typed Concurrency

observable outcome. PSNI thus only equates a divergent program with another diverging one,
whereas progress-insensitive noninterference (PINI) regards divergence to be equal to any
outcome. Especially in a concurrent setting, PSNI is a sine qua non because the termination
channel [36] can be scaled to many parallel computations, each leaking “just” one bit [4, 40].

Guaranteeing PSNI, or even PINI for that matter, can become both a blessing and a
curse in a concurrent setting. To ensure such a strong property, IFC type systems have to
be very restrictive. The troublemakers, in particular, are control flow constructs, such as
loops and if statements. Whereas IFC type systems for sequential languages allow the pc
label1 to be lowered to its previous level for the continuation of a control flow construct,
even if the construct itself runs at high, this treatment is no longer safe in a concurrent
setting [39]. To uphold noninterference, IFC type systems for concurrent languages typically
forbid high-security loop guards and may even put restrictions on if statements, depending
on thread scheduling and attacker model [35,37,39].

The use of linearity provides some relief [7, 20, 46–48], allowing high-security loop guards.
Linearity also facilitates race freedom, key to guaranteeing observational determinism and,
thus, the absence of certain timing attacks [7, 20, 48]. A family of concurrent languages that
employ linearity are session types [9,26,27,30,43]. Session types are used for message-passing
concurrency, typically in the context of process calculi, where concurrently running processes
communicate along channels. A distinguishing characteristic of session types is their ability
to assert protocol adherence. A session-typed channel prescribes not only the types of values
that can be transported over the channel but also their relative sequencing.

In this paper, we develop a flow-sensitive IFC session type system that not only supports
recursive processes with arbitrary recursion guards, including high-security ones, but also
identifies synchronization patterns that make it safe for the process body to downgrade to the
initial pc level upon recursion. We refer to this adjustment of confidentiality level as regrading.
To enforce the safety of regrading, we complement confidentiality with integrity [8]. Integrity
allows prescribing a process a regrading policy, ensuring that any confidential information
learned during the high-security parts of the loop cannot be rolled forward to the next
iteration. Processes are polymorphic in the confidentiality and integrity labels, ensuring
maximal flexibility of the IFC type system.

We contribute a type checker for our IFC type system, yielding the language SINTEGRITY.
The type checker supports security-polymorphic processes using local security theories. Well-
typed processes in SINTEGRITY enjoy PSNI. To prove this result, we develop a logical relation
for integrity, showing that well-typed processes are self-related (fundamental theorem, Thm. 1).
We then prove that the logical relation is closed under parallel composition and that related
processes are bisimilar (adequacy theorem, Thm. 3).

Regrading is related to robust declassification [6,15,33,44,45,49], as both allow down-
grading the pc using integrity. In contrast to declassification, which deliberately releases
information and thus intentionally weakens noninterference, regrading preserves noninterfer-
ence. The distinction also manifests in how integrity is used. Whereas integrity is used in
robust declassification to convey how trustworthy the information is on which a regrading
decision is based, integrity in our work is used to impose extra synchronization policies on
regrading processes to prevent leakage by downgrading the pc upon recursion. As such,
regrading constitutes a more permissive IFC mechanism.

1 The pc (program counter) label approximates the level of confidential information learned up to the
current execution point.

F. Derakhshan, S. Balzer, and Y. Yao 11:3

Contributions

The notion of a regrading policy to downgrade a process’ confidentiality, retaining PSNI.
The language SINTEGRITY, a flow-sensitive IFC session type system for asynchronous
message-passing with confidentiality and integrity to support regrading policies.
A logical relation for integrity to prove that SINTEGRITY processes satisfy PSNI.
A type checker for SINTEGRITY, available as an artifact.

The complete formalization with proofs is available as a technical report (TR) [21].

2 Motivating example and background

This section provides an introduction to session-typed programming and IFC control based
on a running example. Our language SINTEGRITY is an intuitionistic linear session type
language [9, 41]; thus, our presentation is specific to that family of session types.

We use a simple bank survey as an example. The survey is carried out by an analyzer at
a bank to decide whether to buy or sell a share of stock. The analyzer’s decision depends on
the opinion of two groups of participants, queried by two surveyors, and a strategy provided
by a tactician. For simplicity, we assume that each group of participants only consists of one
participant, and the surveyors simply pass the opinion of their participant to the analyzer.

Figure 1 Bank survey: (a) process configuration, (b)/(c) red/green tactic, (d) session types.

A runtime configuration of processes for this example is shown in Fig. 1(a): the analyzer
process A, the tactician process T, the surveyor processes S1 and S2, along with their
participant processes P1 and P2, resp. The processes are connected by the channels u1, u2,
w1, w2, x, and z. The figure shows the communications between the analyzer, surveyors, and
participants along these channels, with arrows indicating the message being exchanged. The
analyzer sends the message ask to surveyor S1 to request a poll (1). Surveyor S1 then sends
the message ask to participant P1 to get their opinion about buying a share (2). Once the
surveyor receives P1’s vote (i.e., either yes or no) (3), it relays the vote back to the analyzer
(4). The analogous communication pattern is repeated between the analyzer and surveyor S2

and participant P2 (1’–4’). The final decision whether to buy or sell (5) of the analyzer is
based on the tactic provided by the tactician. For simplicity, we assume that the tactician
chooses either a green or red tactic (0). In the green tactic, the analyzer decides to buy the
share if at least one of the surveyors votes yes. In the red tactic, the analyzer buys the stock
if the first surveyor votes to buy, regardless of the opinion of the second one (see Fig. 1(b-c)).

ECOOP 2024

11:4 Regrading Policies for Flexible IFC in Session-Typed Concurrency

Table 1 SINTEGRITY constructs. Upper half: types and terms (before and after exchange),
operational meaning, and polarity. Lower half: spawn and forward terms and operational meaning.

Session type (b/a) Process term (b/a) Description

x:⊕ {ℓ:Aℓ}ℓ∈L x:Ak x.k;P P provider sends label k along x, continues with P

casex(ℓ⇒Qℓ)ℓ∈L Qk client receives label k along x, continues with Qk

x:&{ℓ:Aℓ}ℓ∈L x:Ak casex(ℓ⇒Pℓ)ℓ∈L Pk provider receives label k along x, continues with Pk

x.k;Q Q client sends label k along x, continues with Q

x:A⊗B x:B send y x;P P provider sends channel y:A along x, continues with P

z←recvx;Qz Qy client receives channel y:A along x, continues with Qy

x:A⊸ B x:B z←recvx;Pz Py provider receives channel y:A along x, continues with Py

send y x;Q Q client sends channel y:A along x, continues with Q

x:1 - closex - provider sends “close” along x and terminates
waitx;Q Q client receives “close” along x, continues with Q

x : Y x : A - - recursive type definition Y = A (Y occurs in A)

Judgmental rules

(x⟨c,e⟩ ← X[γ]← ∆)@⟨c0, e0⟩;Qx spawn X along x⟨c,e⟩ with arguments ∆, substitution γ,
and running security ⟨c0, e0⟩, then continue with Qx

x← y forward x:A to y:A

The protocols for these communications can be specified by the session types shown in
Fig. 1(d), using the connectives of Table 1. The connectives are drawn from intuitionistic
linear logic and obey the following grammar:

A,B ::= ⊕{ℓ : Aℓ}ℓ∈L | &{ℓ : Aℓ}ℓ∈L | A⊗B | A⊸ B | 1 | Y,
where L ranges over finite sets of labels denoted by ℓ and k, amounting to primitive values
in our system. Type variable Y is a fixed point whose definition Y = A is given in a global
signature Σ. The latter is used to define general recursive types. Recursive types must be
contractive [23], demanding a message exchange before recurring, and equi-recursive [19],
avoiding explicit (un)fold messages and relating types up to their unfolding. All three types
vote, result, and tactic are recursive.

Table 1 provides an overview of SINTEGRITY types and terms. A crucial characteristic
of session-typed processes is that a process changes its type along with the messages it
exchanges. A process’ type therefore always reflects the current protocol state. Table 1
lists state transitions caused by a message exchange in columns 1 and 2 with corresponding
process terms in columns 3 and 4. Column 5 describes the computational behavior of a type.

Linearity ensures that every channel connects exactly two processes, thus imposing a
tree structure on a configuration of processes, as witnessed by Fig. 1(a). We adopt a form
of session types corresponding with intuitionistic linear logic, which moreover introduces a
distinction between the two processes connected by a channel, identifying one as the parent
and the other as the child, turning the configuration into a rooted tree. The parent and child
processes have mutually dual perspectives on the protocol of their connecting channel: The
child has the perspective of the provider and the parent that of a client. Column 5 of Table 1
describes the perspective of the client and provider for each type. We assign a polarity to
each session type which determines whether the type has a sending semantics or a receiving
semantics. For positive types, the provider sends, and the client receives; for negative types,
the provider receives, and the client sends. The types with positive polarity are ⊕{ℓ:Aℓ}ℓ∈L,
A⊗B, and 1, and the types with negative polarity are &{ℓ:Aℓ}ℓ∈L and A⊸ B.

F. Derakhshan, S. Balzer, and Y. Yao 11:5

w1:vote⟨bank,guest⟩, w2:vote⟨bank,guest⟩, x:tactic⟨bank,guest⟩ ⊢ A :: z:result⟨bank,bank⟩
z ← A← w1, w2, x =
casex (green ⇒ w1.ask; casew1 (yes ⇒ w2.ask; casew2 (yes ⇒ z.buy; (z ← A← w1, w2, x)

| no ⇒ z.buy; (z ← A← w1, w2, x))
| no ⇒w2.ask; casew2 (yes ⇒ z.buy; (z ← A← w1, w2, x)

| no ⇒ z.sell; (z ← A← w1, w2, x)))
| red ⇒ w1.ask; casew1 (yes ⇒w2.ask; casew2 (yes ⇒ z.buy; (z ← A← w1, w2, x)

| no ⇒ z.buy; (z ← A← w1, w2, x))
| no ⇒w2.ask; casew2 (yes ⇒ z.sell; (z ← A← w1, w2, x)

| no ⇒ z.sell; (z ← A← w1, w2, x)))
@⟨guest,guest⟩

u:vote⟨guest, guest⟩ ⊢ S :: w:vote⟨bank,guest⟩
w ← S← u = casew (ask ⇒ (w ← S′ ← u))@⟨guest,guest⟩
u:vote⟨guest, guest⟩ ⊢ S′ :: w:⊕ {yes : vote, no : vote}⟨bank,guest⟩
w ← S′ ← u = u.ask; caseu(yes ⇒ w.yes; (w ← S′ ← u) | no ⇒ w.no; (w ← S′ ← u))@⟨guest,guest⟩

Figure 2 Secure process implementations of analyzer and surveyor (see Fig. 1), accepted by
SINTEGRITY, but rejected by existing IFC session type systems.

Each process in a configuration is uniquely identified by the channel that connects it to its
parent, which we also refer to as its offering (or providing) channel. We consider the session
type of a process to be the protocol of its offering channel. For example, the participant
process P1 in Fig. 1 has type vote, which is also the type of the process’ offering channel u1

that connects P1 to its client S1. We say that the client S1 uses the channel u1.
The connectives ⊗ and ⊸, not used in the example, allow sending channels along channels.

Such higher-order channels change the connectivity structure of a configuration: from the
perspective of the provider, ⊗ turns a child into a sibling and ⊸ a sibling into a child. The
former is achieved by sending a subtree to the parent and the latter by receiving a subtree
from the parent. § 5.4 showcases an example that uses higher-order channels.

It is now time to explore how to implement the processes of our bank survey example.
Fig. 2 gives the process definitions of the analyzer and surveyor. A process definition consists
of the process signature (first two lines) and body (after =). The first line indicates the typing
of channel variables used by the process (left of ⊢) and the type of the providing channel
variable (right of ⊢). The former are going to be child nodes of the process. The second
line binds the channel variables. In SINTEGRITY, ← generally denotes variable bindings.
The channels and the process definitions are annotated with confidentiality and integrity
levels (e.g., ⟨bank,guest⟩ and @⟨guest,guest⟩). We will later describe the meaning of these
annotations; the reader can safely ignore them for now.

The analyzer first waits to receive a tactic from the tactician along channel x. In either
branch (i.e., green or red), the analyzer proceeds by requesting a vote from surveyors S1 and
S2, after which it communicates its decision along its offering channel z before recurring. We
remark that the notation z ← A← w1, w2, x used for a tail call does not precisely match up
with Table 1 because we are deferring a discussion of security annotations and substitutions
for security-polymorphic processes to § 5.1. Moreover, a tail call is syntactic sugar for a
spawn combined with a forward; i.e., z ← A← w1, w2, x desugars to z′ ← A← w1, w2, x; z ← z′.

We implement a surveyor by two processes S and S′ to take advantage of SINTEGRITY’s
support for regrading, as we will detail in § 3.1. The surveyor starts out as process S and
calls process S′ right after having received the request from its parent, the analyzer.

Suppose that the tactic is a secret that a participant shall not deduce. The implementations
in Fig. 2 respect this security condition: the analyzer interacts with the participants via
the surveyors the same regardless of the tactic it received. Existing IFC session type
systems [7, 20], however, reject these implementations, because they view the analyzer as

ECOOP 2024

11:6 Regrading Policies for Flexible IFC in Session-Typed Concurrency

tainted as soon as it learns the secret tactic, and disallow further communication with the
participants via the surveyor. This paper relaxes this restriction – while preserving PSNI –
and allows the tainted surveyor to interact with the participants while putting safeguards in
place (synchronization patterns, § 3.2–§ 3.3 and § 5.2) that prevent the surveyor from leaking
the tactic.

3 Key ideas

This section develops the main ideas underlying our flexible IFC session type system; the
type system and dynamics is given in §5. The latter is asynchronous, i.e., non-blocking sends
and blocking receives (see § 4.2 and § 5.3). An asynchronous semantics allows for a more
permissive noninterference statement since message receipt is not observable.

It may be helpful to foreshadow our attacker model (detailed in § 6.1). We assume that
an attacker knows the implementation of all processes and can observe messages sent over
channels with lower or equal confidentiality level than the attacker. The attacker cannot
measure time but can observe the relative order in which messages are sent along different
observable channels. As we aim for PSNI, we need to ensure that an attacker is unable to
deduce any information from non-reactiveness either.

3.1 Regrading confidentiality

It is now time to consider the red annotations ⟨c, e⟩ on channels and the green annotations
@⟨c0, e0⟩ on process terms in Fig. 2, where c, d, c0, and e0 range over levels in the security
lattice guest ⊑ alice ⊑ bank and guest ⊑ bob ⊑ bank. We focus on the first components c
and c0 for now, which denote confidentiality labels. They are adopted from existing IFC
session type systems [7, 20], which are based solely on confidentiality.

The first component c of the pair ⟨c, e⟩ indicates the maximal confidentiality of a process,
i.e., the maximal level of secret information the process may ever obtain. As to be expected,
the analyzer (A), the tactician (T), and both surveyors (S1 and S2) have maximal confidentiality
bank, as they are affiliated with the bank and have the clearance of knowing the secret tactic.
The processes associated with the participants have the lowest maximal confidentiality guest,
as they must not gain any information about the bank’s secrets.

The first component c0 of the pair @⟨c0, e0⟩ denotes a process’ running confidentiality.
It denotes the highest level of secret information a process has obtained so far and thus is
analogous to the pc label in imperative languages, making the type system flow-sensitive.
The running confidentiality is capped by the maximal confidentiality, i.e., c0 ⊑ c. When
defining a process, a programmer must indicate the process’ maximal confidentiality as well
as the initial running confidentiality at which the process starts out when spawned.

An IFC type system increases the running confidentiality accordingly, whenever informa-
tion of higher confidentiality is received, and disallow sends from senders with a higher or
incomparable running confidentiality than the recipient. For example, the analyzer starts
with the running confidentiality guest. When it receives the secret from the tactician, its
running confidentiality increases to bank. After the receive, the analyzer can still send the
message ask to a surveyor as the maximal confidentiality of the surveyor is bank. However,
as soon as the surveyor receives this message from the analyzer, its running confidentiality
increases to bank, which prevents it from sending messages to participants, whose maximal
confidentiality is guest, because bank ̸⊑ guest.

F. Derakhshan, S. Balzer, and Y. Yao 11:7

To address this limitation of existing IFC session type systems, we develop regrading
policies. A regrading policy is polymorphic in a level f of the security lattice and certifies that,
when regrading the running confidentiality to f , any secrets of confidentiality ds ̸⊑ f learned
so far will not affect future communications of confidentiality at most f after regrading.

To convey the regrading policy that a process must obey, we introduce integrity annota-
tions, amounting to the second components in the pairs @⟨c0, e0⟩ and ⟨c, e⟩. We refer to e0

as the running integrity of the process and to e as the minimal integrity of the process. The
running integrity specifies what level a process is allowed to regrade to and is capped by the
minimal integrity, i.e., e0 ⊑ e. For example, the surveyor process S runs at @⟨bank,guest⟩
after having received the request from the analyzer, where the running integrity guest licenses
it to drop its running confidentiality as low as guest upon tail-calling, but forces it to obey
that policy too. The minimal integrity e of a process is naturally capped by its maximal
confidentiality c, i.e., e ⊑ c, because a process cannot learn (and thus drop) more secrets than
it is licensed to. As a result, a process with maximal confidentiality and minimal integrity
⟨c, c⟩ effectively amounts to a non-regrading process.

We draw both integrity and confidentiality levels from the same security lattice, but
interpret integrity levels dually, as usual: the lower a level in the lattice, the higher its
integrity2. For regrading this means that the lower the level a process regrades to, the stricter
the process’ policy becomes. The SINTEGRITY type system thus increases the running
integrity of a process upon receiving from a process with a higher minimal integrity and
disallows sends from a process of a higher or incomparable running integrity than the minimal
integrity of the recipient (see § 5).

The process definitions in Fig. 2 only use concrete levels from the security lattice for
confidentiality and integrity annotations. To increase code reusability, SINTEGRITY supports
security-polymorphic process definitions. Such definitions range over security variables
for confidentiality and integrity levels and may state constraints on these variables. The
constraints must be satisfied upon spawning, which is checked by the SINTEGRITY type
checker using a security theory. § 5 expands on security-polymorphic process definitions.

3.2 The need for regrading policies
While a regrading policy licenses regrading, it also imposes restrictions on a process’ commu-
nication patterns to guarantee noninterference. To distill these restrictions, we next explore
insecure implementations of the analyzer-surveyor example from § 2 that do not satisfy PSNI.

3.2.1 Hasty analyzer – optimization may introduce a timing attack
In the red tactic, the decision of the analyzer does not depend on the result provided by the
second surveyor. Hence, one may be tempted to optimize the analyzer implementation by
refraining from asking the opinion of the second surveyor in the branch corresponding to the
red tactic (see AH in Fig. 3). As appealing as this optimization seems, it leads to a leak. An at-
tacker of confidentiality level guest can simultaneously observe the sequence of messages trans-
mitted along channels u1 and u2 of confidentiality guest, which connect the participants to the
surveyors, and thus, can deduce which secret tactic was chosen: in case of the green tactic, the
sequence of messages along u1 and u2 has the recurrence u1.ask;u1.(yes/no);u2.ask;u2.(yes/no),

2 We adopt the following convention to avoid any confusion: we use “running integrity”, “minimal
integrity”, and “integrity level” for elements in the security lattice, and otherwise just “integrity”. Thus,
when the integrity level in the lattice increases, the integrity decreases.

ECOOP 2024

11:8 Regrading Policies for Flexible IFC in Session-Typed Concurrency

w1:vote⟨bank,guest⟩, w2:vote⟨bank,guest⟩, x:tactic⟨bank,guest⟩ ⊢ AH :: z:result⟨bank,bank⟩
z ← AH ← w1, w2, x =
casex (green ⇒ w1.ask; casew1 (yes ⇒w2.ask; casew2 (yes ⇒ z.buy; (z ← AH ← w1, w2, x)

| no ⇒ z.buy; (z ← AH ← w1, w2, x))
| no ⇒w2.ask; casew2 (yes ⇒ z.buy; (z ← AH ← w1, w2, x)

| no ⇒ z.sell; (z ← AH ← w1, w2, x)))
| red ⇒ w1.ask; casew1 (yes ⇒z.buy; (z ← AH ← w1, w2:, x)

| no ⇒ z.sell; (z ← AH ← w1, w2, x))) @⟨guest,guest⟩
w1:vote⟨bank,guest⟩, w2:vote⟨bank,guest⟩, x:tactic⟨bank,guest⟩ ⊢ AR :: z:result⟨bank,bank⟩
z ← AR ← w1, w2, x =
casex (green ⇒ w1.ask; casew1 (yes ⇒w2.ask; casew2 (yes ⇒ z.buy; (z ← AR ← w1, w2, x)

| no ⇒ z.buy; (z ← AR ← w1, w2, x))
| no ⇒w2.ask; casew2 (yes ⇒ z.buy; (z ← AR ← w1, w2, x)

| no ⇒ z.sell; (z ← AR ← w1, w2, x)))
| red ⇒ w1.ask;w2.ask; casew1 (yes ⇒casew2 (yes ⇒ z.buy; (z ← AR ← w1, w2, x)

| no ⇒ z.buy; (z ← AR ← w1, w2, x))
| no ⇒ casew2 (yes ⇒ z.sell; (z ← AR ← w1, w2, x)

| no ⇒ z.sell; (z ← AR ← w1, w2, x))))
@⟨guest,guest⟩

Figure 3 Insecure hasty analyzer AH and reckless analyzer AR, rejected by SINTEGRITY.

whereas it has the recurrence u1.ask;u1.(yes/no) for the red tactic. Observing, for example,
the sequence u1.ask;u1.(yes/no);u2.ask;u2.(yes/no);u1.ask;u1.(yes/no), the attacker can deduce
that the first tactic used was green and the second one was red. These leaks constitute timing
attacks because the attacker cannot deduce the secret by only looking at a single channel,
but needs to observe the relative timing of messages passed along two or more channels.

3.2.2 Reckless analyzer – be careful with synchronization
The previous example shows that a send along a channel, present in one branch, but omitted
from another, may lead to a leak. One may naively suspect that these leaks only involve
sends. The analyzer version AR in Fig. 3 showcases the opposite: mismatched receives are
at least as dangerous as mismatched sends. In the original implementation (Fig. 2), the
analyzer synchronizes the communications of surveyors and participants across branches,
ensuring, in particular, that the second participant always casts their vote after the first. The
reckless analyzer AR breaks this synchronization in the red branch by swapping the order of
casew1 and w2.ask. This minimal change allows the two surveyors to run concurrently when
the tactic is red and produce the sequence of messages u2.ask;u2.(yes/no);u1.ask;u1.(yes/no)
along channels u1 and u2, a sequence that is impossible to produce in the green tactic (recall
that receives are blocking, but sends are not). Both AH and AR leak the secret with a timing
attack, i.e., the simultaneous observation of the relative order of sends along several channels.

There is a subtle connection between timing attacks and leaks due to the non-reactivity of
a process. For instance, let us assume that the second participant loops internally and never
casts its vote. The attacker can then deduce the secret tactic in the hasty implementation
of the analyzer by only observing the communications of the first participant along u1:
the sequence u1.ask;u1.(yes/no);u1.ask;u1.(yes/no) indicates that the prior tactic was red. A
similar scenario holds for the reckless analyzer when the first participant is non-reactive.

3.3 Regrading policies in a nutshell
Our model allows the running confidentiality of a process to be dropped as low as its running
integrity. Performing such a venturous act, needs a corresponding safety net in place: a
regrading policy that is polymorphic in the running integrity to preserve noninterference.
The examples in § 3.2 suggest that a regrading policy must enforce the following properties:

F. Derakhshan, S. Balzer, and Y. Yao 11:9

1. The continuation of a process after regrading must not depend on any secret higher than
or incomparable to its running integrity. That is, when branching on a secret ds, the
same process must be spawned for the recursive call in every branch, if that process
regrades to a level e0 such that ds ̸⊏ e0.

2. Whether a process reaches its regrading point or not must not depend on any secret
higher than or incomparable to its running integrity.

The latter property is violated in both analyzer implementations of Fig. 3, amounting to a
leak. In the hasty implementation AH, the second surveyor only gets to the regrading point
if the secret tactic is green. In the reckless implementation AR, if the secret tactic is green,
the second surveyor gets to the regrading point only if the first participant casts their vote,
whereas if the secret is red, there is no such chaining.

The above properties capture semantically what conditions secure processes that employ
regrading must meet to observe PSNI. In § 5.2 we develop static checks that, when satisfied
by a process, ensure that the process also meets these semantic conditions. We refer to those
checks as synchronization pattern checks, and they are enforced by the SINTEGRITY type
checker. The pattern checks are of the form Ψ ⊨ P ∼⟨d,f⟩ Q and synchronize P and Q in terms
of their communication actions: if P outputs along channel x, so must Q, and if P inputs
along channel x, so must Q, and vice versa. The pattern checks are invoked pairwise for every
two branches, Pi and Pj , in a case statement, requiring that Ψ ⊨ Pi ∼⟨d,f⟩ Pj . The check is
conditioned on the running confidentiality d and running integrity f at the branching point.

An important feature of our regrading policies is that they are compositional. We
take advantage of the fact that intuitionism imposes a rooted tree structure on process
configurations and require that a configuration aligns with the security lattice: for every
child process and parent process with maximal confidentiality and minimal integrity ⟨c, e⟩
and ⟨c′, e′⟩, resp., it must hold that ⟨c, e⟩ ⊑ ⟨c′, e′⟩, ensuring that a child process can learn
at most as much as its parent and has at least an as stringent regrading policy as its parent.
We design our type system to preserve this property as an invariant.

4 Blueprint for Formal Development

Before delving into the formal development, we review the statics and dynamics of a vanilla
intuitionistic session type system and give a roadmap for the upcoming technical sections.
We use the intuitionistic session type system introduced by Toninho et al. [9, 41] as our
vanilla intuitionistic session type system. SINTEGRITY enhances such a vanilla session
type system with confidentiality and integrity annotations to establish PSNI. SINTEGRITY
adopts the former from existing intuitionistic IFC session type systems [7, 20]. The integrity
annotations as well as the synchronization patterns are contributions unique to SINTEGRITY.
The addition requires us to define the relationships between all these levels, expressed as
invariants, and the development of synchronization patterns. Similar to the system in [7] our
language supports general recursion and allows processes to be polymorphic in confidentiality
levels. SINTEGRITY extends label polymorphism to also accommodate integrity levels.

4.1 Vanilla intuitionistic session types – statics
Process terms and session types are built by the grammar in § 2 and Table 1. The process
typing judgment is of the form ∆ ⊢Σ P :: x:A, to be read as: “Process P provides a session of
type A along channel x, given the typing of sessions offered along channels in ∆. ∆ is a linear
typing context consisting of the channels connecting P to its children, and x connects P to
its parent. The global signature Σ includes recursive type definitions and process definitions.

ECOOP 2024

11:10 Regrading Policies for Flexible IFC in Session-Typed Concurrency

4.1.1 Process term typing
Fig. 4 lists the process term typing rules. The parts in red are specific to SINTEGRITY and
can be ignored for now; we discuss them in §5. As is usual in intuitionistic linear session type
languages, the rules are given in a sequent calculus. When read from bottom to top, the rules
closely follow the behavior described in Table 1: right rules describe a type from the point of
view of a provider, and left rules from the point of view of a client. For example, rule ⊕R1

describes the behavior of the process that provides a channel with the protocol ⊕{ℓ:Aℓ}ℓ∈L:
it chooses a label k∈L and sends it to the client along channel x, and then continues by
checking process P providing Ak in the premise. Note that the typing rules ⊕R1 and ⊕R2

are identical, ignoring the security annotations. Rule Fwd ensures that the type of the two
channels involved in forwarding is the same. Rule Spawn spawns a new child process X along
the fresh channel x; it first checks that X is defined in the signature (first premise) and thus
is well-typed and then continues with type-checking the continuation Q (last premise).

4.1.2 Signature checking
To support general recursive types, we employ a global signature Σ comprised of all process
definitions. Each process definition is typed individually, assuming that the other processes in
the signature are well-typed. The signature also comprises recursive type definitions. When
typing a process with a recursive protocol, the signature is consulted to unfold the definition.

For example, the signature for the bank survey example in § 2 consists of the definitions
for processes A, S, and S′ as shown in Fig. 1 and the definition of recursive types as shown
in Fig. 1(d). In our formal development, we use a more concise syntax for process definitions
than what is shown in Fig. 1. In particular, we write them in the form of ∆ ⊢ X = P ::(z:A).
For instance, the concise version of the process definition for process S in Fig. 1, ignoring its
security annotations, is u:vote ⊢ S = casew (ask ⇒ (w ← S′ ← u))::w:vote.

Type checking starts with typing the signature by the rules listed in Fig. 5; again, ignore
the parts in red for now, as they will be discussed later in § 5. The rules are in a sequent
calculus and should be read from bottom to top. Rule Σ3 ensures that each process definition
in the signature is well-typed. It invokes the process term typing judgment for a process
definition relative to the entire global signature Σ (fifth premise) and continues with checking
the rest of the signature (sixth premise). Rule Σ2 ensures that all recursive types in the
signature are well-formed via its first premise, the judgment ⊩Σ A wfmd. This judgment
denotes a well-formed session type definition, which, if recursive, must be equi-recursive [19]
and contractive. Equi-recursiveness ensures that types are related up to their unfolding
without requiring explicit (un)fold messages (see rules TVarR and TVarL). Contractiveness
demands an exchange before recurring.

4.2 Vanilla intuitionistic session types – dynamics
At runtime, process definitions result in a configuration of processes structured as a forest of
rooted trees. The nodes in the forest represent runtime processes and messages, denoted as
proc(yα;P) and msg(M), resp. We use metavariables C and D to refer to a configuration and
formally define it as a set of runtime processes and messages (the nodes in the tree). The
connection between the nodes will be inferred through configuration typing. In proc(yα, P),
the metavariable yα represents the process’ offering channel, and P represents the process’
source code (where free variables have been substituted by channels). Runtime messages
msg(M) are a special form of processes created to model asynchronous communication: we

F. Derakhshan, S. Balzer, and Y. Yao 11:11

implement asynchronous sends by spawning off the message msg(M) that carries the sent
message M . A sent message M can be of the form x.k, send y x, or closex, corresponding to
label output, channel output, and a termination message, resp.

Runtime channels yα are annotated with a generation subscript α, which distinguishes
them from channel variables y used in the statics. Using generation subscripts, we can
ensure that both the sender and receiver agree on a new name for the continuation channel
without explicitly passing the name in a message. We will see an example of using generation
subscripts in the next paragraph.

4.2.1 Asynchronous dynamics
We chose an asynchronous semantics for SINTEGRITY because it weakens the attacker model,
allowing a more permissive IFC enforcement, and is also a sensible model for practical
purposes. The dynamics is given in Fig. 8 in terms of multiset rewriting rules [14] (again, for
now the parts in red can be ignored). Multiset rewriting rules express the dynamics as state
transitions between configurations and are local in that they only mention the parts of a
configuration they rewrite.

For example, in case of ⊗snd, the provider proc(yα, sendxβ yα;P) spawns off the message
process msg(sendxβ yα), indicating that the channel xβ is sent over channel yα. Since sends
are non-blocking, the provider steps to its continuation proc(yα+1, ([yα+1/yα]P)), allocating
a new generation α+1 of the carrier channel yα. In ⊗recv, upon receipt of the message, the
receiving client process proc(yα, w ← recv yα;P) will increment the generation of the carrier
channel in its continuation. The scenario is similar for ⊕snd and ⊕rcv, but the sent message is
a label in this case, and similar for ⊸snd,⊸rcv and &snd, &rcv, except that in these cases the
sender is the client and the receiver the provider. In the rules for the termination protocol,
i.e., 1snd and 1rcv, there is no continuation channel. Rule Spawn creates a process offering
along a fresh runtime channel x0 by looking up the definition of the spawnee in the signature.

The dynamics for the forwarding process proc(yα, yα ← xβ) is often described as fusing
the two channels, yα and xβ . We, however, represent forward as syntactic sugar by including
forwarder processes defined by structural induction on the type of the channels involved in
the forward, amounting to an identity expansion. The reader may see the TR for the details.

4.2.2 Configuration typing
The configuration typing judgment is of the form ∆ ⊩Σ C :: ∆′ indicating that the configuration
C provides sessions along the channels in ∆′, using sessions provided along channels in ∆.
∆ and ∆′ are both linear contexts, consisting of actual runtime channels of the form yα:B.
We often use the term open configurations to emphasize that our configurations may have
external free channels in both ∆ and ∆′ to communicate with the environment. This is in
contrast to restricting ∆ to be an empty context, which means the configuration only has
external free channels to communicate with a client.

Fig. 7 shows the typing rules, enforcing that the configuration is structured as a forest and
the source code of each node is well-typed. For brevity, Fig. 7 omits a channel’s generation
as well as Σ, which is fixed. The emp rule types an empty forest. The comp rule types each
tree in the forest. The proc rule and the msg rule check the well-typedness of the root node
of a tree when it is a process or message, resp., using the last premises. Well-typedness of the
remaining forest is checked by the eighth and fourth premise of the latter two rules, resp. The
last premise of the msg rule calls message typing rules, which we provide in TR-Sect. 3.3.

The typing rules ensure progress and preservation, i.e., the dynamics can always step an
open configuration ∆ ⊩ C :: ∆′ to ∆ ⊩ C′ :: ∆′.

ECOOP 2024

11:12 Regrading Policies for Flexible IFC in Session-Typed Concurrency

4.3 Roadmap for SINTEGRITY

To develop the ideas discussed in § 3 and establish PSNI, we supplement the vanilla type
system with a security layer. Here, we provide a roadmap to the key parts of our development.

4.3.1 Regrading policy type system

The first step in our formal development is to enrich the process term typing judgment with
security levels as Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:A⟨c, e⟩. Here, Ψ denotes a security theory which
includes the security lattice and polymorphic confidentiality and integrity variables. The pair
⟨c0, e0⟩ denotes the running confidentiality and integrity of the process, aka its taint level.
The pair ⟨c, e⟩ denotes the max confidentiality and min integrity of the process. Similarly,
each channel in ∆ is annotated with a pair of confidentiality and integrity levels denoting its
provider’s max confidentiality and min integrity.

Similarly, we use security labels to annotate configurations and configuration typ-
ing judgments. In particular, runtime processes in configuration C now have the form
proc(yα⟨c, e⟩, P@⟨c′, e′⟩), where ⟨c, e⟩ is the pair of max confidentiality and min integrity of
the process, and ⟨c′, e′⟩ is the pair of its running confidentiality and integrity.

The typing rules include security constraints highlighted in red – the ones we have been
ignoring in § 4.1. The purpose of these security annotations is to (i) ensure that the taint
levels are propagated correctly, (ii) prevent a tainted process from sending information to
a process with a lower max confidentiality/higher min integrity, (iii) ensure that a process
regrades its running confidentiality only as low as its running integrity, and (iv) verify that
the process indeed adheres to the policy enforced by its running integrity. The first three
conditions are enforced by imposing the security constraints on the process term typing rules
in Fig. 4. The last check is enforced by the synchronization pattern checks in Fig. 6.

4.3.2 PSNI via a logical relation

Our ultimate goal is to prove that well-typed SINTEGRITY processes enjoy PSNI. We prove
PSNI as an equivalence up to an attacker’s confidentiality level ξ using a logical relation,
which then delivers a process bisimulation.

To define PSNI for an open configuration in the shape of a tree Ψ0; ∆ ⊩ D :: uα:T ⟨c, e⟩,
given a global security lattice Ψ0 fixed for an application, we consider the external free
channels yβ :B⟨c′, e′⟩ ∈ ∆, uα:T ⟨c, e⟩ with max confidentiality c′ ⊑ ξ. We call the set of these
channels that connect a configuration to its environment and that are observable to an
attacker, the confidentiality interface.

Such an open configuration satisfies noninterference if, when composed with different
high-confidentiality processes, behaves the same along the confidentiality interface. We prove
that all well-typed open configurations enjoy PSNI by designing a logical relation and showing
that (i) all well-typed configurations are self-related (fundamental theorem, Thm. 1) and (ii)
any two related configurations are bisimilar (adequacy theorem, Thm. 3).

To prove these results, our logical relation needs to consider some free channels in
∆, uα:T ⟨c, e⟩ that are not directly observable in terms of their confidentiality but can have
an observable effect due to their integrity. We thus define a superset of the confidentiality
interface that additionally contains channels yβ :B⟨c′, e′⟩ ∈ ∆, uα:T ⟨c, e⟩ with min integrity
e′ ⊑ ξ. We call this interface the integrity interface.

F. Derakhshan, S. Balzer, and Y. Yao 11:13

5 Regrading policy type system

This section formalizes SINTEGRITY’s type system with synchronization patterns and asyn-
chronous dynamics. SINTEGRITY supports security-polymorphic process definitions, an
example of which is discussed in § 5.4.

5.1 Process term typing
Let us recall the process term typing judgment from § 4.3:

Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:A⟨c, e⟩.

We read it as: “Process P , with maximal confidentiality and minimal integrity ⟨c, e⟩ and
running confidentiality and integrity ⟨c0, e0⟩, provides a session of type A along channel x,
given the typing of sessions offered along channels in ∆ and given a security theory Ψ”. ∆
is a linear typing context with the grammar ∆ ::= · | x:A⟨c, e⟩,∆. A security theory Ψ is
used for type checking security-polymorphic process definitions. It consists of the global
security lattice Ψ0 which is fixed for an application, security variables ψ, and constraints on
the variables (see § 5.4 and Sect. 2 in the TR).

We impose the following properties on the typing judgment, as discussed in detail in § 3.
These properties are maintained by typing as invariants. When reading them, note that
“high integrity” and “low confidentiality” both mean a “lower level” in the security lattice.
(a) ∀y:B⟨d, f⟩ ∈ ∆.Ψ ⊩ d ⊑ c,Ψ ⊩ f ⊑ e: ensuring that a child process can learn at most as

much as its parent and has at least an as stringent regrading policy as its parent.
(b) Ψ ⊩ c0 ⊑ c and Ψ ⊩ e0 ⊑ e: ensuring that a process knows at most as much as it is licensed

to and adheres to at least an as stringent regrading policy as it promises.
(c) Ψ ⊩ e0 ⊑ c0 and Ψ ⊩ e ⊑ c: ensuring that a process cannot drop more secrets than it

knows and is licensed to learn, resp.
Moreover, the typing rules for input and output have to conform to the following schema to
make sure that the running confidentiality and running integrity correctly reflect the taint
level and that a tainted process does not leak information via a send:
(1) after receiving a message, the running confidentiality and running integrity of the

receiving process must be increased to at least the maximal confidentiality and minimal
integrity of the sending process, and

(2) Before sending a message, the running confidentiality and running integrity of the
sending process must be at most the maximal confidentiality and minimal integrity of
the receiving process.

Conforming to this schema leads to the premises of the form Ψ ⊩ ⟨d1, f1⟩ = ⟨c, e⟩ ⊔ ⟨d0, f0⟩ and
Ψ ⊩ ⟨d0, f0⟩ ⊑ ⟨c, e⟩ to meet condition (1) and (2), resp., above. The judgments are defined
formally in Sect. 2 in the TR.

It is time to consider the red security annotations of the typing rules in Fig. 4. We explain
how the rules satisfy conditions (1) and (2) above:
⊕: There are two versions of the right rule for ⊕. Both versions establish condition (2)
on sends without extra premises by the invariant (b). The difference between the two
versions lies in whether Ψ ⊩ c = e is derivable or not derivable (Ψ ̸⊩ c = e). If Ψ ⊩ c = e

is derivable, then rule ⊕R1 applies; if it is not, rule ⊕R2 applies. In the former case,
the client of x, on the receiving side, adjusts its running integrity to at least e=c upon
receiving the sent message, and thus, it cannot regrade to a lower (or unrelated) level
than c. In the latter case, the min integrity e of the process is strictly lower than its
max confidentiality c. This means that the client of x might, in fact, continue to have

ECOOP 2024

11:14 Regrading Policies for Flexible IFC in Session-Typed Concurrency

Ψ ⊩ c = e k ∈ L Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:Ak⟨c, e⟩
Ψ; ∆ ⊢Σ (x⟨c,e⟩.k;P)@⟨c0, e0⟩ :: x:⊕ {ℓ:Aℓ}ℓ∈L⟨c, e⟩

⊕R1

Ψ ̸⊩ c = e ∀i, j ∈ L.Ai = Aj k ∈ L Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:Ak⟨c, e⟩
Ψ; ∆ ⊢Σ (x⟨c,e⟩.k;P)@⟨c0, e0⟩ :: x:⊕ {ℓ:Aℓ}ℓ∈L⟨c, e⟩

⊕R2

Ψ ⊩ ⟨d1 , f1 ⟩ = ⟨c, e⟩ ⊔ ⟨d0 , f0 ⟩
∀k ∈ L Ψ; ∆, x:Ak⟨c, e⟩ ⊢Σ Qk@⟨d1, f1⟩ :: z:C⟨d, f⟩ ∀i, j ∈ L.Ψ ⊨ Qi ∼⟨d1 ,f1 ⟩ Qj

Ψ; ∆, x:⊕ {ℓ:Aℓ}ℓ∈L⟨c, e⟩ ⊢Σ (casex⟨c,e⟩(ℓ⇒Qℓ)ℓ∈L)@⟨d0, f0⟩ :: z:C⟨d, f⟩
⊕L

∀k ∈ L Ψ; ∆ ⊢Σ Pk@⟨c, e⟩ :: x:Ak⟨c, e⟩ ∀i, j ∈ L.Ψ ⊨ Pi ∼⟨c,e⟩ Pj

Ψ; ∆ ⊢Σ (casex⟨c,e⟩(ℓ⇒Pℓ)ℓ∈L)@⟨c0, e0⟩ :: x:&{ℓ:Aℓ}ℓ∈L⟨c, e⟩
&R

Ψ ⊩ c = e Ψ ⊩ ⟨d0 , f0 ⟩ ⊑ ⟨c, e⟩ k ∈ L Ψ; ∆, x:Ak⟨c, e⟩ ⊢Σ Q@⟨d0, f0⟩ :: z:C⟨d, f⟩
Ψ; ∆, x:&{ℓ:Aℓ}ℓ∈L⟨c, e⟩ ⊢Σ (x⟨c,e⟩.k;Q)@⟨d0, f0⟩ :: z:C⟨d, f⟩

&L1

Ψ ̸⊩ c = e ∀i, j ∈ L.Ai = Aj

Ψ ⊩ ⟨d0 , f0 ⟩ ⊑ ⟨c, e⟩ k ∈ L Ψ; ∆, x:Ak⟨c, e⟩ ⊢Σ Q@⟨d0, f0⟩ :: z:C⟨d, f⟩
Ψ; ∆, x:&{ℓ:Aℓ}ℓ∈L⟨c, e⟩ ⊢Σ (x⟨c,e⟩.k;Q)@⟨d0, f0⟩ :: z:C⟨d, f⟩

&L2

Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:B⟨c, e⟩
Ψ; ∆, y:A⟨d, f⟩ ⊢Σ (send y x⟨c,e⟩;P)@⟨c0, e0⟩ :: x:A⊗B⟨c, e⟩

⊗R

Ψ ⊩ ⟨d1, f1⟩ = ⟨c, e⟩ ⊔ ⟨d0, f0⟩ Ψ; ∆, x:B⟨c, e⟩, y:A⟨c, e⟩ ⊢Σ Q@⟨d1, f1⟩ :: z:C⟨d, f⟩
Ψ; ∆, x:A⊗B⟨c, e⟩ ⊢Σ (y⟨c,e⟩←recvx⟨c,e⟩;Qy⟨c,e⟩)@⟨d0, f0⟩ :: z:C⟨d, f⟩

⊗L

Ψ; ∆, y:A⟨c, e⟩ ⊢Σ P@⟨c, e⟩ :: x:B⟨c, e⟩
Ψ; ∆ ⊢Σ (y⟨c,e⟩←recvx⟨c,e⟩;Py⟨c,e⟩)@⟨c0, e0⟩ :: x:A⊸ B⟨c, e⟩

⊸R

Ψ ⊩ ⟨d0 , f0 ⟩ ⊑ ⟨c, e⟩ Ψ; ∆, x:B⟨c, e⟩ ⊢Σ Q@⟨d0, f0⟩ :: z:C⟨d, f⟩
Ψ; ∆, x:A⊸ B⟨c, e⟩, y:A⟨c, e⟩ ⊢Σ (send y x⟨c,e⟩;Q)@⟨d0, f0⟩ :: z:C⟨d, f⟩

⊸L

Ψ ⊩ ⟨c1, e1⟩ = ⟨c2, e2⟩
Ψ; y:A⟨c1, e1⟩ ⊢Σ (x⟨c2,e2⟩ ← y⟨c1,e1⟩)@⟨c0, e0⟩ :: x:A⟨c2, e2⟩

Fwd

Ψ ′; ∆′
1 ⊢Σ X = P@⟨ψ0, ω0⟩ :: x:A⟨ψ, ω⟩ ∈ Σ

Ψ ⊩ γ : Ψ ′ γ̂(∆′
1) = ∆1 Ψ ⊩ ⟨γ̂(ψ), γ̂(ω)⟩ ⊑ ⟨d, f ⟩

Ψ ⊩ f0 ⊑ γ̂(ψ0) Ψ ⊩ f0 ⊑ γ̂(ω0) Ψ; ∆2, x:A⟨γ̂(ψ), γ̂(ω)⟩ ⊢Σ Q@⟨d0, f0⟩ :: z:C⟨d, f⟩
Ψ; ∆1,∆2 ⊢Σ ((x⟨γ̂(ψ),γ̂(ω)⟩ ← X[γ]← ∆1)@⟨γ̂(ψ0), γ̂(ω0)⟩;Qx)@⟨d0, f0⟩ :: z:C⟨d, f⟩

Spawn

Ψ; · ⊢Σ (close x⟨c,e⟩)@⟨c0, e0⟩ :: x:1⟨c, e⟩
1R

Ψ ⊩ ⟨d1 , f1 ⟩ = ⟨c, e⟩ ⊔ ⟨d0 , f0 ⟩ Ψ; ∆ ⊢Σ Q@⟨d1, f1⟩ :: z:C⟨d, f⟩
Ψ; ∆, x:1⟨c, e⟩ ⊢Σ (waitx⟨c,e⟩;Q)@⟨d0, f0⟩ :: z:C⟨d, f⟩

1L

Figure 4 Process term typing rules of SINTEGRITY.

its running integrity as low as e ⊏ c and, at some point in the future, drop its running
confidentiality to e and start sending to channels with lower (or unrelated) confidentiality
than c. The additional premise ∀i, j ∈ L.Ai = Aj in ⊕R2 prevents potential leaks through
different continuation protocols at that future point, i.e., it ensures that the client’s future
communications with channels of lower confidentiality level than c do not depend on the
continuation protocol chosen now.

F. Derakhshan, S. Balzer, and Y. Yao 11:15

TVarR
Y = A ∈ Σ Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:A⟨c, e⟩

Ψ; ∆ ⊢Σ P@⟨c0, e0⟩ :: x:Y ⟨c, e⟩
TVarL
Y = A ∈ Σ Ψ; ∆, x:A⟨c, e⟩ ⊢Σ Q@⟨d0, f0⟩ :: z:C⟨d, f⟩

Ψ; ∆, x:Y ⟨c, e⟩ ⊢Σ Q@⟨d0, f0⟩ :: z:C⟨d, f⟩
⊩Σ;Ψ0 (·) sig

Σ1

⊩Σ A wfmd ⊩Σ;Ψ0 Σ′ sig
⊩Σ;Ψ0 Y = A,Σ′ sig

Σ2

∀i ∈ {1 . . .n}.Ψ ⊩ ⟨ψi , ωi⟩ ⊑ ⟨ψ, ω⟩,Ψ ⊩ ωi ⊑ ψi

Ψ ⊩ ⟨ψ0 , ω0 ⟩ ⊑ ⟨ψ, ω⟩ Ψ ⊩ ω0 ⊑ ψ0 Ψ ⊩ ω ⊑ ψ
Ψ; y1:B1⟨ψ1, ω1⟩, . . . , yn:Bn⟨ψn, ωn⟩ ⊢Σ P@⟨ψ0, ω0⟩ :: x:A⟨ψ, ω⟩ ⊩Σ;Ψ0 Σ′ sig
⊩Σ;Ψ0 Ψ; y1:B1⟨ψ1, ω1⟩, . . . , yn:Bn⟨ψn, ωn⟩ ⊢ X = P@⟨ψ0, ω0⟩ :: x:A⟨ψ, ω⟩,Σ′ sig

Σ3

Figure 5 Signature checking rules of SINTEGRITY.

The first premise of rule ⊕L updates the running integrity and confidentiality based on
x’s security levels to enforce condition (1) for receives. Moreover, as explained in § 3.3,
the third premise invokes the pattern check pairwise for every two branches conditioned
on the running confidentiality d1 and running integrity f1 after the receive. We detail the
synchronization pattern check rules later in § 5.2.
&: The left and right rules for & are dual to ⊕, except that the sends in &L1 and &L2

have to be guarded by their second and third premises, resp., to ensure condition (2) on
sends. In &R, the updated running confidentiality and running integrity is equal to the
max confidentiality and max integrity by invariant (b).
⊗, ⊸, 1: The rules for the rest of the connectives use the same set of premises to ensure
conditions (1) and (2). Rules ⊗R and ⊸L, moreover, ensure that a channel can be sent
over another channel only if they have the same security levels.
fwd: The forward rule requires that the security levels of the involved channels match.
Spawn: The rule relies on an order-preserving substitution Ψ ⊩ γ : Ψ′, guaranteeing that
the security terms provided by the spawner comply with the order expected among those
terms by the spawnee. The substitution maps the security terms in the context in the
signature to the one provided by the spawner, i.e., γ̂(∆′

1) = ∆1. The rule also establishes
invariants (a)-(c) for the newly spawned process via the premise Ψ ⊩ ⟨γ̂(ψ), γ̂(ω)⟩ ⊑ ⟨d, f⟩.
The running confidentiality and the running integrity of the spawned process will result
from applying the substitution to the corresponding levels in the signature, i.e., γ̂(ψ0)
and γ̂(ω0), resp. The premises Ψ ⊩ f0 ⊑ γ̂(ψ0) and Ψ ⊩ f0 ⊑ γ̂(ω0) allow the newly
spawned process to start its running confidentiality and integrity at least at the spawner’s
running integrity f0. This facilitates regrading to f0 in case of a tail call. Note that
Ψ ⊩ f0 ⊑ γ̂(ω0) prevents the spawnee from employing more pattern checks than the
spawner because the spawnee would otherwise be affected by the spawners negligence.

Signature checking. The syntax of process definitions in the signature is also enhanced
with the security levels and is of the form Ψ; ∆ ⊢ X = P@⟨ψ0, ω0⟩::(z:A⟨ψ, ω⟩). Fig. 5 lists the
signature checking rules. Signature checking happens relative to a globally fixed security
lattice Ψ0 of concrete security levels. Rule Σ3 initiates type-checking of a process definition
via its fifth premise and enforces invariants (a)-(c) on the process via the first four premises.

ECOOP 2024

11:16 Regrading Policies for Flexible IFC in Session-Typed Concurrency

Unsync1
Ψ ̸⊩ d ⊑ f Ψ ⊩ d ⊑ e Ψ ⊨ P ∼⟨d,f⟩ Q

Ψ ⊨↑x⟨c,e⟩ .P ∼⟨d,f⟩ Q

Unsync2
Ψ ̸⊩ d ⊑ f Ψ ⊩ d ⊑ e Ψ ⊨ P ∼⟨d,f⟩ Q

Ψ ⊨ P ∼⟨d,f⟩↑x⟨c,e⟩ .Q

Ψ ⊩ d ⊑ f
Ψ ⊨ P ∼⟨d,f⟩ Q

Unsync3

Ψ ̸⊩ d ⊑ f Ψ ⊩ d ⊑ e0 ∀y:B⟨c′, e′⟩ ∈ ∆.Ψ ⊩ d ⊑ e′ Ψ ⊨ P ∼⟨d,f⟩ Q

Ψ ⊨ (x⟨c,e⟩ ← X[γ]← ∆)@⟨c0, e0⟩;Px ∼⟨d,f⟩ Q
Unsync-Spawn1

Ψ ̸⊩ d ⊑ f Ψ ⊩ d ⊑ e0 ∀y:B⟨c′, e′⟩ ∈ ∆.Ψ ⊩ d ⊑ e′ Ψ ⊨ P ∼⟨d,f⟩ Q

Ψ ⊨ P ∼⟨d,f⟩ (x⟨c,e⟩ ← X[γ]← ∆)@⟨c0, e0⟩;Qx
Unsync-Spawn2

SndLab
Ψ ̸⊩ d ⊑ f Ψ ̸⊩ d ⊑ e Ψ ⊨ P ∼⟨d,f⟩ Q

Ψ ⊨ x⟨c,e⟩.k;P ∼⟨d,f⟩ x
⟨c,e⟩.ℓ;Q

RcvLab
Ψ ̸⊩ d ⊑ f ∀j ∈ I, k ∈ L.Ψ ⊨ Pj ∼⟨d,f⊔e⟩ Qk

Ψ ⊨ casex⟨c,e⟩(ℓ⇒Pℓ)ℓ∈I ∼⟨d,f⟩ casex⟨c,e⟩(ℓ⇒Qℓ)ℓ∈L
SndChn
Ψ ̸⊩ d ⊑ f Ψ ̸⊩ d ⊑ e Ψ ⊨ P ∼⟨d,f⟩ Q

Ψ ⊨ send y x⟨c,e⟩;P ∼⟨d,f⟩ send y x⟨c,e⟩;Q
RcvChn

Ψ ̸⊩ d ⊑ f Ψ ⊨ [y/y1]P ∼⟨d,f⊔e⟩ [y/y2]Q
Ψ ⊨ y1←recvx⟨c,e⟩;Py1 ∼⟨d,f⟩ y2←recvx⟨c,e⟩;Qy2

Ψ ̸⊩ d ⊑ f
(Ψ ̸⊩ d ⊑ e0 or ∃y:B⟨c′, e′⟩ ∈ ∆.Ψ ̸⊩ d ⊑ e′) Ψ ⊨ [x/x1]P ∼⟨d,f⟩ [x/x2]Q

Ψ ⊨ (x⟨c,e⟩
1 ← X[γ]← ∆)@⟨c0, e0⟩;Px1 ∼⟨d,f⟩ (x⟨c,e⟩

2 ← X[γ]← ∆)@⟨c0, e0⟩;Qx2

Sync-Spawn

Ψ ̸⊩ d ⊑ f
Ψ ⊨ x⟨c1,e1⟩ ← y⟨c2,e2⟩ ∼⟨d,f⟩ x

⟨c1,e1⟩ ← y⟨c2,e2⟩ Fwd

Ψ ̸⊩ d ⊑ f
Ψ ⊨ closex⟨c,e⟩ ∼⟨d,f⟩ closex⟨c,e⟩ Close

Ψ ̸⊩ d ⊑ f Ψ ⊨ P ∼⟨d,f⊔e⟩ Q

Ψ ⊨ waitx⟨c,e⟩;P ∼⟨d,f⟩ waitx⟨c,e⟩;Q
Wait

Figure 6 Synchronization pattern checking rules of SINTEGRITY.

5.2 Synchronization patterns

To check synchronization patterns, we use the judgment Ψ ⊨ P ∼⟨d,f⟩ Q, defined inductively
in Fig. 6. The judgment states that process terms P and Q are synchronized in terms of
their communication pattern, meaning that if P outputs along channel x, so must Q, and
that if P inputs along channel x, so must Q, and vice versa. The check is conditioned on
the running confidentiality d and running integrity f of the recipient after branching, and is
pairwise called for all branches of a case statement. Let us assume that right after branching,
the known secret of a process (its running confidentiality) is of level d. The goal of the
synchronization pattern checks is to rule out any leakage of this secret of level d via regrading.
Such leakage is only possible if the process (or any process that receives this secret from it)
regrades to a lower or unrelated level than the secret d. However, if d ⊑ f , we know that
this can never happen. Therefore, if Ψ ⊩ d ⊑ f , the judgment Ψ ⊨ P ∼⟨d,f⟩ Q trivially holds.
This case is handled by Rule Unsync3 and is a base case of the inductive definition.

F. Derakhshan, S. Balzer, and Y. Yao 11:17

The interesting case is when Ψ ̸⊩ d ⊑ f , meaning that the process can potentially regrade
to a lower (or unrelated) level than d. In this case, the rules have to ensure that the secret d
does not affect the ability of the process itself or the processes communicating with it to
reach a regrading point. Furthermore, the secret d cannot affect the continuation of the
process after regrading. In this case, the rules consider whether the next action in P and Q

is a receive, send (except close), spawn, close, or forward:
The receives are checked to be synchronized in P and Q by the rules RcvLab and RcvChan.
The pattern check is invoked inductively on the continuation, with updated running
integrity (f ⊔ e) to take into account the receive. The confidentiality of the learned secret
d, however, remains constant under inductive invocations as it has to continue preventing
the leak of the original secret. The receives have to be synchronized as long as Ψ ̸⊩ d ⊑ f
holds, since different receives in P and Q might result in one branch reaching the regrading
point and the other one not (related to non-reactiveness).
Different sends in two branches of a process does not impact whether or not the process
itself reaches a regrading point (sends are non-blocking). But, it may impact whether or
not the other process, on the receiving side, reaches the regrading point based on the
secret. If the carrier channel’s min integrity e is high enough, the receiving process cannot
regrade to a level lower (or unrelated) than d, and we do not need to synchronize the
sends. The sends must only be synchronized if the carrier channel’s min integrity e is not
greater than or equal to the level d of the secret (d ̸⊑ e). Rules Unsync1 and Unsync2
correspond to the former case where d ⊑ e; for brevity, in these rules, we use process
terms with any output prefix defined as ↑x⟨c,e⟩ .P ≜ x⟨c,e⟩.k;P | send y x⟨c,e⟩;P. And rules
SndLab and SndChan correspond to the latter where d ̸⊑ e. In either case, the pattern
check is invoked inductively on the continuation, with unchanged running integrity.
Similar to the reasoning in the case of sends, if the running integrity of the spawned
process and the min integrity of all its channels are high enough, there is no need to
synchronize the spawns (Unsync-Spawn rules). Otherwise, the two branches must spawn
the same processes with the same arguments (Sync-Spawn).
Rules Close and Fwd are the other base cases of the inductive definition. They insist
that the two branches P and Q can synchronize their termination behavior.

5.3 Configuration typing and asynchronous dynamics
The configuration typing judgment is of the form Ψ0; ∆ ⊩ C :: ∆′, where Ψ0 is the security
lattice and C is a set of runtime processes proc(yα⟨c, e⟩, P@⟨c′, e′⟩) and messages msg(M).
Fig. 7 shows the configuration typing. The security premises in the proc and msg rules
enforce the invariants (a)-(c) on the process term judgment before invoking process typing.

The dynamic rules in Fig. 8 take care of updating the running confidentiality and integrity
of each process after a receive. For brevity, we write ⟨p⟩ to refer to a pair of confidentiality
and integrity labels ⟨c, e⟩. Rule Spawn relies on the substitution mapping γ given by the
programmer and its lifting γ̂ to the process term level. It looks up the definition of process X
in the signature and instantiates the security variables occurring in the process body using γ.
The condition γ̂(Ψ′) = Ψ0 ensures that all security variables are instantiated with a concrete
security level. For brevity, we omit a channel generations as well as Σ, which is fixed.

5.4 Banking example
The following example implements a bank that authorizes transactions made by its customers
and sends a copy to their bank accounts. In line with our security lattice, we assume that the
bank has two customers, Alice and Bob. To authenticate themselves, a customer sends their

ECOOP 2024

11:18 Regrading Policies for Flexible IFC in Session-Typed Concurrency

Ψ0 ;x:A[⟨d, e⟩] ⊩ · :: (x:A[⟨d, e⟩])
emp

Ψ0 ; ∆0 ⊩ C :: ∆ Ψ0 ; ∆′
0 ⊩ C1 :: x:A[⟨d, e⟩]

Ψ0 ; ∆0,∆′
0 ⊩ C C1 :: ∆, x:A[⟨d, e⟩]

comp

Ψ0 ⊩ d1 ⊑ d Ψ0 ⊩ e1 ⊑ e
∀y:B[⟨d ′, e′⟩] ∈ ∆′

0 ,∆ (Ψ0 ⊩ d ′ ⊑ d) ∀y:B[⟨d ′, e′⟩] ∈ ∆′
0 ,∆ (Ψ0 ⊩ e′ ⊑ e)

Ψ0 ⊩ e1 ⊑ d1 Ψ0 ⊩ e ⊑ d ∀y:B[⟨d ′, e′⟩] ∈ ∆′
0 ,∆ (Ψ0 ⊩ e′ ⊑ d ′)

Ψ0 ; ∆0 ⊩ C :: ∆ Ψ0 ; ∆′
0,∆ ⊢ P@⟨d1 , e1 ⟩ :: (x:A[⟨d, e⟩])

Ψ0; ∆0,∆′
0 ⊩ C proc(x[⟨d, e⟩], P@⟨d1, e1⟩) :: (x:A[⟨d, e⟩])

proc

∀y:B[⟨d ′, e′⟩] ∈ ∆′
0 ,∆ (Ψ0 ⊩ d ′ ⊑ d) Ψ0 ⊩ e ⊑ d ∀y:B[⟨d ′, e′⟩] ∈ ∆′

0 ,∆ (Ψ0 ⊩ e′ ⊑ d ′)
Ψ0 ; ∆0 ⊩ C :: ∆ Ψ0 ; ∆′

0,∆ ⊢M@⟨d, e⟩ :: (x:A[⟨d, e⟩])
Ψ0 ; ∆0,∆′

0 ⊩ C,msg(M) :: (x:A[⟨d, e⟩])
msg

Figure 7 Configuration typing rules of SINTEGRITY.

Spawn proc(yα⟨p⟩, (x⟨p′⟩ ← X[γ]← ∆)@⟨p2 ⟩;Q@⟨p1 ⟩)
(Ψ ′; ∆′ ⊢ X = P@⟨ψ0 , ω0 ⟩ :: x : B′⟨ψ, ω⟩ ∈ Σ)

7→ proc(x0⟨p′⟩, ([x0,∆/x,∆′]γ̂(P))@⟨p2 ⟩) proc(yα⟨p⟩, ([x0/x]Q)@⟨p1 ⟩)
(Ψ0 ⊩ γ : Ψ ′, x0 fresh)

1snd proc(yα⟨p⟩, (close yα)@⟨p1 ⟩) 7→ msg(close yα)
1rcv msg(close yα) proc(xβ⟨p′⟩, (wait yα;Q)@⟨p1 ⟩) 7→ proc(xβ⟨p′⟩, Q@⟨p1 ⟩ ⊔ ⟨p⟩)
⊕snd proc(yα⟨p⟩, yα.k;P@⟨p1 ⟩) 7→ proc(yα+1⟨p⟩, ([yα+1/yα]P)@⟨p1 ⟩) msg(yα.k)
⊕rcv msg(yα.k) proc(uγ⟨p′⟩, case y⟨p⟩

α ((ℓ⇒ Pℓ)ℓ∈L)@⟨p1 ⟩)
7→ proc(uγ⟨p′⟩, ([yα+1/yα]Pk)@⟨p1 ⟩ ⊔ ⟨p⟩)

&snd proc(yα⟨p⟩, (xβ .k;P)@⟨p1 ⟩) 7→ msg(xβ .k) proc(yα⟨p⟩, ([xβ+1/xβ]P)@⟨p1 ⟩)
&rcv proc(yα⟨p⟩, (case yα(ℓ⇒ Pℓ)ℓ∈L)@⟨p1 ⟩) msg(yα.k) 7→ proc(vδ⟨p⟩, ([yα+1/yα]Pk)@⟨p⟩)
⊗snd proc(yα⟨p⟩, (sendxβ yα;P)@⟨p1 ⟩) 7→ proc(yα+1⟨p⟩, ([yα+1/yα]P)@⟨p1 ⟩) msg(sendxβ yα)
⊗rcv msg(sendxβ yα) proc(uγ⟨p′⟩, (w ← recv y⟨p⟩

α ;P)@⟨p1 ⟩)
7→ proc(uγ⟨p′⟩, ([xβ/w][yα+1/yα]P)@(⟨p1 ⟩ ⊔ ⟨p⟩))

⊸snd proc(yα⟨p⟩, (sendxβ uγ ;P)@⟨p1 ⟩) 7→ msg(sendxβ uγ) proc(yα⟨p⟩, ([uγ+1/uγ]P)@⟨p1 ⟩)
⊸rcv proc(yα⟨p⟩, (w ← recv yα;P)@⟨p1 ⟩) msg(sendxβ yα) 7→ proc(vδ⟨p⟩, ([xβ/w][yα+1/yα]P)@⟨p⟩)

Figure 8 Asynchronous dynamics of SINTEGRITY.

token to the bank. The bank then verifies the token and, if the verification is successful, sends
the message succ to the customer, otherwise the message fail. Moreover, if the verification is
successful, the bank creates a transaction statement and sends it to another process that
represents the account of the customer in the bank. Once done, the bank continues to serve
the next customer by making a recursive call. We assume that the bank alternates between
its two customers, Alice and Bob, by making a mutually recursive call from BankA, which
serves Alice, to BankB, which serves Bob, and vice versa. At each recursive call, a bank
process regrades its running confidentiality to interact with the next customer. The example
showcases a characteristic feature of our type system: it accepts an implementation for a bank
that interactively communicates with Alice and Bob without jeopardizing noninterference.

The following session types dictate the above protocol:
customer = ⊕{tokblack : &{succ : customer, fail : customer},

tokwhite : &{succ : customer, fail : customer}}
account = transfer ⊸ account
transfer = ⊕{transaction : 1}

Fig. 9 shows the process implementations BankA, BankB, CustomerA, and StatementA. The
latter two are the implementation of Alice’s customer and statement process, resp. The
implementation of CustomerA is as expected. StatementA signals a single transfer by sending
the label transaction and terminates. The implementation of corresponding processes for Bob,

F. Derakhshan, S. Balzer, and Y. Yao 11:19

Ψ; y1:customer⟨ψ,guest⟩, y2:customer⟨ψ′,guest⟩, w1:account⟨ψ,ψ⟩, w2:account⟨ψ′, ψ′⟩
⊢ BankA :: x:1⟨bank,bank⟩
x← BankA ← y1, y2, w1, w2 =
case y1 (tokwhite ⇒ y1.succ; (u← StatementA[γ]← ·); senduw1; (x′ ← BankB[γ]← y1, y2, w1, w2);

x← x′

| tokblack ⇒ y1.fail; (x′ ← BankB[γ]← y1, y2, w1, w2); x← x′)@⟨guest,guest⟩

Ψ; y1:customer⟨ψ,guest⟩, y2:customer⟨ψ′,guest⟩, w1:account⟨ψ,ψ⟩, w2:account⟨ψ′, ψ′⟩
⊢ BankB :: x:1⟨bank,bank⟩
x← BankB ← y1, y2, w1, w2 =
case y2 (tokblack ⇒ y2.succ; (u← B[γ]← ·); senduw2; (x′ ← BankA[γ]← y1, y2, w1, w2); x← x′

| tokwhite ⇒ y2.fail; (x′ ← BankA[γ]← y1, y2, w1, w2); x← x′)@⟨guest,guest⟩

Ψ; · ⊢ CustomerA :: y:customer⟨ψ,guest⟩
y ← CustomerA ← · =
y.tokwhite; case y (succ ⇒ (y′ ← CustomerA[γ]← ·); y ← y′

| fail ⇒ (y′ ← CustomerA[γ]← ·); y ← y′) @⟨ψ,guest⟩

Ψ; · ⊢ StatementA :: u:transfer⟨ψ,ψ⟩
u← StatementA ← · = u.transaction; closeu @⟨ψ,ψ⟩

Figure 9 Security-polymorphic process definitions.

i.e., CustomerB, and StatementB, would be similar. The example is typed using the security
theory Ψ, consisting of the concrete security lattice Ψ0, the security variables ψ and ψ′,
and the set of constraints {guest ⊑ ψ ⊑ bank,guest ⊑ ψ′ ⊑ bank}. (See TR for the formal
definition of a security theory.) To execute this program using the dynamics in Fig. 8, we
provide the order-preserving substitution Ψ0 ⊩ γ′ :: Ψ, defined as γ′ := {ψ 7→ alice, ψ′ 7→ bob}.

Let us examine the pattern checks ∼⟨ψ,guest⟩ invoked by case y1(. . .) in BankA, relating
the branches corresponding to black and white tokens. The sends along y1 match in both
branches, as demanded by SndLab (since Ψ ̸⊩ ψ⊑guest), even though the sent labels are not
the same. The unsynchronized spawn and send along w1 is verified by Unsync-Spawn1 and
Unsync1, resp., since Ψ ⊩ ψ ⊑ ψ. The matching tail calls are verified with Sync-Spawn.

6 Progress-sensitive noninterference

This section presents our main result, PSNI, which we prove using a logical relation.

6.1 Attacker model
The attacker model assumes a configuration D with prior annotation of its free channels
with security levels, the attacker’s confidentiality level ξ, and a nondeterministic scheduler.
The attacker knows the source code of D, can only observe the messages sent along the free
channels of D with confidentiality level c ⊑ ξ, and cannot measure the passing of time.

6.2 Noninterference via an integrity logical relation
Noninterference amounts to a process equivalence up to the confidentiality level ξ of an
observer. In a message-passing system, it boils down to an equivalence of a configuration with
interacting processes. This section focuses on noninterference for tree-shaped configurations.
The definition can be extended to forests by enforcing pairwise relation between their trees.

An open configuration Ψ0; ∆ ⊩ D :: xα:A⟨c, e⟩ has the free channels ∆ and xα to commu-
nicate with its external environment; it sends outgoing messages to and receives incoming
messages from the environment along these free channels. Two observationally equivalent

ECOOP 2024

11:20 Regrading Policies for Flexible IFC in Session-Typed Concurrency

(B1,B2) ∈ EξΨ0
J∆ ⊩ KKm+1 iff (D1;D2) ∈ TreeΨ0 (∆ ⊩ K) and∀Υ1, Θ1, D′

1. if D1 7→∗Υ1;Θ1 D′
1 then

∃Υ2D′
2. such that D2 7→∗Υ2 D′

2 and Υ1 ⊆ Υ2 and
∀ yα ∈ Out(∆ ⊩ K). if yα ∈ Υ1. then (D′

1;D′
2) ∈ VξΨ0

J∆ ⊩ KKm+1
·;yα

and
∀ yα ∈ In(∆ ⊩ K).if yα ∈ Θ1. then (D′

1;D′
2) ∈ VξΨ0

J∆ ⊩ KKm+1
yα;·

(B1,B2) ∈ EξΨ0
J∆ ⊩ KK0 iff (D1;D2) ∈ TreeΨ0 (∆ ⊩ K)

Figure 10 Term interpretation of logical relation.

(l1) (D1;D2) ∈ VξΨ0
J∆, yα:1⟨c, e⟩ ⊩ KKm+1

yα;·
iff (D1;D2) ∈ TreeΨ0 (∆, yα:1⟨c, e⟩ ⊩ K) then

(msg(close y⟨c,e⟩
α)D1; msg(close y⟨c,e⟩

α)D2) ∈ EξΨ0
J∆ ⊩ KKm

(l2) (D1;D2) ∈ VξΨ0
J∆, yα : ⊕{ℓ:Aℓ}ℓ∈I⟨c, e⟩ ⊩ KKm+1

yα;·
iff (D1;D2) ∈ TreeΨ0 (∆, yα:⊕ {ℓ:Aℓ}ℓ∈I⟨c, e⟩ ⊩ K) and ∀k1, k2 ∈ I.if(c ⊑ ξ → k1 = k2) then

(msg(y⟨c,e⟩
α .k1)D1; msg(y⟨c,e⟩

α .k2)D2) ∈ EξΨ0
J∆, yα+1:Ak1⟨c, e⟩ ⊩ KKm

(l3) (D1;D2) ∈ VξΨ0
J∆, yα:&{ℓ:Aℓ}ℓ∈I⟨c, e⟩ ⊩ KKm+1

·;yα

iff (D1;D2) ∈ TreeΨ0 (∆, yα:&{ℓ:Aℓ}ℓ∈I⟨c, e⟩ ⊩ K) and ∃k1, k2 ∈ I.(c ⊑ ξ → k1 = k2) and
D1 = msg(y⟨c,e⟩

α .k1)D′
1 and D2 = msg(y⟨c,e⟩

α .k2)D′
2 and

(D′
1;D′

2) ∈ EξΨ0
J∆, yα+1:Ak1⟨c, e⟩ ⊩ KKm

(l4) (D1;D2) ∈ VξΨ0
J∆, yα:A⊗B⟨c, e⟩ ⊩ KKm+1

yα;·
iff (D1;D2) ∈ TreeΨ0 (∆, yα:A⊗B⟨c, e⟩ ⊩ K) and∀xβ ̸∈dom(∆, yα:A⊗B⟨c, e⟩,K).

(msg(sendx⟨c,e⟩
β , y

⟨c,e⟩
α)D1; msg(sendx⟨c,e⟩

β , y
⟨c,e⟩
α)D2) ∈ EξΨ0

J∆, xβ :A⟨c, e⟩, yα+1:B⟨c, e⟩ ⊩ KKm

(l5) (D1;D2) ∈ VξΨ0
J∆′,∆′′, yα:A⊸ B⟨c, e⟩ ⊩ KKm+1

·;yα

iff (D1;D2) ∈ TreeΨ0 (∆′,∆′′, yα:A⊸ B⟨c, e⟩ ⊩ K) and
D1 = T1msg(sendx⟨c,e⟩

β y
⟨c,e⟩
α)D′′

1 and for T1 ∈ TreeΨ0 (∆′ ⊩ xβ :A⟨c, e⟩)
D2 = T2msg(sendx⟨c,e⟩

β y
⟨c,e⟩
α)D′′

2 and for T2 ∈ TreeΨ0 (∆′ ⊩ xβ :A⟨c, e⟩) and
(T1; T2) ∈ EξΨ0

J∆′ ⊩ xβ :A⟨c, e⟩Km and
(D′′

1 ;D′′
2) ∈ EξΨ0

J∆′′, yα+1:B⟨c, e⟩ ⊩ KKm

Figure 11 Value interpretation of logical relation for left communications.

configurations may only differ in outgoing messages of confidentiality level co ̸⊒ ξ, assuming
that the incoming messages of confidentiality level ci ⊑ ξ are the same. We introduce a logical
relation that captures this idea and accounts for integrity and regrading policies.

The logical relation relates two open configurations D1 and D2 – the two runs of the
program under consideration – and asserts that D1 and D2 send related messages to the
environment, if they receive related messages from the environment. The term interpretation
of the logical relation, defined in Fig. 10, allows the first configuration D1 to step internally
until the configuration is ready to send or receive a message across at least one external
channel. Then, it requires the second configuration D2 to step internally so that the resulting
configurations are in the value interpretation of the logical relation, defined in Fig. 11 and
Fig. 12. We call the external channels, e.g., ∆ ⊩ K in Fig. 10, the interface of D1 and D2. The
metavariable K stands for either xα:A⟨c, e⟩ or simply _:1⟨⊤,⊤⟩ which refers to an arbitrary
unobservable channel.

The idea is to build an interface consisting of those external channels of the configurations
that may impact the attacker’s observations. As such, not only do we need to include the
observable channels, i.e., with confidentiality level c ⊑ ξ, in the interface, but also those with
higher integrity than the observer, i.e., with integrity level e ⊑ ξ. After all, if a channel’s
integrity is high enough (and thus its level is low), the messages along it may affect an
observable outcome via synchronization patterns. We call such an interface integrity interface
since low-confidentiality channels are all high-integrity by typing.

F. Derakhshan, S. Balzer, and Y. Yao 11:21

(r1) (D1;D2) ∈ VξΨ0
J· ⊩ yα:1⟨c, e⟩Km+1

·;yα

iff (D1;D2) ∈ TreeΨ0 (· ⊩ yα) andD1 = msg(close y⟨c,e⟩
α) andD2 = msg(close y⟨c,e⟩

α)
(r2) (D1;D2) ∈ VξΨ0

J(∆ ⊩ yα:⊕ {ℓ:Aℓ}ℓ∈I⟨c, e⟩)Km+1
·;yα

iff (D1;D2) ∈ TreeΨ0 (∆ ⊩ yα : ⊕{ℓ:Aℓ}ℓ∈I⟨c, e⟩) and∃k1, k2 ∈ I. (c ⊑ ξ → k1 = k2)
D1 = D′

1msg(y⟨c,e⟩
α .k1) andD2 = D′

2msg(y⟨c,e⟩
α .k2)

and (D′
1;D′

2) ∈ EξΨ0
J∆ ⊩ yα+1:Ak1⟨c, e⟩K

m

(r3) (D1;D2) ∈ VξΨ0
J∆ ⊩ yα:&{ℓ:Aℓ}ℓ∈I⟨c, e⟩Km+1

yα;·
iff (D1;D2) ∈ TreeΨ0 (∆ ⊩ yα:&{ℓ:Aℓ}ℓ∈I⟨c, e⟩) then∀k1, k2 ∈ I.if (c ⊑ ξ → k1 = k2) then

(D1msg(y⟨c,e⟩
α .k1),D2msg(y⟨c,e⟩

α .k2)) ∈ EξΨ0
J∆ ⊩ yα+1:Ak1⟨c, e⟩K

m

(r4) (D1;D2) ∈ VξΨ0
J∆′,∆′′ ⊩ yα:A⊗B⟨c, e⟩Km+1

·;yα

iff(D1;D2) ∈ TreeΨ0 (∆′,∆′′ ⊩ yα:A⊗B⟨c, e⟩) and ∃xβ .
D1 = D′

1T1msg(sendx⟨c,e⟩
β y

⟨c,e⟩
α) for T1 ∈ TreeΨ0 (∆′′ ⊩ xβ :A⟨c, e⟩) and

D2 = D′
2T2msg(sendx⟨c,e⟩

β y
⟨c,e⟩
α) for T2 ∈ TreeΨ0 (∆′′ ⊩ xβ :A⟨c, e⟩) and

(T1; T2) ∈ EξΨ0
J∆′′ ⊩ xβ :A⟨c, e⟩Km and

(D′
1;D′

2) ∈ EξΨ0
J∆′ ⊩ yα+1:B⟨c, e⟩Km

(r5) (D1;D2) ∈ VξΨ0
J∆ ⊩ yα:A⊸ B⟨c, e⟩Km+1

yα;·
iff (D1;D2) ∈ TreeΨ0 (∆ ⊩ yα:A⊸ B⟨c, e⟩) and ∀xβ ̸∈dom(∆, yα:A⊸ B⟨c, e⟩).

(D1msg(sendx⟨c,e⟩
β y

⟨c,e⟩
α);D2msg(sendx⟨c,e⟩

β y
⟨c,e⟩
α)) ∈ EξΨ0

J∆, xβ :A⟨c, e⟩ ⊩ yα+1:B⟨c, e⟩Km

Figure 12 Value interpretation of logical relation for right communications.

(∆1 ⊩ D1 :: xα:A1⟨c1, e1⟩) ≡Ψ0
ξ (∆2 ⊩ D2 :: yβ :A2⟨c2, e2⟩) iff

D1 ∈ Tree(∆1 ⊩ xα:A1⟨c1, e1⟩) and D2 ∈ Tree(∆2 ⊩ yβ :A2⟨c2, e2⟩) and ∆1⇓igξ = ∆2⇓igξ = ∆ and
xα:A1⟨c1, e1⟩ ⇓ig ξ = yβ :A2⟨c2, e2⟩ ⇓ig ξ = K and ∀B1 ∈ L-IProviderξ(∆1). ∀B2 ∈ L-IProviderξ(∆2).
∀T1 ∈ L-IClientξ(xα:A1⟨c1, e1⟩). ∀T2 ∈ L-IClientξ(yβ :A2⟨c2, e2⟩).
∀m. (B1D1T1,B2D2T2) ∈ EξΨ0

J∆ ⊩ KKm, and ∀m. (B2D2T2,B1D1T1) ∈ EξΨ0
J∆ ⊩ KKm.

· ∈ L-IProviderξ(·)
B ∈ L-IProviderξ(∆, xα:A⟨c, e⟩) iff
e ̸⊑ ξ andB = B′T and B′ ∈ L-IProviderξ(∆) and T ∈ Tree(· ⊩ xα:A⟨c, e⟩),or
e ⊑ ξ andB ∈ L-IProviderξ(∆)

T ∈ L-IClientξ(xα:A⟨c, e⟩) iff
e ̸⊑ ξ and T ∈ Tree(xα:A⟨c, e⟩ ⊩ _ : 1⟨⊤,⊤⟩), or e ⊑ ξ and T = ·

Figure 13 Logical equivalence.

To build an integrity interface for D1 and D2, we close off their external low-integrity
(e ̸⊑ ξ) channels on the left by composing the channels with any well-typed provider and
on the right with any well-typed client. We may use different low-integrity clients and
providers to compose with each program run. These clients/providers can send different and
unsynchronized messages along their high-confidentiality and low-integrity connections to D1

and D2. The term interpretation is designed to ensure that well-typed configurations do not
leak these different messages to the attacker. Fig. 13 defines an equivalence relation between
two configurations based on this idea: it composes them with low-integrity providers/clients
and calls the term interpretation symmetrically on the compositions. In the definition, we use
the projection function to build the integrity interface, e.g., ∆⇓igξ projects out the channels
yβ :A⟨c, e⟩ ∈ ∆ with ξ ̸⊑ e. The predicate D1 ∈ TreeΨ0 (∆ ⊩ K) indicates that the configuration
D1 is well-typed. In the term and value interpretations, we generalize this predicate to the
binary case, (D1;D2) ∈ TreeΨ0 (∆ ⊩ K) indicating that both D1 and D2 are of the same type.

The term interpretation allows stepping configuration D1 7→∗Υ1;Θ1 D′
1 by iterated applica-

tion of the rewriting rules defined in Fig. 8. The star expresses that zero to multiple internal
steps can be taken. The superscripts Υ1; Θ1 denote two sets of channels occurring in the

ECOOP 2024

11:22 Regrading Policies for Flexible IFC in Session-Typed Concurrency

interface ∆ ⊩ K. The set Θ1 collects the incoming channels, i.e., channels that a process in
D1 is ready to receive from, and the set Υ1 collects the outgoing channels, i.e., channels with
a message in D1 ready to be sent. Assuming that D1 steps to D′

1, generating the outgoing
channels Υ1, D2 must be stepped D2 7→∗Υ2 D′

2 to produce at least the same set of outgoing
channels, i.e., the set Υ2 such that Υ1 ⊆ Υ2. The term interpretation then calls the value
interpretation on the resulting configurations D′

1,D′
2 for every channel that has a message

ready for transmission in D′
1, and thus D′

2, and for every channel that has a process waiting
for a message in D′

1. Insisting on Υ2 being a superset of Υ1 ensures progress-sensitive
noninterference without timing attacks: if a configuration produces observable messages
along a set of channels, the other configuration has to be able to produce the equivalent set
of messages with zero or some internal steps. The term interpretation uses focus channels
as a subscript to the value interpretation to support simultaneous communications – when
there are multiple messages ready to be sent or received along channels in the interface. The
subscript ·; yα indicates that yα ∈ Υ1 and yα; · that yα ∈ Θ1.

The value interpretation accounts for every message sent from or received by D1 and
D2, amounting to two cases per connective: one for a message exchanged along a channel
in K and one for a message exchanged along a channel in ∆. We refer to the former as
communications to the right (Fig. 12) and the latter as communications to the left (Fig. 11).
The value interpretation generally establishes the following pattern: it asserts relatedness of
outgoing messages, but assumes relatedness of incoming messages. For example, & on the
left (l3 in Fig. 11) asserts the sending of related messages and pushes the messages into the
environment, yielding D′

1, D′
2. Now, D′

1, D′
2, can each step internally, e.g., to consume the

incoming messages, requiring them to be in the term interpretation. On the other hand, &
on the right (r3 in Fig. 12) assumes receipt of related messages and pushes the messages
into the configurations D1 and D2. Relatedness for messages is determined by how they can
impact the attacker’s observations. If their carrier channel is observable to the attacker,
i.e., has confidentiality level c ⊑ ξ, then related messages must have the same labels. But
if the channel only affects the attacker’s observations via synchronization patterns, related
messages may have different labels. The clause c ⊑ ξ → k1 = k2 in the value interpretation
conveys this, enforcing equality of the communicated labels only if the channel is observable.

Relatedness for higher-order types (⊗ and ⊸) is a bit more subtle. In particular, it
requires future observations along the exchanged channels to be related. For example,
l5 in Fig. 11 for ⊸-left asserts existence of a message msg(sendx⟨c,e⟩

β y
⟨c,e⟩
α) and of sub-

trees T1 and T2 in D1 and D2. The clause comprises two invocations of the term rela-
tion, (T1; T2) ∈ Eξ

Ψ0
J∆′ ⊩ xβ :A⟨c, e⟩Km, asserting that future observations to be made

along the sent channel xβ are related, and (D′′
1 ;D′′

2) ∈ Eξ
Ψ0

J∆′′, yα+1:B⟨c, e⟩ ⊩ KKm, as-
serting that the continuations D′′

1 and D′′
2 are related. Conversely, r5 in Fig. 12 for ⊸-

right assumes receipt of a message msg(sendx⟨c,e⟩
β y

⟨c,e⟩
α) and invokes the term relation

(D1msg(sendx⟨c,e⟩
β y

⟨c,e⟩
α);D2msg(sendx⟨c,e⟩

β y
⟨c,e⟩
α)) ∈ EξΨ0

J∆, xβ :A⟨c, e⟩ ⊩ yα+1:B⟨c, e⟩Km.
As we support general recursive types, we need an index to stratify our logical relation [3,5].

We tie our index to the number of observations that can be made along the interface ∆ ⊩ K,
as suggested in [7]. We thus bound the value and term interpretation of our logical relation
by the number of observations m, for m ≥ 0, and attach them as superscripts to the relation’s
interface ∆ ⊩ K. The base case of the term interpretation, i.e., m = 0, is a trivial relation.

The fundamental theorem states that any well-typed SINTEGRITY configuration is
equivalent to itself up to the level of an arbitrary observer.

▶ Theorem 1 (Fundamental theorem). For all security levels ξ, and a well-typed configuration
Ψ0; ∆ ⊩ D :: uα:T ⟨c, e⟩ we have (∆ ⊩ D :: uα:T ⟨c, e⟩) ≡Ψ0

ξ (∆ ⊩ D :: uα:T ⟨c, e⟩).

F. Derakhshan, S. Balzer, and Y. Yao 11:23

Proof. We present a proof sketch; see the TR for details. By the definition of logical
equivalence (Fig. 13), we first need to close off the external low integrity (e ̸⊑ ξ) channels
in ∆ and uα:T ⟨c, e⟩ by composing D with arbitrary well-typed providers and clients, resp.
We use low integrity clients, T1 and T2, and low-integrity providers, B1 and B2, to compose
with each run, resulting in two configurations, D1 = B1DT1 and D2 = B2DT2. Configurations
D1 and D2 are both well-typed for the integrity interface: Ψ0; ∆′ ⊩ Di :: K where ∆′ = ∆⇓igξ

and K = uα:T ⟨c, e⟩⇓igξ. By the definition in Fig. 13, it is enough to show that D1 and D2

are in the term interpretation with the integrity interface, i.e., ∀m. (D1,D2) ∈ EξΨ0
J∆′ ⊩ KKm

and ∀m. (D2,D1) ∈ EξΨ0
J∆′ ⊩ KKm. We prove the former by induction on m; the proof of

the latter is symmetric. Specifically, we prove a more general theorem (Thm. 6.1 in TR)
for any D1 and D2 with the same observable outcome, using the notion of relevant nodes
(Def. 4.2 in TR). By the definition of the term interpretation in Fig. 10, the base case (m = 0)
is straightforward. For the inductive case, following the first row of Fig. 10, we assume
arbitrary Υ1, Θ1, and D′

1 such that D1 7→∗Υ1;Θ1 D′
1. We apply a lemma (Lem. 4.5 in TR)

stating that D2 can simulate the internal steps taken by D1, producing at least the same set
of outgoing channels Υ2, i.e., D2 7→∗Υ2 D′

2, such that D′
1 and D′

2 continue to have the same
observable outcomes. Finally, for every channel xα in Υ1 and Θ1, we case analyze on the
type of xα, showing that D′

1 and D′
2 are in the value interpretation, with xα being the focus

channel. To do so, we use the induction hypothesis to establish that after the corresponding
communication with the environment, the continuations of D′

1 and D′
2 are related by the

term interpretation for a smaller index. ◀

6.3 Adequacy
Next, we prove an adequacy theorem showing that two logically equivalent configurations
are bisimilar up to observations of confidentiality ξ.

For adequacy, we are interested in a confidentiality interface, i.e., channels with observable
max confidentiality c ⊑ ξ; after all, our goal is to prove that the configurations are equivalent
up to the confidentiality of an observer. Because the integrity interface of our logical relation
is a superset of the confidentiality interface, we need to close off those channels in the integrity
interface that are of high-confidentiality (c ̸⊑ ξ). Note that these high-confidentiality channels
are of high-integrity (e ⊑ ξ). To close off these channels, we compose the open configurations
with high-confidentiality clients and providers, possibly different ones for each program
run. These high-integrity clients and providers are connected to the open configurations via
high-integrity channels and, as a result, may affect the observable outcome of the two runs
via synchronization patterns. We therefore require them to be logically equivalent.

Based on this idea, Fig. 14 defines the bisimulation up to confidentiality ξ denoted as
≈ξa, for two well-typed configurations: it first composes the two configurations with high-
confidentiality providers (Hrel-IProvider) and clients (H-CClient), while insisting that the
high-integrity parts of the providers and clients are logically equivalent (using the relations
Hrel-IProvider and Hrel-IClient). Then it invokes an asynchronous bisimulation ≈a on
the compositions. The definition uses a projection function ⇓cfξ to build the confidentiality
interface, e.g., ∆⇓cfξ projects out the channels in ∆ with confidentiality c ̸⊑ ξ.

The asynchronous bisimulation ≈a invoked by the definition in Fig. 14 uses a labeled
transition system (LTS) following the standard definition of asynchronous bisimulation [38].
The relation D1 ≈a D2 states that every internal step or external action of D1 can be (weakly)
simulated by D2 and vice-versa. For example, when D1 takes an action by sending output q
via an external channel xα, i.e., D1

xα q−−−→ D′
1, the bisimulation ensures that for some D′

2, we
have D2

xα q===⇒ D′
2 and D′

1 ≈a D′
2. Here, xα q===⇒ stands for taking zero or more internal steps

before outputting q along xα. The full definition of bisimulation is in the TR.

ECOOP 2024

11:24 Regrading Policies for Flexible IFC in Session-Typed Concurrency

∆1 ⊩ D1 :: xα:A1⟨c1, e1⟩ ≈ξa ∆2 ⊩ D2 :: yβ :A2⟨c2, e2⟩ iff
D1 ∈ Tree(∆1 ⊩ xα:A1⟨c1, e1⟩) andD2 ∈ Tree(∆2 ⊩ yβ :A2⟨c2, e2⟩) and
∆ = ∆1 ⇓cf ξ = ∆2 ⇓cf ξ and K = yβ :A2⟨c2, e2⟩ ⇓cf ξ = xα:A1⟨c1, e1⟩ ⇓cf ξ and
∆′ = ∆1 ⇓ig ξ = ∆2 ⇓ig ξ and K′ = yβ :A2⟨c2, e2⟩ ⇓ig ξ = xα:A1⟨c1, e1⟩ ⇓ig ξ and
∀B1 ∈ H-CProviderξ(∆1),B2 ∈ H-CProviderξ(∆2).
∀T1 ∈ H-CClientξ(xα:A1⟨c1, e1⟩), T2 ∈ H-CClientξ(yβ :A2⟨c2, e2⟩).
if(B1,B2) ∈ Hrel-IProviderξ(∆′\∆) and (T1, T2) ∈ Hrel-IClientξ(K′\K) thenB1D1T1 ≈a B2D2T2.

· ∈ H-CProviderξ(·)
B ∈ H-CProviderξ(∆, xα:A⟨c, e⟩) iff
c ̸⊑ ξ andB = B′T and B′ ∈ H-CProviderξ(∆) and T ∈ Tree(· ⊩ xα:A⟨c, e⟩),or
c ⊑ ξ andB ∈ H-CProviderξ(∆)

T ∈ H-CClientξ(xα:A⟨c, e⟩) iff
c ̸⊑ ξ and T ∈ Tree(xα:A⟨c, e⟩ ⊩ _ : 1⟨⊤,⊤⟩),or
c ⊑ ξ and T = ·

(·, ·) ∈ Hrel-IProviderξ(·)
(B1,B2) ∈ Hrel-IProviderξ(∆, xα:A⟨c, e⟩) iff
e ̸⊑ ξ andBi = B′

iTi and (B′
1,B′

2) ∈ Hrel-IProviderξ(∆),or
e ⊑ ξ andBi = B′

iTi and (B′
1,B′

2) ∈ Hrel-IProviderξ(∆) and · ⊩ T1 ≡Ψ0
ξ T2 :: xα:A⟨c, e⟩.

(·, ·) ∈ Hrel-IClientξ(_⟨⊤,⊤⟩)
(T1, T2) ∈ Hrel-IClientξ(xα:A⟨c, e⟩) iff
e ̸⊑ ξ or e ⊑ ξ andxα:A⟨c, e⟩ ⊩ T1 ≡Ψ0

ξ T2 :: _ : 1⟨⊤,⊤⟩

Figure 14 Asynchronous bisimulation up to observations of confidentiality ξ.

Now we are ready to present our adequacy theorem stating that, given an observer level ξ,
logically equivalent configurations are bisimilar up to observations of confidentiality ξ. The
proof of the theorem relies on a compositionality lemma, which ensures a harmony between
asserts and assumes in the value-interpretation of the logical relation.

▶ Lemma 2 (Compositionality). ∀m. (D1;D2) ∈ EξΨ0
J∆, u⟨c,e⟩

α :T ⊩ KKm and ∀m. (T1; T2) ∈
EξΨ0

J∆′ ⊩ u
⟨c,e⟩
α :T Km if and only if ∀k. (T1D1; T2D2) ∈ EξΨ0

J∆′,∆ ⊩ KKk.

▶ Theorem 3 (Adequacy). If (∆1 ⊩ D1 :: xα:A1⟨c1, e1⟩) ≡Ψ0
ξ (∆2 ⊩ D2 :: yβ :A2⟨c2, e2⟩) then

(∆1 ⊩ D1 :: xα:A1⟨c1, e1⟩) ≈ξa (∆2 ⊩ D2 :: yβ :A2⟨c2, e2⟩).

Proof. Recall from Fig. 14 that ≈ξa composes D1 and D2 with arbitrary high-confidentiality
(c ̸⊑ ξ) clients and providers, building a confidentiality interface J∆c ⊩ KcK. Let us call the
high-confidentiality providers B1 and B2 and the high-confidentiality clients T1 and T2. We can
partition the providers into high-integrity and low-integrity parts to get B1 = BHI

i BLI
i (similarly

for the clients T1 = T HI
i T LI

i), where superscripts HI and LI correspond to high-integrity and
low-integrtiy parts, resp. Our goal is to prove BHI1 BLI1 D1T HI1 T LI1 ≈a BHI2 BLI2 D2T HI2 T LI2 .
Step 1. The first step is to show that the two compositions are related by the term
interpretation as well, i.e., ∀m.(BHI

1 BLI
1 D1T HI

1 T LI
1 ;BHI

2 BLI
2 D2T HI

2 T LI
2) ∈ EJ∆c ⊩ KcK. To do

so, we can use the definition from Fig. 13 for ≡Ψ0
ξ to compose D1 and D2 with given low

integrity clients and providers T LI
1 , T LI

2 , BLI
1 , and BLI

2 to build the integrity interface J∆i ⊩ KiK
and get ∀m.(BLI

1 D1T LI
1 ;BLI

2 D2T LI
2) ∈ EJ∆i ⊩ KiK. However, this is not enough to achieve

our goal as the relation pertains to the integrity interface, and thus, the composition only
includes the low integrity providers/clients. To build the confidentiality interface and include
the high integrity parts, we use the fact that the high integrity providers BHI

1 and BHI
2

(and clients T HI
1 and T HI

2) are themselves logically equivalent. We use our compositionality
lemma (Lem. 2) to compose the high-integrity channels in the integrity interface with
these providers/clients and show that the composition results in two logically equivalent
configurations, i.e., ∀m.(BHI

1 BLI
1 D1T HI

1 T LI
1 ;BHI

2 BLI
2 D2T HI

2 T LI
2) ∈ EJ∆c ⊩ KcK.

F. Derakhshan, S. Balzer, and Y. Yao 11:25

Step 2. We complete the proof by connecting our logically related configurations to
an observational equivalence relation for session types [7], which is proved sound and
complete for asynchronous bisimulation. We first show that our integrity term interpret-
ation implies the observational equivalence relation in [7] when we consider a confiden-
tiality interface, and then use their soundness result to show that the integrity term
interpretation ∀m.(BHI

1 BLI
1 D1T HI

1 T LI
1 ;BHI

2 BLI
2 D2T HI

2 T LI
2) ∈ EJ∆c ⊩ KcK implies bisimilarity

BHI1 BLI1 D1T HI1 T LI1 ≈a BHI2 BLI2 D2T HI2 T LI2 .
Next, we briefly explain how our integrity logical relation coincides with the observational

equivalence relation (for well-typed configurations) in [7] when considering a confidentiality
interface. The observational equivalence in [7] is defined via a logical relation similar to the
one developed in this paper, but only considering the confidentiality interface. Let us call the
term and value interpretations of our logical relation Ei and Vi (defined in Figs. 10–12) and
the ones defined in [7] Ec and Vc, resp. The relation Ei is invoked for the integrity interface
J∆i ⊩ KiK in Fig. 13, and similarly Ec is invoked for the confidentiality interface J∆c ⊩ KcK,
where, by definition, ∆c is a subset of (or equal to) ∆i and Kc is a subset of (or equal to) Ki.
As the integrity logical relation may contain non-observable channels (c ̸⊑ ξ), it only insists
that the same labels are sent when communication is along observable channels. Concretely,
Vi in lines (l2), (l3), (r2), and (r3) only insists that the labels k1 and k2 sent/received along a
channel are the same if c ⊑ ξ. However, Vc always enforces sending the same labels, since a
priori the condition c ⊑ ξ holds for all the channels in its interface. In all other regards, Ei
and Vi have the same definition as Ec and Vc. As a result, it is straightforward to observe
that given an interface ∆c ⊩ Kc with only observable channels (channels with c ⊑ ξ), we have
∀m. (D1;D2) ∈ E iJ∆c ⊩ KcKm iff ∀m. (D1;D2) ∈ EcJ∆c ⊩ KcKm. ◀

7 Related work

IFC type systems using linearity. Conceptually most closely related to our work is the
work by Zdancewic and Myers on ordered linear continuations [46, 47]. The authors consider
continuation-passing style (CPS) security-typed languages to verify noninterference not only
for source-level programs but also compiled code. The authors observe that the possibility
to lower the pc label upon exiting control flow constructs, present in imperative source-
level languages, is no longer available in a CPS language. To rectify the loss of flexibility
they introduce ordered linear continuations. Similar to our pattern checks, ordered linear
continuations allow downgrading of the pc label after branching on high, because linearity
enforces the continuations to be used in every branch, in the order prescribed. In contrast
to our work, the authors only consider a sequential language and only prove PINI. Our
work moreover establishes the connection to integrity, facilitating regrading policies that are
polymorphic in the security lattice for ultimate flexibility.

In another line of work Zdancewic and Myers again employ linearity for increased flexibility
and a stronger noninterference statement [48]. The authors consider a concurrent language
with a store and first-class channels. Their main focus is observational determinism, ensuring
immunity to internal timing attacks and attacks that exploit information about thread
scheduling. To this end the authors introduce linear channels and a race freedom analysis.
Given that SINTEGRITY enjoys confluence, like other linear session type languages, it rules
out timing attacks that exploit the relative order of messages, which seems to be a stronger
property than immunity to internal timing attacks considered by the authors. Moreover, we
establish PSNI for SINTEGRITY, whereas the authors only prove PINI.

ECOOP 2024

11:26 Regrading Policies for Flexible IFC in Session-Typed Concurrency

IFC session type systems. In terms of underlying language, the work most closely related
to ours is the one by Derakhshan et al. [7, 20]. The authors develop an IFC type system
for the same family of linear session types but only consider confidentiality. Their system
annotates the process term judgments with running and max confidentiality. Their typing
rules only ensure that the running confidentiality (aka taint level) is updated correctly after
each receive and that a tainted process does not leak information via send. In particular, the
rules do not allow decreasing the taint level at any point. As a result the authors’ type system
suffers from the same restrictiveness as other IFC type systems for concurrent languages,
requiring each loop iteration to run at the maximal confidentiality reached throughout an
arbitrary iteration. For example, the authors’ IFC type system rejects the banking example
in § 5.4: as soon as the bank receives a message from one customer, say Alice, it will be
tainted and cannot send a message to any other customer, say Bob. In fact, the authors’ IFC
type system rejects all well-typed examples presented in this paper even though they enjoy
PSNI. We make our IFC type system more flexible by designing synchronization policies to
enable regrading of the taint level and using integrity labels to make the policies composable,
both of which are novel to our system. Designing these composable policies was an intricate
task, particularly due to dealing with both concurrency and general recursion.

Our logical relation for integrity is inspired by Balzer et al.’s [7] logical relation for equi-
valence. The logical relation for equivalence is defined based on the confidentiality interface.
Our logical relation, however, is based on the larger integrity interface to enable the proof of
the fundamental theorem. We prove our adequacy theorem by proving compositionality for
our logical relation, which then allows us to recast our logical relation in terms of the logical
relation for equivalence by the authors, delivering adequacy as a corollary.

IFC type systems for multiparty session types and process calculi. IFC type systems have
also been explored for multiparty session types [10–13]. These works explore declassification
[10,12] and flexible runtime monitoring techniques [11, 13]. Our work not only differs in use
of session type paradigm (i.e., binary vs. multiparty) but also in use of a logical relation for
showing noninterference. Our work is more distantly related with IFC type systems for process
calculi [16–18,25,25,28,29,31,34,48]. These works prevent information leakage by associating
a security label with channels/types/actions [29], read/write policies with channels [25,25], or
capabilities with expressions [16]. Honda et al. [29] also use a substructural type system and
prove a sound embedding of Dependency Core Calculus (DCC) [2] into their calculus. Our
work sets itself apart in its use of session types and meta theoretic developments based on
logical relations. Moreover, our IFC type system is more permissive as it allows for regrading
of the taint level, while preserving noninterference.

Declassification. Our notion of regrading may seem related to declassification, which has
extensively been studied for IFC type systems for functional and imperative languages [1,6,15,
22,32,33,44,45,49] and allows an entity to downgrade its level of confidentiality. However, our
work significantly differs from declassification as it preserves PSNI, whereas declassification
systems deliberately release information and thus intentionally weaken noninterference.

In particular, robust declassification [6,15,33,44,45,49] prevents adversaries from exploiting
downgrading of confidentiality, by complementing confidentiality with integrity. It uses
integrity to ensure that downgrading decisions can be trusted, i.e., cannot be influenced by
an attacker. As such, only high-integrity data can influence the taint level to be lowered.
This is similar to our system, where the higher the integrity of a process, the lower level it
can regrade the taint level. The difference, however, is that we enforce extra synchronization

F. Derakhshan, S. Balzer, and Y. Yao 11:27

policies on our high-integrity processes to ensure that they cannot induce information leaks by
lowering the taint level. This contrasts with work on robust declassification, which introduces
leakage intentionally and thus compromises noninterference.

References
1 Martín Abadi. Secrecy by typing in security protocols. In TACS, volume 1281 of LNCS, pages

611–638. Springer, 1997.
2 Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of

dependency. In POPL, pages 147–160. ACM, 1999.
3 Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In

ESOP, volume 3924 of LNCS, pages 69–83. Springer, 2006.
4 Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv, Thomas

Schmitz, and Keith Winstein. Secure serverless computing using dynamic information flow
control. Proc. ACM Program. Lang., 2(OOPSLA):118:1–118:26, 2018.

5 Andrew W. Appel and David A. McAllester. An indexed model of recursive types for
foundational proof-carrying code. TOPLAS, 23(5):657–683, 2001.

6 Aslan Askarov and Andrew C. Myers. Attacker control and impact for confidentiality and
integrity. Log. Methods Comput. Sci., 7(3), 2011.

7 Stephanie Balzer, Farzaneh Derakhshan, Robert Harper, and Yue Yao. Logical relations for
session-typed concurrency. CoRR, abs/2309.00192, 2023. arXiv:2309.00192.

8 Kenneth J. Biba. Integrity considerations for secure computer systems. Technical Report
ESD-TR-76-372, Electronic Systems Division, Air Force Systems Command, United States
Air Force, 1977.

9 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In CONCUR,
volume 6269 of LNCS, pages 222–236. Springer, 2010.

10 Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Typing access control
and secure information flow in sessions. Inf. Comput., 238:68–105, 2014.

11 Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Information flow safety
in multiparty sessions. Mathematical Structures in Computer Science, 26(8):1352–1394, 2016.
doi:10.1017/S0960129514000619.

12 Sara Capecchi, Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Tamara Rezk. Session
types for access and information flow control. In CONCUR, pages 237–252, 2010.

13 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Jorge A. Pérez. Self-adaptation and
secure information flow in multiparty communications. Formal Aspects Comput., 28(4):669–696,
2016.

14 Iliano Cervesato and Andre Scedrov. Relating state-based and process-based concurrency
through linear logic. Inf. Comput., 207(10):1044–1077, 2009.

15 Stephen Chong and Andrew C. Myers. Decentralized robustness. In CSFW, pages 242–256.
IEEE, 2006.

16 Silvia Crafa, Michele Bugliesi, and Giuseppe Castagna. Information flow security for boxed
ambients. Electronic Notes in Theoretical Computer Science, 66(3):76–97, 2002.

17 Silvia Crafa and Sabina Rossi. A theory of noninterference for the π-calculus. In TGC, volume
3705 of LNCS, pages 2–18. Springer, 2005.

18 Silvia Crafa and Sabina Rossi. Controlling information release in the pi-calculus. Inf. Comput.,
205(8):1235–1273, 2007.

19 Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module? In PLDI, pages
50–63. ACM, 1999.

20 Farzaneh Derakhshan, Stephanie Balzer, and Limin Jia. Session logical relations for noninter-
ference. In LICS, pages 1–14. IEEE, 2021.

21 Farzaneh Derakhshan, Stephanie Balzer, and Yue Yao. Regrading policies for flexible informa-
tion flow control in session-typed concurrency. CoRR, 2024.

ECOOP 2024

https://arxiv.org/abs/2309.00192
https://doi.org/10.1017/S0960129514000619

11:28 Regrading Policies for Flexible IFC in Session-Typed Concurrency

22 Elena Ferrari, Pierangela Samarati, Elisa Bertino, and Sushil Jajodia. Providing flexibility in
information flow control for object-oriented systems. In IEEE Symposium on Security and
Privacy, pages 130–140. IEEE, 1997.

23 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2-3):191–225, 2005.

24 Daniel Heidin and Andrei Sabelfeld. A perspective on information flow control. Technical
report, Marktoberdorf, 2011.

25 Matthew Hennessy. The security pi-calculus and non-interference. J. Log. Algebraic Methods
Program., 63(1):3–34, 2005.

26 Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of LNCS, pages 509–523.
Springer, 1993.

27 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In ESOP, volume 1381 of
LNCS, pages 122–138. Springer, 1998.

28 Kohei Honda, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Secure information flow
as typed process behaviour. In ESOP, volume 1782 of LNCS, pages 180–199. Springer, 2000.

29 Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow. In
POPL, pages 81–92. ACM, 2002.

30 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In POPL, pages 273–284. ACM, 2008.

31 Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Acta Inf., 42(4):291–
347, December 2005.

32 Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label model.
TOSEM, 9(4):410–442, 2000.

33 Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust declassification
and qualified robustness. J. Comput. Secur., 14(2):157–196, 2006.

34 François Pottier. A simple view of type-secure information flow in the π-calculus. In CSFW-15,
pages 320–330. IEEE, 2002.

35 Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforcement for distributed programs.
In SAS, volume 2477 of LNCS, pages 376–394. Springer, 2002.

36 Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE J.
Sel. Areas Commun., 21(1):5–19, 2003.

37 Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded programs.
In CSFW, pages 200–214. IEEE, 2000.

38 Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

39 Geoffrey Smith and Dennis M. Volpano. Secure information flow in a multi-threaded imperative
language. In POPL, pages 355–364. ACM, 1998.

40 Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and David Mazières.
Addressing covert termination and timing channels in concurrent information flow systems. In
ICFP, pages 201–214. ACM, 2012.

41 Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions, and
sessions: A monadic integration. In ESOP, volume 7792 of LNCS, pages 350–369. Springer,
2013.

42 Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type system for secure
flow analysis. J. Comput. Secur., 4(2/3):167–188, 1996.

43 Philip Wadler. Propositions as sessions. In ICFP, pages 273–286. ACM, 2012.
44 Steve Zdancewic. A type system for robust declassification. In MFPS, volume 83 of Electronic

Notes in Theoretical Computer Science, pages 263–277. Elsevier, 2003.
45 Steve Zdancewic and Andrew C. Myers. Robust declassification. In CSFW, pages 15–23.

IEEE, 2001.

F. Derakhshan, S. Balzer, and Y. Yao 11:29

46 Steve Zdancewic and Andrew C. Myers. Secure information flow and CPS. In ESOP, volume
2028 of LNCS, pages 46–61. Springer, 2001.

47 Steve Zdancewic and Andrew C. Myers. Secure information flow via linear continuations.
High. Order Symb. Comput., 15(2-3):209–234, 2002.

48 Steve Zdancewic and Andrew C. Myers. Observational determinism for concurrent program
security. In CSFW, pages 1–15. IEEE, 2003.

49 Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Secure program
partitioning. TOCS, 20(3):283–328, 2002.

ECOOP 2024

Mutation-Based Lifted Repair of Software Product
Lines
Aleksandar S. Dimovski #

Mother Teresa University, Skopje, North Macedonia

Abstract
This paper presents a novel lifted repair algorithm for program families (Software Product Lines -
SPLs) based on code mutations. The inputs of our algorithm are an erroneous SPL and a specification
given in the form of assertions. We use variability encoding to transform the given SPL into a single
program, called family simulator, which is translated into a set of SMT formulas whose conjunction
is satisfiable iff the simulator (i.e., the input SPL) violates an assertion. We use a predefined set of
mutations applied to feature and program expressions of the given SPL. The algorithm repeatedly
mutates the erroneous family simulator and checks if it becomes (bounded) correct. Since mutating
an expression corresponds to mutating a formula in the set of SMT formulas encoding the family
simulator, the search for a correct mutant is reduced to searching an unsatisfiable set of SMT
formulas. To efficiently explore the huge state space of mutants, we call SAT and SMT solvers in
an incremental way. The outputs of our algorithm are all minimal repairs in the form of minimal
number of (feature and program) expression replacements such that the repaired SPL is (bounded)
correct with respect to a given set of assertions.

We have implemented our algorithm in a prototype tool and evaluated it on a set of #ifdef-based
C programs (i.e., annotative SPLs). The experimental results show that our approach is able to
successfully repair various interesting SPLs.

2012 ACM Subject Classification Software and its engineering → Software product lines; Theory of
computation → Abstraction

Keywords and phrases Program repair, Software Product Lines, Code mutations, Variability encoding

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.12

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.5

1 Introduction

A program family (Software Product Line - SPL) represents a set of similar programs, known
as variants, generated from a common code base [2]. SPL engineering has been successfully
applied in industry to meet the need for custom-tailored software. For instance, different
variants from an SPL can target different platforms or may serve customization requirements
for different customers. The variants are specified in terms of features selected for that
particular variant. The popular #ifdef directives from the C preprocessor CPP [43] represent
the most common way to implement such (annotative) program families. An #ifdef directive
specifies under which presence conditions (i.e., feature selections or feature expressions), parts
of code should be included or excluded from a variant at compile-time. SPLs are often used
in the development of the embedded and safety-critical systems (e.g., mobile devices, cars,
medicine, avionics), where their behavioral correctness is of primary interest. In particular,
the focus is on applying various verification and analysis techniques from the field of formal
methods, which can give stronger guarantees on the correctness of software systems. In the
last decade, much effort has been invested in designing specialized so-called lifted (family-
based) formal verification and analysis algorithms [4, 6, 9, 43, 30, 14, 23, 15, 20, 22, 25, 55],
which allow simultaneous verification of all variants of an SPL in a single run by exploiting
the commonalities between the variants. They usually return an error trace, which shows

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Aleksandar S. Dimovski;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 12; pp. 12:1–12:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aleksandar.dimovski@unt.edu.mk
https://orcid.org/0000-0002-3601-2631
https://doi.org/10.4230/LIPIcs.ECOOP.2024.12
https://doi.org/10.4230/DARTS.10.2.5
https://doi.org/10.4230/DARTS.10.2.5
https://doi.org/10.4230/DARTS.10.2.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Mutation-Based Lifted Repair of Software Product Lines

Variability
encoding

Translator
(CBMC) Mutator

Generator
(SAT)

Verifier
(SMT)

SPL family
simulator

SF
soft

SVar
soft

Shard

S1, . . . , Sn

formula yes

correct
SPL

no

Figure 1 Diagram illustrating our lifted repair system.

how the given specification is violated. However, the users still need to process the obtained
result, in order to isolate the cause of the error to a small part of the code and subsequently
to repair the given SPL. Here, we consider the problem of SPL repair, which is defined
to be a code transformation such that the repaired SPL satisfies a given specification (e.g.
assertion). Automatic SPL repair is an important problem since even if an error is identified
in the verification phase, the manual error-repair is a nontrivial time-consuming task that
requires close knowledge of the SPL. For instance, the error-repair of one variant may
cause new errors to appear in other variants due to the feature interaction in the given
SPL [3]. Recently, researchers have developed several successful single-program repair tools
[28, 37, 40, 42, 45, 46, 48, 50, 51]. However, these tools cannot be directly applied to SPLs
as they are only able to handle pre-processed single programs.

In this paper, we lift the mutation-based approach AllRepair [50, 51] for repairing
single programs to program families (SPLs). Figure 1 illustrates our lifted repair system.
More specifically, we use variability encoding [30, 56] to transform program families to single
programs, called family simulators, by replacing compile-time variability with run-time
variability (non-determinism). The (family) simulator, which contains the computations of all
variants of a program family, is then translated into a set of SMT formulas using the CBMC
bounded model checker [8]. The conjunction of the obtained SMT formulas is satisfiable iff
there is an assertion violation in the given simulator iff there is an assertion violation in at
least one variant of the original program family. On the other hand, the conjunction of the
obtained SMT formulas is unsatisfiable iff all assertions are valid in the given simulator iff all
assertions are valid in all variants of the original program family. We use a bounded notion of
correctness, since we consider only bounded computations in which each loop and recursive
call are inlined at most b times. Each statement in the simulator corresponds to a formula in
the obtained set of SMT formulas, which can be partitioned into subset Shard encoding parts
of the program that cannot be changed and subset Ssoft = SF

soft ∪ SVar
soft encoding parts of the

program that can be changed. Therefore, mutating a feature or program expression found
in a statement that can be changed corresponds to changing the respective SMT formula
from SF

soft or SVar
soft, respectively. The mutator unit generates mutated family simulators

(mutants) by using a predefined set of syntactic mutations/edits applied to feature and
program expressions. Hence, in our repair model, we permit feature and program expressions
to be changed but not statements. For example, we allow replacement of #ifdef guards
(e.g., by applying ¬ to features, replacing ∧/∨ with ∨/∧) and right-hand sides of assignments
(e.g., by increasing or decreasing a constant, replacing +/− with −/+). Thus, the size of
the space of mutants depends on the choice of permissable mutations/edits used for repair.
The mutants are explored in increasing number of mutations applied to the original family

A. S. Dimovski 12:3

simulator, so that only minimal sets of mutations are considered. Hence, the search in
the space of mutants reduces to searching for an unsatisfiable set of SMT formulas. This
search is performed using an iterative generate-and-verify process. The generator produces a
minimally changed mutant using a SAT solver and the verifier checks the bounded-correctness
of mutant using an SMT solver. This way, we find a solution with a minimal number of
syntactic changes/edits to the original (incorrect) program family. Therefore, the type of
errors that can be corrected is determined by the fixed set of syntactic mutations/edits, which
can be applied to feature and program expressions. Hence, our approach can make repairs
by replacing expressions in #ifdef-guards and right-hand sides of assignments with another
expressions of the same form, but it cannot make repairs by replacing (adding/deleting)
statements (e.g., replace assignment with if statement) or by replacing expressions with
another expressions of different form (e.g., replace expression 5 with x+y). Both SAT and
SMT solvers are used in an incremental way, which means that learned information is passed
between successive calls. Since variants in a program family as well as mutated simulators
are very similar, their encodings as sets of SMT formulas will have a lot in common. Hence,
we can reuse the information that was gathered in checking previous mutated simulators to
expedite the solution of the current one. The incremental solving was implemented via the
mechanisms called assumptions and guard variables [26].

We have implemented our algorithm for repairing #ifdef-based C program families in a
prototype tool, called SPLAllRepair, which is built on top of the AllRepair tool [50, 51].
The tool uses the CBMC model checker [8] for translating single programs to SMT formulas,
as well as the MiniCard [39] and Z3 [11] tools for SAT and SMT solving. We illustrate
this approach for automatic repair on a number of C program families from the literature
[10, 37, 46, 50, 51], and we report very encouraging results. We compare performances
of two versions of our tool, with smaller and bigger sets of possible mutations, as well as
with the Brute-force approach that repairs all variants from a program family one by one
independently.

We summarize the contributions of this paper as follows:
Lifted Algorithm for SPL Repair: We propose a novel lifted algorithm based on variability

encoding and syntactic code mutations for repairing program families;
Synthesizing Minimally Repaired SPLs: We automatically compute all minimal repaired

program families (minimal in the number of code replacements) that are bounded correct
by mutating feature and program expressions;

Implementation and Evaluation: We build a prototype tool for automatically repairing
#ifdef-based C program families, and present experimental results by evaluating it on a
dozen of C benchmarks.

2 Motivating Example

We now present an overview of our approach using a motivating example. Consider the
#ifdef-based C program family intro1, shown in Fig. 2, which uses two Boolean features
A and B. They induce a family of four variants defined by the set of configurations K =
{A ∧ B, ¬A ∧ B, A ∧ ¬B, ¬A ∧ ¬B}. For each configuration, a different variant (single program)
can be generated by appropriately resolving #if directives. For example, the variant for
configuration (A ∧ B) will have both features A and B enabled (set to true or 1), thus yielding
the body of main(): int x=0; x=x+2; assert(x≥0); return x. The variant for (¬A∧¬B)
will have both features A and B disabled (set to false or 0), so it has the following body
of main(): int x=0; x=x-2; assert(x≥0); return x. In such program families, it may

ECOOP 2024

12:4 Mutation-Based Lifted Repair of Software Product Lines

int main(){
1⃝ int x := 0;
2⃝ #if (A) x := x+2; #endif
4⃝ #if (¬A ∧ ¬B) x := x-2; #endif
6⃝ assert (x ≥ 0);
7⃝ return x;

}

Figure 2 intro1.

int A := [0, 1];
int B := [0, 1];
int main(){

int x := 0;
if (A) x := x+2;
if (¬A∧¬B) x := x-2;
assert (x ≥ 0);
return x;

}

Figure 3 intro2.

A0 := [0, 1];
B0 := [0, 1];
int main(){

x0 := 0;
g0 := A0;
x1 := x0+2;
x2 := g0?x1 : x0;
g1 := ¬A0 ∧ ¬B0;
x3 := x2-2;
x4 := g1?x3 : x2;
assert (x4 ≥ 0);
return x4; }

Figure 4 intro3.

Sintro = {
A0=[0, 1],
B0=[0, 1],
x0=0,

g0=A0,

x1=x0+2,

x2=ite(g0,x1,x0),

g1=¬A0 ∧ ¬B0,

x3=x2-2,

x4=ite(g1,x3,x2),

¬(x4 ≥ 0)
}

Figure 5 Sintro.

happen that errors (e.g., assertion violations) occur in some variants but not in others. In the
intro1 family, the assertion is valid for variants (A ∧ B), (A ∧ ¬B), (¬A ∧ B) since the returned
value x will be 2, 2, 0, respectively. However, the assertion fails for variant (¬A ∧ ¬B) since
the returned value x will be -2 in this case. The goal is to automatically repair this program
family, so that the assertion is valid for all its variants.

If we make mutations only to feature expressions, there are two possible repairs of intro1
that remedy the feature interaction (¬A ∧ ¬B) responsible for the fault. First, the feature
expression (A) at loc. 2⃝ can be replaced with (¬A), thus making the assertion correct for
all variants: the returned value x will be 0 for variants (A ∧ B), (A ∧ ¬B), (¬A ∧ ¬B); and
2 for (¬A ∧ B). Second, the feature expression (¬A ∧ ¬B) at loc. 4⃝ can be replaced with
(A ∧ ¬B), thus making the assertion correct for all variants: the returned value x will be 0
for variants (¬A ∧ B), (A ∧ ¬B), (¬A ∧ ¬B); and 2 for (A ∧ B). If we make mutations only to
program expressions, then one possible repair is the program expression (x-2) at loc. 5⃝ to
be replaced with (x+2). The above three repairs are all minimal patched mutations obtained
by applying only one code mutation to the original program family. Note that the found
repairs depend on the sets of mutations applied to feature and program expressions. For
example, if we allow mutations of the arithmetic operator - to * and of the integer constant
n to 0, we will also find additional minimal repairs that replace the expression (x-2) at loc.

5⃝ with (x*2) or (x-0).
Our algorithm for repairing program families goes through four steps. We refer to the

running example intro1 in Fig. 2 to demonstrate the steps.

A. S. Dimovski 12:5

(1) We transform the program family to a single program, called family simulator, using
variability encoding [30, 56], such that all features are first declared as global variables
and non-deterministically initialized to 0 or 1, and then all #if directives are transformed
into ordinary if statements with the same branch condition. For example, the single
program intro2 in Fig. 3 is a simulator for the program family intro1 in Fig. 2. Features
A and B are defined as non-deterministically initialized global variables and two #if
directives are replaced with if-s.

(2) The simulator is simplified (e.g., branch conditions are replaced with fresh Boolean
variables), unwinded by unrolling loops and recursive functions b times, and converted to
static single assignment (SSA) form. In the SSA form, time-stamped versions of program
variables are created: every time a variable is assigned, the time-stamp is incremented
by one and then the variable is renamed; every time a variable is read, it is renamed
using the current time-stamp. Thus, the single program intro3 in Fig. 4 is obtained by
simplifying and converting to SSA form the simulator intro2 in Fig. 3. For example, the
if condition (¬A0 ∧ ¬B0) is assigned to a fresh Boolean variable g1, the first assignment
to x is replaced by an assignment to x0, the second by an assignment to x1, etc. We use
Φ-assignments to determine which copy of x will be used after if-s. For example, the
Φ-assignment x2 := g0?x1 : x0 means that x1 is used if g0 is true, and x0 is used if g0
is false.

(3) The simplified program in SSA form is converted to a program formula. Hence, the
program intro3 in Fig. 4 is converted to a set of SMT formulas Sintro shown in Fig. 5,
such that the corresponding program formula φintro is a conjunction of all SMT formulas
in Sintro. Note that the Φ-assignment x2 := g0?x1 : x0 is converted to the formula
x2=ite(g0,x1,x0), which means (g0 ∧ x2=x1) ∨ (¬g0 ∧ x2=x0), while assert(be) is
converted to (¬be). Therefore, a program is correct (i.e., all assertions in it are valid) iff
the corresponding program formula is unsatisfiable.

(4) By making mutations in the set of SMT formulas, we aim to construct an unsatisfiable
program formula and report the corresponding program as repaired. In the running
example, if one of the following mutations: (g0=¬A), (g1=A∧¬B), or (x3=x2+2), is applied
to the set of SMT formulas Sintro in Fig. 5, we obtain an unsatisfiable program formula.
This way, we generate a minimally mutated program family, which contains only one
code mutation, that is correct.

3 Background

In this section, we introduce the background concepts used in later developments. We
begin with the definition of syntax and semantics of program families. Then, we proceed to
introducing the bounded program analysis for translating single programs to SMT formulas.

3.1 Program Families
Let F = {A1, . . . , An} be a finite set of Boolean features available in a program family. A
configuration k : F → {true, false} is a truth assignment or a valuation, which gives a truth
value to each feature. If k(A) = true, then feature A is enabled in configuration k, otherwise
A is disabled. We assume that only a subset K of all possible configurations are valid. Each
configuration k ∈ K can also be represented by a formula: (k(A1) · A1 ∧ . . . ∧ k(An) · An),
where true · A = A and false · A = ¬A. We write K for the set of all valid configurations.
We define feature expressions, denoted FeatExp(F), as the set of propositional logic formulas
over F:

θ (θ ∈ FeatExp(F)) ::= true | A ∈ F | ¬θ | θ ∧ θ | θ ∨ θ

ECOOP 2024

12:6 Mutation-Based Lifted Repair of Software Product Lines

We consider a simple sequential non-deterministic programming language, in which the
program variables Var={x1, . . . , xn} are statically allocated and the only data type is the
set Z of mathematical integers. To define program families, a new compile-time conditional
statement is introduced: “#if (θ) s #endif”, such that the statement s will be included in
the variant corresponding to configuration k ∈ K only if θ is satisfied by k, i.e. k |= θ. The
syntax is:

s (s ∈ Stm) ::= skip | x:=ae | s; s | if (be) then s else s | while (be) do s |
#if (θ) s #endif | assert(be) | assume(be)

ae (ae ∈ AExp) ::= n | [n, n′] | x | ae⊕ae,

be (be ∈ BExp) ::= ae▷◁ae | ¬be | be ∧ be | be ∨ be

where n ∈ Z, x ∈ Var, ⊕ ∈ {+, −, ∗, %, /}, ▷◁∈ {<, ≤, ==, !=}, and integer interval [n, n′]
denotes a random integer in the interval. Without loss of generality, we assume that a
program family P is a sequence of statements followed by a single assertion, whereas a single
program p is a sequence of statements without #if-s followed by an assertion.
▶ Remark 1. The C preprocessor CPP [32] also uses other compile-time conditional statements
that can be desugared and represented only by the #if construct we use in this work,
e.g. #if (θ) s0 #else s1 #endif is translated into #if (θ) s0 #endif ; #if (¬θ) s1 #endif.
Compile-time conditional constructs can also be defined at the level of expressions, e.g.
#if (θ) ae0 #else ae1 #endif, and they can be translated into compile-time conditional
statements by code duplication [32]. We use variability at the level of statements for
pedagogical reasons in order to keep the presentation focussed.

A program family is evaluated in two phases. First, the C preprocessor CPP [32] takes
a program family s and a configuration k ∈ K as inputs, and produces a variant (single
program without #if-s) corresponding to k as output. Second, the obtained variant is
evaluated using the standard single-program semantics [20]. The first phase is specified
by the projection function πk, which is an identity for all basic statements and recursively
pre-processes all sub-statements of compound statements. Hence, πk(skip) = skip and
πk(s;s′) = πk(s);πk(s′). The most interesting case is “#if (θ) s #endif”, where the statement
s is included in the variant k if k |= θ; 1 otherwise s is excluded from the variant k. That is:

πk(#if (θ) s #endif) =
{

πk(s) if k |= θ

skip if k ̸|= θ

Given a program family P , the set of all variants derived from P is {πk(P) | k ∈ K}.

3.2 Bounded Program Analysis
Unbounded loops with memory allocation are the reason for the undecidability of the
assertion verification problem [24]. To avoid undecidability, we impose a bound on the loops
by discarding all executions paths in which a loop is iterated more than a pre-determined
number of times. That is, we analyze a new bounded program that under-approximates
the original program. Using such bounded program, we can build a SMT formula that
represents its semantics. We now briefly explain how a pre-processed program without #if-s
is translated into a set of SMT formulas using the CBMC bounded model checker [8]. We
present only the details that are important to understand our algorithm.

1 Since k ∈ K is a valuation function, either k |= θ holds or k ̸|= θ holds for any θ.

A. S. Dimovski 12:7

The given pre-processed (single) program undergoes three transformations: simplification,
unwinding, and conversion to SSA form. Recall from Section 2 that the simplification ensures
that all branch conditions are replaced with fresh Boolean variables, whereas the SSA-form
guarantees that each local variable has a single static point of definition. More specifically,
in SSA-form each assignment to a variable x is changed into an unique assignment to a new
variable xi. Hence, if variable x has n assignments to it throughout the program, then n new
variables x0 to xn−1 are created to replace x. All uses of x are replaced by a use of some
xi. To decide which definition of a variable reaches a particular use after an if-statement
with the guard g, we add the Φ-assignment xk := g?xi : xj after the if. This means that
if control reaches the Φ-assignment via the path on which g is true, Φ selects xi; otherwise
Φ selects xj . This way, all uses of x after an Φ-assignment xk := g?xi : xj become uses of
Φ-assignment xk until the next assignment of x. The unwinding with bound b means that all
while loops and recursive functions are unwound b times, so that we consider only so-called
b-bounded paths that are going through them at most b times. For example, the statement
“while (be) do s” after unwinding with b = 2 will be transformed to:

g:=be; if (g) then {s; g:=be; if (g) then {s; g:=be; assume(¬g); } }

where we use assume(¬g) to block all paths longer than the bound b. After the above three
transformations, in the obtained simplified program all original expressions are right-hand
sides (RHSs) of assignments, loops are replaced with if-s, and each variable is assigned once.
For example, the simplified program intro3 is obtained from intro2 by the above three
transformations.

The generated simplified program is converted to a set of SMT formulas S as follows. An
assignment x:=ae is converted to equation formula x=ae; a Φ-assignment x := be?x1 : x2 is
converted to formula x=ite(be,x1,x2); an assume(be) is converted to formula be; and an
assert(be) is converted to formula ¬be. A statement that is part of a while body may be
encoded by several formulas ϕ1, . . . , ϕk in S due to the unwinding. In this case, we remove
ϕ1, . . . , ϕk from S, and add instead one conjunctive formula (ϕ1 ∧ . . . ∧ ϕk) in S. In effect,
we obtain that one formula in S encodes a single statement in the original program. For
example, the set Sintro is obtained from intro3 by the above conversion.

The obtained set of formulas S is partitioned into three subsets: SVar
soft that contains all

formulas corresponding to statements containing original program expressions, SF
soft that

contains all formulas corresponding to statements containing original feature expressions,
and Shard that contains the other formulas corresponding to assertions, assumptions, Φ-
assignments, and feature variable-assignments. Since all original program and feature
expressions are RHSs of assignments after the simplification phase, all formulas in SVar

soft

and SF
soft are either single assignment formulas (x=ae) or multiple assignment formulas(

(x1 = ae1) ∧ . . . ∧ (xk = aek)
)
. For example, the set Sintro in Fig. 5 is partitioned as follows:

SVar
soft = {x0=0, x1=x0+2, x3=x2-2},

SF
soft = {g0=A0, g1=¬A0 ∧ ¬B0},

Shard = {A0=[0,1], B0=[0,1], x2=ite(g0,x1,x0), x4=ite(g1,x3,x2), ¬(x4 ≥ 0)}

Given a pre-processed (single) program p, the program formula φb
p is the conjunction of

all formulas in S, where b denotes the unwinding bound used in the transformation phase of
p. The formula φb

p encodes all possible b-bounded paths in the program p that go through
each loop at most b times. We say that a program p is b-correct if all assertions in it are
valid in all b-bounded paths of p.

▶ Proposition 2 ([8]). A pre-processed (single) program p is b-correct iff φb
p is unsatisfiable.

ECOOP 2024

12:8 Mutation-Based Lifted Repair of Software Product Lines

A satisfying assignment (model) of φb
p represents a b-bounded path of p that satisfies all

assumptions but violates at least one assertion. In the following, we omit to write p and b in
the program formula φb

p when they are clear from the context.
Our approach reasons about loops by unrolling them, so it is sensitive to the unrolling

bound. We now present an example, where the unrolling bound has impact on the assertion
validity.

▶ Example 3. Consider the program:

int i:=0, x:=0; while (i<3) do {i:=i+1; x:=x+1; }

Suppose that the assertion to be checked is assert(x≥3) at the final location. If we use
the unrolling bound b = 2, we will find that the program is incorrect due to the spurious
execution path that runs the while-body 2 times. Hence, we will needlessly try to repair
this correct program. However, if we use the bound b ≥ 3, then we will establish that the
program is correct and so no repair is needed.

Suppose that the assertion to be checked is assert(x<3) at the final location. If we use
the unrolling bound b = 2, we will find that the program is correct since the assertion is valid
for all 2-bounded paths, so no repair will be performed. However, if we use the bound b ≥ 3,
then we will truly establish that the program is incorrect and so a repair is needed.

To enable incremental SMT solving, the program formula φ is instrumented with Boolean
variables called guard variables. More specifically, a formula φ = ϕ1 ∧ . . .∧ϕn is replaced with
φ′ = (x1 =⇒ ϕ1) ∧ . . . ∧ (xn =⇒ ϕn), where x1, . . . , xn are fresh guard variables. In effect,
the formula (xi =⇒ ϕi) can be satisfied by setting xi to false. Some guard variables called
assumptions are conjuncted with φ′ and passed to an incremental SMT solver. For example,
φ′ ∧ x1 ∧ x2 is satisfiable iff ϕ1 and ϕ2 are satisfiable, since the satisfying assignment will set
x3, . . . , xn to false thus making (x3 =⇒ ϕ3), . . . , (xn =⇒ ϕn) true. Thus, an incremental
SMT-solver checking the satisfiability of φ′ ∧ x1 ∧ x2 will only check satisfiability of ϕ1 and
ϕ2, thus essentially disabling formulas ϕ3, . . . , ϕn.

We will use formulas of the form AtMost({l1, . . . , ln}, k) (resp., AtLeast({l1, . . . , ln}, k))
to require that at most (resp., at least) k of the literals l1, . . . , ln are true. They are called
Boolean cardinality formulas encoding that

∑n
i=1 li ≤ k (resp.,

∑n
i=1 li ≥ k), where li is a

literal assigned the value 1 if true and the value 0 if false, and k ∈ N. We will use the
MiniCard SAT-solver [39] to check their satisfiability.

4 Lifted Repair Algorithm

In this section, we present our lifted repair algorithm, called SPLAllRepair, for repairing
program families. We first give a high-level overview of the algorithm, and then describe its
components more formally.

High-level Description

The SPLAllRepair is given in Algorithm 1. It takes as input a program family P , an
unwinding bound b, and a repair size r that limits the search space to only mutated programs
with at most r mutations (changes to the original code) applied at once. The algorithm goes
through an iterative generate-and-verify procedure, implemented using an interplay between
an SAT solver and an SMT solver. In particular, we use an SAT solver in the generate phase
to find a mutated program from the search space, whereas we use an SMT solver in the
verify phase to check if the mutated program is correct.

A. S. Dimovski 12:9

Algorithm 1 SPLAllRepair(P, b, r).
Input: Program family P , unwinding bound b, repair size r

Output: Set of solutions Sol

1 psim := VarEncode(P) ;
2 (Shard, SVar

soft, SF
soft) := CBMC(psim, b) ;

3 (S1, . . . , Sn) := Mutate(SVar
soft, SF

soft) ;
4 (S′

1, . . . , S′
n, V1, . . . , Vn, Vorig) := InstGuardVars(S1, . . . , Sn) ;

5 φb
sim := (∧s∈Shards) ∧ (∧s∈S′

1∪...∪S′
n
s) ;

6 φ := (∧n
i=1AtMost(Vi, 1)) ∧ (∧n

i=1AtLeast(Vi, 1)) ;
7 k := 1; Sol := ∅ ;
8 while (k ≤ n) ∧ (k ≤ r) do
9 φk := φ ∧ AtLeast(Vorig, n − k) ;

10 satres, V := SAT(φk) ;
11 if (satres) then
12 smtres := IncrementalSMT(φb

sim ∧ ∧v∈V v) ;
13 if (¬smtres) then
14 Sol := Sol ∪ V ;
15 φk := φk ∧ (∨v∈V \(Vorig)¬v) ;
16 else
17 φk := φk ∧ (∨v∈V ¬v) ;

18 else
19 k := k + 1 ;
20 if (Timeout) then return Sol ;
21 return Sol;

The SPLAllRepair starts by generating the family simulator psim using the pre-
processor VarEncode procedure (line 1). Then, the CBMC translation procedure calls the
CBMC model checker to generate the triple (Shard, SVar

soft, SF
soft) of sets of formulas corres-

ponding to psim as explained in Section 3.2 (line 2). By calling the Mutate procedure, we
generate all possible mutations S1, . . . , Sn of formulas in SVar

soft and SF
soft (line 3). Here Si is a

set of formulas obtained by mutating some ϕi ∈ SVar
soft ∪SF

soft. Thus, S1, . . . , Sn correspond to
n program locations where an error may occur. Next, we use the InstGuardVars procedure
to instrument all formulas in S1, . . . , Sn by fresh guard variables, so that the results are sets
of instrumented formulas S′

1, . . . , S′
n and sets of fresh guard variables V1, . . . , Vn used to guard

formulas in S′
1, . . . , S′

n (line 4). Here S′
i = {(x =⇒ ϕ) | ϕ ∈ Si, x is a fresh guard variable}.

The set Vorig contains guard variables corresponding to original formulas in SVar
soft and SF

soft.
The program formula φb

sim is then initialized to be the conjunction of all formulas from Shard

and all instrumented formulas from S′
1 ∪ . . . ∪ S′

n (line 5). Subsequently, we search the space
of all mutated formulas in increasing size order using the variable k, which is initialized to
1 and increased after each iteration (lines 8–20). In particular, we generate the boolean
formula φk [13] (line 9) expressing that k guard variables are not original, that is n − k are
original (by using AtLeast(Vorig, n − k)), and there is exactly one guard variable selected for
each statement in the program (by using φ ≡ ∧n

i=1AtMost(Vi, 1)∧∧n
i=1AtLeast(Vi, 1), line 6).

This means that every satisfying assignment of φk represents one mutated program formula
of size at most k (i.e. with k changes to the original code). The boolean formula φk is fed to
an SAT solver, which can handle Boolean cardinality formulas, to check its satisfiability. If

ECOOP 2024

12:10 Mutation-Based Lifted Repair of Software Product Lines

φk is unsatisfiable, this means that there are no unexplored mutated program formulas of
size k so we increase k by one (line 19) and generate a new formula φk. Otherwise, if φk

is satisfiable, we store in a set V all guard variables assigned true in the given satisfying
assignment of φk (line 10). To check the correctness of the mutated program corresponding
to the satisfying assignment V of φk, we call an incremental SMT solver to check φb

sim with
all guards in V passed as assumptions (i.e., φb

sim ∧ ∧v∈V v) (line 12). This is the same to
checking the conjunction of all formulas in Shard and all soft formulas guarded by variables
in V , since all other soft formulas will get satisfied by setting their guard variables to false.
Notice that SMT formulas solved consecutively in the iteration are very similar, thus sharing
majority of their assumptions and all hard formulas. This means that most of what was
learnt in solving the previous formula can be reused to solve the current one. If the result of
incremental SMT solving is true, the mutated program is not correct so we block V from
further exploration (line 17). Otherwise, we report V as a possible solution (i.e., a repaired
program family) and block all supersets of V for further exploration (lines 14,15). The
algorithm terminates when either the whole search space of mutated programs is inspected,
i.e. all possible combinations of guard variables in n locations are explored as assumptions
(k > n, line 8), or the subspace of mutated programs with at most r mutations is inspected
(k > r, line 8), or a time limit is reached (line 20).

▶ Example 4. Let p be a simulator with 4 statements that can be mutated. Let p1 be a
repaired mutant of p consisting of mutating statement 1 with mutation M1

1 (guard variable
v1

1) and statement 3 with mutation M2
3 (guard variable v2

3). Then blocking any superset
of this mutation is done by adding the blocking clause (¬v1

1 ∨ ¬v2
3) to the Boolean formula

φk representing the search space of all mutants. This means do not apply either M1
1 to

statement 1 or do not apply M2
3 to statement 3.

On the other hand, let p2 be a buggy mutant of p consisting of mutating statement 1
with mutation M2

1 (guard variable v2
1) and statement 4 with mutation M2

4 (guard variable
v2

4). The guards for original statements 2 and 3 are vorig
2 and vorig

3 . Then the blocking clause
(¬v2

1 ∨¬vorig
2 ∨¬vorig

3 ∨¬v2
4) will be added to prune from the search space exactly the mutant

p2. Note that smaller blocking clause (with smaller number of literals) will result in a larger
set of pruned mutants.

Pre-Processor: VarEncode

The aim of the pre-processor VarEncode procedure is to transform an input program family
P with sets of features F and configurations K into an output pre-processed (single) program
without #if-s, called family simulator. The set of configurations K includes all possible
combinations of feature values. In the pre-transformation phase, we convert each feature A ∈ F
into the global variable A non-deterministically initialized to 0 or 1. Let F = {A1, . . . , An}
be the set of available features in the program family P . We generate the following pre-
transformed program:

pre-t(P) ≡ int A1 := [0, 1], . . . , An := [0, 1]; P

We now define a rewrite rule for eliminating #if-s from pre-t(P). Let K be the set of
configurations in the family P that can be equated to a propositional formula κ = ∨k∈Kk.
Note that if K contains all possible combinations of feature values, then κ ≡ true. The
rewrite rule replaces #if-s with ordinary if-s whose guards are strengthened with the feature
model κ.

#if (θ) s #endif ⇝ if (θ∧ κ) then s else skip (R-1)

A. S. Dimovski 12:11

If the current program family being transformed matches the abstract syntax tree node of the
shape #if (θ) s #endif, then replace it with the RHS of rule (R-1). We write VarEncode(P)
to be the final transformed single program obtained by repeatedly applying rule (R-1) on
pre-t(P) and on its transformed versions until we reach a point at which this rule can no
longer be applied.

A memory state σ : Σ = Var → Z is a function mapping each program variable to a value.
Given a single program p and a memory state σ, we write [[p]]σ for the set of final states
that can be derived by executing all terminating paths (computations) of p starting in the
input state σ. Note that the result is a set of states since our language is non-deterministic.
We define [[p]] = ∪σ∈P(Σ)[[p]]σ to be the set of final states that can be reached by p from
any possible input state σ ∈ P(Σ) (where P(Σ) is the powerset of Σ). The following result
shows that the set of final states from terminating computations of VarEncode(P) coincides
with the union of final states from terminating computations of all variants derived from the
program family P .

▶ Proposition 5 ([30]). For a program family P , [[VarEncode(P)]] = ∪k∈K[[πk(P)]].

▶ Example 6. Consider the program family intro1 in Fig. 2 and its family simulator
intro2≡VarEncode(intro1) in Fig. 3. The states σ contain only one program variable x.
Hence, the semantics of all variants of intro1 is:

[[πA∧B(intro1)]] = [x 7→ 2], [[πA∧¬B(intro1)]] = [x 7→ 2]
[[π¬A∧B(intro1)]] = [x 7→ 0], [[π¬A∧¬B(intro1)]] = [x 7→ −2]

On the other hand, the semantics of intro2≡VarEncode(intro1) is:

[[VarEncode(intro1)]] = {[x 7→ −2], [x 7→ 0], [x 7→ 2]}

Mutate

As explained in Section 3.2, the SMT formulas in SVar
soft and SF

soft correspond to statements
containing program and feature expressions, so our goal is to repair the given erroneous
program family by applying mutations to those formulas. A mutation is a replacement of a
program/feature expression with another expression of the same type. For example, feature
expressions A and A ∧ B can be replaced with ¬A and (A∨¬B), while program expressions
x and x + 2 can be replaced with 0 and x − 2. We maintain a fixed list of syntactic mutations
for each type of program and feature expressions. Let us assume that mutations M1, . . . , Mj

can be applied to a formula ϕ ∈ SVar
soft ∪SF

soft. Then, Mutate(ϕ) = {ϕ, M1(ϕ), . . . , Mj(ϕ)}.
Finally, we have Mutate(SVar

soft, SF
soft) = Πϕ∈SVar

soft∪SF
soft

Mutate(ϕ).
We now present the variability-specific mutations applied to feature expressions: A→¬A

(read: feature A is replaced by ¬A) and ¬A→A for features A ∈ F, as well as {∧, ∨} (read:
logical operator ∧ can be replaced with ∨, and vice versa).

▶ Example 7. Recall that SF
soft = {g0=A0, g1=¬A0 ∧ ¬B0} for our running example intro1.

If we use the variability-specific mutations A→¬A, ¬A→A for A ∈ F and {∧, ∨}, we obtain:

Mutate(SF
soft) = {g0=A0, g0=¬A0, g1=¬A0 ∧ ¬B0, g1=A0 ∧ ¬B0, g1=¬A0 ∧ B0, g1=A0 ∧ B0,

g1=¬A0 ∨ ¬B0, g1=A0 ∨ ¬B0, g1=¬A0 ∨ B0, g1=A0 ∨ B0}

Post-Processor: Interpreting results

The solutions obtained by calling the AllRepair tool to repair VarEncode(P) are interpreted
back on the original program family P . Any possible repair for VarEncode(P), which consists
of replacing some feature and program expressions, represents a valid repair for P as well.

ECOOP 2024

12:12 Mutation-Based Lifted Repair of Software Product Lines

This is due to the fact that our transformed program VarEncode(P) contains all possible
paths that may occur in any variant πk(P) for k ∈ K. A single program (variant) is b-correct
if it has no b-bounded path that leads to an assertion failure, while a program family is
b-correct if all its variants are b-correct. Therefore, the b-correctness and possible repair of
VarEncode(P) and P are isomorphic (identical).

More formally, by using Propositions 2 and 5, we can prove the following result.

▶ Corollary 8. Let P and b be a program family and an unwinding bound.
(i) φb

VarEncode(P) is unsatisfiable iff ∀k ∈ K.πk(P) is b-correct iff P is b-correct.
(ii) φb

VarEncode(P) is satisfiable iff ∃k ∈ K.πk(P) is not b-correct iff P is not b-correct.

Correctness

We first use Corollary 8 to show the b-correctness of the SPLAllRepair algorithm (where b

is the unwinding bound). That is, every solution returned by SPLAllRepair is minimal
repaired program family (b-soundness), and every minimal repaired program family with
respect to mutations we apply is eventually returned by SPLAllRepair (b-relative com-
pleteness). Our algorithm explores all mutated programs in increasing size order starting
with size 1. Every returned solution is minimally repaired due to the fact that it would have
been blocked by another smaller solution in a previous iteration. Therefore, the b-correctness
(b-soundness and b-relative completeness) of SPLAllRepair follows from the b-correctness
of AllRepair shown in [50] and Corollary 8 (i.e., the fact that VarEncode(P) and P are
isomorphic with respect to b-correctness).

The SPLAllRepair always terminates, as there are only finitely many mutations that
can be applied to any type of (feature and program) expressions so the algorithm enumerates
all possible mutated programs (simulators) until it finds the minimal repaired ones if any.
This way, we have proved the following result.

▶ Theorem 9. The algorithm SPLAllRepair(P, b, r) is b-bounded correct and terminates.

5 Evaluation

We now evaluate our approach for mutation-based lifted repair of SPLs. We show that our
approach can efficiently repair various interesting #ifdef-based C program families, and
we compare the runtime performances and precision of two versions of our algorithm, with
smaller and bigger sets of mutations, as well as with the Brute-force approach that repairs
all variants of a program family one by one independently.

Implementation

We have implemented our lifted repair algorithm SPLAllRepair in a prototype tool, which
is built on top of the AllRepair tool [50, 51] for repairing single programs. The pre-processor
VarEncode procedure is implemented in Java, while the translation and mutation procedures
(CBMC and Mutate in Algorihtm 1) are implemented by modifying the CBMC model checker
[8] written in C++, where variability-specific mutations are defined. Moreover, we have
experimented by defining various mutations to other types of program expressions (see below).
The repair phase is implemented by calling the AllRepair tool [50] written in Python. We
also call the MiniCard SAT solver [39] and the Z3 SMT solver [11]. The altered CBMC
(plus ∼1K LOC) takes as input a family simulator, and generates a gsmt2 file containing SMT
formulas for all possible mutations of the corresponding statements in the input program.
The AllRepair (∼2K LOC) takes as input a gsmt2 file, generates formulas for SAT and
SMT solving, and handles all calls to them.

A. S. Dimovski 12:13

The tool accepts programs written in C with #ifdef/#if directives. It uses three main
parameters: mutation level that defines the kind of mutations that will be applied to feature
and program expressions; unwinding bound b that shows how many times loops and recursive
functions will be inlined; and repair size r that specifies how many mutations will be applied
at most to buggy programs. We use two mutation levels: level 1 contains simpler mutations
that are often sufficient for repairment, while level 2 contains all possible mutations we apply.
For each type of feature and program expression, the list of syntactic mutations/edits in
level 1 and level 2 is given below:

type of exp. level 1 level 2

arithmetic op. {+, −}, {∗, %, ÷} {+, −, ∗, %, ÷}
relational op. {<, ≤}, {>, ≥}, {==, ! =} {<, ≤, >, ≥, ==, ! =}
logical op. {&&, ||} {&&, ||}
bit-wise op. {>>, <<}, {&, |,∧ } {>>, <<, &, |,∧ }
program vars x→0, x→−x

integer constants n→n+1, n→n−1, n→−n, n→0
feature vars A→¬A, ¬A→A A→¬A, ¬A→A

For example, for arithmetic operators in mutation level 1 we have two sets {+, −} and
{∗, %, ÷}, which means that + is replaced with − and vice versa, and ∗, %, ÷ can be replaced
with each other. On the other hand, in mutation level 2 we have one set {+, −, ∗, %, ÷},
which means that any arithmetic operator from the set can be replaced with any other.
Mutations on feature variables A ∈ F in both levels include negations of feature variables
(A→¬A, ¬A→A), whereas for program variables x ∈ Var in level 2 we have mutations for
replacing them with 0 (x→0) and changing the sign (x→−x). Integer constants n ∈ Z in
mutation level 2 can be increased by one, decreased by one, minused, or replaced with 0.

Experimental setup and Benchmarks

Experiments are run on 64-bit Intel®CoreT M i7-1165G7 CPU@2.80GHz, VM Ubuntu 22.04.3
LTS, with 8 GB memory. We use a timeout value of 400 sec. The implementation, benchmarks,
and all obtained results are available from: https://zenodo.org/records/11179373. For
the aim of evaluation, we ran: (1) our tool with mutation level 1, denoted SPLAllRepair1;
(2) our tool with mutation level 2, denoted SPLAllRepair2; and (3) the Brute-force
approach that uses a preprocessor to generate all variants of a program family and then
applies the single-program repair tool AllRepair to each individual variant independently.

The evaluation is performed on a dozen of C programs: two warming-up examples
(intro1 in Fig. 2 and feat-inter in Fig. 6); four commonly known algorithms (feat_power
in Fig. 7, factorial in Fig. 8, sum in Fig. 9 and sum_mton in Fig. 10); Codeflaws [53], TCAS
[29], and Qlose [10] benchmarks that are widely used for evaluating program repair tools
[10, 37, 46, 50, 51]; as well as MinePump system [38] from the product-lines category of
SV-COMP 2024 (https://sv-comp.sosy-lab.org/2024) that is often used to assess product-
line verification in the SPL community [4, 9, 56, 55]. Codeflaws consists of programs
taken from buggy user submissions to the programming contest site Codeforces (http:
//codeforces.com). For each program, there is a correct reference version and several buggy
versions. Traffic Alert and Collision Avoidance System (TCAS) represents an aircraft collision
detection system used by all US commercial aircrafts. The TCAS benchmark suite consists
of a reference (correct) implementation and 41 faulty versions. In our experiments, we use
10 faulty versions that can be repaired using the mutations we apply in our approach. The

ECOOP 2024

https://zenodo.org/records/11179373
https://sv-comp.sosy-lab.org/2024
http://codeforces.com
http://codeforces.com

12:14 Mutation-Based Lifted Repair of Software Product Lines

void main(){
int x := 0;
#if (A) x := x+2; #endif
#if (B ∧ C) x := x-2; #endif
assert (x ≥ 0 && x < 4);

}

Figure 6 feat-inter.

int feat_power(int n){
assume(n ≥ 1);
int res := 0;
#if (¬A) int i := 1;

#else int i := 0; #endif
while (i < 3) {

res=res*n;
i++; }

#if (A) assert (sum==n*n*n);
#else assert (sum==n*n*n*n); #endif

return res; }

Figure 7 feat_power.

void main(int n){
assume(n ≥ 0);
int res1 := fact(n);
int res2 := fact_correct(n);
assert (res1 == res2);

}
int fact_correct(int x){

int res=1;
for (int i=2; i ≤ x; i++)

res *= i;
return res;

}

int fact(int x){
int res=1, i=2;
while (#if (A) (i<x) #else (i ≤ x) #endif){

res = mult(res,i);
i++; }

return res; }
int mult(int x, int y){

int res=0;
for (int i=1; i ≤ y; i++)

#if (B) res-=x; #else res+=x; #endif
return res;

}

Figure 8 factorial.

Qlose benchmarks are used for evaluating the Qlose program repair tool [10], which consist
of a reference (correct) implementation and several faulty versions for each programming
task. In the case of Codeflaws, TCAS, and Qlose, we have selected several faulty versions of
each benchmark and we have created a buggy program family out of them. For example,
we use tcas_v3 and tcas_v12 (resp., tcas_v16 and tcas_v17) to create the tcas_spl1
(resp., tcas_spl2) program family. Then, we use assertions to check the equivalence of the
results returned by the program family and the reference (correct) version (for example, see
main() of factorial in Fig. 8). Note that the correct version is marked so that it will not
be mutated. The MinePump SPL system contains 730 LOC and six independent optional
features: start, stop, methaneAlarm, methaneQuery, lowWaterSensor, highWaterSensor.
When activated, the controller should switch on the pump when the water level is high, but
only if there is no methane in the mine. We consider two specifications of the MinePump
system encoded as assertions in SV-COMP 2024: MinePump_spec1 checks whether the pump is
not running if the level of methane is critical; and MinePump_spec3 checks whether the pump
is running if the level of water is high. Table 1 presents characteristics of the benchmarks,
such as: the file name (Benchmark), the number of features |F| (note that |K| = 2|F|), and
the lines of code (LOC).

A. S. Dimovski 12:15

int sum(int n){
assume(n ≥ 1);
int sum := 0, i := 0;
#if (A) i := 1; #endif
while (i < n) {

#if (B) sum+=i;
#else sum-=i; #endif

i++; }
assert (sum==n*(n+1)/2);
return sum;

}

Figure 9 sum.

int sum_mton(int n, int m){
assume(n ≥ 1&&m ≥ 1);
#if (A) assume(n ≥ m);

#else assume(m ≥ n); #endif
int sum := 0;
#if (A) int i := n;

#else int i := m; #endif
while (#if (A) (i ≤ n) #else (i ≤ m) #endif)
{ sum:=sum-i;

i++; }
#if (A) assert(sum==(n*(n+1)-m*(m-1))/2);
#else assert(sum==(m*(m+1)-n*(n-1))/2);
#endif
return sum; }

Figure 10 sum_mton.

Examples

We now present several of our examples in detail. Consider the program family feat-inter
in Fig. 6. The error occurs due to the feature interaction (¬A ∧ B ∧ C). In particular, the
variant (¬A ∧ B ∧ C) is: int x=0; x=x-2; assert(x≥0 && x<4). So the assertion fails since
x has value -2 at the assertion location. The simplest fix from mutation level 1, which replaces
x:=x-2 with x:=x+2, does not work as it introduces a new error in other variants. In this
case, the feature interaction (A ∧ B ∧ C) causes the assertion failure since the value of x will be
4 at the assertion location for variant (A ∧ B ∧ C). Therefore, SPLAllRepair1 reports that
no repair is found by searching the space of 7 mutants in 0.254 sec. However, if we consider
mutations of level 2 then SPLAllRepair2 successfully finds a repair, which replaces x:=x-2
with x:=x-0, by searching the space of 25 mutants in 0.315 sec. On the other hand, the
Brute-force approach applies mutations to all faulty variants independently. As the only
faulty variant is (¬A ∧ B ∧ C), it will report the repair that replaces x:=x-2 with x:=x+2. This
is a correct repair for the variant (¬A ∧ B ∧ C), but not for the entire family. This example
shows that sometimes the Brute-force approach may not report correct results due to the
feature interaction.

The program family feat_power in Fig. 7 should find the third power of n when feature
A is enabled and the fourth power of n when A is disabled. SPLAllRepair1 suggests fixes
in 0.722 sec that replace the feature expression (¬ A) with (A) when initializing variable i
and replace while-guard (i < 3) with (i ≤ 3). The Brute-force finds that variant (A) is
correct, but variant (¬ A) is not correct and no fix is suggested as integer constants cannot
be mutated in level 1. Some possible repairs of variant (¬ A) in level 2 will make variant (A)
incorrect. For example, changing the while-guard to (i ≤ 3) will make variant (A) incorrect
since it is initialized to 0 so it will return the fourth power of n instead of the third.

The program factorial in Fig. 8 contains two implementations of the factorial function:
a correct one, called fact_correct, and a buggy one, called fact, that represents a program
family with four variants. The assertion requires that the results returned from each variant of
fact are equivalent with the result returned from fact_correct. We do not apply mutations
to fact_correct, but only to the program family fact. All three approaches suggest fixes
that replace the while-guard (i < x) with (i ≤ x) and the assignment res-=x with res+=x.

ECOOP 2024

12:16 Mutation-Based Lifted Repair of Software Product Lines

Table 1 Performance results of SPLAllRepair1 vs. SPLAllRepair2 vs. Brute-force. All
times in sec.

Benchmarks |F| LOC
SPLAllRepair1 SPLAllRepair2 Brute-force

Fix Space Time Fix Space Time Fix Space Time

intro1 2 20 ✓ 7 0.252 ✓ 25 0.304 ✓ 5 0.981
feat-inter 3 20 × 7 0.254 ✓ 25 0.315 × 9 2.110
feat_power 1 20 ✓ 16 0.722 ✓ 403 7.79 × 8 0.882
factorial 2 50 ✓ 86 2.540 ✓ 1603 107.3 ✓ 81 4.196
sum 2 30 ✓ 17 0.376 ✓ 266 2.656 ✓ 18 1.147
sum_mton 1 20 ✓ 32 0.770 ✓ 681 15.22 × 10 0.556
4-A-Codeflaws 2 95 × 52 0.426 ✓ 1390 2.578 × 36 1.180
651-A-Codeflaws 2 85 ✓ 180 3.394 ✓ 2829 38.53 ✓ 237 5.78
tcas_spl1 1 305 × 37 0.99 ✓ 158 6.10 × 37 1.41
tcas_spl2 1 305 × 38 1.19 ✓ 164 8.94 × 38 1.47
Qlose_multiA 3 32 × 122 0.711 ✓ 5415 69.21 × 65 5.781
Qlose_iterPower 2 30 × 9 0.973 ✓ 38 2.921 × 16 1.391
MinePump_spec1 6 730 ✓ 38 300.0 ✓ - timeout ✓ - timeout

MinePump_spec3 6 730 ✓ 39 291.0 ✓ - timeout ✓ - timeout

Consider the program family sum in Fig. 9, which computes the sum of all integers from 0
to a given input integer n. The specification indicates that given a positive input n (n ≥ 1),
the output represented by the variable sum is n*(n+1)/2. The body of sum is implemented
in an iterative fashion. There are two features A and B that enable different initializations of
i and different updates of sum. Let us consider mutations of level 1. If the repair size is 1
(i.e., only one original expression can be mutated), our tool cannot find a repair by searching
the space of 7 mutants in 0.321 sec. However, if the repair size is 2, then SPLAllRepair1
suggests a fix that replaces the while-guard (i < n) with (i ≤ n) and the assignment sum-=i
with sum+=i. The search space contains 17 mutants and the tool explores it in 0.376 sec.
The Brute-force approach reports a correct repair in 1.147 sec.

The program family sum_mton in Fig. 10 computes the sum m + (m + 1) + . . . n when
feature A is enabled and (n ≥ m), and the sum n + (n + 1) + . . . m when feature A is disabled
and (m ≥ n). The corresponding specifications assert that the returned value sum is equal
to

(
n ∗ (n + 1) − m ∗ (m − 1)

)
/2 when A is on and

(
m ∗ (m + 1) − n ∗ (n − 1)

)
/2 when A is off.

The programmer has made two mistakes: when initializing variable i and when updating
variable sum in the while-body. SPLAllRepair1 suggests fixes in 0.770 sec that replace
the feature expression (A) with (¬ A) when initializing variable i and replace sum:=sum-i
with sum:=sum+i when updating sum. However, the Brute-force cannot fix any of the two
variants since mutating variable n (resp., m) to other variable m (resp., n) is not allowed.

Performance

Table 1 shows performance results of running SPLAllRepair1, SPLAllRepair2, and the
Brute-force approach on the given benchmarks. We use mutation level 1 for Brute-force.
Note that the Brute-force approach calls translation, mutation, and repair procedures
for each variant separately, whereas SPLAllRepair1 and SPLAllRepair2 call these
procedures only once per program family. Moreover, the Brute-force approach can only

A. S. Dimovski 12:17

Table 2 Performance results of SPLAllRepair1 for different values of the unwinding bound
b = 2, 5, 8. All times in sec.

Benchmarks
b = 2 b = 5 b = 8

Fix Time Fix Time Fix Time

feat_power × 0.254 ✓ 0.722 ✓ 0.978
factorial × 1.231 ✓ 3.540 ✓ 6.524
sum × 0.304 ✓ 0.376 ✓ 0.456
sum_mton × 0.589 ✓ 0.770 ✓ 0.922
651-A-Codeflaws ✓ 1.814 ✓ 3.394 ✓ 6.828

find repairs by mutating program expressions. The default values for unwinding bound is
b = 5 and for repair size is r = 1. However, for some benchmarks whose repaired versions
contain more than one code mutation, we use the minimal value of repair size r that allows
one approach to find a correct solution. For example, we use repair size r = 2 for sum. For
each approach, there are three columns: “Fix” that specifies with ✓ (resp., ×) whether the
given approach finds (resp., does not find) a correct repair for a given benchmark; “Space”
that specifies how many mutants have been inspected; and “Time” that specifies the total
time (in seconds) needed for the given tasks to be performed.

From Table 1, we can see that SPLAllRepair1 and SPLAllRepair2 combined out-
perform the Brute-force approach with respect to both repairability and runtime. In
particular, SPLAllRepair2 fully repairs 12 benchmarks, which is better than 8 full correct
repairs reported by SPLAllRepair1 and 4 full correct repairs reported by the Brute-force
approach that use the same mutations of level 1 (see also Discussion below). Note that
SPLAllRepair2 and the Brute-force timeout after 400 sec for the MinePump system.
Hence, they report only a partial list of possible repairs, denoted by ✓. On the other
hand, SPLAllRepair1 achieves time speed-ups compared to Brute-force when report
the same results, that range from 1.2 to 4 times. If we compare SPLAllRepair1 and
SPLAllRepair2, we can see that there is a trade-off between repairability and runtime.
That is, SPLAllRepair2 is more precise (12 vs. 8 fixes) but slower (from 1.2 to 42 times
slow-down when report the same results) compared to SPLAllRepair1.

Table 2 shows performance results of running SPLAllRepair1 on a selected set of
benchmarks for different unwinding bounds b. Recall that our approach reasons about loops
by unrolling (unwinding) them, so it is sensitive to the chosen unwinding bound. By choosing
larger bounds b, we will obtain more precise results (more genuine repairs), but we will
also obtain longer SMT formulas and slower speeds of the repairing tasks. We can see that
the running times of all repairing tasks grow with the number of bound b. This is due to
the fact that longer SMT formulas are generated, which need more time to be verified. Of
course, we will also obtain more precise results for bigger values of b, and less precise results
(i.e., some genuine repairs will not be reported) for smaller values of b. Hence, there is a
preision/speed tradeoff when choosing the unwinding bound b. We obtain similar results for
SPLAllRepair2 and the Brute-force.

Discussion

In summary, our experiments demonstrate that our tool outperforms the Brute-force
approach, and moreover it can be used for repairing various SPLs with different sizes of LOC,
configuration space, and mutation space. Although SPLAllRepair1 and Brute-force

ECOOP 2024

12:18 Mutation-Based Lifted Repair of Software Product Lines

have similar precision (8 vs. 4 fixes) due to the use of same sets of mutations, there is still
a difference in the quality of the reported results. As we argued before, SPLAllRepair1
and SPLAllRepair2 report repaired program families obtained by fixing both feature and
program expressions, whereas Brute-force only reports the repaired variants obtained by
fixing program expressions. Hence, the results from Brute-force have to be analyzed by
the user to produce information comparable to that returned by SPLAllRepair1 and
SPLAllRepair2 in the form of repaired program families. Moreover, the fixes of individual
variants may cause errors in other variants as evidenced by feat-inter and feat_power.

The main bottleneck for real-world SPLs, such as MinePump with 730 LOC and 6 features,
is the huge space of mutants. The problem is that the search space of mutants grows very
rapidly as the number of changeable expressions (statements) included in Ssoft grows. For
example, the space of mutants for MinePump is ∼ 1012 for mutation level 1 and ∼ 1034 for
mutation level 2. Hence, to explore even the sub-space of mutants with only 1 edit (r = 1)
we need around 300 sec for SPLAllRepair1 and >400 sec (timeout) for SPLAllRepair2.
One way to address this problem is to use variability fault localization [5, 47], which will first
identify feature and program expressions relevant for a variability bug, so that the SPL repair
algorithm will apply mutations only to those expressions. This way, we will significantly
reduce the space of all mutants without dropping any potentially correct mutant, and so we
will improve the performance of the SPLAllRepair algorithm.

The runtime performance results confirm that our lifted (family-based) repair algorithm
is indeed effective and especially so for large values of |F| and |K| = 2|F|. That is, the focus of
lifted repair algorithm is to combat the configuration space explosion of SPLs, not their LOC
or mutation space sizes. As an experiment, we took feat-inter, and we have gradually
added optional features into it by conjoining them to the presence conditions of #if-s. For
|F| = 3, SPLAllRepair1 achieves speed-up of 8.3 times compared to Brute-force, whereas
for |F| = 4 and |F| = 5 we observe speed-ups of 14.7 and 26.7 times, respectively. The
key for those speed-ups is the linear growth of the running times of SPLAllRepair1 with
the number of features |F| compared to the exponential growth of the running times of
Brute-force with |F|.

Finally, the evaluation shows that for bigger values of the unwinding bound b, we obtain
repairing tasks with slower runtime speed, but reporting more precise results.

6 Related Work

We divide our discussion of related work into two categories: lifted SPL analysis and program
repair.

Lifted SPL analysis

Formal analysis and verification of program families have been a topic of considerable research
in recent times. The challenge is to develop efficient techniques that work directly on program
families, rather than on single programs. Various lifted techniques have been introduced
that lift existing single-program analysis techniques to work on the level of program families.
Some examples are lifted syntax checking [27, 34], lifted type checking [7, 33], lifted static
analysis [6, 30, 15, 20, 55], lifted model checking [9, 16, 25], etc. There are two main lifted
techniques: to develop dedicated lifted (family-based) algorithms and tools (e.g. [9, 7, 6, 20]);
or to use specific simulators and variability encodings which transform program families into
single programs that can be analyzed by the standard single-program analysis tools. The
two approaches have different strengths and weaknesses. The advantage of the dedicated

A. S. Dimovski 12:19

lifted algorithms is that precise (conclusive) results are reported for every variant, but the
disadvantage is that their implementation and maintenance can be labor intensive and
expensive. For example, CBMC [8] is prominent (single-system) software model checker
that contains many optimization algorithms, which are result of more than two decades
research in advanced formal verification. Adapting and implementing all these algorithms in
the context of lifted software model checking would require an enormous amount of work.
Moreover, the performance of dedicated lifted algorithms still heavily depends on the size
and complexity of the configuration space of the analyzed SPL.

On the other hand, the approaches based on variability encoding [30, 56] generate a family
simulator that simulates the behaviour of all variants in an SPL. They re-use existing tools
from single-program world, but some precision may be lost when interpreting the obtained
results. The work [56] defines variability encoding on the top of TypeChef parser [34] for
C and Java SPLs, while the work [30] defines variability encoding on the top of SuperC
parser [27] for C SPLs. The results of variability encoding have been applied to testing [35],
software model checking [4], formal verification [30], and theorem proving [54] of SPLs. In
this work, we pursue this line of research by presenting a lifted repair algorithm that is based
on variability encoding of program families and an existing single-program mutation-based
repair algorithm AllRepair [50, 51].

Program repair

Automated program repair has been extensively examined in software engineering as a way
to efficiently maintain software systems [28, 37, 40, 42, 45, 46, 48, 50, 51]. These works aim
to repair the buggy program, so that the transformed program does not exhibit any faults.
Most of them use test suits as the only specification, so the correctness of a candidate is
checked by running all tests in the test suite against it. They iteratively generate a candidate
from the repair search space and check its validity by testing. Some examples are GenProg
[28], RsRepair [48], SPR [40]. The main problem of all testing-based approaches is the
generation of overfitting repairs that pass all the test cases, but they break some untested
required functionality of correct programs. This happens when the test suites do not cover
all the functionality of a program.

In contrast to testing-based approaches, our work belongs to the category of repair tools
that use formal techniques to guide the repair process. Several techniques, such as SemFix
[45] and Angelix [42], use symbolic execution to find a repair constraint and then generate
a correct fix based on it. Similarly to our work, Könighofer et al. [37] also use assertions
as formal specifications, but instead of mutations they use on-the-fly concolic execution
(a variant of symbolic execution that uses both symbolic and concrete input values) and
templates (linear expressions of program variables with unknown coefficients) as repairs.
The solutions for unknown coefficients are found by SMT solving, thus discovering the
repaired program. The Maple tool [46] utilizes a formal verification system to locate buggy
expressions, which are again replaced with templates in which the unknown coefficients are
determined using constraint solving. The work [36] uses a deductive synthesis framework for
repairing recursive functional programs with respect to specifications expressed in the form
of pre- and post-conditions.

Finally, our approach is inspired by Rothenberg and Grumberg [50, 51] that have developed
the AllRepair tool for automatic program repair based on code mutations. In this paper,
we pursue this line of work by applying it in a new context of SPL repair, which is done by
taking into account all specific characteristics of SPLs. This way, we broaden the space of
programs that can be repaired.

ECOOP 2024

12:20 Mutation-Based Lifted Repair of Software Product Lines

The Qlose tool [10] introduces a quantitative program repair algorithm that finds the
“optimal” solutions by taking into account multiple quantitative objectives, such as the
number of syntactic edits and semantic changes in program behaviours/executions. The
work [41] proposes a semantic program repair technique that performs counterexample-guided
inductive repair loop via symbolic execution. In this work, we currently find a solution with
minimal number of syntactic changes to the original program family. The semantics of the
program family is encoded as an SMT formula that is mutated and checked for correctness
by an SMT solver. In the future, we plan to investigate some semantics-based learning
techniques that will use the counterexamples returned by the SMT solver to guide the
algorithm towards finding faster solutions.

Automated program repair has often been combined with fault localization. Fault
localization [31, 17] is a technique for automatically generating concise error explanations
in the form of locations/statements relevant for a given error that describe why the error
has occurred. The works [12, 49, 51] use fault localization to narrow down the repair search
space, followed by applying program repair. Firstly, fault localization suggests locations in
the erroneous program that might be the cause of the error. Subsequently, the program
repair attempts to change only those locations detected by the fault localization in order to
eliminate the error. This way, the original program repair procedure is speeded up without
incurring any precision loss. Recently, variability fault localization in buggy SPL systems
has also been a subject of research [5, 44, 47]. They use spectrum-based fault localization
(SBFL) metric [1] to calculate the suspiciousness scores for localizing variability bugs at the
level of features [5] and statements [44, 47] based on the test information (program spectra).
We can combine the variability fault localization and our variability-aware repair method
to additionally prune the search space of mutants, thus improving the performances of our
approach.

Program repair is also related to program sketching [52], where a program with missing
parts (holes) has to be completed in such a way that a given specification is satisfied. One
of the earliest and widely-known approach to solve the sketching problem is the Sketch
tool [52], which uses SAT-based counterexample-guided inductive synthesis. It iteratively
performs SAT queries to find integer constants for the holes so that the resulting program is
correct on all possible inputs. The works [19, 21] introduce the FamilySketcher tool that
solves the sketching problem by using a lifted static analysis based on abstract interpretation.
The key idea is that all possible sketch realizations represent a program family, and so the
sketch search space is explored via an efficient lifted analysis of program families, which uses
a specifically designed decision tree abstract domain. The FamilySketcher also generates
an optimal solution to the sketching problem with respect to the number of execution steps
to termination. Furthermore, the approach [18] uses abstract static analysis and logical
abduction to solve the generalized program sketching problem where the missing holes can
be replaced with arbitrary expressions, not only with integer constants as in the case of
Sketch and FamilySketcher tools.

7 Conclusion

In this paper, we have introduced an automated SPL repair framework using variability
encoding, bounded model checking and cooperation between SAT and SMT solvers. More
specifically, we utilize the CBMC bounded model checker to translate the family simulator of
a program family to a program formula. By checking the satisfiability of the program formula
using an SMT solver, we verify the correctness of the given program family. Then, each

A. S. Dimovski 12:21

formula corresponding to a buggy (feature or program) expression is replaced by a mutated
patch, to create a new SMT formula that is again checked for satisfiability. To ensure that
only minimally mutated programs are considered, we call a SAT solver. By experiments we
have shown that our prototype tool can discover interesting patches for various buggy SPLs.

The huge space of mutants can be a bottleneck when dealing with real-world SPLs that
have high sizes of LOCs and features. To overcome this problem, we can consider different
techniques for pruning the search space of all possible mutations in the future. One possibility
is to use variability fault localization [5, 47], which will find statements relevant for the
variability bug. The formulas corresponding to all other statements will be included in Shard

and so no mutations will be applied to them. By mutating only statements relevant for the
bug, we will significantly reduce the space of all mutants, thus speeding up the SPL repair
method without any precision loss.

References
1 Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. Spectrum-based multiple fault

localization. In ASE 2009, 24th IEEE/ACM International Conference on Automated Software
Engineering, Auckland, New Zealand, November 16-20, 2009, pages 88–99. IEEE Computer
Society, 2009. doi:10.1109/ASE.2009.25.

2 Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. Feature-Oriented
Software Product Lines - Concepts and Implementation. Springer, 2013. doi:10.1007/
978-3-642-37521-7.

3 Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk Beyer. Detection
of feature interactions using feature-aware verification. In 26th IEEE/ACM Int. Conf. on
Automated Software Engineering (ASE 2011), pages 372–375, 2011. doi:10.1109/ASE.2011.
6100075.

4 Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and Dirk Beyer.
Strategies for product-line verification: case studies and experiments. In 35th Inter. Conference
on Software Engineering, ICSE ’13, pages 482–491, 2013. doi:10.1109/ICSE.2013.6606594.

5 Aitor Arrieta, Sergio Segura, Urtzi Markiegi, Goiuria Sagardui, and Leire Etxeberria. Spectrum-
based fault localization in software product lines. Inf. Softw. Technol., 100:18–31, 2018.
doi:10.1016/J.INFSOF.2018.03.008.

6 Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira Mezini.
Spllift: statically analyzing software product lines in minutes instead of years. In ACM
SIGPLAN Conference on PLDI ’13, pages 355–364, 2013.

7 Sheng Chen, Martin Erwig, and Eric Walkingshaw. An error-tolerant type system for variational
lambda calculus. In ACM SIGPLAN International Conference on Functional Programming,
ICFP’12, pages 29–40, 2012. doi:10.1145/2364527.2364535.

8 Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs.
In Tools and Algorithms for the Construction and Analysis of Systems, 10th International
Conference, TACAS 2004, Proceedings, volume 2988 of LNCS, pages 168–176. Springer, 2004.
doi:10.1007/978-3-540-24730-2_15.

9 Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel Legay, and
Jean-François Raskin. Featured transition systems: Foundations for verifying variability-
intensive systems and their application to LTL model checking. IEEE Trans. Software Eng.,
39(8):1069–1089, 2013. doi:10.1109/TSE.2012.86.

10 Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program repair with quantitative
objectives. In Computer Aided Verification - 28th International Conference, CAV 2016,
Proceedings, Part II, volume 9780 of LNCS, pages 383–401. Springer, 2016. doi:10.1007/
978-3-319-41540-6_21.

11 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and

ECOOP 2024

https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1109/ASE.2011.6100075
https://doi.org/10.1109/ICSE.2013.6606594
https://doi.org/10.1016/J.INFSOF.2018.03.008
https://doi.org/10.1145/2364527.2364535
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-319-41540-6_21

12:22 Mutation-Based Lifted Repair of Software Product Lines

Analysis of Systems, 14th International Conference, TACAS 2008. Proceedings, volume 4963
of LNCS, pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

12 Vidroha Debroy and W. Eric Wong. Using mutation to automatically suggest fixes for faulty
programs. In Third International Conference on Software Testing, Verification and Validation,
ICST 2010, pages 65–74. IEEE Computer Society, 2010. doi:10.1109/ICST.2010.66.

13 Aleksandar Dimovski and Danilo Gligoroski. Generating highly nonlinear boolean functions
using a genetic algorithm. In 6th Int. Conference on Telecommunications in Modern Satellite,
Cable and Broadcasting Service, TELSIKS 2003, volume 2 of IEEE, pages 604–607, 2003.
doi:10.1109/TELSKS.2003.1246297.

14 Aleksandar S. Dimovski. Symbolic game semantics for model checking program families. In
Model Checking Software - 23nd International Symposium, SPIN 2016, Proceedings, volume
9641 of LNCS, pages 19–37. Springer, 2016.

15 Aleksandar S. Dimovski. Lifted static analysis using a binary decision diagram abstract domain.
In Proceedings of the 18th ACM SIGPLAN International Conference on GPCE 2019, pages
102–114. ACM, 2019. doi:10.1145/3357765.3359518.

16 Aleksandar S. Dimovski. Ctl⋆ family-based model checking using variability abstractions
and modal transition systems. Int. J. Softw. Tools Technol. Transf., 22(1):35–55, 2020.
doi:10.1007/s10009-019-00528-0.

17 Aleksandar S. Dimovski. Error invariants for fault localization via abstract interpretation.
In Static Analysis - 30th International Symposium, SAS 2023, Proceedings, volume 14284 of
LNCS, pages 190–211. Springer, 2023. doi:10.1007/978-3-031-44245-2_10.

18 Aleksandar S. Dimovski. Generalized program sketching by abstract interpretation and logical
abduction. In Static Analysis - 30th International Symposium, SAS 2023, Proceedings, volume
14284 of LNCS, pages 212–230. Springer, 2023. doi:10.1007/978-3-031-44245-2_11.

19 Aleksandar S. Dimovski. Quantitative program sketching using decision tree-based lifted
analysis. J. Comput. Lang., 75:101206, 2023. doi:10.1016/J.COLA.2023.101206.

20 Aleksandar S. Dimovski and Sven Apel. Lifted static analysis of dynamic program families
by abstract interpretation. In 35th European Conference on Object-Oriented Programming,
ECOOP 2021, volume 194 of LIPIcs, pages 14:1–14:28. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.ECOOP.2021.14.

21 Aleksandar S. Dimovski, Sven Apel, and Axel Legay. Program sketching using lifted analysis
for numerical program families. In NASA Formal Methods - 13th International Symposium,
NFM 2021, Proceedings, volume 12673 of LNCS, pages 95–112. Springer, 2021. doi:10.1007/
978-3-030-76384-8_7.

22 Aleksandar S. Dimovski, Sven Apel, and Axel Legay. Several lifted abstract domains for
static analysis of numerical program families. Sci. Comput. Program., 213:102725, 2022.
doi:10.1016/J.SCICO.2021.102725.

23 Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Finding suitable variability
abstractions for lifted analysis. Formal Aspects Comput., 31(2):231–259, 2019. doi:10.1007/
s00165-019-00479-y.

24 Aleksandar S. Dimovski and Ranko Lazic. Compositional software verification based on
game semantics and process algebra. Int. J. Softw. Tools Technol. Transf., 9(1):37–51, 2007.
doi:10.1007/S10009-006-0005-Y.

25 Aleksandar S. Dimovski and Andrzej Wasowski. From transition systems to variability models
and from lifted model checking back to UPPAAL. In Models, Algorithms, Logics and Tools,
volume 10460 of LNCS, pages 249–268. Springer, 2017. doi:10.1007/978-3-319-63121-9_13.

26 Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Theory and Applications of
Satisfiability Testing, 6th International Conference, SAT 2003, volume 2919 of LNCS, pages
502–518. Springer, 2003. doi:10.1007/978-3-540-24605-3_37.

27 Paul Gazzillo and Robert Grimm. Superc: parsing all of C by taming the preprocessor. In
Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN Conference on Programming

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/ICST.2010.66
https://doi.org/10.1109/TELSKS.2003.1246297
https://doi.org/10.1145/3357765.3359518
https://doi.org/10.1007/s10009-019-00528-0
https://doi.org/10.1007/978-3-031-44245-2_10
https://doi.org/10.1007/978-3-031-44245-2_11
https://doi.org/10.1016/J.COLA.2023.101206
https://doi.org/10.4230/LIPIcs.ECOOP.2021.14
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1007/978-3-030-76384-8_7
https://doi.org/10.1016/J.SCICO.2021.102725
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/s00165-019-00479-y
https://doi.org/10.1007/S10009-006-0005-Y
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-540-24605-3_37

A. S. Dimovski 12:23

Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, pages
323–334. ACM, 2012. doi:10.1145/2254064.2254103.

28 Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Genprog: A
generic method for automatic software repair. IEEE Trans. Software Eng., 38(1):54–72, 2012.
doi:10.1109/TSE.2011.104.

29 Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam A. Porter, and Gregg Rothermel.
An empirical study of regression test selection techiques. ACM Trans. Softw. Eng. Methodol.,
10(2):184–208, 2001. doi:10.1145/367008.367020.

30 Alexandru F. Iosif-Lazar, Ahmad Salim Al-Sibahi, Aleksandar S. Dimovski, Juha Erik Sa-
volainen, Krzysztof Sierszecki, and Andrzej Wasowski. Experiences from designing and
validating a software modernization transformation (E). In 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2015, pages 597–607, 2015.
doi:10.1109/ASE.2015.84.

31 Manu Jose and Rupak Majumdar. Cause clue clauses: error localization using maximum
satisfiability. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, pages 437–446. ACM, 2011. doi:10.1145/1993498.
1993550.

32 Christian Kästner. Virtual Separation of Concerns: Toward Preprocessors 2.0. PhD thesis,
University of Magdeburg, Germany, May 2010.

33 Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. Type checking annotation-
based product lines. ACM Trans. Softw. Eng. Methodol., 21(3):14, 2012.

34 Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus Ostermann,
and Thorsten Berger. Variability-aware parsing in the presence of lexical macros and conditional
compilation. In OOPSLA’11, pages 805–824. ACM, 2011.

35 Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch, Sven Apel, Tillmann
Rendel, and Klaus Ostermann. Toward variability-aware testing. In FOSD ’12, pages 1–8,
2012.

36 Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. Deductive program repair. In
Computer Aided Verification - 27th International Conference, CAV 2015, Proceedings, Part II,
volume 9207 of LNCS, pages 217–233. Springer, 2015. doi:10.1007/978-3-319-21668-3_13.

37 Robert Könighofer and Roderick Bloem. Repair with on-the-fly program analysis. In 8th
International Haifa Verification Conference, HVC 2012, volume 7857 of LNCS, pages 56–71.
Springer, 2012. doi:10.1007/978-3-642-39611-3_11.

38 Jeff Kramer, Jeff Magee, Morris Sloman, and A. Lister. Conic: An integrated approach to
distributed computer control systems. IEE Proc., 130(1):1–10, 1983.

39 Mark H. Liffiton and Jordyn C. Maglalang. A cardinality solver: More expressive constraints
for free - (poster presentation). In Theory and Applications of Satisfiability Testing - SAT 2012
- 15th International Conference, Proceedings, volume 7317 of LNCS, pages 485–486. Springer,
2012. doi:10.1007/978-3-642-31612-8_47.

40 Fan Long and Martin C. Rinard. Staged program repair with condition synthesis. In
Proceedings of the 2015 10th Joint Meeting on ESEC/FSE 2015, pages 166–178. ACM, 2015.
doi:10.1145/2786805.2786811.

41 Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury.
Semantic program repair using a reference implementation. In Proceedings of the 40th
International Conference on Software Engineering, ICSE 2018, pages 129–139. ACM, 2018.
doi:10.1145/3180155.3180247.

42 Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: scalable multiline program
patch synthesis via symbolic analysis. In Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, pages 691–701. ACM, 2016. doi:10.1145/2884781.2884807.

43 Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wasowski. Systematic
derivation of correct variability-aware program analyses. Sci. Comput. Program., 105:145–170,
2015. doi:10.1016/j.scico.2015.04.005.

ECOOP 2024

https://doi.org/10.1145/2254064.2254103
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/367008.367020
https://doi.org/10.1109/ASE.2015.84
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1007/978-3-319-21668-3_13
https://doi.org/10.1007/978-3-642-39611-3_11
https://doi.org/10.1007/978-3-642-31612-8_47
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/3180155.3180247
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1016/j.scico.2015.04.005

12:24 Mutation-Based Lifted Repair of Software Product Lines

44 Kien-Tuan Ngo, Thu-Trang Nguyen, Son Nguyen, and Hieu Dinh Vo. Variability fault
localization: a benchmark. In SPLC ’21: 25th ACM International Systems and Software
Product Line Conference, Leicester, United Kingdom, September 6-11, 2021, Volume A, pages
120–125. ACM, 2021. doi:10.1145/3461001.3473058.

45 Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. Semfix:
program repair via semantic analysis. In 35th International Conference on Software Engineering,
ICSE ’13, pages 772–781. IEEE Computer Society, 2013. doi:10.1109/ICSE.2013.6606623.

46 Thanh-Toan Nguyen, Quang-Trung Ta, and Wei-Ngan Chin. Automatic program repair using
formal verification and expression templates. In Verification, Model Checking, and Abstract
Interpretation - 20th International Conference, VMCAI 2019, Proceedings, volume 11388 of
LNCS, pages 70–91. Springer, 2019. doi:10.1007/978-3-030-11245-5_4.

47 Thu-Trang Nguyen, Kien-Tuan Ngo, Son Nguyen, and Hieu Dinh Vo. A variability fault
localization approach for software product lines. IEEE Trans. Software Eng., 48(10):4100–4118,
2022. doi:10.1109/TSE.2021.3113859.

48 Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The strength of
random search on automated program repair. In 36th International Conference on Software
Engineering, ICSE ’14, pages 254–265. ACM, 2014. doi:10.1145/2568225.2568254.

49 Urmas Repinski, Hanno Hantson, Maksim Jenihhin, Jaan Raik, Raimund Ubar, Giuseppe Di
Guglielmo, Graziano Pravadelli, and Franco Fummi. Combining dynamic slicing and mutation
operators for ESL correction. In 17th IEEE European Test Symposium, ETS 2012, pages 1–6.
IEEE Computer Society, 2012. doi:10.1109/ETS.2012.6233020.

50 Bat-Chen Rothenberg and Orna Grumberg. Sound and complete mutation-based program
repair. In FM 2016: Formal Methods - 21st International Symposium, Proceedings, volume
9995 of LNCS, pages 593–611, 2016. doi:10.1007/978-3-319-48989-6_36.

51 Bat-Chen Rothenberg and Orna Grumberg. Must fault localization for program repair. In
Computer Aided Verification - 32nd International Conference, CAV 2020, Proceedings, Part II,
volume 12225 of LNCS, pages 658–680. Springer, 2020. doi:10.1007/978-3-030-53291-8_33.

52 Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013. doi:10.1007/
s10009-012-0249-7.

53 Shin Hwei Tan, Jooyong Yi, Yulis, Sergey Mechtaev, and Abhik Roychoudhury. Codeflaws:
a programming competition benchmark for evaluating automated program repair tools. In
Proceedings of the 39th International Conference on Software Engineering, ICSE 2017 -
Companion Volume, pages 180–182. IEEE Computer Society, 2017. doi:10.1109/ICSE-C.
2017.76.

54 Thomas Thüm, Ina Schaefer, Martin Hentschel, and Sven Apel. Family-based deductive
verification of software product lines. In Generative Programming and Component Engineering,
GPCE’12, pages 11–20. ACM, 2012. doi:10.1145/2371401.2371404.

55 Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven Apel.
Variability-aware static analysis at scale: An empirical study. ACM Trans. Softw. Eng.
Methodol., 27(4):18:1–18:33, 2018. doi:10.1145/3280986.

56 Alexander von Rhein, Thomas Thüm, Ina Schaefer, Jörg Liebig, and Sven Apel. Variability
encoding: From compile-time to load-time variability. J. Log. Algebraic Methods Program.,
85(1):125–145, 2016. doi:10.1016/j.jlamp.2015.06.007.

https://doi.org/10.1145/3461001.3473058
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1007/978-3-030-11245-5_4
https://doi.org/10.1109/TSE.2021.3113859
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1109/ETS.2012.6233020
https://doi.org/10.1007/978-3-319-48989-6_36
https://doi.org/10.1007/978-3-030-53291-8_33
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1109/ICSE-C.2017.76
https://doi.org/10.1109/ICSE-C.2017.76
https://doi.org/10.1145/2371401.2371404
https://doi.org/10.1145/3280986
https://doi.org/10.1016/j.jlamp.2015.06.007

Pure Methods for roDOT
Vlastimil Dort #

Charles University, Prague, Czech Republic

Yufeng Li #

University of Cambridge, UK

Ondřej Lhoták #

University of Waterloo, Canada

Pavel Parízek #

Charles University, Prague, Czech Republic

Abstract
Object-oriented programming languages typically allow mutation of objects, but pure methods
are common too. There is great interest in recognizing which methods are pure, because it eases
analysis of program behavior and allows modifying the program without changing its behavior. The
roDOT calculus is a formal calculus extending DOT with reference mutability. In this paper, we
explore purity conditions in roDOT and pose a SEF guarantee, by which the type system guarantees
that methods of certain types are side-effect free. We use the idea from ReIm to detect pure
methods by argument types. Applying this idea to roDOT required just a few changes to the type
system, but necessitated re-working a significant part of the soundness proof. In addition, we state
a transformation guarantee, which states that in a roDOT program, calls to SEF methods can be
safely reordered without changing the outcome of the program. We proved type soundness of the
updated roDOT calculus, using multiple layers of typing judgments. We proved the SEF guarantee
by applying the Immutability guarantee, and the transformation guarantee by applying the SEF
guarantee within a framework for reasoning about safe transformations of roDOT programs. All
proofs are mechanized in Coq.

2012 ACM Subject Classification Software and its engineering → Formal language definitions;
Software and its engineering → Object oriented languages

Keywords and phrases type systems, DOT calculus, pure methods

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.13

Related Version Extended Version including Appendix : https://d3s.mff.cuni.cz/files/
publications/dort_pure_report_2024.pdf [13]

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.6

Funding This work was supported by the Czech Science Foundation project 23-06506S, and by the
Czech Ministry of Education, Youth and Sports project LL2325 of the ERC.CZ programme. This
research was also supported by the Natural Sciences and Engineering Research Council of Canada.

1 Introduction

A feature common to many object-oriented programming languages is that execution of a
method can have important side effects such as creating new objects on the heap or modifying
(mutating) existing objects. For example, a setter method modifies a field of the receiving
object. Such effects are also the reason why, in general, execution of a method cannot be
treated as evaluation of a function in a mathematical sense, because every call of a method
with possible side effects can produce different results.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Vlastimil Dort, Yufeng Li, Ondřej Lhoták, and Pavel Parízek;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 13; pp. 13:1–13:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dort@d3s.mff.cuni.cz
https://orcid.org/0000-0002-0213-7524
mailto:yufeng.li@cl.cam.ac.uk
mailto:olhotak@uwaterloo.ca
https://orcid.org/0000-0001-9066-1889
mailto:parizek@d3s.mff.cuni.cz
https://orcid.org/0000-0003-0714-7446
https://doi.org/10.4230/LIPIcs.ECOOP.2024.13
https://d3s.mff.cuni.cz/files/publications/dort_pure_report_2024.pdf
https://d3s.mff.cuni.cz/files/publications/dort_pure_report_2024.pdf
https://doi.org/10.4230/DARTS.10.2.6
https://doi.org/10.4230/DARTS.10.2.6
https://doi.org/10.4230/DARTS.10.2.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Pure Methods for roDOT

That being said, many methods in object-oriented programs are actually designed as
side-effect-free and meant to work like pure mathematical functions, producing the same
result on each invocation. An example of such methods are getters, or generally, computations
based solely on the arguments passed into the method. Creating methods without side
effects is also often considered to be a good practice, because it reduces hidden dependencies,
and these methods can be used more freely without the fear of unwanted interaction of
their effects. For example, the program code fragment val x = computeX() ; val y =
computeY(), which involves two side-effect-free methods, can be transformed to val y =
computeY() ; val x = computeX() by swapping the order of method calls without any
observable change in the program behavior and semantics. Writing side-effect-free methods
also enables a greater degree of parallelization (concurrency) and, in general, makes it easier
to understand the program behavior. Therefore, the issue of purity is relevant to most
mainstream object-oriented programming languages, such as Java, C++, C# and Scala.

However, in common programming languages, pure functions and methods with effects
are typically unified under a single concept of a method, and there is no way to express,
check and make use of method purity at the language level. The idea that a method is
pure can be expressed using an annotation (see, e.g., Checker Framework [14, 10] and Code
Contracts [15]), but one must look into the documentation of such an annotation for the
exact meaning of purity, and there may be limited possibilities of checking automatically
whether the annotation is applied properly.

In the context of Java, ReIm [19] introduced annotations with a formal meaning, which
give rise to a type system that allows to recognize side-effect-free methods using the types
of their parameters – if all parameters of a method, including the receiver, have read-only
types, the method cannot get hold of a writeable reference to an existing object, so it is
necessarily side-effect free. The advantage of this general approach, based on the usage of
static type systems for reasoning about purity and side-effect freedom, is the possibility to
prove soundness and consistency of such annotations.

Scala favours a functional programming style, so Scala programs are likely to contain
more methods (than Java programs) that can be identified as side-effect-free. Our main
objective is to design a type system that guarantees side effect freedom for Scala methods
and supports advanced language features present in Scala.

Previous formalization efforts for Scala resulted in the Dependent Object Types (DOT)
calculus [2], which captures the essence of Scala’s type system. However, the original DOT
calculus does not model mutation of objects, so purity cannot be addressed there, but some
variants that do allow mutation have been developed. roDOT [12] is an existing core calculus
for Scala with reference mutability. It has mutable fields and a type system feature to
distinguish read-only and mutable references. An important rationale behind the design of
roDOT, when compared to other possible approaches, is to use existing features of Scala,
including its rich type system, as much as possible rather than introducing new forms of
types only for reference mutability, to ease adoption of such a type system into the Scala
language. In particular, roDOT expresses the mutability of a reference using a specially
designated type member in the type of that reference. The type system of roDOT also
provides an immutability guarantee: an object can only be mutated if there is a path of
mutable references to it from the code being executed.

In this paper, we extend the core roDOT calculus from [12] with the concept of side-
effect-free methods. Before going into details, we want to emphasize that it was not possible
to simply adapt ReIm [19] from Java, because of several challenges specific to Scala and
roDOT that we discuss below. However, we use the idea proposed by the authors of ReIm
that side-effect-free methods are recognized based on the types of their parameters.

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:3

The general concept of purity is, in addition to (1) side-effect-freedom, sometimes
understood to comprise more properties: (2) determinism – returning the same value for the
same arguments [14], and (3) termination. In this paper, we focus only on the side-effect-free
(SEF) property. We will just mention that in regards to determinism, mutable DOT calculi
including roDOT have semantics that is deterministic except for instantiation of objects.

Within the context of roDOT, we look at the SEF property from three different perspec-
tives – what a SEF method does, how it can be recognized using the type system, and how
it can be used in programs. We define SEF methods in roDOT as those that do not modify
any objects that existed on the heap before the method was called.

As the main result of this paper, we prove the side-effect-free guarantee (SEF guarantee),
which says that methods with read-only parameters do not modify existing objects.

One important related challenge is that in order to state and prove the SEF guarantee, we
needed a way to test whether a given type is read-only. As we will explain, this is not possible
in the existing (original) roDOT type system from [12]. Therefore, one of our contributions
is an extension of roDOT that makes it possible to recognize read-only types.

Another challenge was defining the SEF guarantee formally and proving it in a calculus
that supports a mutable heap (like roDOT). The roDOT operational semantics says that fresh
heap addresses are chosen during method execution. Therefore, after calling a SEF method,
these heap addresses can be different, yet the heap still has the same overall structure. We
formally define a concept of similarity of heaps in roDOT to describe this relation. We prove
the SEF guarantee by simulating the execution of a SEF method with a similar execution,
where writeable references are removed, and by applying roDOT’s immutability guarantee.

Finally, as a corollary of the SEF guarantee, we state and prove a guarantee of safety of
a particular code transformation. The transformation guarantee states that swapping two
calls to SEF methods anywhere in a program does not affect the result of its execution.

Formalizing safe program transformations has to deal with specific issues, such as mixing
of program code and values together on the program heap, or the heap similarity mentioned
above. In order to deal with these issues, we design a general framework for reasoning about
safe transformations in roDOT. The framework provides a general way to define program
transformations, defines what properties a safe program transformation must have, and
provides a general theorem about lifting the safety of transformation from execution of a
small piece of code to execution of the whole program. Within this framework, we define the
specific transformation of swapping two calls of SEF methods. We prove the transformation
guarantee using the SEF guarantee and the lifting theorem.

We mechanized all of our formal results, in particular the soundness proof of the extended
roDOT calculus and the SEF guarantee, in Coq to enable future formal reasoning to build
on them. Note that the soundness of the original roDOT calculus was proved by hand in [12].
We have made our formalization in Coq public as an artifact for this paper.

1.1 Contribution

In summary, the main contributions of this paper are the following:
a modification of the original roDOT calculus that makes it possible to test whether a
type is read-only, which is necessary to state and prove the SEF guarantee;
a formal definition of side-effect-free methods in the context of roDOT, statement and
proof of the SEF guarantee;

ECOOP 2024

13:4 Pure Methods for roDOT

a general framework for defining transformations of roDOT programs and proving that
some of them are safe in that they do not change the result of program execution,
statement and proof of a transformation guarantee, which states that re-ordering calls to
SEF methods is safe in that sense;
the first mechanization of roDOT and its immutability guarantee, with addition of the
SEF and transformation guarantees, and all the proofs in Coq – provided as an artifact.

1.2 Outline
The paper is organized as follows. Section 2 gives an overview of the roDOT calculus, which
has been mechanized in Coq and within which we define the SEF condition. Section 3
discusses the definition of pure and SEF methods, looking at several variants. It defines the
SEF guarantee and identifies necessary changes to the roDOT type system in order for the
guarantee to work. In Section 4 we describe the changes to the calculus in more detail, and
discuss a new proof of type soundness of the calculus. In Section 5, we describe how we
proved the SEF guarantee, and in Section 6 we define and prove the transformation guarantee
within a framework for safe transformations. An appendix containing full definitions and
more detailed discussion is available in the extended version of this paper [13].

2 Background – The roDOT calculus

In this section, we present the summary of the roDOT calculus [12], which we use as the
baseline for this work. The DOT calculus [2, 33, 30] is a formal calculus, designed to formalize
the essence of the types of the Scala programming language. In the basic versions of the
DOT calculus, objects have read-only fields (so the objects are immutable), but there are
also several versions that allow changing values of the fields of objects (mutation).

The roDOT calculus [12] evolved from DOT with mutable fields. The goal was to extend
DOT with the ability to control mutation of objects using the type system, while using the
existing features of the DOT calculus, dependent types.

In roDOT, write access to a field is controlled by a reference mutability permission. It
is based on an idea of a reference capability represented by a special type member M. A
reference can only be used to mutate an object if the type of the reference includes this
capability, in the form of a type member declaration {M : ⊥..⊥}. Thanks to that, we can
refer to the mutability of a variable x using type selection x.M.

Without this capability, the field can only be read, but with it, the field can also be
written to. The permission applies transitively, in the sense that reading from a read-only
reference always produces read-only references.

2.1 Syntax and typing
The syntax of terms and types in roDOT is in Figure 1. It uses the A-normal form [36]
of terms from DOT. To avoid ambiguity, if a variable is used in the position of a term, it
is marked as vx. Unlike other versions, the roDOT calculus does not have λ values, but
methods are a kind of object member (and cannot be reassigned), so there is a more explicit
relationship of a method, the containing object and the reference used to call the method.
Objects are represented by the ν(s : R)d constructor, appearing as literals in the programs
and as items on the heap (R is the type of the object and d is a list of member definitions).

When typing the program or a part of it, free variables are assigned a type in a typing
context Γ. There are several kinds of variables. Abstract variables are variables bound in
terms such as let-in terms and method definitions. When the program executes, objects are

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:5

x ::= z, s, r Variable
| y | w location, reference
t ::= Term
| vx | x1.m x2 variable, method call
| let z = t1 in t2 let
| let z = ν(s : T)d in t let-literal
| x.a | x1.a := x2 read, write
d ::= d1 ∧ d2 Definition
| {a = x} | {A(r) = T} field, type
| {m(z, r) = t} method
ρ ::= · | ρ, w → y Environment

T ::= Type
| ⊤ | ⊥ | N top, bottom, read-only ⊥
| µ(s : T) | x1.B(x2) recursive, selection
| {a : T1..T2} | {B(r) : T1..T2} field, type decl.
| {m(z : T1, r : T3) : T2} method
| T1 ∧ T2 | T1 ∨ T2 intersection, union
B ::= Type member name
| A | M ordinary, mutability
σ ::= · | let z = □ in t :: σ Stack
Σ ::= · | Σ, y → d Heap
c ::= ⟨t; σ; ρ; Σ⟩ Configuration

Figure 1 roDOT syntax.

Γ;ρ ⊢ x1 : {m(z : T1, r : T3) : T2}
Γ;ρ ⊢ x2 : T1 Γ vis x2

Γ;ρ ⊢ x1 : [x2/z]T3 Γ vis x1

T3 indep z

Γ;ρ ⊢ x1.m x2 : [x1/r][x2/z]T2
(TT-Call)

Γ;ρ ⊢ x1 : T1 Γ vis x1
Γ;ρ ⊢ x : {a : T1..T2} Γ vis x

Γ;ρ ⊢ x : {M(r) : ⊥..⊥}
Γ;ρ ⊢ x.a := x1 : T2

(TT-Write)

Γ;ρ ⊢ x : {a : T1..T2} Γ vis x

Γ;ρ ⊢ T2 ro T3 Γ;ρ ⊢ T2 mu(r) T4

Γ;ρ ⊢ x.a : T3 ∧ {M(r) : ⊥..(T4 ∨ x.M(r))}
(TT-Read)

Γ;ρ ⊢ T1 <: T3
Γ;ρ ⊢ T2 <: T3

Γ;ρ ⊢ T1 ∨ T2 <: T3
(ST-Or)

Γ;ρ ⊢ T1 ∧ (T2 ∨ T3) <: (T1 ∧ T2) ∨ (T1 ∧ T3)(ST-Dist)

Γ;ρ ⊢ T3 <: T1 Γ, z : T3, r : T6;ρ ⊢ T2 <: T4

Γ, z : T3;ρ ⊢ T6 <: T5 T6 indep z ⇒ T5 indep z

Γ;ρ ⊢ {m(z : T1, r : T5) : T2} <: {m(z : T3, r : T6) : T4}
(ST-Met)

Figure 2 Selected rules for typing and reduction in roDOT.

created on the heap, and variables referring to concrete objects on the heap are substituted
in place of the abstract variables. Each object on the heap has a unique location y and one
or more references w. In an object on the heap, the values of fields are locations of other
objects. In terms, only references may appear. The kind of the variable has no effect on
execution or typing. In roDOT, references are a separate concept from locations in order to
allow references to the same object to have different types (specifically, different mutabilities).
While the run-time stack and focus of execution work with references that have their own
mutabilities, the heap only works with locations, and mutability is determined by field types.

The types form a lattice, with the top, bottom, union and intersection types. Objects
can contain multiple members – fields, methods and type members. Types of objects are
formed by intersection of individual declaration types for each member.

The type members {A : T..T } specify lower and upper bounds, and they introduce a new
dependent type x.A that has a subtyping relationship with those bounds. This is relevant
because roDOT uses a type member for mutability. The ability to create dependent types in
this manner is the defining feature of the DOT calculus.

ECOOP 2024

13:6 Pure Methods for roDOT

The declarations of an object’s members are wrapped in a recursive type, so several
declarations in one object type can reference each other, using a member type selection
s.A involving the self-reference s. An example of a type of an object without mutability is
µ(s : {A : T..T } ∧ {a : s.A..s.A} ∧ {m(r : T, z : T) : T}). An object of this type has a type
member A with bounds T , a field a with a self-referential type s.A, and a method m.

In roDOT, dependent types are also used to express the mutability of a reference, by
selecting the special type member M. When accessing an object through a reference which
does not have this capability, for example {a : T..T }, the field can only be read. With it, for
example {a : T..T } ∧ {M : ⊥..⊥}, the field can also be written to.

In the declaration of the type member M, the lower bound is always ⊥, and the upper
bound determines the mutability. If the upper bound is also ⊥, it means the reference is
mutable. Otherwise, it is read-only. This way, mutable references are subtypes of read-only
references, so a mutable reference can be used anywhere a read-only reference is expected, but
not vice versa. We will use MT as a shorthand for the type member declaration {M : ⊥..T },
or just M when the bound is not important. The mutability of a reference applies to the
whole object – a mutable reference allows writing to all fields.

An example of a type of an object with a type member A, a field a, method m and a
mutability declaration is µ(s : {A : T..T } ∧ {a : T..T } ∧ {m(r : T, z : T) : T}) ∧ {M : ⊥..⊥}.

A declaration of a method allows specifying a type of the receiving reference r : T , which
can be more precise than the type of the recursive self parameter s in the defining object.
This allows the type of the method to require that the receiver be writeable, or allow it to be
read-only. It is similar to the ability to annotate the type of this parameter in Java, used by
the Checker Framework [18, 9]. For this reason, every method in roDOT has two parameters:
a normal parameter z and the receiver r, which is a reference to the object containing the
method, like this in Scala. In roDOT, the type of r can be dependent on z. The parameter
r is special in how it gets its type, but in terms of semantics, behaves the same as z.

Several rules in roDOT need a read-only version of a type. For that, there are two
type-level operations: T ro U means that U is a readonly version of T , T mu U means that
U is a mutability bound of type T (rules are shown in Figure 11 in the appendix). A special
type N is defined to be the read-only version of the least type in the subtyping lattice, ⊥.

The typing rules (selected in Figure 2, full set in Figures 8 to 12 in the appendix) describe
correctly formed programs. In addition to the typing context Γ, which assigns types to
variables, the left side of the typing judgment includes an environment ρ that connects
references in the terms to locations of objects on the heap.

The write term, typed by TT-Write, is guarded by a check of the mutability permission
on the receiving reference. The premise Γ;ρ ⊢ x : {M : ⊥..⊥} ensures that only mutable
references can be used for writing.

Reading a field, typed by TT-Read, is always possible, but the type of the result is
changed to read-only if the source reference is read-only. This type operation is called
viewpoint adaptation, and ensures that read-onlyness is transitive, which is required for
the immutability guarantee of roDOT and for our SEF guarantee. This is achieved by
taking a read-only version of the field’s type, and adding a mutability that is a union of the
mutabilities of the source reference and of the field type. For example, if a reference w has
type {a : T1..µ(s : . . .) ∧ MU }, then the term w.a has type µ(s : . . .) ∧ Mw.a∨U .

With the vis judgment (Figure 9 in the appendix), roDOT hides captured variables in
methods – to access a value from outside, it must be stored in a field of the containing object,
so viewpoint adaptation applies to it.

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:7

Variables appearing in terms and definitions have types given by the typing and subtyping
rules in Figures 9 and 10 in the appendix. Selected rules are shown in Figure 2: ST-Met is a
subtyping rule for method declarations. The part highlighted in grey is not part of roDOT,
but our modification, which we will describe in Section 4.2. Rules ST-Or and ST-Dist are
examples of subtyping rules for union types, which are relevant in Section 4.1.

2.2 Semantics
The operational semantics of roDOT is defined as a small step semantics, with machine
configurations (Figure 1) consisting of a term in the focus of execution t, a stack σ, a heap
Σ and an environment ρ. The environment ρ maps references to locations and the heap Σ
maps locations to objects. The stack σ is used to evaluate terms of the form let z = t1 in t2.
The stack is a list of frames of the form let z = □ in t2, where □ represents t1 while it is being
evaluated in the focus of execution. When t1 is evaluated to a value, that value is substituted
for the square in the top frame of the stack, and the t2 from that frame then becomes the
new focus of execution.

Execution starts with the program, an empty stack, empty heap and an empty environment,
and proceeds by steps defined in Figure 13 in the appendix, until it reaches an answer
configuration, which has an empty stack and the focus of execution is a single variable.
During execution, new items are added to the heap and the environment (there is no garbage
collection). Calling a method copies its body to the focus of execution, while the receiver
and argument are substituted.

The semantics is generally deterministic – there is no way to express a nondeterministic
choice. However, there is one source of non-determinism: locations of objects on the heap.
Allocating objects must be regarded as a non-deterministic operation because even if the new
objects are initially equal, they may take on different values due to subsequent mutation.

2.3 Properties
The roDOT calculus has the type soundness property (Theorem 1, Theorem 7 in [12]) – a
term that has a type in an empty context can be executed and either reduces to an answer,
or executes indefinitely. DOT and roDOT do not include explicit checks for error conditions,
but trying to access (read, write or call) a non-existing member of an object is an error. In
such a case, a reduction step is not defined and the execution “gets stuck”. The soundness
theorem guarantees this does not happen for typed programs.

▶ Theorem 1 (Type Soundness).
If ⊢ t0 : T , The initial term t0 is well typed,

then either ∃w, j, Σ, ρ: ⟨t0; ·; ·; ·⟩ 7−→j ⟨vw; ·; ρ; Σ⟩, then execution terminates in j
steps with answer w,

or ∀j: ∃tj , σj , Σj , ρj : ⟨t0; ·; ·; ·⟩ 7−→j ⟨tj ; σj ; ρj ; Σj⟩. or continues indefinitely.

Type soundness and other properties are based on the fact that during execution, the type
of the configuration is preserved. Rules for typing a machine configuration are in Figure 14 in
the appendix. As the program executes and new objects are added to the heap, new locations
and reference variables are used to refer to the objects. To give the configurations a type,
these variables are added to the typing context. Their type is the type of the object, and
has a fixed form – it is a recursive type containing declarations of all the object’s members,
intersected with a declaration of mutability. A typing context that only contains types of
this form is called an inert context. Under an inert context, stronger claims can be made
about types of variables [30], and it plays an important role in the proof of soundness.

ECOOP 2024

13:8 Pure Methods for roDOT

Γ ⊢ ⟨t; σ; ρ; Σ⟩ mreach y1
y1 → . . .1 {a = y2} . . .2 ∈ Σ

Γ;ρ ⊢ y1 : {a : ⊥..{M(r) : ⊥..⊥}}
Γ ⊢ ⟨t; σ; ρ; Σ⟩ mreach y2

(Rea-Fld)

t tfree w ∨ σ tfree w

w → y ∈ ρ

Γ;ρ ⊢ w : {M(r) : ⊥..⊥}
Γ ⊢ ⟨t; σ; ρ; Σ⟩ mreach y

(Rea-Term)

Figure 3 roDOT mutable reachable references.

The essential property of roDOT is the immutability guarantee (Theorem 2, Theorem 9
in [12]): in order for an object to be mutated, a writeable reference to it must exist, or it
must be possible to reach it by a path of writeable fields, starting from a writeable reference
– the object must be mutably reachable, defined formally in Figure 3.

▶ Theorem 2 (Immutability Guarantee).
If y → d ∈ Σ1 and Γ ⊢ ⟨t1; σ1; ρ1; Σ1⟩ : T , For an object at some point during well-

typed execution,

and ⟨t1; σ1; ρ1; Σ1⟩ 7−→k ⟨t2; σ2; ρ2; Σ2⟩, at any later point,

then either y → d ∈ Σ2, either the object does not change,

or Γ ⊢ ⟨t1; σ1; ρ1; Σ1⟩ mreach y. or it was reachable by mutable references.

3 Method Purity for roDOT

Here we informally define the meaning of side-effect freedom in roDOT, and informally state
the main results of this paper: the SEF guarantee and the transformation guarantee.

We structure our work around an observation that (in any programming language or
calculus), we can look at side-effect freedom from different perspectives:
1. (Static) Recognize which methods are SEF statically at compile time, using types.
2. (Runtime) Define what events can (or cannot) happen when a SEF method is executed.
3. (Usage) Differentiate SEF methods from general methods based on how they can be safely

used in programs.

For each of these perspectives, we will state a SEF condition, each giving a different
definition of SEF methods in roDOT. First we do it informally in this section, and then
formalize the definitions in the following sections. The guarantees then form connections
between different SEF conditions.

3.1 Runtime SEF condition
Saying that a method is side-effect-free is informally understood as saying that the execution
of the method will not perform any actions that are considered to be side effects. This view
corresponds to the second perspective on our list.

This perspective is most directly related to the semantics. In roDOT, this means looking
at the small step semantics, defining the beginning and end of execution of a method, and
defining the SEF condition in terms of the state of execution or the steps performed between
the beginning and the end. When looking at the effects caused by method execution, the
only relevant part of the machine configuration is the heap (the focus of execution is the part
being evaluated, the stack cannot be changed, and the mapping from references to locations
is only relevant for typing). The heap can only be modified by two kinds of execution steps:
instantiation of an object and writing a value to a field of an object on the heap.

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:9

The condition of side-effect-freedom can be stated in multiple versions of varying strength.
In the strictest sense, we could say that a SEF method cannot have any effect on the heap
at all, meaning no instantiations and no writes. That would, however, be overly restrictive,
as object instantiation is one of the basic operations in object-oriented programming. It is
therefore usually (such as in [34, 38, 19, 14]) allowed that a SEF method can instantiate new
objects, and also write to the fields of those newly instantiated objects. In turn, the only
forbidden action is writing to fields of previously existing objects.

Another choice in the definition is when the change to the heap is detected, which leads
to different answers to questions such as: (a) Is it allowed to write to a field of an existing
object, if the value written is the same as the current value so the object does not actually
change? (b) Is it allowed to write to a field of an existing object, if the field is restored to the
previous value before the end of the method execution? We choose to allow (a) but not (b),
so our definition observes the state of the heap at every moment during the execution of the
method. Allowing (b) would lead to a weaker condition, which would check the state of the
heap only at the end of the method call. Forbidding (a) would lead to a stronger condition,
defined in terms of allowed steps of execution rather than in terms of the state.

▶ Informal statement of Definition 15 (Run-time SEF condition, in Section 5.1). An execution
of a method is side-effect free, when at every step of execution until returning from the
method, the heap contains all the objects from the start of execution in an unchanged state.

3.2 Static SEF condition
The static perspective (the first in our list) is useful because it provides a way to check that
a method is SEF by looking at the code. We must, however, accept that statically, it will not
be possible to recognize all methods that are pure from the second (and third) perspective.

In ReIm [19], SEF methods are recognized by the mutability of the parameters. roDOT
uses the same notion of transitive read-only references, therefore it should be possible to use
an analogous condition in roDOT.

▶ Informal statement of Definition 11 (static SEF condition). A method has a SEF type, if
both its parameter and its receiver parameter have read-only types.

This condition will be formally defined in Section 4.1. Example 3 and Example 4 illustrate
its ability to recognize SEF methods.

▶ Example 3. A getter defined as {mget(r, z) = z.a} can be typed with {mget(r : ⊤, z : {a :
⊤..⊤}) : ⊤}. Both ⊤ and {a : ⊤..⊤} are read-only types, and therefore the getter is SEF.

▶ Example 4. The method msef defined by {msef (r, za) = (let x = ν(ro : Ro) . . . in za.max)}
calls a method of its argument, passing a newly allocated object to it. This method has
type {msef (r : ⊤, za : Tz) : ⊤}, where Tz = {ma(r : ⊤, z : µ(ro : Ro) ∧ {M : ⊥..⊥}) : ⊤}. By
Definition 11, msef is SEF, because it has read-only parameters, even though it calls ma,
which may mutate the heap.

Example 5 shows how viewpoint adaptation transitively ensures that read-only parameters
cannot be used to modify existing objects. Example 6 shows how a dependent type can
change whether the method is SEF or possibly not.

▶ Example 5. The method defined by {mva(r, z) = (let x = z.a in x.b := r)} mutates an
object stored in a field of the argument z, and therefore is not SEF. This method cannot be
typed with a read-only type for the parameter z, because even if the field a has a mutable
type, by viewpoint adaptation of fields in roDOT, the variable x would also have a read-only
type, so the subsequent write would not be allowed.

ECOOP 2024

13:10 Pure Methods for roDOT

▶ Example 6. A method with a type {mdep(r : ⊤, za : {a : ⊤..⊤}∧x.A) : ⊤} has a parameter
with a type dependent on the variable x, which can decide the mutability. This method is
recognized as SEF only in contexts where N <: x.A. When x.A <: M⊥, then the method
can (indirectly) mutate the argument.

3.3 SEF guarantee
For the SEF guarantee (Theorem 16), we want to be able to claim that a method is SEF
based on the type of the method declaration. The SEF guarantee makes the connection from
the first to the second perspective.

▶ Informal statement of Theorem 16 (SEF guarantee, in Section 5.2). Let c1 be a well-typed
machine configuration just prior to executing a method call step w1.mw2. If, by typing of
the receiving reference w1, the method m has a SEF type, then the execution of the method
will be side-effect free.

3.4 Using pure methods in roDOT
Finally, the third perspective shows why SEF methods are useful. It is, however, a view from
outside of the method, and does not tell us how to construct a SEF method or check it.

The practical use of a type system with SEF methods comes when it allows us to look at
the code, and based on what we see (from the first perspective) gives us a guarantee about
its behavior (second perspective) and how it can be used (the third perspective). An example
of this is allowing safe transformations of the program, which can be applied at coding time
using IDE-provided code transformations, or at compile time as optimizations. For example,
calls to SEF methods can be safely reordered.

To keep the problem simple, we will look at one particular case of such reordering:
swapping two calls to SEF methods. With SEF methods, the code x1.m1(); x2.m2() is
equivalent x2.m2(); x1.m1().

▶ Informal definition (Call-swapping transformation of programs). A program t1 is transformed
into t2 by SEF call-swapping, when the programs are the same except in one place, where t1
calls two methods in succession, but t2 calls them in the opposite order. Furthermore, within
the contexts of typing these method calls, both methods have the same read-only types, and
allow both programs to be typed in the same manner.

▶ Example 7. A chain of calls let x1 = xo1.m1xa1 in let x2 = xo2.m2xa2 in t, can transformed
by call swapping into let x2 = xo2.m2xa2 in let x1 = xo1.m1xa1 in t.

The static condition from the first perspective is already a part of the definition of the
transformation. The transformation guarantee then states that this transformation is safe –
it does not change the behavior of the program. By that, the guarantee connects the static
condition (first perspective) with the call-swapping transformation (third perspective). We
use the run-time condition (second perspective) as a connecting step between them in the
proof of this guarantee.

▶ Informal statement of Theorem 27. The call-swapping transformation is safe, in the
sense that if for any programs t1 and t2 related by this transformation, provided that t1
terminates with an answer c1, then t2 also terminates with an answer c2, which is the same
as c1, except for certain unavoidable differences in variable names and in method bodies.

The formal definition of the transformation, formal statement of the transformation
guarantee and an outline of its proof are provided in Section 6.

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:11

4 Recognizing SEF methods by type in modified roDOT

In this section, we formalize the static SEF condition in roDOT given informally in Section 3.2.
Although the notion of read-only types, used by this condition, was already defined in roDOT,
we identify issues with that definition in regards to this new use.

We fix them by updating the calculus with small changes, which comprise adding one
new subtyping rule and one type splitting rule, and one restriction added to the method
subtyping rule. The updated calculus is neither a subset nor a superset of the original, so
it is necessary to update the proof of soundness and the immutability guarantee, which
were proven by hand for the original roDOT [12]. The soundness proof followed the scheme
from [30] and uses an auxiliary definition of invertible typing, which allows doing proofs by
induction on the typing of variables. This is possible thanks to eliminating possible cycles in
the derivation, by forcing the derivation to follow the syntactic structure of the target type.

One of the new subtyping rules, however, breaks this soundness proof, because it in-
troduces new possibilities to derive types in cycles, which cannot be repaired by simply
handling additional cases in the original proof. In the presence of cycles, we cannot use the
straightforward inductive hypothesis to prove properties necessary for type safety, because a
derivation for typing a variable can involve derivations of arbitrarily complex types.

We implemented a new proof based on a different auxiliary typing definition, which avoids
cycles by forcing the derivation to arrive at the target type by adding type constructors in a
fixed order (for example, all unions in the type are handled before intersections). Compared
to the original invertible typing, which was single typing judgment with many rules, the
new approach leads to a definition in several layers, where each layer has a small number of
typing rules. We call this set of judgments layered typing. In layered typing, we re-prove
important properties of invertible typing, so that the new definition fits into the rest of the
existing soundness proof, and also prove new properties required for the SEF guarantee.

The rest of this section is structured as follows: in Section 4.1, we formalize static SEF
condition, and discuss the meaning of read-only types in roDOT. In Section 4.2, we propose
small changes to the roDOT calculus to make definitions work for the SEF guarantee. We
give a short overview of the structure of the original soundness proof for roDOT, and show
how this proof breaks with the new changes. In Section 4.3, we describe the new layered
typing that replaces invertible typing in the updated proof and show its important properties.

4.1 Static SEF condition in roDOT
In the SEF guarantee (Theorem 16), we claim that a method is SEF based on the type of
the method declaration. Our SEF guarantee follows the approach of ReIm [19] and requires
the parameters to have read-only types.

4.1.1 Read-only types in roDOT
The check whether a type is read-only was also present in roDOT, but it had a limited
purpose – to ensure that recursive types are read-only in VT-RecI (Figure 9 in the appendix).
It was not based on subtyping, but rather on the relation ro, which makes a read-only version
of a type using a syntax-based type splitting.

This definition did not guarantee that all supertypes of a read-only type are also read-only.
As we will explain in Section 4.1.3, this would be a critical problem for the SEF guarantee.

We solve this problem by using a different notion of read-only types, based on subtyping
with the “read-only bottom” type N.

ECOOP 2024

13:12 Pure Methods for roDOT

The purpose of N in the original roDOT was to be the read-only version of the type ⊥ for
defining the ro relation. Because the bottom type ⊥ is a subtype of all types, it is inherently
mutable. For that reason, the type N was added and made a lower bound of read-only types.
That allows us to define read-only types as supertypes of N.

▶ Definition 8 (Read-only types). A type T is read-only, if Γ;ρ ⊢ N <: T .

With Definition 8 settled, we discovered a few problems related to read-only types, which
would not allow us to state the SEF guarantee in the original roDOT.

Our proof of the SEF guarantee, specifically Lemma 19 in Section 5.4, relies on the idea
that if a reference has some read-only type, then any other reference to the same object has
that type too. Note that because of subsumption, a variable of a mutable type also has the
corresponding read-only types. This essentially means that in any place where a reference
is used by virtue of its read-only type, it can be replaced with a read-only version of that
reference. With the new Definition 8 of read-only types, this can be stated as:

▶ Lemma 9 (Read-only types are shared by all references). If Γ ∼ ρ and Γ;ρ ⊢ y : T and
Γ;ρ ⊢ N <: T , then Γ;ρ ⊢ w : T for any w such that ρ(w) = y.

This key lemma, however, does not hold in the original roDOT, because of union types.
Union types were not a part of DOT, but were added to roDOT in order to be used to

define viewpoint adaptation (union types are already a part of Scala’s type system), along
with the subtyping rules ST-Or, ST-Or1, ST-Or2, ST-Dist, which are shown in Figure 10 in
the appendix. However, using unions, it is possible to construct a type that is a supertype of
both N and a mutability declaration:

▶ Example† 10 (In the original roDOT, counter-example to Lemma 9). Let Tam := {a :
Ta} ∨ M⊥ be a union of some field declaration with a declaration of mutability, and
Tbm := {b : Tb} ∧ M⊥ be a type of a writeable reference to some other field b.

The type Tam is not mutable, because it is not a subtype of M⊥. It is read-only, because
Γ ⊢ N <: Tam, by the rules of subtyping of union types and by rule ST-N-Fld (Figure 10 in
the appendix).

Let y1 be a location of type Tbm, and w2 be a reference to y1 with type Tb := {b : Tbm}.
By subtyping of unions and intersections, Γ ⊢ Tbm <: Tam, so by subsumption, y1 has type
Tam. By Lemma 9, w2 should have also type Tam, but in the original roDOT, it does not.

Example† 10 is marked with the † sign, which we use in this chapter to identify properties
of the original roDOT from prior work, in contrast to the modified roDOT in this paper.

We observe that the read-only type Tam in this counter-example is a union of disjoint
declarations, so it does not allow accessing the field aam, or any other member. Therefore,
Tam is no more useful for typing programs than ⊤. In order to make Lemma 9 work, we
decided to extend the type system with new subtyping rules to make types like this equivalent
to ⊤. These changes will be described in Section 4.2.

4.1.2 The SEF condition
A method is statically SEF if the types of its receiver and parameters are read-only according
to Definition 8 i.e., they are supertypes of N. Thanks to subsumption and subtyping of
method types, the type {m(z : N, r : N) : ⊤} is a type bound for methods named m and
requires that both the argument and receiver have read-only types.

▶ Definition 11 (Static SEF condition). A method is statically SEF if it has a type {m(z :
N, r : N) : ⊤}

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:13

Γ;ρ ⊢ N <: T

Γ;ρ ⊢ T ro T
(TS-N) Γ;ρ ⊢ ⊤ <: N ∨ {M(r) : T1..T2}(ST-NM)

Figure 4 New rules for roDOT.

In Section 5, we will show that this condition works because a method must access all
objects through the argument or the receiver (capturing values is modeled using fields of the
receiver), so the method will not be able to get a writeable reference to any existing object.

4.1.3 Subtyping of method types
In order for the SEF guarantee (Theorem 16) to work with Definition 11, it is critical that all
subtypes of a SEF method type are also SEF. The reason is at the site of a method call, the
observed static type of the method is a supertype of the actual type of the method within its
containing object, so this is needed to make the connection from the SEF type at a call site
to the SEF type of the actual method.

That is why Definition 8 needs to be based on subtyping, so that all supertypes of
read-only types are read-only (method types are contravariant in their parameter types).

Still, the type system required one more change related to a possible dependency between
the types of method parameters. In roDOT, the type of the receiver r can be a dependent
type referring to the other parameter z of the method. If, however, the receiver type depended
on the mutability of z, then while typing the body of the method, it would be possible to
derive that z is mutable, even if its type is read-only in the sense of Definition 8. If r has
the type {A : z.M..⊥}, one can use the typing rules ST-SelL and ST-SelU (Figure 10 in the
appendix)) to derive z.M <: ⊥. The change to the rules TT-Call and ST-Met in Figure 2
prevents this issue by disallowing using method types where the receiver depends on the
mutability of the parameter.

4.2 The updated roDOT calculus
In the previous section, we defined the static SEF condition, but identified several reasons
why this definition would not work as intended in roDOT as-is. We fix these issues by changes
to the roDOT calculus, which amount to two new and one modified typing rule:

A new subtyping rule ST-NM (Figure 4) is added, which makes the union of a mutability
declaration and the read-only lower bound N a top-like type (the other direction of
subtyping was already a part of the type system).
A new rule TS-N (Figure 4) is added to type splitting, making it so that all types that
are read-only by Definition 8 are unaffected by the splitting operation.
The typing rule TT-Call and subtyping rule ST-Met have a new premise (shown highlighted
in Figure 2), which disallows introducing a dependency between the receiver type and
the parameter in method subtyping. This fixes the problem described in Section 4.1.3.

The new rule ST-NM fixes the counter-example to Lemma 9, because now we have Γ;
ρ ⊢ ⊤ <: Tam, derived from Γ;ρ ⊢ ⊤ <: N ∨ M⊤ and Γ;ρ ⊢ N <: {a : Ta}. By subsumption
and Γ;ρ ⊢ w2 : ⊤, that also means that Γ;ρ ⊢ w2 : Tam.

Additionally, we can now improve the type splitting relation ⊢ ro , by extending it
with a new rule TS-N, shown in Figure 4. With that, the condition in VT-RecI (Figure 9
in the appendix) that recursive types are read-only, Γ;ρ ⊢ T ro T , becomes equivalent to
Definition 8:

ECOOP 2024

13:14 Pure Methods for roDOT

General typing
Γ;ρ ⊢ x : T

Tight typing
Γ;ρ ⊢# x : T

General subtyping
Γ;ρ ⊢ S <: T

Invertible typing
Γ;ρ ⊢## x : T

Tight subtyping
Γ;ρ ⊢# S <: T

Precise typing
Γ;ρ ⊢! x : T

Figure 5 Dependencies (→) and equivalences (⇔) between definitions of typing in roDOT.

▶ Lemma 12 (Read-only types). Γ;ρ ⊢ N <: T ⇔ Γ;ρ ⊢ T ro T .

4.2.1 Updating the safety proof
The changes described above require updating the type safety proof of the calculus, to show
that the changes did not allow invalid programs to be typed. The new subtyping rule ST-NM
has a significant effect on the soundness proof, because it makes it possible to derive many
additional union types, such as the now top-like type M ∨ N.

The proof of soundness of roDOT before these changes followed the structure of the proof
of DOT [30]. The core part of this proof is to show that if a reference w has some declaration
type D (such as a field {a : T}), then the type associated with w in the typing context Γ is
an object type containing D or a more precise declaration of the same member. That means,
for Γ;ρ ⊢ w : D, where D is a declaration type, because the types in Γ correspond to the
object on the heap (Γ ∼ Σ), the actual object referred to by w must contain a corresponding
member definition in Σ, and therefore it is safe to access that member.

The proof was based on two alternative definitions of typing for variables – tight typing
and invertible typing. Figure 5 shows the relations between the different versions of typing.

Tight typing is used as an intermediate step in equivalence of general and invertible
typing. It is very similar to general typing – it has the same rules, except that subtyping rules
involving selection types (ST-SelL and ST-SelU in Figure 10 in the appendix) use precise
typing, a simpler version of variable typing, which does not have subsumption.

Updating tight typing for our modified rules is straightforward – we apply the same
changes as to general typing, and the proof of equivalence between general and tight typing
still works. However, we will show that updating invertible typing poses a challenge, as it
cannot be easily extended with the additional rules.

4.2.2 Invertible Typing†

The main utility of invertible typing was providing a simple path of derivation of a variable’s
type, starting from the type given to it by the typing context, and ending with a type that
was used to access a member at some particular point in the program. This direct path then
allowed induction-based proofs of properties of the typing relation.

This task would be especially hindered if the typing rules allowed cycles in the derivation,
which would allow the derivation to go through unnecessarily complicated types. For example,
with general typing, it is possible to derive Γ ⊢ x : T from Γ ⊢ x : T ∧ T and vice versa.
Therefore, a derivation of type T can start with Γ ⊢ x : T , go through arbitrarily complicated
types such as (T ∧ T) ∧ T , and come back to T . This inhibits arguments by induction on the
derivation of a general typing.

Invertible typing in DOT prevented this by ensuring that the derivation closely follows
the syntactic structure of the target type.

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:15

µ(s : {a : T..T } ∧ {A : {a : T..⊤}}) ∧ M⊥

µ(s : {a : T..T } ∧ {A : {a : T..⊤}}) M⊥

{a : T..T } ∧ {A : {a : T..⊤}}

{a : T..T } {A : {a : T..⊤}}

pr
ec

ise
{a : ⊥..T } w.A

w.A ∧ {a : ⊥..T }

µ(s : s.A ∧ {a : ⊥..T })

µ(s : s.A ∧ {a : ⊥..T }) ∨ S

{a : ⊥..T }

{a : ⊥..T } ∨ S {a : T..⊤} ∨ S

({a : T..⊤} ∧ {a : ⊥..T }) ∨ S

(w.A ∧ {a : ⊥..T }) ∨ S

µ(s : s.A ∧ {a : ⊥..T }) ∨ S

in
ve

rt
ib

le
†

atomic

union

logic

main

Figure 6 Example derivation of a type by invertible typing (left) and layered typing (right).
Assuming that a variable w has the type µ(s : {a : T..T } ∧ {A : {a : T..⊤}}) ∧ M⊥ in the typing
context, w has all the types shown here, ordered from types that are simple to derive at the top, to
more complex derivations, which make use of derivations above. S is an arbitrary type.

The original roDOT adopted the invertible typing from DOT [30], where it has two layers,
which we present using an example derivation of a type for a variable w in Figure 6.

The first layer, precise typing, only derives types by deconstructing the type of the
variable given by the typing context. For each reference w, its type in the typing context is
an intersection of a mutability declaration with a recursive type containing an intersection of
declarations. Precise typing allows opening this recursive type and extracting the declarations
from the intersection, but does not support subtyping. The top of Figure 6 shows individual
steps of this process.

The second layer, invertible typing†, combines both variable typing and subtyping into
a single layer. In DOT and the original roDOT, it has fewer rules than general typing and
subtyping, because it only has rules that construct the target type syntactically “bottom-up”,
such as closing recursive types (akin to VT-RecI), or deriving intersection and union types.
Thus the derivations of invertible typing are unambiguously guided by the syntax of the
target type. The left side of Figure 6 shows individual steps of this process in building up
the type µ(s : s.A ∧ {a : ⊥..T }) ∨ S for w.

As per Figure 5, invertible typing was equivalent to tight typing. That required invertible
typing to be closed under tight subtyping (Lemma† 13).

▶ Lemma† 13 (In original roDOT, invertible typing is closed under subtyping).
If Γ;ρ ⊢## x : T1, and Γ;ρ ⊢# T1 <: T2, where Γ ∼ ρ, then Γ;ρ ⊢## x : T2.

The addition of ST-NM, together with the rules ST-Or and ST-Dist (Figure 2), breaks
this. In Lemma† 13, the case for ST-Or relies on case analysis of deriving union types
(Lemma† 14).

▶ Lemma† 14 (In original roDOT, typing with union types can be inverted).
If Γ;ρ ⊢## x : T3 ∨ T4, then either Γ;ρ ⊢## x : T3 or Γ;ρ ⊢## x : T4.

However, the rule ST-NM adds new ways of deriving union types such as N ∨ M⊥, and
the distributivity rule ST-Dist actually allows deriving arbitrarily large types of the form
TN ∨ TM, where the two parts can consist of arbitrary intersections and unions of various
types that contain N and M somewhere within them.

ECOOP 2024

13:16 Pure Methods for roDOT

For example, with the variables from Example† 10, we have Γ;ρ ⊢ w2 : {a : Ta} ∨ M⊥,
but Γ;ρ ̸⊢ w2 : {a : Ta} and Γ;ρ ̸⊢ w2 : M⊥. Such a type cannot be derived in a syntactically
bottom-up manner that invertible typing is based on. Rather than trying to fix invertible
typing by adding complicated rules, we replace it by a new auxiliary typing judgment, which
derives types in different way.

4.3 Layered Typing

In layered typing, we avoid the need for Lemma† 14 by organizing the derivation of a type
not bottom-up, but by handling different type constructors in separate layers of typing
judgments. All union type constructors are derived before intersection types, recursive types
and type selections. Additionally, we derive union types on two layers:

First, the basic layer derives the newly top-like types possible by the rule ST-NM. Because
intersections, recursive types and selections are out of the picture at this layer, these types
have a simple form of possibly nested union types, where one of the sides contains N and the
other M, where M is a declaration {M : ⊥..T } for some bound T . We will write that as
⊢ N ◁ TN and ⊢ M ◁ TM. Second, the union layer derives types possible by the rules ST-Or1
and ST-Or2, allowing nesting a known type of w in a union with any other type. This way,
the layers retain the information about how a union type has been derived and those cases
can be handled separately when inverting the derivation.

Intersection types can be handled in analogy to how any logical formula can be derived
by starting from conjunctive normal form (CNF) and pushing conjunctions down. Any type
constructed from a mixture of union and intersection types can be derived by starting from
an intersection of union types and pushing the intersections down.

The logic layer sitting above the union layer can derive any mixture of unions and
intersections using the LTL-And rule shown in Figure 7. It takes derivations of two types
that may have some parts in common but differ in one place. The common part C∨ is a
syntactical context which combines the argument into a union with other types. For example,
we can write the two types {a1 : T1} ∨ {a2 : T2} and {a1 : T1} ∨ M⊥ as C∨[{a2 : T2}] and
C∨[M⊥]. If we view these two types as an intersection, then the rule pushes the intersection
down to the place where the two types differ. In the example derivation on the right of
Figure 6, we derived two union types on the union layer. (The type {a : T..⊤} was derived
on the previous layer and S is an arbitrary type.) On the logic layer, we combined them into
one type, pushing the intersection down to the left.

The rest of the type constructors are handled either below the basic layer or above the
logic layer. Subtyping between declarations is handled in an atomic layer positioned before
the basic layer. This layer only deals with types that are single declarations.

Recursive types of the form µ(s : T) and selection types can “wrap around” or replace
any part of the derived type (in general typing by VT-RecI and ST-SelL, Figures 9 and 10
in the appendix), which may both appear under unions and intersections, and also contain
them within. Therefore, they are handled above the logic layer in a final, main layer. In
the rule LTM-Sel in Figure 7, the syntactic context C∧∨ can consist of a mixture of unions
and intersections. The rules have premises that correspond to conditions in the relevant
rules of tight typing. For example, in Figure 6, the left side of the union is wrapped under a
recursive type in the last step.

The layers are summarized in Table 1, showing the relevant type constructors and the
connection to rules of general typing. Selected rules are shown in Figure 7; full definitions
are in Figures 15–19 in the appendix.

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:17

Table 1 The layers of layered typing.

Typing layer Relevant type constructors Relevant rules
Atomic layer {a : T..U}, {A : T..U}, {m(S, T) : U} ST-Met, ST-Fld, ST-Typ
Basic layer N ∨ M ST-NM
Union layer ⊤, T ∨ U ST-Or1, ST-Or2, ST-Top
Logic layer T ∧ U ST-Dist, ST-And, VT-AndI
Main layer µ(s : T), x.A VT-RecI, ST-SelL, ST-N-Rec

Γ;ρ ⊢l x : C∨[T1]
Γ;ρ ⊢l x : C∨[T2]

Γ;ρ ⊢l x : C∨[T1 ∧ T2]
(LTL-And)

Γ;ρ ⊢m x : C∧∨[[v3/r]T1]
Γ ⊢! v2 : {B(r) : T1..T2}
Γ;ρ ⊢m x : C∧∨[v2.B(v3)]

(LTM-Sel)

Figure 7 Selected rules of layered typing.

Typing on the atomic layer (Γ;ρ ⊢a x : T) only gives variables single declaration types –
the declarations derived by precise typing, and their supertypes (subtyping rules between
declarations are handled here).
The basic layer (Γ;ρ ⊢b x : T) additionally gives all variables top-like types of the form
TN ∨ TM and TM ∨ TN, where ⊢ N ◁ TN and ⊢ M ◁ TM.
The union layer (Γ;ρ ⊢u x : T) handles ⊤ and unions of known and arbitrary types.
The logic layer (Γ;ρ ⊢l x : T) handles intersections and distributivity. The rule LTL-And
takes two types, preserves their common part, and combines the differing parts using an
intersection type – pushing the intersection down from the top to its target place.
The main layer (Γ;ρ ⊢m x : T) closes recursive types and handles type selections.

For layered typing, we also proved the following properties:
If a location has a declaration type by layered typing, then it also has a declaration type
by precise typing, with the same or tighter bounds. This property has three variants, for
field, type and method declarations.
Layered typing is equivalent to general typing. As in the original proof, we use tight typing
as a step between general and layered typing, and separately prove both directions of
equivalence between tight and layered typing (Lemma 31 and Lemma 37 in the appendix).
We also use layered typing to prove Lemma 9 – if a location has some read-only type in
layered typing, then all references to that location have that type too.

With these properties, the safety proof from roDOT, with invertible typing replaced by
the new layered typing definition, works as a safety proof of the updated calculus. Formal
statements of these and other selected properties are given in Section A.3 in the appendix.

5 The SEF Guarantee

In Section 3.3, we informally stated the SEF guarantee, which provides the connection
between a static typing condition (Definition 11) and run-time behavior of the method.

In this section, we present the formal definitions of the run-time SEF condition (Defini-
tion 15 in Section 5.1) and the SEF guarantee (Section 5.2). We then outline the proof of
the guarantee (Section 5.3) and discuss some details of the proof (Section 5.4).

ECOOP 2024

13:18 Pure Methods for roDOT

5.1 The run-time SEF condition
We informally stated the run-time SEF condition in Section 3.1, where we mentioned that
several possible versions of such a condition could be defined. In our approach, we allow a
pure method to create new objects and to modify just these new objects, which are under
full control of the method.

The main SEF condition is that the method must not modify any existing objects that
are already on the heap when the method starts executing. We can state such a condition in
three variants, depending on the way in which it is checked that an object was not modified.
Here we will use the variant that guarantees that existing objects on the heap do not change.
In such a case, we say that a given execution of a method, starting from a method call start
and reaching method call end in k steps, has the Sef-I property (Definition 15). The other
possible variants are stated as Definition 42 and Definition 43 in the appendix.

▶ Definition 15 (Sef-I). A method execution ⟨w1.m w2; σ; ρ1; Σ1⟩ 7−→k ⟨vw3; σ; ρ2; Σ2⟩ is
Sef-I when for every j ≤ k and ⟨w1.m w2; σ; ρ1; Σ1⟩ 7−→j ⟨t3; σ3; ρ3; Σ3⟩, Σ1 is a prefix of Σ3.

5.1.1 Method call limits
Because we are defining a condition on what can happen while a method is executing, we
need to understand what it means in roDOT that a method starts and ends its execution.

In roDOT, a method is called by a term w1.m w2. A method call start is a configuration
of the form ⟨w1.m w2; σ; ρ1; Σ1⟩, where w1 is the receiver, m is the called method, w2 is the
argument, σ is the continuation stack, and Σ1 is the existing heap (the environment ρ1 does
not have a special significance here).

The execution proceeds by replacing the call term w1.m w2 with the body of the method.
Then, the body is executed. Unless there is an infinite loop, the body of the method will
eventually evaluate to a single value. The machine will reach a configuration ⟨vw3; σ; ρ2; Σ2⟩,
where w3 is the result of the call and σ is the same stack as at the method call start.

The first such configuration after a method call start is the corresponding method call
end. Another such configuration could possibly occur later in a completely unrelated way,
but only the first such configuration is the method call end.

When a method call end is reached, the execution will either terminate, or proceed by
popping a frame from the stack.

5.2 The SEF guarantee
The SEF guarantee, informally stated in Section 3.3, says that a SEF method does not modify
existing objects in the heap during its execution. Theorem 16 is based on Definition 15, and
speaks about the state of the heap at every point during the call. It is not the strongest
possible purity guarantee, because this allows writing the value that already is in the field.
On the other hand, it does not allow the value of fields to be changed and then changed back.

▶ Theorem 16. Let the configuration c1 := ⟨w1.m w2; σ1; ρ1; Σ1⟩ be well-typed in a context
Γ. Further assume that Γ ⊢ w1 : {m(z : N)(r : N) : ⊤}. Then for any k steps of execution:
1. Either the method call has finished executing. There is j < k for which c1 7→j

⟨vw3; σ1; −; −⟩.
2. Or, the method call has not finished executing and in this period existing objects in the

heap are unchanged. For each c1 7→k c2, all heap locations in c1 also exist in c2 and
moreover they are unchanged in c2.

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:19

5.3 Overview of the proof
The SEF guarantee talks about objects not being modified during the execution of methods,
based on the mutability of method parameters. We base our proof of the SEF guarantee on
the immutability guarantee (IG, Theorem 2), which states that individual objects can only
be modified through mutable references. This guarantee was proven for roDOT [12] and is
included in our mechanization in Coq.

However, the immutability guarantee cannot be applied at the start of the method,
because there may be many mutable references to objects on the heap. Also, IG guarantees
immutability until the end of execution of the whole program, but the SEF guarantee only
until the end of the method.

These differences can be bridged by taking the machine configuration at the method start,
and constructing a different configuration that will execute the same way until the end of
the method, but removing the parts that prevent the IG from applying.

First, note that the stack is not relevant to how the method executes and stays the same
from the method start until its end. We therefore remove this stack entirely, and get an
execution isolated from the rest of the program. This execution proceeds through the same
steps, but stops at the method end. By removing the stack, we rid the configuration of any
references to objects that might be used after the method call returns. If we apply the IG
to this configuration, it will guarantee that objects are not modified until the end of the
method, exactly what is needed for the SEF guarantee.

Removing the stack is not enough for the IG to apply though, because a SEF method can
be called with arguments that are mutable references. We do not want to prevent that from
happening, because even when a method is SEF, it can be useful to pass mutable references
to the method and have it return one of these references with its mutability intact.

What is special about a SEF method is that (because of its declared parameter types)
it cannot use the mutability during its execution. Therefore, when called with mutable
arguments, it should execute in exactly the same way as if called with read-only arguments.

So the second modification to the configuration after removing the stack is to change the
mutability of the arguments to read-only. That way, the alternative configuration contains
no writeable references, and IG guarantees that no objects that were on the heap at the start
will be modified. Still, this alternative configuration executes the same steps as the original,
meaning the original method execution also does not modify any existing object on the heap.

5.4 Proof of the SEF Guarantee
The strategy of the proof of Theorem 16 is to focus on the second case of the SEF guarantee
by using the immutability guarantee to show the theorem for a configuration c2 obtained by
temporarily truncating the stack of c1 from Theorem 16.

▶ Lemma 17 (SEF guarantee without stack). For c1 satisfying the conditions of Theorem 16,
let c′

1 := ⟨w1.m w2; ·; ρ1; Σ1⟩. If c′
1 7→n c′

2 for some n and c′
2, then the heap of c′

2 contains all
objects of c′

1 without modification.

It is easy to prove the full SEF theorem with this result for c′
1. The premise of the immutability

guarantee is that c′
1 is well-typed in some context Γ2 and there are no mutably reachable

objects in c′
1 with respect to the typing of Γ2. Clearly c′

1 is well typed in the original context
Γ. But for the part about mutably reachable objects, we cannot just take Γ as Γ2 because
for this, Γ2 must assign read-only types to wi. Even though we have (r : N) in the typing
Γ ⊢ w1 : {m(z : N)(r : N) : ⊤}, this does not necessarily mean Γ(w1) is a read-only type. For
example, w1 might be mutable in Γ but m might not make use of its mutability. Therefore,
instead of using Γ as Γ2, we construct Γ2 and show that c′

1 is well-typed in Γ2 like so:

ECOOP 2024

13:20 Pure Methods for roDOT

1. Reference elimination. Remove bindings for wi from Γ and replace all occurrences of wi

with the corresponding location yi in both Γ and c′
1.

2. Read-only weakening. Add back bindings for wi, where the new type bound to wi is the
type bound to yi except with the mutable part set to read-only.

We do this instead of changing the types of wi, because we only know that wi are used
in a read-only way in the focus, while on the heap, wi might be used as a part of dependent
types referring to their mutability. Changing their types would break the typing of the heap.

The second step is essential, because only references can be read-only, while locations
always have mutable types. The references wi are added in the same order as in the original
context, to ensure that types in the typing context only refer to preceding variables in case
the types are dependent. The two steps above correspond to the following two lemmas.

▶ Lemma 18 (Reference elimination). Let c1 and Γ satisfy the conditions of Theorem 16, and
ρ1[wi] = yi. Define Γ′ as the context obtained from Γ by first removing bindings for wi and
then replacing wi with yi. Define ρ′ as the environment obtained from ρ1 by removing bindings
for wi. Then the term y1.m y2 is well-typed under Γ′;ρ′ and we have heap correspondence
Γ′;ρ′ ∼ [yi/wi]iΣ1.

Proof. Because wi is a reference to yi, types assigned to yi and wi by Γ differ only by
mutability, and yi has a mutable type. So Γ(yi) is a subtype of Γ(wi), and the result follows
by substitutivity. ◀

▶ Lemma 19 (Read-only weakening). Let c1 and Γ satisfy the conditions of Theorem 16,
and y1, y2 be such that ρ1[wi] = yi. Then there is a context Γ2 binding wi to read-only types
such that the configuration c′′

1 := ⟨w1.m w2; ·; ρ1; [yi/wi]iΣ1⟩, is well-typed in Γ2 (formally
Γ2 ⊢ c′′

1 : ⊤).

By Lemma 19 along with the immutability guarantee, we have SEF established for
c′′

1 := ⟨w1.m w2; ·; ρ1; [yi/wi]iΣ1⟩. However, we need SEF in particular for the configuration
c′

1 := ⟨w1.m w2; ·; ρ1; Σ1⟩ in Lemma 17, where there is no substitution [yi/wi]i in the heap.
Nevertheless, this substitution can be ignored in the sense that execution can only change
fields of objects, but in roDOT, fields always store locations while wi are references. (When
a reference is assigned to a field, the corresponding location is stored, in order to make the
field type determine the mutability of the stored value.) Because c′

1 and c′′
1 are the same

everywhere except for [yi/wi]i on the heap, the SEF property of c′′
1 can be carried over to c′

1.
The first part of carrying the SEF property over to c′

1 is to relate each k-th step of execution
starting from c′′

1 and the k-th step of execution starting from c′
1. We need to show that

the two executions are almost the same, except some specific variables that appear in the
machine configuration can differ. In particular, the references wi can be replaced by the
locations yi. Additionally, the locations and references of newly created objects can differ,
because variable names are not assigned deterministically.

For that reason, we define the similarity relation, which formalizes structural equivalence
of syntactic elements such as terms, objects or whole configurations that differ only in names
of variables. It relates two such elements using a renaming relation over variables. A formal
definition of similarity and its basic properties is given in Section A.5 in the appendix.

Similarity has two important properties with respect to program execution: (1) it is
preserved by reduction, and (2) if a machine configuration can reduce, then all similar
configurations can reduce too (and the results are similar). That means that if we start with
two similar configurations, where the execution of one reaches an answer state, then the
execution of the other will reach a similar answer state. With this definition of similarity,
Lemma 20 formalises the idea that c′′

1 is similar to c′
1 up to renaming wi to yi:

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:21

▶ Lemma 20 (Similarity for eliminated references). Let c′
1 satisfy the conditions of Lemma 17

and c′′
1 the conditions of Lemma 19. Then c′

1
(w1,y1),(w2,y2)

≈ c′′
1 .

The final part of carrying over the SEF property to c′
1 is to recognize that reduction only

changes values of fields (while the structure of the object, methods and type members are
immutable).

▶ Definition 21 (Objects identical except fields). For objects o1 and o2, we write o1
fld
≈ o2 to

mean they are identical except for possibly the values of fields.

▶ Lemma 22 (Reduction only changes fields). If ⟨−; −; −; Σ⟩ 7→n ⟨−; −; −; Σ′⟩ and y is a
location in Σ, then Σ(y) fld

≈ Σ′(y).

And with this, we can finish the proof of Theorem 16.

Proof. By classical reasoning, assume the condition 1 is false so that the goal is to prove the
condition 2. That is, assume that there is no j < k such that the top-most frame of c1 is
popped after execution by j steps: c1 7→j ⟨vw3; −; −; Σ2⟩. Then, the sequence of reductions
c1 7→ ... 7→ c2 corresponds to a sequence of reductions c′

1 7→ ... 7→ c′
2 because even though c′

1
has no awaiting frames, there are no frame pops in this execution sequence by the current
assumption. By Lemma 17, the condition 2 follows. ◀

6 Transformations

In Section 3.4, we informally stated the transformation guarantee, which connects the static
SEF condition with a practical application – that calls to SEF methods can be safely swapped.

Defining the call-swapping and the guarantee in a formal way requires dealing with several
technicalities particular to the roDOT calculus (or DOT calculi in general). In order to
separate the common problems from the specific case of swapping calls, we build a general
framework in which various transformations of roDOT programs can be defined and proven
safe. We instantiate it here only with the call swapping transformation, but it could represent
the general part of a proof of safety for other transformations, such as reordering field reads
or removing dead code.

In Section 6.1, we present the framework for defining and reasoning about safe program
transformations in roDOT and similar calculi, including a general Theorem 25 about safety
of transformations. In Section 6.2, we define the transformation that swaps two calls to
methods that are statically determined to be side-effect free (Definition 26) and state the
transformation guarantee.

6.1 Transformation framework
The framework defines a general form for roDOT program transformations, defines the precise
meaning of a safe transformation that “does not affect the behavior of the program”, and
provides a way of proving this property, while helping to deal with common technical issues
of DOT formalizations.

Our general approach is to define a transformation that applies to an initial program,
and prove it safe by showing that if the original and transformed program are executed
side-by-side, they will either eventually reach the “same” answer, or both not terminate.

In the initial program, a transformation, such as swapping calls, can be located anywhere,
including inside a body of a method of an object literal, such as let x = ν(r : R){m(r, z) =
tm} in t2. We must consider that in roDOT, terms are in A-normal form, and that a term can

ECOOP 2024

13:22 Pure Methods for roDOT

have multiple different types. Also code (terms) and values (objects) are mixed with each
other during execution of a program – the program contains object literals, and methods on
the heap contain program code.

During execution, objects are created on the heap, including copies of the code of their
methods, which can be affected by the transformation. It would be too restrictive to require
that a transformed program produce the exact same output value as the original program
since the output value may be an object that may contain the transformed code. To facilitate
this, we define each transformation using a local relation which relates two terms that differ
only locally, and the framework provides lifting operators, which allow this transformation
to occur anywhere in a program or in a machine configuration.

The general safety Theorem 25 is based on executing the two programs and observing that
the intermediate states are also related by the transformation (lifted to whole configurations
and allowed to occur at multiple places), except the moments when the directly affected part
of the program is executing. When the two answers are reached, they will be similar except
that bodies of methods on the heap may differ as the transformation permits.

A more detailed description of the framework design and its definitions are given in
Section A.7 in the appendix. The following text describes the most important parts.

6.1.1 Transformations of roDOT programs in general
A transformation of a program is defined as a binary relation on terms – the original program
and the transformed one. For example, the call-swapping transformation is defined as a
relation that relates a program containing two method calls with a program that only differs
in the order of those calls.

Because the safety of the transformation depends on typing information, we define the
transformation as a binary relation between triples: the term, its type and a typing context.
This generalizes to other syntactic elements – stacks, heaps and machine configurations,
though for each kind of element, the exact meaning of “typing context” and “type” may
differ. For terms, the typing context is actually paired with a runtime environment Γ; ρ.

▶ Definition 23 (Transformation). A transformation τ is a relation between triples consisting
of typing contexts Γ1,2, types T1,2 and typeable elements X1,2. We write ⟨Γ1 ⊢ X1 : T1⟩ →τ

⟨Γ2 ⊢ X2 : T2⟩ and say that X1 is transformed into X2.

Like any binary relation, transformations can be symmetric, reflexive or transitive, and
we can construct transformations using iteration, composition, union and inversion.

Additionally, a transformation is type-safe, if the syntactic elements on both sides are
correctly typed under the respective contexts. Another useful property of a transformation
is being type-identical, where both the types and typing contexts are the same on both sides.

To facilitate the possibility of the transformation being located anywhere in a term, it
is useful to define the transformation in two steps: (1) A local transformation, which only
allows swapping calls at the root of the term. (2) A lifting operator lift τ which takes a local
transformation τ and allows it to be located at one place anywhere in a term.

Such a local transformation of a term can be further lifted by cfg τ to a whole run-time
configuration, where τ applies at exactly one place in the focus of execution, in the stack or
on the heap. To allow multiple occurrences, we can apply the iteration operator to the lifted
transformation. Having a definition that only allows one occurrence is useful in the proof
of Theorem 25 in Section A.7.4 in the appendix, where we want to look at each occurrence
individually. More details about lifting are in Section A.7.3; the definitions of the lifting
operators are shown in Figure 23 and Figure 24.

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:23

6.1.2 Safe transformations
The definition of a safe transformation must allow the answers of the two programs to contain
different variable names and allow for the fact that the transformation can occur in the
heap of the program answer, possibly at multiple places. Therefore a local transformation
is safe if execution of the transformed program reaches answers related by an iteration of
this transformation. To deal with non-deterministic location names, the transformation is in
union with a similarity transformation ≈, which allows one-to-one variable renaming.

▶ Definition 24 (Safe transformation). A transformation τ is safe if ⟨Γ1 ⊢ c1 : T ⟩ →τ ⟨Γ2 ⊢
c2 : T ⟩ and c1 −→k c3, where c3 is an answer typed as Γ3 ⊢ c3 : T , implies that there exist
c4, Γ4 and j such that c2 −→j c4, Γ4 ⊢ c4 : T and ⟨Γ3 ⊢ c3 : T ⟩ →(τ∪≈)∗ ⟨Γ4 ⊢ c4 : T ⟩ .

Thanks to being able to define a transformation by applying a general lifting to a local
transformation, the safety proof of such a transformation can be also divided into a theorem
that will apply to any local transformation with certain local properties, and then proving
those local properties for the particular local transformation.

This approach makes it possible to state the call-swapping guarantee presented here
(Theorem 27), or analogous guarantees for other local transformations.

Theorem 25 states that if a local term transformation does not change typing of the term,
is compatible with properties such as weakening, narrowing and substitution, does not change
whether the term is an answer or not, and if execution of just the transformed term will
eventually reach similar configurations, then transforming a program by this transformation
anywhere will not change its result. Full definitions of the premises are in Section A.7 in the
appendix as Definitions 49, 50, 52, 56 and 54.

▶ Theorem 25 (General safety for local transformations). If τ is a transformation that is
type-identical, type-safe, compatible with weakening, narrowing and substitution, preserves
answers, and eventually reduces to similarity, then (cfg τ∪ ≈)∗ is safe.

6.2 The call-swapping transformation
The specific transformation guarantee that we want to achieve should state that swapping
two calls will not change the outcome of the program, in the sense of Definition 24.

Call-swapping is defined as a local transformation that transforms one program con-
taining two successive calls into another program in which the calls are swapped. Due to
the A-normal form of terms, two successive calls in the program have the form let xc1 =
xo1.m1xa1 in let xc2 = xo2.m2xa2 in t. In the transformation, the two calls xo1.m1xa1 and
xo2.m2xa2 appear in the opposite order, but the continuation t is the same.

The transformation is only safe if both the methods are SEF, so it has several typing
premises, analogous to the ones of Theorem 16 in Section 5.2.

▶ Definition 26 (Local call swapping). The local call-swapping transformation csw is a
transformation of terms that relates ⟨Γ ⊢ let xc1 = xo1.m1xa1 in let xc2 = xo2.m2xa2 in t :
T ⟩ →csw ⟨Γ ⊢ let xc2 = xo2.m2xa2 in let xc1 = xo1.m1xa1 in t : T ⟩ when

xc1,2 are distinct from xa1,2 and xo1,2,
Γ ⊢ xo1.m1xa1 : Tc1, Γ ⊢ xo2.m2xa2 : Tc2, and Γ, xc1 : Tc1, xc2 : Tc2 ⊢ t : T ,
Γ ⊢ xo1 : {m1(r1 : N, z1 : Ta1) : ⊤}, and Γ ⊢ xo2 : {m2(r2 : N, z2 : Ta2) : ⊤},
Γ ⊢ xa1 : Ta1 , and Γ ⊢ xa2 : Ta2 ,
Γ ⊢ N <: Ta1 , and Γ ⊢ N <: Ta2 .

ECOOP 2024

13:24 Pure Methods for roDOT

As the the final form of the transformation guarantee, we apply Definition 24 to Defini-
tion 26, and specialize the theorem to initial programs. The proof is given in Section A.8 in
the appendix.

▶ Theorem 27 (Transformation guarantee). If ⟨⊢ t1 : T ⟩ →lift csw ⟨⊢ t2 : T ⟩ and ⟨t1; ·; ·; ·⟩ −→k

c3, where c3 is an answer typed as Γ3 ⊢ c3 : T , then there exists c4, Γ4 and j such that
⟨t2; ·; ·; ·⟩ −→j c4, c4 is an answer typed as Γ4 ⊢ c4 : T and ⟨Γ3 ⊢ c3 : T ⟩ →(cfg csw∪≈)∗ ⟨Γ4 ⊢
c4 : T ⟩ .

7 Related work

Since the topic of this work includes both the DOT calculus and method purity, here we
discuss previous work related to these concepts. Prior to this work, many variants of the
DOT calculus were published, some including mechanized proofs. Also the issue of purity in
object-oriented languages is of great research interest, and it is approached from different
angles of automation and precision. We give details about the existing work in the following
subsections. As far as we know, our work is the first one to consider the issue of purity
within a DOT calculus.

7.1 Mechanizations of DOT calculi

The first appearance of a DOT calculus [3] did not include a proof of soundness, but was
followed by several versions with proofs in Coq [33, 30] and Iris [17]. In particular, WadlerFest
DOT [2], thanks to its simplicity and its proof of soundness based on invertible typing [30],
was used as a baseline for numerous extensions [32, 22, 31, 23], including roDOT. While
objects are immutable in WadlerFest DOT, it was extended to support mutation using
mutable slots in Mutable WadlerFest DOT [32], and more directly by allowing changing
values of fields in kDOT [22]. A simplified version [21] with mutable fields, but without the
specific kDOT feature of constructors, was used as a base for the mechanization of roDOT.

The differences between the mechanization of roDOT and those of previous DOT calculi
mainly stem from the differences in how roDOT handles variables – namely, typing of
variables and terms being separated from each other, using different definitions of typing
contexts to support variable hiding, using the runtime environment to map references to
locations, and using typing information in its definition of operational semantics.

The mechanization of roDOT includes a feature to ease further extensions to the calculus.
The definitions and theorems are parameterized by a “typing mode”, which allows selecting
type system features that are supported. Using this feature, our proofs work for roDOT
both with and without the changes described in this paper.

7.2 Purity in other languages

Purity in programming is such an important concept that in many languages, functions are
pure by default. This approach is typically associated with functional programming, but an
object-oriented system can also be pure [1] when the objects are immutable. That is also the
case in the basic DOT calculus.

In pure functional languages, effects must typically be explicitly declared in the program
using monadic types. This style of programming has been shown to be as powerful as other
styles and is used in practical programming languages such as Haskell.

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:25

Regarding purity in object oriented languages with mutable fields, many publications [37,
34, 38, 40, 6, 16, 29] focus on Java and languages with similar type systems, such as C#.
For Scala, a type system for purity was developed, but not based on the DOT calculus [35].

When approached from a practical standpoint, the definition of purity in these languages
has to include considerations other than modification of object fields, such as accessing global
variables or synchronization. This leads to different definitions of purity. The term “pure” is
sometimes used to mean the same as “side-effect-free”, without requiring determinism.

Observational purity [25, 5] is a weaker property that allows side effects as long as they
are not observable from certain parts of the code. This definition is based on classes and
access control, features which are not modeled in DOT calculi.

Purity is of great use to program verification and specification frameworks, where it
enables inserting run-time checks without changing behavior, and allows more precise analysis.
Code Contracts [15], JML [20] and Checker Framework [14] allow annotating a method as
pure. Code Contracts do not check that this annotation is correctly applied, and JML and
Checker Framework use simpler checks, where pure methods are not allowed to call impure
methods. Checker Framework uses the fact that side-effect free methods do not invalidate
flow-sensitive types of local variables.

To avoid imposing an annotation burden on the programmer, purity can be inferred
by automatic program analysis [26, 34], and side-effect analysis can be used for program
optimization [11].

ReIm [19] provides both a type system for reference mutability and a way to automatically
infer mutability types. It can therefore automatically find pure methods, which have all
parameters read-only. We adopted this way of recognizing pure methods by parameter types
for roDOT in this work. While in ReIm, mutability is attached to parameter types as a
qualifier in the style of the Checker Framework, roDOT uses the special member type M to
include the mutability in the parameter type using intersection types. In ReIm, mutability
qualifiers are subjected to qualifier polymorphism and viewpoint adaptation. roDOT can
express the equivalent of polymorphic qualifiers using dependent types and implements
viewpoint adaptation using union and intersection types [12].

7.3 Capability and Effect Systems
There are other ways to express the permitted side-effects of functions using types, which
have been developed in recent work on formal type systems.

The principle of capabilities [28, 27] is to require every operation that can have a side
effect to take an extra value, called a capability, as a parameter. Then, if some function
or method does not have the capability value corresponding to a particular effect, we can
conclude that it does not perform that effect. Capabilities are well suited for coarse-grained
effects, such as performing input/output in general or accessing some specific file, where a
single capability value can guard a set of related operations. To apply such an approach to
reasoning about a fine-grained effect such as writing to a field of a specific object, we would
need large numbers of such capability values, one new capability value for each existing object.
For each reference passed to a parameter or stored in a field, a corresponding capability
would need to be passed or stored, thus multiplying the number of parameters and fields.

Wyvern’s effect system [24] expresses possible effects by type members of objects. That
is syntactically similar to how roDOT represents mutability, but the meaning of the type
members is different. In roDOT, the type member of an object reference defines the bounds
on the mutability of the reference, the knowledge about whether a reference may be used for
mutation, in the type of that reference. In contrast, in Wyvern, the effect member represents

ECOOP 2024

13:26 Pure Methods for roDOT

a permission to perform an effect, such as file.Write, where the effect can be independent
of the object that contains the effect member. Thus, Wyvern effect members are more similar
to the capability-based approach.

Another successful direction is to use types to express sets of possible variables captured
or aliased by values in the program. Capture Types [7] follow from a capability based
approach, and enable reasoning about where capability values may be stored in the heap
or captured in closures, in order to more precisely reason about where effects may occur.
Reachability Types [4] annotate the type of an expression with a set of variables, which
are values that are possibly reachable from the result of that expression. This can be used in
conjunction with effect qualifiers as in Graph IR [8], where a function type declares a set of
variables that can be read or written, describing the possible effects in a fine-grained way.
The types can also be extended to support qualifier polymorphism [39]. This work is defined
in the context of a higher order functional formalism, whereas roDOT is an object-oriented
calculus. Also, both Wyvern and Reachability Types express effects using new constructs
added to the type system, while roDOT aims to encode mutability using the existing DOT
constructs of dependent types, unions and intersections.

8 Conclusion

To conclude, our paper confirms that the reference mutability system provided by roDOT can
be mechanically proven sound, and with a few changes can be used to guarantee side-effect
freedom of methods, and to justify safe transformations of programs.

References
1 Martín Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science.

Springer, 1996. doi:10.1007/978-1-4419-8598-9.
2 Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The essence

of dependent object types. In Sam Lindley, Conor McBride, Philip W. Trinder, and Donald
Sannella, editors, A List of Successes That Can Change the World - Essays Dedicated to Philip
Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes in Computer
Science, pages 249–272. Springer, 2016. doi:10.1007/978-3-319-30936-1_14.

3 Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of path-dependent types. In
Andrew P. Black and Todd D. Millstein, editors, Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA
2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, OOPSLA ’14, pages
233–249. ACM, 2014. doi:10.1145/2660193.2660216.

4 Yuyan Bao, Guannan Wei, Oliver Bračevac, Yuxuan Jiang, Qiyang He, and Tiark Rompf.
Reachability types: Tracking aliasing and separation in higher-order functional programs.
Proc. ACM Program. Lang., 5(OOPSLA), October 2021. doi:10.1145/3485516.

5 Mike Barnett, David A Naumann, Wolfram Schulte, and Qi Sun. 99.44% pure: Useful
abstractions in specifications. In ECOOP workshop on formal techniques for Java-like programs
(FTfJP), 2004.

6 William C. Benton and Charles N. Fischer. Mostly-functional behavior in Java programs. In
Neil D. Jones and Markus Müller-Olm, editors, Verification, Model Checking, and Abstract
Interpretation, 10th International Conference, VMCAI 2009, Savannah, GA, USA, January
18-20, 2009. Proceedings, volume 5403 of Lecture Notes in Computer Science, pages 29–43.
Springer, 2009. doi:10.1007/978-3-540-93900-9_7.

7 Aleksander Boruch-Gruszecki, Martin Odersky, Edward Lee, Ondřej Lhoták, and Jonathan
Brachthäuser. Capturing types. ACM Trans. Program. Lang. Syst., 45(4), November 2023.
doi:10.1145/3618003.

https://doi.org/10.1007/978-1-4419-8598-9
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/2660193.2660216
https://doi.org/10.1145/3485516
https://doi.org/10.1007/978-3-540-93900-9_7
https://doi.org/10.1145/3618003

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:27

8 Oliver Bračevac, Guannan Wei, Songlin Jia, Supun Abeysinghe, Yuxuan Jiang, Yuyan Bao, and
Tiark Rompf. Graph IRs for impure higher-order languages: Making aggressive optimizations
affordable with precise effect dependencies. Proc. ACM Program. Lang., 7(OOPSLA2), October
2023. doi:10.1145/3622813.

9 The Checker Framework Manual: Custom pluggable types for Java. URL: https://
checkerframework.org/manual/#initialization-checker, 2022.

10 The Checker Framework Manual: Custom pluggable types for Java. URL: https://
checkerframework.org/manual/#purity-checker, 2022.

11 Lars Ræder Clausen. A Java bytecode optimizer using side-effect analysis. Concurrency:
Practice and Experience, 9(11):1031–1045, 1997. doi:10.1002/(SICI)1096-9128(199711)9:
11<1031::AID-CPE354>3.0.CO;2-O.

12 Vlastimil Dort and Ondřej Lhoták. Reference mutability for DOT. In Robert Hirschfeld and
Tobias Pape, editors, 34th European Conference on Object-Oriented Programming, ECOOP
2020, November 15-17, 2020, Berlin, Germany (Virtual Conference), volume 166 of LIPIcs,
pages 18:1–18:28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.ECOOP.2020.18.

13 Vlastimil Dort, Yufeng Li, Ondřej Lhoták, and Pavel Parízek. Pure methods for roDOT (an
extended version). Technical Report D3S-TR-2024-01, Dep. of Distributed and Dependable
Systems, Charles University, 2024. URL: https://d3s.mff.cuni.cz/files/publications/
dort_pure_report_2024.pdf.

14 Michael D. Ernst. Annotation type Pure. https://checkerframework.org/api/org/
checkerframework/dataflow/qual/Pure.html, 2022.

15 Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Embedded contract languages.
In Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-
Cheng Hung, editors, Proceedings of the 2010 ACM Symposium on Applied Computing (SAC),
Sierre, Switzerland, March 22-26, 2010, pages 2103–2110. ACM, 2010. doi:10.1145/1774088.
1774531.

16 Matthew Finifter, Adrian Mettler, Naveen Sastry, and David A. Wagner. Verifiable functional
purity in Java. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, Proceedings of the 2008
ACM Conference on Computer and Communications Security, CCS 2008, Alexandria, Virginia,
USA, October 27-31, 2008, pages 161–174. ACM, 2008. doi:10.1145/1455770.1455793.

17 Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and Robbert Krebbers.
Scala step-by-step: soundness for DOT with step-indexed logical relations in Iris. Proc. ACM
Program. Lang., 4(ICFP):114:1–114:29, 2020. doi:10.1145/3408996.

18 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java® language
specification, Java SE 8 edition. https://docs.oracle.com/javase/specs/jls/se8/html/
jls-8.html#jls-8.4.1, 2022.

19 Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. ReIm & ReImInfer: checking
and inference of reference immutability and method purity. In Proceedings of the 27th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-
25, 2012, OOPSLA ’12, pages 879–896. Association for Computing Machinery, 2012. doi:
10.1145/2384616.2384680.

20 JML reference manual: Class and interface member declarations. https://www.cs.ucf.edu/
~leavens/JML/jmlrefman/jmlrefman_7.html#SEC60, 2022.

21 Ifaz Kabir. themaplelab / dot-public: A simpler syntactic soundness proof for dependent
object types. https://github.com/themaplelab/dot-public/tree/master/dot-simpler.

22 Ifaz Kabir and Ondřej Lhoták. κDOT: scaling DOT with mutation and constructors. In
Proceedings of the 9th ACM SIGPLAN International Symposium on Scala, SCALA@ICFP 2018,
St. Louis, MO, USA, September 28, 2018, pages 40–50, 2018. doi:10.1145/3241653.3241659.

23 Ifaz Kabir, Yufeng Li, and Ondrej Lhoták. ιDOT: a DOT calculus with object initialization.
Proc. ACM Program. Lang., 4(OOPSLA):208:1–208:28, 2020. doi:10.1145/3428276.

ECOOP 2024

https://doi.org/10.1145/3622813
https://checkerframework.org/manual/#initialization-checker
https://checkerframework.org/manual/#initialization-checker
https://checkerframework.org/manual/#purity-checker
https://checkerframework.org/manual/#purity-checker
https://doi.org/10.1002/(SICI)1096-9128(199711)9:11<1031::AID-CPE354>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1096-9128(199711)9:11<1031::AID-CPE354>3.0.CO;2-O
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://d3s.mff.cuni.cz/files/publications/dort_pure_report_2024.pdf
https://d3s.mff.cuni.cz/files/publications/dort_pure_report_2024.pdf
https://checkerframework.org/api/org/checkerframework/dataflow/qual/Pure.html
https://checkerframework.org/api/org/checkerframework/dataflow/qual/Pure.html
https://doi.org/10.1145/1774088.1774531
https://doi.org/10.1145/1774088.1774531
https://doi.org/10.1145/1455770.1455793
https://doi.org/10.1145/3408996
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.4.1
https://doi.org/10.1145/2384616.2384680
https://doi.org/10.1145/2384616.2384680
https://www.cs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_7.html#SEC60
https://www.cs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_7.html#SEC60
https://github.com/themaplelab/dot-public/tree/master/dot-simpler
https://doi.org/10.1145/3241653.3241659
https://doi.org/10.1145/3428276

13:28 Pure Methods for roDOT

24 Darya Melicher, Anlun Xu, Valerie Zhao, Alex Potanin, and Jonathan Aldrich. Bounded
abstract effects. ACM Trans. Program. Lang. Syst., 44(1), January 2022. doi:10.1145/
3492427.

25 David A. Naumann. Observational purity and encapsulation. In Maura Cerioli, editor,
Fundamental Approaches to Software Engineering, 8th International Conference, FASE 2005,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3442 of Lecture Notes in Computer
Science, pages 190–204. Springer, 2005. doi:10.1007/978-3-540-31984-9_15.

26 Jens Nicolay, Quentin Stiévenart, Wolfgang De Meuter, and Coen De Roover. Purity analysis
for JavaScript through abstract interpretation. Journal of Software: Evolution and Process,
29(12), 2017. doi:10.1002/smr.1889.

27 Martin Odersky, Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward
Lee, and Ondřej Lhoták. Safer exceptions for Scala. In Proceedings of the 12th ACM SIGPLAN
International Symposium on Scala, SCALA 2021, pages 1–11, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3486610.3486893.

28 Martin Odersky, Aleksander Boruch-Gruszecki, Edward Lee, Jonathan Brachthäuser, and
Ondřej Lhoták. Scoped capabilities for polymorphic effects, 2022. arXiv:2207.03402.

29 David J. Pearce. JPure: A modular purity system for Java. In Jens Knoop, editor, Compiler
Construction - 20th International Conference, CC 2011, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26-April 3, 2011. Proceedings, volume 6601 of Lecture Notes in Computer Science, pages
104–123. Springer, 2011. doi:10.1007/978-3-642-19861-8_7.

30 Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. A simple soundness proof
for dependent object types. Proc. ACM Program. Lang., 1(OOPSLA):46:1–46:27, 2017.
doi:10.1145/3133870.

31 Marianna Rapoport and Ondrej Lhoták. A path to DOT: formalizing fully path-dependent
types. Proc. ACM Program. Lang., 3(OOPSLA):145:1–145:29, 2019. doi:10.1145/3360571.

32 Marianna Rapoport and Ondřej Lhoták. Mutable WadlerFest DOT. In Proceedings of the
19th Workshop on Formal Techniques for Java-like Programs, Barcelona , Spain, June 20,
2017, pages 7:1–7:6. ACM Press, 2017. doi:10.1145/3103111.3104036.

33 Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In Eelco
Visser and Yannis Smaragdakis, editors, Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016,
OOPSLA ’16, pages 624–641. ACM, 2016. doi:10.1145/2983990.2984008.

34 Atanas Rountev. Precise identification of side-effect-free methods in Java. In 20th International
Conference on Software Maintenance (ICSM 2004), 11-17 September 2004, Chicago, IL, USA,
pages 82–91. IEEE Computer Society, 2004. doi:10.1109/ICSM.2004.1357793.

35 Lukas Rytz, Nada Amin, and Martin Odersky. A flow-insensitive, modular effect system for
purity. In Werner Dietl, editor, Proceedings of the 15th Workshop on Formal Techniques for
Java-like Programs, FTfJP 2013, Montpellier, France, July 1, 2013, FTfJP ’13, pages 4:1–4:7.
ACM, 2013. doi:10.1145/2489804.2489808.

36 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing
style. In Proceedings of the 1992 ACM Conference on LISP and Functional Programming,
LFP ’92, pages 288–298, New York, NY, USA, 1992. Association for Computing Machinery.
doi:10.1145/141471.141563.

37 Alexandru Salcianu and Martin Rinard. A combined pointer and purity analysis for Java
programs. Technical report, Massachusetts Institute of Technology Computer Science and
Artificial Intelligence Laboratory, 2004. URL: https://dspace.mit.edu/handle/1721.1/
30470.

https://doi.org/10.1145/3492427
https://doi.org/10.1145/3492427
https://doi.org/10.1007/978-3-540-31984-9_15
https://doi.org/10.1002/smr.1889
https://doi.org/10.1145/3486610.3486893
https://arxiv.org/abs/2207.03402
https://doi.org/10.1007/978-3-642-19861-8_7
https://doi.org/10.1145/3133870
https://doi.org/10.1145/3360571
https://doi.org/10.1145/3103111.3104036
https://doi.org/10.1145/2983990.2984008
https://doi.org/10.1109/ICSM.2004.1357793
https://doi.org/10.1145/2489804.2489808
https://doi.org/10.1145/141471.141563
https://dspace.mit.edu/handle/1721.1/30470
https://dspace.mit.edu/handle/1721.1/30470

V. Dort, Y. Li, O. Lhoták, and P. Parízek 13:29

38 Alexandru Salcianu and Martin C. Rinard. Purity and side effect analysis for Java programs.
In Radhia Cousot, editor, Verification, Model Checking, and Abstract Interpretation, 6th
International Conference, VMCAI 2005, Paris, France, January 17-19, 2005, Proceedings,
volume 3385 of Lecture Notes in Computer Science, pages 199–215. Springer, 2005. doi:
10.1007/978-3-540-30579-8_14.

39 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf. Polymorphic
reachability types: Tracking freshness, aliasing, and separation in higher-order generic programs.
Proc. ACM Program. Lang., 8(POPL), January 2024. doi:10.1145/3632856.

40 Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge. Dynamic purity analysis for
Java programs. In Manuvir Das and Dan Grossman, editors, Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
PASTE’07, San Diego, California, USA, June 13-14, 2007, pages 75–82. ACM, 2007. doi:
10.1145/1251535.1251548.

ECOOP 2024

https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.1145/3632856
https://doi.org/10.1145/1251535.1251548
https://doi.org/10.1145/1251535.1251548

The Performance Effects of Virtual-Machine
Instruction Pointer Updates
M. Anton Ertl # Ñ

TU Wien, Austria

Bernd Paysan
net2o, Munich, Germany

Abstract
How much performance do VM instruction-pointer (IP) updates cost and how much benefit do we
get from optimizing them away? Two decades ago it had little effect on the hardware of the day, but
on recent hardware the dependence chain of IP updates can become the critical path on processors
with out-of-order execution. In particular, this happens if the VM instructions are light-weight and
the application programs are loop-dominated. The present work presents several ways of reducing
or eliminating the dependence chains from IP updates, either by breaking the dependence chains
with the loop optimization or by reducing the number of IP updates (the c and ci optimizations)
or their latency (the b optimization). Some benchmarks see speedups from these optimizations by
factors > 2 on most recent cores, while other benchmarks and older cores see more modest results,
often in the speedup ranges 1.1–1.3.

2012 ACM Subject Classification Software and its engineering → Virtual machines; Computer
systems organization → Superscalar architectures; Software and its engineering → Interpreters

Keywords and phrases virtual machine, interpreter, out-of-order execution

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.14

Supplementary Material Collection (Source Code, Binaries, Data): https://www.complang.tuwien.
ac.at/anton/ip-updates.tar.xz [10]
Software (Source Code): https://git.savannah.gnu.org/cgit/gforth.git [9]

archived at swh:1:dir:61eb3b71325060fe2e01f5e819eb0bec959e5bf0

1 Introduction

Interpreters are a popular approach for implementing programming languages. Their benefits
are simplicity of implementation, portability, and fast edit-run cycles. While they cannot
compete in execution performance with JIT compilers or ahead-of-time compilers, a fast
interpreter is not that far away: e.g., with the IP update optimizations of the present work,
Gforth has similar performance to the SwiftForth JIT compiler and to gcc -O0 (see Section 6).

This paper uses Gforth as an example high-performance interpreter. Gforth implements
a virtual machine (VM) and uses several previously published techniques for achieving high
performance (see Section 2), most notably dynamic superinstructions (aka selective inlining)
with replication and stack caching.

At the start of this work, every VM instruction in Gforth performed a VM instruction-
pointer (IP) update [3]. It turns out that these IP updates (both the increments for ordinary
instructions and the loads for taken branches) form a critical dependence path that limits
the execution performance of many programs on modern processors.

We introduce a collection of optimizations for reducing these dependences: The loop
optimization (l) breaks dependency chains in loops (Section 4.1). Optimization c combines
the IP updates of VM instructions that do not need an up-to-date IP (Section 4.2); the
immediate optimization (i) avoids the need for an up-to-date IP for VM instructions with
immediate operands (Section 4.3); The branch optimization (b) optimizes VM branches by
replacing loads with (lower-latency) adds (Section 4.4).

© M. Anton Ertl and Bernd Paysan;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 14; pp. 14:1–14:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anton@mips.complang.tuwien.ac.at
https://www.complang.tuwien.ac.at/anton/
https://orcid.org/0009-0009-3794-4295
https://doi.org/10.4230/LIPIcs.ECOOP.2024.14
https://www.complang.tuwien.ac.at/anton/ip-updates.tar.xz
https://www.complang.tuwien.ac.at/anton/ip-updates.tar.xz
https://git.savannah.gnu.org/cgit/gforth.git
https://archive.softwareheritage.org/swh:1:dir:61eb3b71325060fe2e01f5e819eb0bec959e5bf0;origin=https://git.savannah.gnu.org/git/gforth.git;visit=swh:1:snp:1faec00a6c15a4437d644656cc7a1f6d9cc3b878;anchor=swh:1:rev:9ea3267b29894afeda9b707899aa147c6ccb7af8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 The Performance Effects of Virtual-Machine Instruction Pointer Updates

Section 2 explains the interpreter performance techniques necessary to understand the
present work. Section 3 explains how data dependences influence the performance of modern
processors. Section 4 describes the optimizations and shows an example of their application;
the novel loop (Section 4.1), immediate (Section 4.3), and branch (Section 4.4) optimizations
are among the main contributions of this work. Section 5 describes the measurement setup.
The other main contribution of this work is in the empirical evaluation of the optimizations
(Section 6). Finally, we discuss the applicability to other languages (Section 7), how to get
the source code (Section 8) and related work (Section 9).

1.1 Why Gforth? Is this paper relevant for other languages?

You may wonder why we use Gforth and whether our results are relevant for other languages
and their VMs.

We chose Gforth in the present work because it already implemented a number of
techniques for increasing performance, in particular dynamic superinstructions and stack
caching. As a result, Gforth’s VM executes so few real-machine instructions per VM
instruction that the dependences formed from IP updates become a bottleneck on certain
programs.

We think that our IP update optimizations are also applicable to other VMs, but it
depends on the VM, its implementation, and the characteristics of programs that are run on
it how big the benefits will be. For a longer discussion, see Section 7.

2 Interpreter performance techniques

This section provides an overview of the performance techniques as far as necessary for
understanding the IP update optimization, with literature references.

2.1 Virtual machines

Most interpreted programming language implementations compile the source code with a
simple compiler into an intermediate code that represents the source program as a sequence
of instructions of a virtual machine (VM) that is designed as both an easy target for the
compiler and for easy (and ideally efficient) interpreted implementation of this code. Some
well-known virtual machines, such as the Java Virtual Machine [15] and WebAssembly [12]
also serve as program interchange formats, but in the present paper we focus on the role of
virtual machines for execution in fast interpreters.

For our running example, we use Gforth’s VM. Gforth is an implementation of the
programming language Forth, a low-level (address arithmetic etc.) stack-based programming
language.

Our running example is the inner loop of the siev benchmark:

do
0 i c!
dup +loop

We look only at the body of the loop, i.e., without the do. In Gforth’s VM, the body
looks as follows:

M. A. Ertl and B. Paysan 14:3

loophead: lit
0
i
c!
dup
(+loop)
loophead

Each line occupies one machine word, and slanted blue lines are immediate operands of
the preceding VM instruction.

An interpreter for VM code keeps a pointer to the current VM instruction (the IP) around
and uses it for finding immediate operands of the VM instruction and for finding the next
VM instruction. In case of a VM-level direct branch instruction like (+loop), the immediate
operand is the branch target and if the branch is taken, the IP is set to the value of the
immediate operand.

That’s all you need to understand the optimization in the paper in the abstract, but to
round out the picture, the rest of this section describes what these VM instructions do.

This Forth code corresponds to the following C code:

do {
*p = 0;
p += prime;

} while (p<pend)

Gforth’s VM is stack-based and is relatively close to the Forth source code, with the
following exceptions: Gforth compiles the number 0 to the VM instruction lit with the
immediate operand 0, and it compiles +loop to the VM instruction (+loop) with an
immediate operand: the address of the VM instruction that (+loop) jumps to unless it exits
the loop.

lit pushes its immediate operand on the data stack (or stack, for short). i pushes the
current counter of the do...+loop counted loop on the stack (in this loop the counter contains
the address corresponding to p in the C fragment). c! (pronounced “c-store”) stores the
second item on the stack to the byte pointed to by the address on the top-of-stack (TOS),
popping both stack items. dup pushes another copy of the current top-of-stack value on the
stack; this value corresponds to prime in the C program.

(+loop) pops the top-of-stack and adds it to the loop counter and checks for loop
termination.1 If another iteration is merited, (+loop) performs a VM-level jump to loophead.

2.2 Switch dispatch

A common way to implement an interpreter in C is to use a big switch statement along the
lines of:

1 As you will see in the assembly code later, this check is more complex than one would expect from the C
code. The reason is that +loop is specified to support circular arithmetic and both positive and negative
increments, which complicates the termination condition. For details see https://forth-standard.
org/standard/core/PlusLOOP.

ECOOP 2024

https://forth-standard.org/standard/core/PlusLOOP
https://forth-standard.org/standard/core/PlusLOOP

14:4 The Performance Effects of Virtual-Machine Instruction Pointer Updates

for (;;) {
switch (*ip) {

case dup: dsp[0] = tos; dsp--; ip++; break;
case lit: dsp[0] = tos; dsp--; tos = ip[1]; ip+=2; break;
....

}
}

In this example the data stack is represented by having the top-of-stack in a local variable
tos, and the remainder of the data stack is in memory, and the local variable dsp points to
where the top-of-stack would reside if it were in memory. IP is also kept in a local variable
ip. We will use the same names for registers in assembly code shown below.

This scheme has a relatively high overhead of getting from one VM instruction imple-
mentation to the next. For lit with switch dispatch gcc -O2 produces the following code
for RISC-V (the destination register (if any) is leftmost):

.L2: #switch code
ld a4,0(ip) # a4=*ip
slli a5,a4,2 # a5=a4*4 #for indexing
add a5,a6,a5 # a5=a6+a5 #table start in a6
bgtu a4,a7,.L17 # if a4>a7 goto default #bounds check
lw a2,0(a5) # a2 = *a5 #load from table
jr a2 # indirect branch to a2

.L6: #lit code
sd tos,0(dsp) # dsp[0] = tos
ld tos,8(ip) # tos = ip[1]
addi dsp,dsp,-8 # dsp--
addi ip,ip,16 # ip += 2
j .L2 # back to switch code

Figure 1 shows the data structures involved in switch dispatch. The VM instructions
are represented as integers that are used as indexes into the switch table. We use 8-byte
VM-code slots for the code above.

The payload consists of only 3 RISC-V instructions in this case, whereas the dispatch
overhead is 8 instructions.

Gforth has never implemented switch dispatch, and instead went directly for threaded code.

2.3 Threaded code
Threaded code [1] reduces the dispatch overhead by representing each VM instruction directly
as the address of the machine code that implements it. This means that each instruction
occupies one machine word (8 bytes on a 64-bit machine) and immediate operands are usually
represented by one or more machine words. This concept results in the following code for
lit:

sd tos,0(dsp) # dsp[0] = tos
ld tos,0(ip) # tos = ip[0]
addi dsp,dsp,-8 # dsp--
addi ip,ip,16 # ip += 2
ld a4,-8(ip) # a4 = ip[-1] #address of next VM inst
jr a4 # jump to next VM inst

M. A. Ertl and B. Paysan 14:5

lit
0
i
c!
dup
(+loop)
loophead

VM code machine code

i implementation

lit implementation
(+loop) implementation

c! implementation
dup implementation

switch table

i addr

lit addr
(+loop) addr

c! addr
dup addr

switch dispatch

threaded code

lit addr
0
i addr
c! addr
dup addr
(+loop) addr
loophead

VM code machine code

i implementation

lit implementation
(+loop) implementation

c! implementation
dup implementation

Figure 1 Switch dispatch vs. threaded code.

The dispatch code is inlined here and consists of 3 RISC-V instructions.
Figure 1 shows how the two schemes get from the VM code to the corresponding machine

code. In both schemes ip points to the VM code, and immediate operands are accessed
through ip. VM control flow is performed by setting ip to something other than the next
VM instruction.

One practical consideration is how to implement threaded code in an architecture inde-
pendent language. Fortunately it is possible by using the labels-as-value extension of GNU
C, which has been implemented by at least gcc, clang, tcc, and icc.

2.4 Selective inlining and dynamic superinstructions
One can eliminate more of the dispatch: While generating VM code, copy (real-)machine code
snippets from the interpreter to a separate memory area, thus concatenating these snippets
(Fig. 2); the threaded-code addresses then point to this newly generated real-machine code
rather than the originals as in normal threaded code.

This technique has first been outlined as memcpy method by Rossi and Sivalingham [20],
and later explored in depth as selective inlining by Piumarta and Riccardi [17]. Ertl and
Gregg combined it with replication [4] for better branch prediction. They call the result of
the concatenation dynamic superinstructions, because, like static superinstructions [18, 8, 2]
they combine a sequence of n VM instructions with n dispatches into something with only
one dispatch.

In our example (Fig. 2), each VM instruction except the last one ((+loop), which is a
VM-level branch) just continues with the next one, so the machine code of the next one can
be concatenated to the machine code of the dynamic superinstruction. The (+loop) may

ECOOP 2024

14:6 The Performance Effects of Virtual-Machine Instruction Pointer Updates

lit addr
0
i addr
c! addr
dup addr
(+loop) addr
loophead

VM code

VM instruction implementations

static machine code

i payload; IP update
rest of threaded-code dispatch

I_lit: sd tos,0(dsp)
 ld tos,0(ip)
 addi dsp,dsp,-8
 addi ip,ip,16
K_lit: ld a4,-8(ip)
 jr a4
J_Lit:

(+loop) pyload; IP update
rest of threaded-code dispatch

c! payload; IP update
rest of threaded-code dispatch

dup implementation; IP update
rest of threaded-code dispatch

sd tos,0(dsp)
ld tos,0(ip)
addi dsp,dsp,-8
addi ip,ip,16

i payload; IP update
c! payload; IP update
dup implementation; IP update
(+loop) pyload; IP update
rest of threaded-code dispatch

copied machine code

Figure 2 Concatenating machine-code snippets to further reduce the dispatch overhead.

set ip to something other than the next instruction, so for (+loop) and other control-flow
VM instructions the whole code including the rest of a threaded-code dispatch is appended
in order for the control-flow change to take effect at run-time; such an instruction therefore
ends a dynamic superinstruction.

Gforth copies the machine code snippets at the same time as when it generates VM code
for newly compiled source code. Gforth does not save the machine code in its images, so its
image loader copies the machine code snippets for the VM code it loads.

This technique has provided a big performance boost to Gforth across many different
CPUs, typically by a factor of 2 over threaded code (see Fig. 10). One may balk at the
prospect of directly manipulating machine code, but the advantage of starting with an
interpreter is that Gforth can always fall back to threaded code if conditions seem adverse
(and this normally works automatically).

One may wonder if the result is not already a JIT compiler, and in certain respects
it is. But for the language implementor it is an extension of a threaded-code interpreter:
Each implementation of a VM instruction just gets labels before and after the “rest of
threaded-code dispatch” part, and when a VM instruction is generated, it also copies the
memory containing the machine code for the VM instruction (using the labels to know the
boundaries), and lets the threaded-code word point to the copy (instead of the original).
The only amount of machine-specific code are a few lines to synchronize the I-cache to the
D-cache, and GNU C provides __builtin___clear_cache for that purpose. And when the
conditions for dynamic code generation are not met, the system just falls back to plain
threaded code, overall or on a per-VM-instruction basis (e.g., for code that contains a relative
reference to an address outside the code snippet at hand). By contrast, a typical JIT compiler
needs much more machine-specific work.

2.5 Multi-representation stack caching
The Gforth baseline also uses an optimization called multi-representation stack caching. This
optimization reduces only the machine instructions in the payload, so you only need to read
this section if you want to understand the payload of our running example, too.

M. A. Ertl and B. Paysan 14:7

s4
s5
s6

regmem

dsp

representation 3

s5
s6

regmem

dsp

representation 2

s6

regmem

dsp

representation 1
regmem

dsp

representation 0

TOS
2nd
3rd

TOS
2nd

TOS
2nd
3rd
4th

role

TOS
2nd
3rd
4th

rolerolerole

Figure 3 Four data-stack representations used by Gforth on RISC-V.

Figure 3 shows different representations of the data stack. Representation 0 keeps 0 stack
items in registers, i.e., all stack items in memory. A representation with all stack items
in memory is often seen in the literature (usually with the stack pointer pointing to the
top-of-stack, but that is just a difference in the offsets used for the memory accesses).

The examples shown earlier use representation 1, and this is also used by Gforth when it
falls back to threaded code. The advantage of this representation can be seen for dup which
does one load and two stores with representation 0, but just one store with representation 1.

By switching between representations Gforth further reduces the stack handling effort.
E.g., our running example starts in representation 1 (Gforth always uses this at the start of
a basic block) with the VM instruction lit. By choosing the lit implementation that ends
in representation 2 (i.e., lit 1 → 2), the payload of lit in this case is reduced to

ld s5,8(ip)

The old top-of-stack stays in s6 (and becomes the 2nd stack element), and the new
top-of-stack is pushed by setting s5 (the new top-of-stack) to the immediate operand.

This eliminates a memory access to the data stack as well as an update of dsp. If you
take a closer look at Fig. 4, you do not find any memory access to the data stack nor any
data-stack pointer update, so in this case data-stack caching works perfectly.

Ertl and Gregg [5, 7] discuss multi-representation stack caching in more detail.

3 Understanding performance

This section describes how program characteristics influence the performance on processors
with out-of-order (OoO) execution, and in particular, it discusses the role of instruction pointer
updates in interpreters with dynamic superinstructions. OoO processors have dominated
general-purpose computers in this century, and are now advancing towards smaller systems.
E.g., the Raspberry Pi switched to OoO cores with the Raspberry Pi 4 in 2019 and the
Compute Module 4 in 2020.

3.1 ... on modern CPUs ...
Starting from an empty pipeline, the front end of an OoO processor fetches and decodes
instructions as directed by the branch predictor, possibly running far ahead of execution.
An instruction is then executed as soon as all its inputs are available and an appropriate
functional unit is available.

ECOOP 2024

14:8 The Performance Effects of Virtual-Machine Instruction Pointer Updates

If a branch is mispredicted, fetch, decode, and execution at first continue along the
(mis-)predicted path, but the results are not committed. When the correct direction or
branch target is determined by executing the appropriate conditional or indirect branch
instruction, the front end is redirected to fetch, decode and eventually execute from the
correct path.

This description indicates the ways in which program characteristics influence performance:
As long as mispredictions are rare, if there are enough independent instructions, execution

will be limited by the resources, either by the program needing too many of a particular
functional unit (e.g., a matrix multiply program will exercise load and store units and the
FP multiply-add a lot), or by the width of the decoder and/or the retirement unit.

On the other hand, if there are lots of dependences between instructions and the processor
offers enough resources, the dependences will determine the performance: an instruction
that depends on another instruction i on the critical dependence path will wait in the
processors’s buffers until i produces a result. After prefetching for a while, all these not-yet
ready instructions will fill the processor’s buffers and the processor’s front end has to wait
until more buffers become ready by finishing an instruction on the critical path.

In the branch misprediction case, the misprediction penalty is influenced by the kind
of dependences between instructions: If there is a short dependence path to the predicted
branch instruction, the misprediction can be resolved early. However, if the mispredicted
branch depends on an instruction in the critical dependence path, the misprediction will
not be discovered until the instructions leading to the branch have been executed; only
then can the correct path be fetched and decoded, so such a misprediction incurs a bigger
misprediction penalty. By contrast, in case of a correct prediction, the long latency until the
prediction is confirmed does not hurt, except for occupying some buffers for longer.

3.2 ... in fast interpreters

In an interpreter, there is the resource consumption and dependences inherent in the
interpreted program (i.e., also present if the program is compiled to real-machine code), but
there is also the overhead of the interpreter:

In particular, every VM interpreter updates the VM instruction pointer (IP), in order
to access immediate VM data through it, and to access the next VM instruction (or next
dynamic superinstruction). In straight-line code, this results in one addition per executed
VM instruction, with a latency of one cycle on most processors. For a VM-level absolute
branch (as used in Gforth), the new VM instruction pointer has to be loaded, with a latency
of 3–5 cycles on recent OoO processors; if the VM-level branch is relative, the loaded value
has to be added to the instruction pointer, costing an additional cycle.

A VM-level return instruction breaks the IP dependence chain of the callee, because it
loads the new VM instruction pointer from the saved return address. This continues the
dependence chain of the caller, but the callee’s chain of IP updates ends with the return.

VM interpreters also have other overheads: A stack-based VM like that of Gforth has
dependence chains through stack-pointer updates, and these dependence chains are not
broken by returns. Moreover, they keep most stack items in memory with the resulting
store-to-load latency: 4-7 cycles in many processors, but 0 cycles in several recent processors
like Zen 3 and Tiger Lake.2 However, stack caching (see Section 2.5) reduces these overheads
substantially.

2 https://www.complang.tuwien.ac.at/anton/memdep/

https://www.complang.tuwien.ac.at/anton/memdep/

M. A. Ertl and B. Paysan 14:9

For a register-based VM, the VM register accesses are usually implemented through
real-machine memory accesses, which increases the resource consumption substantially. On
older processors there is also the latency cost of store-to-load forwarding, but the significance
of this cost depends on the dependence patterns of the interpreted program.

Previous work did not consider VM instruction-pointer updates to have much effect. Ertl
and Gregg [4] wrote:

One thing that we have not implemented is eliminating the increments of the VM
instruction pointers along with the rest of the instruction dispatch in dynamic su-
perinstructions. However, by using static superinstructions in addition dynamic
superinstructions and replication we also reduce these increments (in addition to
other optimizations); looking at the results from that, eliminating only the increments
probably does not have much effect.

For a long time our thinking was that other dependencies would dominate over VM
instruction-pointer updates, and that, with processors becoming wider (being able to execute
more instructions per cycle), instruction-pointer updates would become even less relevant.
However, for a number of benchmarks this is wrong (see Section 6).

4 Instruction-pointer update optimization

This section discusses four mostly independent optimizations. We implemented these op-
timizations in Gforth, and discuss them in this context, but they can also be applied to
implementations of other languages.

4.1 Loops
This optimization breaks the IP dependence chains on loop-back edges. In typical VM
instruction sets, the loop-back branch takes the target address as an immediate operand (e.g.,
in Fig. 4 the immediate operand loophead following the VM branch instruction (+loop)).

With the loop optimization, the loop-back address is stored on the return stack on
entering the loop, and the loop-back branch then takes its address from there (the bold
green instruction in Fig. 4). Because it does not need to access the VM instruction pointer
to do that, this breaks the dependence chain.

In Forth the return stack is a stack that contains return addresses and counted-loop
parameters. In general, the loop-back address can be stored on any stack or in a VM register;
the important part for the loop optimization is that this address must be readable by the
loop-back instruction without requiring an IP access, so one cannot use a VM register whose
number is given as immediate operand.

Unfortunately, the design of Forth makes it difficult to apply this optimization to general
loops, so we only apply it to counted loops in the present work.

However, if you are designing a virtual machine for a programming language, it may
be worthwhile to design it in a way that makes it possible to store the loop-back address
somewhere on entry to the loop, and to load it from there on the loop-back branch without
accessing the IP.

The loop optimization has very little effect on the instruction count and other dependences,
and can therefore be used to see the performance effect of breaking the IP dependence chains
independent of, e.g., the effect of reducing the number of executed instructions. In Fig. 9 we
see speedups by a factor of 2 on some benchmarks, showing that the IP-update dependence
chain really is the bottleneck for these benchmarks.

ECOOP 2024

14:10 The Performance Effects of Virtual-Machine Instruction Pointer Updates

VM code unoptimized l c ci cib
lit 1 → 2 addi ip,ip,16 addi ip,ip,16 addi ip,ip,16
0 ld s5,-8(ip) ld s5,-8(ip) ld s5,-8(ip) ld s5,8(ip) ld s5,8(ip)
i 2 → 3 addi ip,ip,8 addi ip,ip,8

ld s4,0(rp) ld s4,0(rp) ld s4,0(rp) ld s4,0(rp) ld s4,0(rp)
c! 3 → 1 addi ip,ip,8 addi ip,ip,8

sb s5,0(s4) sb s5,0(s4) sb s5,0(s4) sb s5,0(s4) sb s5,0(s4)
dup 1 → 2 addi ip,ip,8 addi ip,ip,8

mv s5,s6 mv s5,s6 mv s5,s6 mv s5,s6 mv s5,s6
(+loop) 2 → 1 addi ip,ip,16 addi ip,ip,8 addi ip,ip,40 addi ip,ip,56
loophead ld a5,0(rp) ld a5,0(rp) ld a5,0(rp) ld a5,0(rp) ld a5,0(rp)

ld a4,8(rp) ld a4,8(rp) ld a4,8(rp) ld a4,8(rp) ld a4,8(rp)
ld a2,-8(ip) ld a2,-8(ip) ld a2,-8(ip)
add a3,s5,a5 add a3,s5,a5 add a3,s5,a5 add a3,s5,a5 add a3,s5,a5
sub a4,a5,a4 sub a4,a5,a4 sub a4,a5,a4 sub a4,a5,a4 sub a4,a5,a4
add a4,s5,a5 add a4,s5,a5 add a4,s5,a5 add a4,s5,a5 add a4,s5,a5
xor a5,a4,a5 xor a5,a4,a5 xor a5,a4,a5 xor a5,a4,a5 xor a5,a4,a5
xor a5,s5,a5 xor a5,s5,a5 xor a5,s5,a5 xor a5,s5,a5 xor a5,s5,a5
and a4,a5,a4 and a4,a5,a4 and a4,a5,a4 and a4,a5,a4 and a4,a5,a4
sd a3,0(rp) blt a5,zero,x sd a3,0(rp) sd a3,0(rp) sd a3,0(rp)
blt a5,zero,x ld ip,16(rp) blt a5,zero,x blt a5,zero,x blt a5,zero,x
ld a5,0(a2) sd a3,0(rp) ld a5,0(a2) ld a5,0(a2) ld a5,0(ip)
mv ip,a2 ld a5,0(ip) mv ip,a2 mv ip,a2
jr a5 jr a5 jr a5 jr a5 jr a5
x: x: x: x: x:

Figure 4 The inner loop of the benchmark siev in Gforth’s VM code, and the corresponding
RISC-V code produced by Gforth without optimization and with various IP-update optimizations:
l optimizes loops, c combines IP updates, i optimizes immediate operands, b optimizes branches.
1 → 2 etc. indicates a stack representation change (see Section 2.5). For instructions with destination
registers, the destination is leftmost. The instruction that starts a new IP dependence chain (in the
loop) is bold green. Instructions that continue IP update dependence chains are slanted red. Some
register names have been changed for ease of understanding: ip is the VM instruction pointer, rp is
the return-stack pointer. s6, s5, s4 contain stack elements (see Fig. 3).

While it is possible to combine this optimization with the others, we think that the
combination of the others is effective enough in reducing the IP dependence chain, and that
adding the loop optimization would not help once the other optimizations are performed.
However, we consider the loop optimization to be an alternative that requires less effort.

You can see the result in column l of Fig. 4. The decisive difference is that the ld a2,-8(ip)
in (+loop) in unoptimized, c, ci loads the branch target from VM code using the IP, while
the ld ip,16(rp) loads the branch target from the return stack (using rp).

We implemented a prototype of this optimization in Gforth by adding 89 lines.

4.2 Combining instruction-pointer updates
There are VM instructions where the payload of the implementation does not read the IP
and therefore does not need an up-to-date IP. In our running example i, c! and dup do not
need an up-to-date IP.

M. A. Ertl and B. Paysan 14:11

Therefore the IP update can be left away. When there is finally a reason for an up-to-date
IP, all the updates can be combined into one addition of a larger constant.

Columns unoptimized3 and c of Fig. 4 illustrate this. In unoptimized every VM instruction
has its own IP update; in c, lit has an IP update, because it loads its immediate operand 0
in the VM code through ip. The next three VM instructions i, c! and dup don’t need an
up-to-date IP, so c eliminates their IP updates. Finally, (+loop) needs an up-to-date IP in
order to load its immediate operand loophead (the loop-back address) from the VM code,
so Gforth’s compiler inserts an IP update by 40 covering all VM instructions i...(+loop)
(inclusive), the same as the sum of the corresponding IP updates in unoptimized.

The optimization itself is trivial: The code generator just keeps track of where IP actually
points to, and when an up-to-date IP is needed, it inserts the appropriate update.

One not quite trivial part, however, is: When is an up-to-date IP needed?

Superblock end: The next VM instruction is the target of a VM jump. Because the IP may
be used afterwards, we have to synchronize the IPs coming from different paths at this
point, and we do it by letting it point to the first VM instruction in the new superblock.

Calls: VM instructions like call and execute (an indirect call) also require an up-to-date
IP: calls save the IP (which points to the next instruction at that point) as return address,
and after returning execution continues at that address. The routine invoked by execute
finishes with a threaded-code dispatch, which needs an up-to-date IP.

Non-relocatable VM instruction: When the machine code for a VM instruction is not
relocatable (typically because there is a call to a C function in the machine code), this
code cannot be used in a dynamic superinstruction. Instead, this code is called through a
threaded-code dispatch (which uses IP), and this code then updates the IP and makes
another threaded-code dispatch for continuing execution after this VM instruction.

Immediate operands: The IP is used when accessing immediate operands of VM instructions.

One particular case of this optimization is VM instructions like Gforth’s ;s which returns
from a definition. It does not need an up-to-date IP beforehand, and it branches elsewhere
(returning to the caller at the VM level), so there is no need to update the IP afterwards,
and we suppress such an update.

The other not quite trivial part is how to generate the machine code in the dynamic
superinstruction framework for which the actual machine code that is copied around is just
an opaque code snippet.

The first question is how to separate the IP update that is part of every VM instruction
implementation (as part of the threaded-code dispatch) so that we can copy the machine
code without the IP update.

Because the IP needs to be up-to-date in front of some VM instructions, we put the
IP update at the start of each VM-instruction implementation, resulting in the following
template:

I_inst:
update ip

L_inst:
non-dispatch code

K_inst:
rest of dispatch

J_inst:

3 This column shows the code for a Gforth version that includes ip-update optimizations but has them
disabled; this means that it uses the same register allocation and instruction schedule as the various
optimized variants, which makes it easy to compare with the other columns.

ECOOP 2024

14:12 The Performance Effects of Virtual-Machine Instruction Pointer Updates

 ip updates c (combine)
 offsets for lit 0->1 ci (combine+immediate)
 ip updates ci (combine+immediate)

%

0 1 2 3 4 5 6 7 8 10 12 14 16 18 20 22 24

100

90

80

50

0

Figure 5 Proportion of IP updates or lit 0->1 offsets with distances less than a given number
of machine words in Gforth’s image (static counts).

If the resulting code is relocatable and code for the VM instruction inst should be
generated, the code generator first generates an appropriate IP update if necessary (but
normally does not use the update between I_inst and L_inst for that). Then it copies the
code between L_inst and K_inst.

The code generator needs code snippets for different amounts of IP updating, because
it cannot just patch a constant into a template for IP-updating (the code generator does
not know anything about the internal structure of the machine code). Instead, we added
code snippets for IP updates for a range of values (by 1–23 machine words) to the C source
code of Gforth, and the code generator selects the right one, or (for IP updates > 23 words)
generates a sequence of IP updates.

Figure 5 shows that if we have IP update code snippets for updates by 1–6 machine
words, 99% of the cases statically occuring in the Gforth image can be performed with one
instruction, so for Gforth limiting the IP upates to this range would be good enough as long
as VM instructions with immediate operands (Section 4.3) are not optimized as well.

These data are somewhat specific to the Gforth VM, so if you want to minimize the
number of IP update code snippets, you should do your own measurements. As Fig. 5 shows,
a major reason for IP updates is VM instructions with immediate operands. VMs that use
local-variable accesses more than Gforth and specify the local with an immediate operand
will have shorter sequences between IP updates, which makes c alone less beneficial, but
means that even fewer IP update code snippets cover nearly all occuring distances with one
IP update.

4.3 Immediate operands
VM instructions with immediate operands are relatively frequent. We can eliminate this
reason for requiring an up-to-date IP in most cases: We introduce additional variants of
the most frequent VM instructions with immediate operands.4 These additional variants
access their immediate operand at an offset (1–23 machine words in our experimental
implementation) from where their base variant accesses the immediate operand, thus allowing
the actual IP to point 1–23 machine words in front of to up-to-date IP.

4 lit, call, ?branch, lit@, branch, (loop), lit-perform, lit+, does-xt

M. A. Ertl and B. Paysan 14:13

When the code generator has to compile such a VM instruction, if the difference between
the actual and the up-to-date IP is within the offset range of the variants, the code generator
copies the code of the appropriate variant, and no IP update needs to be generated.

In Fig. 4, column ci shows how combining IP updates is enhanced by this immediate-
operand optimization: The first VM instruction is lit, and in c it needs an IP update; in ci,
a variant of lit that accesses its immediate operand at ip+8 instead of ip-8 (an offset of 2
machine words) is used, so there is no need to update IP.

However, (+loop) is a VM instruction that does not have such variants, so the code
generator updates the IP at the start of (+loop).

While it is not obvious from this example, this extension contributes a lot to the
effectiveness of combining IP updates: In the Gforth image, the number of static IP updates
is reduced by a factor of 5; the dynamic reduction in our benchmarks usually a factor < 2
compared to the reduction from c alone (see Fig. 8).

Figure 5 shows that IP updates by 1–16 machine words are sufficient for performing
(without resorting to sequences of adds) 99% of the remaining IP updates statically occuring
in the Gforth image. It also shows that for the most frequent VM instruction with a literal,
lit in its stack caching variant 0 → 1, 99% of the IP offsets are in the range 2–13 (machine
words).

The relevance of these numbers is as follows: The compilation time of the VM imple-
mentation increases with the number of VM instruction implementation variants, so we only
want to add additional variants when a benefit is expected. This is particularly relevant
for instructions with immediate operands, because there are a number of them, and stack
caching multiplies the numbers.

E.g., we selected only 9 VM instructions with immediate operands; stack caching increases
this to 15 variants, and having 24 subvariants with different offsets for each variant results in
a total of 360 implementations of these 9 VM instructions. We did not use additional variants
for other VM instructions with immediate operands (e.g., (+loop)) to avoid increasing the
compilation time of the interpreter too much. For the same budget of 360 implementations,
it might have been a little better to use a smaller offset range and to have offset-variants of
more VM instructions.

Another way to deal with this problem is to eliminate immediate operands by introducing
versions of VM instructions for specific immediate operands. E.g., Gforth has a general VM
instruction @local# with an immediate operand n for pushing the value of local variable n

onto the stack, but it also has @local0, which fetches the local variable 0 without needing an
immediate operand. To increase the benefits from IP update optimization, we added more
such variants to Gforth.5

These optimizations also shift the balance in VM design towards splitting one VM
instruction into several, especially if it means that an unoptimized VM instruction with a
literal operand can be replaced with an optimized one. E.g., we have replaced the general
case of @local# n (i.e., cases not covered by specialized variants like @local0) in Gforth by
the sequence lit n; @localn where @localn takes n from a register representing the top of
the data stack (pushed there by lit). The resulting code is often better than for @local#:

5 In the mainline, not in the variants used for the empirical results of the present work. The benchmarks
used for the present work don’t use local variables much, so we don’t expect that this would make a
significant difference.

ECOOP 2024

14:14 The Performance Effects of Virtual-Machine Instruction Pointer Updates

unsplit split
@local# 0 → 1 addi ip,ip,88 lit 0 → 1
64 ld a5,-8(ip) 64 ld s6,80(ip)

add a5,a5,lp @localn 1 → 1 add a5,s6,lp
ld s6,0(a5) ld s6,0(a5)

In this code lp is a register containing Gforth’s locals pointer.

4.4 Branches
When executing VM instructions, every taken VM branch that loads the target address from
the VM code (such as (+loop) in Fig. 4) performs an IP-dependent load, and thus extends
the IP dependence chain with the load latency (3–5 cycles on modern processors). Even with
the ci optimizations, these loads can mean that IP updates are still the critical dependence
path in branch-heavy code like the siev benchmark.

However, branches are often to nearby targets, which inspires the following idea: If
the target is nearby, set the IP to the target, and then execute a branch-to-IP variant of
the branch; i.e., if the branch is taken, it just needs to perform a threaded-code dispatch
to branch to where the IP currently points to. If the branch is not taken, execution just
continues after the branch, taking the changed IP into account.

To implement this, we have extended the code snippets for updating the IP to increment
the IP by -24–23 machine words. Only one branch-to-IP variant is needed for each branch, so
we implemented this additional variant for all branches where the ordinary variant just takes
the target address as immediate operand; there are branches in Gforth with an additional
immediate operand, and we cannot apply this optimization to those branches; fortunately,
they are rarely used.

You can see an example in column cib in Fig. 4. Thanks to the ci part of the optimization,
there is no IP update for the lit, so when Gforth’s code generator reaches the (+loop), the
actual IP is still at the start of the loop. The code generator determines that the target is
nearby, and proceeds to insert an IP update for setting IP to the branch target. Because
the actual IP already points to the target location, the IP update would be by 0 bytes, and
no code is generated for that, an ideal outcome; in the general case you would see one or
more IP update instructions at this point. Next, the code generator appends the code of
the (+loop) variant for the branch optimization; note that this code does not contain the
instructions ld a2,-8(ip) and mv ip,a2 for modifying the IP; it expects that the IP already
contains the right value for taking the branch.

In our experiments, we considered the target to be nearby, if it can be reached with one
IP update for conditional forward branches, or if it can be reached with three IP updates for
unconditional branches and conditional backwards branches. This assumes that backwards
branches are usually taken, and also takes into consideration that on the fall-through path
IP update for the branch might require a followup correction.

We did this for the following reasons: For unconditional branches, three IP updates have
a smaller or the same latency as a load. In case of conditional branches, a backwards branch
is a loop branch and therefore probably taken.

For the conditional forward branch, a classical rule-of-thumb says that not-taken is more
likely. If we use the original branch instruction instead of the branch-to-IP variant, the
not-taken path may work without IP update; with the branch-to-IP variant, we incur the IP
update for setting the target in either case, and in the not-taken case we may need another
IP update because of an instruction with an immediate operand in the code before the
branch target. One could reduce the latter cost by introducing variants of instructions with
immediate operands with negative offsets, but that also has its costs.

M. A. Ertl and B. Paysan 14:15

Another idea that we have not implemented (yet) is to have IP update variants with
larger granularity. E.g. have IP update variants for −16, −15, −14, ..., 14, 15 machine
words and then −272, ..., −80, −48, 47, 79, 111, ..., 271 machine words. This would allow
to compose IP updates by −288...286 machine words by concatenating two code snippets
(typically with one instruction each) using only 47 IP-update variants (the same number
currently used in Gforth).

We do not present empirical data for branch distances, because they depend strongly on
the programming language usage (large or small routines), the VM design (e.g, already the
splitting of VM instructions discussed in Section 4.3 changes the distances), and on compiler
features such as tail call optimization, inlining or jump-to-jump optimization. So you will
have to do your own measurements to see the distribution of distances for your VM.

For Gforth, Fig. 9 shows speedups from cb over c or from cib over ci on most benchmarks
(exceptions: brainless, cd16sim, sha512), so even the −24...23 machine-word range of IP-
update variants provides some benefit for this VM.

We implemented cib in Gforth by inserting 864 lines and deleting 316 lines.

5 Evaluation setup

5.1 Systems

We present measurements for the versions described in Section 4. As baseline we use a
Gforth version without any IP-update optimization work. We branched a variant from that
that contains only the loop optimization, and a variant that contains all new optimizations
developed in the present work, selectable individually (however, the loop optimization does
not work with cib at the moment). The Gforth variants we measured are:

baseline The Gforth version we started from. This is the numerator in the factors shown in
the speedup and instruction factor graphs. The variants/system for the specific bar is
the denominator.

unoptimized The version that contains all optimizations developed in the present work,
but with the optimizations turned off. While in the baseline the IP update of a VM
instruction is anywhere in its code, the IP update is at the start in unoptimized (so the
IP-update optimizations can eliminate it or replace it). We show this variant in some
figures to see whether the code changes had some additional effect (and to isolate this
effect, if any).

baseline+loop opt This variant adds VM instruction variants for the loop optimization (see
Section 4.1) and uses these for counted loops instead of the variant that loads the branch
target from the VM code.

unopt+loop opt This uses the same executable as the unoptimized variant, but for counted
loops it uses the VM instructions that perform the loop optimization.

c: combine IP updates This uses the same executable as unoptimized, but enables combining
IP updates (Section 4.2).

ci: c+immediate opt Like c, but also enables the optimization of VM instructions with
immediate operands (Section 4.3).

cb: c+branch opt Like c, but also enables the optimization of short VM branches (Sec-
tion 4.2).

cib: ci+branch opt Like ci, but also enables the optimization of short VM branches.

ECOOP 2024

14:16 The Performance Effects of Virtual-Machine Instruction Pointer Updates

Program Author Description Lines Characteristics
bench-gc Anton Ertl Garbage Collector 1155 calls
brainless David Kuehling Chess 3648 calls, app
cd16sim Brad Eckert CPU emulator 937 calls, app
fcp Ian Osgood Chess 2046 calls, app
lexex Gerry Jackson Scanner Generator 3655 calls, app
siev Gilbreath/Paysan Count primes 25 counted loops
bubble Hennessy/Fraeman Sort 74 counted loops, cond. br.
matrix Hennessy/Fraeman Integer matrix multiply 57 counted loops
fib Anton Ertl Recursion 14 calls, cond. branch
fft-bench Bernd Paysan Fast Fourier transform 106 calls in counted loop
pentomino Bruce Hoyt Puzzle 516 conditional branches
sha512 Marcel Hendrix Cryptography 538 counted loops, huge body

Figure 6 Benchmark programs used.

Evaluating b alone would also have been interesting, but we left it away for time and
space reasons. However, you can see the effect of b by comparing the results of c with cb
and of ci with cib.

In addition, for Fig. 10 we compare with the following systems/compilers.

PFE is an interpreted Forth system written in C that uses one C function per VM instruction
implementation. PFE is designed to rely on explicit register allocation (a GCC extension)
for performance, but unfortunately, for AMD64 no explicit register definitions have been
added yet. We use PFE-0.33.71.

Gforth threaded code only This is the baseline Gforth with the option --no-dynamic, which
means that it falls back to using plain threaded code (Section 2.3); this option also disables
stack caching.

SwiftForth, VFX Forth Two commercial Forth systems with JIT compilers. We measured
SwiftForth x64-Linux 4.0.0-RC87 and VFX Forth 64 5.43.

gcc-12 Various optimization options for GCC 12.2. Manually written C code for four of
the benchmarks is available and was used for generating these results. The C programs
were linked statically so that the binaries could also run on machines with older glibc
implementations. For gcc the results do not include the compile time (unlike for the
Forth systems).

We compiled the three Gforth branches with gcc-12.2 on Debian 12 for AMD64 and with
gcc-10.2 on Debian 11 on ARM A64 and statically linked them so they would run on the
other platforms we used. All variants use stack caching with 0–3 registers.

5.2 Benchmarks
We use the benchmarks shown in Fig. 6. The first five are from the appbench suite of Forth
benchmarks6; they are substantial programs and therefore are probably more representative
of significant Forth applications and idiomatic Forth usage than the other benchmarks.

The next five are small benchmarks that come with Gforth: siev is based on the Byte
Sieve by Gilbreath, but we use Bernd Paysan’s Forth version and Al Aburto’s C version.

6 https://www.complang.tuwien.ac.at/forth/appbench-1.3.zip

https://www.complang.tuwien.ac.at/forth/appbench-1.3.zip

M. A. Ertl and B. Paysan 14:17

µArchitecture Architecture Family CPU year
K8 AMD64 AMD P Athlon X2 4600+ 2005
Zen3 AMD64 AMD P Ryzen 7 5800X 2021
Penryn AMD64 Intel P Xeon E5460 2007
Nehalem AMD64 Intel P Xeon X3460 2009
Sandy Bridge AMD64 Intel P Xeon E3-1220 2011
Haswell AMD64 Intel P Core i7-4790K 2014
Skylake AMD64 Intel P Core i5-6600K 2015
Rocket Lake AMD64 Intel P Xeon W-1370P 2021
Tiger Lake AMD64 Intel P Core i5-1135G7 2021
Golden Cove AMD64 Intel P Core i3-1315U 2023
Silvermont AMD64 Intel E Celeron J1900 2013
Goldmont AMD64 Intel E Celeron J3455 2016
Goldmont+ AMD64 Intel E Celeron J4105 2017
Tremont AMD64 Intel E Celeron N4500 2021
Gracemont AMD64 Intel E Core i3-1315U 2023
Firestorm ARM A64 Apple P M1 2020

Figure 7 Microarchitectures measured and shown in Section 6. The year shows when the CPU
we measured was released. Some of the microarchitectures were released earlier in different CPUs.
“P” stands for performance core, “E” for (power or die area) efficiency core.

bubble and matrix are based on Hennessy’s Stanford integer benchmarks (in C), and have
been translated to Forth by Marty Fraeman. Four of these benchmarks are available in Forth
and C in http://www.complang.tuwien.ac.at/forth/bench.zip.

Pentomino and sha512 were included because they exhibit unusual performance charac-
teristics (for Forth programs): They both spend much of their time in long definitions, with
many branches for pentomino, and straight-line code for sha512.

Idiomatic Forth code calls many short routines, as exhibited in the appbench programs
and in fft-bench. So the results for these programs may also be representative for other
programming languages where call-heavy programs are idiomatic and implementations that
neither inline nor tail-call-optimize. On the other hand, the results for the programs dominated
by counted loops may be more representative for programs in Algol-family languages and for
systems that tail-call optimize or inline.

5.3 Hardware

We have measured a variety of different microarchitectures and show results for them. Figure 7
gives information about what the code names we use for the microarchitectures mean.

5.4 Measurements

Each benchmark was run on each system and each microarchitecture 30 times, and measured
with perf stat, measuring the events instructions:u, cycles:u, branch-misses:u, L1-dcache-
load-misses:u, and L1-icache-load-misses:u, where available (but we only show results based
on cycles and instructions here). The median of these runs is shown.

ECOOP 2024

http://www.complang.tuwien.ac.at/forth/bench.zip

14:18 The Performance Effects of Virtual-Machine Instruction Pointer Updates

benchgc
brainless

cd16sim
lexex

fcp
siev

bubble
matrix

fib
fft-bench

pentomino
sha512

instruction factor (higher means fewer instructions)
unoptimized
baseline+loop opt
unopt+loop opt
c: combine ip updates
ci: c+immediate opt
cb: c+branch opt
cib: ci+branch opt

1

1.1

1.2

1.3

1.5

Figure 8 Reduction factor in the number of dynamically executed AMD64 instructions of various
optimizations over baseline.

6 Results and discussion

6.1 Executed instructions
Figure 8 shows the effect of the IP update optimizations on the number of executed instructions
on AMD64. For ARM A64 and RISC-V the results look similar.

For unoptimized and both loop optimization variants, the differences in executed instruc-
tions from the baseline are small, as expected (so small that sometimes you don’t see the
bar).

For most benchmarks c (combining IP updates) reduces the executed instructions, and ci
(also optimize VM instructions with immediate operands) further reduces them (because
more IP updates can be eliminated); adding b often has little effect on the number of executed
instructions: in the usual case a load is replaced by an add.

On AMD64 and RISC-V where the IP updates have separate instructions, we can use
the reduction in instructions to get an idea of the number of payload instructions in these
benchmarks: If the unoptimized case has 1 IP update for n payload instructions, and the
optimizations eliminate the proportion α of the IP updates on average, and the instruction
reduction factor is f , we can compute n = (1 − (1 − α)f)/(f − 1). This leaves us with the
problem of knowing α. However, if we assume that α = 1, we get an upper bound for n; e.g.,
for f = 1.53 (matrix), n ≤ 1.87, while for f = 1.2 (brainless), n ≤ 5. For matrix and siev cib
eliminates all IP updates in the inner loop, and nearly all of the executed VM instructions of
these benchmarks are in the inner loops, so α is close to 1, and n is close to 1.87 for matrix
and close to 2.62 for siev.

6.2 Speedups from IP-update optimization variants
Figure 9 shows the speedups of the optimizations on Tiger Lake. As we will see, this is the
microarchitecture where we typically see the best results, but Zen3 and Gracemont are not
far off (Fig. 11).

On Tiger Lake, moving the IP updates to the start of each VM instruction (unoptimized)
hurts a little on most benchmarks, but occasionally also helps.

Applying the loop optimization provides a speedup by a factor of about 2 on the three
benchmarks (siev, bubble, matrix) that spend most of their time in short-to-medium length
counted loops. However, for the huge loop body of sha512, the IP updates result in a

M. A. Ertl and B. Paysan 14:19

benchgc

brainless

cd16sim

lexex

fcp

siev

bubble

matrix

fib

fft-bench

pentomino

sha512

speedup over original Gforth
unoptimized
baseline+loop opt
unopt+loop opt
c: combine ip updates
ci: c+immediate opt
cb: c+branch opt
cib: ci+branch opt

0.9

1

1.1

1.2

1.3

1.5

1.7

2

2.4

3

Figure 9 Speedup (reduction factor of execution cycles) on Tiger Lake of several optimizations
over baseline (higher is better).

dependence chain that fills the processor buffers long before the loop-back branch breaks
it, and the speedups of the loop optimization tend to be small. For fft-bench the inner
loop is also a counted loop, but the loop body contains calls where the return breaks the
IP dependence chain, so fft-bench does not benefit from the loop optimization. Pentomino
hardly uses counted loops, so it cannot benefit from the loop optimization (as we implemented
it). Most application benchmarks don’t benefit, either.

Among the other variants, let us first look at cib: It dominates the loop optimization
(whereas c, ci and cb don’t, as demonstrated by siev). The speedups of cib depend on the
benchmark, with siev, bubble, matrix, and sha512 showing a speedup of > 2 on Tiger Lake,
while the speedups on fft-bench and the application benchmarks are much more modest; in
code where returns break the dependence chains, the main benefit of cib is the reduction in
the number of executed instructions.

The results of c, ci, and cb are helpful in understanding the cib results: In short loops
(siev, bubble) or code with many taken branches (bubble, fib) cb helps more than ci, because
the loads of the branches are a large part of the latency chain in case of ci. By contrast,
for programs with long loop bodies like sha512, the branch optimization does not work (it

ECOOP 2024

14:20 The Performance Effects of Virtual-Machine Instruction Pointer Updates

benchgc
brainless

cd16sim
lexex

fcp
siev

bubble
matrix

fib
fft-bench

pentomino
sha512

speedup over baseline Gforth
PFE (interpreter)
Gforth threaded code only
Gforth with ip-update optimization (cib)
SwiftForth (JIT compiler)
VFX Forth (JIT compiler)
gcc-12 -O0
gcc-12 -O1
gcc-12 -O3

71/

41/

21/

1

2

4

8

16

25

Figure 10 Speedup of several Forth systems and gcc over the Gforth baseline (higher is better),
on Tiger Lake. If a benchmark does not work on a system, no bar is shown for the combination.

only covers short-distance branches) and we therefore see no difference between ci and cib.
Pentomino has many branches, but many of them are long-distance branches as far as the
branch optimization is concerned, so the benefit of the branch optimization is relatively
small for this benchmark, and the benefit of the immediate optimization is more pronounced.
Overall, for some benchmarks ci is better than cb, for others cb is better than ci; with the
exception of cd16sim, both dominate c, and are dominated by cib. The difference is pretty
big in some cases, so cib can be worth the additional implementation effort.

6.3 Comparison with other systems
Figure 10 compares a selection of the Gforth variants to several other Forth systems and to
gcc. As in the other graphs, the baseline is Gforth version we started from.

Gforth with cib tends to be competitive with SwiftForth and with gcc -O0. SwiftForth
shows some slowdowns for the application benchmarks despite executing significantly fewer
instructions than Gforth; for cd16sim we identified the architectural pitfalls that it runs into7

7 I-cache/D-cache ping-pong from having instructions close to data, and ret mispredictions from using
the return address of call as data instead of returning to it.

M. A. Ertl and B. Paysan 14:21

b
e

n
c
h

g
c

b
ra

in
le

s
s

c
d

1
6

s
im

le
x
e

x
fc

p
s
ie

v b
u

b
b

le
m

a
tr

ix
fi
b

ff
t-

b
e

n
c
h

p
e

n
to

m
in

o
s
h

a
5

1
2

k8

b
e

n
c
h

g
c

b
ra

in
le

s
s

c
d

1
6

s
im le
x
e

x
fc

p s
ie

v
b

u
b

b
le

m
a

tr
ix

fi
b

ff
t-

b
e

n
c
h

p
e

n
to

m
in

o
s
h

a
5

1
2

gracemont

b
e

n
c
h

g
c

b
ra

in
le

s
s

c
d

1
6

s
im

le
x
e

x fc
p

s
ie

v
b

u
b

b
le

m
a

tr
ix

fi
b

ff
t-

b
e

n
c
h

p
e

n
to

m
in

o
s
h

a
5

1
2

zen3

b
e

n
c
h

g
c

b
ra

in
le

s
s

c
d

1
6

s
im

le
x
e

x
fc

p
s
ie

v
b

u
b

b
le

m
a

tr
ix

fi
b

ff
t-

b
e

n
c
h

p
e

n
to

m
in

o
s
h

a
5

1
2

tigerlake

b
e

n
c
h

g
c

b
ra

in
le

s
s

c
d

1
6

s
im

le
x
e

x
fc

p
s
ie

v
b

u
b

b
le

m
a

tr
ix

fi
b

ff
t-

b
e

n
c
h

p
e

n
to

m
in

o
s
h

a
5

1
2

goldencove

b
e

n
c
h

g
c

b
ra

in
le

s
s

c
d

1
6

s
im

le
x
e

x
fc

p
s
ie

v
b

u
b

b
le

m
a

tr
ix

fi
b

ff
t-

b
e

n
c
h

p
e

n
to

m
in

o
s
h

a
5

1
2

firestorm

speedup over original Gforth
left: baseline+loop opt
middle-left: c: combine ip updates
middle-right: ci: c+immediate opt
right: cib: ci+branch opt

1

1.1

1.2

1.3

1.5

1.7

2

2.4

3

Figure 11 Speedup (reduction factor of execution cycles) of several optimizations over baseline;
for each benchmark (colour), four bars show, from left to right: l, c, ci, cib.

and what implementation technique causes that, and reported it to the vendor. We did not
investigate the SwiftForth performance on other benchmarks. The more sophisticated VFX
Forth outperforms Gforth with cib usually by a factor of 2. Inlining of Forth definitions
(performed by VFX, but not by Gforth) is particularly effective for cd16sim, leading to a
speedup of VFX over cib by a factor of 8. Gforth with cib is a factor > 8 faster than PFE
on the benchmarks where PFE works.

Gcc -O1 shows a factor 3–20 speedup over Gforth with cib, while for gcc -O3 the speedups
over cib range from 0.6–8. For bubble the bad performance of gcc -O3 is caused by auto-
vectorization, which exercises a slow hardware path for store-to-load-forwarding (due to
partially overlapping accesses). We also looked at the gcc -O3 code for fib, but did not find
an explanation for the slowdown compared to gcc -O1.

6.4 Speedups on different microarchitectures
Figure 11 shows a selection of the Gforth variants on several different microarchitectures.
Most of them show similar speedups to Tiger Lake, which we discussed earlier.

One exception is Golden Cove (the P-Core of recent Intel CPUs); Golden Cove implements
a hardware optimization that reduces the latency of adding a constant to zero cycles.8 This
hardware optimization subsumes the c and i optimizations to some extent, and consequently,

8 https://www.complang.tuwien.ac.at/anton/additions/
https://chipsandcheese.com/2021/12/21/gracemont-revenge-of-the-atom-cores/

ECOOP 2024

https://www.complang.tuwien.ac.at/anton/additions/
https://chipsandcheese.com/2021/12/21/gracemont-revenge-of-the-atom-cores/

14:22 The Performance Effects of Virtual-Machine Instruction Pointer Updates

benchgc
brainlesscd16sim

lexex
fcp

siev

bubble

matrix

fibfft-bench

pentomino

sha512

penryn
nehalem

sandybridge
haswell

skylake
rocketlake

tigerlake
goldencove

speedup
cib over original Gforth

1

1.1

1.2

1.3

1.5

1.7

2

2.4

3

benchgc

brainless

cd16sim

lexex

fcpsiev

bubble

matrix

fib

fft-bench

pentomino

sha512

silvermont
goldmont

goldmontplus
tremont

gracemont

speedup
cib over original Gforth

1

1.1

1.2

1.3

1.5

1.7

2

2.4

3

Figure 12 Speedups of cib over the baseline for different benchmarks on successive generations of
Intel’s P-cores (left) and Intel’s E-cores (right).

we see lower speedups on Golden Cove than on Tiger Lake from these optimizations on a
number of benchmarks. The benefit of the loop and branch optimization is still present,
and shows up especially in code with short loops, such as siev and bubble, but the overall
tendency is lower speedups from IP-update optimizations on Golden Cove. However, it still
can pay off to apply IP-update optimizations, because CPUs with Golden Cove cores usually
also have Gracemont E-cores, which benefit more from IP-update optimizations.

The other exception is the K8 microarchitecture (first released 2003). On the K8 the
loop optimization tends to provide no benefit, and the other optimizations tend to provide
benefits smaller than the reduction in instructions. This indicates that on the K8 the IP
updates are not the critical path in instruction execution on any of these benchmarks.

We also looked at a variety of other CPUs (Fig. 12), and the tendency is that within
a family of microarchitectures (e.g., Intel’s P-cores, with the exception of Golden Cove, as
discussed above), the speedups from cib tend to be higher for more recent microarchitec-
tures and lower for older microarchitectures. Along with the K8 results this explains why
investigations on IP update optimizations have not been published earlier.

M. A. Ertl and B. Paysan 14:23

7 Applicability to other languages

In principle the IP-update optimizations can be applied to any VM implementation. In
practice the benefit depends on how light-weight or heavy-weight the payload of your VM
instructions is, on the characteristics of the executed programs.

Concerning program characteristics, loop-dominated programs benefit much more from
the IP-update optimizations than call-dominated programs (see Section 6.2); but note that if
you implement inlining or tail-call optimization, this can change call-dominated programs
into loop-dominated programs.

Concerning the weight of VM instructions, IP update optimizations benefit VMs with
lightweight instructions, such as Gforth, the OCaml interpreter, the JVM or WebAssembly.
The lighter the payload is, the more these optimizations pay off.

By contrast, for a language implementation like Tcl with its heavy VM instructions,
already dynamic superinstructions did not pay off; the speedup from the reduced dispatch
overhead was small, and was compensated by increased I-cache misses [22].

Even if the VM instructions are middle-weight, we expect the benefit of the IP-update
optimization to be small. E.g., if a VM instruction has an average payload of 10 instructions
per VM instruction, the bottleneck will be in the payload (in the resource requirements, or
in the latency), and the only benefit of the IP-update optimization will be to reduce the
resource load, and that contribution will be relatively small (10%).

If you design a virtual machine that is lightweight enough that IP updates could be a
bottleneck one day, it’s a good idea to make it flexible enough make the loop optimization
(Section 4.1) possible, which can be applied with relatively low effort.

8 Source code

The source code is in the git repository of Gforth:

git clone https://git.savannah.gnu.org/git/gforth.git

After that you can get the versions used for generating the data with:

cd gforth
one of:
git checkout ecoop24-ip-updates-baseline #baseline
git checkout ecoop24-loopopt #baseline+loop opt
git checkout ecoop24-ip-updates #unopt, unopt+loop opt, c, ci, cb, cib
git checkout master #Gforth mainline

The main line of Gforth now uses cib by default.
You can find a package containing the checked out source code, binaries for AMD64,

ARM A64, and RV64GC, benchmarks, and the resulting data on
https://www.complang.tuwien.ac.at/anton/ip-updates.tar.xz.

9 Related work

One difference between the approaches of Piumarta and Riccardi [17] and Ertl and Gregg [4]
on selective inlining/dynamic superinstructions is that Piumarta and Riccardi eliminated the
VM instruction slots of the VM instruction slots that are no longer needed for threaded-code
dispatch. This eliminates as many IP updates as the c optimization, but Ertl and Gregg

ECOOP 2024

https://www.complang.tuwien.ac.at/anton/ip-updates.tar.xz

14:24 The Performance Effects of Virtual-Machine Instruction Pointer Updates

expected that this “does not have much effect”. And indeed, the K8 results (similar to the
hardware they used at the time) show a speedup ≤ 1.1 for c on most benchmarks (Section 6).
However, on newer cores c provides speedups > 1.3 on some benchmarks, and we expect
the same speedups from Piumarta and Riccardi’s instruction slot elimination. In any case,
neither paper gives any performance evaluation of this issue, while the present work does
and also explores additional optimizations: for loops, immediates, and branches.

kForth implements counted loops in the same way as the l optimization.9
There has been a significant body of work on combining VM instructions at VM-interpreter

build time into (static) superinstructions [13, 18, 16, 11, 8, 3], which reduces instruction
pointer updates, among other benefits. But again, none of these works have evaluated how
much of the benefit is due to reducing IP updates.

More recent work on interpreter performance includes Rohou et al.’s reevaluation of the
performance impact of indirect branches in the light of improvement in hardware indirect
branch predictors [19], and Titzer’s work on an in-place interpreter for WebAssembly (which
has been designed for translation) [21].

Larose et al. [14] argue that a sophisticated metacompiler (like RPython and Truffle) can
optimize an AST interpreter written in a high-level language just as well as a VM interpreter.
However, unless they completely eliminate all references to the AST or the VM code, they
still have to maintain a pointer to the AST or VM code, and optimizing the IP updates is
relevant.

In more ambitious earlier work [6], Ertl and Gregg eliminated the VM instruction pointer
completely by eliminating all accesses to the threaded code: like the present work, it
concatenates code snippets produced with gcc, but it patches constants and branch targets
into the copied code snippets, making all access to the threaded code unnecessary. They
found a median speedup by a factor 1.32 on a K7 (a 32-bit-only predecessor of the K8), quite
an interesting contrast to the more modest speedups of the present IP-update optimization
on the K8. However, this approach requires architecture-specific support for patching the
constant and branch targets, whereas the present work is just as architecture-independent as
dynamic superinstructions. This approach cannot fall back to threaded code, and therefore
did not make it from proof-of-concept into a production feature of Gforth.

Xu and Kjolstad [24] have also used code snippets produced by a compiler and combined
them, patching in constants and branch targets. The result also does not need a VM
instruction pointer and its updates, and moreover, it uses the architecture’s call and return
instructions (instead of jumps and indirect jumps. The price paid for this, like in Ertl and
Gregg’s work [6], is architecture-specific code for patching the results.

The Maxine virtual machine [23] contains T1X, a compiler that uses snippets coming
from a Java compiler, again without referencing the VM code, but also requiring architecture-
specific code.

10 Conclusion

The IP-update optimization combination cib reduces the number of executed instructions by
roughly a factor 1.2 on AMD64, ARM A64, and RISC-V. The effect on performance varies
a lot across microarchitectures and benchmarks, between slowdowns by a factor 1.1 and
speedups by a factor 3.01.

The reason for the more spectacular speedups is that, without cib, IP-update dependence
chains become the critical path of execution on loop-dominated programs.

9 news:<us68iq$3jsgk$1@dont-email.me>

news:<us68iq$3jsgk$1@dont-email.me>

M. A. Ertl and B. Paysan 14:25

Another way to address this problem is the loop optimization: perform a loop-back
branch to a location stored at loop entry, breaking the dependence chain. While the speedups
from this optimization are not quite as spectacular as those from cib, and this optimization
speeds up only some benchmarks, it is much easier to implement.

References

1 James R. Bell. Threaded code. Communications of the ACM, 16(6):370–372, 1973.
2 Helmut Eller. Optimizing interpreters with superinstructions. Diplomarbeit, TU Wien, 2005.

URL: https://www.complang.tuwien.ac.at/Diplomarbeiten/eller05.ps.gz.
3 M. Anton Ertl and David Gregg. Implementation issues for superinstructions in Gforth. In

EuroForth 2003 Conference Proceedings, 2003. URL: https://www.complang.tuwien.ac.at/
papers/ertl%26gregg03euroforth.ps.gz.

4 M. Anton Ertl and David Gregg. Optimizing indirect branch prediction accuracy in virtual
machine interpreters. In SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI’03), 2003. URL: https://www.complang.tuwien.ac.at/papers/ertl%
26gregg03.ps.gz.

5 M. Anton Ertl and David Gregg. Combining stack caching with dynamic superinstructions.
In Interpreters, Virtual Machines and Emulators (IVME ’04), pages 7–14, 2004. URL:
https://www.complang.tuwien.ac.at/papers/ertl%26gregg04ivme.ps.gz.

6 M. Anton Ertl and David Gregg. Retargeting JIT compilers by using C-compiler generated
executable code. In Parallel Architecture and Compilation Techniques (PACT’ 04), pages 41–50,
2004. URL: https://www.complang.tuwien.ac.at/papers/ertl%26gregg04pact.ps.gz.

7 M. Anton Ertl and David Gregg. Stack caching in Forth. In 21st EuroForth Conference, pages
6–15, 2005. URL: https://www.complang.tuwien.ac.at/papers/ertl%26gregg05.ps.gz.

8 M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. vmgen — a generator of
efficient virtual machine interpreters. Software—Practice and Experience, 32(3):265–294, 2002.
URL: https://www.complang.tuwien.ac.at/papers/ertl+02.ps.gz.

9 M. Anton Ertl and Bernd Paysan. Gforth. Software, version 0.7.9_20240821., swhId:
swh:1:dir:61eb3b71325060fe2e01f5e819eb0bec959e5bf0 (visited on 2024-09-02). URL:
https://git.savannah.gnu.org/cgit/gforth.git.

10 M. Anton Ertl and Bernd Paysan. ip-updates. Collection, version 7. (visited on 2024-09-02).
URL: https://www.complang.tuwien.ac.at/anton/ip-updates.tar.xz.

11 David Gregg and John Waldron. Primitive sequences in general purpose Forth programs. In
18th EuroForth Conference, pages 24–32, 2002. URL: http://www.complang.tuwien.ac.at/
anton/euroforth2002/papers/gregg.ps.gz.

12 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed with
WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, pages 185–200, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3062341.3062363.

13 R. J. M. Hughes. Super-combinators. In Conference Record of the 1980 LISP Conference,
Stanford, CA, pages 1–11, New York, 1982. ACM.

14 Octave Larose, Sophie Kaleba, Humphrey Burchell, and Stefan Marr. AST vs. bytecode:
Interpreters in the age of meta-compilation. Proc. ACM Program. Lang., 7(OOPSLA2),
October 2023. doi:10.1145/3622808.

15 Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley,
first edition, 1997.

16 Henrik Nässén, Mats Carlsson, and Konstantinos Sagonas. Instruction merging and specializa-
tion in the SICStus Prolog virtual machine. In Principles and Practice of Declarative Program-
ming (PPDP01), 2001. URL: http://www.csd.uu.se/%7Ekostis/Papers/sicstus.ps.gz.

ECOOP 2024

https://www.complang.tuwien.ac.at/Diplomarbeiten/ eller05.ps.gz
https://www.complang.tuwien.ac.at/papers/ ertl%26gregg03euroforth.ps.gz
https://www.complang.tuwien.ac.at/papers/ ertl%26gregg03euroforth.ps.gz
https://www.complang.tuwien.ac.at/papers/ ertl%26gregg03.ps.gz
https://www.complang.tuwien.ac.at/papers/ ertl%26gregg03.ps.gz
https://www.complang.tuwien.ac.at/papers/ ertl%26gregg04ivme.ps.gz
https://www.complang.tuwien.ac.at/papers/ ertl%26gregg04pact.ps.gz
https://www.complang.tuwien.ac.at/papers/ ertl%26gregg05.ps.gz
https://www.complang.tuwien.ac.at/papers/ertl+02.ps.gz
https://archive.softwareheritage.org/swh:1:dir:61eb3b71325060fe2e01f5e819eb0bec959e5bf0;origin=https://git.savannah.gnu.org/git/gforth.git;visit=swh:1:snp:1faec00a6c15a4437d644656cc7a1f6d9cc3b878;anchor=swh:1:rev:9ea3267b29894afeda9b707899aa147c6ccb7af8
https://git.savannah.gnu.org/cgit/gforth.git
https://www.complang.tuwien.ac.at/anton/ip-updates.tar.xz
http://www.complang.tuwien.ac.at/anton/euroforth2002/papers/ gregg.ps.gz
http://www.complang.tuwien.ac.at/anton/euroforth2002/papers/ gregg.ps.gz
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3622808
http://www.csd.uu.se/%7Ekostis/Papers/sicstus.ps.gz

14:26 The Performance Effects of Virtual-Machine Instruction Pointer Updates

17 Ian Piumarta and Fabio Riccardi. Optimizing direct threaded code by selective inlining. In
SIGPLAN ’98 Conference on Programming Language Design and Implementation, pages 291–
300, 1998. URL: ftp://ftp.inria.fr/INRIA/Projects/SOR/papers/1998/ODCSI_pldi98.ps.
gz.

18 Todd A. Proebsting. Optimizing an ANSI C interpreter with superoperators. In Principles of
Programming Languages (POPL ’95), pages 322–332, 1995.

19 Erven Rohou, Bharath Narasimha Swamy, and André Seznec. Branch prediction and the
performance of interpreters — don’t trust folklore. In Code Generation and Optimization
(CGO), 2015. URL: https://hal.inria.fr/hal-01100647/document.

20 Markku Rossi and Kengatharan Sivalingam. A survey of instruction dispatch techniques
for byte-code interpreters. Technical Report TKO-C79, Faculty of Information Technology,
Helsinki University of Technology, May 1996. URL: http://www.cs.hut.fi/~cessu/papers/
dispatch.ps.

21 Ben L. Titzer. A fast in-place interpreter for WebAssembly. Proc. ACM Program. Lang,
6(OOPSLA2):148:1–148:27, 2022.

22 Benjamin Vitale and Tarek S. Abdelrahman. Catenation and specialization for Tcl virtual
machine performance. In IVME ’04 Proceedings, pages 42–50, 2004.

23 Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan, Laurent Daynès,
and Douglas Simon. Maxine: An approachable virtual machine for, and in, Java. ACM
Transactions on Architecture and Code Optimization, 9(4):30:1–30:24, January 2013.

24 Haoran Xu and Fredrik Kjolstad. Copy-and-patch compilation. Proc. ACM Program. Lang.,
5(OOPSLA):136:1–136:30, October 2021. URL: https://fredrikbk.com/publications/
copy-and-patch.pdf.

ftp://ftp.inria.fr/INRIA/Projects/SOR/papers/1998/ ODCSI_pldi98.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/SOR/papers/1998/ ODCSI_pldi98.ps.gz
https://hal.inria.fr/hal-01100647/document
http://www.cs.hut.fi/~cessu/papers/dispatch.ps
http://www.cs.hut.fi/~cessu/papers/dispatch.ps
https://fredrikbk.com/publications/copy-and-patch.pdf
https://fredrikbk.com/publications/copy-and-patch.pdf

Rose: Composable Autodiff for the Interactive Web
Sam Estep # Ñ

Software and Societal Systems Department, Carnegie Mellon University, Pittsburgh, PA, USA

Wode Ni # Ñ

Software and Societal Systems Department, Carnegie Mellon University, Pittsburgh, PA, USA

Raven Rothkopf # Ñ

Barnard College, Columbia University, New York, NY, USA

Joshua Sunshine # Ñ

Software and Societal Systems Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Reverse-mode automatic differentiation (autodiff) has been popularized by deep learning, but its
ability to compute gradients is also valuable for interactive use cases such as bidirectional computer-
aided design, embedded physics simulations, visualizing causal inference, and more. Unfortunately,
the web is ill-served by existing autodiff frameworks, which use autodiff strategies that perform
poorly on dynamic scalar programs, and pull in heavy dependencies that would result in unacceptable
webpage sizes. This work introduces Rose, a lightweight autodiff framework for the web using a
new hybrid approach to reverse-mode autodiff, blending conventional tracing and transformation
techniques in a way that uses the host language for metaprogramming while also allowing the
programmer to explicitly define reusable functions that comprise a larger differentiable computation.
We demonstrate the value of the Rose design by porting two differentiable physics simulations,
and evaluate its performance on an optimization-based diagramming application, showing Rose
outperforming the state-of-the-art in web-based autodiff by multiple orders of magnitude.

2012 ACM Subject Classification Software and its engineering → Compilers; Information systems
→ Web applications; Software and its engineering → Domain specific languages; Computing
methodologies → Symbolic and algebraic manipulation; Software and its engineering → Formal
language definitions; General and reference → Performance; Computing methodologies → Neural
networks; General and reference → General conference proceedings

Keywords and phrases Automatic differentiation, differentiable programming, compilers, web

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.15

Related Version Full Version: https://arxiv.org/abs/2402.17743 [10]

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.7
Software (Source Code): https://github.com/rose-lang/rose

archived at swh:1:dir:bc091e3b381dd680e389e14729302848edd7d0aa

Funding This material is based upon work supported by the Aqueduct Foundation and by National
Science Foundation under Grant Numbers 1910264, 2119007, and 2150217.

Acknowledgements Thanks to Adam Paszke for corresponding about JAX and Dex. The Rose icons
were created by Aaron Weiss; we use them via the CC BY 4.0 license.

1 Introduction

The web provides a platform for interactive experiences with a uniquely low barrier to
usage, because the browser obviates the need for software installation by automatically
downloading JavaScript code and running it securely on the client. Industry tools like
Google Slides [13] and Figma [11], as well as experimental tools like Sketch-n-Sketch [17]

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Sam Estep, Wode Ni, Raven Rothkopf, and Joshua Sunshine;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 15; pp. 15:1–15:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:estep@cmu.edu
https://samestep.com
https://orcid.org/0000-0002-7107-7043
mailto:nimo@cmu.edu
https://www.cs.cmu.edu/~woden/
https://orcid.org/0000-0002-5341-4958
mailto:rgr2124@barnard.edu
https://ravenrothkopf.com/
https://orcid.org/0000-0002-3926-683X
mailto:sunshine@cs.cmu.edu
https://www.cs.cmu.edu/~jssunshi/
https://orcid.org/0000-0002-9672-5297
https://doi.org/10.4230/LIPIcs.ECOOP.2024.15
https://arxiv.org/abs/2402.17743
https://doi.org/10.4230/DARTS.10.2.7
https://doi.org/10.4230/DARTS.10.2.7
https://github.com/rose-lang/rose
https://archive.softwareheritage.org/swh:1:dir:bc091e3b381dd680e389e14729302848edd7d0aa;origin=https://github.com/rose-lang/rose;visit=swh:1:snp:d9df7b78afd672c396dc437c4e5a28cf5cb608de;anchor=swh:1:rev:6bfb4c609d6190bcef408c6d9846c5fe305ff84e
https://doi.org/10.4230/DARTS.10.2.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Rose: Composable Autodiff for the Interactive Web

and Penrose [54], leverage this platform to enable authoring of visual media. Interactive
explainers like Red Blob Games [34], Bartosz Ciechanowski’s work [9], and Bret Victor’s
“Explorable Explanations” [50] use the web to help people understand complicated ideas
in depth, building up a causal mental model by using sliders to manipulate values and
immediately see the effects.

Many of these interactions are fairly simple: often the user just drags a slider back and
forth, manipulating a parameter in, for instance, a small physical simulation. But there is
room for much richer interactions. An early exploration was g9.js [52], which lets the user
directly drag around visual shapes, and automatically propagates those changes backward
to modify the underlying parameters driving the visualization. This idea of bidirectional
editing or bidirectional transformations [3] is quite powerful. Some more recent work [8] has
explored bidirectional editing in computer-aided design (CAD) via automatic differentiation
(autodiff), a technique for efficiently computing derivatives of numerical functions. Autodiff
has become popularized over the past few years by machine learning (ML) frameworks such
as TensorFlow [2], PyTorch [32], and JAX [12].

Autodiff engines built for ML are focused on high throughput for functions composed of
a relatively small number of operations on relatively large tensors. They use reverse-mode
autodiff to compute the gradient of a loss function in an iterative loop, using a numerical
optimization algorithm like stochastic gradient descent or Adam [25] to update the parameters
of the ML model until the loss value is sufficiently reduced. The loss function is usually
chosen to be parallelizable on a GPU. These characteristics do not generally apply to other
domains, which often involve scalar programs [22] on which overhead between operations
would dominate any tensor-level attempts at parallelism.

For scalar programs, program transformation tools are far more appropriate; examples
include Tapenade [16] for Fortran and C, Zygote [21] for Julia [7], and Enzyme [29] for
LLVM [26]. These tools consume and emit code that deals directly with scalars, reducing
expressiveness limitations and operation-level overhead at the expense of the parallelism
that ML frameworks gain by specializing to tensor operations. They typically leverage heavy
modern compiler technology, using various optimization passes on the program after (and
sometimes before) differentiation.

But in the interactive web setting, none of these existing points in the design space are
appropriate. We are operating in an environment that is

dynamic: the goal is to let the user author content or build up their mental causal
model, by (either implicitly through direct manipulation or explicitly through writing
code) specifying a differentiable function themselves. The autodiff engine must operate
online, differentiating functions directly inside of the user’s browser.
bandwidth-constrained: because of the no-install model described above, any
JavaScript or WebAssembly code used for autodiff must be shipped over the network to
the user’s browser. Heavyweight components are unacceptable because their bandwidth
requirements would exacerbate page load times beyond the user’s patience.
latency-constrained: the system must respond to the user’s manipulation of the
differentiable function definition, at interactive speed. What we care about is not just the
performance of the synthesized gradient, but the sum of that latency with the latency to
synthesize the gradient in the first place; quantitative differences like a slow “compilation”
step result in qualitative differences in the kinds of interaction possible.

All existing autodiff tools, including web-focused tools like TensorFlow.js [46], fall short on
at least one of these constraints: they impose large constant factors for scalar programs,
or depend on giant codebases that are difficult to package for the web and result in large
bundles, or are too slow to use in an interactive setting, or some combination of these.

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:3

To address this gap, we present Rose,1 a scalar-focused autodiff engine for the web that
achieves fast compilation time and high generated code performance in a small bundle. As
we will describe in Section 4, Rose is a hybrid autodiff system [22] which blends together
techniques from tracing and program transformation before emitting WebAssembly [15].
Unlike prior program transformation approaches that take advantage of heavyweight compiler
optimization toolchains, we produce efficient Rose IR before differentiating by using JavaScript
as a metaprogramming environment, somewhat similar to tracing in popular ML frameworks.
But unlike prior tracing approaches that expand all operations into one large graph, we
reduce generated code size and thus compilation time by allowing the user to explicitly
define composable functions that can be nested and reused. Our primary contributions are
as follows:

We establish the importance of, and constraints imposed by, the interactive web setting,
and articulate how those constraints translate to system requirements for autodiff in such
a setting.
We describe a novel system design that satisfies these requirements using a careful blend
of tracing with program transformation.
We present experiments demonstrating how each component of our design is key to
achieving the requirements we have laid out.
We publish Rose, an open-source software package implementing this design for others to
consume and build upon.

The rest of this paper is structured as follows. In Section 2 we give relevant general
mathematical background information about autodiff; we introduce a running example
that we then implement in Section 3, which discusses Rose from a user perspective. Then
Section 4 discusses the novel design of Rose, focusing on the high level because that is our
more interesting contribution, but also describing some low-level details of autodiff for the
curious reader. Section 5 describes the experiments we conducted with results showing why
this design is key to achieving our design goals. Finally we discuss related work in Section 6,
and conclude with future work in Section 7.

2 Background

To illustrate the basic ideas of reverse-mode autodiff, we’ll walk through the classic example
of using gradients to perform linear regression via least-squares optimization. Nothing in this
section is new. Almost all the content here can be found in standard textbooks for calculus,
linear algebra, and convex optimization; all the rest can be found in the research literature
on autodiff [39].

Suppose we have n measurements y ∈ Rn of a dependent variable, each corresponding
to one of n data points x1, . . . ,xn ∈ Rm. These data can be assembled into a matrix
X ∈ Rn×(m+1) defined by

X =

1 x⊤
1

...
...

1 x⊤
n

 =

1 x11 · · · x1m
...

...
. . .

...
1 xn1 · · · xnm

 .
We would like to predict the dependent variable as a linear function ŷ = Xβ where the
parameters β ∈ Rm+1 are chosen to minimize the sum of squares of the errors ε = y − ŷ.

1 Not to be confused with the ROSE (all caps) compiler infrastructure. [38]

ECOOP 2024

15:4 Rose: Composable Autodiff for the Interactive Web

That is, one would like to find an optimal solution to the optimization problem

min
β∈Rm+1

f(β) where f(β) = ∥ε∥2 = ∥y − ŷ∥2 = ∥y − Xβ∥2.

Applying convex optimization theory here is standard so we won’t belabor it, but because
this particular f is differentiable, convex, and smooth, there exists a step size η > 0 such
that if we start with any β0 ∈ Rm+1 and iteratively compute βi+1 = βi − η∇f(βi), then

f(βi+1) ≤ f(βi) ∀i ∈ N, and lim
i→∞

f(βi) ≤ f(β) ∀β ∈ Rm+1.

This is gradient descent. Crucially, it depends on being able to compute the gradient ∇f .

2.1 The vector-Jacobian product
As briefly mentioned in Section 1, reverse-mode autodiff is a general method for computing
gradients, which takes in an algorithm to compute a function, and returns an algorithm to
compute its gradient. Unlike other approaches to compute derivatives, the power of autodiff
lies in its compositionality and efficiency: we naturally express functions by composing
together smaller functions. If we possess an algorithm that computes a given function with a
given time complexity, reverse-mode autodiff gives us an algorithm to compute its derivative
with the same time complexity, in a way that can be directly composed with derivatives for
other functions. For example, in least-squares we compose together three functions

ξ : Rm+1 → Rn φ : Rn → Rn ψ : Rn → R
ξ(β) = Xβ φ(ŷ) = y − ŷ ψ(ε) = ∥ε∥2

to form f = ψ ◦φ ◦ ξ. Clearly, the gradient itself is insufficient to express ∇f compositionally,
because ξ and φ are not scalar-valued and thus do not have gradients. So we must first have
a compositional definition for the derivative.

The Jacobian of a function f : Rn → Rm is the matrix-valued function Jf : Rn → Rm×n

defined by

Jf (x) =
[
∂f
∂x1

· · · ∂f
∂xn

]
=

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm

∂x1
· · · ∂fm

∂xn

 .
From this, if we fix x ∈ Rn then we can define a function vjpx

f : R1×m → R1×n, called the
vector-Jacobian product (VJP), operating on row vectors called adjoints by vjpx

f (ÿ) = ÿJf (x).
In the special case of m = 1 we can recover the gradient by ∇f(x) = vjpx

f (1)⊤, but unlike
the gradient, this notion of a derivative actually composes. For instance, if we also have
g : Rm → Rp, then

vjpx
g◦f = vjpx

f ◦ vjpy
g where y = f(x).

This is the chain rule for reverse-mode autodiff, so-called because it composes vjpf and vjpg
in the reverse order of how f and g themselves were originally composed. As shown here,
computing the derivative vjpg◦f depends on computing the original function f itself, so in
practice the term “VJP” is sometimes actually used to refer to the mapping

Rn → Rm × (R1×m → R1×n)
x 7→ (f(x), vjpx

f)

that returns both the output of the original function – which we call a primal value to
contrast it with the VJP’s adjoints – and the VJP function.

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:5

We’ll provide a more general set of composable VJPs in Sections 4.1 and 4.3, but for this
example, we can derive the VJPs

vjpβ
ξ : R1×n → R1×(m+1) vjpŷ

φ : R1×n → R1×n vjpε
ψ : R → R1×n

vjpβ
ξ (¨̂y) = ¨̂yX vjpŷ

φ(ε̈) = −ε̈ vjpε
ψ(σ̈) = 2σ̈ε⊤

of the functions we decomposed earlier. One key property to notice here is that, given
algorithms to compute ξ, φ, and ψ, we immediately have algorithms to compute vjpξ, vjpφ,
and vjpψ, respectively, with the same time complexities. For instance, ξ is O(mn) with naïve
matrix multiplication, as is vjpξ. This is not too surprising, since that is also the same time
complexity as directly computing and multiplying by Jξ. But the time complexity for both
φ and ψ is O(n), as are the formulas given above for vjpφ and vjpψ, in contrast to the O(n2)
cost of naïvely computing Jφ or Jψ. This is because those Jacobians are sparse; the ability
of reverse-mode autodiff to preserve time complexity in the presence of sparse Jacobians is
called the cheap gradient principle.

In any case, from these simpler VJPs we can easily compose the gradient of f as

∇f(β) = vjpβ
f (1)⊤ = vjpβ

ξ (vjpŷ
φ(vjpε

ψ(1)))⊤ = (−2ε⊤X)⊤ = 2X⊤(Xβ − y)

where ŷ = ε(β) = Xβ and ε = φ(ŷ) = y − ŷ.

2.2 The Jacobian-vector product
We’ve talked about the VJP used for reverse-mode autodiff, which is the more useful for
optimization, but also the more challenging to implement and specify. Rose allows users to
specify custom derivatives for reasons described in Section 3.2, so to reduce user burden, we
allow those custom derivatives to be defined using the simpler Jacobian-vector product (JVP)
instead of the VJP. In Section 4.1 we’ll discuss the actual program transformation used to
derive the VJP from the JVP [39], but here we first lay out the mathematical groundwork.

For f : Rn → Rm, the JVP of f at x ∈ Rn is a function jvpx
f : Rn → Rm that operates on

column vectors called tangents by jvpx
f (ẋ) = Jf (x)ẋ. In the special case of n = 1 we can

recover the ordinary derivative by f ′(x) = jvpx
f (1). But more generally, given g : Rm → Rp

we also have a chain rule

jvpx
g◦f = jvpy

g ◦ jvpx
f where y = f(x)

that composes jvpf and jvpg in the same order as f and g, hence the name “forward-mode.”
This is much simpler computationally, because while reverse-mode needed to compose together
the VJPs themselves until the end when it could call them with the final adjoint value,
forward-mode can simply use the mapping

Rn × Rn → Rm × Rm

(x, ẋ) 7→ (f(x), jvpx
f (ẋ))

to package together the primal and tangent values.
The judgment is somewhat subjective, but we invite the reader to decide for themselves

whether the VJPs derived earlier or these JVPs

jvpβ
ξ : Rm+1 → Rn jvpŷ

φ : Rn → Rn jvpε
ψ : Rn → R

jvpβ
ξ (β̇) = Xβ̇ jvpŷ

φ(˙̂y) = − ˙̂y jvpε
ψ(ε̇) = 2ε⊤ε̇

are closer to the original definitions of ξ, φ, and ψ.

ECOOP 2024

15:6 Rose: Composable Autodiff for the Interactive Web

When packaging together f with jvpf , it is convenient to represent the pair (x, ẋ) ∈ Rn×Rn
as the single vector x̄ = x + ẋε ∈ Dn, making use of the infinitesimal element ε in the dual
numbers defined by the commutative algebra D = {a+ bε | a, b ∈ R} where ε2 = 0. For dual
numbers x̄ = x+ ẋε ∈ D and ȳ = y + ẏε ∈ D, the arithmetic operations

x̄+ ȳ = x+ y + (ẋ+ ẏ)ε
x̄− ȳ = x− y + (ẋ− ẏ)ε
x̄ȳ = xy + (ẋy + xẏ)ε
x̄

ȳ
= x

y
+ ẋy − xẏ

y2 ε where y ̸= 0

correspond directly to the JVPs of the corresponding arithmetic operations on real numbers.
This allows us to define what we’ll call the dual JVP

ȷvpf : Dn → Dm

ȷvpf (x + ẋε) = f(x) + jvpx
f (ẋ)ε

which operates on column vectors of dual numbers. In this framing, specifying the JVPs of
our three functions

ȷvpξ : Dm+1 → Dn ȷvpφ : Dn → Dn ȷvpψ : Dn → D
ȷvpξ(β̄) = Xβ̄ ȷvpφ(¯̂y) = y − ¯̂y ȷvpψ(ε̄) = ε̄⊤ε̄

becomes almost trivial. So when we refer to the JVP in Rose, we’re always talking about
this dual JVP, not the raw JVP which would operate on real numbers.

2.3 The Hessian
While gradient descent is a first-order method that only makes use of the gradient, other
optimization techniques such as Newton’s method also need the Hessian, which turns
f : Rn → R into a matrix-valued function Hf : Rn → Rn×n yielding all the second-order
partial derivatives of f at a given point. The JVP and VJP can be used together to define
the Hessian, which is actually just the Jacobian of the gradient; that is, Hf = J∇f . We
already know how to use the VJP of a function to compute its gradient. To compute the
Jacobian, we just need to observe that the ith row of the Jacobian is equal to the JVP applied
to the ith basis element ei of Rn:

Hf (x) =
[
jvpx

∇f (e1) · · · jvpx
∇f (en)

]
where ∇f(x) = vjpx

f (1)⊤

3 Using Rose

Now that we’ve discussed the mathematical ideas behind Rose, in this section we’ll describe
how programmers use Rose to understand how it fits into the context described in Section 1.
Then in Section 4 we’ll describe our design that blends together tracing with program
transformation to fit into this context.

Listing 1 shows a comprehensive end-to-end example using Rose to perform gradient
descent to solve the linear regression problem laid out in Section 2. This entire example is
JavaScript code, which makes use of Rose as a library; lines 1–2 use standard JavaScript
import statements to pull in definitions from the Rose library. Lines 3–10 use arithmetic
primitives from Rose to implement the loss function from Section 2:

f(β) = ∥y − Xβ∥2 =
n∑
i=1

(
yi − β0 −

m∑
j=1

xijβj

)2

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:7

1 import { Real, Vec, compile, fn, struct, vjp } from "rose";
2 import { add, mul, sub, sum } from "rose";
3 const sqr = (x) => mul(x, x);
4 const leastSquares = ({ m, n }) => fn([{
5 x: Vec(n, Vec(m, Real)), y: Vec(n, Real),
6 b0: Real, b: Vec(m, Real),
7 }], Real, ({ x, y, b0, b }) => sum(n, (i) => {
8 const yHat = add(b0, sum(m, (j) => mul(x[i][j], b[j])));
9 return sqr(sub(y[i], yHat));

10 }));
11 const linearRegression = async ({ x, y, eta }) => {
12 const [n, m] = [y.length, x[0].length];
13 const Beta = struct({ b0: Real, b: Vec(m, Real) });
14 const f = leastSquares({ m, n });
15 const g = fn([Beta], Real, ({ b0, b }) => f({ x, y, b0, b }));
16 const h = fn([Beta], Beta, (beta) => vjp(g)(beta).grad(1));
17 const grad = await compile(h);
18 let b0 = 0; let b = Array(m).fill(0);
19 for (;;) {
20 const beta = grad({ b0, b });
21 const bb0 = b0 - eta * beta.b0;
22 const bb = b.map((bi, i) => bi - eta * beta.b[i]);
23 if (bb0 === b0 && bb.every((bi, i) => bi === b[i])) break;
24 b0 = bb0; b = bb;
25 }
26 return { b0, b };
27 };
28 console.log(await linearRegression({ eta: 1e-4,
29 x: [[10],[8],[13],[9],[11],[14],[6],[4],[12],[7],[5]],
30 y: [8.04,6.95,7.58,8.81,8.33,9.96,7.24,4.26,10.84,4.82,5.68],
31 }));

Listing 1 Using Rose to do linear regression on the first dataset in Anscombe’s quartet [4].

Lines 4–7 define the type of the leastSquares function, which takes as input x1, . . . ,xn ∈ Rm,
as well as y ∈ Rn and β ∈ Rm+1, and returns a scalar. Lines 11–27 wrap around that
low-level function to provide a high-level method to perform linear regression, which is then
used by lines 28–31. More specifically, line 13 uses Rose to define the type of β ∈ Rm+1, a
vector with m elements plus an additional scalar bias. Line 14 uses the earlier leastSquares
definition to get a Rose function for the specific m,n ∈ N needed, and line 15 partially applies
that function using the provided x and y values as constants. Line 16 uses Rose’s builtin vjp
function to take the gradient of that partially applied loss function. While mathematically it
can be useful to distinguish column and row vectors, the Rose library does not, so the VJP
directly produces the gradient. Line 17 compiles that gradient function to WebAssembly,
producing a function that can be called with concrete standard JavaScript values instead of
abstract Rose values. Finally, lines 18–26 perform gradient descent by calling the compiled
grad function.

ECOOP 2024

15:8 Rose: Composable Autodiff for the Interactive Web

As demonstrated by the above examples, Rose works by letting the user define differentiable
functions of the form fn(paramTypes, returnType, body). We’ll discuss this more in
Section 4, but the high-level idea from a user perspective is that normal JavaScript functions
like the one defined on line 3 of Listing 1 roughly correspond to what one might think of as
macros that get expanded on demand to produce code, while Rose functions defined using
fn correspond to traditional functions, and must be well-typed. One could define that sqr
“macro” as a function instead as

const sqr = fn([Real], Real, (x) => mul(x, x));

where the difference is that the body of this function would then be traced only once
immediately when it is defined, as opposed to the sqr “macro” defined in Listing 1 which
gets expanded/traced every time it is called (which in this case happens to only be on line 9).
This ability for users to choose between these two ways to define functions is a key feature
in the novel design of Rose, and we will see in Section 5 that it is crucial to achieving the
design goals for interactive differentiable web applications that we laid out in Section 1.

3.1 Opaque functions

The above example works well using only builtin arithmetic functions, but it’s not interactive;
let’s look at an interactive example that takes advantage of Rose’s ability to call predefined
JavaScript functions and define custom derivatives for them. The Rose project website2

has an interactive widget displaying the local quadratic approximation to the function
(x, y) 7→ xy, allowing a user to drag the point around to see how the shape of the local
quadratic approximation shifts; see the full version of this paper [10] for a screenshot. The
page also allows the user to modify the mathematical expression defining the function, causing
Rose to immediately re-derive the gradient and Hessian, and compile the new function to
WebAssembly. For brevity we omit the code to generate the user interface, and instead focus
on how one would use Rose to calculate the first and second derivatives used to visualize the
quadratic approximation.

Listing 2 shows a Rose program calculating the value, gradient, and Hessian of the power
function at x = 2 and y = 3. Line 2 imports a power function with a custom derivative, as
we’ll describe shortly. Lines 3–4 define type aliases for R2 and R2×2, respectively. Rose types
are simply JavaScript values, so type aliases are defined using const in the same way as any
other JavaScript value.

Recall that the vector-Jacobian product (VJP) introduced in Section 2.1 swaps the domain
and codomain from the original function. In addition, JavaScript only allows functions to
return one argument. Therefore to take the VJP of a Rose function, that function must have
only have one parameter. So, line 5 wraps the pow function to take a single vector argument
rather than two scalar arguments, allowing it to be passed to Rose’s vjp function. Just as
we discussed in Section 2.1, we compute the gradient by passing in a value of 1.

Lines 7–10 then use the gradient g of f to compute its Hessian by differentiating once more.
Line 8 runs the forward pass for the Hessian just once and saves all necessary intermediate
values, after which line 9 runs the backward pass twice with the two basis vectors to compute
the full Hessian matrix. Lines 11–14 wrap these three functions into a single function that
calls all three and returns the results in a structured form. Finally, line 15 compiles that
function to WebAssembly, and line 16 calls it at the point (2, 3).

2 https://rosejs.dev/

https://rosejs.dev/

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:9

1 import { Real, Vec, compile, fn, vjp } from "rose";
2 import { pow } from "./pow.js";
3 const R2 = Vec(2, Real);
4 const R22 = Vec(2, R2);
5 const f = fn([R2], Real, ([x, y]) => pow(x, y));
6 const g = fn([R2], R2, (v) => vjp(f)(v).grad(1));
7 const h = fn([R2], R22, (v) => {
8 const { grad } = vjp(g)(v);
9 return [grad([1, 0]), grad([0, 1])];

10 });
11 const all = fn([Real, Real], { z: Real, g: R2, h: R22 }, (x, y) => {
12 const v = [x, y];
13 return { z: f(v), g: g(v), h: h(v) };
14 });
15 const compiled = await compile(all);
16 console.log(compiled(2, 3));

Listing 2 An example Rose program.

1 import { Dual, Real, add, div, mul, fn, opaque } from "rose";
2 const log = opaque([Real], Real, Math.log);
3 log.jvp = fn([Dual], Dual, ({re:x,du:dx}) => {
4 return { re: log(x), du: div(dx, x) };
5 });
6 export const pow = opaque([Real, Real], Real, Math.pow);
7 pow.jvp = fn([Dual, Dual], Dual, ({re:x,du:dx}, {re:y,du:dy}) => {
8 const z = pow(x, y);
9 const dw = add(mul(dx, div(y, x)), mul(dy, log(x)));

10 return { re: z, du: mul(dw, z) };
11 });

Listing 3 The contents of pow.js defining a differentiable power function.

Listing 3 shows how the pow function can be defined to call JavaScript’s existing Math.pow
function. Because Rose cannot see the definition of this opaque function, it must be given
a definition for its derivative. Lines 3–5 use Rose define the logarithm’s dual JVP, which
is automatically transposed to produce a VJP as we’ll describe in Section 4. Specifically,
the signature of this function takes the original log function and maps every instance of the
Real numbers to become the Dual numbers we introduced in Section 2.2. In this case, the
returned tangent is given by the familiar rule d

dx ln x = 1
x from calculus.

Similarly, lines 6–11 define the power function along with its derivative. Note that, while
these two functions use opaque to define their bodies, they define their derivatives via fn, the
same as the Rose functions we discussed in earlier sections. This means that only the first
forward derivative needs to be provided. Since the body of this first derivative is transparent
to Rose, the reverse derivative and any higher derivatives can be computed automatically.

ECOOP 2024

15:10 Rose: Composable Autodiff for the Interactive Web

import { Dual, Real, fn, mul, neg, opaque } from "rose";
const sin = opaque([Real], Real, Math.sin);
const cos = opaque([Real], Real, Math.cos);
sin.jvp = fn([Dual], Dual, ({ re: x, du: dx }) => {

return { re: sin(x), du: mul(dx, cos(x)) };
});
cos.jvp = fn([Dual], Dual, ({ re: x, du: dx }) => {

return { re: cos(x), du: mul(dx, neg(sin(x))) };
});

Listing 4 Definitions of sine and cosine functions with custom derivatives.

import { Dual, Real, fn, opaque } from "rose";
const print = opaque([Real], Real, (x) => {

console.log(x);
return x;

});
print.jvp = fn([Dual], Dual, (z) => {

print(z.re);
return z;

});

Listing 5 A custom Rose function for print debugging.

3.2 Custom derivatives

Rose lets users define custom derivatives for functions that depend on each other, as in
Listing 4. The user can also define their own functions to use with opaque. For instance,
one might want to define a print function for debugging purposes as in Listing 5, but Rose
cannot look inside the definition of print; by setting print.jvp, the programmer can tell
Rose that the derivative of this function should similarly perform its side effect and otherwise
act like the identity function.

The other situation is when Rose has automatically constructed a derivative for a function,
but that derivative is unstable or otherwise exhibits some undesirable property. Rose allows
the user to set a custom derivative for any function, not just opaque ones. For instance, by
default the derivative of the square root function tends to infinity as the argument approaches
zero, which causes problems if it is ever called with a zero argument. To prevent this
exploding-gradient problem, we sometimes use a square root with a clamped derivative, as
in Listing 6.

In all of these examples, notice that the user only needs to specify the JVP, and not the
VJP; this is true even if they later decide to use any of these functions in a VJP context,
because Rose uses transposition (described in Section 4.3) to automatically construct a VJP
from the JVP. A large part of the value of autodiff is that it ensures that the derivative
remains in sync with the primal function by construction. Similarly, if we can also assist in
keeping the forward-mode and reverse-mode derivatives in sync when one of them must be
manually specified, this is a significant benefit for user ergonomics and maintainability.

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:11

import * as rose from "rose";
import { Dual, Real, div, fn, gt, mul, select } from "rose";

const max = (x: Real, y: Real) =>
select(gt(x, y), Real, x, y);

const sqrt = fn([Real], Real, (x) => rose.sqrt(x));
sqrt.jvp = fn([Dual], Dual, ({ re: x, du: dx }) => {

const y = sqrt(x);
const dy = mul(dx, div(1 / 2, max(1e-5, y)));
return { re: y, du: dy };

});

Listing 6 A custom derivative of the square root function to avoid exploding gradients.

tracing transformation

Rose

source
language fn fn ...

host
language fn fn ...

host

language IR

evaluate

gradients
evaluate

IR IR IRimport

backprop

gradients

parse

compile

Ex
ec

ut
e

Figure 1 With Rose, the programmer uses the host language for metaprogramming like in
tracing autodiff, and defines composable functions like in transformation autodiff.

4 Design

The previous section described a user experience that hints at the design of Rose; this section
makes that design explicit. Autodiff frameworks typically fall into the two categories of
tracing and transformation, with some hybrid frameworks combining aspects from the two
extremes [22]. Rose chooses a specific point in the space of possible hybrid approaches, as
diagrammed in Figure 1. To highlight the novel aspects of this design, we will first briefly
describe tracing and transformation autodiff; then we will explain how Rose uses parts of
both approaches to provide an autodiff engine for the setting described in Section 1.

In tracing autodiff, the programmer writes code in what we call the host language (e.g.
Python [2, 32]). They use an autodiff library to construct differentiable scalars, vectors,
matrices, and other tensors. Each such tensor can be thought of as a single node in a large
computation graph. Then the programmer calls functions from that autodiff library which
take in differentiable tensors and produce more differentiable tensors. Each such function call
creates edges in the computation graph from the arguments to the return value. Eventually,
a final differentiable scalar value is produced. The programmer calls a special procedure from
the autodiff framework, passing in this final scalar value. The autodiff framework traces

ECOOP 2024

15:12 Rose: Composable Autodiff for the Interactive Web

backward through the computation graph in reverse topological order, attaching gradient
values to every node as it goes. The programmer can then use the autodiff framework to
access the gradient value attached to any node as they please.

In transformation autodiff, the programmer writes code in what we will call the source
language (e.g. Fortran [16] or Julia [20]). The compiler frontend parses and typechecks this
source language to convert it to an intermediate representation (IR). This first step typically
preserves most of the structure of what the programmer wrote, modulo source formatting.
In particular, function definitions and calls in the source text are typically represented as a
call graph in an imperative IR, or as lambda terms in a functional IR. Then, the autodiff
framework takes in this IR to compute the function the programmer wrote, and emits
transformed IR to compute that function along with its gradient. Crucially, this autodiff
transformation preserves the asymptotic size of the original program: if the IR representation
of the original program has size n, then the size of the transformed program to compute
gradients is O(n). Then, the compiler backend converts the IR to an executable binary like
normal, which can be run to compute the desired gradients.

Figure 1 shows how Rose combines these two approaches. Like tracing, Rose lets the
programmer write in a host language they are familiar with: JavaScript, in this case. And
like tracing, the programmer is free to use all the features of the host language to describe
the shape of their computation. But unlike tracing, and more like transformation, Rose
also allows the programmer to explicitly define multiple functions that can be composed
together to form a larger computation. Unlike transformation, the programmer’s code does
not get directly parsed and typechecked to produce the IR; the IR is instead produced by
symbolic evaluation like in tracing. But like transformation, the IR can include control flow
and function calls, which get explicitly transformed by autodiff rather than being effectively
erased as in tracing. And like transformation, the resulting differentiated IR is compiled to
WebAssembly [15] that can then be repeatedly executed to compute gradients for the same
program.

By restricting our IR to not allow recursive functions, we are able to use a compilation
strategy similar to destination-passing style [40] to avoid the cost of sophisticated mem-
ory management, increasing performance. This strategy not to deallocate memory while
computing gradients is justified by the way that reverse-mode autodiff generally needs to
retain intermediate values, as described in Section 4.3. Importantly, while Rose IR does not
allow recursion, the programmer can freely express recursive computations by using the host
language for metaprogramming, as we will later discuss in Sections 4.4 and 5.4.2.

In the following subsections, we will discuss the Rose IR at a theoretical level and
explain the autodiff and transposition [39] program transformations which we use to compute
gradients; then in Section 4.4 we will step back again to discuss how the programmer interacts
with this IR indirectly through Rose as a library. All inference rules can be found in the full
version of this paper [10].

4.1 Rose intermediate representation
Figure 2 shows the abstract syntax for the Rose IR. It is a first-order functional language
with non-mutable array types, and a “reference” or “accumulator” type constructor [33],
written &τ . The full version of this paper [10] gives the typing rules for the Rose IR. These
are all fairly standard, except for the rules for type constraints κ. We will explain these
less common features of the language in the context of a specific example. Section 4.3 will
demonstrate the need for accumulators in more detail, but at a high level, they arise naturally
because the backward pass of reverse-mode autodiff essentially runs the program backward in

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:13

m,n ∈ Z≥0
c ∈ R
κ ::= Type | Value | Index
τ ::= t | () | Bool | Real | n | &τ | [τ]τ | (τ, τ) | <t: κ>(τ) -> τ
⊖ ::= ¬ | − | abs | sgn | ceil | floor | trunc | sqrt
⊕ ::= ∧ | ∨ | iff | xor | ̸= | < | ≤ | = | > | ≥ | + | − | × | ÷
e ::= () | true | false | c | n | [x] | (x, x) | ⊖x | x⊕ x | x ? x : x | x += x

| x[x] | fst x | snd x | &x[x] | &fst x | &snd x | f<τ>(x) | [for x: τ, b]
| accum x from x in b

b ::= x | let x: τ = e in b
d ::= def f<t: κ>(x: τ): τ = b

Figure 2 Abstract syntax for Rose IR.

1 def sum <n: Index >(v: [n]Real): Real =
2 let z: Real = 0.0 in
3 let t: (Real , [n]()) =
4 accum a from z in
5 [for i: n,
6 let x: Real = v[i] in
7 let u: () = a += x in
8 u
9]

10 in
11 let y: Real = fst t in
12 y

Listing 7 A Rose IR function to compute the sum of a vector of real numbers.

time, so reads become accumulation, and writes become reads. Having a type which restricts
mutation in this way makes it easier to ensure correctness without introducing additional
data dependencies that hinder compiler optimization.

Rose users write JavaScript, so prior examples have been written in JavaScript. However,
in this subsection, and Sections 4.2 and 4.3, we describe the IR and so the examples are
written in Rose IR. To make this distinction clear, we will format IR examples differently by
putting them inside grey boxes.

Listing 7 computes the sum of a vector of real numbers. Line 1 says that the function
is generic over the size of the array, where the size is represented as a type n with the
Index constraint. The three type constraints in Rose IR are ordered as a hierarchy Index <:
Value <: Type. Semantically, Type refers to any type that can be stored in a variable; the
only types that don’t satisfy Type are function types, since Rose IR is first-order. Value is
contrasted with reference types: that is, types τ : Type satisfy the Value constraint unless
they are of the form τ = &τ ′. Only Value types can be used in other type constructors,
so for example, a reference cannot be stored as an element of an array. Finally, the Index
constraint marks types that can be used as the index type of an array; the only Rose IR
types that satisfy this constraint are those of the form n ∈ N, which correspond to the value
set {0, . . . , n− 1}.

ECOOP 2024

15:14 Rose: Composable Autodiff for the Interactive Web

Line 2 defines a local called z of type Real with the value 0.0. This is used by the
accum block on lines 4 to 10. This block serves as the scope for the variable a of type &Real,
because z is of type Real. The variable a is in scope for lines 5 to 9 and goes out of scope on
line 10. As mentioned above, this is an accumulator type: it represents a container holding a
value of type Real, but that value cannot be read, and can only be accumulated. In other
words, there is no operation of type &Real → Real. But, given a value of type Real, one
can use the += operation to accumulate into the value contained in a.

With this accumulator in hand, lines 5 to 9 execute. These lines are an array constructor
with index type n, as shown on line 5. The value type of this array constructor is the unit
type () so its resulting array type [n]() holds no data; its sole importance comes from the
side effect it performs on line 7. The result is that every element of v gets accumulated into
the value of a, so after this for block executes, the inner value of a is equal to the sum of all
the values from v. Again, though, a cannot actually be read.

Finally, after the body of the accum block executes, it returns the inner value from a,
along with the value that was returned from the accum block body itself, which is of type
[n]() as mentioned before. These two items are packaged together into a tuple t of type
(Real, [n]()). Because no accumulator type can be part of a tuple, this prevents a itself
from escaping from the accum body, so it is guaranteed to be inaccessible after the accum
block executes. Thus, every accumulator of type &τ starts as accumulate-only, and then when
it goes out of scope, its value is guaranteed to be inaccessible except as a “decayed” read-only
value of type τ . These semantics may seem unintuitive, but they turn out to perfectly model
the mapping from forward-mode to reverse-mode autodiff described in Section 4.3.

That function definition was quite verbose, as it strictly adhered to the syntax from
Figure 2 for clarity. In the remainder of this section, we will allow ourselves syntactic sugar
to write expressions in places where the strict syntax requires variable names, with the
understanding that these could be desugared by introducing intermediate let bindings:

def sum <n: Index >(v: [n]Real): Real =
fst (accum a from 0.0 in [for i: n, a += v[i]])

4.2 Forward-mode autodiff
As we showed in Section 2.2, the forward-mode JVP can often be easier to specify than the
reverse-mode VJP, which is why we allow the user to specify custom derivatives using the
JVP as described in Section 3.2. So, we decompose reverse-mode autodiff into two parts [39],
first applying forward-mode autodiff as we will describe shortly, and then applying a second
transformation which we will describe in Section 4.3. The full version of this paper [10] lists
inference rules for forward-mode autodiff of Rose IR. Specifically, these rules can be used to
transform a function f into a function f ′ that computes the dual JVP of f , where the dual
numbers are represented in Rose IR by the tuple type Dual = (Real, Real).

Consider this function, which assumes that sin : <>(Real) -> Real already exists:

def f(u: Real): Real =
let v: Real = sin(u) in
let w: Real = -v in
w

We assume that we are already given a dual JVP for sin. For instance, if the function
cos : <>(Real) -> Real also exists, then ȷvpsin : <>(Dual) -> Dual might be:

def jvp_sin ((x, dx): Dual): Dual = (sin(x), dx * cos(x))

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:15

Then, by applying the inference rules we have laid out, we get ȷvpf : <>(Dual) -> Dual:

def jvp_f(u: Dual): Dual =
let v: Dual = jvp_sin (u) in
let (v_re , v_du) = v in
let w: Dual = (-v_re , -v_du) in
w

All the rules for forward-mode autodiff are straightforward and quite standard, so we will
not dwell on them here. Now we move on to the more complicated transformation, which
maps from forward-mode autodiff to reverse-mode autodiff.

4.3 Transposition
The name “transposition” comes from the fact that the JVP and VJP can be thought of as
transposes of each other, in the sense of transposing a matrix. Recall that, for f : Rn → Rm
and x ∈ Rn, we have

jvpx
f : Rn → Rm vjpx

f : R1×m → R1×n

jvpx
f (ẋ) = Jf (x)ẋ vjpx

f (ÿ) = ÿJf (x)

which both make use of the Jacobian matrix Jf (x) : Rm×n. So, Jf (x) is the matrix of the
linear transformation jvpx

f . But then, observe that Jf (x)⊤ : Rn×m is the matrix of the linear
transformation

Rm → Rn

ẏ 7→ Jf (x)⊤ẏ = (ẏ⊤Jf (x))⊤ = vjpx
f (ẏ⊤)⊤.

If we had an explicit dense representation of Jf then it would be trivial to transpose. But
we don’t; instead, we have an implicit, potentially sparse, representation of Jf in the form
of the dual JVP function ȷvpf . The full version of this paper [10] lists inference rules to
transpose the linear derivative represented by the dual JVP in Rose IR. This transformation
is considerably more complicated than the initial transformation to do forward-mode autodiff.
We will walk through this transformation using the example from Section 4.2, leaving a more
systematic exposition to the prior literature [33, 39] on which our approach was based.

Now, back to the example. By strictly following the inference rules we have laid out, we
end up with Listing 8. As is common with program transformations like this, the resulting
code is highly redundant; via a straightforward optimization pass that we omit here for
brevity, we obtain the following:

def fwd_f ((u, _): Dual): (Dual , Tape_sin) =
let ((v, _), t) = fwd_sin ((u, 0)) in
let w = -v in
((w, 0), t)

def bwd_f(ddu: &Dual , (_, dw): Dual , t: Tape_sin): () =
let dv = -dw in
bwd_sin (ddu , (0, dv), t)

This example hints at the fact that the infinitesimal part is always zero for dual numbers
representing primal values, and the real part is always zero for dual numbers representing
adjoint values. Thus, in our actual system, in the aforementioned optimization pass we also
translate the Dual type back to Real, essentially reversing our replacement of Real with
Dual from Section 4.2:

ECOOP 2024

15:16 Rose: Composable Autodiff for the Interactive Web

type Tf = (Dual ,(Dual ,(Tape_sin ,(Real ,(Real ,(Dual ,()))))))
def fwd_f(u: Dual): (Dual , Tf) =

let (v, t0) = fwd_sin (u) in
let (v_re , v_du) = v in
let w_re = -v_re in
let w_du = 0 in
let w = (w_re , v_re) in
(w, (v, (t0 , (w_re , (w_du , (w, ()))))))

def bwd_f(ddu: &Dual , dw0: Dual , t: Tf): () =
let (v, (t0 , t1)) = t in
let (dv , ()) = accum ddv from v in (

let v_re = fst v in
let ddv_re = &fst ddv in
let v_du = snd v in
let ddv_du = &snd ddv in
let (w_re , t2) = t1 in
let (dw_re , ()) = accum ddw_re from w_re in (

let (w_du , t3) = t2 in
let (dw_du , ()) = accum ddw_du from w_du in (

let (w, t4) = t3 in
let (dw1 , ()) = accum ddw from w in (

ddw += dw0
) in
let (dw1_re , dw1_du) = dw1 in
ddw_re += dw1_re ;
ddw_du += dw1_du

) in
ddv_du += -dw_du

) in
()

) in
bwd_sin (ddu , dv , t0)

Listing 8 Strict transposition of the function f from Section 4.2.

def fwd_f(u: Real): (Real , Tape_sin) =
let (v, t) = fwd_sin (u) in
let w = -v in
(w, t)

def bwd_f(ddu: &Real , dw: Real , t: Tape_sin): () =
let dv = -dw in
bwd_sin (ddu , dv , t)

Thus concludes the transposition of f. Similarly we can also transpose jvp_sin:

def fwd_sin (x: Real): (Real , Real) =
(sin(x), cos(x))

def bwd_sin (ddx: &Real , dy: Real , z: Tape_sin): () =
ddx += dy * z

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:17

import { Real, add, div, fn } from "rose";
const f = (x) =>

fn([Real], Real, (y) => div(x, y));
const g = (y) =>

fn([Real], Real, (x) => div(x, y));
let [f0, f1, f2] = [f(5), f(7), f(5)];
fn([Real], Real, (z) => add(f1(z), f1(z)));

def f0(y: Real): Real =
5 / y

def f1(x: Real): Real =
7 / y

def f2(x: Real): Real =
5 / y

def h(z: Real): Real =
f1(z) + f1(z)

Figure 3 JavaScript code (left) that produces Rose IR (right) when evaluated.

4.4 Metaprogramming
We have described the right-hand side of Figure 1; now all that remains in this section is

to describe the “evaluate” step on the left-hand side. Figure 3 shows a simple example of
how evaluating JavaScript code produces Rose IR. In this example, we have two JavaScript
functions f and g, each of which uses fn to construct and return a Rose function when called.
We call f three times and never call g, so three Rose IR functions resulted from the single
instance of fn in the source of f, and zero Rose IR functions resulted from the instance of
fn in the source of g. Then, we call fn one more time, and in the body of that fn, we call
f1 twice. Note that those calls to f1 remain in the resulting IR; Rose does not inline calls,
in contrast to standard tracing autodiff frameworks.

5 Evaluation

As discussed in Section 4, Rose is characterized by three primary design choices:
D1 Allow users to define and compose custom functions using fn.
D2 Use program transformation to compile to WebAssembly.
D3 Use tracing to allow metaprogramming in JavaScript.

These design choices are motivated by Rose’s role as a toolkit for building interactive,
differentiable web applications. The dynamic bandwidth- and latency-constrained environ-
ment of web browsers poses significant constraints on the size and speed of Rose. In addition
to good performance, Rose also needs to be expressive and flexible enough for the end user
to build web applications in a myriad of domains.

In this section, we evaluate Rose both quantitatively and qualitatively by integrating Rose
into three web-based applications for diagramming, physical simulation, and reinforcement
learning (Section 5.1). In subsequent subsections, we report on Rose’s performance (Sec-
tions 5.2 and 5.3) and discuss qualitative observations of how Rose’s design choices impact
its expressiveness and flexibility (Section 5.4).

5.1 Benchmark and applications
To the best of our knowledge, there are no benchmark suites for evaluating autodiff perfor-
mance generally [41], let alone web-based autodiff of scalar programs. Further, measuring
performance on just a benchmark would limit our ability to qualitatively evaluate the ex-
pressiveness of Rose in real-world applications. Therefore, we opted to find applications
in which autodiff plays a central role, and re-implement the autodiff module or the entire
application using Rose. We believe this approach gives us better ecological validity (i.e. the
realism of our evaluation setup) and potentially leads to a rich source of examples. Our

ECOOP 2024

15:18 Rose: Composable Autodiff for the Interactive Web

A

B

C
D

E

F

G

Figure 4 Three web-based applications re-implemented with Rose. Left: the Penrose IDE.
Middle: billiards simulator that optimizes D for cue ball angle and speed such that the object
ball A reaches the target B . Right: mass-spring robot controlled by a neural net trained G
with a designated goal D . Both simulations can be replayed by dragging the sliders at any point
D and G .

search resulted in two frameworks that are rich sources of applications and benchmarks:
Penrose [54], a web-based diagramming framework; and Taichi [19], a Python library for
high-performance parallel programming. The two frameworks also have sufficiently different
settings that together they illustrate the flexibility of Rose.

Penrose allows the user to specify a diagram by constructing a custom numerical opti-
mization problem in a DSL called Style, then runs a numerical solver to rearrange the shapes
in the diagram until it finds a local minimum. Optimizing the layout of these diagrams
involves defining and differentiating a wide range of mathematical operations on scalars, from
simple operations like finding the distance between points to more sophisticated calculations
like Minkowski addition, KL divergence, and silhouette points. The main application of
Penrose is a web-based IDE (Figure 4, left), where users live-edit programs to produce
layout-optimized diagrams. Importantly, the framework uses TensorFlow.js for autodiff and
ships with 173 “registry” diagrams for performance testing, each of which was compiled
to a unique differentiable computation. Therefore, we deemed it as a suitable target for
performance comparison with TensorFlow.js, the closest baseline to which we can compare
Rose’s performance. This set of registry diagrams is quite diverse, comprising a total of 97
unique Style programs which are preprocessed by the Penrose compiler frontend before being
passed to Rose.

Many applications of Taichi involve differentiable programming and DiffTaichi [18] presents
a few example Python applications that combines physical simulation and neural networks.
We used Rose to implement and augment two such differentiable simulations from Taichi:
billiards and robot (Figure 4, middle and right). The billiards example is a differentiable
simulation of pool combination shots. The program simulates rigid body collisions between a
cue ball and object balls. Leveraging the differentiability of the simulation, a gradient descent
optimizer solves for the initial position and velocity of the cue ball to send a designated
object ball to a target position. The robot example simulates a robot made of a mass-spring
system, where springs are actuated to move the robot towards a goal position. A neural
network controller is trained on simulator gradients to update the spring actuation magnitude
over time. In both cases, the simulation is run to completion, remembering intermediate
computations along the way, and then autodiff is used to run back through the simulation in
reverse to compute gradients for the initial state.

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:19

All three applications were implemented using Rose’s JavaScript binding. They all run in
major browsers such as Safari and Chrome. To showcase the benefits of running in the web
browser, we added interactive features to the Taichi applications (Figure 4). For instance,
the Taichi version of billiards is a command-line application that outputs a series of static
images based on hard-coded parameters for the choice of the object ball and goal position.
The Rose version allows the user to interactively explore the simulator by selecting the object
ball (Figure 4 A), moving the goal position (Figure 4 B), optimizing the cue ball position
(Figure 4 D), and re-playing the simulation (Figure 4 C).

5.2 Size
Similar to TensorFlow.js, Rose is a client-side JavaScript package that is typically bundled
with the rest of a web application and delivered over the internet. To run in web browsers,
Rose needs to be comparable or smaller then similar packages such as TensorFlow.js. As
a baseline, a common TensorFlow.js distribution, @tensorflow/tfjs-core version 4.18.0
(latest at time of writing), is 479.98 kB after minification (85.88 kB after gzip). We publish
Rose via the npm package rose,3 which is at version 0.4.10 at time of writing. The Rose
WebAssembly binary size [5] is 168.51 kB (63.97 kB after gzip), and the JavaScript wrapper
layer is 31.77 kB after minification (8.74 kB after gzip). For a more extreme comparison, there
are projects that package heavy compiler infrastructure like LLVM to WebAssembly [47], but
those produce binaries on the order of a hundred megabytes, causing unacceptable load times
for end users. Another reference point is the Taichi package on PyPI, which is about 50–80
megabytes depending on the platform. It is unclear how difficult it would be to package
Taichi to run in the browser using Pyodide [37], which is 6.4 megabytes and whose authors
claim to be 3×–5× slower than native Python.

5.3 Performance
To compare with the TensorFlow.js baseline for execution performance, we replaced the
Penrose TensorFlow.js-based autodiff engine with one written in Rose and ran both versions
on the benchmark of 173 diagrams (Section 5.1). We measured the amount of time it took for
each autodiff engine to perform any necessary compilation, plus the time taken by the Penrose
L-BFGS [27] optimization engine to converge on each diagram. We specifically include the
time it takes for Rose to do autodiff, transposition, and WebAssembly compilation, despite
the fact that TensorFlow.js does not have an analogous compilation step. On the surface
this puts Rose at a disadvantage, but fast compilation time is essential when constructing
Rose functions dynamically in a user-facing web application, as Penrose does.

Figure 5 shows the results.4 The quartiles for the ratio of TensorFlow.js optimization
time to Rose optimization time were 37×, 173×, and 598×. These results show that Rose
provides an enormous advantage over TensorFlow.js (the state-of-the-art for autodiff on
the web) for scalar programs like those found in Penrose diagrams. Because these numbers
include both compile time and optimization time, the results demonstrate the end-to-end
performance of Rose.

3 https://www.npmjs.com/package/rose
4 All numbers we report in this section were measured in the V8 JavaScript engine (used in both Chrome

and Node.js) on a 2020 MacBook Pro with M1 chip.

ECOOP 2024

https://www.npmjs.com/package/rose

15:20 Rose: Composable Autodiff for the Interactive Web

10 2 100 102 104

TensorFlow.js (seconds)

10 3

10 2

10 1

100

Ro
se

 (s
ec

on
ds

)

100 102 104 106

TensorFlow.js / Rose

0.0

0.1

0.2

0.3

0.4

pr
ob

ab
ili

ty
 d

en
sit

y

Figure 5 Left: Log-log scatterplot of Penrose diagram optimization time with TensorFlow.js
versus Rose. Right: Log-scale kernel density estimate (KDE) plot of the optimization time of
TensorFlow.js to Rose.

We omitted 10 of the 173 diagrams from our data analysis:
9 NaN failures: Penrose aborts if it detects a “not-a-number” (NaN) value in the
gradient as it is optimizing. This occurred in the TensorFlow.js version of Penrose for
nine diagrams. The Rose version of Penrose did not encounter NaNs for these programs.
1 timeout: For one diagram, we stopped the TensorFlow.js version of Penrose after it
had run for over 24 hours. The Rose version of Penrose took 42 milliseconds to compile
and optimize this diagram.

Tensorflow.js runs on both CPU and GPU. We used the “cpu” backend in our comparison
because we found that, for scalar programs, it was faster than their GPU backend. To double-
check this, we took the 88 diagrams (over half) that were quickest to run with TensorFlow.js,
and also ran them with @tensorflow/tfjs-node and @tensorflow/tfjs-node-gpu, which
they claim are faster than the “cpu” backend. We found that the Node backend is 79%
slower (median ratio) than the “cpu” backend, and the Node GPU backend is 75% slower
(median ratio) than the “cpu” backend. Also, those backends are unable to run in a browser,
unlike the “cpu” backend, so they would be inappropriate for a direct comparison to Rose.

As we will discuss in Section 5.4.1, Rose’s ability to define separate functions in a graph
(rather than just a single graph of scalar or tensor values) is crucial to producing small enough
WebAssembly binaries to feed to the browser. To investigate whether WebAssembly brought
significant performance gains in the first place to be worth facing that challenge, we compared
against a modified version of Rose which emits JavaScript code instead of WebAssembly.
This experiment gave quartile slowdowns of 10%, 49%, and 100% for optimization of Penrose
diagrams, showing that WebAssembly provides a significant advantage over JavaScript as a
compilation target for Rose.

For the two Taichi applications (Figure 4, middle and right), we compare the running
time of training/optimizing with the Python command-line counterparts. On average (of 10
runs), Rose is on par with the native performance of the Python versions: for the default
initial condition in billiards, Rose completed the optimization in 22.7s ± 0.2s while Taichi
completed it in 20.6s ± 0.8s; for the default condition in robot, Rose finished 100 iterations
of learning in 32.1s ± 0.2s while Taichi took 31.3s ± 1.1s.

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:21

In the Penrose IDE (Figure 4, left), the main interaction that will trigger differentiation
is compiling the DSL to diagrams. As reported in the previous section, Rose-based Penrose
is significantly faster than the TensorFlow.js version, often leading to visible reduction in
diagram layout optimization time in the user interface.

5.4 Qualitative observations
Our implementation effort to port both Penrose and Taichi applications to Rose spanned
thousands of lines of code, including replacing the Penrose autodiff engine and function
library and rewriting both billiards and robot for scratch. In this process, we have written
a wide variety of differentiable programs using Rose, and had a chance to observe how Rose’s
main design choices (D1, D2, D3) impact the way programs are written. In this section, we
report on our qualitative observations using Rose in these real-world settings, highlighting
how these design choices interact with each other to form a coherent system.

5.4.1 Writing scalar programs as composable functions
The original versions of Penrose, billiards, and robot are naturally written as scalar
programs. In Penrose, bboxCircle (line 10 of Listing 9) computes the bounding box by
performing arithmetic on scalar values for the center and radius of a circle. In Taichi, both
billiards and robot involve hand-crafted scalar programs for differentiable simulations.
For instance, apply_spring_force (Figure 6) loops through individual springs in the robot,
computing the force on the spring based on scalar-valued parameters, and scatter forces to
end points of springs.

Because Rose is designed for writing scalar programs, translating both Penrose and
Taichi source programs to Rose is straightforward and largely preserves the structures of the
programs. For instance, when translating the Python programs from Taichi into TypeScript
and Rose, as shown in Figure 6, Taichi kernels can be translated one-to-one to Rose functions.

Reflecting on the design choices, the combination of transformation to WebAssembly (D2)
and the basic building block of composable functions (D1) gives the user both performance
gains and an ergonomic programming interface. In the case of Taichi, the Rose abstraction
of fn is not only useful for one-to-one translation from Taichi, but also necessary for running
the simulator in browsers. Major WebAssembly engines have limits on WebAssembly binary
size and on the number of local variables in each function. While it is possible to encapsulate
much of the simulation code of billiards and robot in bigger JavaScript functions, the
compiled size and local counts of these functions would quickly exceed these limits and
would not run in the browser. Therefore, segmenting the source into functional units of fns
effectively reduces the size of emitted WebAssembly functions and modules, avoiding these
errors and reducing compile times.

5.4.2 Metaprogramming and function dynamism
The Rose IR is designed to be performant and easy to compile to WebAssembly (D2) and
therefore has limited expressiveness (Section 4). Metaprogramming using JavaScript enables
the user to dynamically generate complex computation graphs that are impossible to specify
with the Rose IR alone (D3). For instance, the bboxGroup function in Listing 9 computes
the bounding box of a Group in Penrose, a recursive collection of shapes. For non-collection
shape types such as Circle, we ported the TensorFlow.js implementation to Rose easily, e.g.
bboxCircle. However, bboxGroup needs to recurse over the Group data structure to find out

ECOOP 2024

15:22 Rose: Composable Autodiff for the Interactive Web

@ti.kernel
def apply_spring_force(t: ti.i32):

for i in range(n_springs):
a = spring_anchor_a[i]
b = spring_anchor_b[i]
pos_a = x[t, a]
pos_b = x[t, b]
dist = pos_a - pos_b
length = dist.norm() + 1e-4
target_length = spring_length[i] *

(1.0 + spring_actuation[i] * act[t, i])
impulse = dt * (length - target_length) *

spring_stiffness[i] / length * dist

ti.atomic_add(v_inc[t + 1, a], -impulse)
ti.atomic_add(v_inc[t + 1, b], impulse)

const apply_spring_force = fn(
[Objects, Act], Objects, (x, act) => {

const v_inc = [];
for (let i = 0; i < n_objects; i++)

v_inc.push([0, 0]);
for (let i = 0; i < n_springs; i++) {

const spring = robot.springs[i];
const a = spring.object1;
const b = spring.object2;
const pos_a = x[a];
const pos_b = x[b];
const dist = vsub2(pos_a, pos_b);
const length = add(norm(dist), 1e-4);
const target_length = mul(spring.length,

add(1, mul(act[i], spring.actuation))
);
const impulse =

vmul(div(mul(dt * spring.stiffness,
sub(length, target_length)),

length),
dist);

v_inc[a] = vsub2(v_inc[a], impulse);
v_inc[b] = vadd2(v_inc[b], impulse);

}
return v_inc;

});

Figure 6 A function that applies spring actuation on the mass-spring robot model in the robot
example, written in Taichi (Left) and Rose (Right). The translation from Taichi to Rose is
straightforward.

the bounding boxes of individual shapes before aggregating them into the final bounding box.
This requires conditional dispatch of (1) Rose functions based on a discrete tag (shape.kind)
and (2) recursive calls to bboxGroup to handle nested groups.

Figure 7 shows an example of calling bboxGroup on nested groups of shapes. The diagram
in Figure 7 (left) has 1 group containing the whole diagram, and 3 subgroups of molecules
that contain shapes such as Text and Circle. Figure 7 shows how bboxGroup uses JavaScript
language features to compose Rose functions into a computation graph, denoting JavaScript
constructs in gray and Rose functions in red. First, for each member shape, we switch on
shape.kind to determine whether to (a) call individual Rose bounding box functions like
bboxCircle or (b) recurse to call bboxGroup. Then, after all the child bounding boxes are
computed, we use JavaScript map and reduce to aggregate via Rose min and max functions.

In the case of Penrose, metaprogramming actually helped us reduce the lines of code to
refactor, because many plain JavaScript functions can stay the same and we only had to
refactor functions that involve actual computation. We also speculate that by reducing the
size of Rose-specific constructs, new users can learn a smaller API easier and experience a
smoother learning curve.

6 Related work

Autodiff first started being seriously studied a few decades ago [48], with Griewank and
Walther’s book [14] consolidating research on the topic up until its publication. Some tools
were developed, such as Tapenade [16] which operates over C and Fortran. The machine
learning community developed an interest in autodiff over the past decade, resulting in popular
tools including TensorFlow [2], PyTorch [32], and JAX [12] as mentioned in Section 1. JAX
is particularly interesting because in a way it blends together tracing and transformation like
we do here, but unlike Rose, JAX is not scalar-friendly and does not allow the programmer to
explicitly define functions to serve as boundaries for tracing. Other autodiff systems include
Zygote [21] for Julia, and Enzyme [29, 30, 31] for LLVM IR [26]. For graphics programming,
Aδ [53] and Dr.Jit [22] can be used to differentiate shaders.

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:23

1 const bboxGroup = (shapes) => {
2 const bboxes = shapes.map(bbox);
3 const left = bboxes.map((b) => b.left).reduce(min);
4 const right = bboxes.map((b) => b.right).reduce(max);
5 const bottom = bboxes.map((b) => b.bottom).reduce(min);
6 const top = bboxes.map((b) => b.top).reduce(max);
7 return { left, right, bottom, top };
8 };
9

10 const bboxCircle = fn([Circle], Rectangle,
11 ({ center: [x, y], radius: r }) => {
12 const left = sub(x, r);
13 const right = add(x, r);
14 const bottom = sub(y, r);
15 const top = add(y, r);
16 return { left, right, bottom, top };
17 },
18);
19

20 const bbox = (shape) => {
21 switch (shape.kind) {
22 case "Rectangle": return shape.value;
23 case "Circle": return bboxCircle(shape.value);
24 case "Group": return bboxGroup(shape.value);
25 }
26 };

Listing 9 Examples of JavaScript metaprogramming to construct Rose functions for recursive
data structures.

The programming languages community has also taken an interest in autodiff [36],
producing proofs of correctness [1], program transformations for SSA [20] and CPS [51], and
more recently, reformulations of reverse-mode autodiff in terms of dual numbers [44], as well
as a new autodiff formulation called CHAD [49, 45]. Some work also attempts to bridge the
gap between programming language theory and the machine learning domain by facilitating
automatic parallelization [6, 33]. The latter work also resulted in a formalization of function
transposition [39] which directly inspired the low-level design of autodiff in Rose.

Rose supports higher-order derivatives because its core IR is closed under differentiation
and transposition. A more sophisticated approach we don’t explore here would be derivative
towers [23, 35], sometimes called “Taylor towers” because they use Taylor expansions instead
of the chain rule. We would be interested to see how derivative towers can be combined with
our approach in future work, while avoiding the pitfalls of perturbation confusion [42, 28].
Another optimization that becomes crucial when scaling up autodiff is checkpointing, which
cuts down drastically on memory requirements; for instance, while the semantics of Rose
can in general result in keeping around arbitrarily many intermediate results, a recursive
“divide-and-conquer” checkpointing scheme [43] reduces the memory impact of reverse-mode
autodiff to a logarithmic factor; the cost, though, is that the asymptotic running time would
also suffer a logarithmic factor.

ECOOP 2024

15:24 Rose: Composable Autodiff for the Interactive Web

sw
it
ch

sw
it
ch

bboxGroup()

bboxGroup()

bboxGroup()

bboxGroup()

bboxCircle()

bboxText()

bboxLine()

Figure 7 In Penrose, we used JavaScript to programmatically generate Rose functions. Left:
a figure comprised of a top-level group containing all molecules and sub-groups for each molecule.
Right: the bboxGroup function conditionally generates Rose functions or recursively calls itself
based on the shape type.

7 Conclusion and future work

This paper introduced Rose, an embedded domain-specific language for automatic differenti-
ation of interactive programs on the web, which blends together the two primary autodiff
techniques of tracing and transformation. Currently Rose targets WebAssembly, which runs
on the CPU; as we showed in Section 5.3, this already provides an enormous performance
advantage for scalar programs when compared to the state-of-the-art for autodiff on the web.
In future work, we would also like to pursue further performance gains by implementing a
backend that targets WebGPU [24]. We have already laid the groundwork for this by drawing
inspiration for the Rose IR from Dex [33] to be friendly to automatic parallelization, such as
the for construct and accumulate-only reference types. In general, we plan to continue this
line of work to open up new modes of differentiable interactivity.

References
1 Martín Abadi and Gordon D. Plotkin. A simple differentiable programming language. Proc.

ACM Program. Lang., 4(POPL), December 2019. doi:10.1145/3371106.
2 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous distributed systems, 2016. arXiv:1603.04467.

3 Anthony Anjorin, Li-yao Xia, and Vadim Zaytsev. Bidirectional transformations wiki, 2011.
URL: http://bx-community.wikidot.com/.

4 Francis J. Anscombe. Graphs in statistical analysis. The American Statistician, 27(1):17–21,
1973.

5 Hudson Ayers, Evan Laufer, Paul Mure, Jaehyeon Park, Eduardo Rodelo, Thea Rossman,
Andrey Pronin, Philip Levis, and Johnathan Van Why. Tighten Rust’s belt: Shrinking
embedded Rust binaries. In Proceedings of the 23rd ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES 2022, pages
121–132, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/
3519941.3535075.

https://doi.org/10.1145/3371106
https://arxiv.org/abs/1603.04467
http://bx-community.wikidot.com/
https://doi.org/10.1145/3519941.3535075
https://doi.org/10.1145/3519941.3535075

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:25

6 Gilbert Bernstein, Michael Mara, Tzu-Mao Li, Dougal Maclaurin, and Jonathan Ragan-Kelley.
Differentiating a tensor language, 2020. arXiv:2008.11256.

7 Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. Julia: A fast dynamic
language for technical computing, 2012. arXiv:1209.5145.

8 Dan Cascaval, Mira Shalah, Phillip Quinn, Rastislav Bodik, Maneesh Agrawala, and Adriana
Schulz. Differentiable 3D CAD programs for bidirectional editing. Computer Graphics Forum,
41(2):309–323, 2022. doi:10.1111/cgf.14476.

9 Bartosz Ciechanowski, 2014. URL: https://ciechanow.ski/.
10 Sam Estep, Wode Ni, Raven Rothkopf, and Joshua Sunshine. Rose: Composable autodiff for

the interactive web, 2024. arXiv:2402.17743.
11 Figma, Inc. Figma, 2016. URL: https://figma.com/.
12 Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning programs

via high-level tracing. Systems for Machine Learning, 4(9), 2018.
13 Google LLC. Google Slides, 2006. URL: https://google.com/slides.
14 Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques

of Algorithmic Differentiation. SIAM, 2008.
15 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan

Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the Web up to speed with
WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, pages 185–200, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3062341.3062363.

16 Laurent Hascoet and Valérie Pascual. The Tapenade automatic differentiation tool: Principles,
model, and specification. ACM Trans. Math. Softw., 39(3), May 2013. doi:10.1145/2450153.
2450158.

17 Brian Hempel, Justin Lubin, and Ravi Chugh. Sketch-n-Sketch: Output-directed programming
for SVG. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology, UIST ’19, pages 281–292, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3332165.3347925.

18 Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley,
and Frédo Durand. DiffTaichi: Differentiable programming for physical simulation, 2020.
arXiv:1910.00935.

19 Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.
Taichi: A language for high-performance computation on spatially sparse data structures.
ACM Trans. Graph., 38(6), November 2019. doi:10.1145/3355089.3356506.

20 Michael Innes. Don’t unroll adjoint: Differentiating SSA-form programs, 2019. arXiv:
1810.07951.

21 Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckas, Elliot Saba, Viral B. Shah, and
Will Tebbutt. ∂P : A differentiable programming system to bridge machine learning and
scientific computing, 2019. arXiv:1907.07587.

22 Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. Dr.Jit: A just-in-
time compiler for differentiable rendering. ACM Trans. Graph., 41(4), July 2022. doi:
10.1145/3528223.3530099.

23 Jerzy Karczmarczuk. Functional differentiation of computer programs. In Proceedings of
the Third ACM SIGPLAN International Conference on Functional Programming, ICFP ’98,
pages 195–203, New York, NY, USA, 1998. Association for Computing Machinery. doi:
10.1145/289423.289442.

24 Benjamin Kenwright. Introduction to the WebGPU API. In ACM SIGGRAPH 2022 Courses,
SIGGRAPH ’22, New York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3532720.3535625.

25 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
arXiv:1412.6980.

ECOOP 2024

https://arxiv.org/abs/2008.11256
https://arxiv.org/abs/1209.5145
https://doi.org/10.1111/cgf.14476
https://ciechanow.ski/
https://arxiv.org/abs/2402.17743
https://figma.com/
https://google.com/slides
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1145/2450153.2450158
https://doi.org/10.1145/3332165.3347925
https://arxiv.org/abs/1910.00935
https://doi.org/10.1145/3355089.3356506
https://arxiv.org/abs/1810.07951
https://arxiv.org/abs/1810.07951
https://arxiv.org/abs/1907.07587
https://doi.org/10.1145/3528223.3530099
https://doi.org/10.1145/3528223.3530099
https://doi.org/10.1145/289423.289442
https://doi.org/10.1145/289423.289442
https://doi.org/10.1145/3532720.3535625
https://doi.org/10.1145/3532720.3535625
https://arxiv.org/abs/1412.6980

15:26 Rose: Composable Autodiff for the Interactive Web

26 Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In International Symposium on Code Generation and Optimization, 2004.
CGO 2004., pages 75–86, 2004. doi:10.1109/CGO.2004.1281665.

27 Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical programming, 45(1):503–528, 1989.

28 Oleksandr Manzyuk, Barak A. Pearlmutter, Alexey Andreyevich Radul, David R. Rush,
and Jeffrey Mark Siskind. Perturbation confusion in forward automatic differentiation of
higher-order functions. Journal of Functional Programming, 29:e12, 2019. doi:10.1017/
S095679681900008X.

29 William Moses and Valentin Churavy. Instead of rewriting foreign code for machine learning,
automatically synthesize fast gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 12472–12485. Curran Associates, Inc., 2020. URL: https://proceedings.neurips.cc/
paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf.

30 William S. Moses, Valentin Churavy, Ludger Paehler, Jan Hückelheim, Sri Hari Krishna
Narayanan, Michel Schanen, and Johannes Doerfert. Reverse-mode automatic differentiation
and optimization of GPU kernels via Enzyme. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’21, New York, NY,
USA, 2021. Association for Computing Machinery. doi:10.1145/3458817.3476165.

31 William S. Moses, Sri Hari Krishna Narayanan, Ludger Paehler, Valentin Churavy, Michel
Schanen, Jan Hückelheim, Johannes Doerfert, and Paul Hovland. Scalable automatic differen-
tiation of multiple parallel paradigms through compiler augmentation. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and Analysis,
SC ’22. IEEE Press, 2022.

32 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. URL: https://proceedings.neurips.cc/
paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

33 Adam Paszke, Daniel D. Johnson, David Duvenaud, Dimitrios Vytiniotis, Alexey Radul,
Matthew J. Johnson, Jonathan Ragan-Kelley, and Dougal Maclaurin. Getting to the point:
Index sets and parallelism-preserving autodiff for pointful array programming. Proc. ACM
Program. Lang., 5(ICFP), August 2021. doi:10.1145/3473593.

34 Amit Patel. Red Blob Games, 2013. URL: https://www.redblobgames.com/.
35 Barak A. Pearlmutter and Jeffrey Mark Siskind. Lazy multivariate higher-order forward-mode

AD. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’07, pages 155–160, New York, NY, USA, 2007. Association
for Computing Machinery. doi:10.1145/1190216.1190242.

36 Barak A. Pearlmutter and Jeffrey Mark Siskind. Reverse-mode AD in a functional framework:
Lambda the ultimate backpropagator. ACM Trans. Program. Lang. Syst., 30(2), March 2008.
doi:10.1145/1330017.1330018.

37 Pyodide contributors and Mozilla. Pyodide, 2019. URL: https://pyodide.org/.
38 Dan Quinlan and Chunhua Liao. The ROSE source-to-source compiler infrastructure. In

Cetus Users and Compiler Infrastructure Workshop, in conjunction with PACT, volume 2011,
page 1. Citeseer, 2011.

39 Alexey Radul, Adam Paszke, Roy Frostig, Matthew J. Johnson, and Dougal Maclaurin. You
only linearize once: Tangents transpose to gradients. Proc. ACM Program. Lang., 7(POPL),
January 2023. doi:10.1145/3571236.

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1017/S095679681900008X
https://doi.org/10.1017/S095679681900008X
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://doi.org/10.1145/3458817.3476165
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1145/3473593
https://www.redblobgames.com/
https://doi.org/10.1145/1190216.1190242
https://doi.org/10.1145/1330017.1330018
https://pyodide.org/
https://doi.org/10.1145/3571236

S. Estep, W. Ni, R. Rothkopf, and J. Sunshine 15:27

40 Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, and Dimitrios Vytiniotis.
Destination-passing style for efficient memory management. In Proceedings of the 6th ACM
SIGPLAN International Workshop on Functional High-Performance Computing, FHPC
2017, pages 12–23, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3122948.3122949.

41 Xipeng Shen, Guoqiang Zhang, Irene Dea, Samantha Andow, Emilio Arroyo-Fang, Neal Gafter,
Johann George, Melissa Grueter, Erik Meijer, Olin Grigsby Shivers, Steffi Stumpos, Alanna
Tempest, Christy Warden, and Shannon Yang. Coarsening optimization for differentiable
programming. Proc. ACM Program. Lang., 5(OOPSLA), October 2021. doi:10.1145/3485507.

42 Jeffrey Mark Siskind and Barak A Pearlmutter. Nesting forward-mode AD in a functional
framework. Higher-Order and Symbolic Computation, 21(4):361–376, 2008.

43 Jeffrey Mark Siskind and Barak A. Pearlmutter. Divide-and-conquer checkpointing for arbitrary
programs with no user annotation. Optimization Methods and Software, 33(4-6):1288–1330,
2018. doi:10.1080/10556788.2018.1459621.

44 Tom J. Smeding and Matthijs I. L. Vákár. Efficient dual-numbers reverse AD via well-
known program transformations. Proc. ACM Program. Lang., 7(POPL), January 2023.
doi:10.1145/3571247.

45 Tom J. Smeding and Matthijs I. L. Vákár. Efficient CHAD. Proc. ACM Program. Lang.,
8(POPL), January 2024. doi:10.1145/3632878.

46 Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Charles Nicholson, Nick Kreeger, Ping Yu,
Shanqing Cai, Eric Nielsen, David Soegel, Stan Bileschi, Michael Terry, Ann Yuan, Kangyi
Zhang, Sandeep Gupta, Sarah Sirajuddin, D Sculley, Rajat Monga, Greg Corrado, Fernanda
Viegas, and Martin M Wattenberg. TensorFlow.js: Machine learning for the web and beyond.
In A. Talwalkar, V. Smith, and M. Zaharia, editors, Proceedings of Machine Learning and
Systems, volume 1, pages 309–321, 2019. URL: https://proceedings.mlsys.org/paper_
files/paper/2019/file/acd593d2db87a799a8d3da5a860c028e-Paper.pdf.

47 Bobbie Soedirgo. Compile and run LLVM IR in the browser, October 2023. original-date:
2021-02-24T14:29:16Z. URL: https://github.com/soedirgo/llvm-wasm.

48 Bert Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Algorithms.
PhD thesis, University of Illinois at Urbana-Champaign, 1980. Copyright - Database
copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying
works; Last updated - 2023-02-19. URL: https://www.proquest.com/dissertations-theses/
compiling-fast-partial-derivatives-functions/docview/302969224/se-2.

49 Matthijs Vákár and Tom Smeding. CHAD: Combinatory homomorphic automatic differentia-
tion. ACM Trans. Program. Lang. Syst., 44(3), August 2022. doi:10.1145/3527634.

50 Bret Victor. Explorable explanations, 2011. URL: https://worrydream.com/
ExplorableExplanations/.

51 Fei Wang, Daniel Zheng, James Decker, Xilun Wu, Grégory M. Essertel, and Tiark Rompf.
Demystifying differentiable programming: Shift/reset the penultimate backpropagator. Proc.
ACM Program. Lang., 3(ICFP), July 2019. doi:10.1145/3341700.

52 Guillermo Webster. g9: Automatically interactive graphics, 2016. URL: https://omrelli.
ug/g9/.

53 Yuting Yang, Connelly Barnes, Andrew Adams, and Adam Finkelstein. Aδ: Autodiff for
discontinuous programs – Applied to shaders. ACM Trans. Graph., 41(4), July 2022. doi:
10.1145/3528223.3530125.

54 Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich, Joshua
Sunshine, and Keenan Crane. Penrose: From mathematical notation to beautiful diagrams.
ACM Trans. Graph., 39(4), August 2020. doi:10.1145/3386569.3392375.

ECOOP 2024

https://doi.org/10.1145/3122948.3122949
https://doi.org/10.1145/3485507
https://doi.org/10.1080/10556788.2018.1459621
https://doi.org/10.1145/3571247
https://doi.org/10.1145/3632878
https://proceedings.mlsys.org/paper_files/paper/2019/file/acd593d2db87a799a8d3da5a860c028e-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/acd593d2db87a799a8d3da5a860c028e-Paper.pdf
https://github.com/soedirgo/llvm-wasm
https://www.proquest.com/dissertations-theses/compiling-fast-partial-derivatives-functions/docview/302969224/se-2
https://www.proquest.com/dissertations-theses/compiling-fast-partial-derivatives-functions/docview/302969224/se-2
https://doi.org/10.1145/3527634
https://worrydream.com/ExplorableExplanations/
https://worrydream.com/ExplorableExplanations/
https://doi.org/10.1145/3341700
https://omrelli.ug/g9/
https://omrelli.ug/g9/
https://doi.org/10.1145/3528223.3530125
https://doi.org/10.1145/3528223.3530125
https://doi.org/10.1145/3386569.3392375

Mover Logic: A Concurrent Program Logic for
Reduction and Rely-Guarantee Reasoning
Cormac Flanagan
University of California, Santa Cruz, CA, USA

Stephen N. Freund #

Williams College, Williamstown, MA, USA

Abstract
Rely-guarantee (RG) logic uses thread interference specifications (relies and guarantees) to reason
about the correctness of multithreaded software. Unfortunately, RG logic requires each function
postcondition to be “stabilized” or specialized to the behavior of other threads, making it difficult
to write function specifications that are reusable at multiple call sites.

This paper presents mover logic, which extends RG logic to address this problem via the notion
of atomic functions. Atomic functions behave as if they execute serially without interference from
concurrent threads, and so they can be assigned more general and reusable specifications that avoid
the stabilization requirement of RG logic. Several practical verifiers (Calvin-R, QED, CIVL, Armada,
Anchor, etc.) have demonstrated the modularity benefits of atomic function specifications. However,
the complexity of these systems and their correctness proofs makes it challenging to understand and
extend these systems. Mover logic formalizes the central ideas of reduction in a declarative program
logic that provides a foundation for future work in this area.

2012 ACM Subject Classification Theory of computation → Program verification; Theory of
computation → Program specifications; Software and its engineering → Concurrent programming
languages; Software and its engineering → Formal software verification

Keywords and phrases concurrent program verification, reduction, rely-guarantee reasoning, synchro-
nization

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.16

Related Version Extended Version: https://arxiv.org/abs/2407.08070 [20]

Funding This work was supported by NSF grants 2243636 and 2243637.

1 Introduction

Verifying that a multithreaded software system behaves correctly for all possible inputs and
thread interleavings is a critically important problem in computer science. To verify large
systems, verification techniques must employ modular reasoning in which each function’s
implementation is verified with respect to its specification. In a multithreaded system, writing
precise and reusable function specifications is a rather difficult challenge, since concurrent
threads can observe and change the state of a function call not just in its initial and final
states, but also at any intermediate states during the function’s execution. Thus, function
specifications must describe not just the function’s precondition and postcondition, but also
how the function may influence and be influenced by other concurrent threads. To address
this problem, Rely-Guarantee (RG) logic [33] uses function specifications that include:

a guarantee G describing how each step of the function may update shared state, and
a rely assumption R describing the behavior of interleaved steps of other threads. The rely
assumption might, for example, specify that interleaved steps preserve a data invariant.

© Cormac Flanagan and Stephen N. Freund;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 16; pp. 16:1–16:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0009-5067-6774
mailto:freund@cs.williams.edu
https://orcid.org/0009-0000-6992-199X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.16
https://arxiv.org/abs/2407.08070
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Mover Logic

Under RG logic, however, a function’s postcondition must summarize not only the
behavior the function itself but also the behavior of interleaved steps of other threads [56].
Consequently, RG function specifications are often specialized to the rely assumption and
data invariants of a particular client, limiting reuse of those function specifications in other
clients, as we illustrate in Section 2.

Lipton’s theory of reduction [41] provides a promising approach to address this problem.
It uses a commuting argument to show that certain functions are atomic and behave as
if they execute serially (without interleaved steps of other threads). Consequently, atomic
functions do not require interleaved rely assumptions, and they can be precisely specified
using preconditions and postconditions that are independent of any specific client.

Reduction has been widely adopted in a variety of software validation tools, including
dynamic analyses [17, 54, 55, 9], type systems [50, 24, 23, 22], and other tools [6, 61, 62, 60].
Over the past two decades, software verifiers based on reduction (e.g., Calvin-R [25], QED [15],
CIVL [30, 38], Armada [42], and Anchor [19]) have demonstrated the utility of atomic function
specifications in verifying sophisticated concurrent code. To date, however, reduction-based
verifiers have not been based on an underlying program logic, such as RG logic. Instead, their
soundness arguments are typically based on monolithic proofs whose complexity inhibits
further research. To address this complexity barrier, we present mover logic, which extends
RG logic to support atomic function specifications via reduction-based reasoning.

In mover logic, thread interference points are documented with yield annotations that
have no run-time effect. Mover logic verifies that every sequence of operations between two
yield points is reducible and hence amenable to sequential reasoning. In order to verify
reducibility, mover logic uses synchronization specifications describing both when each thread
can access each shared location and how those accesses commute with concurrent accesses of
other threads. In contrast to RG logics that must stabilize all state predicates under the rely
assumption, mover logic only needs to stabilize predicates at yield points. Atomic functions
have no yield points and can thus be specified with traditional pre- and postconditions.
Moreover, atomic function specifications need not include a client-specific rely assumption
that would limit reuse in other clients that have different rely assumptions or data invariants.

Mover logic is a declarative program logic (similar in style to Hoare Logic and RG Logic)
that helps explain and justify many subtle aspects of reduction-based verification, including:

what code blocks are reducible;
where yield annotations are required;
which functions are atomic;
what atomic and non-atomic function specifications mean;
what reasoning is performed by the verifier;
why this reasoning is sound; and
which programs are verifiable or not verifiable, and why.

Mover logic simplifies the soundness proof for any specific verifier, because the proof now
must only show that the verifier follows the rules of mover logic.

The presentation of our results proceeds as follows.
Section 2 illustrates the specification entanglement problem of RG logic and shows how
mover logic avoids this problem.
Section 3 reviews Lipton’s theory of reduction.
Sections 4 and 5 present an overview of mover logic and additional examples.
Section 6 formalizes a core multithreaded language.
Section 7 and 8 present mover logic for this language.
Sections 9 and 10 discuss related work and summarize our contributions.

C. Flanagan and S. N. Freund 16:3

For clarity of exposition, our presentation of mover logic targets an idealized multithreaded
language that captures the essential complexities of multithreaded function specifications.
Extending the logic to more complex languages remains an important topic for future work.

2 Limitations of Rely-Guarantee Logic

We motivate the need for mover logic via the example code in Figure 1 (left). That code
consists of:
1. A counter library that contains the function add(n) that adds n to the variable x and

returns the new value of x. The initial value of variable x is 0, and it is protected by lock
m, whose value is either the thread identifier tid of the thread holding the lock or 0 if
unheld. The lock is initially unheld.

2. A first client that creates two threads, and each thread calls add(2) multiple times
before asserting that x is even.

This program verifies under RG logic based on the invariant that x is always even. This
even(x) invariant is a precondition and postcondition for both add() and client()1:

requires even(x)
ensures even(x)

In addition, each step by each thread in the program is guaranteed to preserve this invariant.
As a result, each thread can rely on other threads to preserve the invariant:

relies even(x)
guarantees even(x)

These RG specifications are sufficient to verify that the program does not go wrong by
failing the even(u) assertion in client(), but unfortunately the specification for add() is
tightly-coupled, or entangled, with the even(x) data invariant from this particular client. A
different client would necessitate revising and re-verifying the counter library, which makes
modular verification more challenging and less scalable. For example, the second client in
Figure 1 (right) enforces the data invariant x >= 0, but it cannot be verified with the add()
specification entangled with the first client. Others have noted this limitation as well (see,
for example, [14, 56]).

2.1 Disentangling RG Specifications: First Attempt
The goal of this paper is to support specifications for library functions like add() that are
not specialized to one particular client. As a first attempt to achieve that goal, the code in
Figure 2 (left) uses the following natural postconditions for add(), where \old(x) and x
refer to the value of x upon function entry and exit, respectively:

ensures x == \old(x) + n
ensures \result == x

1 Frame conditions, which specify the locations a function may read or modify, also play a key role
in modular function specifications, but we do not consider them in this paper due to lack of space.
Extending mover logic with frame conditions, perhaps using ideas from separation logic [47, 49], remains
an important topic for future work.

ECOOP 2024

16:4 Mover Logic

Second Client

 void main() {
 fork { client(); }
 fork { client(); }
 }

 relies x >= 0
 guarantees x >= 0
 requires x >= 0
 ensures x >= 0
 void client() {
 add(2);
 int u = add(3);
 assert u >= 0;
 }

Counter Library

 int x;
 lock m;

 relies even(x)
 guarantees even(x)
 requires even(x)
 requires even(n)
 ensures even(x)
 ensures even(\result)
 int add(int n) {
 acquire(m);
 int r = x;
 r = r + n;
 x = r;
 release(m);
 return r;
 }

First Client

 void main() {
 fork { client(); }
 fork { client(); }
 }

 relies even(x)
 guarantees even(x)
 requires even(x)
 ensures even(x)
 void client() {
 add(2);
 int u = add(2);
 assert even(u);
 }

Entangled Specification
Library depends on

Client's even(x) invariant

Entangled Rely-Guarantee Specification

Verification Error
Library specification is
not general enough to
verify Second Client

Figure 1 Our idealized running example is an add(n) library function that atomically increases
shared variable x by n. (Left) A rely-guarantee specification. The client’s data invariant even(x)
becomes entangled in the library specification. (Right) A second client that cannot be verified
because the specification is insufficiently general.

C. Flanagan and S. N. Freund 16:5

Counter Library

 int x;
 lock m;

 relies m == tid ==> x == \old(x)
 …
 ensures true;
 int add(int n) {
 acquire(m);
 int r = x;
 r = r + n;
 x = r;
 release(m);
 return r;
 }

Client

 void main() {
 fork { client(); }
 fork { client(); }
 }

 relies even(x)
 guarantees even(x)
 requires even(x)
 ensures even(x)
 void client() {
 add(2);
 int u = add(2);
 assert even(u);
 }

Disentangled RG Specification
(Second Attempt)

Verification Error
Assertion fails
under add’s

weaker
postcondition

Counter Library

 int x;
 lock m;

 relies m == tid ==> x == \old(x)
 …
 ensures x == \old(x) + n
 ensures \result == x
 int add(int n) {
 acquire(m);
 int r = x;
 r = r + n;
 x = r;
 release(m);
 return r;
 }

Client

 void main() {
 fork { client(); }
 fork { client(); }
 }

 relies even(x)
 guarantees even(x)
 requires even(x)
 ensures even(x)
 void client() {
 add(2);
 int u = add(2);
 assert even(u);
 }

Disentangled RG Specification
(First Attempt)

Verification Error
Postconditions are
not stable under
rely assumption

Figure 2 (Left) An attempt to disentangle the library specification from the client that does not
meet RG stability requirements. (Right) Another attempt that meets stability requirements but
fails to verify the client.

ECOOP 2024

16:6 Mover Logic

In addition, if add() has no knowledge of its client, it must assume that other client threads
could call add() with arbitrary arguments at any time, and so the natural rely assumption
is that other threads may update x whenever the lock m is not held by the current thread.
That assumption is most easily expressed as its contra-positive (where tid is the identifier of
the current thread and lock m is held by that thread when m == tid):

relies m == tid ==> x == \old(x)

Here, \old(x) and x refer to the value of x before and after an interleaved action of another
thread, respectively.

To account for interleaved steps of other threads, a central requirement of RG logic is
that all store predicates (e.g. preconditions, postconditions, and invariants) used to reason
about program behavior must be stable under this rely assumption R. This means that
interleaved R-steps from other threads must not invalidate those predicates. In the case of
add in Figure 2 (left), the postcondition x == \old(x) + n && \result == x is not stable
under the rely assumption R, reflecting that x could be concurrently modified after the lock
is released but before add() returns. Thus, Figure 2 (left) does not verify under RG logic.

2.2 Disentangling RG Specifications: Second Attempt
To ensure stability we must weaken the add() function’s postcondition to be stable under
the rely assumption, as shown in Figure 2 (right). Unfortunately, the resulting stable post
condition is simply true, which no longer guarantees anything about the value of x and is
too weak to verify the client.

2.3 Broken Invariants and Bidirectional Entanglement
As a more challenging example, consider the add() library variant in Figure 3 (left) that
temporarily breaks the even(x) invariant while holding the lock. In this case, the invariant
holds only when lock m is free:

m == 0 ==> even(x)

Stores at the program points in which the invariant is broken are not intended to be observable
by clients. However, the revised RG specifications for add() and the client must now be
based on this conditional invariant, resulting in two problems. First, the library specification
is again specialized to the client’s even(x) invariant. Second, the library’s internal locking
discipline leaks into the client’s specification, limiting our ability to modify the library code
without breaking clients. This example demonstrates that RG reasoning may force us to lose
modularity between client and library.

3 Review of Lipton’s Theory of Reduction

Our solution to this specification problem employs Lipton’s theory of reduction [41], which
classifies how steps of one thread commute with concurrent steps of another thread.

A step is a right-mover (R) if it commutes “to the right” of any subsequent step by a
different thread, in that performing the steps in the opposite order does not change the
final store. A lock acquire is a right-mover because any subsequent step from another
thread cannot modify that lock.

C. Flanagan and S. N. Freund 16:7

Counter Library

 int x;
 lock m;

 relies m == 0 ==> even(x)
 guarantees m == 0 ==> even(x)
 requires m == 0 ==> even(x)
 requires even(n)
 ensures m == 0 ==> even(x)
 ensures even(\result)
 int add(int n) {
 acquire(m);
 int r = x;
 r = r + n;
 x = 1; // Break invariant
 x = r; // and restore it
 release(m);
 return r;
 }

Client

 void main() {
 fork { client(); }
 fork { client(); }
 }

 relies m == 0 ==> even(x)
 guarantees m == 0 ==> even(x)
 requires m == 0 ==> even(x)
 ensures m == 0 ==> even(x)
 void client() {
 add(2);

 int u = add(2);
 assert even(u);

 }

Counter Library

 int x both-mover if m == tid;
 lock m write right-mover
 if \old(m) == 0 && m == tid
 write left-mover
 if \old(m) == tid && m == 0;

 atomic
 ensures x == \old(x) + n
 ensures \result == x
 int add(int n) {
 acquire(m);
 int r = x;
 r = r + n;
 x = 1; // Break invariant
 x = r; // and restore it
 release(m);
 return r;
 }

Client

 void main() {
 fork { client(); }
 fork { client(); }
 }

 relies even(x)
 guarantees even(x)
 requires even(x)
 ensures even(x)
 void client() {
 add(2);
 yield;
 int u = add(2);
 assert even(u);
 yield;
 }

Entangled Specifications
• Library depends on Client's

even(x) invariant
• Client depends on Library’s

synchronization

Verifiable but Entangled
Rely-Guarantee Specification

Verifiable and Disentangled
Mover Logic Specification

Disentangled
Specifications!

Figure 3 A second version of the counter library with a temporarily broken even(x) invariant.
(Left) Under RG logic, the library specification is entangled with the client’s even(x) invariant and
the client specification is entangled with the library’s synchronization discipline. (Right) Under
mover logic, the specifications are cleanly disentangled.

ECOOP 2024

16:8 Mover Logic

… r=x … r=r+n …○ ○ ○ ○ ○ ○… acq(m)○ ○

r=r+n○ ○ ○ ○ ○ ○…○ ○ acq(m) r=x… … x = r

Concrete
Trace

Reduced
Trace

○

○

x = r ○ …

○ return rrel(m)

○

○

rel(m) ○ …

○ ……

x == \old(x) + n
&& \result == x

R B B B L

○return r ○ …

○… ○ …

B

Figure 4 Reduction applied to an execution trace of add() from Figure 1.

Conversely, a step is a left-mover (L) if it commutes “to the left” of a preceding step of a
different thread. A lock release is a left-mover because any preceding step cannot modify
that lock.
A step is a both-mover (B) if it is both a left- and a right-mover, and it is a non-mover (N)
if neither. A race-free memory access is a both-mover because there are no concurrent,
conflicting accesses. An access to a race-prone variable is a non-mover since there may be
concurrent writes.

A sequence of steps performed by a particular thread is reducible if consists of (1) zero or
more right-movers; (2) at most one non-mover; and (3) zero or more left-movers. That is,
a sequence is reducible if the commutativity of the steps match the pattern R∗[N]L∗. Any
interleaved steps of other threads can be “commuted out” to produce a serial execution.

Figure 4 illustrates this technique for a call to add() interleaved with steps of a second
thread. In that figure and below, the solid and hollow arrow heads indicate steps from
different threads, and arrows labeled “. . . ” represent any number of steps by that thread. The
steps of add() have the mover behavior R B B B L B, matching the reducible pattern R∗[N]L∗.
Thus we can reason about add() as if it executes sequentially and assign it the intuitive
postcondition x == \old(x) + n && \result == x.

4 Overview of Mover Logic

Mover logic extends RG logic to verify that certain functions are atomic and can therefore
be assigned more precise (unstabilized) postconditions than under RG logic. Figure 3 (right)
shows a mover logic specification for our library/client example. The declaration

int x both-mover if m == tid;

means that accesses to x are both-movers provided that the current thread holds lock m. All
other accesses are errors. The declaration for lock m specifies that acquires (which change m
from 0 to the current thread’s identifier tid) are right-movers and releases (which change m
from tid back to 0) are left-movers:

lock m write right-mover
if \old(m) == 0 && m == tid

write left-mover
if \old(m) == tid && m == 0;

These mover specifications are sufficient to verify that add is atomic. Consequently, there
is no need to apply the rely assumption at each intermediate store inside this atomic
function. Instead, sequential reasoning suffices to establish the desired postcondition
x == \old(x) + n && \result == x.

C. Flanagan and S. N. Freund 16:9

The client() function in Figure 3 (right) is not atomic because steps of other threads
could be interleaved between the two calls to add(2). Mover logic uses a yield annotation
to identify that thread interference may occur at that point, and the store invariants at
yields must be stable under the rely assumption:

relies even(x);
guarantees even(x);

Note that this thread guarantee does not need to summarize individual steps inside the callee
add(), which would expose the broken invariant. Instead, it summarizes the entire atomic
effect of add(), which preserves the even(x) invariant. With mover logic, the client()
specification is independent of the internal synchronization discipline inside add().
This library/client example illustrates several benefits of mover logic:

Verifying that add() is atomic enables sequential reasoning inside add().
We thus avoid applying the rely assumption at each program point inside add().
As a result, add() satisfies the desired postcondition
x == \old(x) + n && \result == x, which is independent of the client-specific
data invariant even(x).
On the client side, the thread guarantee even(x) summarizes the entire behavior of
add(), rather than the behavior of each individual step.
Consequently, the client can be verified based on the illusion that even(x) always holds,
with no loss of soundness.

Thus, mover logic disentangles the library specification from the data invariant of the client
while also disentangling the client specification from the library synchronization discipline.

5 Additional Examples

5.1 Spin Lock
To further illustrate the benefits of disentangled specifications, Figure 5 (left) shows our
counter library rewritten to employ a user-defined spin lock. The spin_lock() code employs
a compare-and-set operation (cas) to attempt to change the lock l from 0 to the current
thread’s tid. The cas operation returns true if the update succeeds, and false otherwise.
Thus, the function retries until the update is success, at which point the current thread holds
the lock. The spin_unlock() function releases the lock by setting l back to 0.

Mover logic verifies that calls to spin_lock() and spin_unlock() are atomic right- and
left-movers, respectively. That enables us to avoid entangled specifications for the spin lock
and counter libraries, and the counter library’s add specification is identical to the earlier
implementation. It is still atomic and it guarantees the same post condition.

5.2 Lock-Free Queue
Figure 5 (top right) shows a lock-free single-element queue, where buf holds either the single
enqueued int or None if the queue is empty, as indicated by the declared type Optional[int].

The enqueue(v) function uses cas to switch buf from None to v and is atomic since
failing cas operations are both-movers. The dequeue() function use the action r ~= buf
to denote an unstable read of buf that can load any value into the local variable r [22].
Unstable reads can be treated as right-movers since they commute past steps by other

ECOOP 2024

16:10 Mover Logic

Spin Lock Library

 int l write right-mover
 if \old(l) == 0 && l == tid
 write left-mover
 if \old(l) == tid && l == 0;

 atomic right-mover
 ensures l == tid
 void spin_lock() {
 while (!cas(l, 0, tid)) {
 skip;
 }
 }

 atomic left-mover
 requires l == tid
 void spin_unlock() {
 l = 0;
 }

Counter Library

 int x both-mover if l == tid;

 atomic
 ensures x == \old(x) + n
 ensures \result == x
 int add(int n) {
 spin_lock();
 int r = x;
 r = r + n;
 x = 1; // Break invariant
 x = r; // and restore it
 spin_unlock();
 return r;
 }

Client

 void main() {
 fork { client(); }
 fork { client(); }
 }

 relies even(x)
 guarantees even(x)
 requires even(x)
 ensures even(x)
 void client() {
 add(2);
 yield;
 int u = add(2);
 assert even(u);
 yield;
 }

Verifiable Spin Lock, Counter, Client

Disentangled
Specifications!

Disentangled
Specifications!

List top non-mover;

atomic
ensures head(top) == v
ensures tail(top) == \old(top)
void push(int v) {
 List t ~= top;
 List nu = v::t;
 while (!cas(top, t, nu)) {
 t ~= top;
 nu = v::t;
 }
}

atomic
ensures head(\old(top)) == \result
ensures tail(\old(top)) == top
int pop() {
 List t ~= top;
 while (t == Nil) { t ~= top; }
 List tl = tail(t);

 while (!cas(top, t, tl) {
 t ~= top;
 while (t == Nil) { t ~= top; }
 tl = tail(t);
 }
 return head(t);
}

Verifiable Lock-Free Stack Library

Optional[int] buf non-mover;

atomic
requires n != None
ensures buf == n
void enqueue(int n) {
 while (!cas(buf, None, n)) {
 skip;
 }
}

atomic
ensures \result == \old(buf)
ensures buf == None
int dequeue() {
 Optional[int] r ~= buf;
 while (r == None) { r ~= buf; }

 while (!cas(buf, r, None)) {
 r ~= buf;
 while (r == None) { r ~= buf; }
 }
 return r;
}

Verifiable Lock-Free Queue Library

Figure 5 (Left) A new implementation of the counter library using a user-defined spin lock.
(Top Right) A single-element lock-free queue. (Bottom Right) A lock-free stack.

C. Flanagan and S. N. Freund 16:11

threads.2 Consequently, the dequeue() function is atomic. All executions of that function
consist of unstable reads (right-movers) and failed cas operations (both-movers) followed by a
successful cas (non-mover). These sequences match the reducible pattern R∗[N]L∗. Moreover,
the final cas ensures that r is equal to the pre-cas value of buf, which enables mover logic
to establish the desired post-conditions \result == \old(buf) and buf == None.

5.3 Lock-Free Stack
Figure 5 (bottom right) shows a lock-free stack. This examples uses immutable lists, where
Nil is the empty list, v::s adds v to the front of the the list s, and head(s) and tail(s)
extract the first element and the rest of s, respectively.3

The push(v) function is atomic since it has only one non-mover operation, namely the
successful cas. The unstable reads, list allocations v::t, and failed cas operations are
both-movers or right-movers. Therefore, we can assign push(v) the following intuitive
post-condition without needing to stabilize under the rely assumption of a particular caller.

ensures head(top) == v
ensures tail(top) == \old(top)

The pop() function is also atomic due to similar reasoning and satisfies the following
post-condition without the need to stabilize it.

ensures head(\old(top)) == \result
ensures tail(\old(top)) == top

6 Mover Logic Language

We formalize mover logic for the idealized language MML (mover logic language), which we
summarize in Figure 6. Section 7.3 below translates our running example into MLL. In MLL,
threads manipulate a shared store σ that maps variables to values. Variables include x,y,z,
and m. We often use the variable m as a lock, where m is the thread identifier (tid) of the
thread holding the lock, or 0 if it is not held.

Thread-local variables r are supported by having each thread access a separate variable
rtid for each thread tid. The language includes reads and writes to global and local variables,
acquires and releases of locks, local computations, etc. For generality and simplicity, we
abstract all of these store-manipulation operations as actions A ⊆ Tid × Store × Store. Note
that an action may depend on the current thread’s identifier. We write actions as formulae in
which \old(x) and x to refer to the values of x in the pre-store and post-store, respectively.
We write ⟨A⟩x to denote an action that only changes x:

⟨A⟩x
def= { (tid, σ, σ′) | (tid, σ, σ′) ∈ A ∧ ∀y ∈ Var . y ̸= x ⇒ σ(y) = σ′(y) }

2 Unstable reads are a proof technique that trades off our ability to reason about the value stored in r for
the ability to treat the unstable read as a right-mover. An implementation of unstable read may exhibit
any a subset of the allowed behaviors, including simply performing a conventional read.

3 The duplicated code in this example could be removed in a language with richer control structures such
as break statements.

ECOOP 2024

16:12 Mover Logic

Syntax

(Statements) s ::= skip | wrong | A | s; s | if C s else s

| while C s | f() | yield
(Action) A ⊆ Tid × Store × Store
(Thread Identifier) t, u ∈ Tid = {1, 2, . . .}
(Conditional Action) C ::= A⋄A

(Variable Declaration) var ::= x var_spec

x, y, r, m ∈ Var
(Function Declaration) fn ::= fn_spec f() { s }

f ∈ FunctionName
(Declaration Table) D ::= var | fn

(D is left implicit in the semantics for brevity)

Semantics

(Store) σ ∈ Var → Value
(State) Σ ::= s1..sn · σ

(Evaluation Context) E ::= • | E; s

s · σ →t s′ · σ′

[E-seq] E[skip; s] · σ →t E[s] · σ

[E-yield] E[yield] · σ →t E[skip] · σ

[E-action] E[A] · σ →t E[skip] · σ′ if (t, σ, σ′) ∈ A

[E-if] E[if (A1⋄A2) s1 else s2] · σ →t E[si] · σ′ if (t, σ, σ′) ∈ Ai, for i ∈ 1, 2
[E-while] E[while C s] · σ →t E[if C (s; while C s) else skip] · σ

[E-call] E[f()] · σ →t E[s] · σ if fn_spec f() { s } ∈ D

Σ → Σ′

[E-State]
st · σ →t s′

t · σ′

s1..st..sn · σ → s1..s′
t..sn · σ′

Figure 6 Mover Logic Language.

We can then express assignments and locking operations as follows. Note that acquire(m)
blocks if the lock is already held, i.e. if \old(m) ̸= 0. We use the notation expr[x := \old(x)]
to denote expr with all occurrences of x replaced by \old(x).

acquire(m) def= ⟨\old(m) = 0 ∧ m = tid⟩m

release(m) def= ⟨m = 0⟩m

x = expr
def= ⟨x = expr[x := \old(x)]⟩x

The unstable read rtid ~= x from Section 5.3 may store any value4 in the local variable rtid :

rtid ~= x
def= { (tid, σ, σ[rtid := v]) | v ∈ Value }

4 In a language with types, this definition can be easily adapted to only store type-correct values into rtid .

C. Flanagan and S. N. Freund 16:13

Mover Logic Language includes if and while statements that condition execution either
on whether a Boolean test is true or on whether a store-manipulating operation, such as cas,
succeeds. To handle these two cases uniformly, we introduce a conditional action C = A1⋄A2
where A1 is an action capturing a true test or successful operation and A2 is an action
capturing a false test or failed operation. For generality, both cases may modify the store
and both may be feasible on some pre-states.

We encode any state predicate B ⊆ Store as the conditional action {(tid, σ, σ) | σ ∈
B} ⋄ {(tid, σ, σ) | σ ̸∈ B} that distinguishes the true/false cases but never modifies the store.
The following illustrates this encoding for the test x >= 0.

x >= 0 def= {(tid, σ, σ) | σ(x) ≥ 0} ⋄ {(tid, σ, σ) | σ(x) < 0}

As a more interesting example, we encode cas as the following conditional action:

cas(x,v,v′) def= ⟨\old(x) = v ∧ x = v′⟩x ⋄ I

where the identity action I = { (t, σ, σ) | t ∈ Tid and σ ∈ Store}. This definition permits
cas to non-deterministically fail from any pre-state, which enables us to treat failed cas
operations as both movers [19].

Given C = A1⋄A2, the if statement if C s1 else s2 may either: 1) evaluate the action
A1 and then s1, or 2) evaluate A2 and then s2. The former is the “true” case and the latter
is the “false” case, with the desired behavior regardless of whether C encodes a predicate test
or a potentially-failing store update. To prevent the if statement from blocking, we require
(A1 ∪ A2) to be total on the state, i.e. { σ | (t, σ, _) ∈ (A1 ∪ A2) } = State.

The while statement while C s behaves similarly. It iterates as long as C succeeds. We
may need to test the negation of a conditional action. The negation of C = A1⋄A2, written
!C, is simply A2⋄A1. The language includes the statement wrong to indicate than an error
occurred. The statement assert B abbreviates if B skip else wrong. The goal of mover
logic is to verify that programs do not go wrong.

Global variable declarations have the form x var_spec and are kept in a global declaration
table D. Function declarations have the form fn_spec f() { s } and are also kept in D.
Specifications for globals (var_spec) and functions (fn_spec) are described in Sections 7 and 8,
respectively. For notational simplicity, D is left as an implicit argument to the evaluation
judgments. To keep the core language as simple as possible, we elide formal parameters and
return values. Instead, parameters and return values are passed in thread-local variables, as
described below in Section 7.3.5

In our examples, we include types, curly braces, semicolons, and other standard syntactic
forms to aid readability.

An execution state

Σ = s1..sn · σ

consists of sequence of threads s1..sn with a shared store σ. The evaluation relation Σ → Σ′

is based on evaluation contexts E[. . .], which identify the next statement to be evaluated. A
state Σ = s1..sn · σ is wrong if any thread is about to execute wrong, i.e., if si = E[wrong].
The semantics demonstrates that yield annotations have no effect at run time, but they are
used in the mover logic described below.

5 Extending the language to include function arguments and results is straightforward, but it adds
notational complexities that are orthogonal to our core contributions.

ECOOP 2024

16:14 Mover Logic

7 Mover Logic Effects and Specifications

Mover logic divides the execution of each thread into reducible code sequences that are
separated by yield statements identifying where thread interference may be observed.

7.1 Effects

We use a language of effects to reason about reducible code sequences separated by yields:

e ∈ Effect ::= Y | R | L | B | N | E

where
Y is the effect of a yield annotation;
R describes right-mover actions;
L describes left-mover actions;
B describes both-mover actions that are both left- and right-movers;
N describes non-mover actions that are neither left- nor right- movers; and
E describes erroneous situations, such as the sequential composition of two non-mover
actions without an intervening yield, which is not a reducible sequence.

Our strategy for verifying that yields correctly separate reducible sequences is based on
the DFA [62] shown below (left). The DFA captures reducible sequences R∗[N]L∗ separated
by yields Y, which resets the DFA to the initial “pre-commit” state on the left to start a new
reducible sequence. The first left-mover or non-mover in a reducible sequence is often called
the commit action and moves us from the pre-commit to the post-commit phase.

Pre
Commit

Post
Commit Error

R|B L|B

L|N R|N

Y
Y

N

R L

B

Y

E

From this DFA, we derive the ordering Y ⊑ B ⊑ R, L ⊑ N ⊑ E, which is also shown above (right).
For example, R ⊑ N, since for any effect sequences α and β, if α N β is accepted by this DFA,
the α R β is also accepted. We define a standard join operation ⊔ via this ordering.

We also define sequential composition e1; e2 and iterative closure e∗, as in [62]. For
example, R; L = N since to show α R L β is accepted by the DFA it is sufficient to show that
α N β is accepted. Conversely, N; N = E (error), since α N N β is never accepted by this DFA.

e1; e2 Y B R L N E
Y Y Y Y L L E
B Y B R L N E
R R R R N N E
L Y L E L E E
N R N E N E E
E E E E E E E

e e∗

Y Y
B B
R R
L L
N E
E E

C. Flanagan and S. N. Freund 16:15

7.2 Mover Specifications
In mover logic, the verification of a thread tid is performed in the context of a mover
specification describing how each program action A starting in the store σ commutes with
steps of other threads. Thus, mover specifications M have the type

M : Action × Tid × Store → Effect \ {Y}

For example, if action A is a local computation that only accesses thread-local variables, we
would naturally have

M(A, tid, σ) = B

Alternatively, if a global variable x is protected by a lock m, the write action x = expr might
have the mover specification

M(x = expr, tid, σ) =
{

B if σ(m) = tid
E otherwise

indicating that the write is a both-mover only if thread tid holds lock m. Otherwise, it is an
error. We assume that expr only accesses local variables, and that M(A, tid, σ) is never Y
since actions do not yield.

We write mover specifications in the source code using the following notation, which is
inspired by earlier reduction-based verifiers [30, 19, 21]:

var_spec ::= var_clause∗

var_clause ::= read e if P | write e if P

where P ⊆ Tid ×Store ×Store is a two-store predicate describing the pre-store and post-store
of the access to x in question. Further, P can depend on the current thread identifier tid.
Similar to actions, we write these predicates as formulae in which \old(y) and y to refer to
the values of y in the pre-store and post-store, respectively. To determine the mover effect of
a variable access, we evaluate the specification clauses in order and take the effect of the first
case where the condition P is satisfied. If no clauses apply, the access has the error effect
E. More formally, given the specification for a variable x in the source code, we collect the
sequence of clauses for reads and writes separately and then create the mover specification
M for x as follows:

 read e1 if P1

...
read en if Pn

 =⇒ M(rtid = x, tid, σ) =

e1 if P1(tid, σ, σ)
...

...
en if Pn(tid, σ, σ)
E otherwise

 write e1 if P1

...
write en if Pn

 =⇒ M(x = expr, tid, σ) =

e1 if P1(tid, σ, σ[x := σ(expr)])
...

...
en if Pn(tid, σ, σ[x := σ(expr)])
E otherwise

where rtid is a local variable, expr only accesses thread-local variables, σ(expr) is the result
of evaluating expr in the store σ, and the cases for M are evaluated in the order listed.

ECOOP 2024

16:16 Mover Logic

Counter Library

 int x both-mover if m == tid
 lock m write right-mover
 if \old(m) == 0 && m == tid
 write left-mover
 if \old(m) == tid && m == 0

 atomic non-mover
 requires true
 ensures x == \old(x) + arg1tid
 ensures resulttid == x
 add() {
 R ⟨\old(m) == 0 ∧ m == tid⟩m
 B rtid = x;
 B rtid = rtid + arg1tid;
 B x = 1;
 B x = rtid;
 L ⟨m == 0⟩m;
 B resulttid = rtid;
 }

Client

 relies even(x)
 guarantees even(x)
 requires even(x)
 ensures even(x)
 client() {
 // even(x)
 B arg1tid = 2;
 // even(x) && arg1tid == 2
 N addtid();
 // even(x)
 Y yield;
 // even(x)
 B arg1tid = 2;
 // even(x) && arg1tid == 2
 N add();
 // even(x) && even(resulttid)
 B utid = resulttid;
 // even(x) && even(utid)
 B if even(utid) skip else wrong;
 // even(x)
 Y yield;
 // even(x)
 }

Initial State Σ
(yield; client()).(yield; client())·[x := 0, m := 0]

Figure 7 The example from Figure 3 (right) expressed in Mover Logic Language.

The declaration for a global variable x protected by a lock m is thus written as

int x read both-mover if m == tid
write both-mover if m == tid

where both-mover is syntactic sugar for the effect B. (Similarly, we use left -mover for L,
and so on.) In our examples, we abbreviate these identical read and write cases as follows.

int x both-mover if m == tid

7.3 Motivating Example, Revisited
Figure 7 expresses our motivating example from Figure 3 (right) in our Mover Logic Language.
As mentioned earlier, an access to a thread-local variable r actually accesses a (global) variable
rtid that is reserved for use by thread tid. We use thread-local variables to encode function
arguments and results. The fork statements are converted into parallel threads in the initial
state Σ. We insert a yield at the start of each thread in Σ so that the initial state is
well-formed under the non-preemptive semantics we introduce in our formal development.

Given this mover specification, mover logic successfully verifies this code. Figure 7 also
demonstrates the reasoning carried out by mover logic. The left margin shows the effect of
each action and groups those effects into reducible sequences. The add() function is a single

C. Flanagan and S. N. Freund 16:17

reducible sequence, ensuring that we may treat it as atomic. The client() function consists
of multiple reducible sequences separated by yields. We also show invariants demonstrating
that client() is correct in comments at each program point.6

7.4 Additional Mover Specification Examples
Figure 3 (right) showed how mover specifications can capture the synchronization/commuting
behavior of lock acquires, lock releases, and lock-protected variable accesses. Our mover
specifications are inspired by the Anchor verifier, which used mover specifications to capture
many synchronization idioms [19, 1].7

To illustrate how mover specifications capture more complex synchronization disciplines,
suppose the variable y is write-protected by a lock m. That is, lock m must be held for all writes
to y but not necessarily held for reads. Consequently, y should be declared volatile if the code
is run under a weak memory model. Writes to y are non-movers (due to concurrent reads);
lock-protected reads are both-movers (because there can be no concurrent writes); and reads
without holding the lock are non-movers (due to concurrent writes). Mover specifications
capture this synchronization discipline concisely as follows, where the last clause applies only
when m is not tid.

int y write non-mover if m == tid
read both-mover if m == tid
read non-mover

The FastTrack dynamic race detector [18, 57] uses a combination of lock-protected and
write-protected disciplines to synchronize accesses to some array pointers. We illustrate that
discipline for an array pointer vc: initially, a flag is false and the pointer vc is guarded by
lock; when flag becomes true, vc becomes write-guarded by lock. The mover specification
for this discipline is captured by the first four lines in the specification for vc:

int vc[] both-mover if !flag && lock == tid
write non-mover if flag && lock == tid
read both-mover if flag && lock == tid
read non-mover if flag
[i] both-mover if !flag && lock == tid
[i] read both-mover if flag && (lock == tid || tid == i)
[i] write both-mover if flag && (lock == tid && tid == i)

This idiom enables the algorithm to avoid using a lock to protected all accesses to vc
but still replace vc with a larger array when necessary. The last three lines capture the
synchronization discipline for accessing the array entry vc[i], where we use the extended
notation “[i] var_clause” to describe the synchronization cases for actions that access
vc[i]. That entry is also initially guarded by lock when flag is false; when flag becomes
true, the entry vc[i] can only be written by thread i while holding lock, read by any
thread while holding the lock, or read by thread i without holding the lock. These reads
and writes are all both-movers. These rules prevent all conflicting reads and writes, and thus
all accesses to vc[i] are both-movers under this synchronization discipline.

6 In this example, the rely assumption even(x) is sufficient for reasoning about yield points. In code
where live ranges for local variables span yield points, we would add to the rely assumptions the
requirement that one thread does not change another thread’s local variables.

7 Our syntax for mover specifications is a syntactic variant of the Anchor syntax. In essence, our
specifications are sequential var_clauses, whereas Anchor combines these clauses into a single binary
decision tree using the syntax bool_expr ? mover_spec : mover_spec.

ECOOP 2024

16:18 Mover Logic

As a final example, consider a concurrent hashtable consisting of a table array and a
locks array, which has length N. The entry table[i] is protected by locks[i % N]. The
table reference itself may change when, for example, table is replaced with a larger array.
To ensure such changes are done without interference, a write to table is permitted only
when a thread holds all locks. In contrast, table can be read by a thread holding any lock.
All such reads and writes are both-movers, as captured by the following mover specification:

Entry table[] write both-mover if ∀i ∈ [0, N). locks[i] == tid
read both-mover if ∃i ∈ [0, N). locks[i] == tid
[i] both-mover if locks[i % N] == tid

As illustrated in the previous two examples from the Anchor verifier [19], mover
specifications can naturally capture synchronization disciplines that vary with the current
program state.

A final example comes from the common iterative parallel algorithm pattern in which a
synchronization barrier is used to divide the computation into a series of phases. In the even
phases, the main thread (with tid = 0) updates shared data structures, and in odd phases,
worker threads concurrently read data from those structures, as specified below.

int z read both-mover if phase % 2 == 1
both-mover if phase % 2 == 0 && tid == 0

8 Mover Logic

In this section, we show the proof rules for how mover logic handles statements (Section 8.1);
function definitions, calls, and specifications (Sections 8.2–8.3); and run-time states (Sec-
tion 8.4).

8.1 Mover Logic
Mover logic is defined via the judgments in Figures 8 and 9. The main judgment

R; G ⊢ s : P → Q · e

verifies that, when starting from a store satisfying the precondition P , the statement s

terminates only in stores satisfying the postcondition Q (i.e. partial correctness). In addition,
the judgment uses the mover specification M to verify that s consists of reducible sequences
separated by yields. At each yield point, the rely assumption R ⊆ Tid × Store × Store is
used to model potential interference from other threads. Conversely, the thread guarantee
G ⊆ Tid × Store × Store summarizes the behavior of each reducible code sequence between
two yield points in s. The effect e summarizes how s commutes with steps of other threads.

In the rules, the precondition P can refer to the value of variable x in the initial store σ0 of
the current reducible code sequence via the notation \old(x). Thus P is a two-store relation
P ⊆ Tid × Store × Store relating that initial store σ0 to the pre-store σ for the execution of
s. We show that requirement visually in the following trace, where (tid, σ0, σ) ∈ P .

yield …○ �휎0 ○ s �휎’
… ○… ○ … �휎

P
Q

C. Flanagan and S. N. Freund 16:19

One-Store and Two-Store Predicates and Supporting Definitions

S, T ⊆ Tid × Store
R, G, P, Q, A ⊆ Tid × Store × Store

Two(S) def= { (t, σ, σ) | (t, σ) ∈ S }

Post(P) def= { (t, σ) | (t, _, σ) ∈ P }

I
def= { (t, σ, σ) | t ∈ Tid, σ ∈ Store }

P ; A
def=

{
(t, σ, σ′′)

∣∣∣∣ (t, σ, σ′) ∈ P and
(t, σ′, σ′′) ∈ A

}
Yield(P, R) def=

{
(t, σ′, σ′)

∣∣∣∣ (t, _, σ) ∈ P and
(t, σ, σ′) ∈ R∗

}
Mover Logic Proof Rules

R; G ⊢ s : P → Q · e

[M-action]
M(A, P) = e

e ⊑ L ⇒ A is total
R; G ⊢ A : P → (P ; A) · e

[M-seq]
R; G ⊢ s1 : P → Q1 · e1

R; G ⊢ s2 : Q1 → Q2 · e2

R; G ⊢ s1; s2 : P → Q2 · (e1; e2)

[M-if]
R; G ⊢ s1 : P ; A1 → Q · e1

R; G ⊢ s2 : P ; A2 → Q · e2

e = (M(A1, P); e1) ⊔ (M(A2; P); e2)
R; G ⊢ if (A1⋄A2) s1 else s2 : P → Q · e

[M-while]
R; G ⊢ s : P ; A1 → P · e1

e = (M(A1, P); e1)∗; M(A2, P)
e ̸⊑ L

R; G ⊢ while (A1⋄A2) s : P → P ; A2 · e

[M-skip]

R; G ⊢ skip : P → P · B

[M-wrong]

R; G ⊢ wrong : ∅ → ∅ · B

[M-conseq]
P ⇒ P1

Q1 ⇒ Q

R ⇒ R1

G1 ⇒ G e1 ⊑ e

R1; G1 ⊢ s : P1 → Q1 · e1

R; G ⊢ s : P → Q · e

[M-yield]

P ⇒ G

Q = Yield(P, R)
R; G ⊢ yield : P → Q · Y

Figure 8 Mover logic proof rules and supporting definitions.

The two-store postcondition Q ⊆ Tid × Store × Store relates σ0 to the post-store σ′ of s.
Many of the mover logic rules are extensions of Hoare logic incorporating reduction effects.

For example, the rule [M-seq] states that a sequential composition (s1; s2) commutes as e1; e2,
the sequential composition of the effects of its sub-statements, and that the precondition and
postcondition are related as follows:

yield○ ○ s2 ○ … ○… ○ s1 ○
P

Q2

Q1

The rule [M-skip] indicates that skip has no effect, so its precondition and postcondition
are identical. The rule [M-wrong] verifies that wrong is never executed via the unsatisfiable
precondition ∅. That is, this rule rejects any program that may execute wrong from any state.

ECOOP 2024

16:20 Mover Logic

Function Specification Syntax

fn_spec ::= atomic e requires S ensures Q

| relies R guarantees G requires S ensures T

Proof Rules for Function Definitions and Calls

⊢ fn

[M-def-atomic]
f() is not (directly or indirectly) recursive

∅; ∅ ⊢ s : Two(S) → Q · e

⊢ atomic e

requires S ensures Q f() { s }

… …○ ○ ○ … ○

Q
S

… ○ … ○

s

[M-def-non-atomic]
R; G ⊢ s : Two(S) → Two(T) · R G ̸= ∅

⊢ relies R guarantees G

requires S ensures T f() { s }

○ … ○ yield ○ … ○… ○ yield ○

Q1 R* Q2 R* Q3

S T

(⇒G) (⇒G)

s

(⇒I)

R; G ⊢ s : P → Q · e

[M-call-atomic]
atomic e

requires S ensures Q f() { s } ∈ D

Post(P) ⇒ S

R; G ⊢ f() : P → (P ; Q) · e

… f()○ ○yield○ ○ … ○

P;Q
P

S
Q

[M-call-non-atomic]
relies R guarantees G

requires S ensures T f() { s } ∈ D

R; G ⊢ f() : Two(S) → Two(T) · R

… f()○ ○yield○ ○ … ○

P
S

(⇒I)
T

Verification of States

⊢ Σ
[M-state]

∀fn ∈ D. ⊢ fn M is valid I ⇒ G

∀t ∈ Tid.

[
R; G ⊢ st : Pt → Qt · et and et ̸= E and Qt ⇒ G

and st is yielding and (t, σ, σ) ∈ Pt

]
∀t, u ∈ Tid. t ̸= u ⇒ (G[tid := t] ⇒ R[tid := u])

⊢ s1..sn · σ

Figure 9 Mover logic proof rules for function definition, calls, and run-time states.

C. Flanagan and S. N. Freund 16:21

The rule [M-action] computes the effect of action A from states σ satisfying the current
precondition P . That rule uses the function to compute this effect:

M(A, P) def=
⊔

(t,_,σ)∈P

M(A, t, σ)

(Note that we are overloading M here.) The postcondition of A is then the precondition
P sequentially composed with the action A, i.e. P ; A. A key technical requirement of the
reduction theorem is that once an atomic block R∗[N]L∗ enters its post-commit (or left-mover
part), then it must terminate. It cannot block or diverge [24].8 Hence, we require that A is
total if it is a left-mover. We place similar restrictions on loops.

The rule [M-if] requires both the true case (A1; s1) and the false case (A2; s2) to have
the same post-condition Q. The effect e is the maximal effect of executing either A1 followed
by s1 or A2 followed by s2. The rule [M-while] for while A1⋄A2 s checks that a successful
test followed by the body preserves precondition P , which functions as a loop invariant. The
postcondition of the loop is the postcondition of A2 given the precondition P . The effect of
a loop is the iterative closure of the effect of one iteration sequentially composed with the
effect of the loop-terminating test A2.

Consider the loop in spin_lock() in Figure 5. The test !cas(l,0,tid) is the conditional
action I⋄⟨\old(l) = 0 ∧ l = tid⟩l and the loop body is skip. Since P ; I = P , rule [M-skip]
concludes that R; G ⊢ skip : P → P ·B. Further, M(I, P) = B, because that action accesses no
global variables, and the specification for l indicates that M(⟨\old(l) = 0∧l = tid⟩l, P) = R.
Thus, e = (B; B)∗; R = R. Also, the postcondition P ; A2 for the loop simplifies to the expected
P [l := tid]. To ensure the left-mover termination requirement, rule [M-while] requires that
e ̸⊑ L. That is, the post-commit part of a reducible sequence cannot contain loops.

The rule [M-yield] for yield first checks that the thread guarantee G includes all possible
behaviors P of the reducible sequence preceding the yield via the antecedent P ⇒ G. The
reducible sequence following the yield starts with postcondition Q = Yield(P, R) which
incorporates repeated thread interference from other threads via the iterated rely assumption
R∗ and then resets each \old(x) value to be the current value of x at the start of the new
reducible sequence.

The rule [M-conseq] extends the consequence rule of RG logic to reduction effects.

8.2 Atomic Functions
Mover logic supports both atomic and non-atomic functions. An atomic function is one
whose code body is reducible (i.e., no yield statements) and has the following form:

atomic e

requires S ensures Q f() { s }

(We elide e in the surface syntax when it is N, as in Figure 3 (right)). The precondition
S ⊆ Tid × Store describes valid initial stores for the function call and must be established by
the caller. The post condition Q ⊆ Tid × Store × Store describes possible final stores, and
it may refer to values of variables on function entry using the \old(x) notation. Since s is

8 To motivate this requirement consider the program (x = 1; while (true) skip; yield) || (assert
x != 1). This program can go wrong because the first thread writes 1 to x. However, the reducible
block containing that write never terminates after performing that write, and that write is not included
in the thread guarantee G. Thus, we require that once a reducible block commits, it must terminate.

ECOOP 2024

16:22 Mover Logic

atomic and yield-free, we elide the rely and guarantee components from atomic function
specifications. We require atomic functions to be non-recursive to facilitate the “left-mover
terminates” requirement mentioned above.

To ensure that the function body s conforms to the function’s specification, rule
[M-def-atomic] in Figure 9 first converts S into the two-store precondition Two(S) (in
which \old(x) = x for all variables x) and then verifies the function body s with re-
spect to that precondition. We use the guarantee ∅ to enforce that s is indeed yield-free.
(Rule [M-yield] will always fail if G is ∅, provided that the yield is actually reachable, i.e.
if P ̸= ∅).

The rule [M-call-atomic] for a corresponding call to f() retrieves the above specification
from the declaration table D and then ensures that the precondition P at the call site
implies the callee’s precondition S. That rule uses Post(P) to first convert P into a one-state
predicate. The postcondition (P ; Q) combines the call precondition P with the two-store
postcondition Q of the callee, as illustrated in the trace to the right of the rule.

8.3 Non-Atomic Functions
Non-atomic function definitions have the following form:

requires R guarantees G

requires S ensures T f() { s }

We include thread rely R and guarantee G components in these function specifications since
non-atomic function may include yield points where thread interference may occur. For
simplicity, we require that non-atomic function calls and returns happen at the start of
a reducible sequence. Consequently, the precondition S ⊆ Tid × Store and postcondition
T ⊆ Tid × Store are both one-store predicates since there is no need to summarize the
preceding reducible sequence.

The rule [M-def-non-atomic] checks that the function body s runs from the precondition
Two(S), possibly via multiple reducible sequences separated by yields, to terminate after a
final yield s in a store satisfying T . Those requirements are enforced by using Two(T) as
the postcondition for s. Further, the body s should end in a yield, which from the definition
of e1; e2 entails that the effect of s is at most R. At a call site, the rule [M-call-non-atomic]
requires that the current reducible sequence is trivial/empty and meets the function’s one-
store precondition S by requiring the precondition Two(S) prior to the call. The rule also
converts the function’s one-store postcondition T to the two-store predicate Two(T).

8.4 Verifying States
We now define the verification judgment ⊢ Σ to verify program states Σ = s1..sn · σ. The
rule [M-state] for this judgment in Figure 9 ensures that:

each thread st verifies from a precondition Pt that includes the initial store σ;
any pending behavior Qt at thread termination is published to G;
the thread guarantee G is reflexive;
the guarantee of each thread is contained in the rely assumption of every other thread;
each function definition in the global table D is verifiable; and
that all threads start with a yield statement (to simplify the correctness proof).

A mover specification M makes claims about how steps of one thread commute with
respect to steps of other threads, and mover logic needs to ensure that those claims are
correct. Specifically, we define a mover specification to be valid if:

C. Flanagan and S. N. Freund 16:23

1. Right-moving actions can be moved later in a trace without changing the final store.
2. Left-moving actions can be moved earlier in a trace without changing the final store.
3. An action by one thread cannot change the effect of an action in another thread.
4. An action by one thread cannot cause a left-moving action in another thread to block.
We formalize these validity requirements as follows:

▶ Definition 1 (Validity). M is valid if the following four conditions hold for all threads
t ̸= u and A1, A2, σ, σ′:

(1) if M(A1, t, σ) ⊑ R and (t, σ, σ′) ∈ A1 and
M(A2, u, σ′) ⊑ N and (u, σ′, σ′′) ∈ A2,

then there exists σ′′′ such that
(u, σ, σ′′′) ∈ A2 and (t, σ′′′, σ′′) ∈ A1.

A1�휎 �휎’
A2 �휎’’

A2�휎 �휎’’’
A1 �휎’’

R⇒
A1�휎 �휎’

A2 �휎’’
R

(2) if M(A1, t, σ) ⊑ N and (t, σ, σ′) ∈ A1 and
M(A2, u, σ′) ⊑ L and (u, σ′, σ′′) ∈ A2,

then there exists σ′′′ such that
(u, σ, σ′′′) ∈ A2 and (t, σ′′′, σ′′) ∈ A1.

A1�휎 �휎’
A2 �휎’’

A2�휎 �휎’’’
A1 �휎’’

L⇒
A1�휎 �휎’

A2 �휎’’
L

(3) if M(A1, t, σ) ⊑ N and (t, σ, σ′) ∈ A1 and
M(A2, u, σ) = e for some e,

then M(A2, u, σ′) = e.
A1�휎 �휎’

A2 …

A2�휎 …e

e
⇒A1�휎 �휎’

A2�휎 …e

(4) if M(A1, t, σ) ⊑ N and (t, σ, σ′) ∈ A1 and
M(A2, u, σ) ⊑ L and (u, σ, σ′′) ∈ A2,

then there exists σ′′′ such that
(u, σ′, σ′′′) ∈ A2 and (t, σ′′, σ′′′) ∈ A1.

A2�휎 �휎’’L
A1�휎 �휎’

A2 �휎’’’

A1 �휎’’’

⇒
A2�휎 �휎’’L
A1�휎 �휎’

8.5 Correctness

The central correctness theorem for mover logic is that verified programs do not go wrong
by, for example, failing an assertion.

▶ Theorem 2 (Soundness). If ⊢ Σ then Σ does not go wrong.

The proof appears in full in the extended version of this paper [20]. The basic structure is as
follows.
1. We first develop an instrumented semantics that enforces the mover specification M and

also that each thread consists of reducible sequences separated by yields.
2. In addition to the usual preemptive scheduler, we also develop a non-preemptive scheduler

for the instrumented semantics that context switches only at yields.
3. We show that the instrumented semantics under the preemptive scheduler behaves the

same as the standard semantics except that it may go wrong more often.
4. We use a reduction theorem to show that programs exhibit the same behavior under the

preemptive and non-preemptive instrumented semantics.
5. Finally, we use a preservation argument [58] to show that verified programs do not go

wrong under the non-preemptive instrumented semantics.
6. The steps above then imply that verified programs do not go wrong under the preemptive

standard semantics.

ECOOP 2024

16:24 Mover Logic

9 Related Work

Modular Reasoning
Concurrent software verification introduces a number of scalability challenges that require a
synthesis of various notions of modularity or abstraction to address. For example, procedure-
modular reasoning tackles large code bases by verifying each procedure with respect to a
specification of other procedures in the system. Rely-guarantee logic [33] augments procedure-
modular reasoning with a notion of thread-modular reasoning that accommodates multiple
threads by verifying each thread with respect to a specification of other threads in the system.
As demonstrated in Section 2, systems like RG logic that support procedure-modular and
thread-modular reasoning have great potential, but they are limited by entanglement between
library and client specifications.

To address that limitation, mover logic augments procedure-modular and thread-modular
reasoning with Lipton’s theory of reduction [41]. This complementary form of “interleaving”
modularity limits the number of interleavings that must be considered and enables more
precise procedure specifications for atomic functions.

In other work, separation logic combines procedure-modular reasoning with a notion
of heap-modular reasoning [47, 49], which enables verification of sub-goals while ignoring
irrelevant heap objects. Separation logic has been the foundation for a variety of verification
tools [3, 32, 44]. Concurrent separation logics including, for example [53, 46, 5, 52], extend
those ideas to a concurrent setting. While initially focused on noninterference via disjoint
access and read-only sharing, later work [14, 13] supports more tightly-coupled threads.

Much of the work on concurrent separation logic focuses on resources (e.g., heap locations)
and on ensuring threads access disjoint resources (hence ensuring noninterference). In contrast,
mover logic focuses on commuting actions.

Concurrent separation logic and mover logic also differ in where thread interference
specifications are placed. Concurrent separation logic conveniently merges interference (or
resource footprint) specifications into each method’s precondition, thus enabling the logic to
capture sophisticated resource usage idioms in a concise and elegant manner. Deny-guarantee
reasoning [14] extends concurrent separation logic to focus more on actions rather than
resources. In particular, a method’s precondition can include an “action map” specifying
what actions the method (and its concurrent threads) may perform. This action map is
analogous to our mover specifications. Several projects employ permissions or ownership,
similar to separation logic, to reason about which memory locations are available to different
threads. These include Viper [43] and VerCors [4]. These systems do not support reduction.

An important topic of for future study is how to extend mover logic with a notion of
heap modularity, perhaps similar to the core ideas of concurrent separation logic or dynamic
frames [2, 51, 35]. This body of work may also provide insight into how to develop a
compositional semantics based on mover logic.

Reduction-based Techniques
QED [15] is a program calculus and verification procedure for concurrent programs. It utilizes
iterative reduction and abstraction refinement to increase the size of the blocks that can
be considered serializable regions (at the abstract level). That approach has been shown
to be quite successful for verifying complex concurrent code and has inspired a number of
subsequent verification tools described below. Mover logic is a complementary approach
in that the combination of RG reasoning and reduction enables direct verification of code

C. Flanagan and S. N. Freund 16:25

with yield points, without the need to create layers of abstractions. As part of that, mover
logic supports specifying and reasoning about functions that are not atomic, which is not
supported in QED. We also note that QED checks the commutativity properties of an action
via a pairwise check with all other actions in the code, whereas mover logic uses the mover
specification validity check for that purpose.

Several more recent verification tools utilize the same approach of writing a series
of programs related by refinement, abstraction, and reduction. These include the CIVL
verifier [30, 38, 40, 36, 37, 39] and the Armada verifier [42]. They are capable of handling
sophisticated concurrent code, but do require the programmer to write and maintain multiple
versions of the source code. The correctness arguments for these tools have typically been
based on monolithic proofs.

Calvin-R [25] developed a number of early ideas related to reduction and thread-modular
reasoning. The Anchor verifier [19] builds on ideas behind Calvin-R and CIVL to create a
verification technique supporting an executable, object-oriented target language, a variety of
synchronization primitives, and a new notation for specifying the interference between threads
that is the foundation for our mover specifications. While effective at some verification
tasks, Anchor’s correctness arguments are also challenging to understand and build upon.
Further, Anchor is inherently limited to small programs because it inlines nested calls
during verification, with no mechanism for procedure-modular reasoning. Mover logic may
provide a useful foundation for a procedure-modular extension of Anchor.

The difficulty in assessing the strengths and weaknesses of the tools mentioned above
without a robust underlying logic capturing what they do inspired this work. Mover logic
may provide such a foundation, detached from any particular full-scale implementation, that
it is accessible, general, and extensible. We hope implementations based on mover logic will
follow, as the logic clarifies exactly what conditions must be met in reduction-based verifiers
that attempt to integrate modular reasoning in the presence of interference.

Coq-based Techniques

Complementary approaches develop proof frameworks for verifying concurrent programs in
Coq [12]. For example, CCAL [28] provides a compositional semantic model for composing and
verifying the correctness of multithreaded components. CCAL focuses on only rely-guarantee
reasoning [33] and not reduction. CSpec [7] is a Coq library for verifying concurrent systems
modeled in Coq [12] using movers and reduction. While highly expressive, particularly
because additional proof techniques can be added as additional Coq code, users must write
significant Coq code for both specifications and proofs to use such a system. We have focused
on a logic more amenable to fully automatic reasoning. Iris [34] uses higher-order separation
logic to verify correctness of higher-order imperative programs.

Model Checking

An orthogonal approach to software verification utilizes explicit state, exhaustive model
checking. Such approaches have lower programmer overhead than other techniques, but they
are non-modular [16, 10, 11]. Specialized techniques, including reduction [29] and partial-
order methods [27, 26, 48], have been used to limit state-space explosion while checking
concurrent programs. A variety of concurrent software model checkers [8, 59, 45] have
demonstrated the potential of these approaches in constrained settings.

ECOOP 2024

16:26 Mover Logic

10 Summary

Over the last two decades, several promising multithreaded program verifiers have leveraged
reduction to verify sophisticated concurrent code including non-blocking algorithms, dynamic
data race detectors, and garbage collectors by leveraging precise, reusable specifications
for atomic functions. The reasoning used by these verifiers, including the notion of which
programs are verifiable, and why the verification process is sound, is unfortunately rather
complex. In contrast, Hoare logic [31] provides an accessible foundation for sequential
verifiers, and RG logic [33] provides a similar foundation for some multithreaded verifiers.

In developing mover logic, we aim to facilitate future research on reduction-based veri-
fication. Mover logic provides a declarative and formal explanation of reduction-based
verification, making it easier to understand which programs are verifiable, or not, and why;
which functions can be specified as atomic; what atomic and non-atomic function specifica-
tions mean; which code blocks are reducible; where yield annotations are required, etc. The
correctness proof for a reduction-based verifier need only show that the verifier follows the
rules of mover logic, a significant simplification over existing proof techniques.

We hope that mover logic inspires the development of more expressive reduction-based
logics and verification tools, potentially supporting features such as objects, data abstraction,
dynamic allocation, dynamic thread creation, and precise frame conditions [2, 51, 35].

References
1 The Anchor verifier. Accessed: March 30, 2024. URL: http://www.anchor-verifier.com/.
2 Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Regional logic for local reasoning

about global invariants. In ECOOP, volume 5142 of Lecture Notes in Computer Science, pages
387–411. Springer, 2008.

3 Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic
assertion checking with separation logic. In FMCO, volume 4111 of Lecture Notes in Computer
Science, pages 115–137. Springer, 2005.

4 Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. The vercors tool set:
Verification of parallel and concurrent software. In IFM, volume 10510 of Lecture Notes in
Computer Science, pages 102–110. Springer, 2017.

5 Stephen Brookes. A semantics for concurrent separation logic. Theor. Comput. Sci., 375(1-
3):227–270, 2007.

6 Pavol Cerný, Edmund M. Clarke, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk,
Roopsha Samanta, and Thorsten Tarrach. From non-preemptive to preemptive scheduling
using synchronization synthesis. Formal Methods Syst. Des., 50(2-3):97–139, 2017.

7 Tej Chajed, M. Frans Kaashoek, Butler W. Lampson, and Nickolai Zeldovich. Verifying
concurrent software using movers in CSPEC. In OSDI, pages 306–322. USENIX Association,
2018.

8 A. T. Chamillard and Lori A. Clarke. Improving the accuracy of petri net-based analysis of
concurrent programs. In ISSTA, pages 24–38. ACM, 1996.

9 Qichang Chen, Liqiang Wang, Zijiang Yang, and Scott D. Stoller. HAVE: detecting atomicity
violations via integrated dynamic and static analysis. In FASE, volume 5503 of Lecture Notes
in Computer Science, pages 425–439. Springer, 2009.

10 Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, volume 131 of Lecture Notes in
Computer Science, pages 52–71. Springer, 1981.

11 Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst., 8(2):244–263, 1986.

http://www.anchor-verifier.com/

C. Flanagan and S. N. Freund 16:27

12 The Coq proof assistant, 2023. URL: https://coq.inria.fr/.
13 Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hong-

seok Yang. Views: compositional reasoning for concurrent programs. In POPL, pages 287–300.
ACM, 2013.

14 Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis. Deny-guarantee
reasoning. In ESOP, volume 5502 of Lecture Notes in Computer Science, pages 363–377.
Springer, 2009.

15 Tayfun Elmas. QED: a proof system based on reduction and abstraction for the static
verification of concurrent software. In ICSE (2), pages 507–508. ACM, 2010.

16 E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties of parallel
programs using fixpoints. In ICALP, volume 85 of Lecture Notes in Computer Science, pages
169–181. Springer, 1980.

17 Cormac Flanagan and Stephen N. Freund. Atomizer: a dynamic atomicity checker for
multithreaded programs. In POPL, pages 256–267. ACM, 2004.

18 Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient and precise dynamic race
detection. Commun. ACM, 53(11):93–101, 2010.

19 Cormac Flanagan and Stephen N. Freund. The Anchor verifier for blocking and non-blocking
concurrent software. Proc. ACM Program. Lang., 4(OOPSLA):156:1–156:29, 2020.

20 Cormac Flanagan and Stephen N. Freund. Mover logic: A concurrent program logic for
reduction and rely-guarantee reasoning (extended version), 2024. arXiv:2407.08070.

21 Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer. Types for atomicity:
Static checking and inference for java. ACM Trans. Program. Lang. Syst., 30(4):20:1–20:53,
2008.

22 Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. Exploiting purity for atomicity. In
ISSTA, pages 221–231. ACM, 2004.

23 Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In PLDI, pages
338–349. ACM, 2003.

24 Cormac Flanagan and Shaz Qadeer. Types for atomicity. In TLDI, pages 1–12. ACM, 2003.
25 Stephen N. Freund and Shaz Qadeer. Checking concise specifications for multithreaded

software. J. Object Technol., 3(6):81–101, 2004.
26 Patrice Godefroid. Model checking for programming languages using verisoft. In POPL, pages

174–186. ACM Press, 1997.
27 Patrice Godefroid and Pierre Wolper. A partial approach to model checking. In LICS, pages

406–415. IEEE Computer Society, 1991.
28 Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm

Sjöberg, Hao Chen, David Costanzo, and Tahina Ramananandro. Certified concurrent
abstraction layers. In PLDI, pages 646–661. ACM, 2018.

29 John Hatcliff, Robby, and Matthew B. Dwyer. Verifying atomicity specifications for concurrent
object-oriented software using model-checking. In VMCAI, volume 2937 of Lecture Notes in
Computer Science, pages 175–190. Springer, 2004.

30 Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. Automated and modular
refinement reasoning for concurrent programs. In CAV (2), volume 9207 of Lecture Notes in
Computer Science, pages 449–465. Springer, 2015.

31 C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, 1969.

32 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. Verifast: A powerful, sound, predictable, fast verifier for C and java. In NASA
Formal Methods, volume 6617 of Lecture Notes in Computer Science, pages 41–55. Springer,
2011.

33 Cliff B. Jones. Tentative steps toward a development method for interfering programs. ACM
Trans. Program. Lang. Syst., 5(4):596–619, 1983.

ECOOP 2024

https://coq.inria.fr/
https://arxiv.org/abs/2407.08070

16:28 Mover Logic

34 Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. J. Funct. Program., 28:e20, 2018.

35 Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without
restrictions. In FM, volume 4085 of Lecture Notes in Computer Science, pages 268–283.
Springer, 2006.

36 Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, and Shaz
Qadeer. Inductive sequentialization of asynchronous programs. In PLDI, pages 227–242. ACM,
2020.

37 Bernhard Kragl and Shaz Qadeer. Layered concurrent programs. In CAV (1), volume 10981
of Lecture Notes in Computer Science, pages 79–102. Springer, 2018.

38 Bernhard Kragl and Shaz Qadeer. The civl verifier. In FMCAD, pages 143–152. IEEE, 2021.
39 Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Synchronizing the asynchronous.

In CONCUR, volume 118 of LIPIcs, pages 21:1–21:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018.

40 Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Refinement for structured concurrent
programs. In CAV (1), volume 12224 of Lecture Notes in Computer Science, pages 275–298.
Springer, 2020.

41 Richard J. Lipton. Reduction: A method of proving properties of parallel programs. Commun.
ACM, 18(12):717–721, 1975.

42 Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz Qadeer, Upamanyu
Sharma, James R. Wilcox, and Xueyuan Zhao. Armada: low-effort verification of high-
performance concurrent programs. In PLDI, pages 197–210. ACM, 2020.

43 Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In VMCAI, volume 9583 of Lecture Notes in Computer Science,
pages 41–62. Springer, 2016.

44 Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In Dependable Software Systems Engineering, volume 50 of
NATO Science for Peace and Security Series - D: Information and Communication Security,
pages 104–125. IOS Press, 2017.

45 Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Piramanayagam Arumuga
Nainar, and Iulian Neamtiu. Finding and reproducing heisenbugs in concurrent programs. In
OSDI, pages 267–280. USENIX Association, 2008.

46 Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007.

47 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs
that alter data structures. In CSL, volume 2142 of Lecture Notes in Computer Science, pages
1–19. Springer, 2001.

48 Doron A. Peled. Combining partial order reductions with on-the-fly model-checking. In CAV,
volume 818 of Lecture Notes in Computer Science, pages 377–390. Springer, 1994.

49 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,
pages 55–74. IEEE Computer Society, 2002.

50 Amit Sasturkar, Rahul Agarwal, Liqiang Wang, and Scott D. Stoller. Automated type-based
analysis of data races and atomicity. In PPoPP, pages 83–94. ACM, 2005.

51 Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. An automatic verifier for
java-like programs based on dynamic frames. In FASE, volume 4961 of Lecture Notes in
Computer Science, pages 261–275. Springer, 2008.

52 Viktor Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of
Cambridge, UK, 2008.

53 Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee and separation logic.
In CONCUR, volume 4703 of Lecture Notes in Computer Science, pages 256–271. Springer,
2007.

C. Flanagan and S. N. Freund 16:29

54 Liqiang Wang and Scott D. Stoller. Accurate and efficient runtime detection of atomicity
errors in concurrent programs. In PPoPP, pages 137–146. ACM, 2006.

55 Liqiang Wang and Scott D. Stoller. Runtime analysis of atomicity for multithreaded programs.
IEEE Trans. Software Eng., 32(2):93–110, 2006.

56 John Wickerson, Mike Dodds, and Matthew J. Parkinson. Explicit stabilisation for modular
rely-guarantee reasoning. In ESOP, volume 6012 of Lecture Notes in Computer Science, pages
610–629. Springer, 2010.

57 James R. Wilcox, Cormac Flanagan, and Stephen N. Freund. Verifiedft: a verified, high-
performance precise dynamic race detector. In PPoPP, pages 354–367. ACM, 2018.

58 Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, 1994.

59 Eran Yahav. Verifying safety properties of concurrent java programs using 3-valued logic. In
POPL, pages 27–40. ACM, 2001.

60 Jaeheon Yi, Tim Disney, Stephen N. Freund, and Cormac Flanagan. Cooperative types for
controlling thread interference in java. In ISSTA, pages 232–242. ACM, 2012.

61 Jaeheon Yi, Tim Disney, Stephen N. Freund, and Cormac Flanagan. Cooperative types for
controlling thread interference in java. Sci. Comput. Program., 112:227–260, 2015.

62 Jaeheon Yi and Cormac Flanagan. Effects for cooperable and serializable threads. In TLDI,
pages 3–14. ACM, 2010.

ECOOP 2024

Fair Join Pattern Matching for Actors
Philipp Haller # Ñ

KTH Royal Institute of Technology, Stockholm, Sweden

Ayman Hussein #

Technical University of Denmark, Lyngby, Denmark

Hernán Melgratti # Ñ

University of Buenos Aires & Conicet, Argentina

Alceste Scalas # Ñ

Technical University of Denmark, Lyngby, Denmark

Emilio Tuosto # Ñ

Gran Sasso Science Institute, L’Aquila, Italy

Abstract
Join patterns provide a promising approach to the development of concurrent and distributed
message-passing applications. Several variations and implementations have been presented in the
literature – but various aspects remain under-explored: in particular, how to specify a suitable
notion of message matching, how to implement it correctly and efficiently, and how to systematically
evaluate the implementation performance.

In this work we focus on actor-based programming, and study the application of join patterns with
conditional guards (i.e., the most expressive and challenging version of join patterns in literature).
We formalise a novel specification of fair and deterministic join pattern matching, ensuring that older
messages are always consumed if they can be matched. We present a stateful, tree-based join pattern
matching algorithm and prove that it correctly implements our fair and deterministic matching
specification. We present a novel Scala 3 actor library (called JoinActors) that implements our
join pattern formalisation, leveraging macros to provide an intuitive API. Finally, we evaluate the
performance of our implementation, by introducing a systematic benchmarking approach that takes
into account the nuances of join pattern matching (in particular, its sensitivity to input traffic and
complexity of patterns and guards).

2012 ACM Subject Classification Software and its engineering → Formal language definitions;
Software and its engineering → Domain specific languages; Software and its engineering → Concurrent
programming languages; Software and its engineering → Distributed programming languages; Theory
of computation → Process calculi

Keywords and phrases Concurrency, join patterns, join calculus, actor model

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.17

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.8

Funding Ayman Hussein: Research supported by the Horizon Europe grant 101093006 (TaRDIS).
Alceste Scalas: Research partly supported by the Horizon Europe grant 101093006 (TaRDIS).
Emilio Tuosto: Research partly supported by the EU H2020 RISE programme under the Marie
Skłodowska-Curie grant agreement No 778233, the PRIN PNRR project DeLICE (P20223T2MF),
“by the MUR dipartimento di eccellenza”, and by PNRR MUR project VITALITY (ECS00000041),
Spoke 2 ASTRA – Advanced Space Technologies and Research Alliance.

Acknowledgements This work was inspired by the group discussion on “Join patterns / synchron-
isation – the next generation” [4, page 54] at the Dagstuhl Seminar 21372; we thank the organisers
of the meeting and Schloss Dagstuhl – Leibniz Center for Informatics for making this work possible.

V1.1

A
rt
ifa

cts Available

ECOOP

© Philipp Haller, Ayman Hussein, Hernán Melgratti, Alceste Scalas, and Emilio Tuosto;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 17; pp. 17:1–17:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:phaller@kth.se
https://people.kth.se/~phaller/
https://orcid.org/0000-0002-2659-5271
mailto:ayhu@dtu.dk
https://orcid.org/0009-0005-6173-0976
mailto:hmelgra@dc.uba.ar
https://lafhis.dc.uba.ar/~melgratti
https://orcid.org/0000-0003-0760-0618
mailto:alcsc@dtu.dk
https://people.compute.dtu.dk/alcsc
https://orcid.org/0000-0002-1153-6164
mailto:emilio.tuosto@gssi.it
https://cs.gssi.it/emilio.tuosto
https://orcid.org/0000-0002-7032-3281
https://doi.org/10.4230/LIPIcs.ECOOP.2024.17
https://doi.org/10.4230/DARTS.10.2.8
https://doi.org/10.4230/DARTS.10.2.8
https://doi.org/10.4230/DARTS.10.2.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Fair Join Pattern Matching for Actors

We thank Omar Inverso for the technical support he provided for our experimental evaluation,
Roland Kuhn for fruitful discussions on the shop floor use case, António Ravara for some useful
suggestions, and Antoine Sébert for an implementation of join patterns using Scala 3 macros [25].
We thank the anonymous reviewers for their comments and suggestions.

1 Introduction

Programming concurrent and distributed message-passing applications is difficult, espe-
cially in scenarios where multiple concurrent processes need to synchronise and exchange
data when complex conditions are satisfied. The join calculus [8] introduced join patterns,
an intriguing construct for concurrent programming that can help address these scenarios. A
join pattern with conditional guard is reminiscent of a clause in a typical pattern matching
construct: it has the form “J if γ ▷ P” – where J is a message pattern describing a com-
bination of incoming messages and binding zero or more variables, and γ is a guard, i.e., a
boolean expression that may use the variables bound in J . A program using join patterns
can wait until a desired combination of messages arrives (in any order); when some of the
messages are matched by the message pattern J and their payloads satisfy the guard γ, the
process P is executed. We now illustrate programming with join patterns with an example
emerging from an industrial case study where a monitoring program handles a variety of
messages emitted by machines and devices deployed on a factory shop floor. (To illustrate
our proposal, we only show a representative sample of the the actual monitoring application.)

1 def monitor() = Actor[Event, Unit] {
2 receive { (self: ActorRef[Event]) => {
3 case (Fault(_, fid1, _, ts1),
4 Fix(_, fid2, ts2)) if fid1 == fid2 =>
5 updateMaintenanceStats(ts1, ts2)
6 Continue
7

8 case (Fault(mid, fid1, descr, ts1),
9 Fault(_, fid2, _, ts2),

10 Fix(_, fid3, ts3)) if fid2 == fid3 && ts2 > ts1 + TEN_MIN =>
11 updateMaintenanceStats(ts2, ts3)
12 log(s"Fault ${fid1} ignored for ${(ts2 - ts1) / ONE_MIN} minutes")
13 self ! DelayedFault(mid, fid1, descr, ts1) // For later processing
14 Continue
15

16 case (DelayedFault(_, fid1, _, ts1),
17 Fix(_, fid2, ts2)) if fid1 == fid2 =>
18 updateMaintenanceStats(ts1, ts2)
19 Continue
20

21 case Shutdown() => Stop
22 } }
23 }

Listing 1 Simplified factory shop floor maintenance monitor, written using our Scala 3 library
JoinActors (presented in Section 4).

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:3

Example: Monitoring a Factory Shop Floor. The Scala 3 Listing 1 is structured as an
actor [1] that uses our join patterns library JoinActors (as introduced in Section 4). Its
coding style is reminiscent of popular libraries like Akka and Pekko.1 The constructor
Actor[Event, Unit] (line 1) means that the actor’s mailbox receives messages of type Event
(which has various subtypes), and whenever the actor stops running, it yields a Unit value.
The “receive { ... }” block (lines 2–22) executes whenever messages are received, binding
“self” to a reference to the monitor actor itself (usable to send messages to its mailbox).

The monitor actor in Listing 1 is used in a scenario where machines on the factory
shop floor may occasionally require human intervention, so they may emit messages like
Fault(3, 42, "Motion sensor error", 10:31) carrying information such as the machine and
fault identifiers as well as a description and timestamp. When such an event occurs, a
technician is expected to reach the machine and report that the fault is being fixed, by using
a handheld device to emit a message like Fix(35, 42, 10:33) (carrying the worker id, fault
id being fixed, and timestamp).

The key difference between the actor depicted in Listing 1 and a “standard” actor in
libraries like Akka/Pekko lies in their message processing mechanisms. While the latter
can only react to individual messages arriving in its mailbox, the actor in Listing 1 reacts
whenever a combination of messages in its mailbox matches one of the join patterns with
guards specified within its “receive { ... }” block.

The case on lines 3–4 is triggered when the monitor detects in its mailbox both a Fault
and a Fix message referring to the same fault (guard “fid1 == fid2”). In this case,
the messages are removed from the mailbox, the monitor updates certain maintenance
statistics (line 5), and then resumes execution by returning Continue (line 6).
The case on lines 8–10 activates when the monitor sees two Fault message and a Fix
message that handles the most recent fault, with the older fault being emitted more
than 10 minutes earlier (guard “fid2 == fid3 && ts2 > ts1 + TEN_MIN”). In this case, the
monitor also logs a warning and resends the unhandled fault to its own mailbox (as a
DelayedFault) for later processing (lines 12–13);
The case on lines 16–17 is similar to the first case above, except that it consumes the
DelayedFaults emitted by the second case;
The case on line 21 reacts to a Shutdown message by Stopping the monitor.

Notice that the join pattern matching cases do not depend on the order of messages in
the mailbox: for instance, the first and second cases in Listing 1 (lines 3–4, 8–10) can be
triggered even if, due to network delays or temporary partitions, the Fix message reaches the
monitor mailbox before the corresponding Fault.2

The monitor in Listing 1 has a declarative and rather intuitive flavour – but writing it
without a library (like ours) supporting join patterns is much harder. E.g., to just implement
the first and second case (lines 3–4, 8–10), a programmer writing a “regular” Akka/Pekko
actor would need to write code for processing one incoming message at a time, remembering
how many Faults and/or Fixes it has seen thus far, and checking whether any combination
creates a match with the newly-arrived message, and satisfies the guards; this handcrafted
pattern matching logic should not “forget” any message combination, and should also support
messages arriving out-of-order. As the number and complexity of message patterns increases,
the handcrafted pattern matching code can become complicated, bug-prone, and inefficient.

1 https://akka.io/, https://pekko.apache.org/
2 The program in Listing 1 only assumes that each device has an accurate-enough clock, so message

timestamps can be compared (with some tolerance) to determine which event happened first.

ECOOP 2024

https://akka.io/
https://pekko.apache.org/

17:4 Fair Join Pattern Matching for Actors

Open Problems. Although promising, join patterns are still subject of research and their
adoption has yet to become “mainstream” in programming. In this work we tackle three
aspects that, we believe, have been under-explored thus far.

1. Formalising how a join pattern matching construct should select messages when multiple
options are available. Existing work (both theoretical and implementation-oriented,
discussed in Section 2) leaves the message selection unspecified (i.e., allowing for non-
determinism in the matching semantics), or follows a “first matching pattern wins”
approach – which may cause older messages to be “forgotten” in the mailbox to the
advantage of newer messages (we will discuss this in Section 3). This may yield “unfairness”
towards the messages in the mailbox: a message in the box is perpetually neglected when
“newer” messages are used in the matching.3

2. Implementing join patterns with guards in a correct and efficient way. Most existing
implementations address message patterns without guards [9, 2, 23, 27, 16]. However,
supporting guards is much harder: finding a combination of messages in a mailbox that
satisfies a guard may require computing up to a factorial number of message combinations,
and in order to reduce such computations, it becomes necessary to maintain the state
of partial matches. Other authors have considered this issue [12, 20, 22] – but unlike
us, they have either not provided a specific notion of matching nor demonstrated that
their optimisation approaches (if any) correctly adhere to a desired matching specification
(see problem 1 above). In fact, the papers [12, 20] do not define a notion of “preferred
matching” while such a notion is mentioned in the doctoral thesis [21] without a formal
definition nor proof of the properties of their algorithm.

3. Systematically evaluating join pattern matching performance. The performance of join
pattern matching is highly dependant on the input message traffic and on the complexity
of patterns and guards – but these aspects have not been systematically explored, and
there is no standardised benchmarking suite for join pattern implementations (akin to
Savina [13] for actor implementations). For instance, the measurements in [27] focus on
classic synchronisation problems, with simple patterns, and without guards.

Contributions and Structure of the Paper. We address the aforementioned challenges by
presenting a novel formalisation and implementation of join pattern matching with guards.
After the background and related work (Section 2), we introduce our contributions.

In Section 3, we present a formal specification of fair and deterministic join pattern match-
ing guaranteeing that oldest messages are always consumed if they can be used (Defs. 3.8
and 3.10). We also introduce a stateful tree-based matching algorithm (Defs. 3.20 and 3.23),
and we prove that it respects the formal specification of fair matching (Theorem 3.25).
In Section 4 we present JoinActors, our Scala 3 library for actors with join patterns,
including both a “brute-force” and a stateful tree-based implementation of our determ-
inistic fair matching semantics. JoinActors uses macros to provide an intuitive API.
JoinActors is the companion artifact of this paper.
In Section 5 we evaluate the relative performance of the matching algorithms implemented
in JoinActors, including (in Section 5.6) a comparison with an alternative implementation
of our fair matching policy that uses the RETE algorithm [6]. Our evaluation explores
variations of the input traffic and the complexity of join patterns and guards: we see this

3 This can be considered a form of fairness of instruction according to the terminology in [11].

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:5

as a step towards a standardised and systematic benchmarking approach for future join
pattern implementations. Overall, our experiments show that the performance of our
implementation of the stateful tree-based matching is suitable for applications like floor
shop monitoring (described above) or smart house automation (described in Section 5.3).

We conclude and discuss our future work in Section 6 – including alternative matching
policies. In this work we have chosen to formalise a “oldest messages first” matching policy
because it fits many scenarios – in particular, our factory shop floor monitor (where, as in many
application domains, a “first-arrived-first-served policy” is required, and non-deterministic
matching would be inadequate), and the examples we could find in literature.

2 Background and Related Work

The Join calculus [8], emerging in the late 1990s as a variant of the asynchronous pi-calculus,
aimed at enhancing the implementability of process calculi by introducing disciplined rules
regarding locality and scoping. Its distinctive feature is the integration of restriction, recursion,
and synchronization into a single language primitive: the join definition. A join definition
comprises a list of reaction rules of the form J ▷ P , where J is the join pattern and P

is the process associated with the rule. Essentially, a join pattern specifies the message
pattern necessary to activate the process P . For instance, in the construct c1(x) ∧ c2(y) ▷ P ,
we have that c1 and c2 represent communication channels, and the process P is activated
when messages are present in both channels. Hence, if messages like c1(m1) and c2(m2) are
detected, they are consumed, and the process P is executed by substituting the variables
x and y with the corresponding values m1 and m2 (i.e., P is executed as P{m1,m2/x,y}). A
reaction rule can be seen as an evolution of a function definition in a concurrent message-
passing setting: a function activates its body upon invocation from another function, through
variable substitution – whereas a reaction rule J ▷ P activates P only when the join pattern
J is “invoked” by one or more concurrent processes that send the required input messages;
when this happens, P is executed through variable substitution.

Multiple reaction rules can be combined, such as: c1(x) ∧ c2(y) ▷ P1 + c1(z) ∧ c3(w) ▷ P2.
When multiple rules share channels (as c1 in the previous example), there may be conflicting
synchronisations, as rules contend for messages. For example, if channels c1, c2, and c3 in the
previous example have a message available, either P1 or P2 can be activated. Significantly,
all conflicting synchronisations are defined within the same combination of reaction rules:
consequently, all consumers of messages within a channel are locally introduced by a definition,
eliminating the need for global consensus in synchronisation.

Since its inception, the join calculus has inspired implementations in various programming
languages [9, 7, 5, 14, 2, 23, 24, 27]. Early implementation approaches [5] were centered
around matching automata, where join definitions are compiled into deterministic automata.
In this cases, state corresponds to the state of message queues and transitions to the
arrival of messages. Although the foundational principles of this approach have since been
adopted in other implementations [2, 23, 24], newer methods have evolved to avoid the
explicit construction of automata. Initially, most implementations relied on coarse-grained
synchronization to guarantee the atomic consumption of messages. However, this strategy
has been refined [27] by employing fine-grained concurrency for enhanced scalability. This
involves the utilization of lock-free data structures and minimizing message enqueuing
whenever possible. Subsequent optimizations have further been explored in implementations
incorporating session types [10] to prune the size of matching automata.

ECOOP 2024

17:6 Fair Join Pattern Matching for Actors

The initial implementations adhere to the original join pattern model and not support
pattern matching on consumed values. However, subsequent implementations expanded
matching capabilities. This line of work has been started in [19], where join patterns were
enriched with matching on constant values. This approach has been extended in [16] to
incorporate pattern matching on algebraic data structures. An example of this extended ap-
proach involves message patterns such as pop(e) ∧ stack(x :: xs) where the pattern associated
with the channel stack expects a message containing a non-empty list. In such scenarios,
efficient pattern satisfaction can be achieved by translating these extended join patterns into
equivalent programs. These programs utilize conventional join patterns in their definitions
while incorporating ML-style pattern matching in the processes executed after a join pattern
match. Also, [16] showed that linear message patterns (i.e., where each bound variable occurs
once) without guards can be implemented efficiently by checking bit flags.

The implementation of more expressive forms of pattern matching have been studied
in [12, 20, 22]. These works are conceptually more similar to ours: unlike [16], these works
support join patterns that include conditional guards, i.e., their reaction rules may look like
c1(x) ∧ c2(y) if x < y ▷ P (resembling pattern matching guards in Erlang or Scala); moreover,
these works adapt join patterns to an actor-based setting: in the example above, P is
activated when the mailbox of the running actor contains, e.g., the messages c1(1) and c2(2)
(in any order, and possibly among other messages). The introduction of conditional guards
significantly improves the usability of join patterns, but also significantly complicates the
implementation of join pattern matching; these works adopt different approaches for finding
and selecting a match among incoming messages. Both [12] and [20] adopt a “first-match”
approach [26], i.e., given a combination of reaction rules, they select the first one that
successfully matches the messages in the mailbox; to find that match, [12] adopts a “stateless
brute force” approach (i.e., when the mailbox contains a set of messages that might potentially
be matched by a join pattern, it tries all message combinations), while [20] maintains a
state containing a cache of partial matches, to reduce unnecessary computations. Also, [22]
reportedly adopts a variant of the RETE algorithm [6] to maintain a cache of partial matches
(as a discrimination network) – but its implementation is not publicly available.

In the join calculus, join definitions have non-deterministic matching policies: when
multiple message combinations or patterns are enabled (as we will show in Example 3.5), one
option is chosen non-deterministically. Correspondingly, existing work and implementations
based on join calculus leave matching policies unspecified, or pick the first pattern that
completes a match. However, in scenarios where the message selection policy is critical (as
in our factory automation example in Section 1, where earlier events must be handled first),
the programmer has to encode the selection logic and maintain complex states to achieve
the desired outcome. This paper addresses the issue by formalising fair and deterministic
join pattern matching, inspired by matching mechanisms in functional languages. Drawing
from our real-world factory automation use case, we propose an approach that ensures
fair message consumption based on messages “age.” While other application scenarios may
require different resolution policies, we argue that such policies should be enforced by library
mechanisms. (We discuss some alternative policies in Section 6.) In contrast to prior work,
we emphasise the formalisation of properties guaranteed by the matching mechanism: we
introduce a formal specification of fair matching and prove that a stateful algorithm effectively
implements that specification. We also contribute a comprehensive evaluation, as a first step
toward a standard benchmark suite for join pattern implementations.

An interesting effect-handlers-based language is formalised in [3] to program different
styles of matching across different message streams. Besides a common connection to the join
calculus, a key design difference with our work is that we focus on matching messages within

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:7

an actor mailbox. The resulting features and applications are very different (e.g. a message
in a mailbox may be matched at a later time, after other messages from the same emitter –
which is not possible in a stream-based framework. Also, the work [3] does not address a
notion of fair matching among juxtaposed “joins over asynchronously arriving events” that
compete over the same input messages: in their modelling, no event binding takes precedence
over the other, all iterations proceed independently and concurrently [3, page 67:14-15].

3 Formalisation

In this section we present the formalisation and properties of our approach to join pattern
matching. In Section 3.1 we formalise the necessary notation, and in Section 3.2 we present
a specification of deterministic and fair matching, covering both individual join patterns
(Def. 3.8) and definitions (Def. 3.10). Then, in Section 3.3 we present a stateful matching
algorithm that implements our fair matching specification (Theorem 3.25) while avoiding
unnecessary computations.

3.1 Syntax
To abstractly represent messages, we assume a set C of constructors equipped with a map
arity assigning a natural number to each constructor; then, arity(c) ≥ 0 is the arity of c ∈ C
(c is a constant symbol if arity(c) = 0). A message is either a constructor of arity 0 or a term
of the form c(m1, . . . , mn) where c ∈ C, arity(c) = n > 0, and mi is a message (for i ∈ 1..n).
For instance, for the example in Section 1, Fault(3, 42, "Motion sensor error", 10:31) is
a message, with Fault being a constructor of arity 4 (numbers, strings, and timestamps are
constant symbols represented in the usual way for readability). Through the paper we use
boolean guards as pure expressions denoted with γ, using the syntax of boolean expressions
of Scala; we also use mailboxes denoted as M, as sequences of messages m1 · . . . · mn. We
will also denote variables with the symbols y, w, z, . . .

Intuitively, a join pattern is a combination of “messages with variables” that binds the
variables occurring therein. Multiple alternative join patterns can be composed in a join
definition. In Def. 3.1 we formalise join patterns equipped with guards, and join definitions.

▶ Definition 3.1 (Join patterns and join definitions). The syntax of join patterns Π and join
definitions D is given by the following grammar:

Π ::= J if γ where J ::= µ
∣∣ µ ∧ J and µ ::= m

∣∣ x
∣∣ c(µ1, . . . , µarity(c))

D ::= Π
∣∣ Π + D

We postulate that J if γ must be well-formed, namely: (i) linear, i.e., no variable in J occurs
more than once, and (ii) closed, i.e., each variable occurring in the guard γ also occurs in J .
We will often simply write J as shorthand for J if true.

Assumption (i) in Def. 3.1 is quite standard: e.g., Scala and F# require linear use of pattern
matching variables, and non-linear use can be simulated using guards (see Example 3.2
below). Assumption (ii) does not limit our results: in fact, if a guard contains variables
bound elsewhere in the surrounding program, then all such variables would be substituted
by values (thus “closing” the join pattern) before any match is attempted.

▶ Example 3.2 (Well-formedness of join patterns). The join patterns shown in Example 3.4
(and also in Listing 1) are well-formed, since they are both linear and closed, whereas

Fault(mid1 , fid, descr1 , ts1) ∧ Fix(wid2 , fid, ts2)

ECOOP 2024

17:8 Fair Join Pattern Matching for Actors

is not-well formed, since the double occurrence of variable fid violates linearity. Intuitively,
repeating fid can be a convenient way to state that the same fault id fid must appear in both
messages. This is not supported by our formalisation – but the same effect can be obtained
by linearising the join pattern: it is sufficient to rename the variables into fid1 and fid2 and
introduce a guard fid1 = fid2 , obtaining the first pattern shown in Example 3.4 below. ⌟

We write {m1,...,mn/x1,...,xn} for a substitution, that is a map that replaces each variable
xi for message mi. A substitution σ can be applied to join patterns and guards; for instance,
the application of the substitution σ = {42/x} to the join pattern J = Message(x), written
Jσ, yields Message(42). Similarly (isOdd(x))σ = isOdd(42).

▶ Remark 3.3. A typical join pattern rule has the form J if γ ▷ P . Following the formalisation
of ML-style pattern matching in [17], we omit the continuation process P to focus on the
matching semantics. Adding continuations P to our formalisation is routine: it would be
enough to apply substitutions σ produced by a match to the omitted process, as Pσ.

Intuitively, a mailbox M = m1 · . . . · mn yields a match for the join pattern Π =
µ1 ∧ . . . ∧ µm if γ in D if there is a substitution σ replacing all the variables in Π with some
of the messages in the mailbox, such that γσ holds true; each message in M can be used
at most once. A variable x matches any message, whereas a message constructor pattern
like Fault(x, 42, y, w) can only match a message built with a corresponding constructor,
like Fault(3, 42, "Sensor error", 10:31) with the substitution {3,”Sensor error”,123456/x,y,w}.
(For the precise matching semantics, see in Section 3.2.) Observe that when all variables in a
join pattern Π are substituted we obtain one or more ∧-separated messages; likewise, when
all variables in a guard γ are substituted, we can evaluate the boolean expression (e.g., a
predicate like γσ = isOdd(42) might evaluate to false).

A join definition D = Π1 + . . . + Πk specifies a pattern matching operation among one
of the join patterns with guards Π1 . . . Πk. This formal notation abstracts the construct
receive {...} shown in Listing 1: each case in the receive {...} is a join pattern in D.

▶ Example 3.4 (Syntax of join definitions). Assuming Fault, Fix ∈ C and adopting the syntax
in Def. 3.1 and of boolean Scala expressions, the first two join patterns in Listing 1 are:

Fault(mid1 , fid1 , descr1 , ts1) ∧ Fix(wid2 , fid2 , ts2) if fid1 = fid2
+ Fault(mid1 , fid1 , descr1 , ts1) ∧ Fault(mid2 , fid2 , descr2 , ts2)

∧ Fix(wid3 , fid3 , ts3) if fid2 = fid3 && ts2 > ts1 + TEN_MIN

where TEN_MIN is a Scala constant representing 10 minutes; for readability, similar constants
are silently assumed throughout our examples. ⌟

3.2 Fair and Deterministic Matching Semantics for Join Patterns
We now define the notion of pattern matching for a join pattern Π = µ1 ∧ . . . ∧ µn if γ. If
we have n = 1 and a single message m, we can apply standard definitions from functional
programming languages [17] and say that Π matches m if there is a substitution σ such that
(i) µ1σ = m, and (ii) γσ evaluates to true. (Clearly, such a match can only happen if σ

substitutes all variables occurring in µ.) Instead, if n > 1 and we have multiple messages
available in a mailbox M, things are more difficult: there may be multiple ways for the
message pattern µ1 ∧ . . . ∧ µn to match different subsets of messages in M while satisfying
the guard γ; moreover, a join definition D might contain several join patterns that match
(part of) the mailbox contents. Example 3.5 illustrates this.

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:9

▶ Example 3.5 (Multiple options for join pattern matching). Let D = Π1 + Π2 where:

Π1 = Fault(id1 , _) ∧ Fix(id2) if id1 = id2

Π2 = Fault(_, t1) ∧ Fault(id2 , t2) ∧ Fix(id3) if id2 = id3 && t2 > t1 + TEN_MIN

(observe that D corresponds to the first two cases in Listing 1 modulo the the omission of
unused messages and variables). Suppose we have the following mailbox, where subscripts
show the arrival order of messages (the lower the subscript, the older the message):

M = Fault1(1, 10:35) · Fault2(2, 10:39) · Fault3(3, 10:56) · Fix4(3)

Before message Fix4 lands in the mailbox, none of the join patterns matches any message
combination in the mailbox. Instead, when Fix4 arrives, we have the following options:

the first join pattern matches the messages Fault3 and Fix4, via the substitution
{3,3/id1 ,id2 }
the second join pattern matches both:

messages Fault1, Fault3, and Fix4, via the substitution {3,3,10:35,10:56/id1 ,id3 ,t1 ,t2 };
messages Fault2, Fault3, and Fix4, via the substitution {3,3,10:39,10:56/id1 ,id3 ,t1 ,t2 }. ⌟

Existing implementations of join patterns leave the resolution of non-deterministic choices
unspecified, or pick the first matching pattern as the “winner.” Our approach is different:
we formalise a deterministic matching policy to give programmers control over the selection
process. Consequently, we specify how to deterministically choose the messages matched by
a join pattern in Example 3.5, as well as deterministically decide which join pattern “wins”
when both match messages in the mailbox.

Def. 3.8 below formalises a deterministic and fair notion of join pattern matching: when
a join pattern can match multiple combinations of messages in the mailbox, we prioritise
the combination that consumes the oldest messages. To this end, we first introduce some
notation in Def. 3.6 that we will use to reason about mailbox contents.

▶ Definition 3.6 (Sequence length, indexing, slicing, and ordering). Given a set S and a
sequence S = s1 · . . . · sn containing elements of S, we write |S| for the length of S, ϵ for the
empty sequence, and S[i] with i ∈ 1..|S| for the element at the ith position of S. An indexing
sequence, denoted by I, is a non-empty sequence of pairwise-distinct natural numbers greater
than 0. Given a sequence S and an indexing sequence I = i1 · . . . · in such that ih ∈ 1..|S| for
each h ∈ 1..n, we write S[I] for the I-slice of S, which is the sequence S[i1] · . . . · S[in].

Let S be a set with a total order ⊑. Then, the lexicographic order ≤lex is the relation on
sequences in S∗ inductively defined as: (note that ≤lex only relates sequences of equal length)

ϵ ≤lex ϵ

s ⊑ s′ s ̸= s′

s · S ≤lex s′ · S ′
S ≤lex S ′

s · S ≤lex s · S ′

Letting sort(S) be the function returning the sorted sequence of elements of S based on
the total order ⊑, we also define the sorted length-biased lexicographic order ⩽slex as:

n = |S′| ≤ |S| sort(S)[1 · . . . · n] ⩽lex sort(S ′)
S ⩽slex S ′

We also define =slex as ⩽slex ∩ ⩽−1
slex. Note that ⩽slex is a preorder.

▶ Example 3.7. Using relations ≤lex and ⩽slex in Def. 3.6 on sequences of integers, we have:

1 · 2 · 3 ≤lex 1 · 3 · 2 ≤lex 2 · 1 · 3 ≤lex 2 · 3 · 1 ≤lex 3 · 1 · 2 ≤lex 3 · 2 · 1
1 · 2 · 3 · 4 =slex 4 · 3 · 2 · 1 <slex 1 · 2 · 3

ECOOP 2024

17:10 Fair Join Pattern Matching for Actors

▶ Definition 3.8 (Fair join pattern matching). We define the following judgements

M |=σ Π the join pattern Π exactly matches mailbox M via substitution σ

M |=I Π the join pattern Π sparsely matches mailbox M via slice I
M |= Π⇝ I the join pattern Π fairly matches mailbox M via slice I

by the following inference rules:

∀i ∈ {1, . . . , n} : µiσ = mi γσ

m1·. . .·mn |=σ µ1 ∧ . . . ∧ µn if γ

M[I] |=σ Π
M |=I Π

M |=I Π ∀I′ : M |=I′ Π =⇒ I ⩽lex I′

M |= Π⇝ I

In Def. 3.8, the judgement M |=σ J if γ holds if J exactly matches all the messages in M
in the same order they occur therein, through a substitution σ such that the guard γσ holds.

This exact matching is used in the premise of judgement M |=I J if γ, which matches
a slice I of the mailbox M: i.e., the message patterns in J may only match a (possibly
reordered) subsequence M[I] of the mailbox M. Notice that the slice I and the pattern
J contain the same number of messages. Finally, the judgement M |= J if γ ⇝ I selects
the smallest slice I of M w.r.t the order ⩽lex in Def. 3.6 such that M |=I J if γ holds. The
selected slice I represents the “fairest” possible match: I indexes the oldest messages in M
that match J and satisfy the guard γ. This matching policy ensures that no message is left
indefinitely in the mailbox if it can be used to match the join pattern. Note that, if two
slices I and I ′ in the premise of the judgement contain the same indexes in different order
(i.e., they may be deemed “equally fair”), the ordering ⩽lex deterministically selects the slice
which minimises reordering between messages in M and message patterns in J .

▶ Example 3.9 (Fair join pattern matching). Let Π1, Π2, and M be as in Example 3.5. By
Def. 3.8 we have that:

There is a single match for Π1: M[3 · 4] |=σ Π1 via σ = {3,3/id1 ,id2 }. Hence, we also have
M |=[3·4] Π1 and we also get M |= Π1 ⇝ [3 · 4] (i.e., the fairest way to match the join
pattern Π1 is to consume messages Fault3 and Fix4).
There are two matches for Π2:

M[1 · 3 · 4] |=σ Π2 via σ = {3,3,10:35,10:56/id1 ,id3 ,t1 ,t2 }. Therefore, M |=[1·3·4] Π1;
M[2 · 3 · 4] |=σ Π2 via σ = {3,3,10:39,10:56/id1 ,id3 ,t1 ,t2 }. Therefore, M |=[2·3·4] Π2.

Hence, since 1 · 3 · 4 ≤lex 2 · 3 · 4, we conclude M |= Π2 ⇝ [1 · 3 · 4] (i.e., the fairest way
to match the join pattern Π2 is to consume messages Fault1, Fault3, and Fix4). ⌟

Def. 3.10 concludes this section by extending the notion of fair join pattern matching
(Def. 3.8) to join definitions. The idea is that if a mailbox M allows for multiple fair matches
on different patterns in a join definition D, we pick the ith join pattern in D that matches
M via the slice I with the highest number of oldest messages w.r.t. the alternatives; and
if two patterns in D yield equally fair matches, we pick the first in D. Since join patterns
in D may match slices of different length, we rank the matches using ⩽slex (Def. 3.6). This
approach makes the choice of patterns deterministic, while ensuring fairness.

▶ Definition 3.10 (Matching of join definitions). The judgement M |= D⇝ I, i (read: “D
fairly matches mailbox M via slice I by its ith join pattern”) is defined as:

Matches =
{

(I, i)
∣∣ i ∈ {1, . . . , n} and M |= Πi ⇝ I

}
(I, i) ∈ Matches ∀(I ′, i′) ∈ Matches : I <slex I ′ or (I =slex I ′ and i ≤ i′)

M |= Π1 + Π2 + . . . + Πn ⇝ I, i

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:11

▶ Example 3.11 (Selecting the fairest match across join definitions (1)). Continuing Ex-
ample 3.9, we can now apply Def. 3.10 to determine the fairest match for the join patterns
sum D = Π1 + Π2. Since we have both:

M |= Π1 ⇝ [3 · 4] and M |= Π2 ⇝ [1 · 3 · 4]

we rank the selected slices as 1 · 3 · 4 <slex 3 · 4 (by Def. 3.6), i.e., the slice matched by Π2 is
fairer than the slice matched by Π1. Therefore, we conclude M |= D⇝ (1 · 3 · 4), 2. ⌟

▶ Example 3.12 (Selecting the fairest match across join definitions (2)). To see why the
relation ⩽slex (Def. 3.6) considers the lexicographical ordering of sorted sequences, consider
this variation of Example 3.5:

Fault(id1 , _) ∧ Fix(id2) if id1 = id2
+ Fix(id3) ∧ Fault(_, t1) ∧ Fault(id2 , t2) if id2 = id3 && t2 > t1 + TEN_MIN

Let Π1 and Π2 be the two join patterns above. Take the same mailbox M used in
Example 3.5. Observe that the message pattern constructors in Π2 are reordered w.r.t. Ex-
ample 3.5 – and therefore, we now have M |= Π2 ⇝ [4 · 1 · 3] (i.e., the fairest match of Π2
now consumes the slice 4 · 1 · 3 of M). Intuitively, this slice is lexicographically greater than
the fairest slice 3 · 4 matched by Π1 – but the slice 4 · 1 · 3 consumes the older message
at index 1. For this reason, by Def. 3.6 we have 4 · 1 · 3 =slex 1 · 3 · 4 <slex 3 · 4 – and
consequently, the fairest match of Π2 is ranked fairer than the fairest match of Π1. As a
result, we obtain M |= D⇝ (4 · 1 · 3), 2 (by Def. 3.10) – i.e., despite the reordering of the
message pattern constructors in Π2, we match the same messages of Example 3.11 (albeit
with a differently-ordered slice). ⌟

3.3 Stateful, Tree-Based Matching Semantics for Join Patterns
Def. 3.8 offers a high-level specification for our notion of “fair matching” – but this definition
does not automatically lead to an efficient implementation. To the contrary, the direct
implementation of Def. 3.8 is a “stateless” brute-force algorithm that, whenever a new
message reaches the mailbox: (i) enumerates all possible matches; (ii) lexicographically
sorts the matches satisfying the guard γ, depending on the messages they use; and (iii)
picks the match on the smallest mailbox slice (using the lexicographical ordering ⩽lex in
Def. 3.6). This may require computing up to n! message combinations for a mailbox of length
n, every time a new message arrives. A similar brute-force approach is adopted in previous
implementations of join patterns in literature [12]. A source of inefficiency is that many
message combinations may be uselessly recomputed and retried when a new message arrives,
even if such combinations have previously failed by falsifying the guard γ. Furthermore,
when a new message yields two or more possible matches, finding the fairest one may lead to
redundant computations. These issues are illustrated in Examples 3.13 and 3.14 below.

▶ Example 3.13 (Redundant matching computations). Consider the join pattern Π1 from
Example 3.5 (recall that Π1 = Fault(id1 , _) ∧ Fix(id2) if id1 = id2), and the following
mailbox, where a message Fix1 (emitted by a factory worker’s handheld device) is delivered
to the monitor before the corresponding Fault4 (emitted by a machine):

M = Fix1(3) · Fault2(1, 10:35) · Fault3(2, 10:36) · Fault4(3, 10:37)

We have to search for a match every time a new message lands in the mailbox:
Π1 cannot match message Fix1 alone;
when the message Fault2 is delivered, the Π1 matches Fix1 · Fault2 – but the guard
id1 = id2 is not satisfied;

ECOOP 2024

17:12 Fair Join Pattern Matching for Actors

when the message Fault3 is delivered, the Π1 can match Fix1 · Fault2 · Fault3 in two
possible ways using the combinations (Fix1, Fault2) and (Fix1, Fault3), neither of which
satisfies the guard – note that (Fix1, Fault2) has already been attempted;
when the message Fault4 is delivered, the Π1 matches Fix1 ·Fault2 ·Fault3 ·Fault4 in a third
possible way besides the previous two: in fact, the combination (Fix1, Fault4) satisfies
the guard – again note that the two failing combinations were already attempted. ⌟

▶ Example 3.14 (Redundant fairness computations). Consider Π2 and mailbox M from
Example 3.5:

Π2 = Fault(_, t1) ∧ Fault(id2 , t2) ∧ Fix(id3) if id2 = id3 ∧ t2 > t1 + TEN_MIN

M = Fault1(1, 10:35) · Fault2(2, 10:39) · Fault3(3, 10:56) · Fix4(3)

When the message Fix4 lands in M, the join pattern Π2 matches two combinations of
messages (as previously shown in Example 3.9), and they should be compared to determine
the fairest. However, as soon as we determine that the combination (Fault1, Fault3, Fix4)
satisfies the guard, it is redundant to try and compare other combinations – because none of
them consumes the message Fault1, hence they cannot possibly be fairer, by Def. 3.8. ⌟

We present an algorithm to tackle these inefficiencies based on a stateful solution. Our
algorithm keeps track of how the messages in a mailbox M can partially match a join
pattern Π, through a tree structure whose nodes contains sets of message indexes in M,
decorated with information on how such messages may complete Π. The way the tree is
incrementally constructed allows us to (1) avoid recomputing previously-failed matches, and
(2) immediately produce the fairest match (if it exists) via a depth-first traversal.

We use mailbox trees (m-trees) (Def. 3.15) to arrange integers (representing the indexes of
the messages in a mailbox) into sets that form the nodes of a tree, so that, for each branch
(X, Y) in the tree, the child node Y is a superset of its parent node X and max X < max Y .

▶ Definition 3.15 (Mailbox trees). A mailbox tree on a finite set of natural number I (m-tree
on I for short) is a tree T = (N, E) where:

N ⊆ 2I is the set of nodes and ∅ ∈ N is the root the tree
the cardinality of each node equals its level in T and, for nodes X and Y at the same
level, X ∩ Y = ∅ and X precedes Y if max X ≤ max Y

for each edge (X, Y) ∈ E, X ⊂ Y and max Y ̸∈ X.
We write X ∈ T if X is a node of T and i ∈ T if there is X ∈ T such that i ∈ X. An m-tree
T on I is consistent when, for each level h > 0 of T ,

⋃
{X ∈ T

∣∣ X is at level h} = I.

The “ramification” operation (Def. 3.16 below) is used to incrementally extend an m-tree
by adding the index i of a new messages that has landed in a mailbox.

▶ Definition 3.16 (Ramification). Given a tree T = (N, E) where the elements of N are
subsets of numbers, and given a natural number i ̸∈ T , let:

N ′ = N ∪ {X ∪ {i}
∣∣ X ∈ N} and E′ = E ∪ {(Y \ {max Y }, Y)

∣∣ Y ∈ N ′}

Then, we call r(T , i) = (N ′, E′) the ramification of T with i.

Note that the ramification of a tree T has twice as many nodes as T . Also, the construction
of m-trees does not depend on the order in which messages indexes are added, as shown in
Proposition 3.17 below. This allows us to abbreviate r(. . . r(T , i1), . . . , in) as r(T , {i1, . . . , in}).

▶ Proposition 3.17. Ramification is a commutative internal operation on m-trees.

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:13

Proof. That ramification is internal on m-trees follows by construction given how edges are
extended in Def. 3.16. Commutativity follows by induction on the structure of T . ◀

In Def. 3.20 below we decorate each node X in an m-tree with assignments that use
the messages indexed by X to fill the variables in a join pattern. But first, we need some
auxiliary constructions.

Given a mailbox M and a join pattern J if γ with J = µ1 ∧ . . . ∧ µp, we define the function
c : {1, . . . , p} → 2{1,...,|M|} that maps each i ∈ {1, . . . , p} to the set of indexes of messages in
M that match µi; formally,

c(i) =
{

j ∈ 1..|M|
∣∣∣ there is a substitution σ such that µiσ = M[j]

}
(1)

Also, an M-assignment for J is an injective map a : {1, . . . , p} → {1, . . . , |M|} such that
i ∈ c(i) for all 1 ≤ i ≤ p. Let asgn(M, J) be the set of all M-assignments for J . (Note
that asgn(M, J) = ∅ if |M| < p.) The next Proposition 3.18 ensures that each assignment
has a unique substitution induced by the matching; such a substitution can be effectively
computed since the proof of Proposition 3.18 is constructive.

▶ Proposition 3.18. For each a ∈ asgn(M, µ1 ∧ . . . ∧ µp) there is a unique substitution σa
such that M[a(i)] = µiσa, for all i ∈ {1, . . . , p}.

Proof. Since each variable occurs at most once in µ1 ∧ . . . ∧ µp (by well-formedness, Def. 3.1),
it suffices to take σa =

⋃
i∈{1,...,p} σi where M[a(i)] = µiσi for all i ∈ {1, . . . , p}. ◀

An assignment a ∈ asgn(M, J) is valid for the guard γ if γσa evaluates to true (with σa from
Proposition 3.18).

▶ Example 3.19 (Assignments). Let Π1 and M as in Example 3.13. We have c(1) =
{2, 3, 4} and c(2) = {1}, the assignment a such that a(1) = 4 and a(2) = 1 belongs to
asgn(M, Fault(id1 , _) ∧ Fix(id2)) and it is valid for the guard id1 = id2 while for a[3/1]
(the update of a mapping 1 to 3) we have a[1 7→ 3] ∈ asgn(M, Fault(id1 , _) ∧ Fix(id2)) and
a[1 7→ 3] is not valid for id1 = id2 . ⌟

We are now ready to introduce assignment trees.

▶ Definition 3.20 (Assignment trees, pattern resolution). The assignment tree of a join pattern
J if γ w.r.t. mailbox M is the pair (T , a) where, letting I = c({1, . . . , p}) with c as in (1),

T = (N, E) is the subtree up-to level p of r(({∅}, ∅), I), the m-tree on I and
the map of candidate assignments a : N → 2asgn(M,J) is such that, for each node X ∈ N ,

a(X) = {a ∈ asgn(M, J)
∣∣ a is valid for γ and cod a = X}

Let t(M, J if γ) denote the assignment tree of J if γ w.r.t M. Pattern J is resolved in M if
there is a leaf X in t(M, J if γ) such that a(X) ̸= ∅.

Proposition 3.21 below is a soundess result: the assignment tree for mailbox M and join
pattern Π only contains combinations of message indexes from M that can contribute to
matching Π. Instead, Theorem 3.22 is a completeness result: it says that if an assignment
matches a join pattern Π for mailbox M, then the m-tree of M contains a node made of
exactly the messages used by that assignement. Taken together, these two results guarantee
that, if we inspect assignment trees to find possible matches for Π in mailbox M, we can only
find possible matches (soundness), and we will not miss any possible match (completeness).

ECOOP 2024

17:14 Fair Join Pattern Matching for Actors

▶ Proposition 3.21. The assignment tree t(M, Π) is consistent.

Proof. The union of nodes of the same level but 0 yields c({1, . . . , p}). ◀

▶ Theorem 3.22. For all a ∈ asgn(M, J), cod a ∈ t(M, J if γ).

Proof. Assume J = µ1 ∧ . . . ∧ µp and proceed by induction on p using Def. 3.16. ◀

We now need to rank the assignments in an m-tree to align with our “fair matching”
policy (Def. 3.8). To this end, we define the total order ⪯ on asgn(M, J) as follows:

a ⪯ a′ if ⟨a(1) · ... · a(p)⟩ ≤lex ⟨a′(1) · ... · a′(p)⟩ where J = µ1 ∧ . . . ∧ µp (2)

Now, Def. 3.23 below formalises how a join pattern is “fairly” resolved in an assignment tree.
Observe that, crucially, Def. 3.23 only considers the first node in a depth-first traversal of
the assignment tree that yields some candidate assignments. This allows our algorithm to
find the fairest matches first, and avoid unnecessary traversals.

▶ Definition 3.23 (Fair resolution). Let X be the first node in a depth-first visit of the
assignment tree t(M, J if γ) at level p whose candidate assignment map a is non-empty. The
fair resolution of t(M, J if γ) is the minimal assignment in a(X) w.r.t pre-order ⪯ in (2).

Note that Def. 3.23 univocally identifies a fair resolution when a join pattern matches
multiple slices, as shown in Example 3.24 below.

▶ Example 3.24. Let Π1 be as in Example 3.5 and consider the mailbox:

Fault1(3, 10:35) · Fault2(2, 10:39) · Fault3(3, 10:56) · Fix4(3)

The assignments a =
{

1 7→ 1
2 7→ 4 and a′ =

{
1 7→ 3
2 7→ 4 are valid (observe that σa ̸= σa′), and their

fair resolution is a, since a ⪯ a′. ⌟

Finally, Theorem 3.25 below shows that the tree-based algorithm correctly computes the
fair join pattern matching according to Def. 3.8.

▶ Theorem 3.25. Let Π = J if γ with J = µ1 ∧ . . . ∧ µp, then M |= Π⇝ I if and only if the
fair resolution a of t(M, Π) is such that I = a(1) · . . . · a(p).

Proof. (=⇒) Let M[I] = m1 · . . . · mp. By Def. 3.8, there is substitution σ such that
γσ holds and µiσ = mi for all i ∈ {1, . . . , p} and any other slice with this property is
greater than I. Let a be the assignment such that a(i) = I[i] for all i ∈ {1, . . . , p}. By
construction, a ∈ asgn(M, J), hence cod a ∈ t(M, J if γ) by Theorem 3.22. Let a′ be the
resolution of t(M, J if γ). By definition a′ ⪯ a which, by (2), is equivalent to say that
⟨a′(1) · ... · a′(p)⟩ ≤lex ⟨a(1) · ... · a(p)⟩. We then have the thesis since a = a′ because we also
have ⟨a(1) · ... · a(p)⟩ ≤lex ⟨a′(1) · ... · a′(p)⟩ by hypothesis.

(⇐=) Let I ′ be such that M |= Π ⇝ I ′, map a be the resolution of t(M, Π), and
I = [a(1) · ... · a(p)]. We have M |=I Π since M[I] |=σa Π by construction. Therefore
I ′ ≤lex I by Def. 3.8 and the codomain of the assignment a′ such that a′(i) = I ′[i] for
all i ∈ {1, . . . , p} belongs to t(M, Π) by Theorem 3.22. Let Y ∈ t(M, Π) containing this
codomain and X ∈ t(M, Π) be such that cod a ∈ X. We have the following cases: either
X precedes Y , or Y precedes X, or else X = Y . In the first case, if max X < max Y then
I ′ ̸= I and I ′ ≤lex I, which contradicts the hypothesis M |= Π ⇝ I. In the second case,
if max Y < max X then I ′ ≠ I and I ≤lex I ′, which contradicts the fact that a′ is the
resolution of t(M, Π). It must therefore be X = Y which implies a′ = a. ◀

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:15

4 Implementation: the JoinActors Library

We now present JoinActors, our actor-based implementation of join patterns and fair
matching algorithms in the Scala 3 programming language. JoinActors is the companion
artifact of this paper, and its latest version is available at:

https://github.com/a-y-man/join-actors

In Section 4.1 we provide an overview of the join patterns API, and the main components
of the library and motivation behind the choice of Scala 3. In Section 4.2 we present the
implementation of the stateful tree-based matching, and in Section 4.3 we describe our
prototype actor framework with fair join pattern matching.

4.1 Overview

The API of JoinActors allows programmers to write join patterns using (almost-)standard
Scala pattern-matching syntax (as shown in the code snippet in Listing 1); at compile-time,
the pattern matching code is transformed (using metaprogramming) into an internal data
structure that is used by the matching algorithms to perform the join pattern matching.
To use the library, the programmer calls the receive function (which is actually a macro)
passing join patterns as regular Scala 3 pattern-matching expressions. This function also
take as a parameter the type of matching algorithm to use. The syntax for join definitions is:

receive { (self: ActorRef[...]) =>
case J1 if γ1 => RHS1

case J2 if γ2 => RHS2 ... }

We selected Scala 3 for our join pattern library because its macros allow us to implement a
straightforward API for join patterns, without necessitating specialized syntax or compiler
extensions. This way, programmers can write join patterns using familiar language constructs,
eliminating the need to learn a new language or syntax.

Our library uses a Matcher trait as a common interface to two matching algorithms:
BruteForceMatcher: the brute-force matching algorithm; this is a translation of the
declarative semantics with no state management, described in Section 3.2;
StatefulTreeMatcher: the stateful tree-based matching algorithm described in Section 3.3.

4.2 Implementing Stateful Tree-based Matching

M-trees (Def. 3.15) are the basic data structure of the our algorithm which are the cornerstone
to build assignment trees (Def. 3.20). Given a join pattern Π = J if γ with J = µ1 ∧ . . . ∧ µp

and a mailbox M, our implementation lazily builds t(M, Π) using the ramification operation
(Def. 3.16) starting from the tree (∅, ∅) and incrementally extending it in depth-first order.
When the messages of M indexed by a leaf X at level p complete Π, we check the guard γ:

if γ is satisfied by an assignment induced by X, we report the match, and remove the
matched messages from M and from the assignment tree (stopping its ramification);
otherwise, we optimise the tree by pruning the leaf X, and continue its ramification.

If no match is found, we wait for a new message to land in the mailbox, and repeat.

▶ Example 4.1 (Assignment tree construction). The assignment trees for Π1, Π2, and M in
Example 3.5 are pictorially shown below:

ECOOP 2024

https://github.com/a-y-man/join-actors

17:16 Fair Join Pattern Matching for Actors

∅

{Fault1}{1}

{Fault1, Fix4}{1,2} ×
{Fault2}{1}

{Fault2, Fix4}{1,2} ×
{Fault3}{1}

{Fault3, Fix4}{1,2} ✓

{Fix3}{1}

∅

{Fault1}{1,2}

{Fault1, Fault2}{1,2}

{Fault1, Fault2, Fix4}{1,2,3} ✓

{Fault1, Fault3}{1,2}

{Fault1, Fault3, Fix4}{1,2,3}

{Fault2}{1,2}

{Fault2, Fault3}{1,2}

{Fault2, Fault3, Fix4}{1,2,3}

{Fault3}{1,2}

{Fault3, Fix4}{1,2,3}

{Fix4}{3}

For readability we show
the messages with their in-
dexes in the nodes; we
also decorate the nodes
with the positions in the
join pattern that match
the node contents (e.g.,
in the leftmost tree, the
node {Fault1, Fix4}{1,2}
contains messages that fit
in the positions 1 and 2 of
Π1).

Leaves yielding a successful match (i.e., a combination of messages that complete the message
pattern and satisfy its guard) are marked with green solid box and symbol ✓. Leaves
where messages completes the join pattern without satisfying its guard are marked with
red dashed boxes and symbol ×; such leaves are immediately pruned from the tree once
computed. Leaves in dotted boxes are other potential message matches – which are not
actually computed, because an earlier successful match is found while lazily ramifying the
tree (and the earlier match is fairer than the later potential match). ⌟

In the implementation, the M-trees are represented using the TreeMap4 data structure: it
is a sorted map that takes an ordering on the keys, and for the ordering we use Def. 3.6. We
use the following data structure types:

type PatternBins = TreeMap[PatternIdxs, MessageIdxs] is a map from the positions of
the patterns to the indices of the messages that match the pattern. These are the
subscripts of the nodes in the trees of Example 4.1, where we associate the index of
a message to the index of the pattern matching it. If a join pattern contains several
messages with the same constructor (such as Fault in Π2 in Example 4.1) then these
messages will be grouped in the same bin where the key is the sequence of indices of
the join pattern and the value will be the sequence of indices of the matched messages
from the mailbox. For instance, the pattern bin of the leaf node with green solid box
{Fault1, Fault2Fix4}{1,2,3} in the rightmost tree in Example 4.1 would be represented as
[[1, 2] 7→ [1, 2], [3] 7→ [4]].
type MatchingTree = TreeMap[MessageIdxs, PatternBins] is a map from the indices of
the messages that have been matched so far to the PatternBins. Thus, the leaf node
with green solid box in the rightmost tree in Example 4.1 would have the matching tree
[1, 2, 4] 7→ [[1, 2] 7→ [1, 2], [3] 7→ [4]].

Note that these data structures contain only the indices of the partially-matched messages
and patterns. The guard is checked only when a leaf node is completed (as described above).

4.3 Prototype Actor Framework
To showcase our join patterns implementation in the actor concurrency model, JoinActors
offers a prototype actor framework in Scala. Notably, our implementation requires Java 21 or
later to run due to the use of virtual threads. We use LinkedTransferQueues as the mailbox
implementation, and ActorRef objects for sending messages into a mailbox.

4 https://scala-lang.org/api/3.x/scala/collection/immutable/TreeMap.html

https://scala-lang.org/api/3.x/scala/collection/immutable/TreeMap.html

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:17

1 class Actor[M, T](private val matcher: Matcher[M, Result[T]]):
2 private val mailbox = LinkedTransferQueue[M]
3 val self = ActorRef(mailbox)
4

5 def start(): (Future[T], ActorRef[M]) =
6 val promise = Promise[T]
7 ec.execute(() => run(promise))
8 (promise.future, self)
9

10 @tailrec
11 private def run(promise: Promise[T]): Unit =
12 matcher(mailbox)(self) match
13 case Continue => run(promise)
14 case Stop(value) => promise.success(value)

Listing 2 The Actor class implementation in the JoinActors library.

In Listing 2 (line 1) the actor’s constructor takes a Matcher instance as a parameter. The
run method processes the messages in the mailbox using the matcher instance built by the
receive macro, which may be either a BruteForceMatcher or a StatefulTreeMatcher instance.
Depending on the result of the right-hand side of the join pattern, the actor either continues
processing messages or stops and returns a result.

5 Evaluation

In this section we present the evaluation of our implementation of join patterns and the
matching algorithms. In Section 5.1 we describe the methodology used to evaluate the
performance of the algorithms. In Section 5.2 we present the results of the custom synthetic
benchmarks. In Section 5.3 we present the results of a smart house benchmark. In Section 5.4
we present the results of a bounded buffer benchmark. In Section 5.5 we analyse the
correlation between the size of the actor mailbox and the size of the m-trees. In Section 5.6
we compare our implementation of the tree-based fair matching algorithm with an alternative
implementation based on the RETE algorithm. Overall, our experiments show that:

Our stateful tree-based algorithm outperforms the brute force strategy in “noisy” work-
loads, where messages forming the fairest match are interspersed with random and
non-matching messages. On the contrary, when the messages for the fairest match arrive
consecutively, the brute force strategy outperforms the stateful tree-based one, since
the latter incurs the overhead of building the matching tree. It is worth noticing that
non-noisy workloads are unlikely in distributed or asynchronous scenarios.
Compared to a RETE-based implementation of fair matching, our tree-based algorithm
avoids unnecessary production of matches (as it directly picks the “fairest match”) and
scales better when guards are computationally heavy. However, our tree-based algorithm
implementation is an unoptimised proof-of-concept, and for simple guards may perform
worse than an optimised RETE implementation (as the one we used).
The number of matches per second measured in our experiments also shows that our
implementation of the stateful tree-based matching is suitable for both our floor shop
opening example and the smart house scenario – where the expected input traffic is in
the order of tens of messages per second, with moderate “noise.”

ECOOP 2024

17:18 Fair Join Pattern Matching for Actors

5.1 Methodology

The lack of a standard benchmark suite for join patterns makes the performance evaluation
non-trivial, as the performance of matching algorithms is highly sensitive to the inputs
(i.e. amount and order of incoming messages), the size of the message patterns, and the
complexity of the guards. Similar sensitivity has been documented e.g. in [15], which compares
the matching algorithms RETE [6] and TREAT [18] in the realm of expert and rule-based
multi-agent systems. Given that our stateful tree-based algorithm is influenced by RETE
and TREAT, our evaluation methodology is inspired by the assessment conducted in [15].

We have devised a set of benchmarks to draw insights into the performance comparison
between our stateful tree-based algorithm and the naïve brute-force algorithm. We also
identify the trade-offs between the two algorithms in different scenarios, i.e., the overhead of
maintaining state versus the overhead of reprocessing messages. To this end, we have created
custom synthetic benchmarks and adapted some benchmarks from the literature, such as
a producers-consumers bounded buffer from the Savina benchmark suite [13] and a smart
house benchmark adapted from [22]. We ran the experiments on a computer with dual Xeon
E5-2687W (8-core, 3.10GHz) and 128GB of memory, with 64-bit GNU/Linux 5.10.27. We
used OpenJDK 21 with default settings, maximum heap size set to 16 GB, and Scala 3.3.3.

5.2 Synthetic Benchmarks

The general setup of each benchmark involves a program with a single actor, which consists
of precisely one join definition, which receives message sent incrementally without delays.
A benchmark execution finishes once the actor has processed all matches for the messages
contained in its mailbox. We start measuring time just before the first message is sent and
stop when the actor halts, so to disregard the time for setting up the actor. The benchmarks
are implemented in Scala 3, and are included in the companion artifact of this paper.

Each experiment is repeated 5 times. The plots in Figs. 1 and 2 are to be read as follows:
the x-axis represents the join pattern size (i.e., the number of messages in the pattern), and
the error bars show the standard deviation of the measurements; the solid lines (measured on
the left y-axis, log scale) show the benchmark completion time; the dashed lines (measured
on the right y-axis, log scale) show the number of matches per second.

The benchmark suite has been crafted to encompass the following three aspects.
1. Pattern size. We have considered actors with pattern sizes ranging from 1 to 6: this

mirrors scenarios found in the literature, where join patterns are usually not very long.
2. Message workload profile. We have benchmarked two kinds of input traffic workload:

(1) a “clean” workload where the messages delivered to the mailbox precisely match the
join pattern; (2) a spectrum of “noisy” workloads, where varying amounts of messages
delivered to the mailbox will not match any pattern. The noise is uniformly interspersed
with matchable messages. The rationale behind this choice is that the first scenario
should favour the brute-force algorithm, as it may minimize the advantages of maintaining
state, allowing us to measure the overhead of state maintenance. Conversely, the second
scenario will require the brute-force algorithm to analyse unusable combinations of
messages, thereby enabling us to measure the benefits of maintaining state.

3. Guard effect. We evaluated actors with join patterns, with and without guards. The
inclusion of patterns with guards is particularly tailored to the main goal of this paper,
which is to assess the benefits of state-based algorithms in the presence of guards.

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:19

1 2 3 4 5 61 2 3 4 5 6

Size of join pattern

10−1

T
im

e
(s
)
-
lo
g
sc
a
le

Benchmark with upto size 6 join patterns without guards

Brute-force Algorithm

Stateful Tree-based Algorithm

103

M
a
tc
h
es

p
er

se
co
n
d
-
lo
g
sc
a
le

1 2 3 4 5 61 2 3 4 5 6

Size of join pattern

100

101

T
im

e
(s

)
-

lo
g

sc
a
le

Benchmark with upto size 6 join patterns without guards with 100 noise messages

Brute-force Algorithm

Stateful Tree-based Algorithm

100

101

102

M
a
tc

h
es

p
er

se
co

n
d

-
lo

g
sc

a
le

Figure 1 Pattern size without guards benchmark: without noise (left) and with noise (right).

5.2.1 Pattern Size and Workload without Guards
The first group of benchmarks compares the performance of brute-force and tree-based
algorithms in cases where actors do not use guards. We consider actors with the following
shape, for size 5 (i.e., a unique join pattern matching case for 5 messages). Note that messages
have no payload, and the only rule has no guard.

1 Actor[SizeMsg, ...] {
2 receive { (_: ActorRef[SizeMsg]) =>
3 { case (A(), B(), C(), D(), E()) => ... }
4 } }

The corresponding benchmark evaluates the performance of such actor when fed with a
stream of messages consisting on 100 repetitions of the sequence A(), B(), C(), D(), E().
Note that the mailbox is fed with messages in the exact order required for the match.

The results of the benchmark, considering actors of size 1 to 6, for both algorithms
are shown in Fig. 1. The plot on the left of Fig. 1 shows that the brute-force approach
significantly outperforms the stateful tree-based approach because the latter has the inherent
overhead to build and to update trees – whereas the brute-force algorithm defers processing
until a sufficient number of messages are received. Due to the nature of the traffic sent to
the actor, the brute-force algorithm immediately finds a match every n messages, where n is
the size of the pattern (e.g., 5 in the code snippet above). Instead, the stateful tree-based
algorithm has to update its tree for each message, and only after n messages will it find a
match and then prune the tree: hence, the retained state is only marginally utilised. However,
as shown in the right plot of Fig. 1, if we change the shape of the messages sent to the actor,
by augmenting the sequence of messages with noise (i.e. messages that do not match the
pattern), the stateful tree-based algorithm outperforms the brute-force algorithm.

5.2.2 Pattern Size and Workload with Guards
The next benchmark addresses the effect of guards. Actors resemble the ones in Section 5.2.1,
but now messages have payload and join patterns are augmented with guards, as follows:

1 Actor[SizeMsg, ...] {
2 receive { (_: ActorRef[SizeMsg]) => {
3 case (A(x), B(y), C(z), D(w), E(a))
4 if x == y && y == z && z == w && w == a => ... }
5 } }

ECOOP 2024

17:20 Fair Join Pattern Matching for Actors

1 2 3 4 5 61 2 3 4 5 6

Size of join pattern

10−1

T
im

e
(s

)
-

lo
g

sc
al

e

Benchmark with upto size 6 join patterns with guards

Brute-force Algorithm

Stateful Tree-based Algorithm

103

M
at

ch
es

p
er

se
co

n
d

-
lo

g
sc

al
e

1 2 3 4 5 61 2 3 4 5 6

Size of join pattern

100

101

T
im

e
(s

)
-

lo
g

sc
al

e

Benchmark with upto size 6 join patterns with guards with 100 noise messages

Brute-force Algorithm

Stateful Tree-based Algorithm

100

101

102

M
at

ch
es

p
er

se
co

n
d

-
lo

g
sc

al
e

1 2 3 4 5 61 2 3 4 5 6

Size of join pattern

10−2

10−1

100

101

102

T
im

e
(s

)
-

lo
g

sc
al

e

Benchmark with upto size 6 join patterns with guards – non-matching message payloads

Brute-force Algorithm

Stateful Tree-based Algorithm

0

100

101

102

103

104

M
at

ch
es

p
er

se
co

n
d

-
lo

g
sc

a
le

Figure 2 Benchmark results for varying pattern sizes with guards: without noise (top left),
and with additional noise messages (top right) that cannot be matched by any join pattern. The
bottom plot is a variation where the noise consists of messages that might be potentially matched
by the join patterns, but whose payloads do not satisfy their guard.

As before, we first address the case of “perfect” workload, by feeding the actor with sequences
of messages as A(1), B(1), C(1), D(1), E(1), A(2), B(2), C(2), D(2), E(2),

The results of the benchmark are shown in Fig. 2 (top-left). Similarly to the benchmark
without guards, the brute-force algorithm outperforms the stateful tree-based algorithm on
well-behaved input traffic. However, when we augment the sequence of “noise” messages,
the results are similar to the benchmark without guards. Namely, the stateful tree-based
algorithm outperforms the brute-force algorithm. This can be seen in Fig. 2 (top-right).

Moreover, we have performed a variation of this benchmark with a different type of noise:
this time, the sequence of messages sent to the actor is augmented with payloads that do not
satisfy the guard. An example of such a sequence of messages is:
A(1) , A(-3), B(1) , B(-4), C(1) , C(-5), D(1) , D(-6), E(1) , E(-7), A(2) , ...

where only the messages highlighted in green match the pattern.
The benchmark results are shown in Fig. 2 (bottom). The performance of both algorithms

is similar, which aligns with our expectations. Noise messages will always be reprocessed
by both algorithms, as they persist as partial matches in the m-tree and as unprocessed
messages in the brute-force algorithm. These noise messages can only be discarded if they
satisfy the guard condition, which is not the case in this benchmark.

5.3 Smart House Benchmark
This benchmark is a real-world scenario adapted from [22]. In this setup, a single actor
represents the smart house monitor and controller, tasked with managing various smart
devices within a household. Specifically, the actor (1) activates the lights when someone
enters and the ambient light is below 40 lux, and (2) detects arrivals or departures based on
specific message sequences and reacts accordingly. The actor is shown in Listing 3.

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:21

1 Actor[Action, ...] {
2 receive { (selfRef: ActorRef[Action]) =>
3 case (
4 Motion(_: Int, mStatus: Boolean, mRoom: String, t0: Date),
5 AmbientLight(_: Int, value: Int, alRoom: String, t1: Date),
6 Light(_: Int, lStatus: Boolean, lRoom: String, t2: Date)
7) if bathroomOccupied(...) => ...
8 case (
9 Motion(_: Int, mStatus0: Boolean, mRoom0: String, t0: Date),

10 Contact(_: Int, cStatus: Boolean, cRoom: String, t1: Date),
11 Motion(_: Int, mStatus1: Boolean, mRoom1: String, t2: Date)
12) if occupiedHome(...) => ...
13 case (
14 Motion(_: Int, mStatus0: Boolean, mRoom0: String, t0: Date),
15 Contact(_: Int, cStatus: Boolean, cRoom: String, t1: Date),
16 Motion(_: Int, mStatus1: Boolean, mRoom1: String, t2: Date)
17) if emptyHome(...) => ...
18 ...
19 } }

Listing 3 Smart house actor (arguments of predicates in the guards are omitted for readability).
The type annotations in the join patterns are not necessary, but they are included for clarity.

Each of the mentioned scenarios is implemented as a separate join pattern with guards to
ensure the correct behaviour is triggered. The performance evaluation of the implementation
is conducted by measuring the time taken to process a number of messages that activate
the patterns 1000 times, interspersed with a number of random messages intended to mimic
various real-world workloads. When the number of random messages is 0, the smart house
actor receives only exact matches: thus, for a join pattern size of 3, the actor will process
3000 such messages to get 1000 matches. Instead, in the case of 16 random messages, the
actor receives 1000 sequences of messages, each one consisting of 16 random messages plus 3
matching messages distributed throughout the sequence. The benchmark concludes once the
smart house actor has performed the expected 1000 matches.

Fig. 3 shows the results of our experiments: our implementation of the stateful tree-based
algorithm quickly outperforms the naïve brute-force one, as it can quickly reuse partial
matches and discard failed matches – whereas the brute-force algorithm has to compute all
possible matches for each new incoming message. The plot also shows that the tree-based
matching algorithm performs ∼105 matches/sec. on non-noisy traffic (i.e., every input message
is used in a join pattern match), and degrades to ∼102 as more noise is injected in the
input traffic, until ∼90% of the messages are noise. This suggests that the implementation
is suitable for a real-world application where a smart house controller may expect tens of
messages per second with some amount of noise.

5.4 Producers-Consumers Bounded Buffer
This benchmark is an example of a multi-process synchronization problem. The benchmark
involves producers and consumers represented by actors and a buffer actor. The buffer
actor acts as a manager: (1) it monitors whether the data buffer is full or empty; (2) when
consumers request work from an empty buffer, they are placed in a queue until work becomes

ECOOP 2024

17:22 Fair Join Pattern Matching for Actors

0 4 8 12 16 20 24 28 320 4 8 12 16 20 24 28 32

Number of random messages sent

10−2

10−1

100

101

102

T
im

e
(s

)
-

lo
g

sc
al

e

Smart House benchmark with upto 32 random messages. 5 repetitions

Brute-force Algorithm

Stateful Tree-based Algorithm

101

102

103

104

105

M
at

ch
es

p
er

se
co

n
d

-
lo

g
sc

al
e

Figure 3 Smart House Benchmark. The x-axis represents the number of random “noise” messages
sent with each group of 3 matchable messages; the solid lines (measured on the left y-axis, log scale)
show the completion time; the dashed lines (measured on the right y-axis, log scale) show the number
of matches per second. For each data point, the smart house actor performs 1000 matches, and the
benchmark is repeated 5 times. The error bars show the standard deviation of the measurements.

available; (3) when producers are prepared to produce data but the buffer is full, they are
queued until space opens up in the buffer; (4) it alerts producers to generate more work
when space becomes available in the data buffer.

Fig. 4 shows the results of the benchmark for a buffer size of 1000. Since the join patterns
of the bounded buffer are simple and without any guards and the messages are well-behaved,
the brute-force algorithm outperforms the stateful tree-based algorithm. The overhead of
maintaining state in the stateful tree-based algorithm is not justified in this case.

5.5 Analysis of Mailbox Size vs. Match Tree Size
We now focus on the relationship between the size of mailboxes and the size of the matching
trees maintained in-memory by our stateful matching algorithm. Our analysis uses the smart
house benchmark according to three different workload scenarios:

No noise: each batch of 3 incoming messages triggers a match, emptying the mailbox
after each match.
50% noise: each batch consists of 3 messages suitable for matching and 3 “noise”
messages that cannot be used in the matching, and thus, just accumulate in the mailbox.
66% noise: each batch consists of 3 messages suitable for matching and 6 “noise” ones.

For each scenario, we send 10 batches of messages, triggering 10 join pattern matches. The
results are collected in Fig. 5, where the plots in the each row correspond to one of our
scenarios. Despite the potential for m-trees to grow exponentially with mailbox size, the plots
show a mostly flat and almost-linear correlation between mailbox size and m-tree size. For
instance, the left plot in the first row of Fig. 5 illustrates the relationship between the number
of messages processed by the actor and both the mailbox and m-tree sizes. Spikes indicate a
join pattern match, leading to message removal and m-tree pruning. The right plot in the
first row further explores the correlation between mailbox and m-tree sizes, demonstrating,
for example, that a mailbox with two messages correlates to an m-tree size of 5-7 nodes,
depending on the messages and applicable join patterns.

The results for the noise scenarios are respectively in the second and third row of Fig. 5:
they show that mailbox and m-tree sizes decrease after each match similarly to the no-noise
scenario. However, “noise” messages accumulate generating partial matches in the m-tree.
Flat lines in the m-tree size plot signify unmatchable messages, leaving m-trees unchanged.

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:23

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

Number of producers and consumers

10−1

100

T
im

e
(s

)
-

lo
g

sc
al

e

Benchmark with upto 10 producers/consumers and buffer size 1000

Brute-force Algorithm

Stateful Tree-based Algorithm

103

104

M
at

ch
es

p
er

se
co

n
d

-
lo

g
sc

al
e

Figure 4 Producers-consumers bounded buffer benchmark: time to produce and consume data
in a buffer of size 1000 against the number producers and consumers. The solid lines (measured on
the left y-axis, log scale) show the benchmark completion time; the dashed lines (measured on the
right y-axis, log scale) show the number of matches per second. The benchmark is repeated 5 times.
The error bars show the standard deviation of the measurements.

5.6 Comparison with a RETE-based Fair Matching Implementation
In this section we compare our implementation of our stateful tree-based fair join pattern
matching algorithm against an implementation based on the RETE algorithm. The use of
RETE takes inspiration from [28], but here we use the Evrete library for Java.5 To implement
an Evrete-based actor that realises our fair matching policy, we proceed as follows.

1. We set up an Evrete session where:
each incoming message is a modelled as a fact with a unique id (denoting the order of
arrival), and
each pattern matching case is encoded as a rule that Evrete will check against all
combinations of “message facts” in the session. If a combination of “message facts”
satisfies a rule, their message ids are stored in a collection of matches for that rule.

2. We implement an actor (as a JVM virtual thread) that, when a new message arrives:
a. stores the message as a “message fact” in the aforementioned Evrete session,
b. fires the session rules, and
c. if one or more successful matches are produced by any of the rules, then:

i. sorts the collections of successful matches (if any) by fairness (using Def. 3.6 on the
“message fact” ids);

ii. finds the fairest match;
iii. removes from the session all the “message facts” used by such a fairest match; and
iv. clears the collections of successful matches.

A key difference between RETE and our stateful tree-based fair matching algorithm is that
RETE exhaustively computes all possible matches when the rules are fired, and such matches
must be sorted to find the fairest (see item 2(c)i above). Instead, our algorithm only computes
matches “on demand” by finding the fairest first, through a lazy depth-first traversal of the
match tree. This suggests that our tree-based fair matching algorithm is computationally less
expensive than the RETE-based implementation outlined above. However, the comparative
benchmarks are also influenced by multiple implementation differences:

5 https://www.evrete.org

ECOOP 2024

https://www.evrete.org

17:24 Fair Join Pattern Matching for Actors

0 5 10 15 20 25 30

Number of Messages Processed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ai

lb
ox

S
iz

e

Mailbox Size
0

2

4

6

8

10

12

14

N
u

m
b

er
of

N
o
d

es
in

M
-T

re
e

Mailbox Size vs Matching Trees Size Without Random Messages Per Match

Match Tree Size

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Mailbox Size

0

2

4

6

8

10

12

14

N
u

m
b

er
of

N
o
d

es
in

M
-T

re
e

Correlation Between Mailbox Size and Matching Trees Size
Without Random Messages Per Match

0 10 20 30 40 50 60

Number of Messages Processed

0

5

10

15

20

25

30

M
a
il

b
ox

S
iz

e

Mailbox Size

0

20

40

60

80

100

120

140

160

N
u

m
b

er
o
f

N
o
d

es
in

M
-T

re
e

Mailbox Size vs Matching Trees Size With 3 Random Messages Per Match

Match Tree Size

0 5 10 15 20 25 30

Mailbox Size

0

20

40

60

80

100

120

140

160

N
u

m
b

er
o
f

N
o
d

es
in

M
-T

re
e

Correlation Between Mailbox Size and Matching Trees Size
With 3 Random Messages Per Match

0 20 40 60 80

Number of Messages Processed

0

10

20

30

40

50

60

M
ai

lb
ox

S
iz

e

Mailbox Size

0

100

200

300

400

500

600

700

N
u

m
b

er
of

N
o
d

es
in

M
-T

re
e

Mailbox Size vs Matching Trees Size With 6 Random Messages Per Match

Match Tree Size

0 10 20 30 40 50 60

Mailbox Size

0

100

200

300

400

500

600

700

N
u

m
b

er
of

N
o
d

es
in

M
-T

re
e

Correlation Between Mailbox Size and Matching Trees Size
With 6 Random Messages Per Match

Figure 5 Mailbox size against the size of the matching tree: sizes based on the number of
processed messages (left column) and mailbox/tree size correlation (right column).

our implementation of tree-based fair matching is a proof-of-concept, is not optimised,
is single-threaded, and is almost completely written in functional Scala. In particular,
adding partial matches to the m-tree is a rather expensive operation, because the m-tree
is currently implemented as an immutable data structure;
instead, Evrete is being developed since 2020 and is significantly optimised, multi-threaded,
and written in imperative Java using high-performance mutable data structures.

Consequently, Evrete can produce a significantly higher amount of matches-per-second
w.r.t. our implementation – and thus, its exhaustive production of matches can be often
faster than our “on-demand, fairest-first” production.

For these reasons, we have designed a benchmark (based on the “smart house” in
Section 5.3) that discriminates the computational characteristics of our tree-based fair
matching algorithm and the Evrete-based implementation, despite implementation differences:
1. we send n groups of “prefix” messages that create a partial match for a join pattern;
2. then, we send one message that can complete the join pattern with any of the previous

“prefix” messages.

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:25

0 4 8 12 16 200 4 8 12 16 20

Number of prefix messages

10−1

100

T
im

e
(s

)
-

lo
g

sc
al

e
RETE vs. Stateful Tree-based Algorithm with 20 Prefix Messages

Stateful Tree-based Algorithm

Evrete-based implementation

0 4 8 12 16 200 4 8 12 16 20

Number of prefix messages

10−1

100

101

T
im

e
(s

)
-

lo
g

sc
a
le

RETE vs. Stateful Tree-based Algorithm with 20 Prefix Messages
With Heavy Guards

Stateful Tree-based Algorithm

Evrete-based implementation

Figure 6 Comparison of tree-based vs. Evrete-based implementation of fair matching. The x-axis
shows the number of groups of “prefix” messages sent before a completing message. The y-axis
shows the time taken to perform 10 matches.

E.g., for the pattern Motion(. . .) ∧ AmbientLight(. . .) ∧ Light(. . .), we send n times the “prefix”
messages Motion(...), AmbientLight(...) (which partially match the pattern), and finally
we send a message Light(...), which can be combined with any previous “prefix” message
to complete the pattern. In this situation, the Evrete-based implementation will compute
all possible matches and then find the fairest – while our stateful tree-based fair matching
algorithm will immediately produce the fairest match between Light(...) and the oldest
Motion(...), AmbientLight(...) messages. The benchmark measures the time taken to
process up to n groups of messages followed by a completing message. In total, we send
(2n+1)×10 messages, thus triggering 10 matches. We perform two variants of this benchmark:

one with simple guards (the ones used in Section 5.3), and
one where we artificially slow down the time necessary to evaluate the guards, simulating
computationally-intensive “heavy guards” that take ∼0.1 milliseconds to be computed.

The results are shown in Fig. 6. The plot on the left (with “simple” guards) shows
that the Evrete-based implementation of fair matching outperforms our stateful tree-based
implementation. The plot on the right shows that, with “heavy guards”, our stateful tree-
based implementation outperforms the Evrete-based one: this is because our tree-based
algorithm evaluates the “heavy guards” only once (after finding the fairest match), whereas
Evrete computes the “heavy guards” repeatedly, for each possible match contained in the
actor mailbox. Observe that the overall execution time of our algorithm in the plots of Fig. 6
does not change significantly. This suggest that our algorithm is less sensitive to “heavy
guards” than the Evrete-based implementation.

6 Conclusion

We have addressed the problem of formalising and implementing join pattern matching for
actor-based concurrent and distributed systems. We have contributed a novel specification
of fair and deterministic join pattern matching guaranteeing that the oldest messages in an
actor’s mailbox are eventually consumed, if allowed by the patterns. We have presented a
novel stateful tree-based join pattern matching algorithm that avoids wasteful recomputations
across matches, and we have proved that our algorithm correctly implements the fair matching
specification. We have presented a novel actor library for Scala 3 that implements fair join
pattern matching, with both stateless and stateful algorithms. We have presented a systematic
benchmark suite for join-pattern-based systems, and we have applied it to evaluate our
implementation. We have assessed the performance of our stateful tree-based algorithm in

ECOOP 2024

17:26 Fair Join Pattern Matching for Actors

comparison to the brute-force algorithm and a RETE-based implementation, under various
conditions. The findings reveal a performance trade-off: the brute-force algorithm excels when
dealing with well-behaved workloads, where maintaining state is an unnecessary overhead,
whereas the stateful tree-based algorithm outperforms in scenarios with relative noise in the
input messages (which is to be expected in many real-world applications) and complex guards,
as evidenced in the smart house benchmark. The synthetic benchmarks in Sections 5.2.1
and 5.2.2 underscore the high sensitivity of the matching algorithms to their workload and
guard complexity. These insights should be taken into account when choosing the matching
algorithm, depending on the nature of the application and anticipated workload.

Future work. Our specification of fair join pattern matching includes several design decisions
that may be fine-tuned depending on the application context. E.g., in some settings it may
be better to select the pattern with the longest match, and in some settings it may be useful
to match the newest messages in a mailbox (e.g., if the input traffic volume is too high for
processing every message in real-time). We can specify and implement these alternative
policies with minimal adjustments to our definitions, results, and library implementation:
we plan to study them, and explore other possibilities. Also, ensuring “fair choice” when
multiple join patterns are enabled is another intriguing notion of fairness that would require
a significantly different formalisation of matching semantics; we leave this as future work.

We plan to study the problem of join pattern unreachability, i.e., whether a pattern will
always be preempted by its alternatives. E.g., if a join definition contains the two join patterns
A(x) + A(x) ∧ B(y), the former may be always preferred to the latter, or not, depending on
the nuances of the matching policy across patterns (e.g., first-match vs. longest-match). We
plan to study how to statically verify whether a join pattern is unreachable, and extend our
Scala 3 implementation to issue a compile-time warning when this occurs.

Our evaluation shows that selecting the best-performing strategy for join pattern matching
is not trivial: depending on the expected input traffic and the complexity of the patterns
and guards, stateful matching may be faster than stateless matching, or vice versa. Our
Scala 3 library JoinActors can be easily tweaked to allow programmers choose a specific
matching strategy per pattern; it could also be extended to switch matching strategy “on
the fly” (i.e., between matches), and it could be interesting to study how to automatically
switch strategy depending on input traffic observations. We plan to adapt JoinActors to
let programmers select a suitable matching strategy based on a custom heuristic.

JoinActors is a proof-of-concept prototype, and we plan to heavily optimise it – in
particular, by using a more efficient mutable data structure to represent m-trees, allowing for
faster updates when new messages arrive, and faster traversals for finding the fairest match.
The need for such optimisations is highlighted by the results shown in Section 5.6, and we
plan to study the internals of the Evrete library to inspire future improvements.

We see our evaluation in Section 5 as a first necessary step towards establishing a standard,
comprehensive benchmark suite for existing and future join pattern implementations, in the
spirit of Savina [13] for actor implementations. We will study how to further improve our
benchmark suite, and we welcome feedback and suggestions from the community.

References
1 Gul A. Agha. ACTORS - a model of concurrent computation in distributed systems. In MIT

Press series in artificial intelligence, 1986.
2 Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency abstractions for C#.

ACM Trans. Program. Lang. Syst., 26(5):769–804, 2004. doi:10.1145/1018203.1018205.

https://doi.org/10.1145/1018203.1018205

P. Haller, A. Hussein, H. Melgratti, A. Scalas, and E. Tuosto 17:27

3 Oliver Bračevac, Nada Amin, Guido Salvaneschi, Sebastian Erdweg, Patrick Eugster, and
Mira Mezini. Versatile event correlation with algebraic effects. Proc. ACM Program. Lang.,
2(ICFP), July 2018. doi:10.1145/3236762.

4 Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas. Behavioural Types:
Bridging Theory and Practice (Dagstuhl Seminar 21372). Dagstuhl Reports, 11(8):52–75, 2022.
doi:10.4230/DagRep.11.8.52.

5 Fabrice Le Fessant and Luc Maranget. Compiling join-patterns. Electronic Notes in Theoretical
Computer Science, 16(3):205–224, 1998. doi:10.1016/S1571-0661(04)00143-4.

6 Charles Forgy. Rete: a fast algorithm for the many pattern/many object pattern match
problem. Expert Systems, pages 324–341, 1991.

7 Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. Jocaml: A language for
concurrent distributed and mobile programming. In Johan Jeuring and Simon L. Peyton Jones,
editors, Advanced Functional Programming, 4th International School, AFP 2002, Oxford, UK,
August 19-24, 2002, Revised Lectures, volume 2638 of Lecture Notes in Computer Science,
pages 129–158. Springer, 2002. doi:10.1007/978-3-540-44833-4_5.

8 Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus. In Hans-
Juergen Boehm and Guy L. Steele Jr., editors, Conference Record of POPL’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers Presented
at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages 372–385.
ACM Press, 1996. doi:10.1145/237721.237805.

9 Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
calculus of mobile agents. In CONCUR’96: Concurrency Theory: 7th International Conference
Pisa, Italy, August 26–29, 1996 Proceedings 7, pages 406–421. Springer, 1996.

10 Rosita Gerbo and Luca Padovani. Concurrent Typestate-Oriented Programming in Java.
In Francisco Martins and Dominic Orchard, editors, Proceedings Programming Language
Approaches to Concurrency- and Communication-cEntric Software, PLACES@ETAPS 2019,
Prague, Czech Republic, 7th April 2019, volume 291 of EPTCS, pages 24–34, 2019. doi:
10.4204/EPTCS.291.3.

11 Rob Van Glabbeek and Peter Höfner. Progress, justness, and fairness. ACM Comput. Surv.,
52(4), August 2019. doi:10.1145/3329125.

12 Philipp Haller and Tom Van Cutsem. Implementing joins using extensible pattern matching.
In Doug Lea and Gianluigi Zavattaro, editors, Coordination Models and Languages, 10th
International Conference, COORDINATION 2008, Oslo, Norway, June 4-6, 2008. Proceedings,
volume 5052 of Lecture Notes in Computer Science, pages 135–152. Springer, 2008. doi:
10.1007/978-3-540-68265-3_9.

13 Shams M. Imam and Vivek Sarkar. Savina - an actor benchmark suite: Enabling empirical
evaluation of actor libraries. In Proceedings of the 4th International Workshop on Programming
Based on Actors Agents & Decentralized Control, AGERE! ’14, pages 67–80, New York, NY,
USA, 2014. Association for Computing Machinery. doi:10.1145/2687357.2687368.

14 G. Stewart Von Itzstein and Mark Jasiunas. On implementing high level concurrency in Java.
In Amos Omondi and Stanislav Sedukhin, editors, Advances in Computer Systems Architecture,
8th Asia-Pacific Conference, ACSAC 2003, Aizu-Wakamatsu, Japan, September 23-26, 2003,
Proceedings, volume 2823 of Lecture Notes in Computer Science, pages 151–165. Springer,
2003. doi:10.1007/978-3-540-39864-6_13.

15 Eryk Lagun. Evaluation and implementation of match algorithms for rule-based multi-agent sys-
tems using the example of jadex. MSc Thesis, University of Hamburg, 2009. URL: https://swa.
informatik.uni-hamburg.de/files/abschlussarbeiten/Diplomarbeit_Eryk_Lagun.pdf.

16 Qin Ma and Luc Maranget. Compiling pattern matching in join-patterns. In Interna-
tional Conference on Concurrency Theory, pages 417–431. Springer, 2004. doi:10.1007/
978-3-540-28644-8_27.

ECOOP 2024

https://doi.org/10.1145/3236762
https://doi.org/10.4230/DagRep.11.8.52
https://doi.org/10.1016/S1571-0661(04)00143-4
https://doi.org/10.1007/978-3-540-44833-4_5
https://doi.org/10.1145/237721.237805
https://doi.org/10.4204/EPTCS.291.3
https://doi.org/10.4204/EPTCS.291.3
https://doi.org/10.1145/3329125
https://doi.org/10.1007/978-3-540-68265-3_9
https://doi.org/10.1007/978-3-540-68265-3_9
https://doi.org/10.1145/2687357.2687368
https://doi.org/10.1007/978-3-540-39864-6_13
https://swa.informatik.uni-hamburg.de/files/abschlussarbeiten/Diplomarbeit_Eryk_Lagun.pdf
https://swa.informatik.uni-hamburg.de/files/abschlussarbeiten/Diplomarbeit_Eryk_Lagun.pdf
https://doi.org/10.1007/978-3-540-28644-8_27
https://doi.org/10.1007/978-3-540-28644-8_27

17:28 Fair Join Pattern Matching for Actors

17 Luc Maranget. Compiling pattern matching to good decision trees. In Eijiro Sumii, editor,
Proceedings of the ACM Workshop on ML, 2008, Victoria, BC, Canada, September 21, 2008,
pages 35–46. ACM, 2008. doi:10.1145/1411304.1411311.

18 Daniel P. Miranker. TREAT: a new and efficient match algorithm for AI production systems.
PhD thesis, Columbia University, USA, 1987. UMI Order No. GAX87-10209.

19 Martin Odersky. Functional nets. In European Symposium on Programming, pages 1–25.
Springer, 2000. doi:10.1007/3-540-46425-5_1.

20 Hubert Plociniczak and Susan Eisenbach. Jerlang: Erlang with joins. In Coordination Models
and Languages: 12th International Conference, COORDINATION 2010, Amsterdam, The
Netherlands, June 7-9, 2010. Proceedings 12, pages 61–75. Springer, 2010.

21 Humberto Rodriguez Avila. Orchestration of Actor-Based Languages for Cyber-Physical
Systems. PhD thesis, Vrije Universiteit Brussel, 2021.

22 Humberto Rodríguez-Avila, Joeri De Koster, and Wolfgang De Meuter. Advanced join
patterns for the actor model based on CEP techniques. Art Sci. Eng. Program., 5(2):10, 2021.
doi:10.22152/programming-journal.org/2021/5/10.

23 Claudio V. Russo. The Joins concurrency library. In Michael Hanus, editor, Practical Aspects
of Declarative Languages, 9th International Symposium, PADL 2007, Nice, France, January
14-15, 2007, volume 4354 of Lecture Notes in Computer Science, pages 260–274. Springer,
2007. doi:10.1007/978-3-540-69611-7_17.

24 Claudio V. Russo. Join patterns for visual basic. In Gail E. Harris, editor, Proceedings
of the 23rd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA, pages
53–72. ACM, 2008. doi:10.1145/1449764.1449770.

25 Antoine Louis Thibaut Sébert. Join-patterns for the actor model in Scala 3 using macros.
Master’s thesis, DTU Department of Applied Mathematics and Computer Science, 2022.
Available at https://findit.dtu.dk/en/catalog/62f83d3680aa6403a4ccc0ab.

26 Martin Sulzmann, Edmund S. L. Lam, and Peter Van Weert. Actors with multi-headed
message receive patterns. In Doug Lea and Gianluigi Zavattaro, editors, Coordination Models
and Languages, 10th International Conference, COORDINATION 2008, Oslo, Norway, June
4-6, 2008. Proceedings, volume 5052 of Lecture Notes in Computer Science, pages 315–330.
Springer, 2008. doi:10.1007/978-3-540-68265-3_20.

27 Aaron Joseph Turon and Claudio V. Russo. Scalable join patterns. In Cristina Videira Lopes
and Kathleen Fisher, editors, Proceedings of the 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011, part
of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, pages 575–594. ACM, 2011.
doi:10.1145/2048066.2048111.

28 Louise Van Verre, Humberto Rodríguez-Avila, Jens Nicolay, and Wolfgang De Meuter. Florence:
A hybrid logic-functional reactive programming language. Proceedings of the 9th ACM
SIGPLAN International Workshop on Reactive and Event-Based Languages and Systems, 2022.

https://doi.org/10.1145/1411304.1411311
https://doi.org/10.1007/3-540-46425-5_1
https://doi.org/10.22152/programming-journal.org/2021/5/10
https://doi.org/10.1007/978-3-540-69611-7_17
https://doi.org/10.1145/1449764.1449770
https://findit.dtu.dk/en/catalog/62f83d3680aa6403a4ccc0ab
https://doi.org/10.1007/978-3-540-68265-3_20
https://doi.org/10.1145/2048066.2048111

A CFL-Reachability Formulation of
Callsite-Sensitive Pointer Analysis with Built-In
On-The-Fly Call Graph Construction
Dongjie He1 # Ñ

University of New South Wales, Sydney, Australia
Chongqing University, China

Jingbo Lu1 #

University of New South Wales, Sydney, Australia
Shanghai Sectrend Information Technology Co., Ltd, China

Jingling Xue # Ñ

University of New South Wales, Sydney, Australia

Abstract
In object-oriented languages, the traditional CFL-reachability formulation for k-callsite-sensitive
pointer analysis (kCFA) focuses on modeling field accesses and calling contexts, but it relies on a
separate algorithm for call graph construction. This division can result in a loss of precision in
kCFA, a problem that persists even when using the most precise call graphs, whether pre-constructed
or generated on the fly. Moreover, pre-analyses based on this framework aiming to improve the
efficiency of kCFA may inadvertently reduce its precision, due to the framework’s lack of native call
graph construction, essential for precise analysis.

Addressing this gap, this paper introduces a novel CFL-reachability formulation of kCFA for
Java, uniquely integrating on-the-fly call graph construction. This advancement not only addresses
the precision loss inherent in the traditional CFL-reachability-based approach but also enhances its
overall applicability. In a significant secondary contribution, we present the first precision-preserving
pre-analysis to accelerate kCFA. This pre-analysis leverages selective context sensitivity to improve
the efficiency of kCFA without sacrificing its precision. Collectively, these contributions represent a
substantial step forward in pointer analysis, offering both theoretical and practical advancements
that could benefit future developments in the field.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases Pointer Analysis, CFL Reachability, Call Graph Construction

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.18

Supplementary Material Software (Artifact): https://doi.org/10.5281/zenodo.11061892 [15]

Funding ARC Grants DP230102871, DP240103194, and the Fundamental Research Funds for the
Central Universities of Ministry of Education of China (No. 2024CDJXY015).

Acknowledgements We thank the anonymous reviewers for their constructive comments.

1 Introduction

Pointer analysis is fundamental to numerous static analyses, including program understanding,
program verification, security analysis, compiler optimization, and symbolic execution. Over
the past two decades, k-callsite-sensitivity [49], which distinguishes method contexts on their
k-most-recent callsites, has emerged as a prevalent context abstraction in both whole-program
[5, 60, 40] and demand-driven [53, 48, 62] pointer analyses for Java programs.

1 The first two authors contributed equally to this work.

© Dongjie He, Jingbo Lu, and Jingling Xue;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 18; pp. 18:1–18:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dongjiehe@cqu.edu.cn
https://dongjiehe.github.io
https://orcid.org/0000-0003-0304-8942
mailto:jingbo.lu@sectrend.com.cn
https://orcid.org/0000-0003-4070-3942
mailto:jingling@cse.unsw.edu.au
https://www.cse.unsw.edu.au/~jingling/
https://orcid.org/0000-0003-0380-3506
https://doi.org/10.4230/LIPIcs.ECOOP.2024.18
https://doi.org/10.5281/zenodo.11061892
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 CFL-Reachability with On-The-Fly Call Graph Construction

Traditionally, k-callsite-sensitive pointer analysis, abbreviated to kCFA (Control-Flow
Analysis) [49], is either inclusion-based [1] or founded on context-free language (CFL)
reachability [44]. The inclusion-based formulation for kCFA [22, 57] has been incorporated
into several pointer analysis frameworks for Java [40, 59, 60, 5, 17]. In this approach, a
program’s statements are represented as points-to set constraints. The methods’ calling
contexts are delineated by parameterizing these constraints with context abstractions. Often,
the call graph for the program is constructed dynamically, i.e., on the fly to maximize
precision and efficiency [11, 47, 26, 27, 50]. Conversely, the CFL-reachability formulation
for kCFA [53] plays a pivotal role in the development of a diverse array of pointer analysis
algorithms. These include demand-driven pointer/alias analysis [53, 64, 62, 48], context
transformations [57], library-code summarization [48], and selective context-sensitivity [33].
In this approach, a program’s points-to information is determined by resolving a graph
reachability problem within a specifically constructed pointer assignment graph (PAG) [26].
This CFL-reachability formulation involves analyzing the intersection of two context-free
languages (CFLs), denoted as LF C = LF ∩ LC , where LF describes field accesses as balanced
parentheses and LC enforces callsite-sensitivity by matching method calls and returns, also
represented through balanced parentheses [53]. However, this formulation employs a distinct,
external algorithm for call graph construction, further elaborated in Section 2.

In comparison to the inclusion-based approach, the LF C -based CFL-reachability formula-
tion for kCFA suffers from two major limitations, primarily due to its reliance on a separate
algorithm for call graph construction. Firstly, this segregation can lead to a decrease in
precision within kCFA, a problem that persists regardless of whether the call graphs are
pre-constructed or generated on the fly. Secondly, certain pre-analyses, such as Selectx
[33], aim to enhance kCFA’s efficiency through the LF C -based CFL-reachability formulation.
However, these pre-analyses might unintentionally compromise its precision, undermining
the overall effectiveness of the pointer analysis.

The primary contribution of this research lies in addressing the aforementioned limitations
by introducing a new CFL-reachability formulation of kCFA. This novel formulation, for the
first time, demonstrates the feasibility of specifying kCFA entirely through CFL-reachability,
eliminating the need for a separate call graph algorithm. Our approach utilizes three CFLs,
LDCR = LD ∩ LC ∩ LR, within a new PAG framework. Here, LD extends beyond field
accesses (as in LF) to include dynamic dispatch, LC maintains callsite-sensitivity as per
previous formulation [53], and LR introduces support for parameter passing required by
its built-in on-the-fly call graph construction. Theoretically, we demonstrate for the first
time that kCFA can be characterized as a specific type of context-sensitive language – the
intersection of multiple CFLs. This is a notable distinction, as not all context-sensitive
languages can be expressed in this manner [31, 25], underscoring the uniqueness of our
approach. The subsequent sections will delve into the challenges of designing LDCR and
provide insights into our formulation’s underpinnings.

As a secondary contribution of this research, we demonstrate the practical utility of LDCR

by introducing P3Ctx, the first precision-preserving pre-analysis designed to accelerate kCFA
in Java programs. Given the critical importance of precision in tasks such as software security
analysis, our approach distinguishes itself as the preferable option. It provides a speed
advantage without sacrificing precision. P3Ctx employs an LDCR-enabled selective context-
sensitivity technique, further substantiating the correctness of LDCR. In contrast, Selectx
[33], developed based on LF C [53], invariably encounters precision loss, thus underscoring
the superiority of our approach.

D. He, J. Lu, and J. Xue 18:3

x = new T // O ctx ∈ MethodCtx(M)
⟨O, ⌈ctx⌉hk⟩ ∈ PTS(x, ctx)

[I-New]
x = y ctx ∈ MethodCtx(M)

PTS(y, ctx) ⊆ PTS(x, ctx)
[I-Assign]

x = y.f ctx ∈ MethodCtx(M)
⟨O, htx⟩ ∈ PTS(y, ctx)

PTS(O.f, htx) ⊆ PTS(x, ctx)
[I-Load]

x.f = y ctx ∈ MethodCtx(M)
⟨O, htx⟩ ∈ PTS(x, ctx)

PTS(y, ctx) ⊆ PTS(O.f, htx)
[I-Store]

x = m(a1, . . . , an) // c ctx ∈ MethodCtx(M) ctx′ = ⌈c :: ctx⌉k

ctx′ ∈ MethodCtx(m) PTS(retm, ctx′) ⊆ PTS(x, ctx)
∀i ∈ [1, n] : PTS(ai, ctx) ⊆ PTS(pm

i , ctx′)

[I-SCall]

x = r.m(a1, . . . , an) // c ctx ∈ MethodCtx(M) ⟨O, htx⟩ ∈ PTS(r, ctx)
t = DynTypeOf(O) m′ = dispatch(c, t) ctx′ = ⌈c :: ctx⌉k

ctx′ ∈ MethodCtx(m′) PTS(retm′
, ctx′) ⊆ PTS(x, ctx)

⟨O, htx⟩ ∈ PTS(thism′
, ctx′) ∀i ∈ [1, n] : PTS(ai, ctx) ⊆ PTS(pm′

i , ctx′)

[I-VCall]

Figure 1 Inclusion-based formulation (M is the containing method of the statement being analyzed).

In summary, this paper makes the following two major contributions:

A new CFL-reachability formulation of kCFA with built-in call graph construction.

An LDCR-enabled precision-preserving pre-analysis for accelerating kCFA with selective
context-sensitivity. Compared with two state-of-the-art pre-analyses [33, 29], our pre-
analysis enables better efficiency-precision trade-offs in several application scenarios.

The rest of this paper is organized as follows. Section 2 provides background knowledge
and motivates the development of LDCR by highlighting several design challenges. Section 3
introduces LDCR, explaining how these challenges are addressed and offering insights into
its design. Section 4 presents and evaluates, P3Ctx, our LDCR-enabled pre-analysis for
accelerating kCFA. Section 5 discusses related work and Section 6 concludes the paper.

2 Background and Motivation

We start by reviewing the inclusion-based and traditional CFL-reachability LF C formulations
of kCFA (Section 2.1). Next, we use an example to illustrate their approaches to call graph
construction, discuss LF C ’s limitations, and highlight the necessity of and challenges faced
in designing LDCR, a new CFL-reachability formulation with an integrated on-the-fly call
graph construction (Section 2.2).

In our formalization, we consider a simplified Java language with six types of statements:
New for object creation (“x = new T // O”); Assign for variable assignments (“x = y”);
Load for retrieving field values (“x = y.f”); Store for assigning values to fields (“x.f =
y”); Virtual Calls for instance method calls (“x = r.m(a1, . . . , an) // c”); and Static Calls for
static method calls (“x = m(a1, . . . , an) // c”). Here, O identifies the unique abstract object
created by a particular New statement, x and y are local variables, and c identifies a callsite.
For a virtual call r.m(a1, . . . , an), we write thism′ , pm′

i and retm′ as its “this” variable, i-th
parameter and return variable for a virtual method m′ invoked at this callsite, respectively.
For a static call m(a1, . . . , an), only pm

i and retm are relevant. In scenarios where method calls
do not return a value, the flow from retm to x is disregarded.

ECOOP 2024

18:4 CFL-Reachability with On-The-Fly Call Graph Construction

x = new T // O

O
new−−→ x

[P-New]
x = y

y
assign−−−→ x

[P-Assign]
x = y.f

y
load[f]−−−→ x

[P-Load]

x.f = y

y
store[f]−−−−→ x

[P-Store]
x = m(a1, . . . , an) // c

∀ i ∈ [1, n] : ai
assign−−−→

ĉ
pm

i retm assign−−−→
č

x
[P-SCall]

x = r.m(a1, . . . , an) // c m′ is a target of this callsite

r
assign−−−→

ĉ
thism′

retm′ assign−−−→
č

x ∀ i ∈ [1, n] : ai
assign−−−→

ĉ
pm′

i

[P-VCall]

Figure 2 Rules for building the PAG required by LF C .

2.1 Background

2.1.1 Inclusion-based Formulation

Figure 1 gives the rules for such a formulation [22, 51, 57], where several auxiliary functions
are used: (1) MethodCtx maintains the contexts used for analyzing a method, (2) dispatch
resolves a virtual call to a target method, and (3) PTS records the points-to information
found context-sensitively for a variable or an object’s field. In kCFA, context sensitivity
is achieved by parameterizing variables and objects with contexts as modifiers. A calling
context of a method is abstracted by its last k callsites. Given a context ctx = [c1, . . . , cn]
and a context element c, c :: ctx stands for [c, c1, . . . , cn] and ⌈ctx⌉k stands for [c1, . . . , ck].

Let us examine the six rules in Figure 1. In [I-New], hk represents the (heap) context
length for a heap object, typically set as hk = k − 1 [51, 58, 20, 30]. [I-Assign], [I-Load],
and [I-Store] address standard assignments and field accesses. [I-SCall] and [I-VCall]
handle static and virtual calls, respectively. Let us explain [I-VCall] only. In this rule, m′ is
a target method dynamically resolved for a receiver object O (based on its dynamic type
t = DynTypeOf(O)) at callsite c. Thus, this rule is also responsible for performing on-the-fly
call graph construction during the pointer analysis. In its conclusion, ctx′ ∈ MethodCtx(m′)
reveals how the contexts of a method are introduced. Initially, for the program being analyzed,
its entry methods have only the empty context, e.g., MethodCtx(“main”) = {[]}. Importantly,
the receiver variable r and the other arguments a1, . . . , an are handled differently: a receiver
object flows only to the method it dispatches, while the objects pointed to by ai(i ∈ [1, n])
flow to all methods dispatched at this callsite.

2.1.2 LF C-based CFL-Reachability Formulation

In LF C [53], kCFA is solved by reasoning about CFL-reachability on a PAG representation [26].
Figure 2 gives six rules for building the PAG. For a PAG edge, its label above indicates whether
it is an assignment or field access. There are two types of assign edges: intra-procedural (for
modeling regular assignments without a below-edge label) and inter-procedural (for modeling
parameter passing with a below-edge label representing a callsite).

In LF C , passing arguments to parameters at both static and virtual callsites is modeled
identically by using inter-procedural assign edges ([P-SCall] and [P-VCall]). For example,
in [P-VCall], ĉ (č) signifies an inter-procedural value-flow entering into (exiting from)
m′ at callsite c, where m′ represents a virtual method discovered by a separate call graph
construction algorithm (either in advance [9, 2, 55] or on the fly [54, 53]). Therefore, ĉ (č) is
also known as an entry (exit) context.

D. He, J. Lu, and J. Xue 18:5

1 class A {
2 void foo(D p) {
3 Object v = p.f;
4 }
5 }
6 class B extends A {
7 void foo(D q) { }
8 }
9 class C extends A {

10 void foo(D r) {}
11 }
12 class D { Object f; }
13 class O { }

14 static void bar(A x, O o) {
15 D d = new D(); // D1
16 d.f = o;
17 x.foo(d); // c3
18 }
19 static void main() {
20 O o1 = new O(); // O1
21 O o2 = new O(); // O2
22 A a = new A(); // A1
23 A b = new B(); // B1
24 bar(a, o1); // c1
25 bar(b, o2); // c2
26 }

Figure 3 A motivating example.

For a PAG edge x
ℓ−→
c

y, its inverse edge, which is omitted in Figure 2 but required by

LF C , is defined as y
ℓ−→
c

x. For a below-edge label ĉ or č, ĉ = č and č = ĉ, implying that the
concepts of entry and exit contexts for inter-procedural assign edges are swapped if they are
traversed inversely.

LF C is defined as the intersection of two distinct CFLs, LF C = LF ∩ LC , with LF

pertaining to the PAG’s above-edge labels and LC to its below-edge labels. LF , a CFL over
ΣLF

, is created from above-edge labels. For each path p in the PAG, LF (p) is a string in
Σ∗

LF
, made by sequentially concatenating p’s above-edge labels. A node v is LF -reachable

from node u if a path p, termed LF -path, exists from u to v such that LF (p) ∈ LF . LC

follows a similar definition, but with ΣLC
comprising below-edge labels.

We give LF and LC below and illustrate both with an example in Section 2.2. LF enforces
field-sensitivity for field accesses by matching stores and loads as balanced parentheses:

flowsto −→ new flows∗

flows −→ assign | store[f] alias load[f]
alias −→ flowsto flowsto

flowsto −→ flows∗ new
flows −→ assign | load[f] alias store[f]

(1)

Note that u alias v iff u flowsto O flowsto v for some object O. In addition, O flowsto v iff
v flowsto O, meaning that flowsto actually represents the standard points-to relation.

LC enforces callsite-sensitivity by matching “calls” and “returns” as balanced parentheses:

realizable −→ exit entry
exit −→ exit balanced | exit č | ϵ

entry −→ entry balanced | entry ĉ | ϵ

balanced −→ balanced balanced | ĉ balanced č | ϵ

(2)

A path p in the PAG of the program is realizable iff p is an LC-path.
Finally, a variable v points to an object O iff there exists an LF C-path p from O to v,

such that LF (p) ∈ LF (p is a flowsto-path) and LC(p) ∈ LC (p is a realizable-path). Ignoring
all balanced contexts, the contexts for v and O can be directly read off from p (Section 3.2.2).

ECOOP 2024

18:6 CFL-Reachability with On-The-Fly Call Graph Construction

Table 1 Points-to results for the program in Figure 3 computed by 2CFA according to Figure 1.

Method Pointers PTS Method Pointers PTS

main()

⟨o1, []⟩ {⟨O1, []⟩}

bar()

⟨x, [c1]⟩ {⟨A1, []⟩}
⟨o2, []⟩ {⟨O2, []⟩} ⟨o, [c1]⟩ {⟨O1, []⟩}
⟨a, []⟩ {⟨A1, []⟩} ⟨d, [c1]⟩ {⟨D1, [c1]⟩}
⟨b, []⟩ {⟨B1, []⟩} ⟨x, [c2]⟩ {⟨B1, []⟩}

B:foo()
⟨this, [c3, c2]⟩ {⟨B1, []⟩} ⟨o, [c2]⟩ {⟨O2, []⟩}

⟨q, [c3, c2]⟩ {⟨D1, [c2]⟩} ⟨d, [c2]⟩ {⟨D1, [c2]⟩}

A:foo()
⟨this, [c3, c1]⟩ {⟨A1, []⟩} Field Pointers PTS

⟨p, [c3, c1]⟩ {⟨D1, [c1]⟩}
f

⟨D1.f, [c1]⟩ {⟨O1, []⟩}
⟨v, [c3, c1]⟩ {⟨O1, []⟩} ⟨D1.f, [c2]⟩ {⟨O2, []⟩}

2.2 Motivation
We begin with a motivating example (Section 2.2.1) and an inclusion-based framework
featuring on-the-fly call graph construction (Section 2.2.2). We explore the limitations of
LF C without this feature (Section 2.2.3) and the challenges of developing LDCR with it
(Section 2.2.4). Transitioning from LF C to LDCR requires a new PAG representation specific
to LDCR.

2.2.1 Example
In Figure 3, classes A, B, C, D, and O are defined. B and C, subclasses of A, override the foo()
method from A. The notation T:m() represents method m() in class T. The method bar() is
a wrapper, storing the object pointed to by o in D1.f, and then invoking A:foo(), B:foo(),
or C:foo() based on the dynamic type of object x points to. In main(), O1, O2, A1, and B1
are created, in which A1 and O1 (B1 and O2) are passed into bar() as its two arguments at
callsite c1 (c2).

2.2.2 Inclusion-based Formulation
Table 1 lists the points-to results computed for the program in Figure 3 by 2CFA following the
rules in Figure 1. For main(), analyzed under [], its points-to relations are obtained trivially.
As for bar(), there are two calling contexts, [c1] and [c2]. Under [c1], we have PTS(x, [c1]) =
{⟨A1, []⟩}, PTS(d, [c1]) = {⟨D1, [c1]⟩}, and PTS(D1.f, [c1]) = PTS(o, [c1]) = {⟨O1, []⟩}. Then
A:foo() is found to be the target invoked by x.foo() at callsite c3 in line 17 ([I-VCall]).
Thus, PTS(p, [c3, c1]) = {⟨D1, [c1]⟩} and PTS(v, [c3, c1]) = {⟨O1, []⟩}. Similarly, when bar()
is analyzed under [c2], we have PTS(x, [c2]) = {⟨B1, []⟩}. Thus, x.foo() at callsite c3 is now
resolved to B:foo(). Note that [I-VCall] supports on-the-fly call graph construction during
the analysis and 2CFA is precise enough by not resolving C:foo() as a spurious target at c3.

2.2.3 LF C-based Formulation
LF C addresses kCFA using a separate call graph construction algorithm. This approach
separates, both conceptually and algorithmically, the parameter passing at a virtual callsite
from the dynamic dispatch process. The limitations arising from this separation are explored
below, considering whether the call graph is pre-constructed or constructed on the fly.

In Figure 3, LF C uses a PAG as shown in Figure 4, constructed with CHA [9], an
imprecise yet fast and sound call graph algorithm. In this scenario, C:foo() is conservatively
marked as a target method at callsite c3 (line 17). However, as explained later, LF C would
exclude such spurious targets when employing a more precise call graph in its analysis.

D. He, J. Lu, and J. Xue 18:7

dD1o

o1O1

o2O2

p

r

v thisA:foo()

thisC:foo()

thisB:foo()q

x

a A1

b B1

new

new

new

new

new

assign

ĉ1

assign
ĉ1

assign
ĉ2

assign

ĉ2
store[f]

ass
ign

ĉ3
assign

ĉ3assign
ĉ3

assign
ĉ3

load[f]

assi
gn

ĉ3

assign

ĉ3

Figure 4 The PAG operated on by LF C for the program given in Figure 3.

We analyze a specific traversal path leading to d, an argument in the call to foo() at
callsite c3 (line 17), originating from O1 in bar(a,o1) under [c1] or O2 in bar(b,o2) under
[c2]. The subsequent task is to assign d to the appropriate parameter, based on the target
method identified at this callsite: p for A:foo(), q for B:foo(), or r for C:foo().

2.2.3.1 Using a Call Graph Constructed in Advance

Even if LF C uses the most precise pre-built call graph, kCFA can still lose precision. For
instance, at callsite c3 (line 17) in Figure 3, both A:foo() and B:foo() are identified as
possible target methods. This means A:foo() is always considered a target method, whether
the call is from bar(a,o1) under [c1] or bar(b,o2) under [c2]. As a result, this scenario
leads to the identification of two LF C-paths:

O1 new−−→ o1
assign−−−→

ĉ1
o

store[f]−−−−→ d new−−→ D1 new−−→ d
assign−−−→

ĉ3
p

load[f]−−−−→ v (3)

O2 new−−→ o2
assign−−−→

ĉ2
o

store[f]−−−−→ d new−−→ D1 new−−→ d
assign−−−→

ĉ3
p

load[f]−−−−→ v (4)

Thus, in this LF C -based pointer analysis, v is concluded to point to both O1 and O2, despite
v actually pointing only to O1 as per 2CFA (Table 1), meaning that O2 is spurious.

LF C ’s precision loss stems from its approach to parameter passing at virtual callsites
([P-VCall]), treating them similarly to static callsites ([P-SCall]) using inter-procedural
assign edges, without accounting for CFL-reachability for specific receiver objects. As a
result, this causes LF C to overlook that the LF C -path in Equation (3) and the LF C -path in
Equation (4) are relevant only when x points to A1 at [c1] and B1 at [c2], respectively.

If LF C uses a less precise call graph, which is pre-built by, say, CHA [9], then C:foo()
will also be identified as a target method at callsite c3 (line 17), leading to r pointing to
D1 spuriously due to D1 new−−→ d

assign−−−→
ĉ3

r. However, r’s points-to set is actually empty as per

2CFA (not listed in Table 1).

2.2.3.2 Using a Call Graph Constructed On the Fly

When d is reached at callsite c3 in line 17 of Figure 3, using a call graph constructed on the
fly as in demand-driven analyses [53, 62, 48], where methods invoked at a virtual callsite
are context-specific, enables us to discern that the path in Equation (3) is an LF C-path,
while that in Equation (4) is not. This precision ensures that v points only to O1. In the
first path, x points to A1 under context [c1], identifying A:foo() as the target at c3. The
path assign−−−→

ĉ3
p

load[f]−−−−→ v confirms that v points to O1. In the second path, reaching d under

[c2] leads to B:foo() at c3 (with x pointing to B1), blocking the same path.
While LF C can address kCFA on-demand more accurately than a pre-built call graph,

precision loss may still occur in scenarios where a callsite has multiple dispatch targets
under a common context. For example, in Figure 5 (where classes E, F, and G are renamed

ECOOP 2024

18:8 CFL-Reachability with On-The-Fly Call Graph Construction

1 class E {
2 void foo(G p) {
3 Object v = p.g;
4 }}
5 class F extends E {
6 void foo(G q) { }
7 }
8 class G { Object g; }
9 G w = new G(); // G1

10 if (...) {
11 E e1 = new E(); // E1
12 w.g = e1;
13 } else {
14 F f1 = new F(); // F1
15 w.g = f1;
16 }
17 E x = w.g;
18 x.foo(null); // c

Figure 5 A small example.

from classes A, B, and D in Figure 3 to prevent name collisions), using a separate call graph
construction algorithm to identify all potential target methods at “x.foo(null)” under any
context results in the discovery of both E:foo() and F:foo(). Subsequent analysis of
CFL-reachability with LF C yields:

E1 new−−→ e1
store[g]−−−−→ w new−−→ G1 new−−→ w

load[g]−−−−→ x
assign−−−→

ĉ
thisE:foo() (5)

F1 new−−→ f1
store[g]−−−−→ w new−−→ G1 new−−→ w

load[g]−−−−→ x
assign−−−→

ĉ
thisE:foo() (6)

Therefore, both E1 and F1 will flow to thisE:foo although F1 is spurious by [I-VCall].
Similarly, both E1 and F1 will flow to thisF:foo with E1 being spurious.

LF C ’s precision loss stems from treating the receiver variable the same as other arguments
([P-VCall] in Figure 2), in contrast to the inclusion-based approach ([I-VCall] in Figure 1).
Attempting to eliminate spurious receiver objects like F1 for E:foo() informally, outside the
specifications of LF C or any call graph construction algorithm, is an ad hoc solution. This
problem has persisted in the LF C on-demand algorithm for kCFA [53], released as part of
the Soot compiler [59] and used by many other researchers [61, 48], in the last 15 years.

2.2.3.3 Discussion

In addressing kCFA, LF C depends on an external algorithm for call graph construction. This
approach not only leads to the precision loss in kCFA as previously mentioned, but also
presents another limitation: LF C is unable to track all value-flow paths involved in method
dispatch, whether the call graph is constructed beforehand or generated on-the-fly.

In analyzing “x.foo(d)” in line 17 of Figure 3, for parameter passing of d at the callsite
as per [I-VCall], it is necessary to first identify methods dispatched on the receiver objects
that x points to, then proceed with parameter passing (from d to p for A:foo(), and d to q
for B:foo()). However, in LF C , parameter passing, achieved through inter-procedural assign
edges ([P-VCall]), is conceptually and algorithmically detached from dynamic dispatch at
the callsite. It does not relate this process via CFL-reachability to its receiver objects, a
limitation also evident in the PAG shown in Figure 4.

The limitations of LF C indicate that its pre-analyses, designed to boost kCFA efficiency,
can unintentionally compromise its precision. For example, Selectx [33] aims to accelerate
kCFA through selective context-sensitivity with LF C , often leading to reduced precision.

D. He, J. Lu, and J. Xue 18:9

2.2.4 LDCR : Challenges and Our Solution
In developing LDCR, it is crucial to facilitate CFL-reachability for parameter passing in line
with kCFA. For a virtual call r.m(a1, . . . , an) at callsite c, passing an argument, denoted a,
to its corresponding parameter p in a yet-to-be-discovered target method m′ under context
C involves establishing a CFL-reachability path in a PAG representation, starting from a,
through receiver variable r for dynamic dispatch (based on the dynamic type of the object
pointed to by r under C), and ending at p. Linking a to r, especially when a ̸= r, is complex.
Additionally, in CFL-reachability, some context elements in C are consumed, i.e., matched
during dynamic dispatch and must be restored for passing a to p under the same context C.
We identify three key challenges in handling this complex parameter-passing task:

CHL1. How do we precisely pass r to the “this” variable of a target method m′ invoked
at callsite c, avoiding the precision loss as illustrated in Figure 5?
CHL2. How do we establish a CFL-reachability path in a PAG representation of the
program from ai to pi, passing through r to trigger dynamic dispatch during parameter
passing, where pi is the i-th parameter of a target method m′ discovered at callsite c
under C?
CHL3. How do we ensure the passage of ai to pi for the target method m′ invoked at
callsite c with a context abstraction that accurately characterizes parameter passing for
callsite c under C?

In our approach, illustrated using our motivating example (Figure 3), LDCR is applied to a
novel PAG representation depicted in Figure 7, distinct from the PAG used by LF C (Figure 4).
In this new formulation, we demonstrate that v points exclusively to O1, attributable to a
unique path from O1 to v:

O1
new[O]−−−−→ o1

assign−−−→
ĉ1

o
store[f]−−−−→ d

new[D]−−−−→ D1
new[D]−−−−→ d

store[1]−−−−→
ĉ3

x
assign−−−→

č1
a

new[A]−−−−→A1

new[A]−−−−→ a
assign−−−→

ĉ1
x

assign−−−→
č3

x#c3
dispatch[A]−−−−−−→

ĉ3
thisA:foo() load[1]−−−−→ p

load[f]−−−−→ v
(7)

The technical specifics of this path will be further elaborated in Section 3.
This path represents the flow of O1 to v through two calls, c1 (line 24) and c3 (line 17).

Focusing on parameter passing of d at c3 under context C = [c1], where A:foo() is the
sole target, LDCR employs a more indirect approach than LF C ’s direct inter-procedural
assign edge d

assign−−−→
ĉ3

p. LDCR dynamically identifies dispatch targets in the path from d to p

using a sequence of PAG edges. To address CHL1, we match new[A] with dispatch[A]. For
CHL2, d is stored in a special field of x to initiate dynamic dispatch, then loaded from
the same field of thisA:foo() into p (highlighted in). Afterwards, dynamic dispatch under
C = [c1] is performed similarly to LF C (highlighted in). To tackle CHL3, d is passed to
p under context [c3,c1], where c3 denotes the callsite and c1 the context for A1 flowing into
x (highlighted in). The importance of the two boxed below-edge labels, ĉ3 and č3 , in
meeting CHL3 will be elaborated upon in Section 3.

3 LDCR : Design and Insights

When tackling a CFL-reachability problem, the selection of CFLs and their corresponding
graph representations are closely interconnected and thoughtfully designed. To separate this
interdependency, we first introduce a new PAG representation for a program, which supports

ECOOP 2024

18:10 CFL-Reachability with On-The-Fly Call Graph Construction

x = new T // O

O
new[T]−−−−→ x

[C-New]
M is an instance method

thisM load[i]−−−→ pM
i

[C-Param]
M is an instance method

retM store[0]−−−−→ thisM
[C-Ret]

x = r.m(a1, . . . , an) // c t <: DeclTypeOf(r) m′ = dispatch(c, t)

∀ i ∈ [1, n] : ai
store[i]−−−−→

ĉ
r r

load[0]−−−−→
č

x r
assign−−−→ r#c r

assign−−−→
č

r#c r#c
dispatch[t]−−−−−−→

ĉ
thism′

[C-VCall]

Figure 6 Rules for building the PAG required by LDCR. [C-Assign], [C-Load], [C-Store] and
[C-SCall] mirror those in Figure 2 and are excluded here to conserve space.

on-the-fly call graph construction (Section 3.1). Following this, we elaborate on LDCR by
detailing our solutions to the three challenges (CHL1 – CHL3) and providing insights into
its design (Section 3.2).

3.1 Pointer Assignment Graph
For representing a program in LDCR, we employ the rules specified in Figure 6 to construct
a PAG. The inverse of a PAG edge x

ℓ−→
c

y, implicitly defined, is y
ℓ−→
c

x, mirroring the
approach in LF C (Section 2.1.2). However, our approach uniquely allows below-edge labels
to be also either ĉ or č , where ĉ = č and č = ĉ , with c denoting a callsite. To initiate
dynamic dispatch at a callsite c, edges with boxed below-edge labels symbolize a novel type
of inter-procedural value-flow entering (indicated by ĉ) or exiting (marked by č) a method
at c. These specific boxed below-edge labels are introduced solely for addressing CHL3, and
their significance will be explained in Section 3.2.2.

Our PAG, designed for LDCR, primarily differs from the one for LF C (Figure 2) in handling
virtual callsites. Consequently, [C-Assign], [C-Load], [C-Store], and [C-SCall] are the
same as [P-Assign], [P-Load], [P-Store], and [P-SCall], respectively. The additional
rules in Figure 6 construct PAG edges that facilitate on-the-fly call graph construction at
virtual callsites, addressing CHL1 and CHL2.

In [C-New], O
new[T]−−−−→ x specifically encodes T, the dynamic type of O, to facilitate

dynamic dispatch on O and enable its use as a receiver object, avoiding precision loss as
depicted in Figure 5.

For [C-Param] and [C-Ret], we treat the i-th (non-this) parameter of an instance
method M (denoted as pM

i , with i starting from 1) and its return variable retM as special fields
of thisM, identified by offset i and 0, respectively. This allows the initialization of thisM.0
with a store retM store[0]−−−−→ thisM and a non-this parameter pM

i with a load thisM load[i]−−−→ pM
i .

In [C-VCall], we uniquely handle virtual calls like “x = r.m(a1, . . . , an) //c” differently
from [P-VCall] (Figure 2), using r#c to uniquely identify r at callsite c. There are two
edges between r and r#c: the edge r

assign−−−→ r#c, which is essential for passing the receiver
variable, and the edge r

assign−−−→
č

r#c, which is crucial for passing other arguments during

parameter passing, as will be explained shortly. We initially over-approximate target methods
at c using CHA ([9]), similar to LF C , for later refinement by LDCR. For each target method
m′, the argument ai is passed to the corresponding parameter pm′

i (1 ⩽ i ⩽ n) via a store
ai

store[i]−−−−→
ĉ

r and a matching load thism′ load[i]−−−→ pm′

i ([C-Param]). CFL-reachability under

LDCR involves traversing this store edge to find the dynamic type of each receiver object
pointed by r (marked by ĉ). The sequence r

assign−−−→
č

r#c
dispatch[t]−−−−−−→

ĉ
thism′ indicates finding

the dynamic type t (marked by č), enabling dispatch of m′ with ĉ as its entry context (i.e.,

D. He, J. Lu, and J. Xue 18:11

xdD1o

o1O1

o2O2

x#c3

aA1

bB1

thisA:foo() p v

thisB:foo() q

thisC:foo() r

new[O]

new[O]

new[A]

new[B]

new[D]

assign
ĉ1

assign
ĉ1

assign

ĉ2

assign

ĉ2
store[f]

store[1]

ĉ3
assign

č3

assign
dispatch[A]

ĉ3

load[1] load[f]

dispatch[B]

ĉ3

load[1]

dispatch[C]
ĉ3

load[1]

Figure 7 The PAG for LDCR constructed for the program given in Figure 3.

m′ = dispatch(c, t) as desired). A dispatch edge also functions as an assign edge. For the
receiver variable r, we simply use r

assign−−−→ r#c (without the need for relating r to itself).
Finally, x is assigned retm′ (stored in thism′

.0 ([C-Ret])) via a load r
load[0]−−−−→

č
x, with č

marking the conclusion of the dynamic dispatch at callsite c.
Figure 7 illustrates the PAG leveraged by LDCR for our motivating example, as presented

in Figure 3. This PAG, uniquely tailored to support LDCR’s integrated call graph construction,
shows notable differences from the PAG employed by LF C , as depicted in Figure 4.

3.2 LDCR : A New CFL-Reachability Formulation for kCFA
LDCR combines three CFLs (LDCR = LD ∩ LC ∩ LR) for addressing CHL1 – CHL3. LD,
detailed in Section 3.2.1, deals with field accesses and dynamic dispatch, catering to CHL1
and CHL2. LC , defined in Equation (2), ensures callsite-sensitivity using below-edge labels
ΣLC

, which include ĉ and č, and treats LDCR’s unique boxed labels ĉ and č as ϵ. LR,
presented in Section 3.2.2, facilitates parameter passing in on-the-fly call graph construction,
addressing CHL3. The focus will predominantly be on LD and LR, concentrating on
parameter passing, with method returns being similarly handled.

Basic Idea. LDCR, a CFL-reachability formulation, differs from LF C mainly in managing
parameter passing at virtual callsites, enabling LDCR’s built-in call graph construction
compared to LF C ’s reliance on a separate algorithm (Sec. 2.2.3.2). At a virtual callsite
“r.m(a1, . . . , an); //c” under context C, handling the receiver variable r (pointing to receiver
objects) involves addressing CHL1: passing a receiver object to thism′ for dispatch on m′.
In addition, for an argument ai, CHL2 and CHL3 are met by storing ai in r.i, verifying if
any object pointed by r under C matches dynamic type t, dynamically dispatching to m′

(m′ = dispatch(c, t)), and assigning thism′
.i to pm′

i at callsite c under context C. Method
returns are handled in a similar fashion.

▶ Example 1. Revisiting our motivating example (Figure 3) and its PAG (Figure 7), LDCR

ensures a unique path from O1 to v, as shown in Equation (7), so that v points only to O1
when bar() is invoked at c1. The sub-path from O1 to d shows that O1 is stored into d.f,
with d pointing to D1. The sub-path from d to p indicates parameter passing at callsite c3 to p
for A:foo(), dynamically identified by LDCR under C = [c1]. We have discussed addressing
CHL1 – CHL3 at this callsite in Section 2.2.4. We wish to emphasize that ĉ3 and č3
signify dynamic dispatch’s start and end at callsite c3 for d. CFL-reachability traversal
between these markers confirms that x points to A1 under [c1], necessitating a return to x

under [c1]. With receiver object A1, A:foo() is dispatched via x#c3
dispatch[A]−−−−−−→

ĉ3
thisA:foo(),

allowing d to pass to p under [c3, c1]. Unlike LF C [53] that uses [c3], LDCR specifies [c3, c1]
to indicate this occurs only when x points to A1 under [c1]. C:foo(), present in the PAG
due to CHA [9], is filtered out by LDCR’s on-the-fly call graph construction.

ECOOP 2024

18:12 CFL-Reachability with On-The-Fly Call Graph Construction

Let Ldd
F C be a demand-driven formulation of LF C that is identical in all aspects except

for one modification. This version continues to utilize a separate algorithm for on-the-fly call
graph construction, but it has been specifically enhanced to accurately handle parameter
passing for receiver variables, effectively avoiding the precision loss discussed in Section 2.2.3.2.

When developing LDCR, we treat soundness fundamentally as an issue of precision.

▶ Definition 2 (Soundness and Precision of On-the-Fly Call Graph Construction). For any
given callsite and context C, let T be the set of target methods identified under C through
Ldd

F C . Suppose L is a language differing from Ldd
F C solely in managing parameter passing at

virtual callsites. We regard L as sound if it facilitates parameter passing under C for at least
the methods in T , and as precise (besides being sound) if it enables parameter passing under
C for precisely the target methods in T .

We write LDC = LD ∩ LC as the intersection of LD and LC . A path p qualifies as an
LDCR-path if LD(p) ∈ LD, LC(p) ∈ LC , and LR(p) ∈ LR. An LDC -path is defined similarly.
As we will discuss further, LDC is sound yet imprecise, whereas LDCR is precise.

3.2.1 The LD Language
This CFL captures both field-sensitive accesses, similar to LF in Equation (1), and dynamic
dispatch within its language framework:

flowsto −→ new[t] (flows | dispatch[t])∗

flows −→ assign | store[f] alias load[f]

alias −→ flowsto flowsto

flowsto −→ (dispatch[t] | flows)∗ new[t]

flows −→ assign | load[f] alias store[f]

(8)

Here, ΣLD
includes all above-edge labels in the program’s PAG. LD extends LF from

Equation (1) [54, 53] by retaining its balanced parentheses approach for field accesses and
adding support for dynamic dispatch, which facilitates on-the-fly call graph construction.
Next, we describe how LD is specifically designed to address CHL1 and CHL2.

3.2.1.1 CHL1

To address CHL1 regarding parameter passing at a virtual callsite, it is crucial that a
receiver object O, pointed to by its receiver variable, is only passed to the this variable of a
method dispatchable on O. For instance, in x.foo(null) from Figure 5, where x might point
to both E1 and F1, LF C might incorrectly pass both E1 and F1 to thisE:foo(), as shown
in Equations (5) and (6), despite F1 being spurious.Note that Ldd

F C , introduced just before
Definition 2, was specifically conceptualized to mitigate such precision loss.

In LD, we explicitly specify the dynamic types of objects in four terminals: new[t],
new[t], dispatch[t], and dispatch[t]. This modification alters the two LF C -paths discussed in
Equations (5) and (6) for Figure 5 as follows:

E1
new[E]−−−−→ e1

store[g]−−−−→ w
new[G]−−−−→G1

new[G]−−−−→ w
load[g]−−−−→ x

assign−−−→ x#c
dispatch[E]−−−−−−→

ĉ
thisE:foo() (9)

F1
new[F]−−−−→ f1

store[g]−−−−→ w
new[G]−−−−→G1

new[G]−−−−→ w
load[g]−−−−→ x

assign−−−→ x#c
dispatch[E]−−−−−−→

ĉ
thisE:foo() (10)

D. He, J. Lu, and J. Xue 18:13

During a flowsto (flowsto) traversal, the type in dispatch[t] (dispatch[t]) must align with
its corresponding new[t] (new[t]). Thus, the path in Equation (9) qualifies as an LD-
path, as new[E] flows∗ dispatch[E] ∈ LD, but the path in Equation (10) does not as new[F]
flows∗ dispatch[E] /∈ LD. Hence, in LD, F1 cannot spuriously flow to thisE:foo(). Similarly,
in Equation (7), only A1 can be passed to thisA:foo(), as A:foo() is dispatchable on A1.

▶ Lemma 3. Consider a virtual callsite x = r.m(a1, . . . , an). In LD, every receiver object
pointed to by r flows only to the this variable of a method that can be dispatched on the
receiver object.

Proof Sketch. Follows from the definition of LD. ◀

3.2.1.2 CHL2

To meet CHL2 and trigger dynamic dispatch at virtual callsites during parameter passing,
we use LDC = LD ∩ LC . Re-examining the LDCR-path in Equation (7) without ĉ3 and č3 ,
we assess if O1 flows into v starting from c1. Parameter passing for d at “x.foo(d); // c3”
under C = [c1] involves traversing the sub-path from d to p of A:foo(). Starting with

d
store[1]−−−−→ x, a flowsto traversal is initiated via x

assign−−−→
č1

a
new[A]−−−−→A1 under C = [c1], returning

to x via A1
new[A]−−−−→ a

assign−−−→
ĉ1

x, dispatching at c3 through x
assign−−−→ x#c3

dispatch[A]−−−−−−→
ĉ3

thisA:foo(),

and finally passing d to p via thisA:foo() load[1]−−−−→ p. Unlike LF C ’s direct passage of d to p
in Equation (3), LDCR uses a series of edges under [c3,c1], indicating dispatch occurs only
when x points to A1 under [c1].

▶ Lemma 4. LDC is sound in handling parameter passing at virtual callsites.

Proof Sketch. Consider a virtual callsite r.m(a1, . . . , an); // c”, where parameter passing
for an argument occurs under context C. Let T represent the set of target methods identified
on the fly for this callsite under C by applying a separate call graph algorithm as in Ldd

F C .
As r is handled similarly as in Ldd

F C , it suffices to consider parameter passing for a non-this
argument ai. Focusing on ai, LDC initiates dynamic dispatch by locating receiver objects
pointed to by r under also C. Since LDC differs from Ldd

F C only in handling parameter passing
at virtual callsites, the set of target methods found by LDC must include T . In addition, for
each target m′ ∈ T , there always exists a PAG path q:

ai
store[i]−−−−→ r flowsto O flowsto r

assign−−−→ r#c
dispatch[_]−−−−−−→

ĉ
thism′ load[i]−−−→ pm′

i (11)

Here, if u represents “r flowsto O”, then “O flowsto r” is its inverse u. This ensures ai flows pi

by LD and LC(q) ∈ LC by LC . Moreover, LC(q) forms a sequence of contexts feasible under
C, as u is traversed under C. Therefore, by Definition 2, LDC is sound. ◀

3.2.2 The LR Language

LDC , though sound, is not precise. This is illustrated in examples from Figures 8 and 9,
highlighting LDC ’s limitations and underscoring the importance of LR in LDCR.

ECOOP 2024

18:14 CFL-Reachability with On-The-Fly Call Graph Construction

1 static void main() {
2 H h = new H(); // H1
3 I i1 = new I(); // I1
4 I i2 = new I(); // I2
5 h.m(i1); // c4
6 h.n(i2); // c5

7 }
8 class I {}
9 class H {

10 void m(Object p) { ... }
11 void n(Object q) { ... }
12 }

Figure 8 An example for illustrating the imprecision of LDC caused by an incorrect dispatch site.

1 static void main() {
2 J j1 = new J(); // J1
3 K k1 = new K(); // K1
4 K k2 = new K(); // K2
5 K v1 = wid(j1, k1); // c6
6 K v2 = wid(j1, k2); // c7
7 }
8 class K { }

9 class J {
10 K id(K p) {
11 return p;
12 }}
13 static K wid(J j, K k) {
14 K v = j.id(k); // c8
15 return v;
16 }

Figure 9 An example for showing the imprecision of LDC caused by an incorrect dispatch context.

LDC ’s precision loss can occur from a spurious dispatch callsite, shown by the following
two LDC-paths for Figure 8, temporarily ignoring the boxed labels ĉ4 , č4 , and č5 :

I1
new[I]−−−−→ i1

store[1]−−−−→
ĉ4

h
new[H]−−−−→ H1

new[H]−−−−→ h
assign−−−→

č4
h#c4

dispatch[H]−−−−−−→
ĉ4

thism load[1]−−−−→ p (12)

I1
new[I]−−−−→ i1

store[1]−−−−→
ĉ4

h
new[H]−−−−→ H1

new[H]−−−−→ h
assign−−−→

č5
h#c5

dispatch[H]−−−−−−→
ĉ5

thisn load[1]−−−−→ q (13)

Both LDC-paths track I1’s flow in the program’s PAG. The first path correctly leads I1 to
p. However, the second path spuriously directs I1 to q, as the flowsto traversal to identify
a’s receiver object starts at c4 but concludes at c5 spuriously. LR addresses this precision
issue by requiring matched boxed edge labels. As a result, the first path in Equation (12)
is a valid LDCR-path (with ĉ4 matched by č4), while the second path in Equation (13) is
invalidated (due to the mismatch of ĉ4 and č5).

LDC may also experience precision loss due to a spurious dispatch context. Consider the
following two LDC-paths in the PAG of Figure 9 (by ignoring the boxed labels ĉ8 and č8
for now):

K1
new[K]−−−−→ k1

assign−−−→
ĉ6

k
store[1]−−−−→

ĉ8
j

assign−−−→
č6

j1
new[J]−−−−→ J1

new[J]−−−−→ j1
assign−−−→

ĉ6
j

assign−−−→
č8

j#c8
dispatch[J]−−−−−−→

ĉ8
thisid load[1]−−−−→

p
store[0]−−−−→ thisid dispatch[J]−−−−−−→

č8
j#c8

assign−−−→
ĉ8

j
assign−−−→

č6
j1

new[J]−−−−→ J1
new[J]−−−−→ j1

assign−−−→
ĉ6

j
load[0]−−−−→

č8
v

assign−−−→
č6

v1
(14)

K1
new[K]−−−−→ k1

assign−−−→
ĉ6

k
store[1]−−−−→

ĉ8
j

assign−−−→
č6

j1
new[J]−−−−→ J1

new[J]−−−−→ j1
assign−−−→

ĉ7
j

assign−−−→
č8

j#c8
dispatch[J]−−−−−−→

ĉ8
thisid load[1]−−−−→

p
store[0]−−−−→ thisid dispatch[J]−−−−−−→

č8
j#c8

assign−−−→
ĉ8

j
assign−−−→

č7
j1

new[J]−−−−→ J1
new[J]−−−−→ j1

assign−−−→
ĉ7

j
load[0]−−−−→

č8
v

assign−−−→
č7

v2
(15)

These two LDC-paths in Figure 9 vary only by context: Equation (15) is similar to Equa-
tion (14), but replaces c7 with c6 and v2 with v1. Both track where K1 flows, starting from
“wid(j1,k1); // c6”. According to Equation (14), v1 points to K1 as expected. However,
Equation (15) inaccurately allows K1, passed at c6, to flow into v2 at c7, spuriously indicating

D. He, J. Lu, and J. Xue 18:15

v2 points to K1. Focusing on dynamic dispatch at callsite c8 in line 14 due to the call at
c6 in line 5 (Figure 9), Equation (14) shows that j initially pointing to J1 under [c6] and
maintains this during both flowsto and flowsto traversals from c6. However, Equation (15)
starts similarly but ends with j pointing to J1 under [c7], which is inconsistent with the call
at c6.

In general, LDC may lack precision as it sometimes includes spurious sub-paths for
dynamic dispatch. Consider a generic virtual callsite r.m(a1, . . . , an) // c, LDC initiates
dynamic dispatch by executing the following alias-related traversal on its receiver variable r:

· · · store[i]−−−−→
ĉ

r flowsto O flowsto r′ assign−−−→
č

′
r′#c′ dispatch[_]−−−−−−→

ĉ′
· · · (16)

Such a dispatch path, which starts from ĉ and ends at č′ , is valid if two conditions are met:
DP-C1: c = c′ (implying that r = r′), and
DP-C2: O is pointed by both r and r′ under exactly the same context.

However, LDC can ensure that r and r′ are aliases but cannot guarantee the validity of
this dispatch path. For example, Equation (13) contains a dispatch path violating DP-C1,
and Equation (15) violates DP-C2. To exclude such invalid dispatch paths in LDC -paths, LR

is designed to utilize all below-edge labels in the PAG (i.e., ĉ, č, ĉ , and č) as terminals:

recoveredCtx −→ recoveredCtx ĉ | recoveredCtx č | recoveredCtx siteRecovered | ϵ

siteRecovered −→ ĉ ctxRecovered č

ctxRecovered −→ matched ctxRecovered | ctxRecovered matched | č ctxRecovered ĉ | ϵ

matched −→ matched matched | ĉ matched č | siteRecovered | ϵ

(17)

Here, ΣLR
includes all below-edge labels in the program’s PAG. The start symbol recoveredCtx

would define a language that contains LC if its third alternative “recoveredCtx
siteRecovered” were changed to “recoveredCtx”. Thus, LR is engaged during a dispatch
path traversal. The siteRecovered production enforces DP-C1, and the ctxRecovered and
matched productions collectively enforce DP-C2. This design enables LR to address CHL3
by reinstating the context of r.

By incorporating LR into LDC , the composite language LDCR = LD ∩ LC ∩ LR achieves
precision in managing parameter passing at virtual callsites. Reexamining the paths in
Equations (14) and (15), with the inclusion of ĉ8 and č8 , it is clear that the first path
qualifies as an LDCR-path, while the second does not. In the first path, the dynamic dispatch
starts at callsite c8 under context [c6] and returns to the same callsite under the same
context, signified by ĉ8 and č8 . Conversely, the second path, while also starting dispatch
at callsite c8 under context [c6], mistakenly returns under a different context, [c7], making
it invalid for LDCR. As a result, LDCR correctly determines that K1 is pointed to by v1, but
not by v2, effectively preventing v2 from pointing to K1 spuriously.

Below, we give a formal development of LR, followed by a proof of LDCR’s precision.
To determine the points-to set of a variable v, PTS(v, cv), using LDC , consider an LC -path

p with label LC(p) = ℓ1, . . . , ℓn, where each ℓi is a context label on an inter-procedural assign
edge. The inverse of p, p, has a label LC(p) = ℓn, . . . , ℓ1. Splitting p into sub-paths pex and
pen, we define LC

ex(p) = LC(pex) and LC
en(p) = LC(pen), with LC(p) = LC

ex(p)LC
en(p).

Here, LC
ex(p) and LC

en(p) are derived from exit and entry in LC ’s grammar (Equation (2)).
For s ∈ LC , B(s) returns s’s canonical form with balanced contexts removed. If c is a string
of exit contexts like č1 . . . čn, E (c) = [c1, . . . , cn] converts it into a context representation,
noting E (ϵ) = [].

ECOOP 2024

18:16 CFL-Reachability with On-The-Fly Call Graph Construction

For an LDC -path p from an object O to a variable v, we can clearly deduce the following
points-to relationship, including the specific contexts of O and v:

⟨O, E (B(LC
ex(p)))⟩ ∈ PTS(v, E (B(LC

en(p)))) (18)

▶ Example 5. Let us take pO1,v, the LDC -path from Equation (7), by ignoring ĉ3 and č3 . By
definition, LC(pO1,v) = ĉ1č1ĉ1ĉ3, where pex

O1,v denotes the sub-path from O1 to A1 and pen
O1,v

denotes the sub-path from A1 to v. Thus, LC
ex(pO1,v) = ĉ1č1 and LC

en(pO1,v) = ĉ1ĉ3. Since
E (B(ĉ1č1)) = [] and E (B(ĉ1ĉ3)) = E (ĉ1ĉ3) = [c3, c1], we have: ⟨O1, []⟩ ∈ PTS(v, [c3, c1]).

To enforce DP-C1, the production siteRecovered −→ ĉ ctxRecovered č ensures that a
dispatch process starting at a callsite (indicated by ĉ) concludes at the same callsite (marked
by č). In the dispatch path from Equation (16), this guarantees c = c′ and r = r′. Thus,
matching ĉ with č allows c to be reinstated at the next dispatch edge, ensuring dynamic
dispatch occurs specifically at callsite c.

To enforce DP-C2, the ctxRecovered- and matched-productions are crucial, with
ctxRecovered
−→ č ctxRecovered ĉ being central. This is best understood through a generic dis-
patch path in Equation (16). DP-C2 can be rephrased as follows. Let pr,O be the flowsto
path from r to O, and its inverse pr,O a flowsto path. Consider pO,r′ as the flowsto path from
O to r′. The path from r to r′ is composed of pr,O pO,r′ or equivalently pex

r,O pen
r,O pex

O,r′ pen
O,r′ .

Applying Equation (18), we deduce:

⟨O, E (B(LC
ex(pr,O)))⟩ ∈ PTS(r, E (B(LC

en(pr,O))))

⟨O, E (B(LC
ex(pO,r′)))⟩ ∈ PTS(r′, E (B(LC

en(pO,r′)))
(19)

As r and r′ are aliases, they must always point to O with exactly the same heap context,
i.e., E (B(LC

ex(pr,O))) = E (B(LC
ex(pO,r′))). Thus, B(B(LC

ex(pr,O))B(LC
ex(pO,r′))) = ϵ

holds, implying the edge labels on path pen
r,O pex

O,r′ must be balanced. Besides, r and r′ are
required to have the same context, i.e., E (B(LC

en(pr,O))) = E (B(LC
en(pO,r′))). Thus, the

following must be true:

B
(
B(LC

en(pO,r′)B(LC
en(pr,O))

)
= ϵ (20)

implying that the edge labels in path pen
O,r′ pex

r,O must be balanced out.
Both the ctxRecovered- and matched- productions in LR play key roles during dis-

patch path traversal, as illustrated in Equation (16). The production ctxRecovered −→
č ctxRecovered ĉ enforces DP-C2 (see Equation (20)), while matched → siteRecovered initiates
traversal of another dispatch path. The other productions help bypass matched contexts
and callsites. In simple terms, for a traversal from r to O (r flowsto O), writing down all
unmatched exit contexts as č1, . . . , čn implies that the unmatched entry contexts seen on the
return from O to r′ (O flowsto r′) should be ĉn, . . . , ĉ1.

Revisiting the two LDC -paths from Equations (14) and (15), as introduced in Section 3.2.2,
the LDC-path in Equation (14) qualifies as an LDCR-path due to its valid dispatch paths.
However, the LDC-path in Equation (15) does not, as its initial dispatch path at callsite
c8 from j to j#c8 is invalid. With B(LC

en(pj,J1)) = č6 and B(LC
en(pJ1,j)) = ĉ7, we find

B(B(LC
en(pJ1,j))B(LC

en(pj,J1))) = ĉ7č6 ̸= ϵ, indicating the path is invalid as č6ĉ7 does
not balance out according to ctxRecovered −→ č ctxRecovered ĉ.

▶ Theorem 1. LDCR is precise in handling parameter passing for virtual callsites.

D. He, J. Lu, and J. Xue 18:17

Proof. Drawing from Lemmas 3 and 4, it suffices to show that for every virtual callsite
“r.m(a1, . . . , an); // c” under context C, LDCR precisely handles parameter passing for the
same target method set T identified at this callsite under C by Ldd

F C ’s call graph algorithm.
This holds as LR filters out only those LDC-paths with invalid dispatch paths. ◀

LDCR achieves the same level of precision as Ldd
F C , thereby ensuring both soundness and

precision in computing points-to information. We now employ LDCR to determine points-
to information in our motivating example (Figure 3), with Equation (18) being relevant
but focusing solely on LDCR-paths in the program’s PAG. Although CHA [9] in the PAG
(Figure 7) broadly predicts target methods at virtual callsites, LDCR’s on-the-fly call graph
construction process efficiently filters out spurious target methods like C:foo().

Finally, let us compare LDCR, a CFL-reachability-based pointer analysis, with kCFA
(Figure 1). While LDCR, like LF C [53], is suited for demand-driven analysis, kCFA is for
whole-program analysis. Their key difference is the starting point: kCFA begins with entry
methods M , including main(), and LDCR with query variables V . Thus, kCFA may not
compute points-to information for variables in V not reachable from M . In terms of precision,
if kCFA determines PTS(v, c) for variable v from M under context c, LDCR can obtain exactly
the same points-to set for v under c according to Equation (18). However, kCFA may overlook
points-to information in the code unreachable from M .

3.3 Time Complexities
The PAG construction shown in Figures 2 and 6 scales linearly with the number of program
statements. Yet, the LDCR-reachability problem, like the LF C-reachability problem [53], is
undecidable due to being an intersection of three interwoven CFLs (LD, LC , LR), making the
combinations of LD ∩ LC , LD ∩ LR, and LC ∩ LR also undecidable [45]. For any individual
CFL language L ∈ {LD, LC , LR}, the reachability problem’s time complexity can reach up
to O(m3n3), where m is the grammar size and n is the number of nodes in the PAG.

Similar to kCFA (Figure 1), which introduces k-limiting to LC in LF C , resulting in a
complexity of O(n3), we can also render the LDCR-reachability problem computable within
polynomial time for practical applications by applying k-limiting to both LC and LR.

4 P3Ctx : An Application of LDCR

In our secondary contribution, we demonstrate the effectiveness of LDCR through P3Ctx,
the first pre-analysis tool powered by LDCR for accelerating kCFA with selective context-
sensitivity, always maintaining its precision. This also confirms LDCR’s correctness. Con-
versely, Selectx [33], an LF C -enabled pre-analysis does not guarantee precision preservation.

4.1 Selective Context-Sensitivity
Selective context sensitivity enhances the efficiency of context-sensitive analyses, maintaining
much of their precision. It applies context-sensitivity selectively to crucial program variables
and objects, treating the rest context-insensitively. Selectx [33], a recent method for select-
ive context-sensitive pointer analysis in kCFA, is built on LF C , an incomplete formulation
dependent on an external call graph construction algorithm. As a result, Selectx inaccur-
ately categorizes some vital variables and objects, causing precision loss. To remedy this, we
introduce P3Ctx, a new LDCR-based pre-analysis technique for selective context-sensitivity
in kCFA, ensuring precision. P3Ctx is developed following the fundamental approach used
in [33] for creating Selectx.

ECOOP 2024

18:18 CFL-Reachability with On-The-Fly Call Graph Construction

4.1.1 CFL-Reachability-Guided Selections
Applying LF C to develop Selectx [33] is straightforward. For a flowsto path pO,n,v in LF C ,
starting from an object O to a variable v via n (a variable or object in method M), consider
pO,n as the segment from O to n, and pn,v from n to v. Then n requires context-sensitivity
in kCFA to avoid potential precision loss only if three conditions are met:

CS-C1 : LF (pO,n,v) ∈ LF

CS-C2 : LC(pO,n) ∈ LC ∧ LC(pn,v) ∈ LC

CS-C3 : Len
C (pO,n) ̸= ϵ ∧ Lex

C (pn,v) ̸= ϵ (21)

where Len
C and Lex

C are from Section 3.2.2. O from outside M flows into n along pO,n context-
sensitively and n flows out of M into v along pn,v context-sensitively, via M’s parameters (or
return variable) along each path. Note that pO,n,v itself is not required to be an LF C-path.

By replacing LF with LD in Equation (21), P3Ctx also determines n to be context-
sensitive if CS-C1– CS-C3 are met. Viewing these conditions as sufficient (rather than merely
necessary) makes both Selectx and P3Ctx conservative, potentially marking some n as
context-sensitive even when kCFA would not lose precision with context-insensitive analysis.
While Selectx could lead to precision loss due to LF C ’s incompleteness, P3Ctx, in contrast,
always preserves precision. This is because LDCR works with a PAG that clearly includes
dispatch paths for all virtual callsites in the program.

▶ Example 6. In our motivating example (Figure 3), whether v spuriously points to O2
hinges on the context sensitivity of d, o, x, and D1 in bar(). Using LF C and analyzing the
PAG in Figure 4, Selectx deems all four as context-insensitive, causing v to erroneously
point to O2 because they cannot flow out of bar() via its parameter x, failing to meet CS-C3.
In LF C ’s PAG, which relies on an external call graph construction algorithm, there are no
dispatch paths for these variables/objects to flow out of bar() through x.

In LDCR, the parameter passing of d at x.foo(d) (line 17) directly relates to x via
CFL-reachability (Figure 7). Consider pO1,n,v in Equation (7), which is an LDCR-path. For
n ∈ {d, o, x, D1}, P3Ctx designates each n as context-sensitive. This decision is because
pO1,n,v qualifies as an LD-path (CS-C1), with both pO1,n and pn,v being LC-paths (CS-C2).
Furthermore, LC

en(pO1,n) = ĉ1 ̸= ϵ and LC
ex(pn,v) = č1 ̸= ϵ, satisfying CS-C3.

4.1.2 Regularization
To make P3Ctx as lightweight as possible so that we can efficiently make context-sensitivity
selections without losing the performance benefits obtained from a subsequent main pointer
analysis, we have decided to keep LC unchanged as done in several earlier pre-analyses
[35, 32, 33] but regularize LD and LR. We first regularize LR to Lr

R as follows:

recoveredCtx −→ recoveredCtx ĉ | recoveredCtx č | recoveredCtx ĉ | recoveredCtx č | ϵ (22)

Thus, LD ∩ LC ∩ Lr
R = LD ∩ LC = LDC . By noting further that the boxed edge labels in

LR
r (i.e., ĉ and č) are irrelevant to context-sensitivity selections and the regular entry/exit

context labels in LR
r (i.e., ĉ and č) have already been included in LC , we conclude that LR

r

(i.e., LR) can be ignored safely (or conservatively). As LDC ⊇ LDCR (i.e., LDC captures
all the possible value-flows that are captured by LDCR for a given program) according
to Lemma 4, it suffices to use LDC in place of LF C in Equation (21) in developing our
precision-preserving pre-analysis. Like the LF C-reachability problem, the LDC-reachability

D. He, J. Lu, and J. Xue 18:19

problem is also undecidable [45]. Following [33], we regularize LD into LDr and subsequently
over-approximate LDC to obtain LDrC = LDr ∩LC . In Section 4.1.3, we present an algorithm
to verify CS-C1– CS-C3 using LDrC efficiently.

We start with L0 = LD. We first over-approximate L0 by disregarding its field-sensitivity
requirement and thus obtain L1 given below:

flowsto −→ new (flows | dispatch)∗

flows −→ assign | store flowsto flowsto load
flowsto −→ (dispatch | flows)∗ new

flows −→ assign | load flowsto flowsto store

(23)

In the absence of field-sensitivity, a dispatch (dispatch) edge behaves just like an assign
(assign) edge and can thus be interpreted this way. As a result, we obtain L2 below:

flowsto −→ new flows∗

flowsto −→ flows∗ new
flows −→ assign | store flowsto flowsto load
flows −→ assign | load flowsto flowsto store

(24)

Our approximation goes further by treating a load (load) edge as also an assign (assign).
As a result, we will no longer require a store (load) edge to be matched by a load (store) edge.
This will give rise to L3 below:

flowsto −→ new flows∗

flowsto −→ flows∗ new
flows −→ assign | store flowsto flowsto
flows −→ assign | flowsto flowsto store

(25)

Finally, we obtain LDr = L4 given below by no longer distinguishing a store edge from
its inverse, store edge, so that we can represent both types of edges as a store edge:

flowsto −→ new flows∗

flowsto −→ flows∗ new
flows −→ assign | store assign∗ new new
flows −→ assign | new new assign∗ store

(26)

▶ Lemma 1. LD ⊆ LDr .

Proof. Follows from the fact that Li ⊆ Li+1. ◀

While LDr is identical to LR regularized from LF in Selectx [33], our PAG (Figure 6),
which makes dynamic dispatch paths explicitly, differs fundamentally from the one operated
by LF C (Figure 2). This distinction ensures that P3Ctx preserves precision, unlike Selectx.

Let G = (N, E) be the PAG of a program. We use Andersen’s algorithm [1] instead of
CHA [9] to build its call graph in order to sharpen the precision of P3Ctx.

We use a simple DFA shown in Figure 10 to accept LDr exactly. P3Ctx runs inter-
procedurally in linear time of the number of the PAG edges in G. To deal with LC , we use
summary edges added into the PAG (facilitated by the dotted transition labeled as balanced).

ECOOP 2024

18:20 CFL-Reachability with On-The-Fly Call Graph Construction

Ostart

flows flows

newnew
assignass

ign

store

balanced

Figure 10 A DFA for accepting LDr .

4.1.3 P3Ctx
We follow [14] to develop a simple algorithm to verify CS-C1– CS-C3 efficiently based on two
properties that can be easily deduced from the DFA given in Figure 10 as stated below.

Define Q = {O, flows, flows} as the state set and δ : Q × Σ → Q as the transition function.
For each PAG edge n1

ℓ−→ n2 in G, the transition δ(q1, ℓ) = q2 leads to a one-step transition
(n1, q1) ↣ (n2, q2). The multiple-step transition ↣+ is the transitive closure of ↣. The
symmetry of flowsto and flowsto in LDr yields two straightforward properties of this DFA:

PROP-O. Let O be an object created in a method M. Then ⟨thisM, flows⟩↣+ ⟨O, O⟩ ⇐⇒
⟨O, O⟩↣+ ⟨thisM, flows⟩ always holds.
PROP-V. Let v be a variable defined in a method M. Then ⟨thisM, flows⟩↣+ ⟨v, q⟩ ⇐⇒
⟨v, q⟩ ↣+ ⟨thisM, flows⟩ always holds, where q ∈ {flows, flows} (since v is a variable).

To handle static callsites uniformly as virtual callsites, we assume that a static callsite is
invoked on a dummy receiver object. Thus, in our PAG representation (Figure 6), passing
arguments and receiving return values for a method must all flow through its “this” variable.

P3Ctx efficiently verify CS-C1– CS-C3 as follows: For CS-C1 (Equation (21)), where
LF is substituted with LDr , it is unnecessary to trace from an object along its flowsto
paths. Instead, for each method, we start from its “this” variable, over-approximating
that some object O can flow into it. For CS-C2, summary edges are utilized to confirm the
balanced-parentheses property in LC-paths. Finally, to ascertain CS-C3, we check for the
existence of any q ∈ Q such that:

⟨thisM, flows⟩ ↣+ ⟨n, q⟩ ↣+ ⟨thisM, flows⟩ (27)

where M is the containing method of n. This implies that n lies on an LDr -path collecting
some values coming from outside M via thisM and pumping them out of M via thisM.

Let R : Q 7→ ℘(N) return the set of nodes in G reached at a state q ∈ Q. Then verifying
CS-C3, i.e., checking Equation (27) involves determining if the following condition holds:

n ∈ R(O) ∨ n ∈ R(flows) ∩ R(flows) (28)

Equation (27) is satisfied either when the first disjunct applies (due to PROP-O) or when the
second disjunct applies (due to PROP-V).

Figure 11 outlines P3Ctx’s pre-analysis algorithm using three rules that streamline
inter-procedural reachability in G. Here, R−1 : N 7→ ℘(Q) inversely maps nodes to their
reachable states. The rules are: [F-Init] for initializations, [F-Propa] for iterative state
reachability determination, and [F-Sum] for applying standard context-sensitive summaries
[46] at callsites. This involves adding summary edges n1

balanced−−−−−→ n2 to encapsulate inter-
procedural reachability, thereby streamlining reachability computations for method M.

D. He, J. Lu, and J. Xue 18:21

n1
_−→̂
c

thisM ∈ E

thisM ∈ R(flows) flows ∈ R−1(thisM)
[F-Init]

n1
ℓ−→ n2 ∈ E q1 ∈ R−1(n1) δ(q1, ℓ) = q2

n2 ∈ R(q2) q2 ∈ R−1(n2)
[F-Propa]

n1
_−→̂
c

thisM ∈ E thisM _−→̌
c

n2 ∈ E flows ∈ R−1(thisM)

n1
balanced−−−−−→ n2 ∈ E

[F-Sum]

Figure 11 Rules for conducting P3Ctx over G = (N, E).

▶ Theorem 7. kCFA (performed in terms of the rules in Figure 1) produces exactly the same
points-to information when performed with selective context-sensitivity under P3Ctx.

Proof. Follows from the facts that (1) Equation (21) provides necessary conditions for
supporting selective context-sensitivity, (2) LDCR provides a specification of kCFA with CFL-
reachability for callgraph construction, (3) LDrC ⊇ LDCR, and (4) [F-Init] has weakened
CS-C1 by starting from the this variable of every method instead of every object O. ◀

The worst-case time complexity of P3Ctx in analyzing a program on G = (N, E) is
O(|E| × |Q|), which is linear to |E| as |Q| (the number of states in our DFA) is a constant.

4.2 Evaluation
We demonstrate that P3Ctx significantly speeds up kCFA while maintaining precision.
Compared to non-precision-preserving pre-analyses, Selectx [33] and Zipper [29], P3Ctx
excels in achieving more efficient precision trade-offs in certain application scenarios.

4.2.1 Experimental Setup
We implemented kCFA (Figure 1) and P3Ctx (Figure 11) in Soot [59], using its context-
insensitive pointer analysis, Spark [26], for PAG construction. To compare P3Ctx with
Selectx and Zipper, we used their existing implements from the Selectx artifact [34].
Our evaluation follows pointer analysis standards [35, 33, 32, 42, 58, 14, 16], including using
TamiFlex [4] for Java reflection, Soot’s native code summaries, and context-insensitive
analysis for special objects like strings and exceptions, distinguished per dynamic type.

We selected a set of 13 benchmarks from the DaCapo benchmark suite (latest version
6cf0380) [3] along with a large Java library (JRE1.8.0_31). We excluded jython because
both kCFA and P -kCFA could not scale this benchmark due to its overly conservative
reflection log [57]. Our artifact is publicly available at [19].

Our experiments were conducted on an Intel(R) Xeon(R) W-2245 3.90GHz machine with
512GB of RAM, operating under Ubuntu 20.04.3 LTS (Focal Fossa).

4.2.2 Results
Table 2 presents the results for kCFA and its three accelerated variants: P -kCFA (by P3Ctx),
S-kCFA (by Selectx), and Z-kCFA (by Zipper), along with Spark for comparison purposes,
focusing on k ∈ {1, 2}. For k ⩾ 3, kCFA is unscalable for all 13 programs under a 12-hour
budget and thus has never been considered in the literature [33, 42, 29, 30, 58, 50, 20, 57].

ECOOP 2024

18:22 CFL-Reachability with On-The-Fly Call Graph Construction

Table 2 Main analysis results. The analysis times for P -kCFA, S-kCFA, and Z-kCFA are given
as x(y), where x is the pointer analysis time and y is the pre-analysis time (in seconds). For all
metrics, smaller is better.

Program Metrics Spark 1CFA P -1CFA S-1CFA Z-1CFA 2CFA P -2CFA S-2CFA Z-2CFA
Time(secs) 6.6 18.0 4.7 (1.2) 3.1 (21.5) 2.8 (4) 577.1 142.5 (1.2) 16.8 (21.6) 11.2 (4)
#Call Edges 57509 55267 55267 55267 55403 54505 54505 54506 54662

avrora #Fail Casts 1197 931 931 931 965 890 890 895 942
#Alias Pairs 22327 13700 13700 13700 13703 13268 13268 13280 13547
Avg PTS 36.19 25.87 25.87 25.87 26.48 24.78 24.78 24.80 25.47
Time(secs) 30.9 81.0 28.0 (4.7) 25.3 (169.5) 23.1 (243) 1473.9 466.5 (4.8) 271.1 (174.4) 276.5 (234)
#Call Edges 171409 151995 151995 151997 152025 147428 147428 147430 150549

batik #Fail Casts 4573 3709 3709 3709 3713 3485 3485 3490 3620
#Alias Pairs 68130 38005 38005 38005 38012 32288 32288 32300 33295
Avg PTS 114.43 71.67 71.67 71.67 71.71 66.65 66.65 66.65 68.21
Time(secs) 14.8 48.7 23.3 (2.0) 20.1 (54.6) 19.7 (14) 1221.1 331.0 (2.0) 171.8 (56.8) 143.9 (14)
#Call Edges 110089 97960 97960 98000 98052 93662 93662 93703 93746

eclipse #Fail Casts 2896 2470 2470 2471 2474 2322 2322 2328 2337
#Alias Pairs 107389 58489 58489 58500 58504 51404 51404 51427 51716
Avg PTS 101.12 63.49 63.49 63.47 63.80 59.28 59.28 59.26 59.64
Time(secs) 76.0 318.8 123.1 (10.6) 113.1 (603.8) 104.0 (355) 6019.6 2399.6 (10.8) 1901.7 (604.5) 1405.1 (354)
#Call Edges 358738 325547 325547 325551 325591 313954 313954 313958 321008

fop #Fail Casts 9057 8226 8226 8228 8239 7931 7931 7938 8084
#Alias Pairs 323628 277047 277047 277047 277065 267389 267389 267401 268943
Avg PTS 233.48 141.19 141.19 141.19 141.25 132.98 132.98 132.98 135.43
Time(secs) 16.1 75.7 18.5 (2.9) 15.8 (74.1) 14.3 (40) 6406.8 4164.6 (2.8) 3807.8 (74.4) 3127.4 (39)
#Call Edges 144711 135775 135775 135782 135806 134234 134234 134241 134274

h2 #Fail Casts 2880 2477 2477 2477 2482 2398 2398 2404 2433
#Alias Pairs 77978 39209 39209 39209 39236 33331 33331 33351 33632
Avg PTS 72.61 34.61 34.61 34.61 34.68 32.63 32.63 32.64 33.20
Time(secs) 18.5 41.0 24.0 (1.9) 22.6 (48.1) 20.1 (8) 829.1 232.3 (1.9) 109.0 (48.2) 82.3 (8)
#Call Edges 85850 79431 79431 79431 79602 78190 78190 78190 78404

luindex #Fail Casts 1726 1359 1359 1360 1376 1286 1286 1292 1314
#Alias Pairs 50530 32905 32905 32905 32908 31795 31795 31807 32083
Avg PTS 53.10 24.75 24.75 24.75 24.87 23.04 23.04 23.04 23.15
Time(secs) 5.3 12.6 3.5 (1.0) 2.3 (13.9) 1.9 (3) 414.0 129.3 (1.0) 9.6 (13.9) 7.1 (3)
#Call Edges 45285 43117 43117 43117 43198 42412 42412 42412 42516

lusearch #Fail Casts 955 702 702 702 719 660 660 665 696
#Alias Pairs 20382 11693 11693 11693 11696 11263 11263 11275 11542
Avg PTS 31.38 20.73 20.73 20.74 20.85 19.73 19.73 19.75 19.94
Time(secs) 20.3 109.5 42.6 (3.0) 37.2 (139.1) 35.9 (25) 16006.8 13715.8 (3.0) 13671.4 (139.1) 9356.3 (25)
#Call Edges 159395 153150 153150 153150 153387 152090 152090 152090 152242

pmd #Fail Casts 4702 4321 4321 4321 4325 4233 4233 4238 4263
#Alias Pairs 114914 95977 95977 95977 95979 93083 93083 93095 93353
Avg PTS 90.97 68.76 68.76 68.76 68.79 67.48 67.48 67.49 67.58
Time(secs) 9.9 25.9 7.4 (1.8) 5.5 (46.4) 5.3 (9) 643.1 165.1 (1.7) 33.0 (45.9) 27.7 (9)
#Call Edges 77346 74198 74198 74200 74241 73392 73392 73394 73685

sunflow #Fail Casts 2192 1771 1771 1773 1776 1649 1649 1656 1684
#Alias Pairs 36952 21670 21670 21670 21678 20703 20703 20715 21041
Avg PTS 51.31 33.62 33.62 33.62 33.69 31.34 31.34 31.36 31.79
Time(secs) 7.4 18.9 5.8 (1.3) 4.0 (20.8) 3.7 (4) 632.9 148.7 (1.3) 16.1 (20.8) 11.7 (4)
#Call Edges 60649 57933 57933 57933 58024 57073 57073 57073 57369

tomcat #Fail Casts 1264 959 959 960 963 874 874 880 910
#Alias Pairs 30775 24504 24504 24504 24507 22202 22202 22214 22482
Avg PTS 39.88 25.37 25.37 25.37 25.51 24.03 24.03 24.04 24.62
Time(secs) 8.7 25.9 7.6 (1.5) 5.6 (41.7) 5.2 (9) 737.4 166.5 (1.5) 30.2 (43.4) 18.2 (9)
#Call Edges 70911 67742 67742 67742 67858 66814 66814 67018 67207

tradebeans #Fail Casts 1523 1132 1132 1132 1135 1054 1054 1059 1068
#Alias Pairs 36256 27175 27175 27175 27178 25683 25683 25695 25950
Avg PTS 47.67 31.80 31.80 31.80 31.87 29.95 29.95 29.98 30.18
Time(secs) 8.4 24.8 7.7 (1.6) 5.8 (46.8) 5.2 (9) 703.0 162.8 (1.5) 29.9 (49.4) 17.9 (9)
#Call Edges 70911 67742 67742 67742 67858 66814 66814 67018 67207

tradesoap #Fail Casts 1523 1132 1132 1132 1135 1054 1054 1059 1068
#Alias Pairs 36256 27175 27175 27175 27178 25683 25683 25695 25950
Avg PTS 47.67 31.80 31.80 31.80 31.87 29.95 29.95 29.98 30.18
Time(secs) 8.5 27.3 7.4 (1.4) 5.5 (42.6) 5.0 (16) 702.8 162.3 (1.6) 34.2 (42.3) 26.0 (16)
#Call Edges 69608 67132 67132 67132 67210 66360 66360 66360 66448

xalan #Fail Casts 1807 1473 1473 1473 1477 1419 1419 1424 1441
#Alias Pairs 42119 28280 28280 28280 28283 27259 27259 27271 27539
Avg PTS 45.29 29.41 29.41 29.41 29.47 28.29 28.29 28.30 28.41

D. He, J. Lu, and J. Xue 18:23

4.2.2.1 Precision

Pointer analysis precision is gauged using four key metrics: (1) “#Call Edges”, indicating
discovered call graph edges; (2) “#Fail Casts”, representing potential type cast failures; (3)
“#Alias Pairs”, counting base variable pairs in stores and loads that may alias, excluding
trivial must-aliases like direct assignments [10]; and (4) “Avg PTS”, the average number of
objects pointed to by reachable local variables. Lower metric values signify higher precision.

For each metric M , MP T A denotes the result obtained by PTA, where PTA denotes
any pointer analysis in {Spark, kCFA, P -kCFA, S-kCFA, Z-kCFA }. Let A-kCFA ∈
{P -kCFA, S-kCFA, Z-kCFA} be one of the three variants of kCFA such that A-kCFA is
no less precise than Spark but no more precise than kCFA. We define the precision loss of
A-kCFA with respect to kCFA on metric M as:

∆M
A-kCFA = (MSpark − MkCFA) − (MSpark − MA-kCFA)

MSpark − MkCFA
= MA-kCFA − MkCFA

MSpark − MkCFA
(29)

The precision gain from Spark to kCFA is 100%. If A-kCFA matches kCFA in precision
(MA-kCFA = MkCFA), then ∆M

A-kCFA = 0%, indicating no precision loss in A-kCFA. Conversely,
if A-kCFA reverts to Spark’s precision (MA-kCFA = MSpark), ∆M

A-kCFA = 100%, reflecting a
complete loss of kCFA’s precision advantage.

P -kCFA retains precision, matching kCFA across all metrics in 13 benchmarks, supported
by Theorem 7 and Table 2. S-kCFA, leveraging LF C for context-sensitivity, has small average
precision losses of 0.8%, 1.2%, 0.1%, and 0.1% in “#Call Edges”, “#Fail Casts”, “#Alias
Pairs”, and “Avg PTS”, respectively, at k = 2. However, for “#Call Edges”, S-2CFA incurs
a 5% precision loss in both tradebeans and tradesoap. Conversely, Z-kCFA experiences
higher average precision losses of 6.2%, 8.1%, 2.2%, and 2.0% for the same metrics at k = 2,
attributed to Zipper’s use of pattern-based heuristics for context-sensitivity decisions.

To explore S-2CFA’s precision loss in tradebeans (Figure 12), it is noted that S-2CFA
fails to identify the call in line 15 as monomorphic, unlike P -2CFA. When put() is invoked
on a TreeMap object, a virtual call compare() occurs on the comparator object stored in
the TreeMap object. With 2CFA, put() is analyzed under contexts [L1] and [L2]. Under
[L1], cmp links to CMP1 and k to I, leading to compare() from line 10 to be invoked under
[L3, L1]. Under [L2], cmp points to CMP2 and k to S1, calling compare() from line 14 under
[L3, L2], making o1 point uniquely to S1. Thus, the virtual call in line 15 invokes only the
toString() method defined in java.lang.String.

Selectx, using LF C , treats cmp and k in put() as context-insensitive, violating CS-C3
in Equation (21). With S-2CFA, o1 erroneously points to both I and S1 under [L3, L2],
leading to a polymorphic call in line 15. In contrast, P3Ctx with LDCR treats these as
context-sensitive, adhering to CS-C3, resulting in o1 pointing only to S1 and ensuring a
monomorphic call in line 15. This change prevents a 5% precision loss in “#Call Edges”,
potentially enhancing critical software security analyses.

4.2.2.2 Efficiency

In Table 2, the efficiency of a pointer analysis is gauged by the time required in analyzing a
program. This includes time for both the pointer analysis and the corresponding pre-analysis
in each kCFA variant, denoted as A−kCFA (A ∈ {P, S, Z}). For k = 1 and k = 2, pre-analysis
is done separately, causing slight differences in pre-analysis times for the same program.
Spark’s time is not included, as its results are shared by all three pre-analyses.

ECOOP 2024

18:24 CFL-Reachability with On-The-Fly Call Graph Construction

1 class TreeMap {
2 Comparator comparator;
3 TreeMap(Comparator cmp1) { this.comparator = cmp1; }
4 void put(Object k, Object v) {
5 Comparator cmp = this.comparator;
6 int i = cmp.compare(k, ...); // L3
7 }}
8 // in java.lang.String
9 class CaseInsensitiveComparator implements Comparator {

10 int compare(String p1, String p2) { return 0; }
11 }
12 // in org.apache.geronimo.main
13 class StringComparator implements Comparator {
14 int compare(Object o1, Object o2) {
15 String s1 = o1.toString(); // #Call Edges?
16 return s1.compareTo(o2.toString());
17 }}
18 void main() {
19 Comparator cmp1 = new CaseInsensitiveComparator(); // CMP1
20 Comparator cmp2 = new StringComparator(); // CMP2
21 TreeMap map1 = new TreeMap(cmp1); // M1
22 TreeMap map2 = new TreeMap(cmp2); // M2
23 Integer x = new Integer(1); // I
24 String y = new String(); // S1
25 z = new String(); // S2
26 map1.put(x, z); // L1
27 map2.put(y, z); // L2
28 }

Figure 12 An example abstracted from tradebeans and JDK8 to illustrate why Selectx is
not precision-preserving (by applying LF C to determine precision-critical variables/objects in a
program).

Table 2 reveals that P3Ctx, Selectx, and Zipper significantly boost kCFA for k = 2.
Z-2CFA leads with 1.7× to 41.0× speedups, averaging 10.9×. S-2CFA ranges from 1.2×
to 17.6×, averaging 6.0×. P3Ctx increases speeds from 1.2× to 4.4×, averaging 3.2×. At
k = 1, P3Ctx performs best due to lower pre-analysis overhead and faster 1CFA. Zipper
moderately improves 1CFA for most programs, but less effectively than P3Ctx. Selectx
slows down 1CFA when including pre-analysis time. For P -1CFA, speedups range from 1.6×
to 3.5×, averaging 2.6×. Z-1CFA sees 0.3× to 2.6× speedups, averaging 1.5×. S-1CFA shows
no gains, with 0.4× to 0.8× speedups, averaging 0.6×.

When assessing the precision and efficiency of P -kCFA, S-kCFA, and Z-kCFA, several key
insights emerge. For tasks where precision is paramount, such as in software security analysis,
P -kCFA emerges as the superior choice. It offers a speed advantage without compromising
the precision inherent to kCFA. In contexts where the precision of 1CFA is needed, but with
greater efficiency, P -1CFA is the standout option. It surpasses both S-1CFA and Z-1CFA in
terms of speed while retaining the precision level of 1CFA. Finally, for applications requiring
pointer analysis at the precision level of 2CFA, the recommendation depends on the user’s
priorities: Z-2CFA for those valuing efficiency above precision, S-2CFA for those who prioritize
efficiency but can accept minor precision loss, and P -2CFA for those who deem precision
crucial but also desire increased speed.

5 Related Work

In this section, we focus exclusively on prior work that is directly relevant to our study.

D. He, J. Lu, and J. Xue 18:25

CFL-Reachability. CFL-reachability, introduced in program analysis for inter-procedural
dataflow analysis [46, 44], has been applied in tackling various problems such as pointer
analysis [54, 53, 64, 61, 62, 48, 63, 35, 32], information flow [37, 28, 36], and type inference [43,
41]. Traditionally, kCFA’s CFL-reachability formulation [53, 62, 48] relies on a separate call
graph construction algorithm, either pre-applied or on-the-fly. This paper introduces LDCR,
a new CFL-reachability formulation for kCFA, integrating built-in call graph construction.
An earlier attempt to address the same problem by Sridharan [52] is sound but less precise
than LDCR due to the lack of LR. Without LR, a context used for parameter passing at a
virtual callsite can be incorrectly restored as a different context after finding the dispatched
method and returning to the same callsite (as in Figure 9).

Another line of research on CFL-reachability focuses on its computational complexity.
Generally, the all-pairs CFL-reachability problem can be resolved in O(m3n3) time, where
m is the CFL grammar size and n is the graph node count. Kodumal et al. [23] efficiently
solved Dyck-CFL-reachability in O(mn3). Chaudhuri [7] later optimized the general CFL-
reachability algorithm to subcubic time using the Four Russians’ Trick [24]. Zhang et al.
[63] demonstrated that bidirected Dyck-CFL reachability could be solved in O(n + p log p)
(with p being the graph edge count), noting that reachability in a bidirected graph forms an
equivalence relation. This complexity was further reduced to O(p + n · α(n)) in [6], where
α(n) is the inverse Ackermann function. This paper introduces P3Ctx, an LDCR-enabled
pre-analysis for accelerating kCFA, linear in terms of the number of PAG edges in the
program’s PAG and preserving precision.

A CFL-reachability-based formulation recently proposed for object-sensitive pointer
analysis [35, 38, 39] naturally includes call graph construction, as it uses receiver objects
as context elements. However, integrating call graph construction into callsite-sensitive
analyses using the traditional CFL-reachability framework [53, 62, 48] is challenging, as
detailed in Section 2. An earlier attempt [52] was sound but lacked precision, particularly in
restoring contexts correctly after method dispatch and return at virtual callsites, as shown
in Figure 9. LDCR is the first known solution to effectively integrate call graph construction
into CFL-reachability for callsite-sensitive analyses.

Selective Context-sensitivity. In the realm of pointer analysis acceleration, three primary
approaches exist: pattern-based [51, 12, 29, 30], data-driven [21, 20], and CFL-reachability-
guided [35, 33, 14, 13]. By exploiting CFL-reachability, Eagle [35, 32], Turner [14], Conch
[16, 18], and DebloaterX [13] represent recent efforts in accelerating object-sensitive pointer
analysis [39]. Selectx [33] marks the initial CFL-reachability-based effort to accelerate kCFA,
but it lacks precision preservation due to its reliance on LF C [53]. This paper introduces
P3Ctx, the first precision-preserving pre-analysis for kCFA, grounded in LDCR.

6 Conclusion

We have introduced LDCR, a new CFL-reachability formulation for supporting k-callsite-
based context-sensitive pointer analysis (kCFA), featuring a unique built-in call graph
construction to effectively handle dynamic dispatch. To demonstrate its utility, we have
also introduced P3Ctx, which is developed based on LDCR, to enhance the performance
of kCFA while preserving its precision. We hope that LDCR can provide some new insights
on understanding kCFA and its demand-driven forms [54, 53, 62], potentially inspiring
novel algorithmic advancements. Future explorations include applying LDCR to selective
context sensitivity and extending its application to areas such as library-code summarization
[48, 56, 8] and information flow analysis [28, 36].

ECOOP 2024

18:26 CFL-Reachability with On-The-Fly Call Graph Construction

References
1 Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD

thesis, University of Cophenhagen, 1994.
2 David F Bacon and Peter F Sweeney. Fast static analysis of c++ virtual function calls. In

Proceedings of the 11th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 324–341, New York, NY, USA, 1996. Association for
Computing Machinery.

3 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and
applications, pages 169–190, New York, NY, USA, 2006. Association for Computing Machinery.

4 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In Proceedings
of the 33rd International Conference on Software Engineering, pages 241–250, Honolulu, HI,
USA, 2011. IEEE.

5 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, pages 243–262, New York, NY, USA, 2009.
Association for Computing Machinery.

6 Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. Optimal Dyck reach-
ability for data-dependence and alias analysis. Proceedings of the ACM on Programming
Languages, 2(POPL):1–30, 2017.

7 Swarat Chaudhuri. Subcubic algorithms for recursive state machines. In Proceedings of the
35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 159–169, New York, NY, USA, 2008. Association for Computing Machinery.

8 Yifan Chen, Chenyang Yang, Xin Zhang, Yingfei Xiong, Hao Tang, Xiaoyin Wang, and
Lu Zhang. Accelerating program analyses in datalog by merging library facts. In International
Static Analysis Symposium, pages 77–101, Cham, 2021. Springer, Springer International
Publishing.

9 Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In European Conference on Object-Oriented Programming,
pages 77–101, Berlin, Heidelberg, 1995. Springer, Springer Berlin Heidelberg.

10 Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig. Bottom-up context-sensitive pointer
analysis for Java. In Programming Languages and Systems: 13th Asian Symposium, APLAS
2015, Pohang, South Korea, November 30-December 2, 2015, Proceedings, pages 465–484,
Cham, 2015. Springer International Publishing.

11 David Grove and Craig Chambers. A framework for call graph construction algorithms. ACM
Transactions on Programming Languages and Systems (TOPLAS), 23(6):685–746, 2001.

12 Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan, Bernhard
Scholz, and Yi Lu. An efficient tunable selective points-to analysis for large codebases. In
Proceedings of the 6th ACM SIGPLAN International Workshop on State Of the Art in Program
Analysis, pages 13–18, New York, NY, USA, 2017. Association for Computing Machinery.

13 Dongjie He, Yujiang Gui, Wei Li, Yonggang Tao, Changwei Zou, Yulei Sui, and Jingling
Xue. A container-usage-pattern-based context debloating approach for object-sensitive pointer
analysis. Proceedings of the ACM on Programming Languages, 7(OOPSLA2):971–1000, 2023.

14 Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue. Accelerating object-sensitive pointer
analysis by exploiting object containment and reachability. In Proceedings of the 35th European
Conference on Object-Oriented Programming (ECOOP 2021), pages 18:1–18:31, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

D. He, J. Lu, and J. Xue 18:27

15 Dongjie He, Jingbo Lu, and Jingling Xue. A CFL-Reachability Formulation of Callsite-Sensitive
Pointer Analysis with Built-in On-the-Fly Call Graph Construction (Artifact). Software, version
1.0. (visited on 2024-08-27). URL: https://doi.org/10.5281/zenodo.11061892.

16 Dongjie He, Jingbo Lu, and Jingling Xue. Context debloating for object-sensitive pointer ana-
lysis. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 79–91, New York, NY, USA, 2021. IEEE. doi:10.1109/ASE51524.2021.9678880.

17 Dongjie He, Jingbo Lu, and Jingling Xue. Qilin: A new framework for supporting fine-
grained context-sensitivity in Java pointer analysis. In Karim Ali and Jan Vitek, editors, 36th
European Conference on Object-Oriented Programming (ECOOP 2022), volume 222 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 30:1–30:29, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2022.30.

18 Dongjie He, Jingbo Lu, and Jingling Xue. IFDS-based context debloating for object-sensitive
pointer analysis. ACM Transactions on Software Engineering and Methodology, 2023.

19 Dongjie He, Jingbo Lu, and Jingling Xue. A CFL-reachability formulation of callsite- sensitive
pointer analysis with built-in on-the- fly call graph construction (artifact), July 2024. doi:
10.5281/zenodo.11061892.

20 Minseok Jeon, Sehun Jeong, and Hakjoo Oh. Precise and scalable points-to analysis via data-
driven context tunneling. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–
29, 2018.

21 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. Data-driven context-sensitivity
for points-to analysis. Proceedings of the ACM on Programming Languages, 1(OOPSLA):100,
2017.

22 George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to analysis.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 423–434, New York, NY, USA, 2013. Association for Computing
Machinery.

23 John Kodumal and Alex Aiken. The set constraint/CFL reachability connection in practice.
ACM Sigplan Notices, 39(6):207–218, 2004.

24 VL Arlazarov EA Dinic MA Kronrod and IA Faradzev. On economic construction of the
transitive closure of a directred graph. In Dokl. Acad. Nauk SSSR, pages 487–88, 1970.

25 Michael John Latta. The intersection of context-free languages. PhD thesis, University of Texas
at Austin, USA, 1993. URL: https://www.proquest.com/docview/304086568?pq-origsite=
gscholar&fromopenview=true.

26 Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using Spark. In Interna-
tional Conference on Compiler Construction, pages 153–169, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

27 Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive points-to
analysis using a bdd-based implementation. ACM Transactions on Software Engineering and
Methodology (TOSEM), 18(1):1–53, 2008.

28 Yuanbo Li, Qirun Zhang, and Thomas Reps. Fast graph simplification for interleaved Dyck-
reachability. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 780–793, New York, NY, USA, 2020. Association for
Computing Machinery.

29 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Precision-guided context sensitivity
for pointer analysis. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–29,
2018.

30 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. A principled approach to selective
context sensitivity for pointer analysis. ACM Transactions on Programming Languages and
Systems, 42(TOPLAS):1–40, 2020.

31 Leonard Y Liu and Peter Weiner. An infinite hierarchy of intersections of context-free languages.
Mathematical systems theory, 7:185–192, 1973. doi:10.1007/BF01762237.

ECOOP 2024

https://doi.org/10.5281/zenodo.11061892
https://doi.org/10.1109/ASE51524.2021.9678880
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://doi.org/10.5281/zenodo.11061892
https://doi.org/10.5281/zenodo.11061892
https://www.proquest.com/docview/304086568?pq-origsite=gscholar&fromopenview=true
https://www.proquest.com/docview/304086568?pq-origsite=gscholar&fromopenview=true
https://doi.org/10.1007/BF01762237

18:28 CFL-Reachability with On-The-Fly Call Graph Construction

32 Jingbo Lu, Dongjie He, and Jingling Xue. Eagle: CFL-reachability-based precision-preserving
acceleration of object-sensitive pointer analysis with partial context sensitivity. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 30(4):1–46, 2021.

33 Jingbo Lu, Dongjie He, and Jingling Xue. Selective context-sensitivity for k-CFA with CFL-
reachability. In International Static Analysis Symposium, pages 261–285, Cham, 2021. Springer,
Springer International Publishing.

34 Jingbo Lu, Dongjie He, and Jingling Xue. Selective context-sensitivity for k-CFA with
CFL-reachability (artifact), July 2021. doi:10.5281/zenodo.4732680.

35 Jingbo Lu and Jingling Xue. Precision-preserving yet fast object-sensitive pointer analysis with
partial context sensitivity. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–
29, 2019.

36 Ana Milanova. FlowCFL: generalized type-based reachability analysis: graph reduction and
equivalence of CFL-based and type-based reachability. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–29, 2020.

37 Ana Milanova, Wei Huang, and Yao Dong. CFL-reachability and context-sensitive integrity
types. In Proceedings of the 2014 International Conference on Principles and Practices of
Programming on the Java platform: Virtual machines, Languages, and Tools, pages 99–109,
New York, NY, USA, 2014. Association for Computing Machinery.

38 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity
for points-to and side-effect analyses for Java. In Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis, pages 1–11, New York, NY, USA,
2002. Association for Computing Machinery.

39 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering and Methodology,
14(1):1–41, 2005.

40 Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 308–319, New York, NY, USA, 2006. Association for Computing
Machinery.

41 Polyvios Pratikakis, Jeffrey S Foster, and Michael Hicks. Existential label flow inference
via CFL reachability. In International Static Analysis Symposium, pages 88–106, Berlin,
Heidelberg, 2006. Springer, Springer Berlin Heidelberg.

42 Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. User-guided program
reasoning using bayesian inference. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 722–735, New York, NY, USA,
2018. Association for Computing Machinery.

43 Jakob Rehof and Manuel Fähndrich. Type-based flow analysis: from polymorphic subtyping
to CFL-reachability. ACM SIGPLAN Notices, 36(3):54–66, 2001.

44 Thomas Reps. Program analysis via graph reachability. Information and software technology,
40(11-12):701–726, 1998.

45 Thomas Reps. Undecidability of context-sensitive data-dependence analysis. ACM Transactions
on Programming Languages and Systems, 22(1):162–186, 2000.

46 Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 49–61, New York, NY, USA, 1995. Association for
Computing Machinery.

47 Barbara G Ryder. Dimensions of precision in reference analysis of object-oriented programming
languages. In International Conference on Compiler Construction, pages 126–137, Berlin,
Heidelberg, 2003. Springer, Springer Berlin Heidelberg.

48 Lei Shang, Xinwei Xie, and Jingling Xue. On-demand dynamic summary-based points-
to analysis. In Proceedings of the Tenth International Symposium on Code Generation and
Optimization, pages 264–274, New York, NY, USA, 2012. Association for Computing Machinery.

49 Olin Grigsby Shivers. Control-flow analysis of higher-order languages or taming lambda. PhD
thesis, Carnegie Mellon University, 1991. CMU-CS-91-145.

https://doi.org/10.5281/zenodo.4732680

D. He, J. Lu, and J. Xue 18:29

50 Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well:
understanding object-sensitivity. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 17–30, New York, NY, USA, 2011.
Association for Computing Machinery.

51 Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective analysis:
context-sensitivity, across the board. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 485–495, New York, NY, USA,
2014. Association for Computing Machinery.

52 Manu Sridharan. Refinement-based program analysis tools. University of California, Berkeley,
2007.

53 Manu Sridharan and Rastislav Bodík. Refinement-based context-sensitive points-to analysis for
Java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 387–400, New York, NY, USA, 2006. Association for Computing
Machinery.

54 Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. Demand-driven points-to
analysis for Java. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 59–76, New York, NY,
USA, 2005. Association for Computing Machinery.

55 Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick Lam,
Etienne Gagnon, and Charles Godin. Practical virtual method call resolution for Java. ACM
SIGPLAN Notices, 35(10):264–280, 2000.

56 Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong Mei. Summary-
based context-sensitive data-dependence analysis in presence of callbacks. In Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 83–95, New York, NY, USA, 2015. Association for Computing Machinery.

57 Rei Thiessen and Ondřej Lhoták. Context transformations for pointer analysis. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 263–277, New York, NY, USA, 2017. Association for Computing Machinery.

58 Tian Tan, Yue Li and Jingling Xue. Efficient and precise points-to analysis: modeling the
heap by merging equivalent automata. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 278–291, New York, NY, USA,
2017. Association for Computing Machinery.

59 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A Java bytecode optimization framework. In CASCON First Decade High
Impact Papers, pages 214–224. IBM Corp., USA, 2010.

60 WALA. WALA: T.J. Watson Libraries for Analysis, 2024. URL: https://github.com/wala/
WALA.

61 Guoqing Xu, Atanas Rountev, and Manu Sridharan. Scaling CFL-reachability-based points-to
analysis using context-sensitive must-not-alias analysis. In European Conference on Object-
Oriented Programming, pages 98–122, Berlin, Heidelberg, 2009. Springer, Springer Berlin
Heidelberg.

62 Dacong Yan, Guoqing Xu, and Atanas Rountev. Demand-driven context-sensitive alias analysis
for Java. In Proceedings of the 2011 International Symposium on Software Testing and Analysis,
pages 155–165, New York, NY, USA, 2011. Association for Computing Machinery.

63 Qirun Zhang, Michael R Lyu, Hao Yuan, and Zhendong Su. Fast algorithms for Dyck-CFL-
reachability with applications to alias analysis. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 435–446, New York,
NY, USA, 2013. Association for Computing Machinery.

64 Xin Zheng and Radu Rugina. Demand-driven alias analysis for c. In Proceedings of the 35th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
197–208, New York, NY, USA, 2008. Association for Computing Machinery.

ECOOP 2024

https://github.com/wala/WALA
https://github.com/wala/WALA

Fearless Asynchronous Communications with
Timed Multiparty Session Protocols
Ping Hou #

University of Oxford, UK

Nicolas Lagaillardie #

Imperial College London, UK

Nobuko Yoshida #

University of Oxford, UK

Abstract
Session types using affinity and exception handling mechanisms have been developed to ensure the
communication safety of protocols implemented in concurrent and distributed programming languages.
Nevertheless, current affine session types are inadequate for specifying real-world asynchronous
protocols, as they are usually imposed by time constraints which enable timeout exceptions to prevent
indefinite blocking while awaiting valid messages. This paper proposes the first formal integration
of affinity, time constraints, timeouts, and time-failure handling based on multiparty session types for
supporting reliability in asynchronous distributed systems. With this theory, we statically guarantee
that asynchronous timed communication is deadlock-free, communication safe, while being fearless –
never hindered by timeout errors or abrupt terminations.

To implement our theory, we introduce MultiCrustyT, a Rust toolchain designed to facilitate the
implementation of safe affine timed protocols. MultiCrustyT leverages generic types and the time
library to handle timed communications, integrated with optional types for affinity. We evaluate
MultiCrustyT by extending diverse examples from the literature to incorporate time and timeouts.
We also showcase the correctness by construction of our approach by implementing various real-world
use cases, including protocols from the Internet of Remote Things domain and real-time systems.

2012 ACM Subject Classification Software and its engineering → Software usability; Software and
its engineering → Concurrent programming languages; Theory of computation → Process calculi

Keywords and phrases Session Types, Concurrency, Time Failure Handling, Affinity, Timeout, Rust

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.19

Related Version Full Version: https://arxiv.org/abs/2406.19541 [19]

Supplementary Material Software (Source Code): https://github.com/NicolasLagaillardie/
mpst_rust_github, archived at swh:1:dir:08181be2bf9b8bd74ec08356de274ee93a9c7db9
Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.10

Funding Work supported by: EPSRC EP/T006544/2, EP/K011715/1, EP/K034413/1, EP/L00058X/1,
EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1, EP/X015955/1, NCSS/EPSRC
VeTSS, and Horizon EU TaRDIS 101093006.

Acknowledgements We thank the anonymous reviewers for their useful comments and suggestions.

1 Introduction

Background. The growing prevalence of distributed programming has emphasised the
significance of prioritising reliability in distributed systems. Dedicated research efforts focus
on enhancing reliability through the study and modelling of failures. This research enables
the design of more resilient distributed systems, capable of effectively handling failures and
ensuring reliable operation.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Ping Hou, Nicolas Lagaillardie, and Nobuko Yoshida;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 19; pp. 19:1–19:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ping.hou@cs.ox.ac.uk
https://orcid.org/0000-0001-6899-9971
mailto:n.lagaillardie19@imperial.ac.uk
https://orcid.org/0000-0002-6431-4100
mailto:nobuko.yoshida@cs.ox.ac.uk
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2024.19
https://arxiv.org/abs/2406.19541
https://github.com/NicolasLagaillardie/mpst_rust_github
https://github.com/NicolasLagaillardie/mpst_rust_github
https://archive.softwareheritage.org/swh:1:dir:08181be2bf9b8bd74ec08356de274ee93a9c7db9;origin=https://github.com/NicolasLagaillardie/mpst_rust_github;visit=swh:1:snp:4cceb5c92875b3636d629b8455680462dca3afeb;anchor=swh:1:rev:48a8890fb068556bf05d91e56cb48263faa8eb8d
https://doi.org/10.4230/DARTS.10.2.10
https://doi.org/10.4230/DARTS.10.2.10
https://doi.org/10.4230/DARTS.10.2.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

A lightweight, type-based methodology, which ensures basic reliability – safety in distrib-
uted communication systems, is session types [16]. This type discipline is further advanced
by Multiparty Session Types (MPST) [17, 18], which enable the specification and verification
of communication protocols among multiple message-passing processes in concurrent and
distributed systems. MPST ensure that protocols are designed to prevent common safety
errors, i.e. deadlocks and communication mismatches during interactions among many parti-
cipants [17, 18, 37]. By adhering to a specified MPST protocol, participants (a.k.a. end-point
programs) can communicate reliably and efficiently. From a practical perspective, MPST
have been implemented in various programming languages [5, 26, 28, 32, 40, 42], facilitating
their applications and providing safety guarantees in real-world programs.

Nevertheless, tackling the challenges of unreliability and failures remains a significant
issue for session types. Most session type systems operate under the assumption of flawless
and reliable communication without failures. To address this limitation, recent works [31,
14, 15, 28] have developed affine session types by incorporating the affinity mechanism that
explicitly accounts for and handles unreliability and failures within session type systems.
Unlike linear types that must be used exactly once, affine types can be used at most once,
enabling the safe dropping of subsequent types and the premature termination of a session
in the presence of protocol execution errors.

In most real-life devices and platforms, communications are predominantly asynchronous:
inner tasks and message transfers may take time. When dealing with such communications,
it becomes crucial to incorporate time constraints and implement timeout failure handling
for each operation. This is necessary to avoid potential blockages where a process might
wait indefinitely for a message from a non-failed process. While various works, as explained
later, address time conditions and timeouts in session types, it is surprising that none of the
mentioned works on affine session types tackles timeout failures during protocol execution.

This Paper. We introduce a new framework, affine timed multiparty session types (ATMP),
to address the challenges of timeouts, disconnections and other failures in asynchronous
communications:
(1) We propose ATMP, an extension of asynchronous MPST that incorporates time spe-

cifications, affinity, and mechanisms for handling exceptions, thus facilitating effective
management of failures, with a particular focus on timeouts. Additionally, we demonstrate
that properties from MPST, i.e. type safety, protocol conformance, and deadlock-freedom,
are guaranteed for well-typed processes, even in the presence of timeouts and their
corresponding handling mechanism;

(2) We present MultiCrustyT, our Rust toolchain designed for building asynchronous
timed multiparty protocols under ATMP: MultiCrustyT enables the implementation of
protocols adhering to the properties of ATMP.

The primary focus of ATMP lies in effectively handling timeouts during process execution,
in contrast to the approaches in [4, 3], which aim to completely avoid time failures. Bocchi et
al. [4] introduce time conditions in MPST to ensure precise timing in communication protocols,
while their subsequent work [3] extends binary timed session types to incorporate timeouts,
allowing for more robust handling of time constraints. Yet, they adopt strict requirements
to prevent timeouts. In [4], feasibility and wait-freedom are required in their protocol design.
Feasibility requires precise time specifications for protocol termination, while wait-freedom
prohibits overlapping time windows for senders and receivers in a protocol, which is not
practical in real-world applications. Similarly, in [3], strong conditions including progress of
an entire set of processes and urgent receive are imposed. The progress property is usually
undecidable, and the urgent receive condition, which demands immediate message reception
upon availability, is infeasible with asynchronous communication.

P. Hou, N. Lagaillardie, and N. Yoshida 19:3

Recently, [30] proposes the inclusion of timeout as the unique failure notation in MPST,
offering flexibility in handling failures. Time also plays a role in synchronous communication
systems, where [22] develops rate-based binary session types, ensuring synchronous message
exchanges at the same rate, i.e. within the same time window. However, in both [30] and [22],
time constraints are not integrated into types and static type checking, resulting in the
specifications lacking the ability to guide time behaviour. Additionally, the model used in [22]
assumes that all communications and computations are non-time-consuming, i.e. with zero
time cost, making it unfeasible in distributed systems.

By the efficient integration of time and failure handling mechanisms in our framework,
none of those impractical requirements outlined in [4, 3] is necessary. In ATMP, when a process
encounters a timeout error, a mechanism for handling time failures is triggered, notifying all
participants about the timeout, leading to the termination of those participants and ultimately
ending the session. Such an approach guarantees that participants consistently reach the end
of the protocol, as the communication session is entirely dropped upon encountering a timeout
error. As a result, every process can terminate successfully, reducing the risk of indefinite
blockages, even with timeouts. Additionally, in our system, time constraints over local
clocks are incorporated with types to effectively model asynchronous timed communication,
addressing the limitations in [30, 22].

Except for [22], the aforementioned works on timed session types focus more on theory,
lacking implementations. To bridge this gap on the practical side, we provide MultiCrustyT,
a Rust implementation of ATMP designed for secure timed communications. MultiCrustyT

makes use of affine timed meshed channels, a communication data structure that integrates
time constraints and clock utilisation. Our toolchain relies on macros and native generic types
to ensure that asynchronous protocols are inherently correct by construction. In particular,
MultiCrustyT performs compile-time verification to guarantee that, at any given point in
the protocol, each isolated pair of participants comprises one sender and one receiver with
corresponding time constraints. Additionally, we employ affine asynchronous primitives and
native optional types to effectively handle runtime timeouts and errors.

To showcase the capabilities and expressiveness of our toolchain, we evaluate MultiCrustyT

through examples from the literature, and further case studies including a remote data
protocol from an Internet of Remote Things (IoRT) network [7], a servo web protocol from a
web engine [38], and protocols from real-time systems such as Android motion sensor [2],
PineTime smartwatch [35], and keyless entry [41]. Our comparative analysis with a Rust
implementation of affine MPST without time [28] reveals that MultiCrustyT exhibits minimal
overhead while providing significantly strengthened property checks.

Structure. § 2 offers a comprehensive overview of our theory and toolchain. § 3 provides
a session π-calculus for ATMP that incorporates timeout, affinity, asynchrony, and failure
handling mechanisms. § 4 introduces an extended theory of asynchronous multiparty session
types with time annotations. Additionally, we present a typing system for ATMP session
π-calculus, and demonstrate the properties of typed processes. § 5 delves into the design and
usage of MultiCrustyT, our Rust implementation of ATMP. § 6 showcases the compilation
and execution benchmarks of MultiCrustyT, based on selected case studies. § 7 concludes
the paper by discussing related work, and offering conclusions and potential future work.
Full proofs, auxiliary material, and more details of MultiCrustyT can be found in the full
version of the paper [19]. Our toolchain and evaluation examples are available in an artifact.

ECOOP 2024

https://zenodo.org/doi/10.5281/zenodo.11032195

19:4 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

Section 4

Section 3

Section 5

Thms 17, 21, 24 Type Checking

Section 4

Processes with
Affinity, Time, and Timeouts

Timed Local Types

Timed Global Type νScrT

Communicating
Timed Automata

MultiCrustyT

Programs written
with MultiCrustyT API

Projection

Generation

Type
Checking

Projection Thms 13, 14

(a) Top-down view of ATMP (left)
and MultiCrustyT (right).

5 ≤ C
Ser ≤ 6

Server Satellite Sensor

alt

 GetData

 GetData

 Data

 Data

 Close

 Close

6 ≤ C
Ser ≤ 7 ; C

Ser := 0

5 ≤ C
Sa1 ≤ 6

6 ≤ C
Sa1 ≤ 7 ; C

Sa1 := 0

5 ≤ C
Ser ≤ 65 ≤ C
Sa1 ≤ 6

5 ≤
 C Sen

 ≤ 6

6 ≤
 C Sen

 ≤ 7 ; C
Sen

 :=
 0

5 ≤
 C Sa2

 ≤
6

6 ≤
 C Sa2

 ≤ 7 ; C
Sa2

 :=
 0

5 ≤
 C Sa2

 ≤ 6

5 ≤
 C Sen

 ≤ 6

Sensor gathers data for 5 seconds

Sensor gathers data for 5 seconds

(b) Global protocol for remote data.

Figure 1 Overview of affine asynchronous communication with time.

2 Overview

In this section, we give an overview of affine timed multiparty session types (ATMP) and
MultiCrustyT, our toolchain for implementing affine timed asynchronous protocols. First, we
share a real-world example inspiring our work on affine asynchronous timed communication.

Fig. 1b depicts our running example, remote data. This real-world scenario is sourced from
a satellite-enabled Internet of Remote Things network [7], and describes data transmissions
among a Sensor (Sen), a Server (Ser), and a Satellite (Sat): Ser aims to periodically retrieve
data gathered by Sen via Sat. The protocol revolves around a loop initiated by Ser, which
faces a decision: either retrieve data or end the protocol. In the former scenario, Ser requests
data retrieval from Sen with a message labelled GetData via Sat within the time window of 5
and 6 time units, as indicated by clock constraints (i.e. 5 ≤ CSer ≤ 6, where CSer is the clock
associated with Ser). Upon receiving this request, Sen responds by sending the data with a
message labelled Data to Ser through Sat within 6 and 7 time units, followed by clock resets
denoted as reset predicates (i.e. CSer := 0, resetting the clock to 0). In the alternative branch,
Ser sends a Close message to Sat, which is then forwarded to Sen, between 5 and 6 time units.

Our remote data protocol includes internal tasks that consume time, notably Sen requiring
5 time units to gather data before transmitting. In cases where our protocol lacks a specified
timing strategy (i.e. no time requirements), and Sen cannot accomplish the data-gathering
tasks, it results in indefinite blocking for Sat and Ser as they await the data. This could lead
to undesirable outcomes, including partially processed data, data corruption, or incomplete
transmission of processed data. Therefore, incorporating time constraints into communication
protocols is imperative, as it better reflects real-world scenarios and ensures practical viability.

2.1 ATMP: Theory Overview

Our ATMP theory follows the top-down methodology [17, 18], enhancing asynchronous MPST
with time features to facilitate timed global and local types. As shown in Fig. 1a (left), we
specify multiparty protocols with time as timed global types. These timed global types are
projected into timed local types, which are then used for type-checking processes with affine
types, time, timeouts, and failure handling, written in a session calculus. As an example,
we consider a simple communication scenario derived from remote data: the Satellite (Sat)
communicates with the server (Ser) by sending a Data message (Data). Specifically, Sat needs
to send the message between 6 and 7 time units and reset its clock afterwards, while Ser is
expected to receive the message within the same time window and reset its clock accordingly.

P. Hou, N. Lagaillardie, and N. Yoshida 19:5

Timed Types and Processes. This communication behaviour can be represented by the
timed global type G:

Sat→Ser: {Data{6 ≤ CSat ≤ 7, CSat := 0, 6 ≤ CSer ≤ 7, CSer := 0}.end}
where CSat and CSer denote the clocks of Sat and Ser, respectively. A global type represents
a protocol specification involving multiple roles from a global standpoint.

Adhering to the MPST top-down approach, a timed global type is then projected onto
timed local types, which describe communications from the perspective of individual roles.
In our example, G is projected onto two timed local types, one for each role Sat and Ser:

TSat = Ser⊕Data{6 ≤ CSat ≤ 7, CSat := 0}.end TSer = Sat&Data{6 ≤ CSer ≤ 7, CSer := 0}.end

Here TSat indicates that Sat sends (⊕) the message Data to Ser between 6 and 7 time units
and then immediately resets its clock CSat. Dually, TSer denotes Ser receiving (&) the message
from Sat within the same time frame and resetting its clock CSer.

In the final step of the top-down approach, we employ timed local types to conduct
type-checking for processes, denoted as Pi, in the ATMP session calculus. Our session calculus
extends the framework for affine multiparty session types (AMPST) [28] by incorporating
processes that model time, timeouts, and asynchrony. In our example, TSat and TSer are used
for the type-checking of s[Sat] and s[Ser], which respectively represent the channels (a.k.a.
session endpoints) played by roles Sat and Ser in a multiparty session s, within the processes:

PSat = delay(C1 = 6.5) . s[Sat]0.4[Ser]⊕Data.0 PSer = delay(C2 = 6) . s[Ser]0.3[Sat]Data.0

The Satellite process PSat waits for exactly 6.5 time units (delay(C1 = 6.5)), then sends the
message Data with a timeout of 0.4 time units (s[Sat]0.4[Ser]⊕Data), and becomes inactive (0).
Meanwhile, the Server process PSer waits for 6 time units (delay(C2 = 6)), then receives the
message with a timeout of 0.3 time units (s[Ser]0.3[Sat]Data), subsequently becoming inactive.

Solution to Stuck Processes Due to Time Failures. It appears that the parallel execution
of PSat and PSer, PSat | PSer, cannot proceed further due to the disparity in timing requirements.
Specifically, using the same session s, Sat sends the message Data to Ser between 6.5 and 6.9
time units, while Ser must receive it from Sat between 6 and 6.3 time units. This results in a
stuck situation, as Ser cannot meet the required timing condition to receive the message.

Fortunately, in our system, timeout failures are allowed, which can be addressed by
leveraging affine session types and their associated failure handling mechanisms. Back to
our example, when s[Ser] waits for 6 time units and cannot receive Data within 0.3 time
units, a timeout failure is raised (timeout[s[Ser]0.3[Sat]Data.0]). Furthermore, we apply our
time-failure handling approach to manage this timeout failure, initiating the termination of
the channel s[Ser] and triggering the cancellation process of the session s (s). As a result,
the process will successfully terminate by canceling (or killing) all usages of s within it.

Conversely, the system introduced in [4] enforces strict requirements, including feasibility
and wait-freedom, on timed global types to prevent time-related failures in well-typed
processes, thus preventing them from becoming blocked due to unsolvable timing constraints.
Feasibility ensures the successful termination of each allowed partial execution, while wait-
freedom guarantees that receivers do not have to wait if senders follow their time constraints.
In our example, we start with a timed global type that is neither feasible nor wait-free,
showcasing how our system effectively handles time failures and ensures successful process
termination without imposing additional conditions on timed global types. In essence,
reliance on feasibility and wait-freedom becomes unnecessary in our system, thanks to the
inclusion of affinity and time-failure handling mechanisms.

ECOOP 2024

19:6 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

1 struct Send<T,
2 const CLOCK: char,
3 const START: i128,
4 const INCLUDE_START: bool,
5 const END: i128,
6 const INCLUDE_END: bool,
7 const RESET: char,
8 S>

(a) Send type.

1 struct Recv<T,
2 const CLOCK: char,
3 const START: i128,
4 const INCLUDE_START: bool,
5 const END: i128,
6 const INCLUDE_END: bool,
7 const RESET: char,
8 S>

(b) Recv type.

1 MeshedChannels<
2 Recv<Data,
3 ’a’,6,true,7,true,’a’,End>,
4 Send<Data,
5 ’b’,6,true,7,true,’b’,End>,
6 RoleSen<RoleSer<End>>,
7 NameSat,
8 >

(c) MeshedChannels type for Sat.

Figure 2 Main types of MultiCrustyT.

2.2 MultiCrustyT: Toolchain Overview

To augment the theory, we introduce the MultiCrustyT library, a toolchain for implementing
communication protocols in Rust. MultiCrustyT specifies protocols where communication
operations must adhere to specific time limits (timed), allowing for asynchronous message
reception and runtime handling of certain failures (affine). This library relies on two
fundamental types: Send and Recv, representing message sending and receiving, respectively.
Additionally, it incorporates the End type, signifying termination to close the connection.
Figs. 2a and 2b illustrate the Send and Recv types respectively, used for sending and receiving
messages of any thread-safe type (represented as T in Line 1). After sending or receiving a
message, the next operation or continuation (S in Line 8) is determined, which may entail
sending another message, receiving another message, or terminating the connection.

Similar to ATMP, each communication operation in MultiCrustyT is constrained by
specific time boundaries to avoid infinite waiting. These time bounds are represented by the
parameters in Lines 2–7 of Fig. 2a, addressing scenarios where a role may be required to
send after a certain time unit or receive between two specific time units. Consider the final
communication operation in the first branch of Fig. 1b from Sat’s perspective. To remain
consistent with § 2.1, the communication is terminated here instead of looping back to the
beginning of the protocol. In this operation, Sat sends a message labelled Data to Ser between
time units 6 and 7, with respect to its inner clock ’b’, and then terminates after resetting its
clock. This can be implemented as: Send<Data, ’b’, 6, true, 7, true, ’b’, End>.

To enable multiparty communication in MultiCrustyT, we use the MeshedChannels type,
inspired by [28]. This choice is necessary as Send and Recv types are primarily designed for
binary (peer-to-peer) communication. Within MeshedChannels, each binary channel pairs the
owner role with another, establishing a mesh of communication channels that encompasses all
participants. Fig. 2c demonstrates an example of using MeshedChannels for Sat in our running
example: Sat receives a Data message from Sen (Line 2) and forwards it to Ser (Line 4) before
ending all communications, following the order specified by the stack in Line 6.

Creating these types manually in Rust can be challenging and error-prone, especially
because they represent the local perspective of each role in the protocol. Therefore, as
depicted in Fig. 1a (right), MultiCrustyT employs a top-down methodology similar to ATMP
to generate local viewpoints from a global protocol, while ensuring the correctness of the
generated types by construction. To achieve this, we extend the syntax of νScr [42], a
language for describing multiparty communication protocols, to include time constraints,
resulting in νScrT . A timed global protocol represented in νScrT is then projected onto
local types, which are used for generating Rust types in MultiCrustyT.

P. Hou, N. Lagaillardie, and N. Yoshida 19:7

3 Affine Timed Multiparty Session Calculus

In this section, we formalise an affine timed multiparty session π-calculus, where processes
are capable of performing time actions, raising timeouts, and handling failures. We start
with the formal definitions of time constraints used in the paper.

Clock Constraint, Valuation, and Reset. Our time model is based on the timed automata
formalism [1, 27]. Let C denote a finite set of clocks, ranging over C, C ′, C1, . . ., that take
non-negative real values in R≥0. Additionally, let t, t′, t1, . . . be time constants ranging over
R≥0. A clock constraint δ over C is defined as:

δ ::= true
∣∣ C > b

∣∣ C = b
∣∣ ¬δ

∣∣ δ1 ∧ δ2

where C ∈ C and b is a constant time bound ranging over non-negative rationals Q≥0.
We define false, <, ≥, ≤ in the standard way. For simplicity and consistency with our
implementation (§ 5), we assume each clock constraint contains a single clock. Extending a
clock constraint with multiple clocks is straightforward.

A clock valuation V : C → R≥0 assigns time to each clock in C. We define V + t as the
valuation that assigns to each C ∈ C the value V(C) + t. The initial valuation that maps all
clocks to 0 is denoted as V0, and the valuation that assigns a value of t to all clocks is denoted
as Vt. V |= δ indicates that the constraint δ is satisfied by the valuation V. Additionally, we
use ⊔i∈IVi to represent the overriding union of the valuations Vi for i ∈ I.

A reset predicate λ over C is a subset of C that defines the clocks to be reset. If λ = ∅,
no reset is performed. Otherwise, the valuation for each clock C ∈ λ is set to 0. For clarity,
we represent a reset predicate as C := 0 when a single clock C needs to be reset. To denote
the clock valuation identical to V but with the values of clocks in λ to 0, we use V[λ 7→ 0].

Syntax of Processes. Our session π-calculus for affine timed multiparty session types (ATMP)
models timed processes interacting via affine meshed multiparty channels. It extends the
calculus for affine multiparty session types (AMPST) [28] by incorporating asynchronous
communication, time features, timeouts, and failure handling.1

▶ Definition 1 (Syntax). Let p, q, r, . . . denote roles belonging to a (fixed) set R; s, s′, . . .

for sessions; x, y, . . . for variables; m, m′, . . . for message labels; and X, Y , . . . for process
variables. The affine timed multiparty session π-calculus syntax is defined as follows:

c, d ::= x
∣∣ s[p] (variable, channel with role p)

P , Q ::= 0
∣∣ P | Q

∣∣ (νs) P (inaction, parallel composition, restriction)
cn[q]⊕m⟨d⟩.P (timed selection towards role q)
cn[q]

∑
i∈I

mi(xi).Pi (timed branching from role q with I ̸= ∅)
def D in P

∣∣ X ⟨̃c⟩ (process definition, process call)
delay(δ) . P

∣∣ delay(t) . P (time-consuming delay, deterministic delay)
timeout[P]

∣∣ try P catch Q (timeout failure, try-catch)
cancel(c) . P

∣∣ cerr
∣∣ s (cancel, communication error, kill)

s[p]▶σ (output message queue of role p in session s)
D ::= X(x̃) = P (declaration of process variable X)
σ ::= q!m⟨s[r]⟩ ·σ

∣∣ ϵ (message queue, non-empty or empty)

1 To simplify, our calculus exclusively emphasises communication. Standard extensions, e.g. integers,
booleans, and conditionals, are routine and independent of our formulation.

ECOOP 2024

19:8 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

Restriction, branching, and process definitions and declarations act as binders; fc(P) is the
set of free channels with roles in P , fv(P) is the set of free variables in P , and Πi∈IPi is
the parallel composition of processes Pi. Extensions w.r.t. AMPST calculus are highlighted.
Runtime processes, generated dynamically during program execution rather than explicitly
written by users, are underlined.

Our calculus comprises:
Channels c, d, being either variables x or channels with roles (a.k.a. session endpoints) s[p].
Standard processes as in [37, 28], including inaction 0, parallel composition P | Q, session
scope restriction (νs) P , process definition def D in P , process call X ⟨̃c⟩, and communication
error cerr.
Time processes that follow the program time behaviour of Fig. 2c:

Timed selection (or timed internal choice) cn[q]⊕m⟨d⟩.P indicates that a message m
with payload d is sent to role q via endpoint c, whereas timed branching (or timed
external choice) cn[q]

∑
i∈I mi(xi).Pi waits to receive a message mi from role q via

endpoint c and then proceeds as Pi.
The parameter n in both timed selection and branching is a timeout that allows modelling
different types of communication primitives: blocking with a timeout (n ∈ R>0), blocking
(n = ∞), or non-blocking (n = 0). When n ∈ R≥0, the timed selection (or timed branching)
process waits for up to n time units to send (or receive) a message. If the message cannot
be sent (or received) within this time, the process moves into a timeout state, raising a
time failure. If n is set to ∞, the timed selection (or timed branching) process blocks
until a message is successfully sent (or received).
In our system, we allow send processes to be time-consuming, enabling processes to wait
before sending messages. Consider the remote data example shown in Fig. 1b. This
practical scenario illustrates how a process might wait before sending a message, resulting
in the possibility of send actions failing due to timeouts. It highlights the importance of
timed selection, contrasting with systems like in [3] where send actions are instantaneous.
delay(δ) . P represents a time-consuming delay action, such as method invocation or
sleep. Here, δ is a clock constraint involving a single clock variable C, used to specify the
interval for the delay. When executing delay(δ) . P , any time value t that satisfies the
constraint δ can be consumed. Consequently, the runtime deterministic delay process
delay(t) . P , arising during the execution of delay(δ) . P , is introduced. In delay(t) . P ,
t is a constant and a solution to δ, and P is executed after a precise delay of t time units.
timeout[P] signifies that the process P has violated a time constraint, resulting in a
timeout failure.

Failure-handling processes that adopt the AMPST approach [28]:
try P catch Q consists of a try process P that is prepared to communicate with a
parallel composed process, and a catch process Q, which becomes active in the event of
a cancellation or timeout. For clarity, try 0 catch Q is not allowed within our calculus.
cancel(c) . P performs the cancellation of other processes with channel c.
s kills (terminates) all processes with session s, and is dynamically generated only at
runtime from timeout failure or cancel processes.

Message queues: s[p]▶σ represents the output message queue of role p in session s. It
contains all the messages previously sent by p. The queue σ can be a sequence of messages
of the form q!m⟨s[r]⟩, where q is the receiver, or ϵ, indicating an empty message queue. The
set of receivers in σ, denoted as receivers(σ), is defined in a standard way as:

receivers(q!m⟨s[r]⟩ ·σ′) = {q} ∪ receivers(σ′) receivers(ϵ) = ∅

P. Hou, N. Lagaillardie, and N. Yoshida 19:9

[R-Out] E
[
s[q]n[p]⊕m⟨s′[r]⟩.Q

]
| s[q]▶σ ↣ Q | s[q]▶σ ·p!m⟨s′[r]⟩ ·ϵ

[R-In] E
[
s[p]n[q]

∑
i∈I

mi(xi).Pi

]
| s[q]▶p!mk⟨s′[r]⟩ ·σ ↣ Pk{s′[r]/xk} | s[q]▶σ (k ∈I)

[R-Err] E
[
s[p]n[q]

∑
i∈I

mi(xi).Pi

]
| s[q]▶p!m⟨s′[r]⟩ ·σ ↣ cerr (∀i∈I : mi ̸= m)

[R-Det] |= δ[t/C] implies E[delay(δ) . P] ↣ delay(t) . P

[R-Time] P ⇀ Ψt(P)
[R-Fail] timeout[P] ↣ s (∃r. subjP(P) = {s[r]})
[R-Can] E[cancel(s[p]) . Q] ↣ s | Q

[R-FailCat] try timeout[P] catch Q ↣ s | Q (∃r. subjP(P) = {s[r]})
[C-Cat] try P catch Q | s ↣ Q | s (∃r. subjP(P) = {s[r]})

[C-In] s[p]n[q]
∑

i∈I
mi(xi).Pi | s[q]▶σ | s

↣
(
νs′

)
(Pk{s′[r]/xk} | s′) | s[q]▶σ | s (p /∈ receivers(σ), k ∈I, s′ /∈ fc(Pk))

[C-Queue] s[p]▶q!m⟨s′[r]⟩ ·σ | s ↣ s[p]▶σ | s | s′
[R-X] def X(x1, . . . , xn) = P in (X⟨s1[p1], . . . , sn[pn]⟩ | Q)

↣ def X(x1, . . . , xn) = P in (P {s1[p1]/x1} · · · {sn[pn]/xn} | Q)
[R-Ctx] P ↣ P ′ implies C[P] ↣ C

[
P ′

]
[R-≡] P ′ ≡ P ↣ Q ≡ Q′ implies P ′ ↣ Q′ [R-≡T] P ′ ≡ P ⇀ Q ≡ Q′ implies P ′ ⇀ Q′

[R-Ins] P ↣ P ′ implies P → P ′ [R-TC] P ⇀ P ′ implies P → P ′

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P (νs) 0 ≡ 0 (νs)
(
νs′

)
P ≡

(
νs′

)
(νs) P s | s ≡ s

(νs) (P | Q) ≡ P | (νs) Q if s ̸∈ fc(P) def D in 0 ≡ 0 def D in (νs) P ≡ (νs) (def D in P) if s ̸∈ fc(D)
delay(0) . P ≡ P def D in (P | Q) ≡ (def D in P) | Q if dpv(D) ∩ fpv(Q) = ∅

(νs) (s[p1]▶ϵ | · · · | s[pn]▶ϵ) ≡ 0 def D in (def D′ in P) ≡ def D′ in (def D in P)
if (dpv(D) ∪ fpv(D)) ∩ dpv

(
D′

)
= (dpv

(
D′

)
∪ fpv

(
D′

)
) ∩ dpv(D) = ∅

s[p]▶σ ·q1!m1⟨s1[r1]⟩ ·q2!m2⟨s2[r2]⟩ ·σ′ ≡ s[p]▶σ ·q2!m2⟨s2[r2]⟩ ·q1!m1⟨s1[r1]⟩ ·σ′ if q1 ̸= q2

Figure 3 Top: reduction rules for ATMP session π-calculus. Bottom: structural congruence rules
for the ATMP π-calculus, where fpv(D) is the set of free process variables in D, and dpv(D) is the
set of declared process variables in D. New rules are highlighted.

Operational Semantics. We present the operational semantics of our session π-calculus for
modelling the behaviour of affine timed processes, including asynchronous communication,
time progression, timeout activation, and failure handling.

▶ Definition 2 (Semantics). A try-catch context E is defined as E ::= try E catch P
∣∣ [],

and a reduction context C is defined as C ::= C | P
∣∣ (νs)C

∣∣ def D in C
∣∣ []. The

reductions →, ↣, and ⇀ are inductively defined in Fig. 3 (top), with respect to a structural
congruence ≡ depicted in Fig. 3 (bottom). We write →∗, ↣∗, and ⇀∗ for their reflexive
and transitive closures, respectively. P ↛ (or P ↣̸, P ⇀̸) means ̸ ∃P ′ such that P →P ′ (or
P↣P ′, P ⇀P ′) is derivable. We say P has a communication error iff ∃C with P = C[cerr].

We decompose the reduction rules in Fig. 3 into three relations: ↣ represents instantan-
eous reductions without time consumption, ⇀ handles time-consuming steps, and → is a
general relation that can arise either from ↣ by [R-Ins] or ⇀ by [R-TC]. Now let us explain
the operational semantics rules for our session π-calculus.
Communication: Rules [R-Out] and [R-In] model asynchronous communication by queuing
and dequeuing pending messages, respectively. Rule [R-Err] is triggered by a message label
mismatch, resulting in a fatal communication error.
Time: Rule [R-Det] specifies a deterministic delay of a specific duration t, where t is a solution
to the clock constraint δ. Rule [R-Time] incorporates a time-passing function Ψt(P), depicted
in Fig. 4, to represent time delays within a process. This partial function simulates a delay
of time t that may occur at different parts of the process. It is undefined only if P is a
time-consuming delay, i.e. P = delay(δ) . P ′, or if the specified delay time t exceeds the

ECOOP 2024

19:10 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

Ψt(0) = 0 Ψt(P1 | P2) = Ψt(P1) | Ψt(P2) Ψt((νs) P) = (νs) Ψt(P) Ψt(timeout[P]) = timeout[P]
Ψt(cerr) = cerr Ψt(def D in P) = def D in Ψt(P) Ψt(try P catch Q) = try Ψt(P) catch Ψt(Q)

Ψt(s[p]▶σ) = s[p]▶σ Ψt(delay(δ) . P) = undefined Ψt(cancel(c) . Q) = cancel(c) . Ψt(Q)

Ψt(delay(t′) . P) =
{delay(t′ − t) . P if t′ ≥ t

undefined otherwise Ψt(c∞[q]
∑

i∈I
mi(xi).Pi) = c∞[q]

∑
i∈I

mi(xi).Pi

Ψt(ct′
[q]⊕m⟨d⟩.P) =

{
ct′−t[q]⊕m⟨d⟩.P if t′ ≥ t

timeout[ct′
[q]⊕m⟨d⟩.P] otherwise

Ψt(c∞[q]⊕m⟨d⟩.P) = c∞[q]⊕m⟨d⟩.P

Ψt(s) = s Ψt(ct′
[q]

∑
i∈I

mi(xi).Pi) =
{

ct′−t[q]
∑

i∈I
mi(xi).Pi if t′ ≥ t

timeout[ct′
[q]

∑
i∈I

mi(xi).Pi] otherwise

Figure 4 Time-passing function Ψt(P).

duration of a runtime deterministic delay, i.e. P = delay(t′) . P ′ with t > t′. The latter case
arises because deterministic delays must always adhere to their specified durations, e.g. if a
program is instructed to sleep for 5 time units, it must strictly follow this duration.

Notably, Ψt(P) acts as the only mechanism for triggering a timeout failure timeout[P],
resulting from a timed selection or branching. Such a timeout failure occurs when Ψt(P) is
defined, and the specified delay t exceeds a deadline set within P .
Cancellation: Rules [C-In] and [C-Queue] model the process cancellations. [C-In] is triggered
only when there are no messages in the queue that can be received from q via the endpoint
s[p]. Cancellation of a timed selection is expected to eventually occur via [C-Queue]; therefore,
there is no specific rule dedicated to it. Similarly, in our implementation, the timed selection
is not directly cancelled either.

Rules [R-Can] and [C-Cat], adapted from [28], state cancellations from other parties. [R-Can]

facilitates cancellation and generates a kill process, while [C-Cat] transitions to the catch
process Q due to the termination of session s, where the try process P is communicating on
s. Therefore, the set of subjects of process P , denoted as subjP(P), is included in the side
condition of [C-Cat] to ensure that P has a prefix at s, as defined below:
subjP(0) = subjP(cerr) = ∅ subjP(P | Q) = subjP(P) ∪ subjP(Q) subjP(s[p]▶σ) =

{
s[p]Q

}
subjP((νs) P) = subjP(P) \ ({s[pi]}i∈I ∪

{
s[pi]

Q
}

i∈I
)

subjP(def X(x̃) = P in Q) = subjP(Q) ∪ subjP(P) \
{

x̃
}

with subjP(X
〈̃
c
〉
) = subjP(P

{̃
c/̃x

}
)

subjP(cn[q]⊕m⟨d⟩.P) = subjP(cn[q]
∑

i∈I
mi(xi).Pi) = subjP(cancel(c) . P) = {c}

subjP(delay(δ) . P) = subjP(delay(t) . P) = subjP(try P catch Q) = subjP(timeout[P]) = subjP(P)
Subjects of processes determine sessions that may need cancellation, a crucial aspect for

handling failed or cancelled processes properly. In our definition, subjects not only denote
the endpoints via which processes start interacting but also indicate whether they are used
for message queue processes. Specifically, an endpoint s[p] annotated with Q signifies its use
in a queue process. This additional annotation, and thus the distinction it implies, is pivotal
in formulating the typing rule for the try-catch process, as discussed later in § 4.4, where we
rely on subjects to exclude queue processes within any try construct.
Timeout Handling: Rules [R-Fail] and [R-FailCat] address time failures. In the event of
a timeout, a killing process is generated. Moreover, in [R-FailCat], the catch process Q is
triggered. To identify the session requiring termination, the set of subjects of the failure
process timeout[P] is considered in both rules as a side condition. Note that a timeout arises
exclusively from timed selection or branching. Therefore, the subject set of timeout[P] must
contain a single endpoint devoid of Q, indicating the generation of only one killing process.
Standard: Rules [R-X], [R-Ctx], and [R-≡] are standard [37, 28]. [R-X] expands process
definitions when invoked; [R-Ctx] and [R-≡] allow processes to reduce under reduction contexts

P. Hou, N. Lagaillardie, and N. Yoshida 19:11

and through structural congruence, respectively. Rule [R-≡T] introduces a timed variant
of [R-≡], enabling time-consuming reductions via structural congruence.
Congruence: As shown in Fig. 3 (bottom), we introduce additional congruence rules related
to queues, delays, and process killings, alongside standard rules from [37]. Specifically, two
rules are proposed for queues: the first addresses the garbage collection of queues that are
not referenced by any process, while the second rearranges messages with different receivers.
The rule for delays states that adding a delay of zero time units has no effect on the process
execution. The rule regarding process killings eliminates duplicate kills.

▶ Example 3. Consider the processes: P1 = s[Sat]0.4[Ser]⊕Data.0, P2 = s[Ser]0.3[Sat]Data.0,
and P3 = s[Sat]▶ϵ. Rule [C-Cat] can be applied to try P1 catch Q | s , as subjP(P1) = {s[Sat]}
satisfies its side condition. However, neither timeout[P1 | P2] nor timeout[P3] can generate the
killing process s , as subjP(P1 | P2) = {s[Sat], s[Ser]}, whereas subjP(P3) =

{
s[Sat]Q

}
.

▶ Example 4. Processes QSen, QSat, and QSer interact on a session s:
QSen = delay(CSen = 6.5) . Q′

Sen | s[Sen]▶ϵ where Q′
Sen = try s[Sen]0.3[Sat]⊕Data catch cancel(s[Sen])

QSat = delay(CSat = 6) . Q′
Sat | s[Sat]▶ϵ where Q′

Sat = s[Sat]0.2[Sen]
∑{

Data.s[Sat]0.3[Ser]⊕Data
fail.s[Sat]0.4[Ser]⊕fatal

}
QSer = delay(CSer = 6) . Q′

Ser | s[Ser]▶ϵ where Q′
Ser = s[Ser]0.8[Sat]

∑
{Data, fatal}

Process QSen delays for exactly 6.5 time units before executing process Q′
Sen. Here, Q′

Sen
attempts to use s[Sen] to send Data to Sat within 0.3 time units. If the attempt fails, the
cancellation of s[Sen] is triggered. Process QSat waits for precisely 6 time units before using
s[Sat] to receive either Data or fail from Sen within 0.2 time units; subsequently, in the
first case, it uses s[Sat] to send Data to Ser within 0.3 time units, while in the latter, it uses
s[Sat] to send fail to Ser within 0.4 time units. Similarly, process QSer waits 6 time units
before using s[Ser] to receive either Data or fatal from Sat within 0.8 time units.

In QSen, s[Sen] can only start sending Data to Sat after 6.5 time units, whereas in QSat,
s[Sat] must receive the message from Sen within 0.2 time units after a 6-time unit delay.
Consequently, s[Sat] fails to receive the message from Sen within the specified interval,
resulting in a timeout failure, i.e.

QSen | QSat | QSer↣delay(6.5) . Q′
Sen | s[Sen]▶ϵ | delay(6) . Q′

Sat | s[Sat]▶ϵ | delay(6) . Q′
Ser | s[Ser]▶ϵ

⇀ Ψ6.5(delay(6.5) . Q′
Sen | s[Sen]▶ϵ | delay(6) . Q′

Sat | s[Sat]▶ϵ | delay(6) . Q′
Ser | s[Ser]▶ϵ)

≡ Q′
Sen | s[Sen]▶ϵ | timeout[Q′

Sat] | s[Sat]▶ϵ | Ψ0.5(Q′
Ser) | s[Ser]▶ϵ

Therefore, the kill process s is generated from timeout[Q′
Sat], successfully terminating the

process QSen | QSat | QSer by the following reductions:
Q′

Sen | s[Sen]▶ϵ | timeout[Q′
Sat] | s[Sat]▶ϵ | Ψ0.5(Q′

Ser) | s[Ser]▶ϵ

↣ Q′
Sen | s[Sen]▶ϵ | s | s[Sat]▶ϵ | Ψ0.5(Q′

Ser) | s[Ser]▶ϵ

↣ cancel(s[Sen]) | s[Sen]▶ϵ | s | s[Sat]▶ϵ | 0 | s[Ser]▶ϵ

↣ s | 0 | s[Sen]▶ϵ | s | s[Sat]▶ϵ | 0 | s[Ser]▶ϵ ≡ 0 | s

4 Affine Timed Multiparty Session Type System

In this section, we introduce our affine timed multiparty session type system. We begin
by exploring the types used in ATMP, as well as subtyping and projection, in § 4.1. We
furnish a Labelled Transition System (LTS) semantics for typing environments (collections of
timed local types and queue types) in § 4.2, and timed global types in § 4.3, illustrating their
relationship with Thms. 13 and 14. Furthermore, we present a type system for our ATMP
session π-calculus in § 4.4. Finally, we show the main properties of the type system: subject
reduction (Thm. 17), session fidelity (Thm. 21), and deadlock-freedom (Thm. 24), in § 4.5.

ECOOP 2024

19:12 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

S ::= (δ, T) sort
G ::= p→q: {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I transmission∣∣ p⇝q:j {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I (j ∈ I) transmission en route∣∣ µt.G

∣∣ t
∣∣ end recursion, type variable, termination

T ::= p&{mi(Si){δi, λi}.Ti}i∈I

∣∣ p⊕{mi(Si){δi, λi}.Ti}i∈I external choice, internal choice∣∣ µt.T
∣∣ t

∣∣ end recursion, type variable, termination
M ::= p!m(S)·M

∣∣ ⊘ queue types

Figure 5 Syntax of timed global types, timed local types, and queue types.

4.1 Timed Multiparty Session Types

Affine session frameworks keep the original system’s type-level syntax intact, requiring no
changes. To introduce affine timed asynchronous multiparty session types, we simply need to
augment global and local types with clock constraints and resets introduced in § 3 to derive
timed global and local types. The syntax of types used in this paper is presented in Fig. 5. As
usual, all types are required to be closed and have guarded recursion variables.

Sorts. Sorts are ranged over S, S′, Si, . . ., and facilitate the delegation of the remaining
behaviour T to the receiver, who can execute it under any clock assignment satisfying δ.

Timed Global Types. Timed global types are ranged over G, G′, Gi, . . ., and describe an
overview of the behaviour for all roles (p, q, s, t, . . .) belonging to a (fixed) set R. The set of
roles in a timed global type G is denoted as roles(G), while the set of its free variables as
fv(G).

A transmission p→q: {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I represents a message sent from
role p to role q, with labels mi, payload types Si (which are sorts), and continuations Gi,
where i is taken from an index set I, and mi taken from a fixed set of all labels M. Each
branch is associated with a time assertion consisting of four components: δOi and λOi for the
output (sending) action, and δIi and λIi for the input (receiving) action. These components
specify the clock constraint and reset predicate for the respective actions. A message can
be sent (or received) at any time satisfying the guard δOi (or δIi), and the clocks in λOi

(or λIi) are reset upon sending (or receiving). In addition to the standard requirements for
global types as in [11], we impose a condition from [4], stating that sets of clocks “owned” by
different roles, i.e. those that can be read and reset, must be pairwise disjoint. Furthermore,
the clock constraint and reset predicate of an output or input action performed by a role are
defined only over the clocks owned by that role.

A transmission en route p⇝q:j {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I (j ∈ I) is a runtime
construct to represent a message mj sent by p, and yet to be received by q. Recursion µt.G

and termination end (omitted where unambiguous) are standard [11]. Note that contractive
requirements [34, §21.8], i.e. ensuring that each recursion variable t is bound within a µt.. . .

and is guarded, are applied in recursive types.

Timed Local Types. Timed local types (or timed session types) are ranged over T , U, T ′, U ′,

Ti, Ui, . . ., and describe the behaviour of a single role. An internal choice (selection)
p⊕{mi(Si){δi, λi}.Ti}i∈I (or external choice (branching) p&{mi(Si){δi, λi}.Ti}i∈I) states
that the current role is to send to (or receive from) the role p when δi is satisfied, followed
by resetting the clocks in λi. Recursive and termination types are defined similarly to
timed global types. The requirements for the index set, labels, clock constraints, and reset
predicates in timed local types mirror those in timed global types.

P. Hou, N. Lagaillardie, and N. Yoshida 19:13

Queue Types. Queue Types are ranged over M, M′, Mi, . . ., and represent (possibly empty)
sequences of message types p!m(S) having receiver p, label m, and payload type S (omitted
when S =(δ, end)). As interactions in our formalisation are asynchronous, queue types are
used to capture the states in which messages are in transit. We adopt the notation receivers(·)
from § 3 to denote the set of receivers in M as receivers(M) as well, with a similar definition.

Subtyping. We introduce a subtyping relation ⩽ on timed local types in Def. 5, based on
the standard behaviour-preserving subtyping [37]. This relation indicates that a smaller type
entails fewer external choices but more internal choices.

▶ Definition 5 (Subtyping). The subtyping relation ⩽ is coinductively defined:
∀i ∈ I S′

i ⩽ Si δi = δ′
i λi = λ′

i Ti ⩽ T ′
i

p⊕{mi(Si){δi, λi}.Ti}i∈I∪J ⩽ p⊕{mi(S′
i){δ′

i, λ′
i}.T ′

i }i∈I

[Sub-⊕]

∀i ∈ I Si ⩽ S′
i δi = δ′

i λi = λ′
i Ti ⩽ T ′

i

p&{mi(Si){δi, λi}.Ti}i∈I ⩽ p&{mi(S′
i){δ′

i, λ′
i}.T ′

i }i∈I∪J

[Sub-&]
end ⩽ end

[Sub-end]

T ⩽ T ′

(δ, T) ⩽ (δ, T ′)
[Sub-S]

T {µt.T/t} ⩽ T ′

µt.T ⩽ T ′ [Sub-µL]
T ⩽ T ′{µt.T ′

/t
}

T ⩽ µt.T ′ [Sub-µR]

Projection. Projection of a timed global type G onto a role p yields a timed local type.
Our definition of projection in Def. 6 is mostly standard [37], with the addition of projecting
time assertions onto the sender and receiver, respectively.

▶ Definition 6 (Projection). The projection of a timed global type G onto a role p, written
as G↾ p, is:

(q→r: {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I)↾ p =

r⊕{mi(Si){δOi, λOi}.(Gi↾ p)}i∈I if p = q

q&{mi(Si){δIi, λIi}.(Gi↾ p)}i∈I if p = r
d

i∈I Gi↾ p otherwise

(q⇝r:j {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I)↾ p =

Gj↾ p if p = q

q&{mi(Si){δIi, λIi}.(Gi↾ p)}i∈I if p = r
d

i∈I Gi↾ p otherwise

(µt.G)↾ p =
{

µt.(G↾ p) if p ∈ roles(G) or fv(µt.G) ̸= ∅
end otherwise

t↾ p = t
end↾ p = end

where
d

is the merge operator for timed session types:
p&{mi(Si){δi, λi}.Ti}i∈I ⊓ p&

{
mj(S′

j){δ′
j , λ′

j}.T ′
j

}
j∈J

=
p&{mk(Sk){δk, λk}.(Tk ⊓T ′

k)}k∈I∩J & p&{mi(Si){δi, λi}.Ti}i∈I\J & p&
{

mj(S′
j){δ′

j , λ′
j}.T ′

j

}
j∈J\I

p⊕{mi(Si){δi, λi}.Ti}i∈I ⊓ p⊕{mi(Si){δi, λi}.T ′
i }i∈I = p⊕{mi(Si){δi, λi}.(Ti ⊓ T ′

i)}i∈I

µt.T ⊓ µt.U = µt.(T ⊓ U) t ⊓ t = t end ⊓ end = end

▶ Example 7. Take the timed global type G, and timed local types TSat and TSer from § 2.1.
Consider a timed global type Gdata, derived from remote data (Fig. 1b) as well, representing
data transmission from Sen to Ser via Sat:

Gdata = Sen→Sat: {Data{6 ≤ CSen ≤ 7, CSen := 0, 6 ≤ CSat ≤ 7, ∅}.G}

which can be projected onto roles Sen, Sat, and Ser, respectively, as:
Gdata↾ Sen = Sat⊕Data{6 ≤ CSen ≤ 7, CSen := 0}.end Gdata↾ Ser = G↾ Ser = TSer

Gdata↾ Sat = Sen&Data{6 ≤ CSat ≤ 7, ∅}.G↾ Sat = Sen&Data{6 ≤ CSat ≤ 7, ∅}.TSat

ECOOP 2024

19:14 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

(V, T) ≡ (V, T)
p ̸= q

p!m1(S1)·q!m2(S2)·M ≡ q!m2(S2)·p!m1(S1)·M

⊘·⊘ ≡ ⊘ p!m(S)·⊘·M ≡ ⊘·p!m(S)·M
M ≡ M′ (V, T) ≡ (V, T ′)

M; (V, T) ≡ M′; (V, T ′)

⊘ ⩽ ⊘
S′ ⩽ S M ⩽M′

q!m(S)·M ⩽ q!m(S′)·M′

T ⩽ T ′

(V, T) ⩽ (V, T ′)

M ⩽M′ (V, T) ⩽ (V, T ′)

M; (V, T) ⩽M′; (V, T ′)

Figure 6 Congruence (top) and subtyping (bottom) rules for timed-session/queue types.

4.2 Typing Environments
To reflect the behaviour of timed global types (§ 4.3), present a typing system for our session
π-calculus (§4.4), and introduce type-level properties (§4.5), we formalise typing environments
in Def. 8, followed by their Labelled Transition System (LTS) semantics in Def. 9.

▶ Definition 8 (Typing Environments). The typing environments Θ and Γ are defined as:
Θ ::= ∅

∣∣ Θ, X:(V1, T1), . . . , (Vn, Tn) Γ ::= ∅
∣∣ Γ, x:(V, T)

∣∣ Γ, s[p]:τ

where τ is a timed-session/queue type: τ ::= (V, T)
∣∣ M

∣∣ M; (V, T), i.e. either a timed
session type, a queue type, or a combination.

The environment composition Γ1, Γ2 is defined iff ∀c ∈ dom(Γ1) ∩ dom(Γ2) : Γi(c) =
M and Γj(c)=(V, T) with i, j ∈ {1, 2}, and for all such c, we posit (Γ1, Γ2)(c) = M; (V, T).

We write dom(Γ) = {s} iff for any c ∈ dom(Γ), there is p such that c = s[p] (i.e. Γ only
contains session s). We write s ̸∈ Γ iff ∀p : s[p] ̸∈ dom(Γ) (i.e. session s does not occur
in Γ). We write Γs iff dom(Γs) = {s}, dom(Γs) ⊆ dom(Γ), and ∀s[p] ∈ dom(Γ) : Γ(s[p]) =
Γs(s[p]) (i.e. restriction of Γ to session s). We denote updates as Γ[c 7→ τ]: Γ[c 7→ τ](c) = τ

and Γ[c 7→ τ](c′) = Γ(c′) (where c ̸= c′).
Congruence and subtyping are imposed on typing environments: Γ ≡ Γ′ (resp. Γ ⩽ Γ′)

iff dom(Γ) = dom(Γ′) and ∀c ∈ dom(Γ) : Γ(c) ≡ Γ′(c) (resp. Γ(c) ⩽ Γ′(c)), incorporating
additional congruence and subtyping rules for time-session/queue types, as depicted in Fig. 6.

In Def. 8, the typing environment Θ maps process variables to n-tuples of timed session
types, while Γ maps variables to timed session types, and channels with roles to timed-
session/queue types. Note that in our typing environments, timed session types are annotated
with clock valuations, denoted as (V, T). This enables us to capture timing information
within the type system, facilitating the tracking of the (virtual) time at which the next action
can be validated during the execution of a process.

The congruence relation ≡ for timed-session/queue types is inductively defined as in Fig. 6
(top), reordering queued messages with different receivers. Subtyping for timed-session/queue
types extends Def. 5 with rules in Fig. 6 (bottom): particularly, rule [Sub-M] states that a
sequence of queued message types is a subtype of another if messages in the same position
have identical receivers and labels, and their payload sorts are related by subtyping.

▶ Definition 9 (Typing Environment Reduction). Let α be a transition label of the form s:p!q:m,
s:p,q:m, or t. The typing environment transition α−→ is inductively defined by the rules in
Fig. 7 (top). We write Γ α−→ iff Γ α−→Γ′ for some Γ′. We define two reductions Γ→s Γ′ (where
s is a session) and Γ→Γ′ as follows:

Γ→s Γ′ holds iff Γ α−→Γ′ with α ∈ {s:p!q:m, s:p,q:m, t | p, q ∈ R} (where R is the set of all
roles). We write Γ →s iff Γ →s Γ′ for some Γ′, and →∗

s as the reflexive and transitive
closure of →s;
Γ→Γ′ holds iff Γ →s Γ′ for some s. We write Γ→ iff Γ→Γ′ for some Γ′, and →∗ as the
reflexive and transitive closure of →.

P. Hou, N. Lagaillardie, and N. Yoshida 19:15

Γ, s[p]:(V, T {µt.T/t}) α−→ Γ′

Γ, s[p]:(V, µt.T) α−→ Γ′
[Γ-µ]

Γ α−→ Γ′ α ̸= t

Γ, x:(V, T) α−→ Γ′, x:(V, T)
[Γ-,x]

Γ α−→ Γ′ α ̸= t

Γ, s[p]:τ α−→ Γ′, s[p]:τ
[Γ-,τ]

k ∈I V |= δk

s[p]:M; (V, q⊕{mi(Si){δi, λi}.Ti}i∈I) s:p!q:mk−−−−−→ s[p]:M·q!mk(Sk)·⊘; (V[λk 7→ 0], Tk)
[Γ-⊕]

k ∈I V |= δk Sk⩽S′
k

s[p]:q!mk(Sk)·M, s[q]:(V, p&
{

mi(S′
i){δi, λi}.Ti

}
i∈I

) s:q,p:mk−−−−−→ s[p]:M, s[q]:(V[λk 7→ 0], Tk)
[Γ-&]

c:(V, T) t−→ c:(V + t, T) [Γ-Ts] s[p]:M t−→ s[p]:M [Γ-Tq] s[p]:M; (V, T) t−→ s[p]:M; (V + t, T) [Γ-Tc]

Γ1
t−→ Γ′

1 Γ2
t−→ Γ′

2

Γ1, Γ2
t−→ Γ′

1, Γ′
2

[Γ-,T]
Γ ≡ Γ1 Γ1

α−→ Γ′
1 Γ′

1 ≡ Γ′

Γ α−→ Γ′
[Γ-struct]

⟨V; G⟩ t−→ ⟨V + t; G⟩ [GR-t]
⟨V; G{µt.G/t}⟩ α−→ ⟨V′; G′⟩

⟨V; µt.G⟩ α−→ ⟨V′; G′⟩
[GR-µ]

j ∈ I V |= δOj V′ = V[λOj 7→ 0]

⟨V; p→q:
{

mi(Si){Ai}.G′
i

}
i∈I⟩

s:p!q:mj−−−−−→ ⟨V′; p⇝q:j
{

mi(Si){Ai}.G′
i

}
i∈I⟩

[GR-⊕]

j ∈ I V |= δIj V′ = V[λIj 7→ 0]

⟨V; p⇝q:j
{

mi(Si){Ai}.G′
i

}
i∈I⟩

s:q,p:mj−−−−−→ ⟨V′; G′
j⟩

[GR-&]

∀i ∈ I : ⟨V; G′
i⟩

α−→ ⟨V′; G′′
i ⟩ p, q /∈ subject(α) α ̸= t

⟨V; p→q:
{

mi(Si){Ai}.G′
i

}
i∈I⟩ α−→ ⟨V′; p→q:

{
mi(Si){Ai}.G′′

i

}
i∈I⟩

[GR-Ctx-i]

∀i ∈ I : ⟨V; G′
i⟩

α−→ ⟨V′; G′′
i ⟩ q /∈ subject(α) α ̸= t

⟨V; p⇝q:j
{

mi(Si){Ai}.G′
i

}
i∈I⟩ α−→ ⟨V′; p⇝q:j

{
mi(Si){Ai}.G′′

i

}
i∈I⟩

[GR-Ctx-ii]

Figure 7 Top: typing environment semantics. Bottom: timed global type semantics, where
Ai = δOi, λOi, δIi, λIi.

The label s:p!q:m indicates that p sends the message m to q on session s, while s:p,q:m
denotes the reception of m from q by p on s. Additionally, the label t (∈ R≥0) represents a
time action modelling the passage of time.

The (highlighted) main modifications in the reduction rules for typing environments,
compared to standard rules, concern time. Rule [Γ-⊕] states that an entry can perform an
output transition by appending a message at the respective queue within the time specified by
the output clock constraint. Dually, rule [Γ-&] allows an entry to execute an input transition,
consuming a message from the corresponding queue within the specified input clock constraint,
provided that the payloads are compatible through subtyping. Note that in both rules, the
associated clock valuation of the reduced entry must be updated according to the reset.

Rules [Γ-,x] and [Γ-,τ] pertain to untimed reductions, i.e. α ≠ t, within a larger environment.
Rule [Γ-Ts] models time passing on an entry of timed session type by incrementing the
associated clock valuation, while rule [Γ-Tq] specifies that an entry of queue type is not
affected with respect to time progression. Thus, rule [Γ-Tc] captures the corresponding time
behaviour for a timed-session/queue type entry. Additionally, rule [Γ-,T] ensures that time
elapses uniformly across compatibly composed environments. Other rules are standard: [Γ-µ]

is for recursion, and [Γ-struct] ensures that reductions are closed under congruence.

The reduction Γ →s Γ′ indicates that the typing environment Γ can advance on session
s, involving any roles, while Γ → Γ′ signifies Γ progressing on any session. This distinction
helps in illustrating properties of typed processes discussed in § 4.5.

ECOOP 2024

19:16 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

4.3 Relating Timed Global Types and Typing Environments
One of our main results is establishing an operational relationship between the semantics of
timed global types and typing environments, ensuring the correctness of processes typed by
environments that reflect timed global types. To accomplish this, we begin by assigning LTS
semantics to timed global types.

Similar to that of typing environments, we define the LTS semantics for timed global types
G over tuples of the form ⟨V; G⟩, where V is a clock valuation. Additionally, we specify the
subject of an action α as its responsible principal: subject(s:p!q:m) = subject(s:p,q:m) = {p},
and subject(t) = ∅.

▶ Definition 10 (Timed Global Type Reduction). The timed global type transition α−→ is
inductively defined by the rules in Fig. 7 (bottom). We denote ⟨V; G⟩ −→ ⟨V′; G′⟩ if there exists
α such that ⟨V; G⟩ α−→ ⟨V′; G′⟩, ⟨V; G⟩ −→ if there exists ⟨V′; G′⟩ such that ⟨V; G⟩ −→ ⟨V′; G′⟩,
and −→∗ as the transitive and reflexive closure of −→.

In Fig. 7 (bottom), the (highlighted) changes from the standard global type reduction
rules [11] focus on time. Rule [GR-t] accounts for the passage of time by incrementing the
clock valuation. Rules [GR-⊕] and [GR-&] model the sending and receiving of messages within
specified clock constraints, respectively. Both rules also require the adjustment of the clock
valuation using the reset predicate. Rule [GR-µ] handles recursion. Finally, rules [GR-Ctx-i]

and [GR-Ctx-ii] allow reductions of (intermediate) global types causally independent of their
prefixes. Note that the execution of any timed global type transition always starts with an
initial clock valuation V0, i.e. all clocks in V are set to 0.

We are now ready to establish a new relationship, association, between timed global types
and typing environments. This association, which is more general than projection (Def. 6)
by incorporating subtyping ⩽ (Def. 5), plays a crucial role in formulating the typing rules
(§ 4.4) and demonstrating the properties of typed processes (§ 4.5).

▶ Definition 11 (Association). A typing environment Γ is associated with a timed global type
⟨V; G⟩ for a multiparty session s, written ⟨V; G⟩ ⊑s Γ, iff Γ can be split into three (possibly
empty) sub-environments Γ = ΓG, Γ∆, Γend where:
1. ΓG is associated with ⟨V; G⟩ for s, provided as:

(i) dom(ΓG) = {s[p] | p ∈ roles(G)};
(ii) ∀s[p] ∈ dom(ΓG) : ΓG(s[p]) = (Vp, Tp);
(iii) ∀p ∈ roles(G) : G↾ p ⩽ Tp; and
(iv) V = ⊔p∈roles(G)Vp (recall that ⊔ is an overriding union).

2. Γ∆ is associated with G for s, given as follows:
(i) dom(Γ∆) = {s[p] | p ∈ roles(G)};
(ii) ∀s[p] ∈ dom(Γ∆) : Γ∆(s[p]) = Mp;
(iii) if G = end or G = µt.G′, then ∀s[p] ∈ dom(Γ∆) : Γ∆(s[p]) = ⊘;
(iv) if G = p→q: {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I , then

(a1) q /∈ receivers(Γ∆(s[p])), and
(a2) ∀i ∈ I: Γ∆ is associated with Gi for s;

(v) if G = p⇝q:j {mi(Si){δOi, λOi, δIi, λIi}.Gi}i∈I , then
(b1) Γ∆(s[p]) = q!mj(S′

j)·M with S′
j ⩽ Sj, and

(b2) Γ∆[s[p] 7→ M] is associated with Gj for s.
3. ∀s[p] ∈ dom(Γend) : Γend(s[p]) = ⊘; (Vp, end).

The association · ⊑· · is a binary relation over timed global types ⟨V; G⟩ and typing
environments Γ, parameterised by multiparty sessions s. There are three requirements for
the association:

P. Hou, N. Lagaillardie, and N. Yoshida 19:17

(1) The typing environment Γ must include two entries for each role of the global type G in
s: one of timed session type and another of queue type;

(2) The timed session type entries in Γ reflect ⟨V; G⟩ by ensuring that:
a. they align with the projections of G via subtyping, and
b. their clock valuations match V;

(3) The queue type entries in Γ correspond to the transmissions en route in G.

Note that Γend is specifically used to associate typing environments and end-types ⟨V; end⟩,
as in this case, both ΓG and Γ∆ are empty.

▶ Example 12. Consider the timed global type ⟨{CSen = 0, CSat = 0, CSer = 0}; Gdata⟩, where
Gdata is from Ex. 7, and a typing environment Γdata = ΓGdata , Γ∆data , where:

ΓGdata = s[Sen]:({CSen = 0}, Sat⊕Data{6 ≤ CSen ≤ 7, CSen := 0}),

s[Sat]:({CSat = 0}, Sen&
{

Data{6 ≤ CSat ≤ 7, ∅}.Ser⊕Data{6 ≤ CSat ≤ 7, CSat := 0}
fail{6 ≤ CSat ≤ 7, ∅}.Ser⊕fatal{6 ≤ CSat ≤ 7, CSat := 0}

}
),

s[Ser]:({CSer = 0}, Sat&
{

Data{6 ≤ CSer ≤ 7, CSer := 0}
fatal{6 ≤ CSer ≤ 7, CSer := 0}

}
)

Γ∆data = s[Sen]:⊘, s[Sat]:⊘, s[Ser]:⊘

Γdata is associated with ⟨{CSen = 0, CSat = 0, CSer = 0}; Gdata⟩ for s, which can be formally
verified by ensuring that Γdata satisfies all conditions outlined in Def. 11.

We establish the operational correspondence between a timed global type and its associated
typing environment, our main result for timed multiparty session types, through two theorems:
Thm. 13 demonstrates that every possible reduction of a typing environment is mirrored by a
corresponding action in reductions of the associated timed global type, while Thm. 14 indicates
that the reducibility of a timed global type is equivalent to its associated environment.

▶ Theorem 13 (Completeness of Association). Given associated timed global type ⟨V; G⟩
and typing environment Γ: ⟨V; G⟩ ⊑s Γ. If Γ α−→ Γ′, then there exists ⟨V′; G′⟩ such that
⟨V; G⟩ α−→ ⟨V′; G′⟩ and ⟨V′; G′⟩ ⊑s Γ′.

▶ Theorem 14 (Soundness of Association). Given associated timed global type ⟨V; G⟩ and
typing environment Γ: ⟨V; G⟩ ⊑s Γ. If ⟨V; G⟩ −→, then there exists α′, V′, ⟨V′′; G′′⟩, Γ′, and
Γ′′, such that ⟨V′; G⟩ ⊑s Γ′, ⟨V′; G⟩ α′

−→ ⟨V′′; G′′⟩, Γ′ α′

−→ Γ′′, and ⟨V′′; G′′⟩ ⊑s Γ′′.

▶ Remark 15. We formulate a soundness theorem that does not mirror the completeness
theorem, differing from prior work such as [11]. This choice stems from our reliance on
subtyping (Def. 5), notably [Sub-⊕]. In our framework, a timed local type in the typing
environment might offer fewer selection branches compared to the corresponding projected
timed local type. Consequently, certain sending actions with their associated clock valuations
may remain uninhabited within the timed global type. Consider, e.g. a timed global type:

⟨Vr; Gr⟩ = ⟨{Cp = 3, Cq = 3}; p→q:
{

m1{0 ≤ Cp ≤ 1, ∅, 1 ≤ Cq ≤ 2, ∅}.end
m2{2 ≤ Cp ≤ 4, ∅, 5 ≤ Cq ≤ 6, ∅}.end

}
⟩

An associated typing environment Γr may have:
Γr(s[p]) = ({Cp = 3}, q⊕m1{0 ≤ Cp ≤ 1, ∅}.end); ⊘ ⩾ ({Cp = 3}, q⊕

{
m1{0 ≤ Cp ≤ 1, ∅}.end
m2{2 ≤ Cp ≤ 4, ∅}.end

}
); ⊘

While the timed global type ⟨Vr; Gr⟩ might transition through s:p!q:m2, the associated environ-
ment Γr cannot. Nevertheless, our soundness theorem adequately guarantees communication
safety (communication matches) via association.

ECOOP 2024

19:18 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

Θ(X) = (V1, T1), . . . , (Vn, Tn)
Θ ⊢ X :(V1, T1), . . . , (Vn, Tn)

[T-X]
∀i ∈ 1..n ci :(Vi, Ti) ⊢ ci :(V′

i, end)
end(c1 :(V1, T1), . . . , cn :(Vn, Tn))

[T-end]

(V, T) ⩽ (V′, T ′)
c:(V, T) ⊢ c:(V′, T ′)

[T-Sub]

Θ, X:(V1, T1), . . . , (Vn, Tn) · x1 :(V1, T1), . . . , xn :(Vn, Tn) ⊢ P
Θ, X:(V1, T1), . . . , (Vn, Tn) · Γ ⊢ Q

Θ · Γ ⊢ def X(x1 :(V1, T1), . . . , xn :(Vn, Tn)) = P in Q
[T-def]

end(Γ)
Θ · Γ ⊢ 0

[T-0]
Θ ⊢ X :(V1, T1), . . . , (Vn, Tn) end(Γ0) ∀i ∈ 1..n Γi ⊢ ci :(Vi, Ti)

Θ · Γ0, Γ1, . . . , Γn ⊢ X⟨c1, . . . , cn⟩
[T-X-Call]

∀t s.t. |= δ[t/C] : Θ · Γ ⊢ delay(t) . P

Θ · Γ ⊢ delay(δ) . P
[T-δ]

Θ · Γ + t ⊢ P

Θ · Γ ⊢ delay(t) . P
[T-t]

∀i∈I ∀t : t ≤ n =⇒ V + t |= δi

Γ1 ⊢ c:(V, q&{mi(Si){δi, λi}.Ti}i∈I) ∀i∈I : Si = (δ′
i, T ′

i) V′
i |= δ′

i

∀i∈I ∀t ≤ n : Θ · Γ + t, yi :(V′
i, T ′

i), c:(V + t[λi 7→ 0], Ti) ⊢ Pi

Θ · Γ, Γ1 ⊢ cn[q]
∑

i∈I
mi(yi).Pi

[T-&]

∀t : t ≤ n =⇒ V + t |= δ

Γ1 ⊢ c:(V, q⊕{m(S){δ, λ}.T }) S = (δ′, T ′) Γ2 ⊢ d:(V′, T ′) V′ |= δ′

∀t ≤ n : Θ · Γ + t, c:(V + t[λ 7→ 0], T) ⊢ P

Θ · Γ, Γ1, Γ2 ⊢ cn[q]⊕m⟨d⟩.P
[T-⊕]

Θ · Γ1 ⊢ P1 Θ · Γ2 ⊢ P2

Θ · Γ1, Γ2 ⊢ P1 | P2
[T-|]

end(Γ) n ≥ 0
Θ · Γ, s[p1]:τ1, . . . , s[pn]:τn ⊢ s

[T-Kill]

Θ · Γ ⊢ P subjP(P) = {c} Θ · Γ ⊢ Q

Θ · Γ ⊢ try P catch Q
[T-Try]

Θ · Γ ⊢ Q

Θ · Γ, s[p]:τ ⊢ cancel(s[p]) . Q
[T-Cancel]

Θ · Γ ⊢ timeout[P]
[T-Failed]

⟨V; G⟩ ⊑s Γ′ s ̸∈ Γ Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢
(
νs:Γ′

)
P

[T-ν-G]

end(Γ)
Θ · Γ, s[p]:⊘ ⊢ s[p]▶ϵ

[T-ϵ]
Θ · Γ ⊢ s[p]▶σ S = (δ, T) V |= δ Γ′ ⊢ s′[r]:(V, T)

Θ · Γ[s[p] 7→ q!m(S)·Γ(s[p])], Γ′ ⊢ s[p]▶q!m⟨s′[r]⟩ ·σ
[T-σ]

Figure 8 ATMP typing rules.

4.4 Affine Timed Multiparty Session Typing System
We now present a typing system for ATMP, which relies on typing judgments of the form:

Θ · Γ ⊢ P (with Θ omitted when empty)
This judgement indicates that the process P adheres to the usage of its variables and channels
as specified in Γ (Def. 8), guided by the process types in Θ (Def. 8). Our typing system
is defined inductively by the typing rules shown in Fig. 8, with channels annotated for
convenience, especially those bound by process definitions and restrictions.

The innovations (highlighted) in Fig. 8 primarily focus on typing processes with time,
timeout failures, message queues, and using association (Def. 11) to enforce session restrictions.
Standard from [37]: Rule [T-X] retrieves process variables. Rule [T-Sub] applies subtyping
within a singleton typing environment c:(V, T). Rule [T-end] introduces a predicate end(·) for
typing environments, signifying the termination of all endpoints. This predicate is used in
[T-0] to type an inactive process 0. Rules [T-def] and [T-X-Call] deal with recursive processes
declarations and calls, respectively. Rule [T-|] partitions the typing environment into two,
each dedicated to typing one sub-process.
Session Restriction: Rule [T-ν-G] depends on a typing environment associated with a timed
global type in a given session s to validate session restrictions.
Delay: Rule [T-δ] ensures the typedness of time-consuming delay delay(δ) . P by checking
every deterministic delay delay(t) . P with t as a possible solution to δ. Rule [T-t] types a
deterministic delay delay(t) . P by adjusting the clock valuations in the environment used
to type P . Here, Γ + t denotes the typing environment obtained from Γ by increasing the
associated clock valuation in each entry by t.

P. Hou, N. Lagaillardie, and N. Yoshida 19:19

Timed Branching and Selection: Rules [T-&] and [T-⊕] are for timed branching and
selection, respectively. We elaborate on [T-&], as [T-⊕] is its dual. The first premise in [T-&]

specifies a time interval [V,V + n] within which the message must be received, in accordance
with each δi. The last premise requires that each continuation process be well-typed against
the continuation of the type in all possible typing environments where the time falls between
[V,V + n]. Here, the clock valuation V is reset based on each λi. The remaining premises
stipulate that the clock valuation V′

i of each delegated receiving session must satisfy δ′
i, and

that c is typed.
Try-Catch, Cancellation, and Kill: Rules [T-Try], [T-Cancel], and [T-Kill] pertain to try-
catch, cancellation, and kill processes, respectively, analogous to the corresponding rules
in [28]. [T-Cancel] is responsible for generating a kill process at its declared session. [T-Kill]

types a kill process arising during reductions: it involves broadcasting the cancellation of
s[p] to all processes that belong to s. [T-Try] handles a try-catch process try P catch Q by
ensuring that the try process P and the catch process Q maintain consistent session typing.
Additionally, P cannot be a queue or parallel composition, as indicated by subjP(P) = {c}.
Timeout Failure: Rule [T-Failed] indicates that a process raising timeout failure can be
typed by any typing environment.
Queue: Rules [T-ϵ] and [T-σ] concern the typing of queues. [T-ϵ] types an empty queue under
an ended typing environment, while [T-σ] types a non-empty queue by inserting a message
type into Γ. This insertion may either prepend the message to an existing queue type in Γ
or add a queue-typed entry to Γ if not present.

▶ Example 16. Take the typing environment Γdata from Ex. 12, along with the processes QSen,
QSat, QSer from Ex. 4. Verifying the typing of QSen | QSat | QSer by Γdata is easy. Moreover,
since Γdata is associated with a timed global type ⟨{CSen = 0, CSat = 0, CSer = 0}; Gdata⟩ for
session s (as demonstrated in Ex. 12), i.e. ⟨{CSen = 0, CSat = 0, CSer = 0}; Gdata⟩ ⊑s Γdata,
following [T-ν-G], QSen | QSat | QSer is closed under Γdata, i.e. ⊢ (νs:Γdata) QSen | QSat | QSer.

4.5 Typed Process Properties
We demonstrate that processes typed by the ATMP typing system exhibit the desirable proper-
ties: subject reduction (Thm. 17), session fidelity (Thm. 21), and deadlock-freedom (Thm. 24).

Subject Reduction. Subject reduction ensures the preservation of well-typedness of processes
during reductions. Specifically, it states that if a well-typed process P reduces to P ′, this
reduction is reflected in the typing environment Γ used to type P . Notably, in our subject
reduction theorem, P is constructed from a timed global type, i.e. typed by an environment
associated with a timed global type, and this construction approach persists as an invariant
property throughout reductions. Furthermore, the theorem does not require P to contain
only a single session; instead, it includes all restricted sessions in P , ensuring that reductions
on these sessions uphold their respective restrictions. This enforcement is facilitated by rule
[T-ν-G] in Fig. 8.

▶ Theorem 17 (Subject Reduction). Assume Θ · Γ ⊢ P where ∀s ∈ Γ : ∃⟨V; G⟩ : ⟨V; G⟩ ⊑s Γs.
If P →P ′, then ∃Γ′ such that Γ→∗ Γ′, Θ · Γ′ ⊢ P ′, and ∀s ∈ Γ′ : ∃⟨V′; G′⟩ : ⟨V′; G′⟩ ⊑s Γ′

s.

▶ Corollary 18 (Type Safety). Assume ∅ · ∅ ⊢ P . If P →∗ P ′, then P ′ has no communication
error.

▶ Example 19. Take the typed process QSen | QSat | QSer and the typing environment Γdata
from Exs. 4, 12, and 16. After a reduction using [R-Det], QSen | QSat | QSer transitions to
delay(6.5) . Q′

Sen |s[Sen]▶ϵ|delay(6) . Q′
Sat |s[Sat]▶ϵ|delay(6) . Q′

Ser |s[Ser]▶ϵ = Q2, which

ECOOP 2024

19:20 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

remains typable by Γdata (Γdata →∗ Γdata). Then, applying [R-Time], Q2 evolves to Ψ6.5(Q2),
typed as Γdata+6.5, derived from Γdata

6.5−−→ Γdata+6.5. Further reduction through [R-Fail] leads
Ψ6.5(Q2) to Q′

Sen |s[Sen]▶ϵ |s |s[Sat]▶ϵ |Ψ0.5(Q′
Ser) |s[Ser]▶ϵ = Q3, typable by Γdata +6.5.

Later, via [C-Cat], Q3 reduces to cancel(s[Sen]) |s[Sen]▶ϵ |s |s[Sat]▶ϵ |Ψ0.5(Q′
Ser) |s[Ser]▶ϵ,

which can be typed by Γ′′
data, obtained from Γdata + 6.5 s:Sen!Sat:Data−−−−−−−−→ · s:Sat,Sen:Data−−−−−−−−→ Γ′′

data.

Session Fidelity. Session fidelity states the converse implication of subject reduction: if a
process P is typed by Γ and Γ can reduce, then P can simulate at least one of the reductions
performed by Γ – although not necessarily all such reductions, as Γ over-approximates the
behavior of P . Consequently, we can infer P ’s behaviour from that of Γ. However, this result
does not hold for certain well-typed processes, such as those that get trapped in recursion
loops like def X(...) = X in X, or deadlock due to interactions across multiple sessions [8].
To address this, similarly to [37] and most session type works, we establish session fidelity
specifically for processes featuring guarded recursion and implementing a single multiparty
session as a parallel composition of one sub-process per role. The formalisation of session
fidelity is provided in Thm. 21, building upon the concepts introduced in Def. 20.

▶ Definition 20 (From [37]). Assume ∅ · Γ ⊢ P . We say that P :
1. has guarded definitions if and only if in each process definition in P of the form

def X(x1 :(V1, T1), ..., xn :(Vn, Tn)) = Q in P ′, for all i ∈ 1...n, Ti ̸⩽end implies that a call
Y ⟨..., xi, ...⟩ can only occur in Q as a subterm of xi

n[q]
∑

j∈J mj(yj).Pj or xi
n[q]⊕m⟨d⟩.P ′′

(i.e. after using xi for input or output);
2. only plays role p in s, by Γ, if and only if

(i) P has guarded definitions;
(ii) fv(P) = ∅;
(iii) Γ=Γ0, s[p]:τ with τ ̸⩽ (V, end) and end(Γ0);
(iv) in all subterms (νs′ :Γ′) P ′ of P , we have Γ′ ⩽ s′[p′]:⊘; (V′, end) or Γ′ ⩽ s′[p′]:(V′, end)

(for some p′,V′).
We say “P only plays role p in s” if and only if ∃Γ : ∅ · Γ ⊢ P , and item 2 holds.

In Def. 20, item 1 describes guarded recursion for processes, while item 2 specifies a
process limited to playing exactly one role within one session, preventing an ensemble of
such processes from deadlocking by waiting for each other on multiple sessions.

We proceed to present our session fidelity result, taking kill processes into account. We
denote Q to indicate that Q consists only of a parallel composition of kill processes. Similar
to subject reduction (Thm. 17), our session fidelity relies on a typing environment associated
with a timed global type for a specific session s to type the process, ensuring the fulfilment
of single-session requirements (Def. 20) and maintaining invariance during reductions.

▶ Theorem 21 (Session Fidelity). Assume ∅ · Γ ⊢ P , with ⟨V; G⟩ ⊑s Γ, P ≡ Πp∈IPp | Q ,
and Γ =

⋃
p∈I Γp ∪ Γ0, such that ∅ · Γ0 ⊢ Q , and for each Pp:

(1) ∅ · Γp ⊢ Pp, and
(2) either Pp ≡ 0, or Pp only plays role p in s, by Γp.
Then, Γ →s implies ∃Γ′, ⟨V′; G′⟩, P ′ such that Γ →s Γ′, P →∗ P ′, and ∅ · Γ′ ⊢ P ′, with
⟨V′; G′⟩ ⊑s Γ′, P ′ ≡ Πp∈IP ′

p | Q′ , and Γ′ =
⋃

p∈I Γ′
p ∪ Γ′

0 such that ∅ · Γ′
0 ⊢ Q′ , and for

each P ′
p:

(1) ∅ · Γ′
p ⊢ P ′

p, and
(2) either P ′

p ≡ 0, or P ′
p only plays role p in s, by Γ′

p.

▶ Example 22. Consider the processes QSen, QSat, QSer from Ex. 4, the process Q3
from Ex. 19, and the typing environment Γdata from Ex. 12. QSen, QSat, and QSer only play
roles Sen, Sat, and Ser, respectively, in s, which can be easily verified. As demonstrated

P. Hou, N. Lagaillardie, and N. Yoshida 19:21

in Ex. 19, Q3 is typed by Γdata + 6.5, satisfying all prerequisites specified in Thm. 21.
Consequently, given Γdata + 6.5 s:Sen!Sat:Data−−−−−−−−→ Γ′

data, there exists Q4, resulting from Q3 → Q4
via [R-Out], such that Γ′

data can type Q4, with Γ′
data and Q4 fulfilling the single session

requirements of session fidelity.

Deadlock-Freedom. Deadlock-freedom ensures that a process can always either progress
via reduction or terminate properly. In our system, where time can be infinitely reduced
and session killings may occur during reductions, deadlock-freedom implies that if a process
cannot undergo any further instantaneous (communication) reductions, and if any subsequent
time reduction leaves it unchanged, then it contains only inactive or kill sub-processes. This
desirable runtime property is guaranteed by processes constructed from timed global types.
We formalise the property in Def. 23, and conclude, in Thm. 24, that a typed ensemble of
processes interacting on a single session, restricted by a typing environment Γ associated
with a timed global type ⟨V0; G⟩, is deadlock-free.

▶ Definition 23 (Deadlock-Free Process). P is deadlock-free if and only if P →∗ P ′↣̸ and
∀t ≥ 0 : Ψt(P ′) = P ′ (recall that Ψt(·) is a time-passing function defined in Fig. 4) implies
P ′ ≡ 0 | Πi∈Isi .

▶ Theorem 24 (Deadlock-Freedom). Assume ∅·∅⊢P , where P ≡ (νs:Γ) Πp∈roles(G)Pp,
⟨V0; G⟩ ⊑s Γ, and each Pp is either 0 (up to ≡), or only plays p in s. Then, P is deadlock-free.

▶ Example 25. Given the processes QSen, QSat, and QSer from Ex. 4, along with the typing
environment Γdata from Ex. 12, (νs:Γdata) QSen | QSat | QSer is deadlock-free.

5 Design and Implementation of MultiCrustyT

In this section, we present our toolchain, MultiCrustyT, a Rust implementation of ATMP.
MultiCrustyT is designed with two main goals: correctly cascading failure notifications,
and effectively handling time constraints. To achieve the first goal, we use Rust’s native
?-operator along with optional types, inspired by [28]. For the second objective, we begin by
discussing the key challenges encountered during implementation.

Challenge 1: Representation of Time Constraints. To handle asynchronous timed communic-
ations using ATMP, we define a time window (δ in ATMP) and a corresponding behaviour for
each operation. Addressing this constraint involves two subtasks: creating and using clocks
in Rust, and representing all clock constraints as shown in § 3. Rust allows the creation of
virtual clocks that rely on the CPU’s clock and provide nanosecond-level accuracy. Addition-
ally, it is crucial to ensure that different behaviours can involve blocking or non-blocking
communications, pre- or post-specific time tags, or adherence to specified time bounds.

Challenge 2: Enforcement of Time Constraints. To effectively enforce time windows, imple-
menting reliable and accurate clocks and using them correctly is imperative. This requires
addressing all cases related to time constraints properly: clocks may be considered unreliable
if they skip ticks, do not strictly increase, or if the API for clock comparison does not
yield results quickly enough. Enforcing time constraints in MultiCrustyT involves using two
libraries: the crossbeam_channel Rust library [9] for asynchronous messaging, and the
Rust standard library time [39] for handling and comparing virtual clocks.

ECOOP 2024

19:22 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

5.1 Time Bounds in MultiCrustyT

Implementing Time Bounds. To demonstrate the integration of time bounds in
MultiCrustyT, we consider the final interaction between Sen and Sat in Fig. 1b, spe-
cifically from Sat’s perspective: Sat sends a Close message between time units 5 and 6 (both
inclusive), following clock CSat2, which is not reset afterward.

In MultiCrustyT, we define the Send type for message transmission, incorporating various
parameters to specify requirements as Send<[parameter1],[parameter2],...>. Assuming the
(payload) type Close is defined, sending it using the Send type initiates with Send<Close,...>.
If CSat2 is denoted as ’b’, the clock ’b’ is employed for time constraints, expressed as
Send<Close,’b’,...>. Time bounds parameters in the Send type follow the clock declaration.
In this case, both bounds are integers within the time window, resulting in the Send type
being parameterised as Send<Close,’b’,0,true,1,false,...>. Notably, bounds are integers
due to the limitations of Rust’s generic type parameters. To ensure that the clock ’b’ is not
reset after triggering the send operation, we represent this with a whitespace char value in
the Send type: Send<Close,’b’,0,true,1,false,’ ’,...>. The last parameter, known as the
continuation, specifies the operation following the sending of the integer. In this case, closing
the connection is achieved with an End type. The complete sending operation is denoted as
Send<Close, ’b’, 0, true, 1, false, ’ ’, End>.

Similarly, the Recv type is instantiated as Recv<Close,’b’,0,true,1,false,’ ’,End>. The
inherent mirroring of Send and Recv reflects their dual compatibility. Figs. 2a and 2b provide
an analysis of the functioning of Send and Recv, detailing their parameters and features.
Generic type parameters preceded by const within Send and Recv types also serve as values,
representing general type categories supported by Rust. This type-value duality facilitates
easy verification during compilation, ensuring compatibility between communicating parties.

Enforcing Time Bounds. It is crucial to rely on dependable clocks and APIs to enforce
time constraints. Rust’s standard library provides the time module [39], enabling developers
to manage clocks and measure durations between events. This library, utilising the OS API,
offers two clock types: Instant (monotonic but non-steady) and SystemTime (steady but non-
monotonic). In MultiCrustyT, the Instant type serves for both correctly prioritising event
order and implementing virtual clocks. Virtual clocks are maintained through a dictionary
(HashMap in Rust). Table 1 details the primitives provided by MultiCrustyT for sending and
receiving payloads, implementing branching, or closing connections. All primitives, except
for close, require a specific HashMap of clocks to enforce time constraints.

Verifying Time Bounds. Our send and recv primitives use a series of conditions to ensure
the integrity of a time window. The verification process adopts a divide-and-conquer strategy,
validating the left-hand side time constraint for each clock before assessing the right-hand side
constraint. The corresponding operation, whether sending or receiving a payload, is executed
only after satisfying these conditions. This approach guarantees the effective enforcement of
time constraints without requiring complex solver mechanisms.

5.2 Remote Data Implementation
Implementation of Server. Fig. 9 explores our MultiCrustyT implementation of Ser in
the remote data protocol (Fig. 1b). Specifically, the left side of Fig. 9 delves into the
MeshedChannels type, representing the behaviour of Ser in the first branch and encapsulating
various elements. In MultiCrustyT, the MeshedChannels type incorporates n + 1 parameters,

P. Hou, N. Lagaillardie, and N. Yoshida 19:23

Table 1 Primitives available in MultiCrustyT.

let s = s.send(p, clocks)?; If allowed by the time constraint compared to the given clock in clocks,
sends a payload p on a channel s and assigns the continuation of the session
(a new meshed channel) to a new variable s.

let (p, s) = s.recv(clocks)?; If allowed by the time constraint compared to the given clock in clocks,
receives a payload p on channel s and assigns the continuation of the
session to a new variable s.

s.close() Closes the channel s and returns a unit type.

offer!(s, clocks, {

enumi :: variantk(e) => {...}k∈K })
If allowed by the time constraint compared to the given clock in clocks,
role i receives a choice as a message label on channel s, and, depending on
the label value which should match one of the variants variantk of enumi ::,
runs the related block of code.

choose_X!(s, clocks, {

enumi :: variantk(e) }i∈I)
For role X, if allowed by the time constraint compared to the given clock
in clocks, sends the chosen label, corresponding to variantk to all other
roles.

1 type EndpointSerData = MeshedChannels<
2 Send<GetData, ’a’, 5, true,5, true, ’ ’,
3 Recv<Data, ’a’, 6, true, 7, true, ’a’, End

>>,
4 End,
5 RoleSat<RoleSat<RoleBroadcast>>,
6 NameSer>;

7 fn endpoint_data_ser(
8 s: EndpointSerData,
9 clocks: &mut HashMap<char, Instant>,

10) -> Result<(), Error> { [...]
11 let s = s.send(GetData {}, clocks)?;
12 let (_data, s) = s.recv(clocks)?;[...]}

Figure 9 Types (left) and primitives (right) for Ser.

where n is the count of roles in the protocol. These parameters include the role’s name, n − 1
binary channels for interacting with other roles, and a stack dictating the sequence of binary
channel usage. All types relevant to Ser are depicted in Fig. 9 (left).

The alias EndpointSerData, as indicated in Line 1, represents the MeshedChannels type.
Binary types, defined in Lines 2–4, facilitate communication between Ser, Sat, and Sen.
When initiating communication with Sat, Ser sends a GetData message in Line 2, receives a
Data response, and ends communication on this binary channel. These operations use the
clock ’a’ and adhere to time windows between 5 and 6 seconds for the first operation and
between 6 and 7 seconds for the second. Clock ’a’ is reset only within the second operation.
The order of operations is outlined in Line 5, where Ser interacts twice with Sat using
RoleSat before initiating a choice with RoleBroadcast. Line 6 designates Ser as the owner of
the MeshedChannels type. The behaviour of all roles in each branch can be specified similarly.

The right side of Fig. 9 illustrates the usage of EndpointSerData as an input type in the
Rust function endpoint_data_ser. The function’s output type, Result<(), Error>, indicates
the utilization of affinity in Rust. In Line 11, variable ’s’, of type EndpointSerData, attempts
to send a contentless message GetData. The send function can return either a value resembling
EndpointSerData or an Error. If the clock’s time does not adhere to the time constraint
displayed in Line 2 with respect to the clock ’a’ from the set of clocks clocks, an Error is
raised. Similarly, in Line 12, Ser attempts to receive a message using the same set of clocks.
Both send and recv functions verify compliance with time constraints by comparing the
relevant clock provided in the type for the time window and resetting the clock if necessary.

Error Handling. The error handling capabilities of MultiCrustyT cover various potential
errors that may arise during protocol implementation and execution. These errors include
the misuse of generated types and timeouts, showcasing the flexibility of our implementation

ECOOP 2024

19:24 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

1 global protocol RemoteData(role Sen, role Sat, role Ser){
2 rec Loop {
3 choice at Ser {
4 GetData() from Ser to Sat within [5;6] using a and resetting ();
5 GetData() from Sat to Sen within [5;6] using b and resetting ();
6 Data() from Sen to Sat within [6;7] using b and resetting (b);
7 Data() from Sat to Ser within [6;7] using a and resetting (a);
8 continue Loop
9 } or {

10 Close() from Ser to Sat within [5;6] using a and resetting ();
11 Close() from Sat to Sen within [5;6] using b and resetting (); } } }

Figure 10 Remote data protocol in νScrT .

in verifying communication protocols. For instance, if Lines 11 and 12 in Fig. 9 are swapped,
the program will fail to compile because it expects a send primitive in Line 11, as indicated
by the type of ’s’. Another compile-time error occurs when a payload with the wrong type
is sent. For example, attempting to send a Data message instead of a GetData in Line 11
will result in a compilation error. MultiCrustyT can also identify errors at runtime. If the
content of the function endpoint_data_ser, spanning in Lines 10–12, is replaced with a single
Ok(()), the code will compile successfully. However, during runtime, the other roles will
encounter failures as they consider Ser to have failed.

Timeouts are handled dynamically within MultiCrustyT. If a time-consuming task with
a 10-second delay is introduced between Lines 11 and 12, Ser will enter a sleep state for the
same duration. Consequently, the recv operation in Line 12 will encounter a time constraint
violation, resulting in the failure and termination of Ser. Furthermore, the absence of clock
’a’ in the set of clocks, where it is required for a specific primitive, will trigger a runtime
error, as the evaluation of time constraints depends on the availability of the necessary clocks.

Timed Protocol Specification. To specify timed multiparty protocols, we extend νScr [42],
a multiparty protocol description language, with time features, resulting in νScrT . Additional
keywords such as within, using, and and resetting are incorporated in νScr to support
the specification of time windows, clocks, and resets, respectively. In Fig. 10, we illustrate the
νScrT protocol for remote data, showcasing the application of these enhancements. νScrT

ensures the accuracy of timed multiparty protocols by verifying interactions, validating time
constraints, handling clock increments, and performing standard MPST protocol checks.

6 Evaluation: Expressiveness, Case Studies and Benchmarks

We evaluate our toolchain MultiCrustyT from two perspectives: expressivity and feasibility.
In terms of expressivity, we implement protocols from the session type literature [20, 33, 13,
24, 21, 36], as well as newly introduced protocols derived from real-world applications [7, 38,
2, 35, 41]. Regarding feasibility, we compare our system to MultiCrusty [28], an untimed
implementation of affine synchronous MPST, demonstrating that our tool introduces negligible
compile-time and runtime overhead in all cases, as expected.

6.1 Performance: MultiCrustyT vs. MultiCrusty

When comparing MultiCrustyT with MultiCrusty, we evaluate their performance on two
standard benchmark protocols: the ring protocol, which involves sequentially passing a
message through roles, and the mesh protocol, where each participant sends a message to
every other. Both protocols underwent 100 iterations within a time window of 0 to 10 seconds.
Fig. 11 (top) displays benchmark results for roles ranging from 2 to 8.

P. Hou, N. Lagaillardie, and N. Yoshida 19:25

2 3 4 5 6 7 8 9 10

roles

35

45

55

T
im
e
(s
)

Mesh compilation time

AMPST

ATMP

2 3 4 5 6 7 8 9 10

roles

35

37

39

Ring compilation time

2 3 4 5 6 7 8 9 10

roles

0

4

8

12

16

20

T
im
e
(m

s)

Mesh bench time

2 3 4 5 6 7 8 9 10

roles

0

2

4

6

8

10

Ring bench time

2 5 8
roles

18

21

24

27

MultiCrusty
MultiCrustyT

(a) mesh - compilation.

2 5 8
roles

18

19

20

21

(b) ring - compilation.

2 3 4 5 6 7 8 9 10

roles

35

45

55
Ti

m
e

(s
)

Mesh compilation time

AMPST

ATMP

2 3 4 5 6 7 8 9 10

roles

35

37

39

Ring compilation time

2 3 4 5 6 7 8 9 10

roles

0

4

8

12

16

20

Ti
m

e
(m

s)

Mesh bench time

2 3 4 5 6 7 8 9 10

roles

0

2

4

6

8

10

Ring bench time

2 5 8
roles

0

6

12

MultiCrusty
MultiCrustyT

(c) mesh - runtime.

2 5 8
roles

0

3

6

9

(d) ring - runtime.

a b c d e f g h i j k l m0

3

6

9

12

15

18

Ti
m

e
(s

)

Build time

a b c d e f g h i j k l m0

1

2

Ti
m

e
(m

s)

Runtime

MultiCrusty

MultiCrustyT

Figure 11 Top: microbenchmark results for mesh and ring protocols. Bottom: benchmark
results for Calculator [20] (a), Online wallet [33] (b), SMTP [36] (c), Simple voting [20] (d), Three
buyers [24] (e), Travel agency [21] (f), OAuth [33] (g), HTTP [13] (h), Remote data [7] (i), Servo
[38] (j), Gravity sensor [2] (k), PineTime heart rate [35] (l), and Proximity based car key [41] (m).

In the ring protocol, compile-time benchmarks (Fig. 11b) indicate that MultiCrustyT

experiences a marginal slowdown of less than 2% with 2 roles, but achieves approximately 5%
faster compilation time with 8 roles. Regarding runtime benchmarks (Fig. 11d), MultiCrusty
demonstrates a 15% speed advantage with 2 roles, which decreases to 5% with 8 roles. The
overhead remains consistent, with a difference of less than 0.5 ms at 6, 7, and 8 roles.

In the mesh protocol, where all roles send and receive messages (compile-time benchmarks
in Fig. 11a and runtime benchmarks in Fig. 11c), MultiCrustyT compiles slightly slower
(less than 1% at 2 roles, 4% at 8 roles) and runs slower as well (less than 1% at 2 roles, 15%
at 8 roles). Compile times for MultiCrustyT range from 18.9 s to 26 s, with running times
ranging between 0.9 ms and 11.9 ms. The performance gap widens exponentially with the
increasing number of enforced time constraints. In summary, as the number of roles increases,
MultiCrustyT demonstrates a growing overhead, mainly attributed to the incorporation of
additional time constraint checks.

6.2 Expressivity and Feasibility with Case Studies
We implement a variety of protocols to showcase the expressivity, feasibility, and capabilities
of MultiCrustyT, conducting benchmarking using both MultiCrustyT and MultiCrusty.
The send and recv operations in both libraries are ordered, directed, and involve the same set
of participants. Additionally, when implemented with MultiCrustyT, these operations are
enriched with time constraints and reset predicates. The benchmark results for the selected
case studies, including those from prior research and five additional protocols sourced from
industrial use cases [7, 38, 2, 35, 41], are presented in the bottom part of Fig. 11. To ensure
a fair comparison between MultiCrustyT (bars) and MultiCrusty (bars), time constraints
are enforced for all examples without introducing any additional sleep or timeouts.

Note that rate-based protocols ((k), (l), (m) in Fig. 11 (bottom)) from real-time systems [2,
35, 41] are implemented in MultiCrustyT, showcasing its expressivity in real-time applications.
These implementations feature the establishment of consistent time constraints and a shared
clock for operations with identical rates. For example, in the Car Key protocol [41], where
the car periodically sends a wake-up message to probe the presence of the key, all interactions

ECOOP 2024

19:26 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

between two wake-up signals must occur within a period of e.g. 100 ms. Consequently, when
implementing this protocol with MultiCrustyT, all time constraints are governed by a single
clock ranging from 0 to 100 ms, with the clock resetting at the end of each loop.

The feasibility of our tool, MultiCrustyT, is demonstrated in Fig. 11 (bottom). The results
indicate that MultiCrustyT incurs minimal compile-time overhead, averaging approximately
1.75%. Moreover, the runtime for each protocol remains within milliseconds, ensuring
negligible impact. Notably, in the HTTP protocol, the runtime comparison percentage with
MultiCrusty is 87.60%, primarily due to the integration of 126 time constraints within
it. The relevant implementation metrics, including multiple participants (MP), branching,
recursion (Rec), and time constraints, are illustrated in Table 2.

Table 2 Metrics for protocols implemented in MultiCrustyT.

Protocol Generated
Types

Implemented
Lines of Code MP Branching Rec Time

Constraints
Calculator [20] 52 51 ✗ ✓ ✓ 11
Online wallet [33] 142 160 ✓ ✓ ✓ 24
SMTP [36] 331 475 ✗ ✓ ✓ 98
Simple voting [20] 73 96 ✗ ✓ ✗ 16
Three buyers [24] 108 78 ✓ ✓ ✗ 22
Travel agency [21] 148 128 ✓ ✓ ✓ 30
OAuth [33] 199 89 ✓ ✓ ✗ 30
HTTP [13] 648 610 ✓ ✓ ✓ 126
Remote data [7] 100 119 ✓ ✓ ✓ 16
Servo [38] 74 48 ✓ ✗ ✗ 10
Gravity sensor [2] 61 95 ✗ ✓ ✓ 9
PineTime heart rate [35] 101 111 ✗ ✓ ✓ 17
Proximity based car key [41] 70 134 ✗ ✓ ✓ 22

7 Related Work and Conclusion

Time in Session Types. Bocchi et al. [4] propose a timed extension of MPST to model
real-time choreographic interactions, while Bocchi et al. [3] extend binary session types with
time constraints, introducing a subtyping relation and a blocking receive primitive with
timeout in their calculus. In contrast to their strategies to avoid time-related failures, as
discussed in § 1 and 2, ATMP focuses on actively managing failures as they occur, offering a
distinct approach to handling timed communication.

Iraci et al. [22] extend synchronous binary session types with a periodic recursion primitive
to model rate-based processes. To align their design with real-time systems, they encode time
into a periodic construct, synchronised with a global clock. With rate compatibility, a relation
that facilitates communication between processes with different periods by synthesising and
verifying a common superperiod type, their approach ensures that well-typed processes
remain free from rate errors during any specific period. On the contrary, ATMP integrates
time constraints directly into communication through local clocks, resulting in distinct time
behaviour. Intriguingly, our method of time encoding can adapt to theirs, while the opposite
is not feasible. Consequently, not all the timed protocols in our paper, e.g. Fig. 1b, can be
accurately represented in their system. Moreover, due to its binary and synchronous features,
their theory does not directly model and ensure the properties of real distributed systems.

Le Brun et al. [30] develop a theory of multiparty session types that accounts for different
failure scenarios, including message losses, delays, reordering, as well as link failures and
network partitioning. Unlike ATMP, their approach does not integrate time specifications or
address failures specifically related to time. Instead, they use timeout as a generic message
label (�) for failure branches, which triggers the failure detection mechanism. Except for [22],
all the mentioned works on session types with time are purely theoretical.

P. Hou, N. Lagaillardie, and N. Yoshida 19:27

Affinity, Exceptions and Error-Handling in Session Types. Mostrous and Vasconcelos [31]
propose affine binary session types with explicit cancellation, which Fowler et al. [14] extend
to define Exceptional GV for binary asynchronous communication. Exceptions can be nested
and handled over multiple communication actions, and their implementation is an extension
of the research language Links. Harvey et al. [15] incorporate MPST with explicit connection
actions to facilitate multiparty distributed communication, and develop a code generator
based on the actor-like research language Ensemble to implement their approach. The work
in [31] remains theoretical, and both [31, 14] are limited to binary and linear logic-based
session types. Additionally, none of these works considers time specifications or addresses
the handling of time-related exceptions in their systems, which are key aspects of our work.

Session Types in Rust. MultiCrusty, extensively compared to MultiCrustyT, is a Rust
implementation based on affine MPST by Lagaillardie et al. [28]. Their approach relies on
synchronous communication, rendering time and timeout exceptions unnecessary.

Cutner et al. [10] introduce Rumpsteak, a Rust implementation based on the tokio Rust
library, which uses a different design for asynchronous multiparty communications compared
to MultiCrustyT, relying on the crossbeam_channel Rust library. The main goal of [10] is
to compare the performance of Rumpsteak, mainly designed to analyse asynchronous message
reordering, to existing tools such as the k-MC tool developed in [29]. Unlike MultiCrustyT,
Rumpsteak lacks formalisation, or handling of timed communications and failures.

Typestate is a Rust library implemented by Duarte and Ravara [12], focused on helping
developers to write safer APIs using typestates and their macros #[typestate], #[automaton]
and #[state]. MultiCrustyT and Typestate are fundamentally different, with Typestate
creating a state machine for checking possible errors in APIs and not handling affine or timed
communications. Ferrite, a Rust implementation introduced by Chen et al. [6], is limited
to binary session types and forces the use of linear channels. The modelling of Ferrite is
based on the shared binary session type calculus SILLs.

Jespersen et al. [23] and Kokke [25] propose Rust implementations of binary session
types for synchronous communication protocols. [22] extends the framework from [23] to
encode the rate compatibility relation as a Rust trait and check whether two types are
rate compatible. Their approach is demonstrated with examples from rate-based systems,
including [2, 35, 41]. Motivated by these applications, we formalise and implement the
respective timed protocols in MultiCrustyT, showcasing the expressivity and feasibility of
our system in real-time scenarios.

Conclusion and Future Work. To address time constraints and timeout exceptions in
asynchronous communication, we propose affine timed multiparty session types (ATMP) along
with the toolchain MultiCrustyT, an implementation of ATMP in Rust. Thanks to the
incorporation of affinity and failure handling mechanisms, our approach renders impractical
conditions such as wait-freedom and urgent receive obsolete while ensuring communication
safety, protocol conformance, and deadlock-freedom, even in the presence of (timeout) fail-
ures. Compared to a synchronous toolchain without time, MultiCrustyT exhibits negligible
overhead in various complex examples including those from real-time systems, while enabling
the verification of time constraints under asynchronous communication. As future work, we
plan to explore automatic recovery from errors and timeouts instead of simply terminating
processes, which will involve extending the analysis of communication causality to timed
global types and incorporating reversibility mechanisms into our system.

ECOOP 2024

19:28 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

References
1 Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–

235, 1994. doi:10.1016/0304-3975(94)90010-8.
2 Android. Motion Sensors, 2009. URL: https://developer.android.com/guide/topics/

sensors/sensors_motion.
3 Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Asyn-

chronous timed session types. In Luís Caires, editor, Programming Languages and Systems,
pages 583–610, Cham, 2019. Springer International Publishing.

4 Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty session types. In
Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 - Concurrency Theory - 25th
International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings,
volume 8704 of Lecture Notes in Computer Science, pages 419–434. Springer, 2014. doi:
10.1007/978-3-662-44584-6_29.

5 David Castro, Raymond Hu, SungShik Jongmans, Nicholas Ng, and Nobuko Yoshida. Distrib-
uted Programming Using Role-Parametric Session Types in Go: Statically-Typed Endpoint
APIs for Dynamically-Instantiated Communication Structures. Proc. ACM Program. Lang.,
3(POPL), January 2019. Place: New York, NY, USA Publisher: Association for Computing
Machinery. doi:10.1145/3290342.

6 Ruo Fei Chen, Stephanie Balzer, and Bernardo Toninho. Ferrite: A Judgmental Embedding
of Session Types in Rust. In Karim Ali and Jan Vitek, editors, 36th European Conference on
Object-Oriented Programming (ECOOP 2022), volume 222 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 22:1–22:28, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2022.22.

7 Yingying Chen, Minghu Zhang, Xin Li, Tao Che, Rui Jin, Jianwen Guo, Wei Yang, Baosheng
An, and Xiaowei Nie. Satellite-enabled internet of remote things network transmits field
data from the most remote areas of the tibetan plateau. Sensors, 22(10):3713, 2022. doi:
10.3390/S22103713.

8 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global
progress for dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science, 26(2):238–302, 2016. doi:10.1017/S0960129514000188.

9 The Developers of Crossbeam. Crate: Crossbeam channel, 2022. Last accessed: October 2022.
URL: https://crates.io/crates/crossbeam-channel.

10 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-Free Asynchronous Message
Reordering in Rust with Multiparty Session Types. In 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, volume abs/2112.12693 of PPoPP ’22, pages
261–246. ACM, 2022. doi:10.1145/3503221.3508404.

11 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Compatibility in Communicating
Automata: Characterisation and Synthesis of Global Session Types. In 40th International
Colloquium on Automata, Languages and Programming, volume 7966 of LNCS, pages 174–186,
Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-39212-2_18.

12 José Duarte and António Ravara. Taming stateful computations in rust with typestates.
Journal of Computer Languages, 72:101154, 2022. doi:10.1016/j.cola.2022.101154.

13 Roy Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax
and Routing. Technical Report RFC7230, RFC Editor, June 2014. doi:10.17487/rfc7230.

14 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional Asynchronous
Session Types: Session Types Without Tiers. Proc. ACM Program. Lang., 3(POPL):28:1–28:29,
January 2019. Place: New York, NY, USA Publisher: ACM. doi:10.1145/3290341.

15 Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty Session Types for
Safe Runtime Adaptation in an Actor Language. In Anders Møller and Manu Sridharan, editors,
35th European Conference on Object-Oriented Programming (ECOOP 2021), volume 194 of
Leibniz International Proceedings in Informatics (LIPIcs), page 30, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2021.10.

https://doi.org/10.1016/0304-3975(94)90010-8
https://developer.android.com/guide/topics/sensors/sensors_motion
https://developer.android.com/guide/topics/sensors/sensors_motion
https://doi.org/10.1007/978-3-662-44584-6_29
https://doi.org/10.1007/978-3-662-44584-6_29
https://doi.org/10.1145/3290342
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://doi.org/10.3390/S22103713
https://doi.org/10.3390/S22103713
https://doi.org/10.1017/S0960129514000188
https://crates.io/crates/crossbeam-channel
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1016/j.cola.2022.101154
https://doi.org/10.17487/rfc7230
https://doi.org/10.1145/3290341
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10

P. Hou, N. Lagaillardie, and N. Yoshida 19:29

16 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems - ESOP’98, 7th European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFB0053567.

17 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008, pages 273–284. ACM, 2008. Full version in [18].
doi:10.1145/1328438.1328472.

18 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
J. ACM, 63(1), 2016. doi:10.1145/2827695.

19 Ping Hou, Nicolas Lagaillardie, and Nobuko Yoshida. Fearless asynchronous communications
with timed multiparty session protocols, 2024. arXiv:2406.19541.

20 Raymond Hu and Nobuko Yoshida. Hybrid Session Verification Through Endpoint API
Generation. In Perdita Stevens and Andrzej Wasowski, editors, Fundamental Approaches
to Software Engineering, volume 9633, pages 401–418. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016. doi:10.1007/978-3-662-49665-724.

21 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming
in Java. In Jan Vitek, editor, ECOOP’08, volume 5142 of LNCS, pages 516–541, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. doi:10.1007/978-3-540-70592-5_22.

22 Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek. Validating iot devices
with rate-based session types. Proc. ACM Program. Lang., 7(OOPSLA2):1589–1617, 2023.
doi:10.1145/3622854.

23 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session Types
for Rust. In Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming,
WGP 2015, pages 13–22, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2808098.2808100.

24 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and Blame Assignment for
Higher-Order Session Types. SIGPLAN Not., 51(1):582–594, January 2016. doi:10.1145/
2914770.2837662.

25 Wen Kokke. Rusty Variation: Deadlock-free Sessions with Failure in Rust. Electronic
Proceedings in Theoretical Computer Science, 304:48–60, September 2019. doi:10.4204/
eptcs.304.4.

26 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking Protocols
with Mungo and stmungo. In Proceedings of the 18th International Symposium on Principles
and Practice of Declarative Programming, PPDP ’16, pages 146–159, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2967973.2968595.

27 Pavel Krcál and Wang Yi. Communicating timed automata: The more synchronous, the
more difficult to verify. In Thomas Ball and Robert B. Jones, editors, Computer Aided
Verification, 18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings, volume 4144 of Lecture Notes in Computer Science, pages 249–262. Springer,
2006. doi:10.1007/11817963_24.

28 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic: Affine
Rust Programming with Multiparty Session Types. In Karim Ali and Jan Vitek, editors, 36th
European Conference on Object-Oriented Programming (ECOOP 2022), volume 222 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 4:1–4:29, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2022.4.

29 Julien Lange and Nobuko Yoshida. Verifying Asynchronous Interactions via Communicating
Session Automata. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification -
31st International Conference, CAV 2019, volume 11561 of Lecture Notes in Computer Science,
pages 97–117, Cham, 2019. Springer. doi:10.1007/978-3-030-25540-4_6.

ECOOP 2024

https://doi.org/10.1007/BFB0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://arxiv.org/abs/2406.19541
https://doi.org/10.1007/978-3-662-49665-724
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/3622854
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2914770.2837662
https://doi.org/10.1145/2914770.2837662
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1007/11817963_24
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.1007/978-3-030-25540-4_6

19:30 Fearless Asynchronous Communications with Timed Multiparty Session Protocols

30 Matthew Alan Le Brun and Ornela Dardha. MAGπ: Types for Failure-Prone Communication.
In Thomas Wies, editor, Programming Languages and Systems, pages 363–391, Cham, 2023.
Springer Nature Switzerland. doi:10.1007/978-3-031-30044-8_14.

31 Dimitris Mostrous and Vasco T. Vasconcelos. Affine Sessions. Logical Methods in Computer
Science ; Volume 14, 8459:Issue 4 ; 18605974, 2018. Medium: PDF Publisher: Episciences.org.
doi:10.23638/LMCS-14(4:14)2018.

32 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for
multiparty conversations. Formal Aspects of Computing, 29(5):877–910, 2017.

33 Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. Spy: Local Verification of Global
Protocols. In Axel Legay and Saddek Bensalem, editors, Runtime Verification, volume
8174 of LNCS, pages 358–363, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-40787-1_25.

34 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
35 Pine64. PineTime, 2019. URL: https://www.pine64.org/pinetime/.
36 Jonathan Postel. Rfc0821: Simple mail transfer protocol, 1982.
37 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.

ACM Program. Lang., 3(POPL):30:1–30:29, 2019. doi:10.1145/3290343.
38 Servo. Servo Web Browser commit, 2015. URL: https://github.com/servo/servo/commit/

434a5f1d8b7fa3e2abd36d832f16381337885e3d.
39 Developers Rust of the library Time. Module std::time documentation, 2023. URL: https:

//doc.rust-lang.org/std/time/index.html.
40 Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A multiparty session typing

discipline for fault-tolerant event-driven distributed programming. Proceedings of the ACM on
Programming Languages, 5(OOPSLA):1–30, October 2021. doi:10.1145/3485501.

41 Lennert Wouters, Eduard Marin, Tomer Ashur, Benedikt Gierlichs, and Bart Preneel. Fast,
furious and insecure: Passive keyless entry and start systems in modern supercars. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2019(3):66–85, 2019. doi:
10.13154/TCHES.V2019.I3.66-85.

42 Nobuko Yoshida, Fangyi Zhou, and Francisco Ferreira. Communicating finite state machines
and an extensible toolchain for multiparty session types. In Evripidis Bampis and Aris
Pagourtzis, editors, Fundamentals of Computation Theory, pages 18–35, Cham, 2021. Springer
International Publishing.

https://doi.org/10.1007/978-3-031-30044-8_14
https://doi.org/10.23638/LMCS-14(4:14)2018
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-642-40787-1_25
https://www.pine64.org/pinetime/
https://doi.org/10.1145/3290343
https://github.com/servo/servo/commit/434a5f1d8b7fa3e2abd36d832f16381337885e3d
https://github.com/servo/servo/commit/434a5f1d8b7fa3e2abd36d832f16381337885e3d
https://doc.rust-lang.org/std/time/index.html
https://doc.rust-lang.org/std/time/index.html
https://doi.org/10.1145/3485501
https://doi.org/10.13154/TCHES.V2019.I3.66-85
https://doi.org/10.13154/TCHES.V2019.I3.66-85

Taking a Closer Look: An Outlier-Driven Approach
to Compilation-Time Optimization
Florian Huemer #

Johannes Kepler University, Linz, Austria

David Leopoldseder #

Oracle Labs, Vienna, Austria

Aleksandar Prokopec #

Oracle Labs, Zurich, Switzerland

Raphael Mosaner #

Oracle Labs, Linz, Austria

Hanspeter Mössenböck #

Johannes Kepler University, Linz, Austria

Abstract
Improving compilation time in optimizing compilers is challenging due to their large number of
interconnected components. This includes compiler optimizations, compiler tiers, heuristics, and
profiling information. Despite this complexity, research in compilation-time optimization is often
guided by analyzing metrics of entire program runs, such as the total compilation time and overall
memory footprint. This coarse-grained perspective hides relevant information, such as source
program functions for which the compiler allocates a lot of memory or compiler optimizations with
a high impact on the total compilation time. This leaves high-level metrics as the only reference
point for driving optimization design. Consequently, compilation-time regressions in one program
function that are obscured by improvements in other functions stay undetected, while the impacts of
compiler changes on untouched parts of the compiler are mainly unknown. Furthermore, developers
overlook long-standing compiler defects because their high-level metrics do not change over time.

To address these limitations, we propose ICON, a new data-driven approach to compilation-
time optimization that breaks up high-level metrics into individual source program functions,
compiler optimizations, or even into individual instructions in the compiler source code. Our
methodology enables an iterative in-depth compilation-time analysis, focusing on outliers to identify
optimization opportunities. We show that outliers, both in terms of time spent in a particular
compiler optimization, and in terms of individual compilations that take substantially longer, can
reveal potential problems in the compiler implementation. We applied our approach to GraalVM and
extracted data for multiple of its language runtimes. We analyzed the resulting data, present the first
detailed look into the distribution of compilation time in the GraalVM compiler, a state-of-the-art
multi-language compiler, and identified defects that led to regressions in overall compilation time or
the compilation time of specific languages. We furthermore designed two optimizations based on the
identified outliers that improve compilation time between 2.25% and 9.45%. We believe that our
approach can guide compiler developers in finding usually overlooked optimization potential and
defects, and focus future research efforts in making compilers more efficient.

2012 ACM Subject Classification General and reference → Performance; General and reference →
Measurement; Software and its engineering → Just-in-time compilers; Software and its engineering
→ Dynamic compilers

Keywords and phrases Compilation time, outliers, dynamic languages, virtual machines, GraalVM,
ICON

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.20

© Florian Huemer, David Leopoldseder, Aleksandar Prokopec, Raphael Mosaner, and Hanspeter
Mössenböck;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 20; pp. 20:1–20:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florian.huemer@jku.at
https://orcid.org/0009-0002-5773-4024
mailto:david.leopoldseder@oracle.com
https://orcid.org/0000-0002-9361-6431
mailto:aleksandar.prokopec@oracle.com
https://orcid.org/0000-0003-0260-2729
mailto:raphael.m.mosaner@oracle.com
https://orcid.org/0000-0003-0523-2241
mailto:hanspeter.moessenboeck@jku.at
https://orcid.org/0000-0001-7706-7308
https://doi.org/10.4230/LIPIcs.ECOOP.2024.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 An Outlier-Driven Approach to Compilation-Time Optimization

90000

95000

100000

105000

110000

115000

0f3 21a 08d 45e edb 9f1

Commits

C
o
m

p
ila

tio
n
 T

im
e
 (

m
s
)

total

(a) Results of a hypothetical benchmark meas-
uring total compilation time over the course of
several commits. Lower is better.

10000

15000

20000

25000

30000

35000

0f3 21a 08d 45e edb 9f1

Commits

C
o
m

p
ila

tio
n
 T

im
e
 (

m
s
)

cos fft print run sin

(b) Results split into individual function compil-
ation times over the course of several commits.
Lower is better.

1 Introduction

Improving compilation time in optimizing compilers is challenging due to their large number
of interconnected components. Multiple interacting compiler optimizations [24], several
compiler tiers, various heuristics, and different profiling information make it challenging
to identify the impact of compiler source code changes on the total compilation time of a
program. Compilation time should be minimal, especially in modern cloud applications based
on serverless functions or microservice architectures that are executed on demand and started
frequently [42, 34]. The compilation time for these services is even more relevant for runtimes
using just-in-time compilation, where the compilation time directly impacts the startup time
of a service [46]. In these runtimes, savings in compilation time are not limited to a single
compilation upfront but are reapplied every time an application is started and recompiled.
Ahead-of-time-compiled runtimes should also strive for minimal compilation time such as in
continuous integration and continuous delivery infrastructures, where compilations take up a
large portion of the resource utilization as part of build steps [3].

Despite the high complexity of optimizing compilers and a high demand for fast compil-
ation, research in this field often relies on metrics reflecting entire program runs, such as
total compilation time or overall memory footprint, to guide compilation-time optimization.
Using fine-grained metrics, such as the time spent compiling individual program functions or
the time spent in specific compiler optimizations, could reveal outliers in compilation time
that lead to defects and optimization opportunities in the compiler.

To illustrate this problem, consider the hypothetical implementation of a new compiler
phase p that introduces an optimization to a compiler. To evaluate the compilation-time
impact of p, the conventional approach of analyzing the total compilation time of several
benchmarks and comparing it with previous records seems appropriate. As shown in Figure 1a,
which illustrates the total compilation time of a hypothetical benchmark over the course
of several commits, p, implemented in 9f1, leads to a compilation-time decrease, leaving
the impression of a positive compilation-time impact. While this impression seems correct
overall, it hides valuable information which is only unveiled by analyzing the compilation
time of individual benchmark functions. As shown in Figure 1b, p improves the compilation
time of nearly all functions in the benchmark but also results in an outlier with a significant
increase in compilation time, the fft function. This outlier points towards a defect in p
that only occurs under certain conditions, which seem to be present in the fft function, and
requires further investigation. Consequently, relying solely on metrics of entire program runs
to evaluate compilation-time performance can obscure newly-introduced or long-standing
defects in compiler implementations.

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:3

Therefore, our contribution is to describe a new approach to compiler optimization
focusing on outliers to identify defects:

We describe Iterative Compilation-time optimization through Outlier-driven Narrow-
ing (ICON), a novel data-driven approach to compilation-time optimization that splits
compilation metrics into individual functions, compiler optimizations, or even into indi-
vidual instructions in the compiler source code to identify potential problems in compiler
implementations by focusing on the outliers in extracted data (Section 3). The ap-
proach combines a fine-grained metrics extraction based on iterative narrowing with an
outlier-focused approach to finding potential optimization opportunities.
We present the first detailed look into the distribution of compilation time in the GraalVM
compiler, a state-of-the-art multi-language compiler (Section 4). We base our data on the
evaluation of 94 benchmarks from the “Are We Fast Yet?”1 [27], JetStream 22, “Computer
Language Benchmark Game,”3 [27] and several internal benchmark suites, analyzing
compilation-time metrics for five runtimes, including Python and JavaScript.
To demonstrate the effectiveness of the ICON approach, we conducted an outlier ana-
lysis on the GraalVM compilation-time metrics, identifying one language-agnostic and
three language-specific outliers in compilation time (Section 4.5). Through the iterative
application of our approach, we narrowed the scopes of the outliers in the compiler and
discovered four defects in the GraalVM compiler that were responsible for sub-optimal
compilation time in compiler optimizations.
We sketch the design of two optimizations that target two of the defects identified by our
outlier analysis and improve compilation time between 2.25% in Python and 9.45% in
Java (Section 5).

2 The Environment of Our Study

We describe ICON as a general methodology to optimize the compilation time of compilers
and apply it to a specific runtime environment to emphasize its applicability. We thus begin
our technical content by describing GraalVM, the runtime we worked with.

2.1 GraalVM
GraalVM [45] is a state-of-the-art high-performance Java Virtual Machine (JVM) [26]
that includes a dynamic optimizing compiler called GraalVM compiler. GraalVM provides
native support for JVM languages, is implemented in Java [17], and supports just-in-time
(JIT) and ahead-of-time (AOT) compilation through the JVM [45] and Native-Image [42]
deployments. The JVM deployment starts programs in the Java interpreter and just-in-time
compiles frequently executed methods with the GraalVM compiler, while the Native-Image
deployment compiles Java code ahead of time into a native executable, skipping interpretation
and compilation of Java code at run time.

In addition to JVM languages, GraalVM supports the execution of guest languages by
defining interpreters written with the Truffle framework [21]. Truffle is an abstraction layer in
GraalVM that provides a domain-specific language API based on Java annotations. It allows
to define interpreters and uses partial evaluation [44, 15, 9, 28] to transform these interpreters
into an intermediate representation that can be further optimized by the GraalVM compiler.

1 https://github.com/smarr/are-we-fast-yet
2 https://browserbench.org/JetStream/in-depth.html
3 https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

ECOOP 2024

https://github.com/smarr/are-we-fast-yet
https://browserbench.org/JetStream/in-depth.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

20:4 An Outlier-Driven Approach to Compilation-Time Optimization

Partial evaluation must be performed at run time in both GraalVM deployments since
it requires the input programs of guest language interpreters, which are not known ahead
of time. Therefore, in the context of the Truffle framework, both GraalVM deployments
support JIT compilation of partially-evaluated guest language interpreters. Consequently,
in the Native-Image deployment of a guest language, the interpreter and runtime are AOT
compiled, while the user code written in that guest language is still JIT compiled.

Through Truffle and partial evaluation, GraalVM provides official support for seven
language runtimes with competitive performance [36, 37] for popular languages such as
Python4, JavaScript5, C/C++ and others via LLVM bitcode6 [33], WebAssembly7, R8, Ruby9,
and a meta-circular Java runtime called Espresso10. Apart from implementing different
language specifications, these runtimes primarily differ in their internal data structures and
interpreter implementations, including abstract-syntax-tree (AST) interpreters, bytecode
interpreters, and hybrid approaches that combine aspects of AST and bytecode interpreters.

Our paper focuses on guest language runtimes using Truffle and partial evaluation in
the Native-Image deployment of GraalVM. Therefore, the rest of this paper will refer to
the Native-Image deployment when talking about GraalVM, the GraalVM compiler, or the
Truffle language runtimes.

2.2 GraalVM Compiler

The GraalVM compiler [45] is a dynamic optimizing compiler used by GraalVM to compile
multiple languages to highly optimized machine code. It contains numerous optimizations
that apply platform-specific and platform-independent optimizations [13] and extensively
uses speculative optimizations [11] based on assumptions [38]. If one of the assumptions no
longer holds, the GraalVM compiler invalidates the generated machine code and transfers
the execution back to the interpreter [38] through deoptimization [19].

In the context of guest language interpreters written with Truffle, GraalVM uses the
GraalVM compiler as a just-in-time compiler to partially evaluate and compile guest language
functions at run time [44]. For this purpose, the GraalVM compiler uses two different
configurations called compiler tiers11 [18]. Tier 1 focuses on compilation time and applies
fewer short-running optimizations. Tier 2 focuses on optimal machine code and applies all
optimizations available in the GraalVM compiler.

The GraalVM compiler’s architecture consists of a front end, performing platform-
independent compiler optimizations on a high-level intermediate representation (IR) called
GraalIR [11, 10], and a back end, performing register allocation and code generation on a
low-level IR called LIR [13, 41, 23]. The front end further consists of a high tier, mid tier,
and low tier, performing optimizations on different abstraction levels. When compiling guest
language functions, the truffle tier, performing partial evaluation, precedes the front end.

4 https://github.com/oracle/graalpython
5 https://github.com/oracle/graaljs
6 https://github.com/oracle/graal/tree/master/sulong
7 https://github.com/oracle/graal/tree/master/wasm
8 https://github.com/oracle/fastr
9 https://github.com/oracle/truffleruby
10 https://github.com/oracle/graal/tree/master/espresso
11 https://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.

html

https://github.com/oracle/graalpython
https://github.com/oracle/graaljs
https://github.com/oracle/graal/tree/master/sulong
https://github.com/oracle/graal/tree/master/wasm
https://github.com/oracle/fastr
https://github.com/oracle/truffleruby
https://github.com/oracle/graal/tree/master/espresso
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:5

Listing 1 Definition of a scope, timer, and counter with the help of a try-with-resources statement.
1 TimerKey timer = DebugContext .timer (" Timer ");
2 CounterKey counter = DebugContext . counter (" Counter ");
3
4 void run(Graph graph) {
5 DebugContext debug = graph . getDebugContext ();
6 try (DebugContext .Scope scope = debug. scope (" Phase ");
7 DebugCloseable t = timer. start(debug)) {
8 ...
9 counter . increment (debug);

10 ...
11 }
12 }

2.3 GraalVM Compiler Debug Interface

The GraalVM compiler debug interface12 in the GraalVM compiler enables logging, IR
dumping, and the extraction of compilation-time metrics, such as the execution time of the
compiler front end, the number of allocated bytes in the compiler mid tier, or the number of
generated mov instructions during register allocation. The debug interface provides timers,
for tracking execution time, memory usage trackers, for tracking memory usage (i.e., the
number of allocated bytes), and counters, to keep track of arbitrary counts. This allows
developers to get different metric values for parts of the compiler. Developers assign unique
names to these metric values and define their measurement scopes with one or several keys.
Keys allow combining measurements of several compiler regions into one metric value and
are combined based on their name. For example, if a compiler performs parts of the same
transformation in two different compiler locations and we want to measure the total time
of this transformation, we can use two keys with the same name to combine both scopes
into the same metric value. A debug context stores instances of each metric value. Debug
contexts exist once per compilation, and the compiler passes them through all phases. This
design enables a per-compilation extraction of metric values.

The debug interface provides scopes to enable the logical grouping of keys. Scopes have
names and can be nested into one another. The debug context contains helper methods to
open scopes while the closing is performed automatically with try-with-resource statements,
as shown in line 6 of Listing 1. Scopes, timer keys, and memory usage trackers use this
automatic closing mechanism, while counter keys need to be manually incremented by the
developer, as shown in line 9.

Listing 1 provides an example for the use of the debug interface. When a developer
creates a timer key with the help of the DebugContext class, as shown in line 1, the call to
timer() allocates a new key object (TimerKey) and links it to a metric value based on the
provided name. When the runtime starts the timer in line 7, the key object forwards the
name of its metric value to the debug context, which initializes the timer value. After the
runtime exits the try block in line 11, the timer stops and updates its value in the debug
context. At the end of the compilation, the compiler extracts the metric values of all debug
contexts and exports them to the console or a file.

12 https://github.com/oracle/graal/blob/master/compiler/docs/Debugging.md

ECOOP 2024

https://github.com/oracle/graal/blob/master/compiler/docs/Debugging.md

20:6 An Outlier-Driven Approach to Compilation-Time Optimization

Figure 2 Abstract representation of ICON, consisting of three main phases represented by
different border styles.

The GraalVM compiler provides a Timers option alongside counterparts for memory
usage and counters to enable the extraction of specific metrics. Developers pass these options
to the compiler at program startup, which enable metric values based on their name or the
name of an enclosing scope. If a key is disabled, the compiler does not extract data for the
associated metric value.

3 ICON: Iterative Compilation-Time Optimization Through
Outlier-Driven Narrowing

We propose ICON, a new data-driven approach to compilation-time optimization, a meth-
odology focusing on outliers to identify potential problems in compiler implementations.
The key idea of ICON is to split up high-level metrics, such as total compilation time or
overall memory footprint, into individual extraction scopes, such as compiler optimizations,
compilations of individual functions, or even into individual instruction in the compiler source
code. ICON tries to find defect locations by iteratively narrowing extraction scopes until
developers can identify the source of a problem. An outlier analysis after every iteration
drives the narrowing process and identifies which extraction scopes to refine. Figure 2 shows
an abstract depiction of ICON.

ICON consists of three steps, including the metric and benchmark selection step (solid
border), the data extraction step (dotted border), and the outlier analysis and defect iden-
tification step (dashed border). To explain the methodology process depicted in Figure 2,
consider the hypothetical implementation of a compiler phase p in the compiler back end of
an existing compiler. Figure 3 shows a fragment of the resulting compiler architecture.

For the performance evaluation of p, the initial step of ICON is to pick representative
benchmarks and metrics, such as compilation time or allocated memory, and to select an
initial set of extraction scopes for the first iteration. In our example, the entire compilation
pipeline represents a good starting point, as shown by scope s0 in Figure 3. After applying
the compiler code changes and enabling the relevant timers and counters, the next step is to
extract a data set based on the selected extraction scopes with the help of the benchmarks.
An outlier analysis follows the data extraction to identify outlier compilations via statistical
analyses. This outlier analysis results either in a concrete source code location responsible
for the outliers or at least in a direction to narrow the selected extraction scopes.

If the outlier analysis points in a new direction for the next iteration, the next step is
to select a new set of extraction scopes that narrow the existing ones and to repeat the
extraction and analysis process. In our example, a meaningful narrowing is extracting data
for the compiler back end, as shown by scope s1 in Figure 3.

If the data set of the next iteration contains evidence for the previous outliers, the process
continues by refining the extraction scopes. Otherwise, the process continues at the previous
iteration by narrowing the existing extraction scopes differently. Consequently, since we

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:7

Figure 3 Fragment of a compiler pipeline structure after introducing a new compiler phase p.

assume that the narrowing in our example succeeded, the process continues with extraction
scopes s2 searching for outliers in individual compiler phases, including p, and scopes s3,
searching for outliers in individual compiler functions in p.

Extraction scopes can theoretically be narrowed down to individual instructions in the
compiler source code. The process ends when developers have a clear enough view about the
defect locations responsible for the outliers or cannot find any outliers in the data.

While the outlier analysis is essential to ICON, we do not specify a concrete outlier-
detection algorithm. Instead, methodology adopters can define concrete algorithms based on
the requirements and properties of their compilers. We describe the approach we used for
outlier detection in GraalVM in Section 4.4.

Although we focus on a manual inspection and outlier analysis in this paper, an automatic
outlier detection and narrowing process could enhance our approach. This automation would
aid in integrating our methodology into existing testing and benchmark infrastructures.
However, defining such an automated process is outside the scope of our paper.

In the following, we present a detailed definition of extraction scopes and describe the
necessary changes in GraalVM to support ICON.

3.1 Extraction Scopes
Extraction scopes define the granularity of the data extraction as tuples consisting of a
temporal and a spatial component. The temporal component defines how to split or aggregate
the entire execution time of the compiler into individual metric values. Examples are:

per execution. This results in one metric value for the entire run time of the compiler.
An example is the extraction of compilation time to compare against historical data.
per iteration. This requires that the program under test executes several iterations and
results in one metric value for every iteration. An example is the extraction of compilation
time for every benchmark iteration to check their consistency over time.
per compilation unit. This represents the usual approach to metric extraction and results
in one metric value for each compilation unit. The metric values depend on the compiler’s
definition of compilation units (e.g., every function, every module, etc.).
per compiler tier . This is a refinement of per compilation unit and results in one metric
value per compiler tier. An example is the compilation-time extraction of a compiler
phase for every compiler tier to compare the time spent in each compiler tier.

ECOOP 2024

20:8 An Outlier-Driven Approach to Compilation-Time Optimization

The spatial component defines how to split or aggregate the compilation pipeline (i.e.,
the compiler source code) into individual metric values. Examples are:

per pipeline. This results in one metric value for the entire compiler pipeline. An example
is the extraction of the maximum memory consumption of the compiler when running a
benchmark to check that it does not exceed a predefined threshold.
per compiler phase. This results in one metric value for each selected phase in the compiler
pipeline. An example is the extraction of compilation time per compiler phase to find
optimization potential.
per function. This results in one metric value for each selected function in the compiler
source code. An example is the memory-consumption extraction of all functions in a
phase that allocates too much memory to find the exact allocation location.
per instruction. This results in one metric value for each selected source code instruction.
An example is the extraction of memory allocation for selected source code lines in the
compiler.

The temporal and spatial components depend on the compiler architecture and might be
linked based on the compiler’s design.

3.2 Implementation in GraalVM
GraalVM was already well fitted to support our methodology. However, in terms of data
extraction, some critical parts were missing to support a fine-grained metric value extraction.

The initial implementation of the GraalVM compiler debug interface, as explained in
Section 2.3, focuses primarily on the extraction of metric values on a per-name basis. Metrics
are extracted for every compiler phase in the GraalVM compiler, so the metric values are
associated with the names of the compiler phases. This represents a limitation, since multiple
executions of the same compiler phase, which is common in the GraalVM compiler, are
merged into a single metric value. An example is the canonicalizer phase, which transforms
guest language constructs into a canonical form and is executed many times throughout a
compilation. Even though these phase executions should be treated independently, the initial
debug interface implementation merges their metric values.

To remove this limitation, we extended the existing concept of scopes in the GraalVM
compiler debug interface to aggregate, unique, and singleton scopes. Aggregate scopes are
similar to the existing scope implementation. As their name suggests, they combine the
values produced by several scope executions into a single metric value. Unique scopes on the
other hand separate the values of individual scope executions into separate metric values by
assigning them a unique name. Singleton scopes ignore the nesting of previous scopes and
produce a single metric value, regardless of the scopes they are nested in.

Consider the example in Listing 2. Since the timer key a_t in line 5 is part of an aggregate
scope, all its executions will contribute to the same metric value A.Timer, even though the
loop is executed three times. The code in line 12 however, will result in three individual
metric values U_1.Timer, U_2.Timer, and U_3.Timer, since the timer key u_t is inside a
unique scope. Although timer keys s_t in lines 7 and 14 are nested in the different outer
scopes A and U, all their executions contribute to the same metric value S.Timer, since their
nearest nesting scope is a singleton scope.

As a result of using these new scope types, it is possible to extract metric values
independently for multiple executions of the same compiler phase. This allows a more precise
analysis of the time spent in individual compiler phases and supports the fine-grained metric
value extraction required for ICON.

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:9

Listing 2 Definition of aggregate, unique, and singleton scopes inside a loop.
1 void run (Graph graph) {
2 DebugContext debug = graph . getDebugContext ();
3 for (int i = 0; i < 3; i++) {
4 try (DebugContext .Scope a = debug. aggregateScope ("A");
5 TimerKey a_t = a.timer("Timer"). start(debug)) {
6 try (DebugContext .Scope s = debug. singletonScope ("S");
7 TimerKey s_t = s.timer("Timer"). start(debug)) {
8 ...
9 }

10 }
11 try (DebugContext .Scope u = debug. uniqueScope ("U");
12 TimerKey u_t = u.timer("Timer"). start(debug)) {
13 try (DebugContext .Scope s = debug. singletonScope ("S");
14 TimerKey s_t = s.timer("Timer"). start(debug)) {
15 ...
16 }
17 }
18 ...

4 GraalVM Compilation-Time Evaluation

Based on ICON introduced in Section 3, we extracted compiler metrics for the GraalVM com-
piler. While our approach primarily focuses on finding defects in compiler implementations,
its implementation in GraalVM also enables a detailed view of the distribution of compiler
metrics across different compiler phases in the GraalVM compiler. We extracted compilation
time and memory usage for all compiler phases based on a large set of benchmarks. In the
context of this paper, we will focus on the evaluation of compilation time. The extracted
data contains metric values for five partial-evaluation-based language runtimes on GraalVM
and allows us to present the first detailed look into the distribution of compilation time
across compilation phases in GraalVM. This distribution represents a good starting point for
our evaluation and drives the narrowing required for the outlier analysis in Section 4.5.

We start this section by introducing the set of language runtimes we chose to get a
representative data set of compilation-time metrics, then proceed by describing the used
benchmarks and setup. We conclude by explaining the data extraction process, presenting
our results, and performing an outlier analysis on the data.

4.1 Languages
We chose a set of five language runtimes based on the Truffle framework to get a representative
data set of the compilation-time distribution in partial-evaluation-based languages compiled
by the GraalVM compiler. The runtimes differ in their interpreter implementation and the
type system of their implemented languages. Both impact the compilation-time distribution
in the GraalVM compiler. Based on the available interpreter implementations and type
systems, we chose GraalJS13, GraalPy14, Espresso15, GraalWasm16, and the GraalVM LLVM
Runtime17, as further described in Table 1.

13 https://github.com/oracle/graaljs
14 https://github.com/oracle/graalpython
15 https://github.com/oracle/graal/tree/master/espresso
16 https://github.com/oracle/graal/tree/master/wasm
17 https://github.com/oracle/graal/tree/sulong [33]

ECOOP 2024

https://github.com/oracle/graaljs
https://github.com/oracle/graalpython
https://github.com/oracle/graal/tree/master/espresso
https://github.com/oracle/graal/tree/master/wasm
https://github.com/oracle/graal/tree/sulong

20:10 An Outlier-Driven Approach to Compilation-Time Optimization

Table 1 GraalVM language runtimes used for the extraction of compilation-time data.

Runtime Language Type system Interpreter
GraalJS JavaScript dynamic, weak typing AST interpreter
GraalPy Python dynamic, strong typing bytecode interpreter
Espresso Java static, strong typing bytecode interpreter
GraalWasm WebAssembly static, strong typing bytecode interpreter
GraalVM LLVM Runtime LLVM bitcode static, strong typing hybrid interpreter (com-

bines aspects of AST and
bytecode interpreters)

4.2 Benchmarks and Setup
We used a set of 94 benchmarks from the “Are We Fast Yet?”18 [27], JetStream 219, “Computer
Language Benchmark Game,”20 and several internal benchmark suites for our evaluation.
The benchmarks represent real-world computing tasks and are already used internally by
different GraalVM language teams to evaluate peak performance, interpreter speed, and
memory usage of their language runtimes.

We used “Are We Fast Yet?” for evaluating Espresso, the Java runtime implemented in
Truffle. It contains 14 benchmarks focusing on several computing areas, such as JSON string
parsing, the computation of the Mandelbrot set, and physics simulations [27].

We used JetStream 2 for evaluating GraalJS and executed 15 of the 64 available bench-
marks. These focus on cryptography, physics simulations, or PDF processing. Most excluded
benchmarks require browser-specific functionality unavailable in standalone JavaScript en-
gines or WebAssembly support. Since we measured our WebAssembly runtime separately,
we did not want to pollute GraalJS results with WebAssembly compilations.

We used the “Computer Language Benchmark Game” [27] benchmarks in combination
with other open source benchmarks (bzip2 21, gzip22, stockfish23, oggenc24) to evaluate
GraalPy, the Python runtime, and the GraalVM LLVM runtime. Based on the language
runtime, we selected a subset of the available benchmarks used by the respective GraalVM
language teams25. Consequently, we used 34 benchmarks for evaluating GraalPy, and 18
for the GraalVM LLVM runtime. The benchmarks include compression algorithms, chess
simulations, physics simulations, and scheduling tasks. We compiled the GraalVM-LLVM-
runtime benchmarks with a custom LLVM toolchain26 based on the Clang27 compiler 16.0.1.

For evaluating GraalWasm, we used an internal benchmark suite consisting of 13 bench-
marks. These include the Digitron benchmark, an AST interpreter for arithmetic expres-
sions, the FFT [4] benchmark, computing the Fast Fourier transform, and the Phong [31]

18 https://github.com/smarr/are-we-fast-yet
19 https://browserbench.org/JetStream/in-depth.html
20 https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html [27]
21 https://sourceware.org/bzip2/
22 https://www.gzip.org/
23 https://github.com/official-stockfish/Stockfish
24 https://xiph.org/ogg/
25 https://github.com/oracle/graalpython/tree/master/graalpython/com.oracle.graal.python.

benchmarks
26 https://github.com/oracle/graal/blob/master/sulong/docs/contributor/TOOLCHAIN.md
27 https://clang.llvm.org/

https://github.com/smarr/are-we-fast-yet
https://browserbench.org/JetStream/in-depth.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://sourceware.org/bzip2/
https://www.gzip.org/
https://github.com/official-stockfish/Stockfish
https://xiph.org/ogg/
https://github.com/oracle/graalpython/tree/master/graalpython/com.oracle.graal.python.benchmarks
https://github.com/oracle/graalpython/tree/master/graalpython/com.oracle.graal.python.benchmarks
https://github.com/oracle/graal/blob/master/sulong/docs/contributor/TOOLCHAIN.md
https://clang.llvm.org/

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:11

benchmark, computing a shading model for a 3D scene. All of them are written in C and
compiled with the WASI SDK 28 version 21.0 based on the Clang compiler version 17.0.0.
The benchmark source code is publicly available as part of the GraalWasm repository29.

We executed all benchmarks on the Community Edition (CE) and the Enterprise Edition
(EE) of GraalVM. We conducted the execution on an Intel Core i7-8750H with six cores at a
fixed CPU frequency of 2.30 GHz and turbo boost disabled. The system has 32GB of main
memory and runs Fedora Linux 38 (Workstation Edition).

We compiled all runtimes with LabsJDK CE 21 30 (labsjdk-ce-21-jvmci-23.1-b22).
The GraalVM compiler performs individual compilations in separate threads with a separate
memory space. We used sufficient iterations to ensure that the GraalVM compiler compiled all
relevant functions in each benchmark and ran each benchmark 6 times in separate processes.
We used geometric means across all 6 runs to account for measurement inaccuracies due
to garbage collection and non-deterministic optimization phases. The resulting numbers
represent the evaluation of the Native-Image deployment of GraalVM CE and EE.

4.3 Data Extraction
We surrounded the run method, the entry point of each compiler phase, of all compiler
phases in the GraalVM compiler with a unique scope, as introduced in Section 3.2, to extract
compilation-time data. This implementation allows us to get an individual metric value per
phase execution. We put method inlining and the graph decoding performed during partial
evaluation into aggregate scopes since we are not interested in inlining and decoding metrics
of individual functions but in their overall impact.

For our evaluation, we extracted the compilation time of every extraction scope in
microseconds and computed the compilation time relative to the total compilation time.
This normalization is necessary to account for the skewness of the raw data caused by
the overrepresentation of short-running compilations in the data set. We extracted metric
values for all compilations in our benchmarks and used the compilations of those source
program functions that appeared in at least 3 of the 6 benchmark runs to compute the total
compilation time for our evaluation. This preselection is necessary to avoid polluting the
data with one-time compilations that might represent outliers due to garbage collection
pauses or other non-deterministic influences happening exactly during this one compilation.

4.4 Evaluation
We start our evaluation with a high-level overview of the compilation-time distribution in
GraalVM. The selected extraction scopes reflect the GraalVM compiler architecture and
consist of partial evaluation, compilation, and code installation. We further divide the
compilation into a front end and back end, and the front end into high tier, mid tier, and
low tier. We chose the selected granularity to keep the resulting plots clear and readable. In
the context of our plots, we define total compilation time as the sum of partial evaluation,
compilation, and code installation.

28 https://github.com/WebAssembly/wasi-sdk
29 https://github.com/oracle/graal/tree/master/wasm/src/org.graalvm.wasm.benchcases/src/

bench
30 https://github.com/graalvm/labs-openjdk-21

ECOOP 2024

https://github.com/WebAssembly/wasi-sdk
https://github.com/oracle/graal/tree/master/wasm/src/org.graalvm.wasm.benchcases/src/bench
https://github.com/oracle/graal/tree/master/wasm/src/org.graalvm.wasm.benchcases/src/bench
https://github.com/graalvm/labs-openjdk-21

20:12 An Outlier-Driven Approach to Compilation-Time Optimization

Tier 1

python

Tier 1

wasm

Tier 1

espresso

Tier 1

js

Tier 1

llvm

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

Compiler Phase

S
h
a
re

 o
f
T
o
ta

l C
o
m

p
ila

tio
n
 T

im
e
 (

%
)

1 PartialEvaluation

2 Compilation

 2.1 FrontEnd

 2.1.1 HighTier

 2.1.2 MidTier

 2.1.3 LowTier

 2.2 BackEnd

3 CodeInstallation

Figure 4 Compilation-time distribution of Tier-1 compilations in GraalVM CE and EE. Compiler
phases are from left to right based on their index.

We show the results of the first extraction step in Figure 4, showing the compilation-time
distribution of Tier-1 compilations in GraalVM CE and EE. Since their configuration is
identical in Tier 1, we combined both editions into a single plot. Figure 5 shows GraalVM-CE
Tier-2 compilations, and Figure 6 shows GraalVM-EE Tier 2. The plots show the selected
extraction scopes from left to right based on their execution point in the compilations.

Figure 4 shows that partial evaluation has the highest impact on the total compilation
time in Tier-1 compilations, with a median between 58.5% and 72.7%. It is also apparent
that the median front-end time, in the range of 11.60% to 20.20%, is higher than the back-end
time, 8.81% to 15.70%, while the average low-tier time, 5.46% to 7.49%, is higher than the
high-tier, 1.66% to 3.79%, and mid-tier times, 3.41% to 6.90%.

Figure 5 shows that the difference in average time between front end and back end is
larger in Tier-2 compilations, 7.88%pt (percentage points) to 15.10%pt, than in Tier 1,
1.70%pt to 10.05%pt. This observation seems reasonable since the back-end compiler phases
are nearly identical in Tier-1 and Tier-2 compilations, whereas the GraalVM compiler applies
additional, longer-running optimization phases in the front end of Tier 2. We verified this
conclusion based on absolute numbers to make sure the back-end time stays consistent while
the front-end time increases. The only exception is WebAssembly, were the difference between
front end and back end is larger in Tier 1 (10.05%pt) than in Tier-2 CE (7.83%pt).

The difference between Tier-1 and Tier-2 front-end and back-end times becomes even more
apparent in Figure 6, since Tier-2 EE, with differences in the range of 22.36%pt to 29.11%pt,
has additional optimization phases compared to Tier-2 CE. Furthermore, compilation takes
an equal amount of time or longer than partial evaluation in Python, with 48.71% and
49.19%, and JavaScript, 50.27% and 46.33%. This can again be explained by the increase in
font-end time.

We try to identify possible outliers that require further investigation based on the extracted
data. We define outliers based on the interquartile range method [16] and focus on extreme
outliers that are more than 3 interquartile ranges (IQR) away from the first (Q1) and third
quantile (Q3). We represent outliers in the plots by circles above and below the boxplots.

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:13

Tier 2 CE

python

Tier 2 CE

wasm

Tier 2 CE

espresso

Tier 2 CE

js

Tier 2 CE

llvm

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

Compiler Phase

S
h
a
re

 o
f
T
o
ta

l C
o
m

p
ila

tio
n
 T

im
e
 (

%
)

1 PartialEvaluation

2 Compilation

 2.1 FrontEnd

 2.1.1 HighTier

 2.1.2 MidTier

 2.1.3 LowTier

 2.2 BackEnd

3 CodeInstallation

Figure 5 Compilation-time distribution of Tier-2 compilations in GraalVM CE. Compiler phases
are from left to right based on their index.

Tier 2 EE

python

Tier 2 EE

wasm

Tier 2 EE

espresso

Tier 2 EE

js

Tier 2 EE

llvm

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

Compiler Phase

S
h
a
re

 o
f
T
o
ta

l C
o
m

p
ila

tio
n
 T

im
e
 (

%
)

1 PartialEvaluation

2 Compilation

 2.1 FrontEnd

 2.1.1 HighTier

 2.1.2 MidTier

 2.1.3 LowTier

 2.2 BackEnd

3 CodeInstallation

Figure 6 Compilation-time distribution of Tier-2 compilations in GraalVM EE. Compiler phases
are from left to right based on their index.

ECOOP 2024

20:14 An Outlier-Driven Approach to Compilation-Time Optimization

All three data sets contain many outliers within individual extraction scopes. For
example, Espresso and JavaScript contain a lot of outliers in all extraction scopes of Tier-1
compilations, while the GraalVM LLVM runtime shows significant outliers in the mid tier.
In Tier-2 compilations, JavaScript presents significant outliers in the back end, while Python
contains several outliers in the low tier of CE compilations. The GraalVM-LLVM-runtime
outliers found in the mid tier of Tier-1 compilations are also found in Tier 2.

Analyzing all outliers in all data sets would be possible. However, we will focus on the
most significant outliers to identify defects and optimizations with a high impact potential.
To select the relevant outliers, we prioritize them based on their distance from Q1 or Q3 in
terms of multiples of the IQR and look into extraction scopes with a high outlier density.

Consequently, we will analyze the outliers in the mid tier of GraalVM-LLVM-runtime
compilations. Especially the outliers in Tier-1 compilations have a distance of more than
30IQR from Q3. The outliers are consistent throughout all editions and compiler tiers and
are responsible for up to 80% of the total compilation time in Tier 1 and Tier-2 EE.

Furthermore, we will analyze the back end of JavaScript compilations. This extraction
scope shows a high outlier density throughout all editions and compiler tiers. The same
applies to the low tier of Python Tier 1 and Tier-2 CE compilations.

Although it is hard to quantify partial evaluation as an outlier, it is apparent from a
visual analysis of the plots in Figures 4 to 6 that partial evaluation takes up a significant
part of the total compilation time in all compiler editions and tiers. Therefore, in addition to
our outlier analyses, we show the applicability of our methodology for finding optimizations
in existing compiler phases by analyzing partial evaluation in all guest language runtimes.

4.5 Outlier Analysis
We perform an outlier analysis based on the possible defects identified during the evaluation
of the GraalVM compilation time in Section 4.4. We verify the defects and identify their
source code locations. In addition, we show that our approach can find optimization locations
in compilers by focusing on long-running extraction scopes.

4.5.1 Mid Tier in the GraalVM LLVM Runtime
We first analyzed the outliers in the GraalVM-LLVM-runtime mid tier and identified the
benchmark functions responsible for the outliers to find a possible defect in the compilations.
The outliers were two functions in the bzip2 and oggenc benchmarks that did not show
any suspicious characteristics in the C source code. Next, we refined our extraction scopes
from a top-level view of the mid tier to individual compiler phases. Figure 7 shows the
result of the narrowed extraction scopes of Tier-1 compilations. The figure shows that the
frame-state-assignment phase has a lot of outliers and the previously identified functions
indeed spend nearly all of their mid-tier time in the frame-state-assignment phase of Tier-1
compilations. We also verified that the frame-state-assignment phase is the defect source in
Tier-2 compilations (omitted from the paper).

Frame states are a mapping from machine state (i.e., registers and native stack frames) to
interpreter state (i.e., JVM stack frames) and are required by GraalVM during deoptimizations
to regenerate the interpreter state of a program [11, 12]. During partial evaluation, the
GraalVM compiler generates a frame-state node for every operation that changes the local
state of a method (local variables, operand stack values, and locked objects) and attaches it
to the node in the GraalIR graph that causes this change. Subsequent compiler optimization
phases might also introduce new nodes, and therefore new frame states. When entering

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:15

llvm

0

10

20

30

40

50

60

70

80

90

100

Compiler Phase

S
h
a
re

 o
f
M

id
T

ie
r

T
im

e
 (

%
)

 2.1.2.1 RemoveValueProxyPhase

 2.1.2.1.1 IncrementalCanonicalizerPhase

 2.1.2.2 TruffleSafepointInsertionPhase

 2.1.2.3 LoopSafepointInsertionPhase

 2.1.2.4 GuardLoweringPhase

 2.1.2.5 MidTierLoweringPhase

 2.1.2.5.1 SchedulePhase

 2.1.2.5.2 IncrementalCanonicalizerPhase

 2.1.2.6 FrameStateAssignmentPhase

 2.1.2.7 CanonicalizerPhase

 2.1.2.8 WriteBarrierAdditionPhase

Figure 7 Compilation-time distribution of the mid tier in Tier-1 compilations. Compiler phases
are from left to right based on their index.

Tier 1

llvm

Tier 2 CE

llvm

Tier 2 EE

llvm

0

10

20

30

40

50

60

70

80

90

100

Compiler PhaseS
h
a
re

 o
f
T
o
ta

l C
o
m

p
ila

tio
n
 T

im
e
 (

%
)

1 Move

2 Delete

Figure 8 Compilation-time distribution of the two frame-state-assignment phase parts Move and
Delete. Compiler phases are from left to right based on their index.

the frame-state-assignment phase, the graph is stable and no more nodes that may cause
deoptimizations can be introduced in later compiler phases. Since the frame states are only
required by deoptimizations, the frame-state-assignment phase moves the frame states from
their originating nodes to deoptimization nodes at deoptimization points in the graph and
removes unused frame states.

To further narrow the defect location, we introduced individual timers for the two source
code method calls (Move and Delete) in the run method of the frame-state-assignment phase.
The Move method moves existing frame-state nodes, while the Delete method deletes unused
frame-state nodes. Figure 8 shows the result of this last narrowing step. The values of these
last extraction scopes are relative to the total compilation time. The figure shows that the
deletion of unused frame-state nodes is responsible for the outliers and should be optimized,
as described in Section 5.1.

4.5.2 Back End in JavaScript
We analyzed the outliers in the JavaScript back end and identified that all functions responsible
for the outliers are part of the typescript benchmark, which compiles a large TypeScript
application to JavaScript. The benchmark uses the identified functions to walk the AST of
the TypeScript application. The functions themselves are small and call each other recursively.
As a result of these recursive calls, the GraalVM compiler can perform a lot of inlining.

ECOOP 2024

20:16 An Outlier-Driven Approach to Compilation-Time Optimization

Tier 2 CE

js - outliers

0

10

20

30

40

50

60

70

80

90

100

Compiler Phase

S
h
a
re

 o
f
T
o
ta

l C
o
m

p
ila

tio
n
 T

im
e
 (

%
) 2.2.1.1 LIRGeneration

 2.2.1.2 PreAllocationOptimizationStage

 2.2.1.2.1 ConstantLoadOptimization

 2.2.1.2.2 SaveCalleeSaveRegisters

 2.2.1.3 AllocationStage

 2.2.1.3.1 MarkBasePointers

 2.2.1.3.2 LinearScan

 2.2.1.3.3 LSStackSlotAllocator

 2.2.1.4 PostAllocationOptimizationStage

 2.2.1.5 FinalCodeAnalysisStage

 2.2.1.5.1 LocationMarker

Figure 9 Compilation-time distribution of the back end in Tier-2 CE compilations. Compiler
phases are from left to right based on their index.

We narrowed the extraction scopes to individual compiler phases in the back end and
found that the identified functions on average spend 87% of their Tier-2 CE back-end time
in LIR generation, as shown in Figure 9. Tier-1 (60%) and Tier-2 EE (82%) compilations
produced similar numbers. The LIR-generation phase transforms high-level GraalIR nodes
into low-level LIR nodes by iterating over the GraalIR graph and transforming each node.

We found out that the outlier functions spend most of their time transforming nodes
that generate a LIR frame state during LIR generation. The LIR frame states represent
garbage collection and deoptimization information and the GraalVM compiler computes
them based on the frame-state nodes in the GraalIR graph by iterating over all values in the
frame state and all its parent frame states and transforming the GraalIR representation of
the frame-state values into LIR representations. A frame state has a parent frame state if its
method was inlined into another method. The parent frame state represents the frame state
of the method into which this method was inlined. We confirmed that the outlier functions
had a lot of frame states as a result of inlining and, through a last narrowing step, confirmed
that the identified outliers spend most of their time generating LIR frame states.

Optimizing this pattern would require significant changes in the compiler architecture
which was not in the scope of this paper. We reported our findings to the GraalVM compiler
team for further investigation.

4.5.3 Low Tier in Python
We analyzed the outliers in the Python low tier and found out that all outliers are instances
of the same function in all benchmarks, the time function in the Python time module31. This
function is built into GraalPy and returns the current time in seconds. The benchmarks use
this function to measure execution time.

We narrowed the extraction scopes to individual compiler phases in the low tier and found
that the identified functions spend more than 95% of the low-tier time in the low-tier-lowering
phase. Lowering transforms nodes on a higher abstraction level to node structures on a lower
abstraction level. For example, a load-field node, accessing a field on an object, is lowered to
a read node, reading a value from an address in memory.

31 https://docs.python.org/3/library/time.html#time.time

https://docs.python.org/3/library/time.html#time.time

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:17

We also extracted the node count for the graph of the time function and found that it is
a small graph with only 157 nodes. We narrowed the extraction scopes to the lowering of
individual node types and found that four individual nodes were responsible for the time
spent in lowering. These were two exception-object nodes, one truffle-safepoint node, and one
new-instance node. The commonality between these nodes is that they are all lowered with
the help of snippets [35]. The GraalVM compiler creates these snippets the first time they
are used and caches them based on their compilation unit. This implies an initial overhead
that is, in most cases, amortized by several usages of the cached snippets. However, since
the graphs for the time functions only contain one or two of the snippet-lowered nodes, this
results in a significant run-time overhead during the low-tier-lowering phase.

Optimizing this process would again require significant changes to the implementation of
snippets and the lowering process itself, which is out of the scope of this paper. We reported
our findings to the GraalVM compiler and GraalPy teams for further investigation.

4.5.4 Partial Evaluation
The partial-evaluation time of compilations is a long-standing problem in the GraalVM
compiler and, as our evaluation shows, is responsible for up to 73% of the total compilation
time. Therefore, finding an optimization opportunity in partial evaluation would improve a
large portion of the overall compilation time in GraalVM guest language interpreters.

We narrowed the extraction scopes to sub-phases of partial evaluation to find possible
optimizations to partial evaluation. The sub-phases include decode-graph, cleanup-graph,
two post-partial-evaluation suites, decode-inline-graph, and the inline post-partial-evaluation
suite, apart from several other optimization phases and sub-phases. Figure 10 shows the
result of the narrowed extracted scopes. The plots only show the sub-phases with the highest
compilation-time impact to improve readability.

Figure 10 shows that graph decoding (DecodeGraph, DecodeInlinedGraph) has the highest
impact on compilation time spent in partial evaluation. Graph decoding iterates over a
graph representation of the program IR, processing one node after the other. During the
decoding, the GraalVM compiler applies several optimizations based on the type of each node.
Load-field nodes for example, can be constant folded, while invoke-with-exception nodes,
representing function calls, can be inlined. Partial evaluation performs graph decoding on
the main partial-evaluation function (DecodeGraph), the function for which Truffle requests
partial evaluation, and all functions inlined during partial evaluation (DecodeInlinedGraph).
In Tier-2 compilations, graph decoding of inlined functions dominates the partial-evaluation
time due to aggressive inlining policies, while in Tier 1, inlining is restricted.

We extracted the time spent processing specific node types during graph decoding by
adding singleton scopes for all node types, as described in Section 3.2. Examples of node
types are load-field nodes that load the field of an object, if nodes that represent an if
statement, and loop-begin nodes representing a loop header. Figure 11 shows the result of
the individual node types. The plots only show the node types with the highest impact on
compilation time to improve readability.

Figure 11 shows that invoke-with-exception nodes dominate the graph-decoding process.
Since invoke-with-exception nodes perform function inlining, it is expected that these nodes
take up most of the total graph-decoding time. During inlining, invoke-with-exception nodes
have to recursively decode the callee function and attach the resulting graph to the graph that
is currently decoded. This process is already heavily optimized and most of its time is spent
in the recursive decoding. Therefore, we did not further consider invoke-with-exception nodes
for finding optimization potential. We instead focused on load-field nodes. We optimized the
constant-folding performed for load-field nodes to improve the graph-decoding performance,
as described in Section 5.2.

ECOOP 2024

20:18 An Outlier-Driven Approach to Compilation-Time Optimization

Tier 2 EE

espresso

Tier 2 EE

js

Tier 2 EE

llvm

Tier 2 EE

python

Tier 2 EE

wasm

Tier 2 CE

espresso

Tier 2 CE

js

Tier 2 CE

llvm

Tier 2 CE

python

Tier 2 CE

wasm

Tier 1

espresso

Tier 1

js

Tier 1

llvm

Tier 1

python

Tier 1

wasm

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

Compiler Phase

S
h
a
re

 o
f
P

a
rt

ia
lE

va
lu

a
tio

n
 T

im
e
 (

%
)

1 DecodeGraph

2 CleanupGraph

3 PostPartialEvaluationSuite 1

4 DecodeInlinedGraph

5 InlinePostPartialEvaluationSuite

6 PostPartialEvaluationSuite 2

Figure 10 Compilation-time distribution of partial evaluation. Compiler phases are from left to
right based on their index.

5 Optimization

5.1 Frame State Assignment – Optimizing Deletion Strategies
Graphs are a common way of implementing the intermediate representation of a compiler [39,
8, 7]. The design of these graphs is crucial because optimizations require an efficient way of
traversing and manipulating the IR. The efficiency of these operations depends on the data
structures used to represent nodes and edges in the graph.

GraalVM uses a directed graph that represents data flow and control flow in a single data
structure [11, 12]. To model data flow, a node has input edges, pointing from the node using
a value to the node defining this value. The reverse edges, so-called usage edges, which point
in the opposite direction, are automatically maintained by the graph, so optimizations do not
have to deal with maintaining them. However, in contrast to input edges, usage edges are
not ordered and can only be accessed as an unordered set [11, 12]. Consequently, finding a
specific usage of a node may require traversing the entire set. Unordered sets are a common
way of reducing the memory footprint of the reverse-edge sets in JIT compilers32.

32 https://chromium.googlesource.com/v8/v8/+/refs/heads/main/src/compiler/node.h#181,
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/opto/node.hpp#L319

https://chromium.googlesource.com/v8/v8/+/refs/heads/main/src/compiler/node.h#181
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/opto/node.hpp#L319

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:19

Tier 2 EE

espresso

Tier 2 EE

js

Tier 2 EE

llvm

Tier 2 EE

python

Tier 2 EE

wasm

Tier 2 CE

espresso

Tier 2 CE

js

Tier 2 CE

llvm

Tier 2 CE

python

Tier 2 CE

wasm

Tier 1

espresso

Tier 1

js

Tier 1

llvm

Tier 1

python

Tier 1

wasm

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

Node Type

S
h
a
re

 o
f
G

ra
p
h
 D

e
c
o
d
in

g
 T

im
e
 (

%
)

Begin

EndNode

FixedGuard

If

InvokeWithException

LoadField

LoadIndexed

LoopBegin

LoopEnd

Return

Figure 11 Compilation-time distribution of individual node types during graph decoding. Node
types are from left to right in alphabetical order.

Usage edges are needed, for example, for deleting unused nodes in dead code elimina-
tion [29]. If a node is no longer used, its usage edges must be removed from all its inputs
before the node can be deleted. As a result of deleting a usage of an input node, the input
node itself can become unused, i.e., its usage set may become empty. This can lead to the
transitive deletion of other nodes, which, in the worst case, requires several full traversals of
potentially countless node usage sets.

For the frame-state-assignment phase of the GraalVM compiler, the outlier analysis
in Section 4.5.1 showed that the deletion of unused frame-state nodes is responsible for a
substantial part of the mid-tier time.

Normally, the traversal of usage sets during the deletion of frame-state nodes does not
represent a problem, since the number of frame-state nodes is usually small. However,
the graphs in which we identified outliers contained hundreds of frame-state nodes due to
excessive inlining, resulting in slowdowns in the frame-state-assignment phase. Therefore,
we updated the algorithm for deleting nodes. In the original implementation, every unused
node was visited one after the other, and the usage sets of the node’s inputs were updated
immediately when deleting the node. This led to a lot of usage set traversals due to the
transitive deletion of nodes.

Instead of updating the usage sets of nodes immediately, the updated algorithm tracks
the usage counts of nodes in a separate map. The algorithm performs a depth-first traversal
of the graph starting at the inputs of the deleted frame-state nodes, updates the usage counts

ECOOP 2024

20:20 An Outlier-Driven Approach to Compilation-Time Optimization

Tier 1

llvm

0

10

20

30

40

50

60

70

80

90

100

Compiler Phase

S
h
a
re

 o
f
M

id
T

ie
r

T
im

e
 (

%
)

 2.1.2.1 RemoveValueProxyPhase

 2.1.2.1.1 IncrementalCanonicalizerPhase

 2.1.2.2 TruffleSafepointInsertionPhase

 2.1.2.3 LoopSafepointInsertionPhase

 2.1.2.4 GuardLoweringPhase

 2.1.2.5 MidTierLoweringPhase

 2.1.2.5.1 SchedulePhase

 2.1.2.5.2 IncrementalCanonicalizerPhase

 2.1.2.6 FrameStateAssignmentPhase

 2.1.2.7 CanonicalizerPhase

 2.1.2.8 WriteBarrierAdditionPhase

Figure 12 Compilation-time distribution of the mid tier in Tier-1 compilations after optimizing
the frame-state-assignment phase. Compiler phases are from left to right based on their index.

in the map, and deletes unused nodes along the way. The traversal stops at nodes whose
usage count in the map is non-zero. After the graph traversal, only nodes that are alive and
have changed usage counts need to be updated. The pseudocode for the updated algorithm
can be found in the appendix (Listing 3).

As a result of this optimized algorithm, the previous outliers no longer exist. We show
the updated mid-tier compilation time of Tier-1 compilations in Figure 12. We also verified
that the outliers no longer exist in Tier 2 (omitted from the paper). Due to the reduction
of the time spent in the frame-state-assignment phase, new outliers in the incremental
canonicalizer phase (2.1.2.1.1) arose that would be worth investigating, but are outside the
scope of this paper. We confirmed that the new outliers were not caused by changes in the
frame-state-assignment phase but were already present in the previous data set.

5.2 Graph Decoding – Constant-Fold Caches
Constant-folding is a crucial operation in compilers based on partial evaluation, because it
allows these compilers to evaluate parts of the program at compilation time, and thus simplify
the program [29, 1, 40]. When a partial-evaluation-based compiler identifies a constant in the
program representation, many subsequent operations depending on that constant can also
be replaced with constants. For example, a read operation from a field of a constant object
(i.e., an object represented by a constant pointer), can be evaluated during compilation, and
can be replaced with another constant that holds the value of the respective field.

Object-field reads and array reads on constant values are very common operations in
interpreters, because the program representation is encoded in either ASTs or bytecode
arrays [25], and the interpreter is partially evaluated for a given section of the program
that is a constant value from the perspective of the compilation. Thus it is critical that
constant-folding is executed very efficiently.

Reading a field from a constant object requires the compiler to (1) determine whether the
field or an array location is guaranteed to remain constant after partial evaluation, and (2)
to read the value from the respective offset in the program’s memory. The first step usually
relies on modifiers or annotations found in the source code of the interpreter. Both of these
steps involve calls to the runtime environment, and rely on reflective metadata, which is
usually expensive to obtain compared to a simple object-field read.

In the GraalVM compiler, the outlier analysis in Section 4.5.4 showed that the constant-
folding of load-field nodes (which represent object-field reads in GraalIR) is responsible for a
substantial part of the partial-evaluation time.

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:21

Tier 2 CE

python

Tier 2 CE

wasm

Tier 2 EE

espresso

Tier 2 EE

js

Tier 2 EE

llvm

Tier 2 EE

python

Tier 2 EE

wasm

Tier 1

espresso

Tier 1

js

Tier 1

llvm

Tier 1

python

Tier 1

wasm

Tier 2 CE

espresso

Tier 2 CE

js

Tier 2 CE

llvm

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90

100

Node Type

S
h
a
re

 o
f
G

ra
p
h
 D

e
c
o
d
in

g
 T

im
e
 (

%
)

LoadField with caches

LoadField without caches

Figure 13 Comparison of time spent in load-field nodes during graph decoding before and after
the introduction of caches. The time with caches is on the left in each plot, the time without caches
on the right.

If the same constant occurs multiple times in an IR graph, it is represented by a single
IR node to reduce memory footprint and compilation time [7, 8, 11, 12]. To maintain this
graph property, the GraalVM compiler, before adding a new constant node to the graph,
performs a graph traversal to look for equivalent nodes. This can be an expensive operation
depending on the graph size.

In the current partial-evaluation implementation in the GraalVM compiler, all constant-
folding attempts are independent. This means that the reflective metadata and value are
loaded again and again regardless of whether this information was already retrieved by a
previous constant-folding attempt. In addition, every constant-folding attempt allocates a
new constant node that is discarded when the GraalVM compiler identifies an equivalent
node in the graph. On average, the same constant field is read 8.5 times per compilation
unit across all compiler tiers and editions. Therefore, to reduce the number of calls to the
runtime environment as well as the number of allocated constant nodes and the number of
graph traversals, we introduced a two-layer cache system in the constant-folding performed
during partial evaluation.

As a result, the impact of constant-folding on partial evaluation was reduced, as shown
in Figure 13. Overall, this optimization led to a compilation-time reduction between 2.25%
(Python) and 6.88% (LLVM Runtime) in Tier 1, between 2.48% (Python) and 8.16%
(WebAssembly) in Tier-2 CE, and between 4.49% (JavaScript) and 9.45% (Espresso) in
Tier-2 EE.

6 Related Work

There is extensive research in the field of compilation-time optimization [22, 20, 30, 24, 2].
However, ICON, focusing on identifying outliers to find optimization opportunities in existing
compilers, combines multiple aspects that we are not aware of being found together in any

ECOOP 2024

20:22 An Outlier-Driven Approach to Compilation-Time Optimization

sole research. It combines (1) iterative narrowing of scopes to analyze a problem with (2)
focusing on outliers in extracted data to (3) improve compilation-time metrics. We, therefore,
focus on related work in compiler optimization similar to ICON in at least one aspect.

Brown et al. [5], propose a data-driven methodology to identify the impact of compiler
optimizations on security-oriented aspects of the generated machine code. They evaluate 20
benchmarks and analyze the availability of gadget sets used for code reuse attacks based
on the enabled compiler optimizations in the GCC and Clang compilers. They perform a
coarse-grained analysis based on optimization levels available in GCC and Clang, and a
fine-grained analysis on individual optimizations in those compilers, similar to the narrowing
of scopes in ICON. Furthermore, they use an outlier analysis to identify relevant compiler
optimizations, similar to the outlier analysis defined in ICON.

Bryksin et al. [6], propose a method to identify code anomalies in order to find issues
in compilers. They focus on source code fragments that are not typically found in a
given programming language or uncharacteristic bytecode produced by a compiler. With
anomaly detection algorithms, similar to the outlier detection in ICON, they identified several
optimization opportunities in the Kotlin compiler.

Regarding compilation-time optimization, existing work can be categorized into approaches
for phase selection and ordering [22, 30, 24, 2], automatic compiler optimization level
selection [20], and automatic compiler heuristics or optimization tuning [14, 32]. Most
existing approaches use machine learning and primarily focus on the common case instead of
outliers.

6.1 ICON-like Approaches in Other Compilers
Based on online reports33, compilation time is an important factor for many state-of-the-art
compiler implementations. To improve these metrics, some compiler teams are actively
working on improving their tooling to extract compilation-time metrics34.

We surveyed the V8 35 JavaScript and WebAssembly compiler, the Clang36 compiler in
LLVM, the GCC 37 compiler, the Java HotSpot [23] compiler, and the C# RyuJIT 38 compiler
in order to identify to which extent their capabilities overlap with the ideas proposed by
ICON. Table 2 shows our findings from analyzing the documentation and source code of the
compilers, as well as information provided by online forums and mailing lists. We tried to
find out whether the compilers provide a way of extracting compilation-time metrics (column
1), whether they support the narrowing of extraction scopes (column 2), and whether they
try to optimize compilation time based on outliers (column 3).

Based on the available compiler source code and the presence of compiler flags described in
the online documentation, all surveyed compilers provide compilation-time metrics, although
to varying degrees. To the best of our knowledge, HotSpot provides the compilation time

33 https://github.com/llvm/llvm-project/labels/slow-compile,
https://gcc.gnu.org/pipermail/gcc-bugs/2024-March/857635.html,
https://discourse.llvm.org/t/gsoc-2024-statistical-analysis-of-llvm-ir-compilation-
with-clang/77532

34 https://bugs.openjdk.org/browse/JDK-8311896
35 https://v8.dev/
36 https://clang.llvm.org/
37 https://gcc.gnu.org/
38 https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/jit/ryujit-overview.md

https://github.com/llvm/llvm-project/labels/slow-compile
https://gcc.gnu.org/pipermail/gcc-bugs/2024-March/857635.html
https://discourse.llvm.org/t/gsoc-2024-statistical-analysis-of-llvm-ir-compilation-with-clang/77532
https://discourse.llvm.org/t/gsoc-2024-statistical-analysis-of-llvm-ir-compilation-with-clang/77532
https://bugs.openjdk.org/browse/JDK-8311896
https://v8.dev/
https://clang.llvm.org/
https://gcc.gnu.org/
https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/jit/ryujit-overview.md

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:23

Table 2 Capabilities of compilation-time optimization of V8, Clang, GCC, HotSpot, RyuJIT,
and GraalVM with ICON.

Compiler Metrics extraction Scope narrowing Outlier analysis
V8 yes no no
Clang yes yes no
GCC yes yes no
HotSpot yes no no
RyuJIT yes no no
GraalVM with ICON yes yes yes

across all compilations via the -XX:+CITime flag. V8 and RyuJIT report a fixed set of metrics
for all compilation units via compiler flags (V839, RyuJIT40). Clang41 and GCC42 provide
detailed reports about time spent in individual optimizations via the -ftime-report flag.

Regarding scope narrowing, Clang allows passing a parameter to the -ftime-report
compiler flag to differentiate whether the time is reported “per-pass” or “per-pass-run” to
separate or combine individual pass executions. GCC supports narrowing via a separate
compiler flag -ftime-report-details. As far as we know, none of the other compilers
provide options to change the scope of extracted metrics.

To the best of our knowledge, the GraalVM compiler with our ICON enhancements is
the only compiler using outliers to improve compilation time.

6.2 Synergy with Regression Testing
In addition to finding optimization opportunities in compilers, ICON is well suited to
accompany compiler regression testing. While regression testing ensures that changes to
the source code do not break existing compiler features and do not impair the correctness
of the produced machine code [43], our approach ensures that changes to the source code
do not lead to compilation-time regressions, additional memory allocation, or other aspects
negatively impacting compilation. Therefore, in addition to ensuring the correctness of the
output via regression testing, ICON ensures the efficiency of the compilation process and
identifies any newly introduced defects. Both can execute the same tests, so no additional
input programs are required to integrate ICON.

7 Conclusion

We presented ICON, a new data-driven approach to compilation-time optimization that
splits high-level metrics into individual source program functions, compiler optimizations, or
even into individual instruction in the compiler source code. By focusing on outliers in the
extracted data, this approach can identify potential optimization opportunities in compiler
implementations that are usually overlooked and provides a systematic approach to the
analysis of compilation-time metrics.

39 https://chromium.googlesource.com/v8/v8/+/refs/heads/main/src/diagnostics/
compilation-statistics.h,https://v8.dev/docs/trace

40 https://github.com/dotnet/runtime/blob/main/src/coreclr/jit/compiler.h#L1643,
https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/jit/viewing-jit-dumps.
md#miscellaneous-always-available-configuration-options

41 https://releases.llvm.org/12.0.0/tools/clang/docs/ClangCommandLineReference.html#
cmdoption-clang1-ftime-report

42 https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html#index-ftime-report

ECOOP 2024

https://chromium.googlesource.com/v8/v8/+/refs/heads/main/src/diagnostics/compilation-statistics.h, https://v8.dev/docs/trace
https://chromium.googlesource.com/v8/v8/+/refs/heads/main/src/diagnostics/compilation-statistics.h, https://v8.dev/docs/trace
https://github.com/dotnet/runtime/blob/main/src/coreclr/jit/compiler.h#L1643
https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/jit/viewing-jit-dumps.md#miscellaneous-always-available-configuration-options
https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/jit/viewing-jit-dumps.md#miscellaneous-always-available-configuration-options
https://releases.llvm.org/12.0.0/tools/clang/docs/ClangCommandLineReference.html#cmdoption-clang1-ftime-report
https://releases.llvm.org/12.0.0/tools/clang/docs/ClangCommandLineReference.html#cmdoption-clang1-ftime-report
https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html#index-ftime-report

20:24 An Outlier-Driven Approach to Compilation-Time Optimization

To demonstrate the effectiveness of our approach, we used ICON to extract a detailed
view of the compilation time of the individual optimizations of the GraalVM compiler and
performed a comprehensive outlier analysis on the resulting data with the goal of finding
optimization potential. We found that most of the compilation time is spent in partial
evaluation throughout all compiler tiers and editions, while the front end takes more time
than the back end, especially in Tier-2 compilations.

The outlier analysis led to one language-agnostic and three language-specific outliers
in compilation time. In the outlier analysis, the spatial component of the extraction-scope
narrowing turned out to be useful at all levels. While the per-node analysis of partial
evaluation helped us to identify an optimization opportunity in constant-folding, the per-
phase analysis applied to the compiler mid tier, low tier and back end led to the detection
of compiler defects in Python, JavaScript, and the GraalVM LLVM runtime, and helped
us to develop an improved algorithm for the frame-state-assignment phase. Similarly, the
temporal component was useful for analyzing Python, and we identified a single function as
the compiler defect source.

Based on the identified optimization opportunities, we added additional caches to the
constant-folding performed during partial evaluation and implemented a new deletion strategy
for unused nodes in the frame-state-assignment phase. We reported the two remaining findings
to the GraalVM compiler and language teams. The implemented optimizations improved
compilation time in all languages between 2.25% (Python) and 9.45% (Espresso).

References
1 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley series in computer science / World student series edition. Addison-Wesley,
1986. URL: https://www.worldcat.org/oclc/12285707.

2 Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano. A
survey on compiler autotuning using machine learning. ACM Comput. Surv., 51(5):96:1–96:42,
September 2019. doi:10.1145/3197978.

3 Islem Bouzenia and Michael Pradel. Resource usage and optimization opportunities in
workflows of github actions. In Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024, pages 25:1–25:12,
Los Alamitos, CA, USA, April 2024. ACM. doi:10.1145/3597503.3623303.

4 E. O. Brigham and R. E. Marrow. The fast fourier transform. IEEE Spectrum, 4(12):63–70,
1967. doi:10.1109/MSPEC.1967.5217220.

5 Michael D. Brown, Matthew Pruett, Robert Bigelow, Girish Mururu, and Santosh Pande.
Not so fast: understanding and mitigating negative impacts of compiler optimizations on
code reuse gadget sets. Proc. ACM Program. Lang., 5(OOPSLA):1–30, October 2021. doi:
10.1145/3485531.

6 Timofey Bryksin, Victor Petukhov, Ilya Alexin, Stanislav Prikhodko, Alexey Shpilman,
Vladimir Kovalenko, and Nikita Povarov. Using large-scale anomaly detection on code to
improve kotlin compiler. In Sunghun Kim, Georgios Gousios, Sarah Nadi, and Joseph Hejderup,
editors, MSR ’20: 17th International Conference on Mining Software Repositories, Seoul,
Republic of Korea, 29-30 June, 2020, MSR ’20, pages 455–465, New York, NY, USA, 2020.
ACM. doi:10.1145/3379597.3387447.

7 Cliff Click and Keith D. Cooper. Combining analyses, combining optimizations. ACM Trans.
Program. Lang. Syst., 17(2):181–196, March 1995. doi:10.1145/201059.201061.

8 Cliff Click and Michael Paleczny. A simple graph-based intermediate representation. In Mi-
chael D. Ernst, editor, Proceedings ACM SIGPLAN Workshop on Intermediate Representations
(IR’95), San Francisco, CA, USA, January 22, 1995, IR ’95, pages 35–49, New York, NY,
USA, 1995. ACM. doi:10.1145/202529.202534.

https://www.worldcat.org/oclc/12285707
https://doi.org/10.1145/3197978
https://doi.org/10.1145/3597503.3623303
https://doi.org/10.1109/MSPEC.1967.5217220
https://doi.org/10.1145/3485531
https://doi.org/10.1145/3485531
https://doi.org/10.1145/3379597.3387447
https://doi.org/10.1145/201059.201061
https://doi.org/10.1145/202529.202534

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:25

9 Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In Mary S. Van Deusen
and Bernard Lang, editors, Conference Record of the Twentieth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Charleston, South Carolina,
USA, January 1993, POPL ’93, pages 493–501, New York, NY, USA, 1993. ACM Press.
doi:10.1145/158511.158707.

10 Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon, Christian Wimmer, and
Hanspeter Mössenböck. Graal ir: An extensible declarative intermediate representation. In
Proceedings of the Asia-Pacific Programming Languages and Compilers Workshop, pages 1–9,
2013.

11 Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and
Hanspeter Mössenböck. An intermediate representation for speculative optimizations in a
dynamic compiler. In Christoph Bockisch, Michael Haupt, Steve Blackburn, Hridesh Rajan,
and Joseph Gil, editors, VMIL@SPLASH ’13: Proceedings of the 7th ACM workshop on
Virtual machines and intermediate languages, Indianapolis, IN, USA, 28 October 2013, VMIL
’13, pages 1–10, New York, NY, USA, 2013. ACM. doi:10.1145/2542142.2542143.

12 Gilles Marie Duboscq. Combining speculative optimizations with flexible scheduling of side-
effects, 2016. URL: https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-9708.

13 Josef Eisl. Trace register allocation, 2018. URL: https://resolver.obvsg.at/urn:nbn:at:
at-ubl:1-25787.

14 Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam,
Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, François Bodin,
Phil Barnard, Elton Ashton, Edwin V. Bonilla, John Thomson, Christopher K. I. Williams,
and Michael F. P. O’Boyle. Milepost GCC: machine learning enabled self-tuning compiler.
Int. J. Parallel Program., 39(3):296–327, June 2011. doi:10.1007/s10766-010-0161-2.

15 Yoshihiko Futamura. Partial evaluation of computation process - an approach to a compiler-
compiler. High. Order Symb. Comput., 12(4):381–391, December 1999. doi:10.1023/A:
1010095604496.

16 G. Genta G. Barbato, E. M. Barini and R. Levi. Features and performance of some outlier
detection methods. Journal of Applied Statistics, 38(10):2133–2149, 2011. doi:10.1080/
02664763.2010.545119.

17 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith, and Gavin
Bierman. The java® language specification, 2024. URL: https://docs.oracle.com/javase/
specs/jls/se22/jls22.pdf.

18 Tobias Hartmann, Albert Noll, and Thomas R. Gross. Efficient code management for dynamic
multi-tiered compilation systems. In Joanna Kolodziej and Bruce R. Childers, editors, 2014
International Conference on Principles and Practices of Programming on the Java Platform
Virtual Machines, Languages and Tools, PPPJ ’14, Cracow, Poland, September 23-26, 2014,
PPPJ ’14, pages 51–62, New York, NY, USA, 2014. ACM. doi:10.1145/2647508.2647513.

19 Urs Hölzle, Craig Chambers, and David M. Ungar. Debugging optimized code with dynamic
deoptimization. In Stuart I. Feldman and Richard L. Wexelblat, editors, Proceedings of
the ACM SIGPLAN’92 Conference on Programming Language Design and Implementation
(PLDI), San Francisco, California, USA, June 17-19, 1992, volume 27, pages 32–43, New
York, NY, USA, July 1992. ACM. doi:10.1145/143095.143114.

20 Kenneth Hoste and Lieven Eeckhout. Cole: compiler optimization level exploration. In
Mary Lou Soffa and Evelyn Duesterwald, editors, Sixth International Symposium on Code
Generation and Optimization (CGO 2008), April 5-9, 2008, Boston, MA, USA, CGO ’08,
pages 165–174, New York, NY, USA, 2008. ACM. doi:10.1145/1356058.1356080.

21 Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wöß, and Thomas Würthinger.
A domain-specific language for building self-optimizing AST interpreters. In Ulrik Pagh Schultz
and Matthew Flatt, editors, Generative Programming: Concepts and Experiences, GPCE’14,
Vasteras, Sweden, September 15-16, 2014, volume 50, pages 123–132, New York, NY, USA,
September 2014. ACM. doi:10.1145/2658761.2658776.

ECOOP 2024

https://doi.org/10.1145/158511.158707
https://doi.org/10.1145/2542142.2542143
https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-9708
https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-25787
https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-25787
https://doi.org/10.1007/s10766-010-0161-2
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1080/02664763.2010.545119
https://doi.org/10.1080/02664763.2010.545119
https://docs.oracle.com/javase/specs/jls/se22/jls22.pdf
https://docs.oracle.com/javase/specs/jls/se22/jls22.pdf
https://doi.org/10.1145/2647508.2647513
https://doi.org/10.1145/143095.143114
https://doi.org/10.1145/1356058.1356080
https://doi.org/10.1145/2658761.2658776

20:26 An Outlier-Driven Approach to Compilation-Time Optimization

22 Tarindu Jayatilaka, Hideto Ueno, Giorgis Georgakoudis, Eunjung Park, and Johannes Doerfert.
Towards compile-time-reducing compiler optimization selection via machine learning. In
Federico Silla and Osni Marques, editors, ICPP Workshops 2021: 50th International Conference
on Parallel Processing, Virtual Event / Lemont (near Chicago), IL, USA, August 9-12, 2021,
ICPP Workshops ’21, pages 23:1–23:6, New York, NY, USA, 2021. ACM. doi:10.1145/
3458744.3473355.

23 Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez, Kenneth B.
Russell, and David Cox. Design of the java hotspot™ client compiler for java 6. ACM Trans.
Archit. Code Optim., 5(1):7:1–7:32, May 2008. doi:10.1145/1369396.1370017.

24 Sameer Kulkarni and John Cavazos. Mitigating the compiler optimization phase-ordering
problem using machine learning. In Gary T. Leavens and Matthew B. Dwyer, editors,
Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ,
USA, October 21-25, 2012, OOPSLA ’12, pages 147–162, New York, NY, USA, 2012. ACM.
doi:10.1145/2384616.2384628.

25 Octave Larose, Sophie Kaleba, Humphrey Burchell, and Stefan Marr. AST vs. bytecode:
Interpreters in the age of meta-compilation. Proc. ACM Program. Lang., 7(OOPSLA2):318–346,
October 2023. doi:10.1145/3622808.

26 Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley, and Daniel Smith. The java®
virtual machine specification, 2024. URL: https://docs.oracle.com/javase/specs/jvms/
se22/jvms22.pdf.

27 Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. Cross-language compiler benchmark-
ing: are we fast yet? In Roberto Ierusalimschy, editor, Proceedings of the 12th Symposium on
Dynamic Languages, DLS 2016, Amsterdam, The Netherlands, November 1, 2016, volume 52,
pages 120–131, New York, NY, USA, November 2016. ACM. doi:10.1145/2989225.2989232.

28 Uwe Meyer. Techniques for partial evaluation of imperative languages. In Charles Consel and
Olivier Danvy, editors, Proceedings of the Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, PEPM’91, Yale University, New Haven, Connecticut, USA,
June 17-19, 1991, PEPM ’91, pages 94–105, New York, NY, USA, 1991. ACM. doi:10.1145/
115865.115876.

29 Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

30 Gennady Pekhimenko and Angela Demke Brown. Efficient program compilation through
machine learning techniques. In Ken Naono, Keita Teranishi, John Cavazos, and Reiji Suda,
editors, Software Automatic Tuning, From Concepts to State-of-the-Art Results, pages 335–351.
Springer, New York, NY, 2010. doi:10.1007/978-1-4419-6935-4_19.

31 Bui Tuong Phong. Illumination for computer generated pictures. Commun. ACM, 18(6):311–
317, June 1975. doi:10.1145/360825.360839.

32 Dmitry Plotnikov, Dmitry Melnik, Mamikon Vardanyan, Ruben Buchatskiy, Roman Zhuykov,
and Je-Hyung Lee. Automatic tuning of compiler optimizations and analysis of their impact.
In Vassil Alexandrov, Michael Lees, Valeria V. Krzhizhanovskaya, Jack J. Dongarra, and
Peter M. A. Sloot, editors, Proceedings of the International Conference on Computational
Science, ICCS 2013, Barcelona, Spain, 5-7 June, 2013, volume 18 of Procedia Computer
Science, pages 1312–1321. Elsevier, 2013. 2013 International Conference on Computational
Science. doi:10.1016/j.procs.2013.05.298.

33 Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas Würthinger, and Hanspeter
Mössenböck. Bringing low-level languages to the JVM: efficient execution of LLVM IR
on truffle. In Antony L. Hosking and Witawas Srisa-an, editors, Proceedings of the 8th
International Workshop on Virtual Machines and Intermediate Languages, VMIL@SPLASH
2016, Amsterdam, The Netherlands, October 31, 2016, VMIL 2016, pages 6–15, New York,
NY, USA, 2016. ACM. doi:10.1145/2998415.2998416.

https://doi.org/10.1145/3458744.3473355
https://doi.org/10.1145/3458744.3473355
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1145/2384616.2384628
https://doi.org/10.1145/3622808
https://docs.oracle.com/javase/specs/jvms/se22/jvms22.pdf
https://docs.oracle.com/javase/specs/jvms/se22/jvms22.pdf
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1145/115865.115876
https://doi.org/10.1145/115865.115876
https://doi.org/10.1007/978-1-4419-6935-4_19
https://doi.org/10.1145/360825.360839
https://doi.org/10.1016/j.procs.2013.05.298
https://doi.org/10.1145/2998415.2998416

F. Huemer, D. Leopoldseder, A. Prokopec, R. Mosaner, and H. Mössenböck 20:27

34 Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Icebreaker: warming serverless functions
better with heterogeneity. In Babak Falsafi, Michael Ferdman, Shan Lu, and Thomas F.
Wenisch, editors, ASPLOS ’22: 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Lausanne, Switzerland, 28 February
2022 - 4 March 2022, ASPLOS ’22, pages 753–767, New York, NY, USA, 2022. ACM.
doi:10.1145/3503222.3507750.

35 Doug Simon, Christian Wimmer, Bernhard Urban, Gilles Duboscq, Lukas Stadler, and Thomas
Würthinger. Snippets: Taking the high road to a low level. ACM Trans. Archit. Code Optim.,
12(2):20:20:1–20:20:25, June 2015. doi:10.1145/2764907.

36 Matija Sipek, Branko Mihaljevic, and Aleksander Radovan. Exploring aspects of polyglot
high-performance virtual machine graalvm. In Marko Koricic, Zeljko Butkovic, Karolj Skala,
Zeljka Car, Marina Cicin-Sain, Snjezana Babic, Vlado Sruk, Dejan Skvorc, Slobodan Ribaric,
Stjepan Gros, Boris Vrdoljak, Mladen Mauher, Edvard Tijan, Predrag Pale, Darko Huljenic,
Tihana Galinac Grbac, and Matej Janjic, editors, 42nd International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics, MIPRO 2019, Opatija,
Croatia, May 20-24, 2019, pages 1671–1676. IEEE, 2019. doi:10.23919/MIPRO.2019.8756917.

37 Matija Sipek, D. Muharemagic, Branko Mihaljevic, and Aleksander Radovan. Enhancing
performance of cloud-based software applications with graalvm and quarkus. In Marko Koricic,
Karolj Skala, Zeljka Car, Marina Cicin-Sain, Vlado Sruk, Dejan Skvorc, Slobodan Ribaric,
Bojan Jerbic, Stjepan Gros, Boris Vrdoljak, Mladen Mauher, Edvard Tijan, Tihomir Katulic,
Predrag Pale, Tihana Galinac Grbac, Nikola Filip Fijan, Adrian Boukalov, Dragan Cisic, and
Vera Gradisnik, editors, 43rd International Convention on Information, Communication and
Electronic Technology, MIPRO 2020, Opatija, Croatia, September 28 - October 2, 2020, pages
1746–1751. IEEE, 2020. doi:10.23919/MIPRO48935.2020.9245290.

38 Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. Partial escape analysis
and scalar replacement for java. In David R. Kaeli and Tipp Moseley, editors, 12th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2014,
Orlando, FL, USA, February 15-19, 2014, CGO ’14, page 165, New York, NY, USA, 2014.
ACM. doi:10.1145/2581122.2544157.

39 James Stanier and Des Watson. Intermediate representations in imperative compilers: A
survey. ACM Comput. Surv., 45(3):26:1–26:27, July 2013. doi:10.1145/2480741.2480743.

40 Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst., 13(2):181–210, April 1991. doi:10.1145/103135.103136.

41 Christian Wimmer. Linear scan register allocation for the java hotspot™ client compiler, 2004.
42 Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wögerer, Peter B.

Kessler, Oleg Pliss, and Thomas Würthinger. Initialize once, start fast: application initialization
at build time. Proc. ACM Program. Lang., 3(OOPSLA):184:1–184:29, October 2019. doi:
10.1145/3360610.

43 W. Eric Wong, Joseph R. Horgan, Saul London, and Hiralal Agrawal. A study of effective
regression testing in practice. In Eighth International Symposium on Software Reliability
Engineering, ISSRE 1997, Albuquerque, NM, USA, November 2-5, 1997, pages 264–274. IEEE
Computer Society, November 1997. doi:10.1109/ISSRE.1997.630875.

44 Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas Stadler, Chris
Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. Practical partial evaluation for
high-performance dynamic language runtimes. In Albert Cohen and Martin T. Vechev, editors,
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, PLDI 2017, pages 662–676,
New York, NY, USA, 2017. ACM. doi:10.1145/3062341.3062381.

45 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to rule them all.
In Antony L. Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM Symposium
on New Ideas in Programming and Reflections on Software, Onward! 2013, part of SPLASH
’13, Indianapolis, IN, USA, October 26-31, 2013, Onward! 2013, pages 187–204, New York,
NY, USA, 2013. ACM. doi:10.1145/2509578.2509581.

ECOOP 2024

https://doi.org/10.1145/3503222.3507750
https://doi.org/10.1145/2764907
https://doi.org/10.23919/MIPRO.2019.8756917
https://doi.org/10.23919/MIPRO48935.2020.9245290
https://doi.org/10.1145/2581122.2544157
https://doi.org/10.1145/2480741.2480743
https://doi.org/10.1145/103135.103136
https://doi.org/10.1145/3360610
https://doi.org/10.1145/3360610
https://doi.org/10.1109/ISSRE.1997.630875
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581

20:28 An Outlier-Driven Approach to Compilation-Time Optimization

46 Yifei Zhang, Tianxiao Gu, Xiaolin Zheng, Lei Yu, Wei Kuai, and Sanhong Li. Towards a
serverless java runtime. In 36th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021, pages 1156–1160. IEEE,
2021. doi:10.1109/ASE51524.2021.9678709.

A Frame-State Algorithm

Listing 3 Pseudo-code representation of the updated deletion algorithm.
1 void deleteUnusedNodes (List <Node > deleteList) {
2 // track the usages of each node
3 Map <Node , Int > usages = new Map ();
4 Set <Node > maybeDelete = new Set ();
5
6 // delete the initial set of nodes
7 for (Node n in deleteList) {
8 delete (n);
9 for (Node input in n. inputs ()) {

10 Int u = usages [input];
11 if (u == null) {
12 u = input . usageCount ();
13 }
14 usages [input] = u - 1;
15 maybeDelete .add(input);
16 }
17 }
18
19 // fixed point iteration to delete nodes transitively
20 for (Node n in maybeDelete) {
21 if (shouldBeDeleted (n, u)) {
22 delete (n);
23 for (Node input in n. inputs ()) {
24 Int u = usages [input];
25 if (u == null) {
26 u = input . usageCount ();
27 }
28 usages [input] = u - 1;
29 maybeDelete .add(input);
30 }
31 }
32 }
33
34 // remove the usages of nodes that were not deleted
35 // and for which the usage count changed
36 for (Node n, Int u in usages) {
37 if (isAlive (n) && n. usageCount () != u) {
38 n. removeDeadUsages ();
39 }
40 }
41 }

https://doi.org/10.1109/ASE51524.2021.9678709

Learning Gradual Typing Performance
Mohammad Wahiduzzaman Khan #

CACS, University of Louisiana, Lafayette, LA, USA

Sheng Chen #

CACS, University of Louisiana, Lafayette, LA, USA

Yi He #

Data Science, College William & Mary, Williamsburg, VA, USA

Abstract
Gradual typing has emerged as a promising typing discipline for reconciling static and dynamic
typing, which have respective strengths and shortcomings. Thanks to its promises, gradual typing
has gained tremendous momentum in both industry and academia. A main challenge in gradual
typing is that, however, the performance of its programs can often be unpredictable, and adding or
removing the type of a a single parameter may lead to wild performance swings. Many approaches
have been proposed to optimize gradual typing performance, but little work has been done to aid the
understanding of the performance landscape of gradual typing and navigating the migration process
(which adds type annotations to make programs more static) to avert performance slowdowns.

Motivated by this situation, this work develops a machine-learning-based approach to predict the
performance of each possible way of adding type annotations to a program. On top of that, many
supports for program migrations could be developed, such as finding the most performant neighbor
of any given configuration. Our approach gauges runtime overheads of dynamic type checks inserted
by gradual typing and uses that information to train a machine learning model, which is used to
predict the running time of gradual programs. We have evaluated our approach on 12 Python
benchmarks for both guarded and transient semantics. For guarded semantics, our evaluation results
indicate that with only 40 training instances generated from each benchmark, the predicted times
for all other instances differ on average by 4% from the measured times. For transient semantics,
the time difference ratio is higher but the time difference is often within 0.1 seconds.

2012 ACM Subject Classification Theory of computation → Type structures; Computing methodo-
logies → Machine learning; Computing methodologies → Learning linear models

Keywords and phrases Gradual typing performance, type migration, performance prediction, machine
learning

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.21

Supplementary Material Software (Source Code): https://github.com/wahid-nlogn/ECOOP_2024_
MLGTP, archived at swh:1:dir:3f8fb3b4e2160fa825b6f823185bf8e2a7e1ec92

Funding This work has been supported in part by the National Science Foundation (NSF) under
Grant Nos. IIS-2245946, IIS-2236578, and CCF-1750886 and in part by the Commonwealth Cyber
Initiative (CCI) and DARPA.

1 Introduction

Statically typed languages offer benefits such as early programming error detection, document-
ation, and better performance but can hinder program executions when they are incomplete
or contain type errors. Dynamically-typed languages offer the benefits of fast prototyping and
flexible usability but provide less program correctness guarantee. Traditionally, languages are
either static or dynamic. In an effort to reconcile these typing disciplines, a typing discipline
named gradual typing was developed and popularized in the last decade Siek and Taha [38],

© Mohammad Wahiduzzaman Khan, Sheng Chen, and Yi He;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 21; pp. 21:1–21:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohammad-wahiduzzaman.khan1@louisiana.edu
https://orcid.org/0009-0001-1760-6645
mailto:sheng.chen@louisiana.edu
https://orcid.org/0000-0003-1735-0704
mailto:yihe@wm.edu
https://orcid.org/0000-0002-5357-6623
https://doi.org/10.4230/LIPIcs.ECOOP.2024.21
https://github.com/wahid-nlogn/ECOOP_2024_MLGTP
https://github.com/wahid-nlogn/ECOOP_2024_MLGTP
https://archive.softwareheritage.org/swh:1:dir:3f8fb3b4e2160fa825b6f823185bf8e2a7e1ec92;origin=https://github.com/wahid-nlogn/ECOOP_2024_MLGTP;visit=swh:1:snp:76cf0177c59d6640c57d9f0160a8d9cdba157bad;anchor=swh:1:rev:cd54661feb86ce5228b7bd5b88698a3b53b51ac4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Learning Gradual Typing Performance

6.2-6.629.6-30.2

18.6-19.229.5-30.0 7.2-7.3 6.2-6.5 7.1-7.4

18.1-19.0

18.6-19.4 29.9-30.2 18.2-19.2 7.1-7.3

7.0-7.4 6.1-6.8

29.9-30.2

Figure 1 Part of the performance lattice for the Pascal benchmark. The lattice consists of 16
configurations, a combination of four parameters with each being typed or untyped. Each filled
(unfilled) oval represents a typed (untyped) parameter. Each configuration shows only 4 ovals and
omits the rest, which is the same across the 16 configurations. A circled number or letter is attached
to each configuration for easy reference in the paper. Each configuration is associated with two
times, separated by a ‘-’. The first time is the measured time of the configuration and the second (in
blue) is the predicted time by our machine learning algorithm. All times are in seconds in the paper.

Siek and Vachharajani [39], Garcia and Cimini [13], Tobin-Hochstadt and Felleisen [42],
Tobin-Hochstadt et al. [43], Campora et al. [6], Castagna et al. [9], Migeed and Palsberg [22],
Phipps-Costin et al. [31], Greenman and Felleisen [14].

The main idea of gradual typing is that within a single program, parts of it may be
statically typed (by giving type annotations to parameters in that part) and parts of it may
be dynamically typed (by leaving out type annotations to parameters or explicitly giving
them the dynamic type, written as Dyn). Ideally, in gradual typing, prototyping and initial
development is done with the dynamic aspect of the language, and programs are migrated to
static aspect when performance and correctness becomes critical.

The goal of type migration is to add type annotations to parameters with dynamic
types of a program. A commonly used notion in type migration is configurations Greenman
et al. [15]. For any program, a configuration specifies which subset of all the parameters are
typed. For example, in the fully dynamic configuration, this subset is empty, and in the fully
static configuration, this subset includes all parameters. For a program with n parameters,
there can be up to 2n configurations since each parameter can be typed or untyped. We can
organize all the configurations into a lattice such that the set of typed parameters in the join
of two configurations is a union of those of the two configurations. To illustrate, Figure 1
presents a part of the lattice for the Pascal benchmark in Python.

1.1 Performance Problem in Type Migration
There are two issues related to gradual type migration:
(1) finding parameters where type annotations could be added and
(2) understanding performance changes and maintaining good (acceptable) performance as

type annotations are added.

For issue 1, a lot of work has been done to automatically adding type annotations to
dynamically-typed programs, including static approaches Castagna et al. [9], Kristensen
and Møller [19], Campora and Chen [7], Rastogi et al. [34], Chandra et al. [10], Siek and
Vachharajani [39], dynamic approaches Miyazaki et al. [24], Cristiani and Thiemann [11],
and machine learning based approaches Mir et al. [23], Peng et al. [30], Pradel et al. [33],

M. W. Khan, S. Chen, and Y. He 21:3

Allamanis et al. [3]. Several approaches have also been developed to find best migrations in
the sense of adding type annotations to as many parameters as possible Campora et al. [6],
Migeed and Palsberg [22], Phipps-Costin et al. [31]. Issue 2, however, has received less
attention.

While it is tempting to integrate all the type annotations suggested by a type migration
tool Castagna et al. [9], Kristensen and Møller [19], Campora and Chen [7], Rastogi et al. [34],
Chandra et al. [10], Siek and Vachharajani [39], Mir et al. [23], Peng et al. [30], Pradel
et al. [33], Allamanis et al. [3], doing so may turn the original configuration into a new one
that degrades performance significantly. The slowdown can be as high as more than 100
times Takikawa et al. [41], due to intricate type interactions. This is the case even when
the type annotations for all the parameters in a single project are inferred. For example, in
the spectral norm benchmark, the runtime for the fully typed configuration is about 2 times
that of a configuration that has one fewer function typed Campora et al. [8]. The reason is
that even all parameters in a project are typed, the libraries and third-party code used by
the project may not be typed.

In general, after migrating from configuration Ks to Ke, manually or with the aid of type
migration tools, the developer may face a few performance related questions. In particular, if
the performance at Ke is not satisfactory, then the user will have to explore the performance
of the neighbors of Ke to find a configuration that can restore the performance at Ks or
whose performance is the best among all neighbors.

To illustrate, consider the performance lattice for the Pascal benchmark in Figure 1. The
Pascal program has 19 parameters and thus 219 configurations, and we present a part of the
lattice in the figure. Assume the user is currently at configuration 1 and a migration tool
infers types for the four parameters, which corresponds to configuration G . However, noting
that the performance at G is about 3 times slower than that at 1 , the user will explore the
performance of neighbors and find one with good performance.

The problem is that there is no obvious strategy Greenman et al. [15], Takikawa et al. [41]
that the user could employ to quickly find desired configurations. For example, a strategy like
breadth-first-search will not find F , the configuration that both has good performance and
has largest number of parameters being typed, without trying C , D , and E . Similarly, a
strategy like depth-first-search will not find any configuration that restores performance until
it goes back to the original configuration 1 . This problem will become worse in practice
due to three reasons. First, type migration tools may suggest adding types to many more
parameters, which quickly enlarges the search space. Second, as the program becomes bigger,
it takes more time to measure the performance of each configuration. Also, it takes more
time to move from one configuration to another as more type changes are involved. Third,
since each program has its own structure and type of interactions, as witnessed by very
diverse performance lattices in different programs Takikawa et al. [41], Greenman et al. [16],
Campora et al. [8], no single searching strategy works well for all programs.

The biggest problem is probably the uncertainty associated with the exploration process.
If the user has not found a configuration with good performance following some strategy,
should the user stick to the strategy in hoping that the performance will finally improve or
change the strategy in fearing that performant configurations are in other neighborhoods.

1.2 A Machine Learning Based Solution
In this paper, we propose and develop LearnPerf, a machine learning based solution for this
problem. For each program, we train a model from the running time for a very limited
number (usually 40) of configurations. We then use this model to predict the execution times
of other configurations. To give a sense of how the predicted times of LearnPerf look like, we
present them in Figure 1 in blue.

ECOOP 2024

21:4 Learning Gradual Typing Performance

Our prediction result is pretty accurate, with the difference ratio (defined as |predicted
time – measured time|/measured time) often within 4%. On top of the prediction result, we
can develop a series of migration support under different scenarios. We list some of them
below.

1. LearnPerf is able to predict the performance for a given configuration. Assume the developer
wants to migrate the current configuration to a new one, this information can inform how
performance looks like at the new configuration.

2. LearnPerf is able to classify the performance of adjacent configurations. For a certain
number of configurations around the current one, we can classify them according to
performance speedup/slowdown scales. Takikawa et al. [41] introduced the notion 2-
deliverable, which includes all configurations whose performance degrades by less than 2
times that of the original configuration, and 2-5 usable, which includes all configurations
that slows down the original configuration by 2-5 times. With the help of LearnPerf, we
can highlight configurations that are 2-deliverable, 2-5 usable, etc.

3. For each configuration, LearnPerf is able to find the most performant configurations within its
neighborhood. If the user is not satisfied with the performance of the current configuration,
this capability can suggest an alternating configuration with good performance.

Note that this work studies the performance aspect of type migration only and is
not intended to develop a new type inference algorithm or machine learning algorithm to
automatically add type annotations. As mentioned earlier, there has been a long line of
research of adding type annotations but little work has been done for the performance aspect
except for two papers Campora et al. [8], Greenman et al. [15]. Many approaches Feltey
et al. [12], Ortin et al. [28], Moy et al. [25], Kuhlenschmidt et al. [20], Vitousek et al. [46]
have investigated performance optimization of gradual typing. Our work is orthogonal to
these approaches and we discuss the relation with them in Section 6.

To illustrate the usefulness of our migration support, assume the user was at configuration
1 and has just migrated to G and observed that the performance at G is not satisfactory.

LearnPerf can help in this case. For example, there are four neighbors of G , C through F .
LearnPerf predicts that their running times are 19.4, 30.2, 19.2, and 7.3 seconds, respectively.
Based on the predicted times, LearnPerf suggests the user to migrate to F , rather than G .
We can observe that F slows down 1 by only 15% while G slows down by 3 times.

Overall, LearnPerf finds F that reconciles both performance and static migration. It seems
undesirable to migrate to F and not G because G adds a type annotation to one more
parameter. In practice, this problem can often be solved by migrating a few parameters in
unison in later migrations.

1.3 Workflow and Contributions of This Work
Figure 2 presents the workflow of LearnPerf. Starting from any “original program”, assume the
user added some type annotations, manually or with the help of type migration tools. This will
lead to a new, more precise program that has more type annotations than the original program.
Note, that the new program may be partially typed or fully typed. As discussed earlier, both
partial and fully typed programs may experience significant performance degradation. From
the new program, we create 40 random training samples. We then extract relevant feature
vectors that characterizes runtime performance as well as the running time for each generated
configuration. This information is then input into LearnPerf for the purpose of training our
model.

M. W. Khan, S. Chen, and Y. He 21:5

Original
program

Time
prediction

model

Type inference

More precise
program

Configurations Feature vectors
 & running times

 Configurations

Feature vectors

Time predictions
& migration
suggestions

Feature
extraction &

runtime
measurement

Training
samples ML

algorithm

Feature
extraction

Testing
samplesDeep learning inference

Manual insertion

Figure 2 Workflow of LearnPerf. Solid arrows denote information flow in training phase and
dashed, blue arrows denote that in prediction phase. Dotted, red arrows denote type annotation
additions, and they are not a part of this work.

Once we have the trained model, we can support scenarios 1 through 3 by generating
appropriate configurations and predicting their running times. Section 5 will sketch the main
steps to support scenarios 2 and present our evaluation results.

In the above, the training will not start until the user initiates it. In practice, however,
our approach will actively invoke a deep learning model Mir et al. [23], Peng et al. [30], Pradel
et al. [33], Allamanis et al. [3] to generate type annotations. As a result, the performance
prediction model could be ready before the programmer starts the migration process and
needs migration support. We applied this idea to three large datasets for our evaluation
(Section 5).

Overall, this paper makes the following contributions:
1. We develop a machine-learning based approach that can help understand the performance

landscape of different configurations of a gradually-typed program. On top of that, many
migration supports can be developed.

2. We explore different features to represent program run times and find out that overheads
of casts inserted by gradual typing are simple yet representative features.

3. We implement our approach and evaluate its performance on twelve benchmarks, including
nine benchmarks that are frequently used in gradual typing research and three larger
benchmarks that each have more than 1000 LOC. We observe that with only 40 training
instances, our predicted times differ from measured times by 4% only for guarded semantics.
For transient semantics, the difference between the predicted time and measured time is
often within 0.1 seconds.

The rest of the paper is organized as follows. In Section 2, we discuss the background of
gradual typing. In Sections 3 and 4, we present our exploration of searching for appropriate
machine learning model and representative features for precisely estimating execution times of
gradual programs. In Section 5, we present the evaluation results, as well as implementation
details and benchmarks used. We discuss related work in Section 6 and conclude in Section 7.

2 Background

This section covers the background of gradual typing, with a focus on cast insertions and
their overheads.

In gradual typing, a parameter may be given a static type, a dynamic type (often written
as Dyn or is omitted) signifying that the type is not known statically, or a mix of static and
dynamic types. Static type checking is applied to program parts that use parameters with
static types, and dynamic type checking is used for other program parts.

ECOOP 2024

21:6 Learning Gradual Typing Performance

def myreduce(f, lst, init):
result = init
for i in range(len(lst)):

result = f(result,lst[i])

return result

def wider(cw:Int,ci:List(Int))->Int:
return max(cw, len(ci))

myreduce(wider,[[1], [], [4,5]],0)

def myreduce(f, lst, init):
result = init
for i in range(len(lst)):

result = (f : Dyn => Dyn -> Dyn -> Dyn)
(result, lst[i])

return result

def wider(cw, ci):
return max(cw, len(ci)) : Dyn => Int

myreduce(wider: Int -> List(Int) -> Int => Dyn,
[[1], [], [4,5]] : List(List(Int)) => Dyn,
0 : Int => Dyn)

Figure 3 A partially-typed version of myreduce (left) and its cast-inserted program (right).

For example, Figure 3 (left) presents a program snippet written in a hypothetical gradual
language in Python type hint syntax Vitousek et al. [45]. The function myreduce takes in a
binary function, a list, and an initial value and reduces the list to a single value. In this
program, static type annotations are given to the parameters, and the return of wider. All
other parameters have dynamic types. A static type error will be detected if we pass a string
value as the first argument to wider because the first parameter has a type annotation Int. In
contrast, no such error will be detected if we pass a string value as the first argument to
myreduce.

Gradually-typed languages are often obtained by adding static type checking to underlie
dynamic languages, such as Typed Clojure for Clojure, Typed Racket for Racket, and
Reticulated Python Vitousek et al. [45] for Python. As such, a common implementation
strategy of gradual typing is to translate its programs into programs in the underlying
language and insert necessary runtime type checks (often called casts) during the translation.

For example, when executed by a gradual typing implementation for Python, the program
in Figure 3 (left) is translated to the program in Figure 3 (right), which can be executed
on any Python interpreter. Comparing programs in Figure 3 left and right, we observe two
important differences. First, the program on the right does not have type annotations. This
is because the interpreter for the underlying, dynamic language often does not make use of
type annotations so they are erased during translation. Second, the program on the right has
extra constructs in the form of expr : src_type => trg_type, which are often called casts. Such
casts are inserted when the static type checker determines that expr has the type src_type but
is used in a context where a value of trg_type is required.

As runtime type checks, these casts incur runtime overheads, and different casts lead
to very different overheads. For example, the cast x : Dyn => Int can be performed where
it appears as we can always verify if x is indeed an integer and is thus very lightweight.
In contrast, the cast g : Dyn => Int -> Bool can not be verified where it appears because, for
example, we do not know how g will be used and what arguments will be passed to it. As
such, a proxy will be created for g such that the invocation of g will be handled by the proxy,
which inserts a cast to check that the argument to g is Int and another cast to check that the
return value of g is Bool. Such casts are more involved and lead to more significant overheads.
Casts over data structures and objects are similarly heavyweight.

It is not hard to envision that adding or removing the type annotation for a single
parameter in gradual typing may yield significant performance swings Takikawa et al. [41],
Greenman et al. [16]. One might consider this a reason to abandon gradual language designs
that enforce type invariants at runtime, but a study by Tunnell Wilson et al. [44] shows that
programmers often expected the behavior of programs to emulate those done by gradual
typing. This work in this paper enables programmers to enjoy the benefits of gradual typing
while staying informed about the performance landscape as they migrate programs toward
more static.

M. W. Khan, S. Chen, and Y. He 21:7

Table 1 Deep learning model performance on unseen benchmarks.

Unseen Benchmark # training # testing MAE MSE DR

Meteor 105945 1024 5.26 28.09 56.84%
Zebrafy 103969 3000 149.37 22350.18 86.96%
Pascal 101785 5184 22.82 653.85 273.42%
Chaos 100969 6000 25.67 784.96 35.57%

Richard 100969 6000 23.73 766.28 36.05%
Sieve 91608 15361 53.88 2933.99 1655.90%

Nbody 90585 16384 4.87 36.79 68.28%
Scimark 81881 25088 4.39 28.27 80.37%
Raytrace 73065 33904 6.49 46.29 110.17%

3 Feature Engineering

The two most important questions in machine learning are what kinds of models to train and
what features will be used for representing programs. In this section and next, we present
our exploration of searching for a suitable model and simple yet representative features.

3.1 First Attempt: Global Model with Deep Learning
Ideally, we train a global model that can be used to predict the runtime of different configur-
ations for all user programs. Such a model needs to be trained only once by us (the model
developer) and can be distributed to users (developers who migrate gradual programs) for
use.

Motivated by recent successes of deep learning models for predicting types Mir et al. [23],
Peng et al. [30], Pradel et al. [33], Allamanis et al. [3], our first attempt is to exploit deep
learning to train a global model. For a given set of configurations for training and a set for
testing, this process consists of several steps. The main challenge here is that the training
instances may have different lengths. To solve this issue, we leverage source code embeddings
that convert each configuration into an embedding that has the same length. Specifically,
we use UniXcoder Guo et al. [17] to convert each configuration into a 4 * 768 float matrix.
These embeddings, together with runtimes of corresponding configurations, are fed into a
multi-layer perception network Popescu et al. [32] to train a global model. Based on the
trained model, we can predict the runtime for each configuration in the test set.

To test the performance of this idea, we have developed a prototype and conducted
experiments in two settings. In the first setting, we collected all configurations from nine
benchmarks (listed in Table 1), with a total of 106,969 configurations (Section 5.1 will give
more details about our evaluation benchmarks). We randomly choose 80% of them for
training, 10% for cross-validation, and 10% for testing. In the second setting, we chose
one benchmark for testing and used configurations from all other benchmarks for training.
The main difference between these two settings is that in the first setting some testing
configurations and training configurations may come from the same benchmark.

To measure the performance of this exploration and later ones in this paper, we use two
of the most popular metrics for a regression problem, mean absolute error (MAE) and mean
square error (MSE). In addition, to capture the accuracy or error ratio more intuitively, we
used another metric called difference ratio, shortened to DR. The definitions of these three
metrics are given below, where ti and t̂i denote the measured and predicted running times of

ECOOP 2024

21:8 Learning Gradual Typing Performance

the configuration i, respectively, and D denotes the testing set of instances. For example, if
the measured and predicted times for a configuration is 7.9s and 8.1s, respectively, then the
difference ratio for this configuration is 2.53%. We will use these notations throughout the
paper.

MAE =
∑D

i=1 |ti − t̂i|
|D|

MSE =
∑D

i=1(ti − t̂i)2

|D|
DR =

∑
i∈D

|ti−t̂i|
ti

|D|

The DR for the first setting is 147.58%. The details of the results for the second setting is
given in Table 1. The results show that the global model trained with deep learning performs
poorly. There are a few possible reasons. First, as discussed in Section 2, a gradual program
is often translated to a base program in the untyped, underlying language with casts inserted.
As such, the running time of a configuration roughly includes the time to execute the base
program and the overhead due to casts. To be able to precisely predict the running time, we
need to be able to do that for both parts. However, predicting the running time of a general
program is still an open problem Matsunaga and Fortes [21]. Second, the overhead due to
casts can vary significantly across different programs as it depends on program structures,
such as whether casts are in loops, whether multiple casts are applied to single values,
etc. Third, as discussed in Section 2, two configurations that differ by whether a single
parameter is typed or not may have very different runtimes. This exhibits similar phenomena
as in molecular property prediction where minor changes in molecular structures lead to
significant changes of properties Stumpfe and Bajorath [40]. Earlier work Xia et al. [50] has
demonstrated that deep models often do not perform well for such tasks.

For this reason, we decide to train an individual, project-specific model for each project in
this work. Have decided which model to train, we next explore different feature representations
to find representative features.

3.2 Second Attempt: Individual Models with Bit Strings

The problem of predicting gradual typing performance bears some similarity to perform-
ance prediction for highly-configurable software systems Kolesnikov et al. [18]. A highly-
configurable program usually contains a large number of configuration options (for example,
Linux has about 13,000 such options) for customizing the functional and non-functional
features of the program. For instance, Linux can be configured to run on a diverse set of
devices, ranging from embedding devices to servers. Each configuration option may be set or
unset, corresponding to enabling or disabling associated features, which often leads to the
inclusion or exclusion of certain pieces of code into the generated program after customization.
As such, different configurations of the same configurable program will lead to different
performances.

Understanding the performance landscape of configurable software systems is an im-
portant research problem, particularly as generating all possible programs and measuring
their performance is infeasible due to the exponential complexity (the number of different
configurations that can be generated is exponential in the number of configuration options).
A prevalent solution to this problem is building a performance-influence model for each
configurable software system. This can be achieved by generating a few samples, measuring
the performance of these samples, and building a model from them. With the performance-
influence model, predicting the performance of a certain configuration is instantaneous,
without having to generate the configuration and measure the performance.

M. W. Khan, S. Chen, and Y. He 21:9

Table 2 Python benchmark Performance (Bit strings).

Benchmark # training # testing MAE MSE DR

Monte Carlo 40 344 0.53 ± 0.00 0.45 ± 0.00 35.30%
Meteor 40 984 0.29 ± 0.02 0.19 ± 0.068 2.47%
CPU 40 2857 2.57 ± 0.06 3.487 ± 0.08 8.15%
Zebrafy 40 3960 12.25 ± 1.24 15.98 ± 0.78 91.64%
Pascal 40 5144 5.15 ± 0.18 6.44 ± 0.31 27.57%
Chaos 40 5960 2.38 ± 0.04 3.00 ± 0.06 4.78%
Richard 40 5960 9.58 ± 1.12 13.65 ± 1.68 42.88%
BenchFirst 40 5960 43.85 ± 3.88 58.58 ± 4.23 25.88%
Sieve 40 15321 0.12 ± 0.00 0.16 ± 0.00 1.56%
Nbody 40 16344 3.45 ± 0.17 4.46 ± 0.19 30.10%
Scimark 40 25048 2.41 ± 0.03 3.06 ± 0.05 17.02%
Raytrace 40 33864 5.80± 1.23 7.35 ± 1.60 38.90%

Monte Carlo 192 192 0.39 ± 0.00 0.47 ± 0.00 31.33%
Meteor 512 512 0.13 ± 0.00 0.08 ± 0.00 0.70%
CPU Benchmark 1427 1428 2.23 ± 0.03 2.84 ± 0.02 6.55%
Zebrafy 2000 2000 10.72 ± 0.95 14.58 ± 0.89 87.24%
Pascal 2592 2592 3.81 ± 0.00 5.09 ± 0.00 20.45%
Chaos 3000 3000 1.72 ± 0.01 2.13 ± 0.00 3.41%
Richard 3000 3000 8.86 ± 0.01 13.05 ± 0.02 36.78%
BenchFirst 3000 3000 28.85 ± 3.05 36.58 ± 3.90 11.88%
Sieve 7680 7680 0.10 ± 0.00 0.13 ± 0.00 1.32%
Nbody 8192 8192 2.70 ± 0.00 3.58 ± 0.00 23.64%
Scimark 12544 12544 1.75 ± 0.00 2.42 ± 0.00 12.36%
Raytrace 16952 16952 2.81± 0.00 3.19 ± 0.00 18.84%

In gradual typing, each parameter can be typed or untyped, corresponding to enabling
or disabling a configuration option. Due to this similarity, we started our exploration by
using bit-string as features for machine learning. Specifically, we treat each parameter as a
binary feature and use 1 to denote that the parameter is typed and 0 to denote it is untyped.
Feature values for all parameters are concatenated together to form a bit-string, which forms
the feature vector in this exploration.

We developed a prototype implementing this idea and tested its performance on 12
Python benchmarks (we will show details about them in Section 5.1). We present the result
in Table 2. In the upper part of Table 2, we present the results with bit-strings as features
when each individual model is trained with 40 configurations. We can observe that the
average difference ratio (DR) is quite high for several benchmarks. For example, DR is
around 92% for Zebrafy and 43% for Richard. We may think of increasing the number of
training instances to boost the performance. Surprisingly, the performance does not increase
significantly as we remarkably increase the number of training instances, as can be seen
from the bottom part of Table 2. For example, as we increased the training instances from
40 to 2000 (that is we used 50% of instances for training) for Zebrafy, the average DR is
still around 87%. Similarly, the average DR is about 37% for Nbody as we use 50% of all
instances for training.

Another issue is that as we are training an individual model for each project, using too
many training instances needs a very long preparation time. To solve this issue, we choose
to generate a limited amount of configurations but extract highly effective features.

ECOOP 2024

21:10 Learning Gradual Typing Performance

def myreduce(f:Function([Int,List(Int)],Int),
lst:List(List(Int)), init:Int):

result = init
for i in range(len(lst)):

result = f(result,lst[i])
return result

def wider(cw:Int, ci:List(Int)) -> Int:
return max(cw, len(ci))

myreduce(wider,[[1], [], [4,5]],0)

def myreduce(f, lst, init):
result = init
for i in range(len(lst)):

result = f(result : Dyn => Int,
lst[i]) : Int => Dyn

return result

def wider(cw, ci):
return max(cw, len(ci)) : Dyn => Int

myreduce(wider, [[1], [], [4,5]], 0)

Figure 4 The fully-typed version of myreduce (left) and its cast-inserted translation (right).

4 Third and Successful Attempt: Gauging Cast Overheads

The main reason that bit strings do not work well is that bits only represent whether
parameters are typed or not while the types of parameters interact in an intricate way. This
makes bit strings a poor candidate for capturing inserted casts, which are the main causes
for performance overheads. For example, if we compare the programs in Figures 3 and 4,
we can observe that while the program in Figure 4 (left) has strictly more type annotations
than that in Figure 3, no such relation appears for the casts in the translated programs. In
particular, these programs share only one common cast (the cast for the return value in
wider), and all other casts are different. The running times of these two versions of myreduce

are very different: the running time of the partially-typed version (Figure 3) is about 16
times that of the fully-typed version (Figure 4). In practice, removing or adding the type for
a single parameter may lead to a completely different cast being inserted.

Thus, instead of using bit strings, we will next explore the inserted casts of the translated
programs by gauging cast overheads. Our main idea is to give symbolic overheads to casts
and let machine learning algorithm figure out the real overhead of each cast. To give a more
formal account of our approach, we present the type syntax used for the rest of this section
below.

Base types U ::= Bool | Int | Unit

Gradual types G ::= U | G → G | Dyn | [G]

Our type definition includes base types, ranged over by U , and gradual types, ranged over
by G. Our base types include Int, Bool, and Unit, but they can be extended easily. In gradual
types, we consider two type constructors: function types and list types. Again, they can be
extended easily.

In the rest of this section, we first discuss how to gauge the overhead for individual
casts (Sections 4.1 and 4.2) and then the overhead for a whole program (Section 4.3). Finally,
we assess the effectiveness of cast overheads (Section 4.4).

4.1 Overheads for Individual Casts
Casts involving base types. Our first observation of gauging cast overheads is that casts
have very different runtime overheads, as we discussed in Section 2. We first deal with casts
that involve base types. For a cast of the form U ⇒ Dyn, it can be checked where it appears.
We assign the symbolic overhead U i to it. Similarly, for the cast Dyn ⇒ U , we assign the
symbolic overhead Up.

Casts involving function types. Next, we investigate overheads of casts that involve function
types. In general, as discussed in Section 2, a function cast can not be verified where it
appears. Instead, for a cast of the form f : G1 → G2 ⇒ G3 → G4, a proxy will be created to

M. W. Khan, S. Chen, and Y. He 21:11

wrap f . In place where f is called, the call is handled by the wrapper, which first casts the
argument from G3 to G1, calls f with the cast argument, and casts the return value of f

from G2 to G4. As such, a function cast induces two kinds of overheads: (1) the overhead
that creates the proxy and (2) the overhead that casts the arguments and returned values.
We refer to these two kinds of overheads as creation overhead and invocation overhead,
respectively. The creation overhead should be similar across different proxy wrappers because
type differences in casts do not cause the creation behavior to change much. As such, we
assign F c to represent a proxy creation overhead.

One challenge with invocation overheads is that they are incurred when the cast functions
are invoked, not where the function casts appear. However, it is unclear when cast functions
are invoked by looking at the translated program (neither with some standard static analysis)
because cast functions may be assigned to other variables, stored in data structures, and
passed over to other functions, and call sites can be very distant from where proxies are
created. Our solution to this problem is to gauge the invocation overhead for each cast and
directly add it to its creation overhead. This is very simple to implement: no complex alias
analysis is needed.

Interestingly, this approach works well for predicting runtimes of configurations. Intuit-
ively, the function cast created at the same program location will have the same invocation
sites across different configurations since two configurations only differ by type annotations.
Thus, if two casts cast the same function and have the same invocation overhead across two
configurations, then they induce the same cast overheads. Of course, if the arguments to
the cast functions in different configurations are cast differently, then the invocation takes
different times to complete. However, such differences should be reflected through overhead
differences of casts on the argument. Similarly, if the function cast in the first configuration
has larger invocation overhead than that in the second configuration, then the cast function
in the first configuration has more runtime overheads at invocation sites. We leave it to the
machine learning algorithm that we use to train our model to figure out the relation between
symbolic difference and the runtime difference for different configurations.

Another challenge in gauging invocation overheads is that unlike creation overheads that
are similar across different function casts, invocation overheads can vary significantly, based
on the types involved. For example, the cast f1 : Int → Int ⇒ Dyn → Dyn should have a much
smaller invocation overhead than f2 : [Int] → Int ⇒ Dyn → Dyn because the cast for the argument
for f1 is Dyn ⇒ Int and that for f2 is Dyn ⇒ [Int]. As we have seen earlier, the cast Dyn ⇒ Int is
very lightweight while the cast Dyn ⇒ [Int] involves the creation of another proxy over the
argument (We will discuss casts involve lists later in this subsection), which will be treated
as a list. Therefore, a plausible idea to accurately gauge invocation overheads is to assign
different symbols for denoting different invocation overheads to different casts, based on their
argument types and return types. The problem with this idea is that, however, we need to
introduce a lot of different symbols for invocation overheads because within a program we
could have many casts involving function types with different arities and different argument
and return types. As we wanted to train our model with as few instances as possible, having
too many symbols will negatively affect machine learning performance.

Our solution to this challenge is to break invocation overheads down and represent them
with symbols we have already introduced. Our main insight is that an invocation overhead
is originated from creating further casts at runtime. Thus, an invocation overhead can be
approximated as a sum of all the creation overheads of the argument types and the return type.
For example, for f3 : (Int → Bool) → Dyn ⇒ Dyn → Int, the invocation overhead is creating a new
function proxy for the argument to f3, which we have already introduced a symbol F c, and

ECOOP 2024

21:12 Learning Gradual Typing Performance

another cast for the Dyn ⇒ Int, which we used Up to represent the overhead. Since the created
function cast for the argument also introduces invocation overhead, we recursively apply this
idea to the argument cast Dyn ⇒ Int → Bool and calculate its invocation overhead as U i + Up.
Overall, the invocation overhead for the function cast f3 : (Int → Bool) → Dyn ⇒ Dyn → Int is
F c + 2 · Up + U i. We give an algorithm for calculating cast overheads in Figure 5.

Casts involving list types. A cast involving list types, such as l : Dyn ⇒ [Bool], also can not
be verified where it appears because this cast ensures that future write accesses to l should
add elements of type Bool only and future read accesses should get elements of Bool type. As
such, similar to casts on function types, a proxy will be created for l and the proxy will make
sure accesses to l have expected types. Therefore, the overhead of a list cast includes the
creation overhead and access overhead. For the creation overhead, we use the symbol Lc to
denote it.

For gauging access overheads, we face a challenge of locating where lists are accessed in
the program, some of what we had for gauging invocation overheads for function casts. We
adapt the solution there by gauging access overheads and add them to list creation overheads.
For gauging access overheads themselves, the main insight is that list accessing can often
be reduced to function calls Siek et al. [37], Vitousek et al. [45]. For example, for a list of
type [Bool], the function for ensuring that the element read from the list is Bool has the type
Int → Bool, where Int is the type of the parameter (list index) and Bool is the return type. The
function for ensuring that the element added to the list is Bool has the type Int → Bool → Unit,
where Int is the index type, Bool is the type of the element to be added to the list, and Unit is
the return type of the function.

Based on this idea, the read access to the list l with the cast l : Dyn ⇒ [Bool] can be
reduced to the function cast Int → Dyn ⇒ Int → Bool, and the write access can be reduced to
the cast Int → Dyn → Unit ⇒ Int → Bool → Unit. Thus, the access cost is approximated to be the
cost of these two function casts. In practice, other operations may be performed on a list,
such as insertion, extension, popping, and obtaining the length. However, read and write
accesses are good representatives of access overheads because they are used frequently while
others may not need function casts. Moreover, as we did in gauging invocation overheads, we
only need to figure out the symbolic difference of list casts for the same list across different
configurations, and let the machine learning algorithm scale that difference to appropriate
runtime differences.

4.2 An Algorithm for Gauging Individual Casts’ Overheads
We present an algorithm for gauging cast overheads in Figure 5. The algorithm is more
general than our description in Section 4. For example, the algorithm deals with function casts
that have multiple parameters. The algorithm is defined using the idea of pattern matching,
and we assume that the most specific matching rule is used to handle the computation.

The main entry of the algorithm is the function overHd, which consists of eight cases. In
the first case, the two types being cast are the same. Standard gradual typing implementations
simply drop such casts, and so we assign 0 as its overhead. Cases two and three deal with
casts between Dyn and function types, and we extend Dyn into a function type with the same
arity as the function on the other side and delegate the computation to case eight of overHd.
Cases four and five deal with casts between two function types that have different number of
parameters. We assume that corresponding parameter types (such as G1 and G′

1) and return
types are consistent Siek and Taha [38]. We extend the type with fewer parameter types by
padding it with Dyns. Cases six and seven deal with casts between Dyn and list types and are

M. W. Khan, S. Chen, and Y. He 21:13

overHd (G ⇒ G) = 0
overHd (Dyn ⇒ G1 → · · · → Gr) = overHd (Dyn → · · · → Dyn ⇒ G1 → · · · → Gr)
overHd (G1 → · · · → Gr ⇒ Dyn) = overHd (G1 → · · · → Gr ⇒ Dyn → · · · → Dyn)
overHd (G1 → · · · → Gi → Dyn ⇒ G′

1 → · · · → G′
i+j → G′

r)
= overHd (G1 → · · · → Gi → Dyn → · · · → Dyn ⇒ G′

1 → · · · → G′
i+j → G′

r)
overHd (G1 → · · · → Gi+j → Gr ⇒ G′

1 → · · · → G′
i → Dyn)

= overHd (G1 → · · · → Gi+j → Gr ⇒ G′
1 → · · · → G′

i → Dyn → · · · → Dyn)
overHd ([G] ⇒ Dyn) = overHd ([G] ⇒ [Dyn])
overHd (Dyn ⇒ [G]) = overHd ([Dyn] ⇒ [G])
overHd (G1 ⇒ G2) = createOH (G1 ⇒ G2) + callOH (G1 ⇒ G2)
createOH (Dyn ⇒ U) = Up

createOH (U ⇒ Dyn) = U i

createOH (G1 → · · · → Gr ⇒ G′
1 → · · · → G′

r) = F c

createOH ([G1] ⇒ [G2]) = Lc

callOH (Dyn ⇒ U) = 0
callOH (U ⇒ Dyn) = 0
callOH (G1 → · · · → Gn → Gr ⇒ G′

1 → · · · → G′
n → G′

r)
=

∑n
1 overHd (G′

i ⇒ Gi) + overHd (Gr ⇒ G′
r)

callOH ([G1] ⇒ [G2])
= overHd (Int → G1 ⇒ Int → G2) + overHd (Int → G1 → Unit ⇒ Int → G2 → Unit)

Figure 5 An overhead gauging algorithm.

similarly delegated to case eight. Case eight deals with all cases not matched by earlier cases.
It says that the overhead is an addition of the creation overhead, returned from createOH,
and the call overhead, returned from callOH.

The definition of createOH is straightforward: it assigns a corresponding symbolic
overhead to each kind of cast. The function callOH implements the idea of invocation
overheads and access overheads discussed in Section 4. For casts involving base types, the
call overhead is 0 because they can not be invoked or no elements may be accessed from
them. The call overhead for a function cast is the overhead of casting all parameter types
plus that of casting the return type. The call overhead for a list cast is the total overhead of
read access and write access.

The following example illustrates the calculation process for gauging the overhead for the
cast Dyn ⇒ [Bool].

overHd (Dyn ⇒ [Bool])
=overHd ([Dyn] ⇒ [Bool])
=createOH ([Dyn] ⇒ [Bool]) + callOH ([Dyn] ⇒ [Bool])
=Lc + callOH ([Dyn] ⇒ [Bool])
=Lc + overHd (Int → Dyn ⇒ Int → Bool) + overHd (Int → Dyn → Unit ⇒ Int → Bool → Unit)
=Lc + F c + overHd (Int ⇒ Int) + overHd (Dyn ⇒ Bool) + overHd (Int → Dyn → Unit ⇒ Int → Bool → Unit)
=Lc + F c + 0 + Up + F c + overHd (Int ⇒ Int) + overHd (Bool ⇒ Dyn) + overHd (Unit ⇒ Unit)
=Lc + F c + 0 + Up + F c + U i

=Lc + 2 · F c + Up + U i

Due to the limited space, the algorithm in Figure 5 deals with base types, function types,
and list types only. Our implementation supports many more types, including dictionary
types, tuples, objects, records, and several others, with the same idea.

ECOOP 2024

21:14 Learning Gradual Typing Performance

4.3 Representing Overheads for a Program
Without the loss of generality, we assume that a program consists of a few functions and
top-level statements. When the program is translated, casts are inserted into function
definitions and top-level statements. To extract the feature vector for a program, we repeat
the following for each function. For each cast inserted in the function, we use Figure 5 to
calculate the overhead. We then sum the overheads for all casts together. If a cast appears
in a loop, then we automatically instrument the loop, obtain the number of times the loop is
executed, and multiply the cast overhead by that number. For example, if a function has
two casts that are outside of loops and have the overheads F c + Up and Lc + F c + Up + U i,
then the total overhead for that function is Lc + 2 · F c + 2 · Up + U i. The feature vector for
that function is the coefficients of all overhead symbols, represented as 1, 2, 2, 1 in this case.
The machine learning algorithm will turn these coefficients into runtime predictions.

Similarly, for the casts inserted in top-level statements, we calculate the overhead of each
cast and sum them together.

Finally, we concatenate representations for all functions and top-level statements, forming
a list of coefficients. This list will be the feature representation of the whole program.

4.4 Assessing Feature Effectiveness

Figure 6 3D PCA analysis for Nbody using bit strings (left) and cast overheads (right). Both
figures are generated with elevation of 10.0 and use azimuth angle 50.

Our approach LearnPerf is developed using cast overheads as features. For all the bench-
marks we used to evaluate the performance, the DR is always less than 4% except for one
benchmark whose DR is 5.3% (We will present the results in more detail in Section 5). In
general, this means that our predicted time is in average within 4% of difference compared
to the real measured time. We view this as a significant improvement over the performance
of bit-string based solution, where DR is often higher than 30% and can be as high as 90%.

We have performed a PCA analysis Abdi and Williams [1] to understand the effectiveness
of both bit strings and cast overheads. Figure 6 presents the analysis results for Nbody. In the
figure, axes represent values of PCA components and colored circles represent configurations.
In particular, configurations with similar running times get the same color. The running
times of Nbody are roughly in three groups: those less than 7.5s (seconds), between 12.5s
and 15s, and more than 20s (see Figure 7 for more details). From Figure 6, we can observe
that bit strings fail to separate configurations while cast overheads successfully separate
configurations according to their runtimes. Intuitively, clear separations of configurations
according to their runtimes mean fewer prediction errors. This shows the usefulness of using
cast overheads as features.

M. W. Khan, S. Chen, and Y. He 21:15

Table 3 Python benchmarks used for performance evaluation. The last column gives the number
of configurations generated for the corresponding benchmark.

Benchmark LOC # of functions # of pars # of typed pars # of configurations

Monte Carlo 90 4 9 9 385
Meteor 238 8 26 14 1024
CPU 2824 32 39 23 2897
Zebrafy 1578 28 72 38 4000
Pascal 70 7 19 15 5184
chaos 271 22 42 29 6000
Richard 455 21 94 67 6000
BenchFirst 1017 27 76 54 6000
Sieve 56 9 22 21 15361
Nbody 195 4 21 18 16384
Scimark 65 5 22 17 25088
Raytrace 254 37 67 38 33904

5 Performance Evaluation

We have implemented LearnPerf in Python. The main components are type addition, feature
extraction, model training. Some of evaluated benchmarks are adopted from earlier work in
gradual typing Campora et al. [8], Vitousek et al. [45], which already have type information.
For other benchmarks, we use HiTyper (Peng et al. [30]), a state-of-the-art deep learning
approach, to infer types that may be added. One issue with HiTyper is that some inferred
types are erroneous, as noted by Yee and Guha Yee and Guha [51]. We remove a type
annotation whenever adding it causes static type conflicts. We generate a new, more precisely
typed program after merging the type annotations from HiTyper into the original program.
From the new program, we generate a desired number of configurations for each benchmark
(Table 5).

We implemented feature extractions on top of Reticulated Python (Vitousek et al. [45,
47, 46]). To test the generality of our approach, we have implemented feature extractions for
both the guarded semantics Vitousek et al. [45] and transient semantics (Vitousek et al. [47]).
Since these two semantics lead to different translated programs, we have different feature
extraction codes. However, both implementations are based on the idea of gauging cast
overheads, discussed in Section 4. Our feature extraction, which totals about 1,850 lines of
code, supports the most commonly used Python types, including lists, functions, dictionary
types, tuples, iterables, objects, classes, and many others.

The model training component is implemented on top of the scikit-learn Pedregosa
et al. [29] package, a frequently used machine learning Library in Python. We use scikit-
learn’s various models, its training-testing data split package, and its metrics package. This
component includes less than 200 LOC.

5.1 Benchmarks
To evaluate the performance of LearnPerf, we adopted nine benchmarks that were commonly
used in gradual typing research in Python (Vitousek et al. [47, 46], Campora et al. [8].
These programs are relatively small, often below 500 LOC. In addition, we adopted three
large benchmarks, including Zebrafy (a Python program for creating PDF files) and CPU

ECOOP 2024

21:16 Learning Gradual Typing Performance

Benchmark and BenchFirst (two performance bench-marking programs). For each benchmark,
we present the name, lines of code, number of functions, number of parameters, number
of parameters that are typed originally or with the help of HiTyper, and total number of
configurations we generated for evaluating our performance in Table 3.

The number of configurations generated for each benchmark is mainly determined by
two factors: the number of parameters in the benchmark and the time required to run each
configuration. For example, each configuration in Zebrafy, CPU Benchmark, and BenchFirst
takes more than 100 seconds to finish. As a result, we generate about only 4000 configurations
for such benchmarks.

The configurations for each benchmark for evaluating performance are generated follow
the insights from Greenman et al. [16] to ensure that they are representative. We can
imagine that all configurations from a benchmark be organized into a lattice based on
the parameters that are typed. The lattice includes 2n configurations if n parameters are
typed. All configurations in the same row of the lattice assign types to the same number of
parameters. For example, the bottom-most row assigns types to zero parameters, and the
row above assign types to only one parameters, and the row above that assign types to two
parameters, and so on.

In our experiments, we generated configurations such that every row of the lattice is
covered. Moreover, we try to maintain same proportion of generated configurations over all
configurations in a row across all rows. However, for middle rows, the percentage is smaller
because there are too many configurations in them. For example, the middle row has C

n
2

n

configurations. Once these configurations are generated, we randomly split them so that 40
are used for training and the remaining are used for testing. Note, we repeated 5 times for
the training/testing process.

The running times in this paper are measured on a machine equipped with Intel(R)
Core(TM) i9-9900K CPU @ 3.60GHz, 8 Core(s), and 16GB RAM. Each measured time is an
average of 10 runs.

Figure 7 gives an idea of how execution times look as a certain number of parameters
are typed. The figure shows that while the running times of some benchmarks are clustered,
others are scattered. We believe that these benchmarks serve the evaluation purpose well.

Our evaluation focus on Scenarios 1 and 3 only. The result for Scenario 2 is similar to
that for Scenario 3, and we omit it in the paper.

5.2 Supporting Scenario 1
To simulate the real development scenario, we randomly selected 40 instances from all
generated configurations as training instances, and we use linear regression to train a time
prediction model. Compared to standard machine learning applications, our approach uses
significantly fewer data instances for training.

To ensure that the model correctly learns patterns from the data and doesn’t pick up too
much noise, we used k-fold cross-validation technique. As is standard in machine learning
practice, our results are averaged over all k trials to get the overall performance of the model.
We set k to 5 in our evaluation. Experiments were run on the same machine we used for
generating benchmark’s configurations.

Table 4 describes the performance of LearnPerf on all evaluated benchmarks. Columns
three through five of the table show that even when the model is trained with only 40
instances, our prediction result is very accurate, with DR (defined in Section 3.2) less than
3% for nine benchmarks, between 3% and 4% for two benchmarks, and is 5.26% for one
benchmark. Intuitively, this means that our predicted times are very close to measured times.

M. W. Khan, S. Chen, and Y. He 21:17

Figure 7 Benchmark’s configurations description: Run Time vs Number of parameters typed for
each benchmark.

Columns six and seven of Table 4 present the ratios of configurations whose DR are less
and greater than 10%, respectively. The result shows that there are fewer configurations that
have large difference ratios.

Figure 8 presents a closer investigation of the evaluation result. Specifically, we divide each
benchmark into five groups in terms of their measured running time of different configurations
of the benchmark. Next, we predict the performance (running time) and measure the DR of
all configurations within each group. For every group, green represents a DR of less than
5%, cyan represents 5 to 10%, blue represents 10 to 15%, violet represents 15 to 20%, and
red represents more than 20% of DR. The figure reveals that, in general, the configurations
that have smaller running times tend to experience higher DRs. There are two potential
reasons behind this. First, a small variance in predicted time for such configurations can lead
to a higher DR. Second, even averaged over ten runs, each measured time includes a small
randomness due to computer execution dynamics, and the randomness in such configurations
has a more conspicuous impact.

ECOOP 2024

21:18 Learning Gradual Typing Performance

Table 4 The performance of LearnPerf on evaluated benchmarks. The model for each benchmark
is trained with forty randomly selected configurations. The second column gives the number of
testing instances (configurations). Columns three through five gives the average performance of all
testing instances. Columns six and seven give the ratios of instances whose DR are less than and
greater than 10%, respectively.

Benchmark # testing MAE MSE DR <10% >10%

Monte Carlo 344 0.05 ± 0.01 0.07 ± 0.01 3.597% 93.77% 6.23%
Meteor 984 0.32 ± 0.01 0.39 ± 0.02 2.70 % 97.35% 2.65%
CPU 2857 1.56 ± 0.01 2.07 ± 0.08 1.91% 99.80% 0.2%

Zebrafy 3960 2.70 ± 0.00 3.63±0.00 1.57% 92.88% 7.12%
Pascal 5144 0.37 ± 0.03 0.460 ± 0.04 2.10% 95.55% 4.45
Chaos 5960 2.37 ± 0.07 2.92 ± 0.09 3.56% 97.09% 2.91%

Richard 5960 0.55 ± 0.00 0.71 ± 0.00 0.91% 100% 0.0%
BenchFirst 5960 17.12 ± 0.03 25.06 ± 0.7 5.26% 86.04% 13.96%

Sieve 15321 0.17 ± 0.01 0.23 ± 0.01 2.18% 89.06% 10.94%
Nbody 16344 0.21 ± 0.01 0.25 ± 0.01 1.84% 99.86% 0.14%

Scimark 25048 0.14 ± 0.04 0.193 ± 0.05 0.97% 98.92% 1.08%
Raytrace 33864 0.26± 0.06 0.330 ± 0.09 1.73% 94.46% 5.54%

5.3 Supporting Scenario 3

Scenario 3 aims to find the neighbor with best performance for any given configuration.
This is particularly helpful when the current configuration has poor performance and the
user wants to find a neighbor with good performance.We can imagine that there are two
lattices with the current configuration.One grows up, adding more type annotations to
current configuration, and one grows down, removing type annotations from the current
configuration. We then use the idea of these two method to choose neighbors. However, here
we consider configurations that add/remove up to seven parameters. To evaluate how well
LearnPerf can support this scenario, we randomly choose a certain number of configurations,
and find the most performant neighbor of it using our model.

We present the detailed result for this scenario in Table 5, which includes the number of
configurations considered as the current configuration (the second column) and three metrics
to measure the performance of LearnPerf. To simplify our discussion below, we refer to a
configuration and all its neighbors as a region. Each region includes at least 100 neighbors or
includes all neighbors that add types to up to seven parameters. The first metric (column
three in the table) is the accuracy. For any given configuration, if the most performant
neighbor identified by LearnPerf is among the three neighbors with least execution times, then
we classify this as a correct identification. We consider top three neighbors because it is
common for many neighbors to have very small difference in execution times. The accuracy
is calculated by dividing the number of correct identifications over all regions considered for
that benchmark. For example, for Scimark, we considered 500 regions, and for 408 regions
LearnPerf made correct identifications. As a result, the accuracy is 81.6%.

The second metric (column four in the table) is the average differences between the
execution times of the real and the identified most performant neighbors. For example,
if the real most performant neighbor for a region has an execution time of 4.73s and the
identified neighbor has an execution time of 4.75s, then the time difference is 0.02s. This
column records the average of differences of all regions for that benchmark. The third metric
(column five in the table) calculates the time difference in percentage.

M. W. Khan, S. Chen, and Y. He 21:19

Figure 8 LearnPerfdetailed benchmark’s performance based on different measured run time groups.

Again, the table shows that our approach is very accurate in identifying the most
performant neighbors, with the difference ratio always below 1% except for Pascal that has a
2.4% DR.

5.4 Training and Prediction Times
Table 6 presents times needed for generating and measuring 40 configurations for training
the model, the time for training the model once these 40 configurations are ready, and the
average feature extraction time for each program. We do not present the prediction time
because that is less than 1ms for each configuration. From the table, we can see that the
most time in our approach is spent on measuring the running times for training the model.

For some benchmarks, measuring the times is relatively fast, such as for Monte Carlo,
Meteor, Sieve, Nbody, Scimark, and Raytrace. However, it takes significantly longer to
measure the times for some benchmarks, including CPU, Zebrafy, Chaos, Richard, and
BenchFirst. The reason is that each configuration from these benchmarks takes a long time
to complete. Usually, this large amount of measuring time will lead to a long response time.
Also, it looks like this long waiting time is hard to avoid.

ECOOP 2024

21:20 Learning Gradual Typing Performance

Table 5 LearnPerf’s performance on finding the most performant neighbor to migrate for each
benchmark.

Benchmark # of regions Accuracy Average difference(s) difference ratio

Monte Carlo 42 100% 0.0 0%
Meteor 500 77.0% 0.032 0.338%
CPU 38 94.74% 0.004 0.998%

Zebrafy 89 98.88% 0.007 0.087%
Pascal 500 44.80% 0.171 2.388%
chaos 297 83.16% 0.059 0.88%

Richard 98 100% 0 0%
BenchFirst 113 93.81% 0.004 0.058%

Sieve 500 63.6% 0.020 0.685%
Nbody 500 34.60% 0.116 1.246%

Scimark 500 81.6% 0.021 0.344%
Raytrace 385 96.88% 0.007 0.034%

Table 6 Training and Prediction time of Each benchmark.

Benchmark Measuring 40 configurations (s) Training(s) Feature extraction (ms)

Monte Carlo 53.27 1.00 10.98
Meteor 490.06 0.99 23.38
CPU 2997.87 3.3 1001.96

Zebrafy 7394.38 4.75 1012.30
Pascal 580.05 1.01 40.89
Chaos 2654.87 1.03 29.15

Richard 2462.77 1.99 1013.33
BenchFirst 21816.94 3.89 1112.32

Sieve 373.33 1.02 19.67
Nbody 488.94 0.99 25.86

Scimark 555.68 0.99 27.73
Raytrace 623.55 2.98 26.17

Fortunately, with the help of type migration tools, we can significantly shorten the
response time. The idea is that we start to measure the runtimes way before the user needs
the migration support. We tested this idea by automating the process of generating type
information for parameters with HiTyper, merging the generated type information into the
original program, randomly generating configurations for training, running all generated
configurations to measure their runtime duration, extracting features for these configurations,
and training a time prediction model based on the collected times and extracted features.
We tested this idea on three large benchmarks, including CPU, Zebrafy, and BenchFirst.

Once the model has been trained, predicting the running time is very fast. Since feature
generation is also very efficient, we can quickly provide migration support with the model. For
example, for any given configuration, LearnPerf is able to find the most performant neighbor
within a few seconds.

M. W. Khan, S. Chen, and Y. He 21:21

Figure 9 The relation between run times and the number of parameters that have type annotations
for six benchmarks for transient semantics.

5.5 Different Machine Learning Methods
We used linear regression to train our model. During the development of LearnPerf, we also
explored other machine learning algorithms, including random forest regression, decision tree
regression, and AdaBoost regression. We decided to use linear regression for the following
reasons. First, linear regression usually does not need too many training instances. In
our case, 40 training instances yield good performance. Second, training and prediction
with linear regression is very fast than other models. Third, linear regression yields good
performance across all benchmarks. For example, while random forest achieves 1.38% and
1.19% DRs for Monte and Sieve, respectively, the DRs for Raytrace and Scimark are above
13%.

We also tried some other famous Machine learning models, such as support vector machine
regression and MLP regression, but they either need more training instance or take more
times for training and prediction. Also, they do not outperform linear regression for our
problem.

5.6 Evaluation of Transient Semantics
In addition to evaluating the performance of LearnPerf on the guarded semantics, we have also
evaluated it on the transient semantics (Vitousek et al. [47]) using the same benchmarks. In
our feature extraction code for transient semantics, we set all the return values of callOH (·)
in Figure 5 to 0 because transient casts do not introduce proxies.

Figure 9 presents the runtime distributions for six benchmarks under transient semantics.
We omit the other six because their distributions are similar. Comparing this figure to
Figure 7 we observe that the runtimes in transient semantics are several magnitudes smaller
than in guarded semantics. Also, the runtimes have smaller variations across different
configurations.

Table 7 presents the performance of LearnPerf for the transient semantics. We can observe
that the DR is much higher than that for guarded semantics. Meanwhile, we observe that
the MAE and MSE are close to 0. This indicates that a possible reason that DR is relatively
high because the runtime of each configuration is very smaller, usually below 0.1 seconds. A
small randomness in measured time can lead to a high DR in this case.

ECOOP 2024

21:22 Learning Gradual Typing Performance

Table 7 Overall performance of LearnPerf for the transient semantics.

Benchmark # training # testing MAE MSE DR

Monte Carlo 40 344 0.002 ± 0.0 0.004 ± 0.0 31.43%
Meteor 40 984 0.005 ± 0.01 0.006 ± 0.0 25.09 %
CPU 40 2857 0.01 ± 0.0 0.02 ± 0.08 18.91%

Zebrafy 40 3960 0.001 ± 0.0 0.003±0.0 27.77%
Pascal 40 5144 0.01 ± 0.0 0.013 ± 0.0 18.549%
Chaos 40 5960 0.02 ± 0.0 0.06 ± 0.0 34.38%

Richard 40 5960 0.027 ± 0.0 0.033 ± 0.0 24.93%
BenchFirst 40 5960 0.033 ± 0.0 0.087 ± 0.0 25.88%

Sieve 40 15321 0.002 ± 0.0 0.001 ± 0.0 29.07%
Nbody 40 16344 0.003 ± 0.0 0.005 ± 0.01 21.78%

Scimark 40 25048 0.001 ± 0.0 0.001 ± 0.0 27.129%
Raytrace 40 33864 0.001± 0.0 0.002 ± 0.0 25.497%

Overall, our approach works pretty well for transient semantics also. The main insight
is that the algorithm in Figure 5 derives coefficients of cast overheads rather than the real
runtime overhead of casts. The overhead of a transient cast (checking type tags) can also be
estimated using coefficients.

5.7 Threats to Validity
It may be possible that the results observed in our evaluation do not transfer to other Python
programs. We have done the following to reduce this possibility. (1) We chose the benchmarks
that are commonly used in the literature for evaluating gradual typing performance as well
as three large Python programs (details in Section 5.1). (2) The evaluated programs cover
most commonly used language features in Python, including control structures such as
conditionals and loops, functions, classes with inheritance, tuples, dictionaries, nested lists,
etc. (3) The amount of typed parameters can have a big impact on the results. As shown in
Table 5, the percentages that parameters have types are quite diverse, ranging from about
50% (Meteor and Zebrafy) to about 100% (Monte Carlo, Sieve, and Nbody). (4) The kinds
of casts in translated programs could also affect the performance of LearnPerf. After checking
the translated programs, we observed the presence of simple casts (about 63% of all casts)
between basic types as well as higher-order casts (about 37% of all casts) between function
types, list types, and object types. (5) Each time is an average of 10 runs and each machine
learning experiment is averaged over 5 trials.

6 Related Work

Understanding performance changes during migration. While a lot of work has been done
to automatically migrate dynamic programs toward more static, little work has been done to
aid the performance aspect during program migration except for a few efforts.

Our work is closely related to the work by Campora et al. [8]. They developed Herder
to help navigate the performance landscape during migration. However, there are many
differences between LearnPerf and Herder. First, LearnPerf is able to precisely predict a
time for any configuration while Herder is able to find only a symbolic overhead for each
configuration. There is no direct mapping from these symbolic values to real runtimes

M. W. Khan, S. Chen, and Y. He 21:23

and so the relation between two symbolic values often does not carry over to the real
runtimes. For example, two configurations from a single benchmark have symbolic values
2 ∗ ℓ3 ∗ ℓ4 and 67 ∗ ℓ3 ∗ ℓ4, respectively, while their corresponding runtimes are 24.79 and
37.38 seconds, respectively. As a result, several migration supports are possible with LearnPerf

but not Herder, such as classifying neighbors of a certain configuration based on their
speedup/slowdown ratios.

Another difference is that, since our approach is based on machine learning, we only need
to extract approximate values for features. Herder, however, is based on static analysis
and needs to be very accurate. For example, in LearnPerf, the overhead for a function cast
is a simple addition of creation overhead and invocation overhead. In Herder, a function
cast needs to be transformed to an intermediate language to simulate the creation of proxies.
As a result, it is easier to support more language features in LearnPerf than in Herder. For
example, we support object and class types, but they were missing in Herder.

Greenman et al. [15] also investigated the performance problem during program migration
but from a very different perspective. Through a large-scale empirical study, the authors
studied how outputs from profilers may be exploited for proving migration supports. They
considered seventeen strategies for how to avoid configurations with unacceptable performance
and navigate to configurations to acceptable performance. Through the study, they generated
three useful lessons for developers and one lesson for language designers for how to deal with
the performance problem. Their focus is very different from our work in that we aim to
predict the runtime for each configuration, and provide other migration supports, such as
finding the best performing configuration among the neighbors, on top of that.

Assessing and Optimizing Gradual Typing Performance. Takikawa et al. [41] evaluated
the performance of Typed Racket, focusing on the areas mixing untyped and typed code. The
evaluation revealed significant runtime overhead in sound gradual typing. In evaluating the
performance of a gradual type system, Greenman et al. [16] conducted a thorough analysis by
fully annotating a series of benchmarks in Typed Racket. Absolute performance calculations
were derived by generating a significant subset of configurations from the complete lattice
of possible configurations. Performance ratios for each configuration were then compared
against base configurations to identify K-step and D-deliverable configurations.

Since the report of the performance problem in gradual typing, a lot of work has been
done to solve this problem, ranging from designing new type systems or new languages,
inferring more types to reduce casts, to developing more efficient cast languages.

Rastogi et al. [34] introduced a type inference algorithm for existing gradually typed code,
especially focusing on the inflow and outflow of types. Their approach supports open-world
soundness to enable sound interactions with unseen code. Instead, Nguyen et al. [27] used
static analysis to remove casts that always succeed without considering open-world soundness.

The idea of developing new languages to avoid expensive interactions has been explored
by Muehlboeck et al. Muehlboeck and Tate [26]. Several approaches have been developed to
exploit compilers or JITs to improve gradual typing performance Rastogi et al. [35], Richards
et al. [36], Bauman et al. [5]. Another important line of improving gradual typing performance
is through the design of new or change cast constructs Feltey et al. [12], Kuhlenschmidt
et al. [20]. The work by Allende et al. [4] designed confined gradual typing, allowing users
to control the flowing of type information through type annotations for reducing expensive
boundary crossings.

Our approach is complementary to these approaches in that they do not try to compare
the performance of different configurations and identify performant configurations. Also,
while these approaches optimize the performance of gradual programs, they often do not

ECOOP 2024

21:24 Learning Gradual Typing Performance

fully reduce the overheads due to runtime type checks. This paper shows that our approach
works well for both the guarded and transient semantics. It looks promising in applying our
idea to the translated programs from these approaches to predict the performance of these
optimized programs.

Machine Learning for Programming. Many machine learning based approaches have
been developed for solving programming language and software engineering problems Wan
et al. [49], Allamanis et al. [2]. A main trend is using deep models, such as large language
models, to automatically extract code features. Interestingly, our exploration shows that
deep learning approach does not produce a good model for performance prediction for our
problem. Vo and Nguyen [48] observed a similar phenomenon for vulnerability detection.

7 Conclusion

With gradual typing, developers enjoy the benefits of both static and dynamic typing. A
major obstacle of adopting gradual typing is that the runtime overhead when going from
less typed regions to more typed regions is often high and unpredictable. To address this
issue, we developed a machine learning-based solution named LearnPerf that approximates
runtime overheads due to inserted casts. We have evaluated our approach on 12 Python
benchmarks, with each of the three large benchmarks having more than 1000 LOC. The
evaluation results demonstrated that LearnPerf is able to precisely predict the execution time
of each configuration. On top of that, we can develop further migration supports, such as
finding the most performant neighbor of a configuration when it has poor performance. Our
approach works well for both guarded and transient semantics. In the future, we would like
to extend our approach to support a more macro level gradually-typed language, such as
Typed Racket. It is also interesting to investigate if our approach can be employed to predict
the performance of optimized gradual programs.

References
1 Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary

reviews: computational statistics, 2(4):433–459, 2010.
2 Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. A survey

of machine learning for big code and naturalness. ACM Comput. Surv., 51(4), July 2018.
doi:10.1145/3212695.

3 Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. Typilus: neural type
hints. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM, June 2020. doi:10.1145/3385412.3385997.

4 Esteban Allende, Johan Fabry, Ronald Garcia, and Éric Tanter. Confined gradual typing.
In Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pages 251–270, New York, NY, USA, 2014.
ACM. doi:10.1145/2660193.2660222.

5 Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. Sound
gradual typing: Only mostly dead. Proc. ACM Program. Lang., 1(OOPSLA):54:1–54:24,
October 2017. doi:10.1145/3133878.

6 John Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. Migrating gradual types. In
Proceedings of the 45th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL ’18, New York, NY, USA, 2018. ACM.

7 John Peter Campora and Sheng Chen. Taming type annotations in gradual typing. Proc.
ACM Program. Lang., 4(OOPSLA), November 2020. doi:10.1145/3428259.

https://doi.org/10.1145/3212695
https://doi.org/10.1145/3385412.3385997
https://doi.org/10.1145/2660193.2660222
https://doi.org/10.1145/3133878
https://doi.org/10.1145/3428259

M. W. Khan, S. Chen, and Y. He 21:25

8 John Peter Campora, Sheng Chen, and Eric Walkingshaw. Casts and costs: Harmonizing
safety and performance in gradual typing. Proc. ACM Program. Lang., 2(ICFP):98:1–98:30,
July 2018. doi:10.1145/3236793.

9 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. Gradual
typing: A new perspective. Proc. ACM Program. Lang., 3(POPL), January 2019. doi:
10.1145/3290329.

10 Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Sridharan,
Frank Tip, and Youngil Choi. Type inference for static compilation of javascript. In Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, pages 410–429, New York, NY, USA,
2016. ACM. doi:10.1145/2983990.2984017.

11 Fernando Cristiani and Peter Thiemann. Generation of typescript declaration files from
javascript code. In Proceedings of the 18th ACM SIGPLAN International Conference on
Managed Programming Languages and Runtimes, MPLR 2021, pages 97–112, New York, NY,
USA, 2021. Association for Computing Machinery. doi:10.1145/3475738.3480941.

12 Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent
St-Amour. Collapsible contracts: Fixing a pathology of gradual typing. Proc. ACM Program.
Lang., 2(OOPSLA), October 2018. doi:10.1145/3276503.

13 Ronald Garcia and Matteo Cimini. Principal type schemes for gradual programs. In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 303–315, New York, NY, USA, 2015. ACM. doi:10.1145/
2676726.2676992.

14 Ben Greenman and Matthias Felleisen. A spectrum of type soundness and performance. Proc.
ACM Program. Lang., 2(ICFP):71:1–71:32, July 2018. doi:10.1145/3236766.

15 Ben Greenman, Matthias Felleisen, and Christos Dimoulas. How profilers can help navigate type
migration. Proc. ACM Program. Lang., 7(OOPSLA2), October 2023. doi:10.1145/3622817.

16 Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan
Vitek, and Matthias Felleisen. How to evaluate the performance of gradual type systems.
Journal of Functional Programming, 29:e4, 2019. doi:10.1017/S0956796818000217.

17 Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. arXiv preprint, 2022. arXiv:2203.03850.

18 Sergiy Kolesnikov, Norbert Siegmund, Christian K’́astner, Alexander Grebhahn, and Sven
Apel. Tradeoffs in modeling performance of highly configurable software systems. Software &
Systems Modeling, 18:2265–2283, June 2019. doi:10.1007/s10270-018-0662-9.

19 Erik Krogh Kristensen and Anders Møller. Type test scripts for typescript testing. Proc. ACM
Program. Lang., 1(OOPSLA):90:1–90:25, October 2017. doi:10.1145/3133914.

20 Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. Toward efficient gradual
typing for structural types via coercions. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2019, pages 517–532, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3314221.3314627.

21 Andréa Matsunaga and José A.B. Fortes. On the use of machine learning to predict the time
and resources consumed by applications. In 2010 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing, pages 495–504, 2010. doi:10.1109/CCGRID.2010.98.

22 Zeina Migeed and Jens Palsberg. What is decidable about gradual types? Proc. ACM Program.
Lang., 4(POPL), December 2019. doi:10.1145/3371097.

23 Amir M Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios. Type4py:
practical deep similarity learning-based type inference for python. In Proceedings of the 44th
International Conference on Software Engineering, pages 2241–2252, 2022.

24 Yusuke Miyazaki, Taro Sekiyama, and Atsushi Igarashi. Dynamic type inference for gradual
hindley–milner typing. Proc. ACM Program. Lang., 3(POPL):18:1–18:29, January 2019.
doi:10.1145/3290331.

ECOOP 2024

https://doi.org/10.1145/3236793
https://doi.org/10.1145/3290329
https://doi.org/10.1145/3290329
https://doi.org/10.1145/2983990.2984017
https://doi.org/10.1145/3475738.3480941
https://doi.org/10.1145/3276503
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/3236766
https://doi.org/10.1145/3622817
https://doi.org/10.1017/S0956796818000217
https://arxiv.org/abs/2203.03850
https://doi.org/10.1007/s10270-018-0662-9
https://doi.org/10.1145/3133914
https://doi.org/10.1145/3314221.3314627
https://doi.org/10.1109/CCGRID.2010.98
https://doi.org/10.1145/3371097
https://doi.org/10.1145/3290331

21:26 Learning Gradual Typing Performance

25 Cameron Moy, Phúc C. Nguyễn, Sam Tobin-Hochstadt, and David Van Horn. Corpse reviver:
Sound and efficient gradual typing via contract verification. Proc. ACM Program. Lang.,
5(POPL), January 2021. doi:10.1145/3434334.

26 Fabian Muehlboeck and Ross Tate. Sound gradual typing is nominally alive and well. In
OOPSLA, New York, NY, USA, 2017. ACM. doi:10.1145/3133880.

27 Phúc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. Soft contract
verification for higher-order stateful programs. Proc. ACM Program. Lang., 2(POPL):51:1–
51:30, December 2017. doi:10.1145/3158139.

28 Francisco Ortin, Miguel Garcia, and Seán McSweeney. Rule-based program specialization to
optimize gradually typed code. Knowledge-Based Systems, 179:145–173, 2019. doi:10.1016/
j.knosys.2019.05.013.

29 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

30 Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu. Static
inference meets deep learning: A hybrid type inference approach for python. In Proceedings of
the 44th International Conference on Software Engineering, ICSE ’22, pages 2019–2030, New
York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3510003.3510038.

31 Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha. Solver-
based gradual type migration. Proc. ACM Program. Lang., 5(OOPSLA), October 2021.
doi:10.1145/3485488.

32 Marius-Constantin Popescu, Valentina E Balas, Liliana Perescu-Popescu, and Nikos Mastorakis.
Multilayer perceptron and neural networks. WSEAS Transactions on Circuits and Systems,
8(7):579–588, 2009.

33 Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. Typewriter: Neural type
prediction with search-based validation, 2020. arXiv:1912.03768.

34 Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The ins and outs of gradual type inference.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’12, pages 481–494, New York, NY, USA, 2012. ACM.
doi:10.1145/2103656.2103714.

35 Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin M. Bierman, and Panagiotis Vekris.
Safe & efficient gradual typing for typescript. In POPL, 2015.

36 Gregor Richards, Ellen Arteca, and Alexi Turcotte. The vm already knew that: Lever-
aging compile-time knowledge to optimize gradual typing. Proc. ACM Program. Lang.,
1(OOPSLA):55:1–55:27, October 2017. doi:10.1145/3133879.

37 Jeremy Siek, Ronald Garcia, and Walid Taha. Exploring the design space of higher-order casts.
In Giuseppe Castagna, editor, Programming Languages and Systems, pages 17–31, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

38 Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In In Scheme and
Functional Programming Workshop, pages 81–92, 2006.

39 Jeremy G. Siek and Manish Vachharajani. Gradual typing with unification-based inference.
In Proceedings of the 2008 Symposium on Dynamic Languages, DLS ’08, pages 7:1–7:12, New
York, NY, USA, 2008. ACM. doi:10.1145/1408681.1408688.

40 Dagmar Stumpfe and Jürgen Bajorath. Exploring activity cliffs in medicinal chemistry. Journal
of Medicinal Chemistry, 55(7):2932–2942, 2012. PMID: 22236250. doi:10.1021/jm201706b.

41 Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias
Felleisen. Is sound gradual typing dead? In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16, pages 456–468,
New York, NY, USA, 2016. ACM. doi:10.1145/2837614.2837630.

42 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: From scripts to pro-
grams. In Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’06, pages 964–974, New York, NY, USA,
2006. ACM. doi:10.1145/1176617.1176755.

https://doi.org/10.1145/3434334
https://doi.org/10.1145/3133880
https://doi.org/10.1145/3158139
https://doi.org/10.1016/j.knosys.2019.05.013
https://doi.org/10.1016/j.knosys.2019.05.013
https://doi.org/10.1145/3510003.3510038
https://doi.org/10.1145/3485488
https://arxiv.org/abs/1912.03768
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/3133879
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1021/jm201706b
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/1176617.1176755

M. W. Khan, S. Chen, and Y. He 21:27

43 Sam Tobin-Hochstadt, Matthias Felleisen, Robert Findler, Matthew Flatt, Ben Greenman,
Andrew M. Kent, Vincent St-Amour, T. Stephen Strickland, and Asumu Takikawa. Migratory
Typing: Ten Years Later. In Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi,
editors, 2nd Summit on Advances in Programming Languages (SNAPL 2017), volume 71
of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:17, Dagstuhl,
Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
SNAPL.2017.17.

44 Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and Shriram Krishnamurthi. The
behavior of gradual types: A user study. In DLS, number ICFP in DLS 2018, page 1–12, 2018.
doi:10.1145/3393673.3276947.

45 Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. Design and evaluation
of gradual typing for python. In Proceedings of the 10th ACM Symposium on Dynamic
Languages, DLS ’14, pages 45–56, New York, NY, USA, 2014. ACM. doi:10.1145/2661088.
2661101.

46 Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. Optimizing and evaluating
transient gradual typing. In Proceedings of the 15th ACM SIGPLAN International Symposium
on Dynamic Languages, DLS 2019, pages 28–41, New York, NY, USA, 2019. ACM. doi:
10.1145/3359619.3359742.

47 Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. Big types in little runtime:
Open-world soundness and collaborative blame for gradual type systems. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
pages 762–774, New York, NY, USA, 2017. ACM. doi:10.1145/3009837.3009849.

48 Hieu Dinh Vo and Son Nguyen. Can an old fashioned feature extraction and a light-weight
model improve vulnerability type identification performance? arXiv preprint, 2023. arXiv:
2306.14726.

49 Yao Wan, Yang He, Zhangqian Bi, Jianguo Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu,
Hai Jin, and Philip S Yu. Deep learning for code intelligence: Survey, benchmark and toolkit.
arXiv preprint, 2023. arXiv:2401.00288.

50 Jun Xia, Lecheng Zhang, Xiao Zhu, and Stan Z. Li. Why deep models often cannot beat non-
deep counterparts on molecular property prediction? In ICML 3rd Workshop on Interpretable
Machine Learning in Healthcare (IMLH), 2023. URL: https://openreview.net/forum?id=
hJG8xgj2Y5.

51 Ming-Ho Yee and Arjun Guha. Do machine learning models produce typescript types that
type check? arXiv preprint, 2023. arXiv:2302.12163.

ECOOP 2024

https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://doi.org/10.1145/3393673.3276947
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3009837.3009849
https://arxiv.org/abs/2306.14726
https://arxiv.org/abs/2306.14726
https://arxiv.org/abs/2401.00288
https://openreview.net/forum?id=hJG8xgj2Y5
https://openreview.net/forum?id=hJG8xgj2Y5
https://arxiv.org/abs/2302.12163

Constrictor: Immutability as a Design Concept
Elad Kinsbruner1 # Ñ

Technion, Haifa, Israel

Shachar Itzhaky # Ñ

Technion, Haifa, Israel

Hila Peleg # Ñ

Technion, Haifa, Israel

Abstract
Many object-oriented applications in algorithm design rely on objects never changing during their
lifetime. This is often tackled by marking object references as read-only, e.g., using the const
keyword in C++. In other languages like Python or Java where such a concept does not exist,
programmers rely on best practices that are entirely unenforced. While reliance on best practices
is obviously too permissive, const-checking is too restrictive: it is possible for a method to mutate
the internal state while still satisfying the property we expect from an “immutable” object in this
setting. We would therefore like to enforce the immutability of an object’s abstract state.

We check an object’s immutability through a view of its abstract state: for instances of an
immutable class, the view does not change when running any of the class’s methods, even if some of
the internal state does change. If all methods of a class are verified as non-mutating, we can deem
the entire class view-immutable. We present an SMT-based algorithm to check view-immutability,
and implement it in our linter/verifier, Constrictor.

We evaluate Constrictor on 51 examples of immutability-related design violations. Our
evaluation shows that Constrictor is effective at catching a variety of prototypical design violations,
and does so in seconds. We also explore Constrictor with two real-world case studies.

2012 ACM Subject Classification Software and its engineering → Software design engineering;
Software and its engineering → Software defect analysis

Keywords and phrases Immutability, Design Enforcement, SMT, Liskov Substitution Principle,
Object-oriented Programming

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.22

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.9 [36]
Software (ECOOP 2024 Artifact Evaluation approved artifact): https://doi.org/10.5281/zenodo.
11003108

Funding This research was supported by the Israeli Science Foundation (ISF) grants no. 2117/23
and 651/23.

1 Introduction

Object-oriented code routinely manipulates objects and passes around references to them,
some of which are stored in other objects. Parts of the code often rely on some object not
being changed during its lifetime. This may be in order to uphold some properties as thread
safety [30], security [50] and the stability of invariants [31], allow the use of features like
interning [11], or improve the readability of the code [24]. Other considerations include
information leakage [50] and concurrency [30]. For these reasons, client code may be written
under the assumption that objects on which it relies do not change.

1 Corresponding author.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Elad Kinsbruner, Shachar Itzhaky, and Hila Peleg;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 22; pp. 22:1–22:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kinsbruner@cs.technion.ac.il
http://kinsbruner.cswp.cs.technion.ac.il
https://orcid.org/0000-0003-1314-0945
mailto:shachari@cs.technion.ac.il
https://csaws.cs.technion.ac.il/~shachari/
https://orcid.org/0000-0002-7276-7644
mailto:hilap@cs.technion.ac.il
https://hilap.cswp.cs.technion.ac.il
https://orcid.org/0000-0002-0107-5659
https://doi.org/10.4230/LIPIcs.ECOOP.2024.22
https://doi.org/10.4230/DARTS.10.2.9
https://doi.org/10.4230/DARTS.10.2.9
https://doi.org/10.5281/zenodo.11003108
https://doi.org/10.5281/zenodo.11003108
https://doi.org/10.4230/DARTS.10.2.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Constrictor: Immutability as a Design Concept

In each of these use cases, the term immutability denotes some set of specific assumptions
about the object that the use case requires: when used from multiple threads, an object’s
fields must be available to read without data races; to be safe to pass into an API, the
client programmer wants to know foreign code is not going to break the API’s relied-upon
invariants; when used as a key in a hash table, the library assumes that the hash value of the
object is going to remain constant. Despite different needs relying on different assumptions,
programming practices rely on one of two solutions: (i) documentation-based agreements
at the project or language level [44] that delegate all responsibility to human users, or (ii)
annotations that can be checked by the compiler or some external tool.

The first option is extremely expressive – as expressive as humans are – but has the
obvious downside of the risk of human error. In the scope of checked annotations, some
language features provide some steps in this direction: C++’s const keyword and Java’s
final that designate fields and variables as read-only. However, neither of these is a good
match for the cases described above: final only blocks assignment to a field or variable, but
the referenced object can still be mutated via function calls, and final does not provide
guarantees about object fields unless those happen to be final as well.

C++’s const is seemingly a better fit, but is still not expressive enough. First, a similar
problem to final still exists, where a pointer/reference being const and its content being
immutable are still managed separately (e.g., const A* const), and that decision is still left
to the programmer. In addition to that, const can be used on a specific method, indicating
that the method cannot mutate any fields. This does not allow declaring an entire interface
as immutable, only certain method; and other methods, particularly ones introduced via
inheritance, can mutate any field, including those accessed by const methods. The semantics
of const cannot be used to enforce the property that an interface and all its implementing
hierarchy be immutable. In addition to this, for some use-cases it is too restrictive not to be
able to assign to any field, so C++ also allows marking fields as mutable (can be changed
even from const methods). It is then, again, the user’s responsibility to use this annotation
responsibly, and no formal guarantees are provided by the compiler.

Immutablity in class hierarchies. When provided with an interface or class that is supposed
to be immutable, a programmer would like to take advantage of this immutability for
purposes of design simplicity or for various optimizations. However, implementing classes and
subclasses can introduce unwanted mutations. Languages like Java and C# handle this by
marking key library classes (e.g., strings) as final or sealed. This still does not protect the
user from contract mismatches within the library implementation; and, moreover, it precludes
legitimate extensions of classes in ways that do not violate the immutability guarantees.
This is one of the instances for which the Liskov Substitution Principle (LSP) [39] applies;
inheritance as a language mechanism cannot enforce the preservation of properties, and lack
of mutations is one such property. The LSP is a principle, rather than a mechanism, because
it is not always possible to distinguish implementations that preserve the properties and ones
that do not; and because the properties themselves are often implicit.

Kotlin collections are an interesting example – Figure 1 shows a truncated version of
two interfaces, List and MutableList, from the Kotlin standard library. As summed up by a
Google developer [37]:

MutableList, as the name implies, is a list that has operations to mutate, or change,
its contents: add, remove, and replace items. It’s easy to come to the conclusion that
the List type must therefore be immutable. That’s not the case. Lists are “read-only”,
but they may or may not be mutable. [...] The MutableList interface extends the List
interface, so it’s very easy to create a list that you can change, but pass it around to
other code so that code can only read it, even as you’re still making changes.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:3

interface List <E> {
operator fun get(index : Int): E
fun indexOf (element : E): Int
operator fun contains (element : E): Boolean
// truncated

}

interface MutableList <E> : List <E> {
fun add(element : E): Boolean
fun remove (element : E): Boolean
fun clear ()
// truncated

}

class Foo(val someList : List <Int >) {
init { // called during object construction

assert (0 in someList)
}
fun doStuff () {

// some stuff
val idx = someList . indexOf (0) // implicit assumption :

// init assert still holds!
// some more stuff

}
}

Figure 1 List and MutableList from Kotlin and client code.

In other words, since MutableList instances are also List instances, the best we can say is that
List does not allow mutation and does not forbid mutation. An understandably-confused
programmer may create an instance of the Foo class (line 17 of Figure 1) using a MutableList,
which will be allowed by the type-checker. The list might at first satisfy the initial assertion,
but the programmer may then clear it before calling doStuff. doStuff relies on the assertion
in the constructor and dereferences a now-empty list, due to the mistaken assumption that
List objects cannot change. Kotlin’s list hierarchy keeps us from taking advantage of the
type checker to enforce our design decisions.

This shows how immutability-related violations of the LSP are particularly insidious.
For this reason, the Scala standard collections library and the Guava libraries for Java fully
separate their mutable collections from the immutable ones [5, 7, 21].

Object state: concrete vs. abstract. One possible solution is to “freeze” the memory:
create a copy of an object that disallows mutation of all fields. This “freeze” could be shallow
(as C++’s const would create) or deep (essentially an expensive clone). Such a shallow
“freeze” operation exists in languages such as JavaScript [8] and Ruby [4]. Both approaches
have significant disadvantages as mentioned, and are not widespread. Moreover, object fields
are sometimes used for internal bookkeeping in ways that permits – and requires – to update
their values in situations where the object’s content is not conceptually changed. An example
of this can be seen in ImmutableLookupList (Figure 2), where the field lookupCache is used for
memoizing calls to indexOf. While the class indeed mutates this field, it does so in a way
that is non-observable to the user. In such cases, memory freeze is too strong, as it would
disallow these updates. This requires the same kind of escape hatch that mutable provided
for const, which yet again puts the burden on the programmer to decide which fields present
part of the visible state. In some cases, the distinction is not even possible, because a field
may produce a visible effect for some, but not all, of the ways in which it can be mutated.

ECOOP 2024

22:4 Constrictor: Immutability as a Design Concept

class ImmutableLookupList <E> : List <E> {
private var lookupCache : CacheEntry <E, Int >?
val backingArray : Array <E>
override fun indexOf (elem: E): Int {

if(this.cache != null && this.cache !!. first == elem)
return this.cache !!. second

var ret = -1
for(i in backingArray . indices ())

if(backingArray [i] == elem) {
ret = i
break

}

this.cache = CacheEntry (elem , ret)
return ret

}
// truncated

}

Figure 2 A class that mutates fields but not in an observable way.

For example, in the standard implementation of the union-find data structure [33], some
mutations to the pointer structure may cause visible mutation while others are just different
ways of expressing the same data.

The problem with ImmutableLookupList is actually a problem with considering lookupCache

to be part of the state. It is, of course, part of the concrete state of an ImmutableLookupList

object, i.e., it is part of the memory allocated for the object. However, let us consider how
ImmutableLookupList looks to an external observer: lookupCache is used in the implementation of
the method indexOf, and mutated by it, but this mutation is not observable – through indexOf

or any other method of ImmutableLookupList. It is, in other words, an “implementation detail”,
never exposed to any client code. It does not impact the abstract state of the object [54].
What we need, therefore, is immutability of the abstract state of the object.

1.1 Our approach: views and view immutability
In order to separate the abstract state from the fields pertaining to internal implementation,
we define an object’s view: the set of methods that expose the abstract state to the rest
of the system. The guarantee we want, then, is that if the view of an object is immutable,
and this property is enforced down the inheritance tree, the immutable hierarchy can safely
accommodate mutations of internal state. An enforcement mechanism less rigid than const

or frozen objects can allow optimizations like memoization and caching, while disallowing
the introduction of visible mutation into the hierarchy.

We define for each object two sets of methods, the set of immutable methods I, annotated
by the programmer as @immutable, which are methods that do not mutate the abstract
state of the object, and the set of view methods V , annotated as @viewmethod, whose return
values define the object’s abstract state. In the common case, V ⊆ I, and so @viewmethod also
indicates @immutable (this is not theoretically required, but conserves user effort). Marking the
class as @immutable has the same effect as marking each of the class’s methods as @immutable,
with one notable distinction: the class annotation is inherited, and applies to all methods of
the inherited class, including new methods that were not inherited from its parent class.

We then define the notion of view-immutability with regards to the view V such that when
calling any method from I, the object’s internal state may change, but the abstract state
exposed by V does not. While checking this property is not tractable, we show a relaxed
property that can be checked, that implies the stronger property under certain conditions.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:5

The notion of view-immutability is meant to be checked in a modular way – there is no
need to verify anything regarding the client code, only the data structures themselves. We
expect that common data structures in libraries be annotated with @immutable as needed,
and client code can use these data structures with the desired guarantees.

Our theory is flexible enough to support weaker notions of immutability, e.g., temporary
mutability during an init phase [51], or temporary immutability, e.g., immutable references
in the type system guaranteeing that referenced objects do not change, as in Rust [40].

We implement our approach in a linter/verifier for Python programs named Constrictor.
We translate each class to an SMT encoding using our translating compiler, Py2Smt, then
check whether each of the methods in I are indeed non-mutating.

Lightweight verification. Constrictor does not verify the code for correctness; rather,
it checks for adherence to design decisions, which is an easier problem. However, it can
still fail: Constrictor’s analysis is bounded, and its reliance on SMT inherits the solver’s
limitations. Even with these limitations, Constrictor can still act as a contract-checker. This
hinges on the fact that immutability violations are usually not bugs but rather unintended
violations of conscious design decisions made by different programmers, and as such, they
rarely hide from the programmer – or from Constrictor. Empirically, the immutability
property depends mostly on the program’s dataflow and not on complex relationships between
values. Sometimes there are some correlations that need to be tracked, e.g., in Figure 2 the
cache variable’s value is returned to client code, and so needs to be consistent with a real
value/index in the list. When the SMT solver returns unknown, there are two options: if
Constrictor is run as a verifier, these unknowns will be treated as violations, whereas if it is
run as a linter, only violations for which the solver has returned an answer will be displayed
to the user.

We evaluate Constrictor on 51 examples of immutability-related design violations. Our
evaluation shows that Constrictor is effective at catching a variety of prototypical design
violations, and does so in seconds. We also explore Constrictor with two real world case
studies, one fixing a design problem in a collections module, and the other introducing
memoization into an immutable design pattern. Moreover, we explore human errors that
could be made when providing Constrictor with annotations.

Contributions. The contributions of this paper are:
A definition of view immutability, and a relaxed definition that can be statically checked.
An SMT-based algorithm for checking view immutability.
Py2Smt, a compiler that encodes Python functions for SMT solvers.
Constrictor, a verifier/linter that implements our algorithm for Python programs.
An empirical evaluation of Constrictor and detailed analysis of the results.2

2 Overview

Constrictor is a linter/verifier for Python, so, from now on, the examples will be written in
Python. The general concepts are identical and we will be using full type annotations.

We continue our running example that consists of a list library that includes the interface
LookupList in Figure 3. This interface only contains methods that allow for the inspection
of instances of its implementors. The programmer’s intent was that instances of LookupList

should not be mutated (visibly) through their methods. Users of the library rely on this
assumption, which until now was only enforced by comments and naming conventions.

2 Our replication package is available as a DARTS artifact [36].

ECOOP 2024

22:6 Constrictor: Immutability as a Design Concept

@immutable
class LookupList [E]:

@viewmethod
def __getitem__ (self , idx: int) -> E:

pass

def index_of (self , element : E) -> int:
pass

@viewmethod
def get_size (self) -> int:

pass

Figure 3 A Python interface for a list class with an index_of method.

The programmer seeks to formalize this assumption: they add the @immutable annotation
LookupList. Because LookupList functions as an interface, the substitution principle [39]
dictates that the @immutable annotation should hold for inheriting classes as well.

Consider two implementors of LookupList (Figure 4). One of them, UpdatingLookupList,
violates this assumption by adding methods that mutate the state in a visible way. The
other, MemoizingLookupList, also mutates an object field, but does not change the abstract
state of the object as observed through the LookupList interface: the field cached is used for
memoization: storing index_of’s most recent input/output. Since both classes update data
in object fields, the distinction between them is not a simple semantic check.

Our goal is for Constrictor to warn the user about the @immutable annotation’s violation
in UpdatingLookupList, and not generate a spurious warning for MemoizingLookupList.

Immutable abstract state. The sense in which we would like LookupList to be immutable
is that the return values of “getter” methods, such as __getitem__, do not change after
calling any of LookupList’s methods. In this sense, their abstract state is represented by their
“observing” methods, whose return values should not change if we wish to consider LookupList

an immutable interface.
We call the set of methods representing the abstract state the class’s view: if two objects

can be viewed differently through these methods, they definitely do not represent the same
conceptual object. Notice that defining the view as just __getitem__ and get_size would be
equivalent to defining it to be all three methods of LookupList, because for any implementation
upholding the class contract, two instances agreeing on the return values of __getitem__ and
get_size for all parameters would also agree on the return values of the other two methods.

The choice of view is akin to defining the abstract object: index_of only exposes the first
instance of every value, and different lists that share the locations of duplicate elements – it
does not matter which elements as long as they are duplicates – would be equivalent under
a view made up of only index_of. Moreover, if LookupList had a contains method returning
whether an element is in the list somewhere, then a view comprising only contains would
essentially define the abstract object to be equivalent to a set.

It is therefore important to choose a view that represents the intended abstract state for
the class. Modeling a list essentially means modeling a partial function mapping indices to
elements, which can be achieved with one of the views above. Between equivalent views,
choosing the smallest one will reduce the size of formulas generated by Constrictor, which
will usually reduce the tool’s run time.

When considering both implementations of LookupList, it appears as though both im-
plementations cause state mutation by changing fields. However, one, MemoizingLookupList,
realizes the contract and does not mutate the state visibly, while the other, UpdatingLookupList,
mutates the state in a way that can be observed from outside the class.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:7

class MemoizingLookupList [E](LookupList):
cached : Pair[int , E]
data: list[E]
size: int

def index_of (self , element : E) -> int:
if self. cached . second == element :

return self. cached .first
for i in range(self.size):

if self.data[i] == element :
self. cached = Pair(i, element) # mutation !
return i

return -1
truncated

class UpdatingLookupList [E](LookupList):
data: list[E]
size: int

def index_of (self , element : E) -> int:
for i in range(self.size):

if self.data[i] == element :
return i

return -1

def add(self , element : E):
self.data. append (element) # mutation !
self.size += 1 # mutation !

def remove (self , element : E):
self.size -= 1 # mutation !

truncated

Figure 4 Two implementations of the list interface from Figure 3.

This motivates us to define view-immutability: a class is view-immutable if calling any
of its methods on any instance with any parameters does not affect the return values of
any method in the class’s view. This definition allows MemoizingLookupList and rules out
UpdatingLookupList.

2.1 Reasoning about view-immutability
In order to verify view-immutability, and know that our assumptions about the abstract state
hold, we would need to prove a very strong property: for every state that an object can reach,
and for every method m that we would like to show is immutable, the state of the object
before and after calling m are indistinguishable for any trailing sequence of methods in the
object’s view. In other words, calling m (or not calling it) does not change the information
returned from the object’s view.

In other words, we would be considering two sequences of calls on object o:

init(⃗a); m1(); · · · ; mk(); m(); mk+1(); · · · ; mk+n()
init(⃗a); m1(); · · · ; mk(); mk+1(); · · · ; mk+n()

where throughout the sequence, if mi is part of the class view, the return value of mi is the
same. The calls up to mk constitute the object’s initialization phase, which defines all the
reachable object states. We assume that all methods are deterministic, so the values returned
during initialization are trivially equal, and it remains to be checked for mk+1, . . . , mk+n.
This task is hard to automate because it requires reasoning about unbounded sequences of
method calls. At the very least, some user intervention would be needed, in the form of
data-structure invariants or other guidance [12,15,28].

ECOOP 2024

22:8 Constrictor: Immutability as a Design Concept

View abstraction. Our approach is inspired by successful notions from the field of model
checking [20]. Instead of tracking sequences of method invocations, we establish an invariant
that holds at every step; one “step” being a synchronous method application mi(⃗a) on two
object states σ1, σ2. The invariant is derived from our notion of view: we assume that the
methods in V represent the abstract state of the object. Therefore we would like to maintain
the invariant that the two states are view-equivalent – that is, all the view methods always
return equal values when invoked on σ1 and σ2. We denote this by σ1 ≡V σ2.

To translate the problem to model checking, object states are modeled as valuations to
the object’s fields (with a signature as defined by the respective class declaration). Methods
are then represented as transitions between states. We denote the transition from σ to
σ′ using the method m as σ

m
❀ σ′. The problem is reduced to safety verification with the

relational invariant σ1 ≡V σ2.
While this abstraction deliberately omits some internal information about the state,

which may introduce spurious warnings, this modeling makes the problem amenable to well-
established model-checking techniques based on SMT. We employ a Floyd-style approach:
we construct the control-flow graph of each method and then trace all control paths up to
some bound. Every program statement is associated with a first-order semantics, which are
composed along each path to construct a path transition relation. The transition relation for
the method is the disjunction over all of these paths. More details are given in Section 5.

2.2 Validation steps

This subsection walks through how Constrictor performs the check as explained, using our
motivating example MemoizingLookupList to illustrate how Constrictor is able to show that
this class satisfies the @immutable contract despite benign mutations caused by its methods.

The LookupList interface is annotated as @immutable, indicating all its methods should
be non-mutating. The developer of LookupList additionally annotates the __getitem__ and
get_size methods as @viewmethod, defining the view of the object. The @viewmethod annotations
are inherited by MemoizingLookupList along with the @immutable annotation on the class. Note
that the inherited @immutable annotation on the class requires all of its methods to be
non-mutating, including ones that are not inherited from LookupList.

This annotated code is the input to Constrictor. Constrictor first checks that the
view of MemoizingLookupList is faithful, i.e., can represent the abstract state of the class. It
then verifies that all methods marked @immutable do not affect the values of the view.

Step 1: Encoding to SMT. First, we convert each Python method m to an internal
representation describing an approximation of the changes it makes to the object. We denote
this the transition relation of the function and label it TRm.

For example, in the transition relation of UpdatingLookupList.add, the assignment of
self.size on line 28 of Figure 4 is expressed as σ′[size] = σ[size] + 1. The method’s
transition relation is the composition of the transitions of all statements across all execution
paths, in the standard manner.

Constrictor’s semantics component is called Py2Smt, and it operates at the method
level by enumerating all execution paths up to a bound (this is used, for example, in loops
such as the one in Figure 1), collecting path constraints and constructing the composed
transition relation TRm symbolically for each method m. As is usually the case with bounded
model checking [16], the computed TRm is an approximation.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:9

Step 2: Agreement formula. The transition relations of the view methods are used to
compute a set of predicates that check whether two object states are view-equivalent, i.e.
agree on the return values of all methods m ∈ V (with any arguments). These predicates are
constructed by considering all possible program states at the end of each method, where the
starting states are two given object states σ1, σ2, checking whether the return value is equal
in both. A program state – unlike an object state – also valuates all the local variables and,
in particular, the method’s return value, which we denote σ[returned]. We use a⃗ to denote
the method’s call arguments, which occur in TRm as free variables.

agreem(σ1, σ2) =∆ ∀σ′
1, σ′

2, a⃗.

TRm [⃗a](σ1, σ′
1) ∧ TRm [⃗a](σ2, σ′

2)→ σ′
1[returned] = σ′

2[returned]

View equivalence is expressed symbolically by conjoining over all view methods. In this
example, there are two:(

σ1 ≡V σ2
)

=∆ agree__getitem__(σ1, σ2) ∧ agreeget_size(σ1, σ2)

Step 3: View Fidelity. Using the transition relation for all methods and the agreement
formula, we compose for each method m the formula for checking the fidelity of the view:

∀σ1, σ2, σ′
1, σ′

2, a⃗. σ1 ≡V σ2 ∧ TRm [⃗a](σ1, σ′
1) ∧ TRm [⃗a](σ2, σ′

2) → σ′
1 ≡V σ′

2

If this formula is found valid for all methods of the class, it means two objects that are visibly
indistinguishable remain visibly indistinguishable after any operation. The formula is valid
for all four methods of MemoizedLookupList, so its view is faithful.

Step 4: View Immutability. Finally, Constrictor uses both the transition relation and the
view-equivalence relation to construct the immutability check formula for each @immutable

method: for every object state, executing the checked method on it will not change the view.
For MemoizedLookupList.index_of, this means:

∀σ, σ′, idx . TRindex_of[idx](σ, σ′)→ σ ≡V σ′

The formula for index_of is valid, and it can be validated by an SMT solver. This
verifies that index_of is view-immutable over V . In contrast, if we try the same with, e.g.,
UpdatingLookupList.add:

∀σ, σ′, el. TRadd[el](σ, σ′)→ σ ≡V σ′

The formula for add is not valid, and the solver is able to produce a counterexample
to this property. For example, if σ = {data 7→ [], size 7→ 0}, the TR is satisfied by
σ′ = {data 7→ [el], size 7→ 1}; but these are not view-equivalent. In particular, get_size()
returns 0 for σ, but 1 for σ′.

3 Definitions

In this section, we define the necessary components for Constrictor’s analysis. Let C be a
class with fields F and methods S.

▶ Definition 1 (Object State). The object state of an instance of C is its logical representation:
an assignment giving a value for each field in F .

ECOOP 2024

22:10 Constrictor: Immutability as a Design Concept

▶ Definition 2 (View). A view of C is a set of methods V ⊆ S that describe the abstract
state of the class.

The view will usually contain getters for core fields of the class, while omitting memoization
fields, caches and any other data that is not part of the object’s abstract state. While there
are usually many options for selecting V , any specific choice is an expression of intent.

▶ Definition 3 (Method Term). A method term τ for method m ∈ S is an expression
m(p1, . . . , pk) where p1..k are concrete values of the corresponding parameter types. We
denote T (X) for X ⊆ S to be the set of method terms for all m ∈ X. We use the shorthand
T ≜ T (S)

A method term τ , when operating on an object state σ, has a return value (σ.τ) and a
post-state σ′, for which we denote σ

τ
❀ σ′.

What we actually want is to reason about two objects being indistinguishable in the
sense that view methods, which are the representation of the abstract state of the object,
cannot tell them apart. If two objects disagree on the values of view method terms, they
are clearly not indistinguishable. However, it is possible the objects agree on the values of
view method terms, but after applying some method, view methods of the resulting objects
will disagree. This can happen for arbitrarily long sequences of methods, motivating the
following definition:

▶ Definition 4 (Observable Indistinguishability). Two objects σ0
1 , σ0

2 are observably indistin-
guishable (OI) (σ1

4= σ2) with respect to view V if for all method terms τ1, . . . , τk, whenever:

σ0
1

σ0
2

σ1
1

σ1
2

· · ·

· · ·

σk
1

σk
2

τ1

τ1

τ2

τ2

τk

τk

it is the case that σk
1 , σk

2 agree on the values of all view methods from V .

Now, view immutability just means that method calls leave objects observably indistin-
guishable from their previous state:

▶ Definition 5 (View Immutability). A method m ∈ S is view-immutable with respect to the
view V if:

∀τ ∈ T ({m}). ∀σ, σ′ ∈ Σ. σ
τ
❀ σ′ → σ 4= σ′

A class C is view-immutable if all of its methods are view-immutable, including methods in
classes that inherit from C.

This definition is hard to check because observable indistinguishability requires checking
arbitrarily long sequences of method calls. However, since we expect the values of the view to
reflect the full abstract state of the object, we can consider the following, weaker definition:

▶ Definition 6 (View Equivalence). Instances σ1, σ2 of class C are view-equivalent (σ1 ≡V σ2)
if they agree on the values of all method terms of view methods:

∀τ ∈ T (V), (σ1.τ) = (σ2.τ)

For this to work, we expect views to be faithful in their representation of the abstract
state of the class. A problem arises if there exist two view-equivalent states, and some method
term from T , such that when applying the term on both states, the resulting states are no

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:11

σ σ′τ

4=

(a)

σ1

σ2

σ′
1

σ′
2

τ

τ

≡V ≡V

(b)

Figure 5 Illustrations of the definitions of (a) View Immutability (Definition 5) and (b) View
Fidelity (Definition 7).

longer equivalent. Conceptually, this means that the view must be missing some information,
because there exist two objects with the same view, but that are not interchangeable with
respect to their subsequent behavior through application of class methods.

This motivates the following definition:

▶ Definition 7 (View Fidelity). The view V is faithful (or exhibits view-fidelity) if for all
two objects σ1, σ2 and for all method terms τ :

(σ1 ≡V σ2 ∧ σ1
τ
❀ σ′

1 ∧ σ2
τ
❀ σ′

2)→ (σ′
1 ≡V σ′

2)

Actually, if the view is well-behaved (faithful), view equivalence between two objects
implies the stronger property of observable indistinguishability.

▶ Theorem 8 (Central Theorem). If V is a faithful view, and σ1 ≡V σ2, then σ1
4= σ2.

Proof. By induction on the length of the distinguishing method call sequence, and using
view fidelity for the induction step. ◀

Our algorithm will rely on this theorem: we will check view fidelity and the preservation
of view equivalence, and this will allow us to deduce observable indistinguishability.

4 Analysis

Our algorithm for checking if class C is view-immutable, shown in Algorithm 1, starts by
computing the immutable set and the view set for the class, by using the class annotations:

@immutable: A method labeled with @immutable must not affect the abstract state of the
object; a class labeled as @immutable is a shorthand for labeling all methods as @immutable

and all inheriting classes as @immutable.
@viewmethod: adds a method to the view set of the object: the set of methods that, if they
return the same values on two different objects, we consider them view-equivalent. A
@viewmethod annotation also implicitly adds a @immutable annotation to the method. The
user should aspire to providing the smallest view set.

These annotations are passed under inheritance.
In Algorithm 1, ImmutableSet(C) returns all methods annotated (directly or via

inheritance) as @immutable, and ViewSet(C) returns all methods annotated as @viewmethod.
For each method in the class, the transition relation is computed as a logical predicate

between two SMT variable vectors with the appropriate method store signature. The
method store signatures are a correspondence between names of memory locations used
in methods and their types. In addition, each method store signature contains the special
variable returned that represents the return value of the method. We denote this operation
GetTrOfMethod, and it is implemented using Py2Smt, as explained in Section 5.

ECOOP 2024

22:12 Constrictor: Immutability as a Design Concept

Algorithm 1 Immutability checking algorithm.
procedure CheckClass(C)

Input: A class C

Output: View unfaithful if the class view does not exhibit fidelity, and a mapping of methods
to either Violation or No-violation otherwise.

V ← ViewSet(C)
TRs← {m 7→ GetTrOfMethod(C, m) | m ∈ C}
if not CheckViewFaithful(V, TRs) then

return View unfaithful
Results← {}
for all m ∈ ImmutableSet(C) do

Σ = MethodStoreSignature(m) ▷ Collect types of fields and local variables
φ← ∀σ, σ′ : Σ. TRs[m](σ, σ′)→ Agree(V, TRs)(σ, σ′)
if CheckSat(¬φ) then

Results[m] = Violation
else

Results[m] = No-violation
return Results

Algorithm 2 View equivalence checking algorithm.
function Agree(V, TRs)

Input: A set of view methods V and their transition relations
Output: The set’s agreeV predicate

Σs← {f 7→MethodStoreSignature(f) | f ∈ V }
return λσ0, σ1.

∧
f∈V

(
∀σ′

1, σ′
2 : Σs[f]. (TRs[f](σ1, σ′

1) ∧ TRs[f](σ2, σ′
2)

)
→

σ′
1[returned] = σ′

2[returned])

Next, the view fidelity of the full class is checked: the TRs are used to create a formula
directly based on the definition of view fidelity, and its validity is checked. We denote this
CheckViewFaithful in Algorithm 1. If the view is unfaithful, a meta-warning is issued.

Then, for each method in the immutable set I, the algorithm constructs a formula that
searches for a counterexample to the immutability of the method. First, we compute a formula
that is satisfied between two states that are view equivalent by using the Agree(V, TRs)
function, shown in Algorithm 2, on the set of view methods and their transition relations.
Next, we use the result of Agree to construct a formula that is satisfied by states that are
not view-equivalent to their sequent states after application of the method. If the formula is
satisfiable, then the class is mutable, and this method is a mutator.

This is essentially a reduction of the problem to model checking. Advancements in SMT
solver technology can be applied to achieve better performance in our method as well (also
see Section 6.6).

Strengthening optimization. One optimization that we found useful in our implement-
ation is strengthening the claim and trying to prove TRs[m](σ, σ′) → (σ = σ′) instead of
TRs[m](σ, σ′) → (σ ≡V σ′) in cases where the SMT solver returned unknown. This is a
stronger property that is easier to check and holds in some cases. If that is the case, we can
consider the method as a non-violation.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:13

Correctness. The correctness of the algorithm relies on the following claim:

▶ Theorem 9 (Algorithm Correctness). If V is a faithful view, and for any method m of the
class C:

∀τ ∈ T ({m}). ∀σ, σ′. σ
τ
❀ σ′ → σ ≡V σ′

then the class C is view-immutable w.r.t. the view V .

Proof. Let σ, σ′ be states such that σ
m
❀ σ′. We can deduce that σ ≡V σ′. For view

immutability, we need to prove that σ 4= σ′. We use Theorem 8 and the fidelity of the view
V to deduce the desired property. ◀

5 Implementation

In this section we describe implementation details and design choices of Constrictor. Of
these, the lion’s share is our compiler, Py2Smt.

Py2Smt. Py2Smt computes the overapproximations of transition relations of functions and
the signatures of classes and functions for Constrictor. It is implemented using the Z3 [23]
Python API.

Py2Smt creates a CFG for each Python function, and optimizes it in order to reduce
graph size and path length. Function calls that have no summary SMT encoding are inlined
into the graph, which means recursion is currently not supported. On the resulting graph,
each path from the start vertex to the end vertex represents a potential execution path of
the function. Py2Smt translates each operation to its SMT encoding, and all paths through
the function are joined by a logical OR operation.

This translation depends on finite paths, so loops require special care: when the number
of iterations is known at compile time, loops are completely unrolled. Unbounded loops, on
the other hand, are unrolled and truncated to a configurable maximum length of program
steps, rather than a fixed number of iterations – 100 steps in our evaluation – to create finite
paths. This creates an underapproximation of the program’s behavior [16].

Moreover, since precise encoding of loops as logical formulas in decidable fragments of
first-order logic is fundamentally impossible, Py2Smt currently supports for only in the cases
of range iterations and iterations over lists. These are implemented by (i) utilizing the theory
of sequences; and (ii) automatically converting for loops to a while-like form.

Py2Smt supports most built-in types: integers, floats, booleans, strings, lists, and
dictionaries. It also supports arbitrary data types represented by classes, as well as generic
classes using the bracket syntax from Python 3.12 [1]. Inheritance is also supported. Py2Smt
relies on type hints for method signature inference in some cases. These can be provided by
the user, or supplied by any type inference tool, such as Pytype [9].

Py2Smt supports reference types and treats class types in the same way as Python – all
arguments are passed by reference, except for primitive types.

Use of solvers. Because the formulas created by Constrictor are at times large and
complex, and SMT solvers may have different strengths, Constrictor first tries CVC5 [14]
and, if it returns unknown, also tries Z3 [23].

Constrictor has two different operation modes, that differ in their behavior in the
case that both solvers return unknown both for the original formula and for the heuristically
strengthened one. In “linter-mode”, unknown is treated as “no-violation”, while in “verifier-
mode”, unknown is treated as “violation”.

ECOOP 2024

22:14 Constrictor: Immutability as a Design Concept

Unknown view fidelity. Algorithm 1 starts by attempting to prove view fidelity. Con-
strictor gives a meta-warning if it detects the view is not faithful, and proceeds if the view
is faithful. If it cannot prove either (i.e., the solver returns unknown) it assumes the view is
faithful and proceeds. This does not necessarily mean that the algorithm will result in an
unknown, since the view fidelity check reasons about methods that the rest of the algorithm
disregards.

6 Evaluation

Our evaluation is guided by these research questions:
RQ1: Can Constrictor validate a plethora of hierarchy-related design violations, as well as

other cases involving immutability violations and non-violations?
RQ2: Can Constrictor validate realistic modules implementing data structures meant to

be used in a larger projects?
RQ3: What is the impact of certain types of annotation mistakes on Constrictor?

6.1 Benchmarks
We collected 51 benchmarks comprising two sets:

Inheritance: 24 examples of classes in four immutable class hierarchies, including both
design violations and non-violations. Violations in this set include adding mutators to an
immutable class, overriding immutable methods in a mutating way, defining a view of the
object that returns part of the class’s internal state, etc. Some are classic examples of
inheritance in object-oriented programming, and others are synthetic, created to measure
Constrictor’s performance for different sources of design-related immutability violations.
Non-inheritance: 19 examples of immutability violations and non-violations in cases
unrelated to immutable hierarchies. These exercise Constrictor on a wider array of
design issues, taken from online tutorials and the official language documentation for
C++ [10]. Benchmarks originally in C++ were manually translated to Python and
annotated such that every const C++ method is marked as @viewmethod.
Aspects & Limitations: 8 synthetic benchmarks crafted to demonstrate various aspects
and limitations of Constrictor’s technique. The four types of benchmarks in this set
explore: 1) loops are unrolled: violations hidden by the unrolling bound; 2) complicated
view fidelity checks: views that are not trivially faithful, and the fact that checking view
fidelity is separate from immutability violation checks, so the latter can succeed even
when the former fails; 3) state space is overapproximated: one benchmark showing how
unreachable code can cause a violation due to the overapproximation of object states; and
4) variable types must be explicitly specified: one benchmark showing cases where type
inference cannot give an unambiguous answer without user-provided type annotations.

The Inheritance set contains 24 benchmarks, together measuring 778 lines of code (avg
32.4LOC) across 70 methods. The set contains 32 loops. Three methods suffer from
intentional annotation mistakes. Six benchmarks contain lists and two contain dictionaries.

The Non-inheritance set contains 19 benchmarks, together measuring 806 lines of code (avg
39LOC) across 66 methods. The set contains 28 loops. One method suffers from intentional
annotation mistakes. Eight benchmarks contain lists and three contain dictionaries.

The Aspects & Limitations set contains eight benchmarks, together measuring 248 lines
of code and 20 methods.

Each @immutable and @viewmethod method is classified according whether its implementation
violates the annotation. Our benchmark suite contains the following composition:

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:15

Table 1 Constrictor results on the Inheritance benchmarks.

Fidelity Violations
Class |I| |V | exp/act Found Success Time (ms)

Li
st

s List 1 1 ✓ ✓ 0 ✓ 3107
MutableList 2 1 ✓ ✓ 1 ✓ 2571

Po
in

ts

AlrightPoint 3 2 ✓ ✓ 0 ✓ 366
EvilPoint 4 2 ✓ ✓ 2 ✓ 301
GoodPoint 3 3 ✓ ✓ 0 ✓ 267
InauspiciousPoint 4 3 ✓ ✓ 1 ✓ 275
MaliciousPoint 3 3 ✓ ✓ 1 ✓ 293
MutablePoint 2 2 ✓ ✓ 0 ✓ 169
Point 2 2 ✓ ✓ 0 ✓ 185
WrongfullyAnnotatedMutablePoint 3 3 ✓ ✓ 1 ✓ 300

Se
ts

EvilHashSet 1 1 ✓ ✓ 1 ✓ 3226
GenericSet 1 1 ✓ ✓ 0 ✓ 47
HashSet 1 1 ✓ ✓ 0 ✓ 10346
MoveToFrontListSet 2 1 ✓ ✓ 2 p 11268
WrongImplMoveFrontListSet 2 1 ✓ ✓ 0 p 2040

Sh
ap

es

ColoredShape 1 1 ✓ ✓ 0 ✓ 95
EvilMemoizedRectangle 4 4 ✓ ✓ 1 ✓ 669
EvilSquare 2 1 ✓ ✓ 1 ✓ 149
LeakyMemoizedRectangle 4 4 ✓ ✓ 1 ✓ 876
MemoizedRectangle 3 3 ✓ ✓ 0 ✓ 539
Rectangle 4 4 ✓ ✓ 0 ✓ 656
SimpleWrongImplRectangle 2 2 ✓ ✓ 1 ✓ 226
SizedShape 1 1 ✓ ✓ 0 ✓ 94
WrongfullyImplementedRectangle 4 4 ✓ ✓ 1 ✓ 841

Precision: 0.92 Recall: 0.92
exp: expected act: actual |I| and |V | include inherited annotations

non-violations violations total classes
Inheritance 12 12 24
Non-inheritance 10 9 19
Aspects & Limitations 5 3 8

For all experiments, we define precision as the percentage of no violation detections made
by the tool that were correct and recall as the percentage of actual non-violations that were
correctly flagged as no violation by Constrictor. All detections are at the function level.

All experiments ran on a 2022 MacBook Pro with an M2 processor and 16 GB of RAM.

6.2 RQ1: Design violations
To test RQ1, we ran Constrictor on all three benchmark sets. Constrictor ran on each
benchmark separately, without caching the compilation results of Py2Smt. The timeout for
Constrictor was set at 10 minutes. We recorded the full runtime of Constrictor for each
class, the result of testing view fidelity, and the result of Constrictor for each method in I.

The results for Inheritance are shown in Table 1 and Non-inheritance and Aspects &
Limitations in Table 2. The aspect/limitation of each Aspects & Limitations benchmark
is denoted by a superscript. Displayed times are an average over 10 runs. The repeated
runs did not differ significantly, except for the Graph benchmark (marked with an asterisk in
Table 2), which is discussed below. We computed the precision and recall of Constrictor
on the Inheritance and Non-inheritance benchmark sets: since many Aspects & Limitations
benchmarks are designed to fail, including them does not make sense.

ECOOP 2024

22:16 Constrictor: Immutability as a Design Concept

Table 2 Constrictor results on the Non-inheritance and Aspects & Limitations benchmarks.

Fidelity Violations
Class |I| |V | exp/act Found Success Time (ms)

N
on

-in
he

ri
ta

nc
e

BiCounterFirst 2 1 ✓ ✓ 0 ✓ 225
BiCounterSecond 2 1 ✓ ✓ 0 ✓ 304
BinarySearchTree 2 1 ✓ ✓ 1 ✓ 9459
CachedList 1 1 ✓ ✓ 1 p 292
CounterWithAccessCount 2 1 ✓ ✓ 0 ✓ 225
DefaultDict 2 1 ✓ ✓ 0 ✓ 261
EvilBinarySearchTree 2 2 ✓ ✓ 2 p† 17346
EvilUnionFind 1 1 ✓ ✓ 1 ✓ 857
Graph∗ 2 1 ✓ ✓ 1 ✓ 2762
ImmutablePerson 3 3 ✓ ✓ 0 ✓ 205
ImmutableRgb 3 2 ✓ ✓ 1 ✓ 9823
ListWithAccessCount 1 1 ✓ ✓ 0 ✓ 12379
MultiplyingDictionary 1 1 ✓ ✓ 0 ✓ 6151
MutablePerson 4 3 ✓ ✓ 1 ✓ 381
NumberShuffler 6 1 ✓ ✓ 2 ✓ 477
StringShuffler 2 1 ✓ ✓ 0 ✓ 237
UnionFind 1 1 ✓ ✓ 0 ✓ 774
WrongfullyAnnotatedCachedList 2 2 ✓ ✓ 2 ✓ 403
WrongfullyImplementedCollatz 2 1 ✓ ✓ 1 ✓ 6823

Precision: 1.00 Recall: 0.90

A
sp

ec
ts

&
Li

m
ita

tio
ns Collatz1 2 1 ✓ ✓ 0 ✓ 5914

FaithfulClass2 1 1 ✓ ✓ 0 ✓ 138
FlaggedValue2 1 1 p p 0 ✓ 103
LongLoopMutator1 2 2 ✓ ✓ 0 p timeout
UnreachablyMutating3 2 2 ✓ ✓ 1 p 170
VariableTypesMatter4 4 2 ✓ ✓ 1 ✓ 394
ViewMutatingButFaithful2 2 2 ✓ ✓ 1 ✓ 160
ViewNonMutatingButUnfaithful2 2 1 p p 0 ✓ 77

1loops are unrolled 2complicated view fidelity checks 3state space is overapproximated
4variable types must be explicitly specified
exp: expected act: actual †unknown

Constrictor checks all benchmarks but one in under 13 seconds, and all but 8 of the
benchmarks (84.3%) in under 5 seconds. 46 benchmarks successfully flag all violations and
find no spurious violations. One benchmark was marked as unknown by the SMT solver.
Constrictor succeeds in checking view fidelity for all benchmarks: all unfaithful views in
Table 2 are accurately reported.

Graph is the only benchmark whose runtimes differed significantly across its 10 runs: two
runs completed in under 3 seconds, two more runs completed in about 4 seconds, while the
other six completed in about 12 seconds. This discrepancy is due to variations in solver run
times; other components of the benchmark’s run time did not change between runs.

Six of 51 benchmarks fail. Of these, 2 are Aspects & Limitations benchmarks de-
signed to fail (of which, one times out), two benchmarks from the Non-inheritance set, and
two benchmarks from the Inheritance set. Benchmarks CachedList (Non-inheritance) and
MoveToFrontListSet (Inheritance) find a spurious violation by starting at an unreachable state
of the object. Benchmark WrongImplMoveFrontListSet (Inheritance) misses a violation because
the mutation occurs after the bound for loop unrolling. Benchmark EvilBinarySearchTree

(Non-inheritance) was marked as unknown by the SMT solver.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:17

Iterable

Collection

MutableIterable

MutableCollection

ListMutableList

SmallPersistentVectorArrayList

(a) The Kotlin standard library interface inheritance
hierarchy along with two implementations.3

Iterable

Collection

MutableIterable

MutableCollection

List

ImmutableListMutableList

ArrayList SmallPersistentVector

(b) The Kotlin standard library interface inheritance
hierarchy after being fixed as described.

Figure 6 Inheritance hierarchies used in the first RQ2 case study.

We conclude that Constrictor verifies designs that are view-immutable but do not pass
simple C++-style const-checking, and finds design violations where mutation of the abstract
state occurs.

6.3 RQ2 – Case Study 1: Kotlin lists
As our first case study, we consider the Kotlin standard library list hierarchy discussed
in Section 1, with two implementing classes: the mutation-supporting ArrayList from the
standard library, and the fully immutable SmallPersistentVector from the extension library
kotlinx.collections.immutable [6]. Figure 6a summarizes the module’s initial hierarchy.

The library’s developer wants to annotate their code for Constrictor. This involves:
1. Declaring for each class and interface a set of view methods,
2. Annotating some interface with @immutable, which will be inherited, and
3. Running Constrictor on the classes in the hierarchy.

Technical setup. This case study is comprised of three copies of the eight classes in Figure 6a
in three copies that are identical except for the location of the @immutable annotation, and a
fourth version with the nine classes in Figure 6b. The interfaces were taken from the Kotlin
standard library and translated verbatim, modeling abstract methods as empty methods
(this makes no difference for Constrictor).

Kotlin uses Java’s ArrayList, which we translated to Python as faithfully as possible: arrays
were converted to lists which are used like arrays. Overloaded methods in Java were translated
with different method names as Python does not support overloading. We attempted to
model as many methods as possible: trim_to_size, ensure_capacity, grow, get_size, is_empty,
contains, index_of, last_index_of, to_array, get_element_data, get, set, add, remove, remove_at,
__hash__, clear, add_all, remove_all, retain_all, iterator, and contains_all are all modeled.
Two subsets of its public methods were not modeled: (i) listIterator, iterator, sublist,
spliterator because Py2Smt does not support internal classes, and (ii) forEach, removeIf, sort,
replaceAll because Py2Smt does not support function objects. SmallPersistentVector was
similarly translated as faithfully as possible, implementing _presized_buffer_with, get_size,
add, get, contains and index_of.

3 Kotlin’s original hierarchy is taken from https://kotlinlang.org/docs/collections-overview.html#
collection-types

ECOOP 2024

https://kotlinlang.org/docs/collections-overview.html#collection-types
https://kotlinlang.org/docs/collections-overview.html#collection-types

22:18 Constrictor: Immutability as a Design Concept

Table 3 Run times for the case study in Section 6.3.

Time (ms) for Time (ms) for
@immutable on @immutable on

Class Iterable Collection List Result ImmutableList Result
ArrayList 11762 11902 12067 Viol. 5994 No viol.
SmallPersistentVector 2069 2443 2018 No viol. 2060 No viol.

Each of the three copies of the hierarchy in Figure 6a is about 290 lines of code overall.
Specifically, our ArrayList is 150 lines of code compared to 511 lines of Java, excluding
comments and internal classes. The hierarchy in Figure 6b is 296 lines of code and 51
methods overall. Times for all runs of Constrictor in this case study are shown in Table 3.

First attempt. The programmer declares get_size on Collection and get on List (which
inherits the annotation on get_size) as view methods. They then try annotating List

with @immutable. After running Constrictor on the classes in the hierarchy, ArrayList and
SmallPersistentVector, Constrictor will issue a warning on ArrayList, which inherits List’s
@immutable annotation but is mutable. Constrictor flags ArrayList’s add method as an
immutability violation. Since SmallPersistentVector does uphold its inherited @immutable

annotation, it is not flagged as a violation. The programmer then tries moving the @immutable

annotation to either the Iterable or Collection interfaces, getting the same result.
In fact, the only class in Figure 6(a) on which the @immutable annotation would not cause

a violation flag by Constrictor is SmallPersistentVector, on which it is useless. Overall, no
interface in the hierarchy represents the immutability properties we expect, and Constrictor
can detect this problem in the hierarchy.

The fix. To fix this issue, the programmer now separates the mutable and immutable
hierarchies by creating a new interface: ImmutableList, which extends the List interface (as
seen in Figure 6b). Now there is a clear separation between definitely-mutable classes and
definitely-immutable classes. The programmer does not need to change the @viewmethod

definitions to do so.
The programmer reruns Constrictor on the class hierarchy as previously described and

gets no violation flags. This case study shows how Constrictor can help developers uphold
immutable hierarchy constraints and declare them to their users.

6.4 RQ2 – Case Study 2: Red-Green trees
For our second case study, consider immutable trees with bidirectional references, i.e., both
children and parent references. Smith [52] describes the problem: due to the immutability,
we need to set the parent and children fields during initialization. However, initializing the
tree with a parent field requires building it top-down, and initializing the tree with a children
field requires building it bottom-up. These two requirements are contradictory.

Technical setup. We begin with a naïve implementation: a Node class with parent, children,
and data fields. The class has get_data, get_parent, get_children and add_child as its methods,
and is meant to be constructed top-down, setting the parent field upon construction. After
construction, it is now possible to traverse the structure bottom-up and call the add_child

method to initialize the children field.
We implemented this class in Python in 14 non-empty lines. We annotated the class as

@immutable and annotated the get_data, get_children and get_parent methods as @viewmethod.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:19

Table 4 Run times for Constrictor on implementations of a bidirectional tree in Section 6.4.

Implementation Run time (ms) Result
Naive 322 Violation
Original Red-Green Tree 413 No violation
Memoized Red-Green Tree 582 No violation

As expected, Constrictor returns a violation on this class, pointing out that add_child

visibly mutates the class. The run time of Constrictor can be found in Table 4.

First attempt. Red-Green trees [38] are a data structure used in the Roslyn compiler
for the .NET framework [3]. Red-Green trees solve the problem of bidirectional references
by using two separate node objects to represent each tree node: an internal (and possibly
mutable) green node and an immutable red node. The red tree serves as an immutable façade;
the user never sees the green nodes. A green tree is constructed bottom-up, initializing each
green node with its children. The red tree never exists as a tree, but rather red nodes are
created on the fly to match each green node whenever the children of a red node are accessed.
Since get_children is a computation instead of a getter, a red node can be initialized with
just its parent and internal green node and remain entirely immutable.

We translated the version by Smith, converting 38 lines of C# code to 50 lines of Python
code. We marked the RedNode class as @immutable, with get_data, get_value, get_children

and get_parent as its view. As expected, Constrictor did not detect a violation in this
implementation since it stores nothing and mutates no field, even in a non-observable way.

However, this implementation is very inefficient, as it creates new red nodes representing
the children of a given node in every call to get_children. This can cause both direct run
time overhead, and indirect GC overhead caused by the allocation of many small objects, as
noted by Lippert [38]. We would like to improve the performance of our implementation.

The fix. We now add memoization to our Red-Green tree: the result of the get_children

method is stored when first called. Since red trees are immutable there is no reason
to recompute this field. The new implementation now measures 55 lines. We then ran
Constrictor again: Constrictor still did not report a violation, because the mutation of a
field within get_children is non-visible, preserving view immutability.

This case study shows Constrictor’s utility not in a class hierarchy but rather on
validating the implementation of an immutable data structure. Unlike the previous case
study, since Red-Green Trees are used an internal data structure, the @immutable annotation
would serve the project developers to ensure no changes made to the red trees break their
immutability. The classes from both case studies are part of our artifact [36].

6.5 RQ3: Impact of incorrect annotations
In the following small case studies, we set out to explore Constrictor’s behavior in the
presence of incorrect annotation by the user. We examined four types of annotation mistakes,
relating to the @immutable and @viewmethod annotations: (i) incorrect specification of the
class view, (ii) not marking all relevant methods as @immutable, (iii) marking a method as
@immutable instead of @viewmethod and vice versa, and (iv) inheritance causing a non-faithful
view. Technically, using the correct annotations is the user’s responsibility. We expect
Constrictor to behave under incorrect annotation as if the given annotations reflect the
user intention. The purpose of this research question is to explore the results in cases that
can be a little more error-prone.

ECOOP 2024

22:20 Constrictor: Immutability as a Design Concept

class ListWithAccessCount [E]:
arr: List[E]
size: int
access_count : int

@viewmethod
def get(self , idx: int):

self. access_count += 1
return self.arr[idx]

@immutable
def get_size (self):

self. access_count += 1
return self.size

def get_access_count (self):
self. access_count += 1
return self. access_count

def add(self , elem: E):
self. access_count += 1
self.size += 1
if len(self.arr) == self.size:

self.arr. append (elem)
else:

self.arr[self.size] = elem

def remove_last (self):
self. access_count += 1
self.size -= 1

truncated

Figure 7 A class with an incorrectly annotated view.

Incorrect annotation of the view. Precise view annotations are required to meet the criteria
for Theorem 9. Consider the class ListWithAccessCount in Figure 7. The view annotations on
this class may seem correct to a novice, but the view is too small. The behavior of get is
undefined for idx > self.get_size(), so two List objects may agree on the values of get for
all indices for which it is defined, while still not representing the same list, because they have
different sizes. Also, Constrictor issues a fidelity meta-warning on the view in Figure 7.

The user can also incorrectly select a view for ListWithAccessCount that is too large:
e.g., by adding get_access_count to the view. This is wrong for two reasons: (i) marking
get_access_count as a view method exposes self.access_count, which means get is now
considered to be mutating, and (ii) the @viewmethod annotation also denotes get_access_count

itself as immutable, but it also mutates access_count before returning it. This means it cannot
be both immutable and part of the view. Running Constrictor on ListWithAccessCount after
denoting get_access_count as @viewmethod the class is flagged as a violation (time: 404ms). We
recall that not all “public” methods are expected to be view methods, only those that define
the abstract state of the object – the guarantees mentioned in Section 1 for view-immutability
only require that the class is seen as immutable through the view, but return values for other
methods may be affected.

Not marking a method or class as @immutable. In this case, Constrictor will simply not
check the method or class. Because it only impacts what is checked, not the view that
Constrictor uses, this does not affect Constrictor’s performance on other methods/classes.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:21

class SettableList [E]:
arr: List[E]

@immutable
def get(self , idx: int):

return self.arr[idx]

@viewmethod
def get_size (self):

return len(self.arr)

@immutable
def set(self , idx: int , elem: E):

self.arr[idx] = elem

@immutable
def add(self , elem: E):

self.arr. append (elem)
truncated

Figure 8 A class with @viewmethod and @immutable swapped.

class Collection [E]:
@viewmethod
def contains (self , elem: E) -> bool:

pass
truncated

class MyCoolCollection [E](Collection):
def remove_first (self , elem: E):

n = self. get_size ()
for i in range(n):

if self.get(i) == elem:
self. remove_at (i)

truncated

Figure 9 An example where annotation inheritance may cause a view to become unfaithful.

Marking a method or class as @immutable instead of @viewmethod and vice versa. This is
analogous to a view that is too large (using @viewmethod instead of @immutable) or too small
(vice versa). For instance, consider the class SettableList in Figure 8, whose view is only the
get_size method. The method get is marked as @immutable even though the user probably
intended for it to be a part of the view. The result only partially captures the class’s abstract
state. In the current state, Constrictor will not flag a violation for set that is marked as
@immutable, because the size of the list does not change.

View fidelity under inheritance. The class Collection in Figure 9 represents a collection
interface similar to Kotlin’s. By itself, the class and its view, contains, have no issues.
However, a programmer extending it may not be aware that adding methods to an inherited
class may cause the view inherited from the parent to be unfaithful. When extended,
MyCoolCollection’s view is the contains method inherited from Collection.

The programmer adds to MyCoolCollection the method remove_first, which removes one
instance of an element given as a parameter to the method. This method causes the view of
MyCoolCollection to be unfaithful, despite there being no change in the view set itself: two
collections with the same distinct elements would agree on the return value of contains for
all arguments, but after running remove_first, a collection with one instance of each element
would become empty, while a collection with multiple instances of some elements would
remain non-empty.

ECOOP 2024

22:22 Constrictor: Immutability as a Design Concept

The solution in this case is to add a get_element_multiplicity method, which would make
the view faithful again.

6.6 Discussion
Our results explore the bounds of Constrictor’s implementation. In this subsection we tie
them back to the theoretical aspects of the technique.

Overapproximation and underapproximation. Constrictor can find spurious violations
because we are overapproximating the TR in multiple ways, most importantly by considering
all possible states of an object, including unreachable states. This means Constrictor can
(and does) flag an illegal mutation or leaking of internal state in a benign method when the
model found by the solver has an object in such a state.

Constrictor can also miss violations because of its handling of loops via unrolling. Since
the loop is unrolled to a fixed, finite depth, it may be truncated too soon, making a real
mutation invisible to Constrictor. Additional optimizations to Constrictor, particularly
to Py2Smt, or improvements in the SMT solver could allow loops to be unrolled to a greater
depth while preserving a reasonable run time. The introduction of loop invariants could
help Constrictor find these violations, but annotating loops with invariants would be an
unreasonable burden to the user. Integrating loop invariant inference tools [27] may be a
reasonable compromise, but is outside the scope of this work.

View Fidelity. The correctness of Algorithm 1 fundamentally relies on the class being
checked having a faithful view. Constrictor can try to return a result even when the view
fidelity check fails, but this result is potentially incorrect. Moreover, view fidelity takes into
account all class methods, not only those checked by Constrictor, causing its check to
take a significant portion of Constrictor’s runtime. In large projects, it may be useful to
manually check view fidelity and configure Constrictor to not check fidelity by itself.

View equivalence is a bisimulation. View fidelity essentially means that view equivalence
forms a bisimulation between two traces representing the sequence of method calls on an
object. Checking view immutability then means checking whether the view equivalence
bisimulation holds between two traces that are identical except for a single point where
they diverge: one trace performs a step and the other performs a no-op. Our algorithm for
checking view immutability can then be seen as a special case of the symbolic model checking
algorithm for checking bisimulation between the two traces, with view equivalence as the
candidate bisimulation relation. Indeed, one modern algorithm for bisimulation checking for
infinite state spaces is based on SMT [55]. This increases our confidence in the ability of our
method to generalize, and implies that future improvements in bisimulation checking can
also be applied to our technique.

Reliance on type hints. Some type hints are fundamental to Constrictor’s approach, and
cannot be fully replaced with type inference. This is because some logical claims are valid in
some theories and invalid in others. For example, the benchmark VariableTypesMatter from
the Aspects & Limitations set contains two methods with the syntactically identical code
segment if self.some == a1 + a2: self.some = a2 + a1, which is non-mutating if a1 and a2

are integers but mutating if they are strings, because integer addition is commutative and
string concatenation is not. Type inference is performed in most cases where it is possible.
However, as in the above example, the types of parameters cannot be precisely inferred, so
type hints are required for function parameters and field types.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:23

Py2Smt. Py2Smt is expressive, but it has two sets of limitations: (i) unimplemented Python
language constructs, e.g., tuples, format strings, and list-, set-, and dictionary-comprehensions,
and (ii) language constructs that are not symbolically expressible in SMT, e.g., general
for loops and full polymorphism. We still support many common special cases, including
iteration over lists and range objects, which we consider to be the most important cases for
for loops. Additional work on Py2Smt can extend the scope of Constrictor.

Reliance on SMT solvers. Even when the formula Py2Smt encodes is accurate, there is no
guarantee an SMT solver will be able to decide it. Some theories, e.g., arrays in cases where
the domains and ranges are not disjoint, are simply undecidable. In Py2Smt, reference types
are represented by using a heap “array”, which is why complex heap-based structures may
yield formulas that return unknown. Performance on other theories may vary from solver to
solver, which is why Constrictor tries both CVC5 and Z3. For example, certain formulas
in the theory of sequences, which Py2Smt uses to encode lists, are not decidable by Z3 but
can be decided correctly by CVC5. This affects performance on benchmarks involving lists.

Solvers are not only limited in the types they can represent, but also in the operations on
those types. However, in our search for benchmarks we found that most design violations do
not involve complex logic as part of the mutation. Therefore, despite the relatively limited
expressiveness of SMT solvers, Constrictor can be useful in finding design violations.

Solvers are also not a great burden on the performance of Constrictor: across all
benchmarks from all three sets, the wait for solver calls is on average 78ms, with the vast
majority finishing in under 110ms. This is a small percentage of the runtime of many of the
benchmarks, and of it, the majority of the time is spent in proving view fidelity, rather than
on the main proof. The rest of Constrictor’s run time is spent on compilation, as well as
other tasks (e.g., building the formulas). Only one benchmark (WrongfullyImplementedCollatz

from the Non-inheritance set) causes a solver call that takes over 1 second (1.71 seconds). In
general, no benchmark reaches the timeout set to the solver (3 seconds). The one timeout in
Table 2 times out before the solver is called. Across all benchmarks in all benchmark sets,
all solver calls take 13.06 seconds in total.

6.7 Threats to validity
The main threat to validity of this work is that complex, real-world code can be less
straightforward to annotate. There may be more than one way to annotate a class, and
deciding on its view can itself be a design decision. We attempt to mitigate this threat
by introducing RQ3 to demonstrate the effect of using less precise annotations, as an
inexperienced programmer might. There are still other ways in which a programmer can
incorrectly annotate their code, and they may affect our results.

Moreover, in large, logic-heavy classes, proving view fidelity is more likely to fail because
it needs to reason about all methods in the class, not only the @immutable ones. When the
solvers return unknown on the fidelity formula, the result of Constrictor may be unsound,
requiring user intervention. This may be unsustainable in a large project setting.

7 Related work

Alternate definitions of immutability. The type of immutability most discussed in the
literature is reference immutability – non-mutation of an object’s fields through a specific
reference [17, 29, 34, 54]. Mutation can also be allowed only in certain contexts [31, 45, 51].

ECOOP 2024

22:24 Constrictor: Immutability as a Design Concept

This contrasts with object immutability [13], objects whose fields cannot be mutated via
any reference. Object immutability requires more complex analyses to enforce [42]. Both
definitions may or may not be transitive [46,48,49].

Potanin et al. define abstract immutability [19, Section 2.4] that permits “benevolent”
side effects, but do not define what these effects can be or how this property is enforced.
Eyolfson elaborates on this definition [26], roughly describing a desired solution which does
not exist and is similar to view immutability.

Pure functions are functions that do not have any side effects, and only depend on their
parameters. This is a very strong form of non-mutability, uncommon in OOP. A less strict
form is defined by the JetBrains @Contract(pure) annotation, which indicates that a method
does not “affect program state and change the semantics” (but can itself be affected by the
state) [2]. Helm et al. [32] and Stewart et al. [53] unify different flavors of side-effect freedom
by representing different definitions as a lattice.

Observational purity is a form of purity in which classes can keep and mutate state for
their own use, but the mutated state may not leak out of the class. This similar notion
to view immutability was introduced by Naumann et al. [43] for the purpose of formal
specifications, as (observationally-) pure functions can be used in logical assertions. A
method for checking observational purity was introduced in [12], and requires the user to
manually supply invariants and specifications for all methods, which is sensible for settings
in which writing specifications for all methods is common practice. This is not suitable for
software engineering, because programmers typically do not write logical specifications for
their classes. Constrictor implicitly defines an invariant by using view methods, which is
slightly less expressive but very lightweight in terms of annotation burden.

Coblenz et al. have compiled a comprehensive classification of immutability types [21],
which includes most systems mentioned in this section.

Tools. A well-known work on enforcing reference immutability is Javari [35, 41, 47, 54].
Javari’s type system distinguishes unassignable variables and read-only references. The
former is more similar to Java’s final keyword, while the latter is introduced as part of
the type system similar to C++. Another type system is introduced by Milanova [42] and
allows distinguishing “maybe mutable” values from “definitely mutable” values, but makes no
distinction between a variable and the value it stores, which may be a reference itself. Zibin
et al. introduced a method to enforce object or reference immutability without changing
Java’s grammar by using generic type parameters [56]. They allow excluding fields from the
abstract state, much like C++’s mutable keyword. There is some work on automatic inference
of immutability qualifiers. Eyolfson [26, Chapter 4] introduced Immutablility Check, which
automatically infers const qualifiers. Eyolfson also introduced a system that automatically
checks and sanitizes writes through const references [25].

Applications of immutability. Immutability can be part of the specification of a method [45].
Even if it is not necessarily part of the required semantics, it can be proven as a lemma in
order to support analyses such as alias analysis [22] or flow analysis [50].

In concurrency, immutability is often proved as an auxiliary property to show commut-
ativity of actions [18] (employing a similar SMT-based technique). This is because calling
non-mutating operations in any order should result in the same results for each respective
called method. Gordon et al. [30] pursue this in the context of reference immutability.

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:25

8 Conclusion

Objects whose values remain constant are desirable in software design. Current verification
solutions are either too restrictive, barring all changes to the object and not just ones reflected
in the object’s abstract state, or too permissive, allowing mutations that can be observed.
In this work, we presented a new approachcentering around the view of an object, which
represents its abstract state, and whose values are expected to remain constant.

We introduced the new concept of view-immutability which expresses that the object’s
view does not change in a abstract sense. This solution is implemented as a linter/verifier,
Constrictor, using an SMT-based method, which checks that method bodies adhere to
denoted immutability constraints.

Constrictor successfully detects a variety of design violations, with precision and recall
both over 85%. We explored two large realistic case studies of data structures for which we
found immutability to be useful, and Constrictor is able to validate immutability or report
violations. We also explore a set of smaller case studies for Constrictor’s behavior with
imprecise annotations.

References
1 8. Compound statements – Python 3.12.1 documentation. https://docs.python.org/3/

reference/compound_stmts.html#type-params. [Accessed 12-Jan-2024].
2 Contract (java8 17.0.0 API) – javadoc.io. https://www.javadoc.io/doc/org.jetbrains/

annotations/17.0.0/org/jetbrains/annotations/Contract.html. [Accessed 27-Apr-2023].
3 dotnet/roslyn: The Roslyn .NET compiler provides C# and Visual Basic languages with rich

code analysis APIs. https://github.com/dotnet/roslyn. [Accessed 14-Apr-2024].
4 freeze (Object) – APIdock. https://apidock.com/ruby/Object/freeze. [Accessed 14-Jan-

2024].
5 ImmutableCollectionsExplained · google/guava wiki. URL: https://github.com/google/

guava/wiki/ImmutableCollectionsExplained.
6 Kotlin/kotlinx.collections.immutable: immutable persistent collections for Kotlin. https:

//github.com/Kotlin/kotlinx.collections.immutable. [Accessed 13-Jan-2024].
7 Mutable and Immutable Collections | Collections | Scala Documentation. URL: https:

//docs.scala-lang.org/overviews/collections-2.13/overview.html.
8 Object.freeze – JavaScript | MDN. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Object/freeze. [Accessed 14-Jan-2024].
9 pytype – google.github.io. https://google.github.io/pytype/. [Accessed 12-Apr-2023].

10 Standard C++ const correctness FAQ – isocpp.org. https://isocpp.org/wiki/faq/
const-correctness. [Accessed 27-Apr-2023].

11 String.Intern(String) Method (System) | Microsoft Learn. URL: https://learn.microsoft.
com/en-us/dotnet/api/system.string.intern.

12 Himanshu Arora, Raghavan Komondoor, and G. Ramalingam. Checking observational purity
of procedures. In Reiner Hähnle and Wil M. P. van der Aalst, editors, Fundamental Approaches
to Software Engineering - 22nd International Conference, FASE 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, volume 11424 of Lecture Notes in Computer Science,
pages 228–243, Cham, 2019. Springer. doi:10.1007/978-3-030-16722-6_13.

13 Shay Artzi, Adam Kiezun, Jaime Quinonez, and Michael D. Ernst. Parameter reference
immutability: formal definition, inference tool, and comparison. Autom. Softw. Eng., 16(1):145–
192, March 2009. doi:10.1007/s10515-008-0043-7.

ECOOP 2024

https://docs.python.org/3/reference/compound_stmts.html#type-params
https://docs.python.org/3/reference/compound_stmts.html#type-params
https://www.javadoc.io/doc/org.jetbrains/annotations/17.0.0/org/jetbrains/annotations/Contract.html
https://www.javadoc.io/doc/org.jetbrains/annotations/17.0.0/org/jetbrains/annotations/Contract.html
https://github.com/dotnet/roslyn
https://apidock.com/ruby/Object/freeze
https://github.com/google/guava/wiki/ImmutableCollectionsExplained
https://github.com/google/guava/wiki/ImmutableCollectionsExplained
https://github.com/Kotlin/kotlinx.collections.immutable
https://github.com/Kotlin/kotlinx.collections.immutable
https://docs.scala-lang.org/overviews/collections-2.13/overview.html
https://docs.scala-lang.org/overviews/collections-2.13/overview.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://google.github.io/pytype/
https://isocpp.org/wiki/faq/const-correctness
https://isocpp.org/wiki/faq/const-correctness
https://learn.microsoft.com/en-us/dotnet/api/system.string.intern
https://learn.microsoft.com/en-us/dotnet/api/system.string.intern
https://doi.org/10.1007/978-3-030-16722-6_13
https://doi.org/10.1007/s10515-008-0043-7

22:26 Constrictor: Immutability as a Design Concept

14 Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai
Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex
Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar.
cvc5: A versatile and industrial-strength SMT solver. In Dana Fisman and Grigore Rosu,
editors, Tools and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I, volume 13243 of Lecture Notes in Computer Science, pages 415–442. Springer, 2022. doi:
10.1007/978-3-030-99524-9_24.

15 Michael Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants. J. Object Technol., 3(6):27–56, 2004.
doi:10.5381/jot.2004.3.6.a2.

16 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking. Adv. Comput., 58(99):117–148, 2003. doi:10.1016/S0065-2458(03)
58003-2.

17 Adrian Birka and Michael D. Ernst. A practical type system and language for reference
immutability. In John M. Vlissides and Douglas C. Schmidt, editors, Proceedings of the 19th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver, BC, Canada, pages 35–49,
Vancouver, BC, Canada, October 2004. ACM. doi:10.1145/1028976.1028980.

18 Adam Chen, Parisa Fathololumi, Eric Koskinen, and Jared Pincus. Veracity: declarative
multicore programming with commutativity. Proc. ACM Program. Lang., 6(OOPSLA2):1726–
1756, October 2022. doi:10.1145/3563349.

19 Dave Clarke, James Noble, and Tobias Wrigstad, editors. Aliasing in Object-Oriented Program-
ming. Types, Analysis and Verification, volume 7850 of Lecture Notes in Computer Science.
Springer, 2013. doi:10.1007/978-3-642-36946-9.

20 Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled, and Helmut Veith.
Model checking, 2nd Edition. Cyber Physical Systems Series. MIT Press, 2018. URL: https:
//mitpress.mit.edu/books/model-checking-second-edition.

21 Michael J. Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad A. Myers, Sam Weber, and
Forrest Shull. Exploring language support for immutability. In Laura K. Dillon, Willem Visser,
and Laurie A. Williams, editors, Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, ICSE ’16, pages 736–747, New
York, NY, USA, 2016. ACM. doi:10.1145/2884781.2884798.

22 Cristina David and Wei-Ngan Chin. Immutable specifications for more concise and precise
verification. In Cristina Videira Lopes and Kathleen Fisher, editors, Proceedings of the 26th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22
- 27, 2011, OOPSLA ’11, pages 359–374, New York, NY, USA, 2011. ACM. doi:10.1145/
2048066.2048096.

23 Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, March 2008. doi:10.1007/978-3-540-78800-3_24.

24 José Javier Dolado, Mark Harman, Mari Carmen Otero, and Lin Hu. An empirical investigation
of the influence of a type of side effects on program comprehension. IEEE Trans. Software
Eng., 29(7):665–670, 2003. doi:10.1109/TSE.2003.1214329.

25 Jon Eyolfson and Patrick Lam. C++ const and immutability: An empirical study of writes-
through-const. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th European
Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy,
volume 56 of LIPIcs, pages 8:1–8:25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ECOOP.2016.8.

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.5381/jot.2004.3.6.a2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1145/1028976.1028980
https://doi.org/10.1145/3563349
https://doi.org/10.1007/978-3-642-36946-9
https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
https://doi.org/10.1145/2884781.2884798
https://doi.org/10.1145/2048066.2048096
https://doi.org/10.1145/2048066.2048096
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/TSE.2003.1214329
https://doi.org/10.4230/LIPIcs.ECOOP.2016.8

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:27

26 Jonathan Eyolfson. Enforcing Abstract Immutability. PhD thesis, University of Waterloo,
Ontario, Canada, 2018. URL: https://hdl.handle.net/10012/13507.

27 Carlo A. Furia, Bertrand Meyer, and Sergey Velder. Loop invariants: Analysis, classification,
and examples. ACM Comput. Surv., 46(3):34:1–34:51, January 2014. doi:10.1145/2506375.

28 Juan P. Galeotti, Nicolás Rosner, Carlos López Pombo, and Marcelo F. Frias. Analysis of
invariants for efficient bounded verification. In Paolo Tonella and Alessandro Orso, editors,
Proceedings of the Nineteenth International Symposium on Software Testing and Analysis,
ISSTA 2010, Trento, Italy, July 12-16, 2010, ISSTA ’10, pages 25–36, New York, NY, USA,
2010. ACM. doi:10.1145/1831708.1831712.

29 Paola Giannini, Marco Servetto, and Elena Zucca. Types for immutability and aliasing control.
In Vittorio Bilò and Antonio Caruso, editors, Proceedings of the 17th Italian Conference
on Theoretical Computer Science, Lecce, Italy, September 7-9, 2016, volume 1720 of CEUR
Workshop Proceedings, pages 62–74. DEU, CEUR-WS.org, 2016. URL: https://ceur-ws.org/
Vol-1720/full5.pdf.

30 Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and reference immutability for safe parallelism. In Gary T. Leavens and Matthew B.
Dwyer, editors, Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012,
Tucson, AZ, USA, October 21-25, 2012, OOPSLA ’12, pages 21–40, New York, NY, USA,
2012. ACM. doi:10.1145/2384616.2384619.

31 Christian Haack and Erik Poll. Type-based object immutability with flexible initialization. In
Sophia Drossopoulou, editor, ECOOP 2009 - Object-Oriented Programming, 23rd European
Conference, Genoa, Italy, July 6-10, 2009. Proceedings, volume 5653 of Lecture Notes in Com-
puter Science, pages 520–545. Springer, Springer, 2009. doi:10.1007/978-3-642-03013-0_24.

32 Dominik Helm, Florian Kübler, Michael Eichberg, Michael Reif, and Mira Mezini. A unified
lattice model and framework for purity analyses. In Marianne Huchard, Christian Kästner,
and Gordon Fraser, editors, Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, pages
340–350. ACM, 2018. doi:10.1145/3238147.3238226.

33 John E. Hopcroft and Jeffrey D. Ullman. Set merging algorithms. SIAM J. Comput., 2(4):294–
303, 1973. doi:10.1137/0202024.

34 Wei Huang, Ana L. Milanova, Werner Dietl, and Michael D. Ernst. Reim & reiminfer: checking
and inference of reference immutability and method purity. In Gary T. Leavens and Matthew B.
Dwyer, editors, Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012,
Tucson, AZ, USA, October 21-25, 2012, OOPSLA ’12, pages 879–896, New York, NY, USA,
2012. ACM. doi:10.1145/2384616.2384680.

35 Telmo Luis Correa Jr., Jaime Quinonez, and Michael D. Ernst. Tools for enforcing and inferring
reference immutability in java. In Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes,
and Guy L. Steele Jr., editors, Companion to the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2007, October
21-25, 2007, Montreal, Quebec, Canada, OOPSLA ’07, pages 866–867, New York, NY, USA,
2007. ACM. doi:10.1145/1297846.1297929.

36 Elad Kinsbruner, Shachar Itzhaky, and Hila Peleg. Constrictor: Immutability as a Design
Concept (Artifact). Dagstuhl Artifacts Series, 10(2), 2024. doi:10.4230/DARTS.10.2.9.

37 Zach Klippenstein. Two mutables don’t make a right. https://dev.to/zachklipp/
two-mutables-dont-make-a-right-2kgp, 2021. [Accessed 08-Jan-2024].

38 Eric Lippert. Persistence, façades and Roslyn’s red-green trees | Fabulous adventures in coding.
https://ericlippert.com/2012/06/08/red-green-trees/. [Accessed 14-Apr-2024].

39 Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811–1841, November 1994. doi:10.1145/197320.197383.

ECOOP 2024

https://hdl.handle.net/10012/13507
https://doi.org/10.1145/2506375
https://doi.org/10.1145/1831708.1831712
https://ceur-ws.org/Vol-1720/full5.pdf
https://ceur-ws.org/Vol-1720/full5.pdf
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1007/978-3-642-03013-0_24
https://doi.org/10.1145/3238147.3238226
https://doi.org/10.1137/0202024
https://doi.org/10.1145/2384616.2384680
https://doi.org/10.1145/1297846.1297929
https://doi.org/10.4230/DARTS.10.2.9
https://dev.to/zachklipp/two-mutables-dont-make-a-right-2kgp
https://dev.to/zachklipp/two-mutables-dont-make-a-right-2kgp
https://ericlippert.com/2012/06/08/red-green-trees/
https://doi.org/10.1145/197320.197383

22:28 Constrictor: Immutability as a Design Concept

40 Nicholas D. Matsakis and Felix S. Klock II. The rust language. In Michael B. Feldman
and S. Tucker Taft, editors, Proceedings of the 2014 ACM SIGAda annual conference on
High integrity language technology, HILT 2014, Portland, Oregon, USA, October 18-21, 2014,
volume 34(3), pages 103–104. ACM, 2014. doi:10.1145/2663171.2663188.

41 Matt McCutchen and Dr. Michael Ernst. Putting Javari into Practice, 2006. URL: https:
//api.semanticscholar.org/CorpusID:242697933.

42 Ana L. Milanova. Definite reference mutability. In Todd D. Millstein, editor, 32nd European
Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam,
The Netherlands, volume 109 of LIPIcs, pages 25:1–25:30, Dagstuhl, Germany, 2018. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2018.25.

43 David A. Naumann. Observational purity and encapsulation. Theor. Comput. Sci., 376(3):205–
224, 2007. Fundamental Aspects of Software Engineering. doi:10.1016/j.tcs.2007.02.004.

44 Stephen Nelson, David J. Pearce, and James Noble. Understanding the impact of collection
contracts on design. In Jan Vitek, editor, Objects, Models, Components, Patterns, 48th
International Conference, TOOLS 2010, Málaga, Spain, June 28 - July 2, 2010. Proceedings,
volume 6141 of Lecture Notes in Computer Science, pages 61–78. Springer, Springer, 2010.
doi:10.1007/978-3-642-13953-6_4.

45 Igor Pechtchanski and Vivek Sarkar. Immutability specification and its applications. In
José E. Moreira, Geoffrey C. Fox, and Vladimir Getov, editors, Proceedings of the 2002 Joint
ACM-ISCOPE Conference on Java Grande 2002, Seattle, Washington, USA, November 3-5,
2002, JGI ’02, pages 202–211, New York, NY, USA, 2002. ACM. doi:10.1145/583810.583833.

46 Sara Porat, Marina Biberstein, Larry Koved, and Bilha Mendelson. Automatic detection of
immutable fields in java. In Stephen A. MacKay and J. Howard Johnson, editors, Proceedings
of the 2000 conference of the Centre for Advanced Studies on Collaborative Research, November
13-16, 2000, Mississauga, Ontario, Canada, CASCON ’00, page 10. IBM, 2000. URL:
https://dl.acm.org/citation.cfm?id=782044.

47 Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. Inference of reference im-
mutability. In Jan Vitek, editor, ECOOP 2008 - Object-Oriented Programming, 22nd
European Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings, volume 5142 of
Lecture Notes in Computer Science, pages 616–641, Berlin, Heidelberg, 2008. Springer.
doi:10.1007/978-3-540-70592-5_26.

48 Tobias Roth, Dominik Helm, Michael Reif, and Mira Mezini. Cifi: Versatile analysis of class
and field immutability. In 36th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021, pages 979–990. IEEE,
2021. doi:10.1109/ASE51524.2021.9678903.

49 Atanas Rountev. Precise identification of side-effect-free methods in java. In 20th International
Conference on Software Maintenance (ICSM 2004), 11-17 September 2004, Chicago, IL, USA,
pages 82–91. IEEE Computer Society, 2004. doi:10.1109/ICSM.2004.1357793.

50 Tobias Runge, Marco Servetto, Alex Potanin, and Ina Schaefer. Immutability and encapsulation
for sound OO information flow control. ACM Trans. Program. Lang. Syst., 45(1):3:1–3:35,
2023. doi:10.1145/3573270.

51 Marco Servetto, Julian Mackay, Alex Potanin, and James Noble. The billion-dollar fix - safe
modular circular initialisation with placeholders and placeholder types. In Giuseppe Castagna,
editor, ECOOP 2013 - Object-Oriented Programming - 27th European Conference, Montpellier,
France, July 1-5, 2013. Proceedings, volume 7920 of Lecture Notes in Computer Science, pages
205–229, Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-39038-8_9.

52 Yaakov Smith. Red-Green Trees. https://blog.yaakov.online/red-green-trees/. [Ac-
cessed 14-Apr-2024].

53 Arran Stewart, Rachel Cardell-Oliver, and Rowan Davies. Fine-grained classification of side-
effect free methods in real-world java code and applications to software security. In Proceedings
of the Australasian Computer Science Week Multiconference, Canberra, Australia, February 2-5,
2016, ACSW ’16, page 37, New York, NY, USA, 2016. ACM. doi:10.1145/2843043.2843354.

https://doi.org/10.1145/2663171.2663188
https://api.semanticscholar.org/CorpusID:242697933
https://api.semanticscholar.org/CorpusID:242697933
https://doi.org/10.4230/LIPIcs.ECOOP.2018.25
https://doi.org/10.1016/j.tcs.2007.02.004
https://doi.org/10.1007/978-3-642-13953-6_4
https://doi.org/10.1145/583810.583833
https://dl.acm.org/citation.cfm?id=782044
https://doi.org/10.1007/978-3-540-70592-5_26
https://doi.org/10.1109/ASE51524.2021.9678903
https://doi.org/10.1109/ICSM.2004.1357793
https://doi.org/10.1145/3573270
https://doi.org/10.1007/978-3-642-39038-8_9
https://blog.yaakov.online/red-green-trees/
https://doi.org/10.1145/2843043.2843354

E. Kinsbruner, S. Itzhaky, and H. Peleg 22:29

54 Matthew S. Tschantz and Michael D. Ernst. Javari: adding reference immutability to java.
In Ralph E. Johnson and Richard P. Gabriel, editors, Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, pages 211–230. ACM, 2005.
doi:10.1145/1094811.1094828.

55 Yunfan Zhang, Ruidong Zhu, Yingfei Xiong, and Tao Xie. Efficient synthesis of method call
sequences for test generation and bounded verification. In 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2022, Rochester, MI, USA, October
10-14, 2022, ASE ’22, pages 38:1–38:12, New York, NY, USA, 2022. ACM. doi:10.1145/
3551349.3556951.

56 Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kiezun, and Michael D. Ernst.
Object and reference immutability using java generics. In Ivica Crnkovic and Antonia Bertolino,
editors, Proceedings of the 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2007, Dubrovnik, Croatia, September 3-7, 2007, ESEC-FSE ’07, pages 75–84, New York, NY,
USA, 2007. ACM. doi:10.1145/1287624.1287637.

ECOOP 2024

https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/3551349.3556951
https://doi.org/10.1145/3551349.3556951
https://doi.org/10.1145/1287624.1287637

InferType: A Compiler Toolkit for Implementing
Efficient Constraint-Based Type Inference
Senxi Li #

The University of Tokyo, Japan

Tetsuro Yamazaki #

The University of Tokyo, Japan

Shigeru Chiba #

The University of Tokyo, Japan

Abstract
Supporting automatic type inference is in demand in modern language development. It is a
challenging task but without appropriate supporting toolkits. This paper presents InferType, a Java
library that helps implement constraint-based type inference. A compiler writer uses InferType’s
classes and methods to describe type constraints and typing rules for type inference. InferType then
performs constraint solving by translation to the Z3 SMT solver. InferType is equipped with our
developed optimization technique. It reduces the search space for type variables by pre-computing
the structures of those type variables for mitigating the performance bottleneck of constraint solving
with deeply nested types. We use InferType to implement type inference for a subset of Python,
and conduct experiments to evaluate how the developed optimization technique can affect the
performance of type inference. Our results show that InferType’s optimization can greatly mitigate
the performance bottleneck for programs with deeply nested types, and can potentially improve the
performance for large nested types.

2012 ACM Subject Classification Software and its engineering → Domain specific languages; Theory
of computation → Type theory

Keywords and phrases Domain Specific Languages, Compilation, Static Analysis, Type Inference,
Constraint Solving, SMT Solver

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.23

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.11

Funding This work was supported by JSPS KAKENHI Grant Numbers JP20H00578 and JP24H00688.

1 Introduction

The goal of this work is to provide an assisting tool for implementing compilers supporting
type inference, which is an in-demand task in modern language development but not well
supported by existing approaches. Several supporting toolkits for language development have
been proposed such as lexer and parser generators [22, 41], and type checker generators by
language workbenches [45, 18]. Since many modern languages support type inference that
automatically reconstruct types for programs without explicit type annotations, compiler
writers have to implement type inference when developing their own languages. Unfortunately,
there are no applicable toolkits for supporting this labor-intensive and also challenging task.

Major static languages support type inference that can be performed in a simple bottom-
up manner. It does not need a complex inference engine. However, in recent languages
like TypeScript, more aggressive type inference is supported. For example, they may allow
programmers to omit a type annotation for a function’s return type. A program in such

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Senxi Li, Tetsuro Yamazaki, and Shigeru Chiba;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 23; pp. 23:1–23:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lisenxi@csg.ci.i.u-tokyo.ac.jp
https://orcid.org/0009-0008-2644-7763
mailto:yamazaki@csg.ci.i.u-tokyo.ac.jp
https://orcid.org/0000-0002-2065-5608
mailto:chiba@acm.org
https://orcid.org/0000-0002-1058-5941
https://doi.org/10.4230/LIPIcs.ECOOP.2024.23
https://doi.org/10.4230/DARTS.10.2.11
https://doi.org/10.4230/DARTS.10.2.11
https://doi.org/10.4230/DARTS.10.2.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 InferType

languages may require complicated type inference when it includes mutually recursive
functions. Its compiler may contain an intricate type inference engine that solves type
constraints retrieved from a program.

One of the approaches to implementing such intricate type inference is utilizing modern
Satisfiability Modulo Theories (SMT) solvers. Several static analyses including automatic
type inference have been established based on SMT solving [4, 42, 44, 14]. However, it is not
simple to implement an efficient type inference engine for practical usage even when using a
powerful SMT solver. For example, we observe that the performance of type inference using
a SMT solver may drastically degrade when the source program contains nested types such
as function types that take other function types as arguments and list types that take other
list types as arguments. Such types are frequently used in real-world programs for describing
higher-order functions and data structures in hierarchy.

In this paper, we propose InferType, a domain-specific language embedded in Java for
implementing constraint-based type inference. A compiler writer implements a constraint-
based type inference engine for a target language by describing type constraints and encoding
typing rules using InferType’s classes and methods. She then calls an InferType’s method
to get a type inference result, which is a binding of type variables to concrete types that
satisfies the described type constraints and encoded typing rules. InferType uses the Z3 [7]
SMT solver to perform constraint solving for computing that binding by translating the
described type constraints and typing rules to Z3 formulae.

We develop an optimization technique for InferType to mitigate the performance bot-
tleneck for handling programs containing deeply nested types. InferType’s optimization is
based on the idea of reducing the search space of type variables in SMT solving. It first
pre-computes a structure of each type variable in the given type constraints described by the
compiler writer. It then generates extra Z3 formulae that explicitly list the possible types
each type variable ranges over based on the pre-computed structure for reducing the search
space.

We use InferType to implement type inference engines for a small demonstrative language
and a subset of Python. This Python subset does not allow explicit type annotations as type
annotations are ignored by the ordinary Python without an external type checker. We choose
this Python subset for evaluation since type inference for this subset requires complex typing
rules to reconstruct static types in dynamically typed programs. We conduct experiments over
a collected dataset to evaluate the performance of type inference by our implemented type
inference engine for the Python subset, and also to validate the effectiveness of our developed
optimization technique. Compared with an existing, manual type inference engine for Python
using Z3, the implemented type inference engine using InferType is able to infer types for
real-world programs with compatible performance. Furthermore, the experiment results show
that the implemented type inference engine can handle programs with deeply nested types
much more efficiently. We also observe that InferType’s optimization can potentially improve
the performance of type inference for programs containing nested types. Our findings support
the claim that InferType is pragmatically applicable of helping implement constraint-based
type inference in language development.

The rest of this paper is organized as follows. Section 2 motivates the reader by a scenario
of developing a small demonstrative language. Section 3 presents our proposal. Section 4
gives our experiment results by the implemented type inference engine using InferType.
Section 5 relates our work to preceding researches and a brief conclusion ends this paper.

S. Li, T. Yamazaki, and S. Chiba 23:3

2 Implementing Type Inference in Language Development

Many modern languages have support for automatic type inference. Language developers, or
compiler writers have to implement type inference when designing a new language. However,
it is a challenging task without appropriate tool supports. Classical supporting tools for
language development include lex, yacc [22] and bison [41], which are lexer and parser
generators. There are also tool suites commonly called “language workbench”, which are
development environments for making domain-specific languages [45, 11]. The Spoofax [18]
language workbench, for instance, supports code generators that produce type checkers and
editor plugins from high-level language definitions. However, existing tools do not support
code generators for type inference.

For instance, let us consider implementing a type inference engine for a small language
called Mini-λ. It automatically reconstructs types for programs without explicit type
annotations. We use this language for demonstrative purposes because of its simplicity.
One of the common approaches to implementing such a type inference engine is to use a
constraint-based type inference. A number of existing type inference systems are formulated
into a constraint-based approach because of its extensibility and flexibility [31, 35, 39, 38, 19].
We below consider implementing a constraint-based type inference for Mini-λ.

The syntax of expressions and types of Mini-λ is given in Listing 1.
e := n | r | s | x | fun x. e | e(e) | e + e

t := int | float | str | arrow <t, t>

Listing 1 Syntax of Mini-λ expressions and types

n, r and s range over integer, real numbers and string literals. x ranges over variables. fun
x. e represents a function with parameter x and a body e. Mini-λ does not have explicit
type annotations. Literals can be regarded as type-annotated expressions. Functions or
function parameters do not have type annotations. e(e) represents a function application. e

+ e represents an addition of two sub-expressions. In Mini-λ, the plus operator can either
add numbers or concatenate strings. The type syntax of Mini-λ consists of primitive types
int, float and str, and the composite type arrow for describing function types.

Some of the typing rules in Mini-λ’s type system are given in Figure 1. T-App specifies
how a function application is typed so that the applied expression must be an arrow type
consistent with the argument type. The type constraint in the premises specifies the subtype
relation that the type variables must satisfy. T-Plus-Float and T-Plus-Str specify how
a plus expression is typed by overloading. The operand and resulting types should all be
consistent with either float or str. ST-Int-Float specifies that int is a subtype of float.
ST-Arrow specifies that two arrow types are subtype of one another if the parameter type is
contravariant and the return type is covariant.

An example program in Mini-λ is given in Listing 2. We will use this example program
for demonstration in the rest of the paper because of its simplicity although this program is
simple enough to be able to perform type inference in a bottom-up manner.
fun f. fun x. f(x)

(fun y. y + "a")

Listing 2 An example program in Mini-λ

This program first defines a function with parameter f; its body is another function with
parameter x. The body of the function with parameter x is a function application f(x).
After that, the function with parameter f is applied to a function with parameter y. The
resulting value of the whole expression is a function taking one argument, and its body
concatenates the passed argument to a string literal "a".

ECOOP 2024

23:4 InferType

Γ ⊢ e1: t1 Γ ⊢ e2: t2 t1 <: arrow<t2, t3>
(T-App)Γ ⊢ e1(e2): t3

Γ ⊢ e1: float Γ ⊢ e2: float
(T-Plus-Float)Γ ⊢ e1 + e2: float

Γ ⊢ e1: str Γ ⊢ e2: str
(T-Plus-Str)Γ ⊢ e1 + e2: str

(ST-Int-Float)int <: float

t21 <: t11 t12 <: t22 (ST-Arrow)arrow<t11, t12> <: arrow<t21, t22>

Figure 1 Part of the typing rules of Mini-λ.

To implement a constraint-based type inference for Mini-λ, a compiler writer first assigns
a type variable to every variable and expression in a program. Then the compiler writer
generates the relations between type variables by applying the typing rules while traversing
the abstract syntax tree (AST) of the program. A relation between type variables, which we
call a type constraint, is a logical assertion that describes how the type variables should be
constrained. In this paper, we consider those type constraints in Listing 3.
constraint := t <: t

| constraint ∧ constraint
| constraint ∨ constraint
| constraint → constraint
| ¬ constraint

Listing 3 Type constraints

<: represents the subtype relation between two types. ∧ and ∨ represent logical conjunction
and disjunction; → and ¬ represent logical implication and negation.

Type constraints are generated during AST traversal by applying part of the typing rules
in the target language, which we call syntax-related typing rules. A syntax-related typing rule
is a typing rule that includes program syntax symbols. For example, T-App, T-Plus-Float
and T-Plus-Str are syntax-related typing rules in Mini-λ. The compiler writer will generate
the type constraints in Listing 4 for the program in Listing 2 by traversing its AST.
(1) tf <: arrow <tx , tfx >
(2) arrow <tf , arrow <tx , tfx >> <: arrow <arrow <ty , tplus >, te >
(3) (ty <: float ∧ str <: float ∧ float <: tplus)

∨ (ty <: str ∧ str <: str ∧ str <: tplus)

Listing 4 Type constraints for the example program

t? represents the unique type variables assigned to the variables and expressions in the
program. tf, tx and ty are assigned to parameter f, x and y of the defined functions. tfx

and tplus are assigned to the resulting types of f(x) and y + "a". te is assigned to the
resulting type of the whole expression. Constraint (1) and (2) arise from T-App. For example,
in (1), tf is constrained to be a subtype of arrow<tx, tfx> generated from the application
f(x). Constraint (3) arises from T-Plus-Float and T-Plus-Str. This constraint must be
properly included in the generated set of type constraints to represent the overloading of

S. Li, T. Yamazaki, and S. Chiba 23:5

the plus operator. It describes that the operand types, ty and str (type of the string literal
"a"), and the resulting type tplus must be subtype and supertype of either float or str,
represented using logical connectives.

After constraint generation, the compiler writer must then implement a constraint solver
considering the rest of the typing rules to solve the generated type constraints. The solver
must find a consistent binding of concrete types assigned to the type variables that satisfies all
the type constraints. The solver must consider the other typing rules from the applied typing
rules in AST traversal, which we call subtype-related typing rules, to find such a binding.
Unlike syntax-related typing rules applied during AST traversal, a subtype-related typing
rule derives a conclusion in the form of a subtype relation and a subtype-related typing rule
does not include syntax symbols of program expressions. For example, the implementing
solver for Mini-λ must consider ST-Int-Float and ST-Arrow in Figure 1 to solve the type
constraints in Listing 4. Although well-known algorithms such as unification [37] and closure
computation [33] have been developed, implementing these algorithms is technically labor-
intensive and error-prone. Furthermore, implementing an efficient solver becomes more
sophisticated especially for handling complex programs when developing real-world languages.
As we will show in 3.3, it would be time consuming for inferring types of programs with
nested types by a straightforward implementation of such a solver. Technical approaches are
needed to overcome those challenges considering practical usage.

3 InferType

InferType is an embedded domain-specific language that helps compiler writers implement
efficient constraint-based type inference. A compiler writer gives type constraints derived by
syntax-related typing rules and subtype-related typing rules to InferType by using InferType’s
classes and methods. InferType then solves the given type constraints based on the subtype-
related typing rules by invoking the Z3 SMT solver. To perform constraint solving efficiently,
InferType pre-computes structures for type variables involved in the given type constraints,
and then reduces the search space of the involved type variables in SMT solving.

InferType supports constraint-based type inference whose type system is expressed by
one single binary type relation, which is often called “subtype”. InferType assumes that
the supported binary type relations hold reflexivity and transitivity. InferType does not
support type systems expressed by more than one type relation. For example, InferType
could not support a gradual type system [40] which contains a subtype relation and also a
type consistency relation.

Below in this section, we first demonstrate how compiler writers can use InferType to
implement their type inference engines in Section 3.1. Then we show how InferType performs
type inference by translation to Z3 in Section 3.2. In Section 3.3, we present the pre-process
of InferType for mitigating the performance bottleneck in constraint solving, which is our
main scientific contribution in this paper.

3.1 Programming Interface
InferType is a Java library for implementing constraint-based type inference engines, which
are softwares that automatically infer types for programs without explicit type annotations
in the target languages. A compiler writer uses InferType’s classes and methods to describe
type constraints derived by syntax-related typing rules and encode subtype-related typing
rules. Constraint solving is then performed by calling an InferType’s method to get a type
inference result.

ECOOP 2024

23:6 InferType

3.1.1 Describing types and type constraints

First, types in the target language must be described in InferType. In InferType, a type
is an object taking one string argument as the name of that type, and zero or more type
arguments.

type(typename , type , type , ...)

For instance, a primitive type int in Mini-λ is described as

InferType inf = new InferType ();
Type intTy = inf.type("int");

inf is an instance of InferType’s main class. The compiler writer declares this instance to
describe types, type constraints and encode subtype-related typing rules. Type is the class
representing types. Primitive types are described as types taking zero type argument in
InferType. A composite type arrow<int, str> is described as

inf.type("arrow", inf.type("int"), inf.type("str"))

InferType also deals with type variables. A type variable is an object taking one string
identifier.

typevar (identifier)

A type variable tk is described as

inf. typevar ("t_k")

Type variables can also be used as type arguments to make a composite type. An arrow type
arrow<tk, int> is described as

inf.type("arrow", inf. typevar ("t_k"), inf.type("int"))

InferType can also help produce a type variable with a generated, unique string identifier by
calling inf.typevar without an argument.

inf. typevar () // a fresh generated type variable

Then, the compiler writer describes type constraints generated by applying syntax-related
typing rules during AST traversal, and gives the type constraints to InferType for type
inference. A compiler writer describes the type constraints using InferType’s methods:

inf. subtype (t1, t2) // <:
inf.and(c1, c2) // ∧
inf.or(c1, c2) // ∨
inf. implies (c1, c2) // →
inf.not(c) // ¬

t1, t2 represent types and c, c1, c2 represent type constraints. Each method corresponds
to each kind (comments on the right) of the type constraints in Listing 3. For example,
constraint (3) in Listing 4 is described as

Constraint cst3 = inf.or(
inf.and(inf. subtype (t_y , floatTy), inf. subtype (strTy , floatTy), inf.

subtype (floatTy , t_plus)),
inf.and(inf. subtype (t_y , strTy), inf. subtype (strTy , strTy), inf. subtype

(strTy , t_plus)));

S. Li, T. Yamazaki, and S. Chiba 23:7

Constraint is the class representing type constraints. t_y and t_plus refer to type variables
ty and tplus created by inf.typevar. floatTy and strTy are primitive types created by
inf.type.

Finally, the described type constraint is given to InferType for type inference by
inf.add(cst3);

The other type constraints in Listing 4 can be described and given to InferType in a similar
manner.

3.1.2 Encoding subtype-related typing rules for constraint solving
The compiler writer encodes the rest of the typing rules, which are not used in Section 3.1.1
and are called subtype-related typing rules, and give them to InferType for type inference.
A subtype-related typing rule in InferType is an implication from zero or more premises to
one conclusion encoded as
inf. ruleBuilder . declare (conclusion).when(premise, premise, ...)

A premise or conclusion is one single subtype relation created by inf.subtype.
premise , conclusion := inf. subtype (t1, t2)

Method declare specifies the conclusion; the following method when specifies the premises.
In InferType, all type variables involved in the premises must be included in the conclusion
of an encoded subtype-related typing rule. For example, ST-Arrow in Figure 1 is encoded as
inf. ruleBuilder

. declare (inf. subtype (inf.type(" arrow ", t11 , t12), inf.type(" arrow", t21
, t22)))

.when(inf. subtype (t21 , t11), inf. subtype (t12 , t22));

t11, t12, ... are type variables created by inf.typevar.
A subtype-related typing rule without premises can also be encoded as

inf. ruleBuilder . declare (conclusion). always ()

Method always specifies that the conclusion holds without a condition, which is a syntax
sugar for method when without argument. For example, ST-Int-Float is encoded as
inf. ruleBuilder . declare (inf. subtype (intTy , floatTy)). always ();

Encoded subtype-related typing rules by inf.ruleBuilder are implicitly given to Infer-
Type for type inference.

3.1.3 Solving type constraints based on the encoded subtype-related
typing rules

After describing type constraints and encoding subtype-related typing rules, the compiler
writer calls method solve to solve the given type constraints based on the given encoded
subtype-related typing rules.
Map <Typevar , Type > solution = inf.solve ();

Typevar is a subclass of Type representing only type variables. By calling this method,
InferType computes if there is a binding of the involved type variables in the given type
constraints to concrete types so that all type constraints are evaluated to be true under the

ECOOP 2024

23:8 InferType

given encoded subtype-related typing rules by replacing the type variables with their concrete
types. If yes, InferType outputs that binding as the type inference results. For Listing 2, it
will output a Map object representing the following binding.

{tf 7→ arrow <str , str >, tx 7→ str , tfx 7→ str ,
ty 7→ str , tplus 7→ str , te 7→ arrow <str , str >}

Otherwise, it indicates that the constraint solving fails such that InferType could not find a
binding that makes all the given type constraints hold. InferType then can provide a set of
type variables appearing in the ill-typed constraints.

if (! inf. untypableTypevars . isEmpty ()){ // type error occurred
Set <Typevar > untvars = inf. untypableTypevars ();
// further locate type errors

}

The compiler writer can manually track the type variables to program expressions such as
recording them into a Map object during AST traversal:

locTrack .put(tv , String . format ("at file %s: line %s, column %s",
fileName , lineNum , columnNum));

where locTrack is the Map object that associates a type variable tv to its program location.
Here, a value in the Map object is a string representation of a program location, where
fileName, lineNum and columnNum are managed by the compiler writer. Then she is expected
to use the untypable type variables returned by InferType to retrieve the expressions that
causes the type error, and further generate a type error message.

3.1.4 Declaring User-Defined Types
InferType also supports user-defined types such as struct in the C language and classes
in object-oriented languages. During AST traversal, a compiler write can declare subtype-
related typing rules for those user-defined types, and give those declarations to InferType. A
compiler writer can describe new types, encode new subtype-related typing rules and give
them to InferType at any phrase before calling inf.solve for constraint sovling.

For example, suppose that a compiler writer is implementing a type inference engine for
a language supporting class definitions. When traversing an AST node for a class definition
such as

class Car(Vehicle):
...

which defines a class Car that inherits another class Vehicle, the compiler writer describes
a new type for that class as

Type carTy = inf.type("car");

She then encodes a new subtype-related typing rule specifying the inheritance as

inf. ruleBuilder . declare (inf. subtype (carTy , vehicleTy)). always ();

where vehicleTy is the type for class Vehicle described as inf.type("vehicle"). Like
other subtype-related typing rules, the encoded subtype-related typing rule here is also
implicitly given to InferType for type inference. InferType will perform constraint solving
considering this encoded subtype-related typing rule when method inf.solve is called.

S. Li, T. Yamazaki, and S. Chiba 23:9

3.2 Translation to Z3
InferType performs constraint solving using the Z3 SMT solver. When method inf.solve is
called, it translates the type constraints and subtype-related typing rules given by the compiler
writer to Z3 formulae. The translated Z3 formulae are all asserted to check satisfaction by
invoking the Z3 SMT solver to find if there is an interpretation of variables that makes all
the asserted formulae true.

3.2.1 Translating types and type constraints
Types are translated to Z3 constants over a generated Z3 data type declaration. The data
type declaration is generated by accumulating all the Type objects created by method
inf.type included in the type constraints and encoded subtype-related typing rules given to
InferType. This generated data type declaration represents the type definition of the target
language. For Mini-λ, the data type declaration for ztype is generated as (represented using
the SMT-LIBv2 [3] syntax)

(declare-datatypes () ((ztype
(Int) (Float) (Str)
(Arrow (ArrowP1 ztype) (ArrowP2 ztype)))))

It corresponds to t in Listing 1. Int, Float and Str are translated Z3 constructors rep-
resenting the primitive types. Arrow represents the composite type arrow, where ArrowP1
and ArrowP2 are generated accessors for Arrow, which indicates that arrow types take two
arguments. A type variable tk is translated to a Z3 constant zk ranging over ztype.

(declare-constant zk ztype)

A composite type arrow<tk, int> is translated to an application of ztype constructors.

(Arrow zk Int)

The given type constraints are straightforwardly translated to Z3 boolean propositional
formulae by the following translation function.

trans {inf. subtype (t1, t2)} = (zsubtype z1 z2)
trans {inf.and(c1, c2)} = (and trans{c1} trans{c2})
trans {inf.or(c1, c2)} = (or trans{c1} trans{c2})
trans {inf. implies (c1, c2)} = (=> trans{c1} trans{c2})
trans {inf.not(c)} = (not trans{c})

c, c1 and c2 represent type constraints. The subtype relation <: is declared as zsubtype in
Z3.

(declare-fun zsubtype (ztype ztype) Bool)

It specifies that zsubtype is a Z3 function that takes two arguments of the data type ztype
and returns a boolean value. Logical connectives in type constraints are directly translated
to Z3 logical operators. => is the logical implication operator in Z3. For instance, cst3
in Section 3.1.1 is translated to

(or (and (zsubtype z_y Float) (zsubtype Str Float) (zsubtype Float z_plus
))
(and (zsubtype z_y Str) (zsubtype Str Str) (zsubtype Str z_plus)))

z_y and z_plus in Z3 refer to t_y and t_plus in Java.

ECOOP 2024

23:10 InferType

3.2.2 Translating subtype-related typing rules
The encoded subtype-related typing rules are processed by InferType to compute subtype
relations, which are then translated into Z3 formulae. Since InferType implicitly assumes
the reflexivity and transitivity rules, it also considers these rules when computing subtype
relations. We borrow the idea of this process from Typette [14].

For each primitive type and composite type, InferType enumerates all its subtypes and
super types in accordance with given subtype-related typing rules. It may also generate
type constraints that those subtypes and super types must hold. We below mention how
InferType enumerates subtypes. InferType does the same for enumerating super types.

Suppose that InferType enumerates subtypes for a target type typeT . Since InferType
assumes the reflexivity rule, it first obtains this subtype relation: typeT is a subtype of typeT .
Next, suppose that the following subtype-related typing rule is given:

premise1
type1 <: type2

Here, typek is either a primitive type, a composite type, or a type variable. If type2 and
typeT can be unified, that is, they are lexically equivalent by replacing the type variables
in type2 and typeT with other type variables, primitive types, or composite types, then
InferType obtains the following subtype relation: type1 is a subtype of typeT when premise1
holds, where the occurrences of some type variables in type1 and premise1 are replaced
as they are for the unification between type2 and typeT . When enumerating subtypes and
super types for composite types, InferType only enumerates for the most generic forms
of composite types, where all type arguments are type variables. For example, InferType
computes subtypes and super types for arrow<t1, t2>, where t1 and t2 are type variables;
but it does not compute subtypes or super types for an individual type such as arrow<int,
int> or arrow<int, t1>. Besides, InferType does not consider the reflexivity rule when
enumerating subtypes and super types for composite types.

By this enumeration, in the case of Mini-λ, InferType enumerates float (by reflexivity)
and int (by ST-Int-Float) as subtypes of float. By ST-Arrow, InferType enumerates
arrow<t11, t12> as a subtype of arrow<t1, t2> under premises t1 <: t11 and t12 <: t2.

Furthermore, InferType considers the transitivity rule. Given the following rules, if type2
and type3 are unified,

premise1
type1 <: type2

premise2
type3 <: type4

InferType combines the two rules to derive the following new rule:
premise1 premise2

type1 <: type4

where the occurrences of some type variables in type1, type4 and premise1, premise2 are
replaced as they are for the unification between type2 and type3. They are replaced according
to the substitution for a most general unifier [20], which is a complete and minimal substitution.
Existential quantifiers are added1 to the type variables that are included in premise1 and
premise2 but not in type1 or type4. When premise1 and premise2 include typei <: typej

and typej <: typek, and all the type variables in typej are not included except typei, typej ,
and typek, InferType combines typei <: typej and typej <: typek and transforms them into
typei <: typek by the transitivity rule.

1 When an existential quantifier is included in the resulting Z3 formulae, Z3 might fail to correctly derive
types. This is a limitation of InferType but it is out of the scope of this paper.

S. Li, T. Yamazaki, and S. Chiba 23:11

The derived new subtype-related typing rules are used to enumerate a subtype of the
target type typeT . Furthermore, it may be combined with another rule to derive another
new rule by the transitivity rule. InferType iterates this to enumerate all subtypes of typeT .
It tries all possible combinations between subtype-related typing rules including the derived
ones.

For example, suppose that InferType is computing a subtype of intArray (which is
described as a primitive type inf.type("intArray")) and given two subtype-related typing
rules:

t1 <: t2 (a)list<t1> <: array<t2>
t <: int (b)array<t> <: intArray

InferType first unifies array<t2> and array<t>, and finds a substitution {t2 7→ t} for that
unification. Then it combines the rules and derives:

t1 <: t t <: int (a and b)list<t1> <: intArray

Furthermore, InferType implicitly applies the transitivity rule and obtains:
t1 <: int (a and b)list<t1> <: intArray

This new rule is considered for the subtype enumeration, and InferType obtains list<t1> as
a subtype of intArray under the premise t1 <: int.

The derived new rule may be combined with existing other rules, and another new
rule may be derived from that combination by the transitivity rule. The iteration of this
combining may not terminate within finite steps. For example, this iteration never terminates
if the given subtype-related typing rules include a self-recursive subtype relation such as:

t1 <: t2 (a)list<t1> <: array<t2>
(r)

t <: array<t>

Here, the conclusion of r includes a self-recursive subtype relation such that a type is a
subtype of an array type of itself. InferType combines a and r, and derives:

t1 <: t2 (a and r)list<t1> <: array<array<t2>>

InferType will further combine a and r and r. It will then infinitely combine and derive
new rules. It is the InferType users’ responsibility to ensure that the given subtype-related
typing rules do not cause infinite iteration.

After enumerating all subtypes and super types for each primitive and composite type,
InferType generates Z3 formulae representing type constraints for these subtype relations.
Suppose that, for a target type typeT , its subtypes are subtype1 when premise1 holds,
subtype2 when premise2 holds, ..., InferType then generates the following Z3 formula:
(forall ((z ztype) (z0 ztype) (z1 ztype) ...)

(=> (zsubtype z typeT)
(or (and (= z subtype1) premise1)

(and (= z subtype2) premise2)
...)))

(z ztype) expresses that a Z3 variable z represents a type in the target language such as
Mini-λ. zsubtype is the Z3 function returning true if the first argument is a subtype of
the second argument. In the above formula, z0, z1, ... are Z3 variables representing type
variables appearing in typeT , subtype1, subtype2, ... and premise1, premise2, => is an
implication operator in Z3. For example, for the subtypes of arrow in Mini-λ, InferType
generates the following formula:

ECOOP 2024

23:12 InferType

(forall ((z ztype) (z21 ztype) (z22 ztype))
(=> (zsubtype z (Arrow z21 z22))

(and (= z (Arrow (ArrowP1 z) (ArrowP2 z))
(zsubtype z21 (ArrowP1 z))
(zsubtype (ArrowP2 z) z22)))))

This reads as, for all z, z21 and z22, if z is a subtype of arrow<z21, z22>, then z is an
arrow type, z21 is a subtype of the first argument of z, and the second argument of z is a
subtype of z22. InferType also generates a Z3 formula for the super types of arrow.

Finally, all translated Z3 formulae are asserted to find if there is an interpretation of
variables that makes all the translated Z3 formulae true. If Z3 can find such an interpretation,
InferType retrieves and translates that interpretation back to a binding of type variables
to concrete types. This binding is returned to the compiler writer. Otherwise, InferType
uses the unsat core extraction feature of Z3 to obtain a list of unsat translated type
constraints. It then returns type variables in those unsat translated type constraints by
calling inf.untypableTypevars in Section 3.1.3.

3.3 Optimizing Constraint Solving for Deeply Nested Types
Using Z3 in a straightforward way as in Section 3.2 works with respect to performance
in common cases such as Listing 2. However, the constraint solving sometimes becomes
extremely slow: we observe that the constraint solving time increases exponentially when
the programs contain deeply nested types.

Consider another program in Mini-λ given in Listing 5.
fun f2. fun f. fun x. f2(f)(x)

(fun g. g)
(fun y. y + "a")

Listing 5 Another program with nested types in Mini-λ

This program extends Listing 2 by adding an outer function with parameter f2. The
body of the function with parameter x is a function application, whose argument is x and
the called function is another function application f2(f). The function with parameter
f2 is then applied to the function with parameter g; its resulting value is applied to
the function with parameter y. The type of parameter f2 is supposed to be inferred as
arrow<arrow<str, str>, arrow<str, str>>, which we call a nested type (arrow of arrow).
In this paper, a nested type is a composite type that takes composite types as arguments.
This program can be further modified by defining another outer function f3 to create a larger
nested type, where the type of f3 is supposed to be inferred as a nested arrow of arrow of
arrow type. We create the programs containing f4 and f5 by adding more outer functions
for larger nested types. By our testing, a straightforward translation to Z3 in Section 3.2
performed constraint solving for the programs with f3 in 0.18s, f4 in 14.07s and f5 in
179m15.35s!

We expect that this slow down arises from the increasing search space for SMT solving.
For example, when a type variable is constrained to be a subtype (or super type) of a
type taking arrow types as arguments in a given type constraint, that type variable ranges
over increasingly many possible types by the size of arrow types in the arguments. In
Mini-λ, such a type variable ranges over possible types int, float, str, arrow<int, int>,
arrow<arrow<int, ...>, int>, ... by the increasing size of the arrow types in the argu-
ments. When Z3 solves the given type constraints, it tries to search for a possible solution
by instantiating the type variables over their possible types.

S. Li, T. Yamazaki, and S. Chiba 23:13

To mitigate the performance bottleneck of constraint solving containing deeply nested
types in Z3, we develop a pre-process for InferType. It first computes structures for the type
variables involved in the given type constraints. We call these structures shapes. Then it
generates and asserts extra Z3 formulae based on the computed shapes. They reduce the
search space of the involved type variables since type variables range over only limited depth
of nested types (or primitive types) specified by the computed shapes.

A shape is either a shape variable, a symbol *, or a nested structure starting with a
symbol ?.
shape := shapevar | * | ?<shape , shape , ...>

* represents only primitive types; it can never be any composite type. ? represents composite-
type names such as “arrow” in Mini-λ, which constructs a nested structure for shapes by
taking other shapes as arguments. For example, suppose that the shape of a type variable in
Mini-λ is pre-computed as ?<*, *>, that type variable would range over only arrow types
with primitive types as arguments, which are arrow<int, int>, arrow<int, str>, ...

3.3.1 Pre-Computing Shapes
InferType’s pre-process first computes shapes for the type variables involved in the given type
constraints generated from syntax-related typing rules during AST traversal. Subtype-related
typing rules are not considered when computing shapes.

Given the type constraints from syntax-related typing rules, our pre-process first converts
the involved types to shapes by the following function:
shapeof {tk } = sk

shapeof {primT ype} = *
shapeof {compT ypeName<t1, t2, ...>} = ?< shapeof {t1}, shapeof {t2}, ...>

A type variable is converted to a shape variable. A primitive type is converted to *. A
composite type is converted to a nested structure with ?. For example, a type arrow<tk,
int> is converted to a shape ?<sk, *>.

Then, shape equations are derived from the given type constraints. A shape equation is
a logical assertion with conjunctions and disjunctions over a binary equality between two
shapes.
shape -eq := shape == shape

| shape -eq ∧ shape -eq
| shape -eq ∨ shape -eq

A binary equality shape1 == shape2 specifies that shape1 and shape2 are lexically identical.
Shape equations do not contain logical implication or negation. Shape equations are derived
by the following function:
derive {t1 <: t2} = shapeof {t1} == shapeof {t2}
derive {¬ t1 <: t2} = TRUE
derive {c1 ∧ c2} = derive {c1} ∧ derive {c2}
derive {c1 ∨ c2} = derive {c1} ∨ derive {c2}

The input is the Negation Normal Form (NNF) converted from the given type constraints in
the form of Listing 3. The NNF is converted to handle type constraints in logical implication
and negation. A subtype relation t1 <: t2 is derived to a binary equality s1 == s2 between
the converted two shapes. Note that no shape equations are derived from subtype relations
in logical negation (represented as returning a logical TRUE literal). For example, a shape
equation ¬ sh == * cannot be derived even if a type constraint ¬ th <: int is given. sh can
be arbitrary because th can be any type except a subtype of int.

ECOOP 2024

23:14 InferType

For instance, the shape equations in Listing 6 are derived from the given type constraints
in Listing 4.
(1’) sf == ?<sx , sfx >
(2’) ?<sf , ?<sx , sfx >> == ?<?<sy , splus >, se >
(3’) (sy == * ∧ * == * ∧ * == splus)

∨ (sy == * ∧ * == * ∧ * == splus)

Listing 6 Shape equations for the type constraints

Next, the derived shape equations are solved to find a binding of shape variables to shapes
so that all those shape equations are satisfied. A shape equation consists of conjunction,
disjunction, and equality. Disjunctions may make it time-consuming to solve shape equations.
An equality such as ?<s1> == ?<*> may need to run an expensive unification algorithm
when solving shape equations.

To make the shape computation fast, InferType adopts an approximate approach. Each
shape equation is first transformed into a disjunctive normal form (DNF). Then, each clause
in the DNF is separately solved; a set of substitutions for shape variables is found so that
the left and right operands of every == operator included in that clause will be lexically
identical after the substitutions are applied to the operands. These substituions are found
by unification, which we implement by the disjoint-set (union-find) algorithm. For example,
when a clause of DNF is ?<s1> == ?<*> ∧ s2 == s1, a set of substitutions {s1 7→ *, s2
7→ s1} is found. Note that one arbitrary set of substitutions is found when there exists
multiple valid sets of substitutions.

After the unification, the resulting set of substitutions are compared with the sets of
substitutions for the other clauses of the shape equation. If all the sets of substitutions are
identical, the first clause of the shape equation, which is a conjunction of equalities, is used
in the next step. Otherwise, the whole shape equation is excluded in the next step. This
makes our shape computation approximate. When valid sets of substitutions are not found
for some clauses, the shape equation is also excluded.

Finally, the remaining clauses, which are not excluded in the previous step, are combined
by conjunction, and they are solved. The substitutions for shape variables are found by
unification as in the previous step. A shape variable is bound to a shape obtained by applying
those substitutions to that shape variable. If a shape is not obtained, the shape variable
does not have a binding.

For example, our approximate shape computation computes the following binding for List-
ing 6:
{sf 7→ ?<*, *>, sx 7→ *, sfx 7→ *,

sy 7→ *, splus 7→ *, se 7→ ?<*, *>}

Note that some shape variables do not have a binding. For the type variables corresponding
to those shape variables, InferType does not generate extra Z3 formulae in the next step
in Section 3.3.2. Those type variables are not optimized for constraint solving. For example,
in a target language, suppose that a composite type arrow is a subtype of a primitive type
object, and an operator != takes operands of object type. Then, suppose that a variable
vk is initialized with a value of an arrow type and vk appears as an operand for !=. This
will generate a shape equation sk == ?<*, *> ∧ sk == *, where sk corresponds to a type
variable tk for the variable vk. The initialization of vk generates sk == ?<*, *>, but the
!= operator generates sk == *. sk does not have a binding since there is no concrete shape
for sk to satisfy that shape equation. Note that not all shape variables sk lose a binding
when an arrow type is a subtype of a primitive type object. They lose a binding only when

S. Li, T. Yamazaki, and S. Chiba 23:15

the type variables tk corresponding to sk appears in an expression where a syntax-related
typing rule specifies that tk is a subtype of object. Recall that shape computation does not
consider subtype-related typing rules.

3.3.2 Reducing Search Space
After solving shape equations, InferType generates extra Z3 formulae that explicitly represent
what types the involved type variables range over regarding the computed shapes for reducing
the search space. If a shape is *, its type variable ranges over only all primitive types. If
a shape is ? with n arguments, its type variable ranges over all composite types with n

arguments.
Given a type variable tk and the computed shape ?<shape1, shape2, ..., shapen> for its

corresponding shape variable sk, where shapei represents some computed shapes, InferType
generates extra Z3 formulae for tk as
(or (= zk (cn

1 shape1 shape2 ... shapen))
(= zk (cn

2 shape1 shape2 ... shapen))
...)

(or (= shape1 (cm
1 shape11 shape12 ... shape1m))

(= shape1 (cm
2 shape11 shape12 ... shape1m))

...)
(or (= shape2 p1) (= shape2 p2) ...)
...
(or (= shapen ...) ...)
...

zk is the translated Z3 constant for tk. cn
i represents all composite types that take n arguments

in the target language. The possible types for zk are explicitly listed by logical disjunction.
If shapej is a nested structure with ? that takes m arguments, InferType will then generate
extra Z3 formulae for shapej similar to the extra Z3 formulae for zk. An example is shape1
in the above code. shape1i represents its arguments. If shapej is *, InferType will then
generate extra Z3 formulae specifying that shapej ranges over only primitive types. An
example is shape2 in the above code. pi represents all primitive types in the target language.

For example, by the computed shape ?<*, *> for tf in Listing 4, the extra Z3 formulae
are generated as
(or (= z_f (Arrow sh_1 , sh_2)))
(or (= sh_1 Int) (= sh_1 Float) (= sh_1 Str))
(or (= sh_2 Int) (= sh_2 Float) (= sh_2 Str))

They specify that zf ranges over only arrow types with arguments of primitive types. ? here
corresponds to composite type names that take two arguments, which only “arrow” matches
in Mini-λ. The arguments sh_1 and sh_2 are generated Z3 constants.

Suppose that Mini-λ defined list types list<t> and array types array<t>, and also that
the shape of a type variable th were computed as ?<?<*>>. Then InferType would generate
the extra Z3 formulae as:
(or (= z_h (List sh_4)) (= z_h (Array sh_4)))
(or (= sh_4 (List sh_5)) (= sh_4 (Array sh_5)))
(or (= sh_5 Int) (= sh_5 Float) (= sh_5 Str))

z_h is the translated Z3 constant for th. sh_4 and sh_5 are generated Z3 constants for the
arguments. ? here corresponds to composite type names that take one argument, which
“list” or “array” matches.

Note that asserting extra Z3 formulae generated from some approximately computed
shapes in our shape computation might cause type inference failure, that is, the constraint
solving would result in unsat even though the types in the given type constraints could be

ECOOP 2024

23:16 InferType

inferred. When our shape computation approximately computes some shapes by excluding
some shape equations, InferType would encounter this limitation if that type variable in the
given type constraints does not have an inferred type with that approximately computed
shape.

For example, consider the following type constraints in the Mini-λ extended with type
object where an arrow type is a subtype of the object type:
(21) arrow <int , int > <: tc
(22) object <: tc ∨ td <: tc
(23) object <: td

The (only) valid binding that satisfies the type constraints is {tc 7→ object, td 7→ object}.
The shape equations are derived as:
(21 ’) ?<*, *> == sc
(22 ’) * == sc ∨ sd == sc
(23 ’) * == sd

By applying the approximate shape computation, (22’) will be excluded because it finds two
different substitutions {sc 7→ *} and {sd 7→ sc} by unification over the clauses of DNF. The
approximate shape computation then only computes (21’) and (23’), and outputs {sc 7→ ?<*,
*>, sd 7→ *}. The constraint solving will then fail because tc will be restricted to range
over only arrow types by the extra Z3 formulae generated from the approximately computed
shape ?<*, *> for sc. On the other hand, a precise shape computation by considering (22’)
would discard the shapes for sc and sd, and then the type constraints can be correctly solved.

To handle this limitation for InferType producing correct type inference, in our imple-
mentation, when InferType cannot infer the types with the pre-process, it will recover the
constraint solving once again without the pre-process. In the second run of the recovery,
there is no extra Z3 formula from the computed shapes and all the constraint solving is not
optimized. Note that if the given type constraints contain type errors, both the first and
second run will result in unsat. InferType can produce correct type inference instead of
producing some wrongly inferred types, though it will take extra time by running 2 times
when our approximate shape computation encounters this limitation.

3.3.3 Discussion
InferType’s shape computation is sound, that is: If InferType can compute a binding that
satisfies the given type constraints with the asserted extra Z3 formulae from the shape
computation, then that binding must be one of the bindings that satisfies the original type
constraints. Since InferType asserts the extra Z3 formulae by conjunction with the given
original type constraints, if InferType computes a binding for satisfaction, then that binding
must also satisfy the original type constraints. Although InferType might not be able to
compute some of the bindings that satisfy the original type constraints because the possible
inferred types for the type variables are restricted by the computed shapes, a computed
binding by InferType must be a valid solution. InferType is guaranteed to never produce a
wrongly inferred type if a program is ill-typed.

InferType’s shape computation is not complete in general, where the completeness of
the shape computation is defined as: InferType can compute a binding that satisfies the
type constraints with the asserted extra Z3 formulae if the original type constraints can be
satisfied. InferType’s shape computation would be complete under the following assumption:
all subtype relations hold only between types with the same structure. In such a target
language, if a type variable is constrained to be a subtype or super type of a type, then the

S. Li, T. Yamazaki, and S. Chiba 23:17

structure of the inferred type for that type variable must be lexically identical to the structure
of that type. For instance, the shape computation for Mini-λ is complete. InferType’s shape
computation is not complete when the target language supports subtype relations between
types with different structures. In practical cases, such languages often support a type called
object which is a super type of any type. For example, suppose that the following type
constraints are given in a target language where the only common super type of arrow and
map types is a primitive type object:
arrow <int , int > <: ta
map <int , int > <: ta

The type variable ta can be only inferred as object for satisfaction. The shape computation
will compute the shape for ta as ?<*, *> from the derived shape equations:
?<*, *> == sa
?<*, *> == sa

However, InferType then could not find a binding for ta with the asserted extra Z3 formulae
because ta cannot be inferred as a type with that computed shape.

InferType incorporates a workaround to avoid its failure of computing shapes when the
target language supports subtype relations between types with different structures. Some
shape variables lose their bindings in our shape computation if part of the shape equations
cannot be solved by unification, while the other shape variables can still be computed and
the constraint solving for those corresponding type variables can still be optimized. For the
previous example containing arrow and map types, a common practice for InferType correctly
computing shapes and further computing types is by programmers’ type annotations. If a
programmer annotates the expression for ta as type object, a type constraint ta <: object
will be collected by AST traversal and given to InferType together with the other type
constraints. As we discussed in the last paragraph in Section 3.3.1, sa will lose a binding in
the shape computation because the derived shape equations including sa cannot be solved by
unification. InferType would then correctly perform type inference although the constraint
solving for ta would not be optimized.

When InferType wrongly computes some shapes and cannot infer types because of the
incompleteness of the shape computation, InferType would encounter a fallback to recover
the constraint solving as we mentioned in Section 3.3.2. Although the constraint solving is
entirely unoptimized in such cases, InferType would be able to correctly compute a binding
as the type inference result.

4 Experiment

We implemented a type inference engine for Mini-λ using InferType. We include it in our
artifact on Zenodo 2. The source code contains 291 LOC in Java with (manually counted) 48
LOC using InferType. Owing to InferType’s optimization, the implemented engine performed
type inference within around 0.18s for each program with nested types f3, f4 and f5 as
shown in Listing 5, which is way faster than a straightforward translation to Z3.

To further demonstrate the usage of InferType and the effectiveness of InferType’s
optimization, we conduct several experiments by implementing a type inference engine using
InferType for a subset of Python. We choose Python as the target language because we

2 https://zenodo.org/records/10981733

ECOOP 2024

https://zenodo.org/records/10981733

23:18 InferType

Table 1 Dataset overview. Each value is the average number per program/project in each set.

set1-Typpete set2-fs set3-CodeNet set4-large set5-ill

LOC 37 17 29 490 18
def 3 5 0.4 45 0.3
typevar 61 29 175 745 35
constraint 45 12 79 613 32

suppose that it is a good testbed for evaluating the usage capability of InferType when
implementing a type inference engine with complex typing rules for a dynamic language like
Python. Another concern of choosing Python is being aware of an existing work Typpete [14].
Typpete is one of the state-of-the-art type inference engines for Python using the Z3 SMT
solver. Comparing a type inference engine by InferType with generated Z3 code with a
manually written one would be a valuable evaluation for the usage of InferType.

Subpet is a re-implementation of a subset of Typpete using InferType. Typpete performs
type inference by a manual encoding of type constraints and subtype-related typing rules to
Z3 formulae while Subpet does it by using InferType. Subpet adopts a similar type system
to Typpete. The main differences between Subpet’s and Typpete’s type systems are: The
type system of Subpet is flow-insensitive; Subpet does not support some container types
such as sequence types sequence<t>. Subpet contains 2,892 LOC in Java with (manually
counted) 226 LOC using InferType. It uses the Python ast module to parse the source
programs. The other code mainly consists of AST traversal and typing environment, class
table definitions. Typpete encodes the type inference of Python programs into a MaxSMT
problem by a manual encoding of type constraints and typing rules to Z3 formulae. It outputs
type annotations for an input Python program. Typpete contains 6,189 LOC implemented in
Python. Subpet is not so powerful as Typpete because Subpet is limited by the amount of our
implementation resource. Besides, InferType encodes the type inference for a target language
as a SMT problem while Typpete encodes it for Python into a MaxSMT problem. Typpete
could possibly infer some principle types by manually encoding soft and hard constraints in
syntax-related typing rules, while principle typing is generally not considered by InferType.
Nevertheless, Subpet could be able to infer types for the programs in our dataset including
real-world programs.

For the experiments, we build a dataset. It is publicly available in our artifact. The
dataset contains five sets of Python programs including no type annotations:

The first set (set1-Typpete) contains 44 Python benchmark programs obtained from
Typpete’s artifact 3. A few innocuous code modifications are made to overcome the imple-
mentation limitations of Subpet such as using explicit arguments instead of implicit ones.
These modifications do not impact the functionality of the code.

The second set (set2-fs) is a series of 7 artificial Python programs containing larger nested
types. One of these programs, for example, is manually created as
def f0(x):

return x + x
def f1(f0 , x):

return f0(x)

f1(f0 , 42)

3 https://zenodo.org/records/3996670

https://zenodo.org/records/3996670

S. Li, T. Yamazaki, and S. Chiba 23:19

f1 is a function taking functions as parameter. Its type is assumed to be inferred as a nested
type. This Python program can be considered as a similar correspondence to Listing 5 in
Mini-λ. The program can be further extended with more function definitions f2, f3, ... for
larger nested types similar to what we showed in Mini-λ. We created the cases up to f7.

The third set (set3-CodeNet) contains 30 programs obtained from Project CodeNet [36].
Project CodeNet is a open-source, large-scale dataset containing solution programs to coding
problems from online judge websites. It is expected to be diverse and representative for
real-world programs. We downloaded its Python benchmarks, Version 1 at Sep. 6, 2023.
We used the grep command to search programs containing keywords graph and dijkstra.
Then we obtained 12 problem sets that had more than 10 hits of the two keywords. We used
such keyword searching because we expect that there is a high potential of programmers
defining data of nested types to solve graph coding tasks using the Dijkstra’s algorithm [16].
Then 5 programs were randomly picked up from each problem set (each problem set contains
100 ∼ 300 solution programs), resulting in 60 programs. 30 of the 60 programs were filtered
by the implementation limitation of Subpet (mostly because of unknown library usage with
respect to types). The remaining 30 programs were finally included in the third set.

The fourth set (set4-large) contains 4 larger programs/projects. The programs in this
set are aimed to estimate the scalability of the shape computation in InferType. Two of the
larger programs with 358 and 445 LOC were collected from the MOPSA project 4. A few
code modifications were made to overcome the implementation limitations of Subpet. The
other two projects were collected from Typpete’s artifact. One project includes 5 Python
files with 312 LOC. The other project includes 9 Python files with 846 LOC. Although these
programs and projects are not exceedingly large, each of them is more than 10 times larger
than the average of the programs in the other sets by LOC.

The fifth set (set5-ill) contains 4 ill-typed programs. These programs are used to
demonstrate the behaviour of handling type errors in InferType. Two of the ill-typed
programs are benchmark programs collected from MOPSA. The other two ill-typed programs
are from set1-Typpete. We manually modified the programs to make them become ill-typed.
A complete list of all the code changes in the dataset is included in our artifact.

Table 1 gives an overview of our dataset. Each value represents the average number per
program/project in each set. LOC shows the average number of line of code. def shows the
average number of function and method definitions. typevar and constraint show the average
number of generated type variables and type constraints derived by syntax-related typing
rules during Subpet’s AST traversal.

4.1 Comparing Subpet with Typpete
Firstly, we show the performance of type inference by Subpet and Typpete. Table 2 shows
the time results by running the two engines over set1-Typpete and set2-fs in our dataset. We
selected and included some of the larger programs by LOC in set1-Typpete in Table 2a. The
experiments were conducted on a Ubuntu 19.10 machine with 2.8 GHz Intel(R) Core(TM)
i7-6700T CPU and 32GB RAM, equipped with OpenJDK 14, Python 3.9.6, Z3 4.12.2 and
Typpete 0.1. The results from Subpet were the average elapsed time of the later 10 runs by
looping Subpet 20 times within the same JVM execution for each input Python program.
This is in the interest of the slow JVM startup time. For fair comparison, we also modified
Typpete to loop 20 times for each input Python program and then took the average of the
later 10 runs.

4 https://mopsa.lip6.fr

ECOOP 2024

https://mopsa.lip6.fr

23:20 InferType

Table 2 Time for Type Inference by Typpete and Subpet. †timeout (after 1,000s)

(a) set1-Typpete.

Name(.py) LOC Typpete Subpet

bellman_ford 61 2.54s 0.23s
crafting_challenge 132 3.32s 0.27s
deceitful 36 1.41s 0.12s
disjoint_sets 45 2.20s 0.20s
lattice 81 2.50s 0.16s
rockpaperscissor 79 2.87s 0.13s
vehicle 92 2.65s 0.14s

(b) set2-fs.

Name(.py) LOC Typpete Subpet

prog_f1 8 0.85s 0.09s
prog_f2 11 1.17s 0.11s
prog_f3 15 1.51s 0.11s
prog_f4 17 6.52s 0.17s
prog_f5 20 101.4s 0.28s
prog_f6 23 † 1.04s
prog_f7 27 † 3.08s

Both Subpet and Typpete could infer the types for normal programs without nested types
or with smaller nested types (programs in set1-Typpete and prog_f1 to prog_f3 in set2-fs)
within a reasonable time period. Subpet was faster than Typpete mainly because of the
language advantage: Subpet is implemented in Java and Typpete is implemented in Python.
However, Typpete exposed its performance downside for prog_f4 to prog_f7 in set2-fs with
deeply nested types. Subpet could finish their type inference much faster. Typpete ran
prog_f5 within 101.4s; it ran into timeout (†) for prog_f6 and prog_f7 after 1,000s. The
performance advantage is not simply because Subpet is implemented in Java rather than
Python. It mainly comes from InferType’s optimization. We will show our findings in the
later subsection.

We also demonstrate the behaviour of handling type errors by Subpet. It can detect
the type errors for all the ill-typed programs in set5-ill. Subpet tracks the types and type
variables to program locations (including the file name, line number and column number)
in a Map object during constraint generation in the AST traversal methods. By invoking
InferType for type inference, Subpet uses the untypable type variables returned by InferType
to retrieve the program locations and report them to the programmer, though a better
readable text message is not given due to our limited implementation resource. For example,
one of the ill-typed programs in set5-ill is written as

0 # arg_mismatch .py
1 def f(x):
2 return x
3

4 f()

This program is ill-typed because function f is called without argument but it is defined as
taking one argument. Subpet reports the type error message as

type inference failed .
type error location :
arg_mismatch .py: line 4, column 0

Typpete would report a similar type error message to the above by Subpet. Note that
InferType can detect and help report type errors whenever the optimization is disabled or
enabled. InferType would not wrongly infer types with our shape computation if the program
is ill-typed.

S. Li, T. Yamazaki, and S. Chiba 23:21

(a) set1-Typpete (no extra formula). (b) set1-Typpete.

(c) set2-fs. (d) set3-CodeNet.

(e) set4-large. (f) set5-ill.

Figure 2 Time for Type Inference by disabling and enabling InferType’s shape computation. off
columns are results by disabling shape computation. on columns are results by enabling shape computation. y-axes
are the elapsed time in second. x-axes are program names. Figure 2a gives the results where the shape computation
is enabled in on but extra Z3 formulae are not added in constraint solving. The other subfigures gives the results
where extra Z3 formulae are added in on. †timeout (after 1,000s)

4.2 Validating the Effectiveness of InferType’s Optimization
We measure and compare the elapsed time of Subpet by disabling and enabling InferType’s
shape computation in Section 3.3 to validate how our shape computation can affect the
performance of type inference. Figure 2 shows the elapsed time for the programs in our
dataset by disabling and enabling InferType’s shape computation. Each data column is the
average elapsed time of the later 10 runs by looping Subpet 20 times. Column off and on
show the elapsed time when InferType disables and enables the shape computation. When
the shape computation is disabled, InferType performs type inference by a straightforward
translation to Z3 shown in Section 3.2.

The results from Figure 2a show that InferType gives a small performance overhead by
the shape computation. Figure 2a gives the results for part of the programs in set1-Typpete.
Particularly, extra Z3 formulae were not asserted in the constraint solving when the shape
computation was enabled in the programs in Figure 2a for evaluating the overhead of the
shape computation. Extra Z3 formulae were asserted for all the other programs when the
shape computation was enabled in the other subfigures in Figure 2. In average, Subpet
degraded the performance of type inference by 0.23% with the shape computation than

ECOOP 2024

23:22 InferType

without the shape computation among all the programs in Figure 2a. Here and below, the
performance rate is calculated as (toff - ton) / toff for each program, where toff and ton

are the elapsed time when the shape computation is disabled and enabled. This 0.23% was
the overhead of InferType’s shape computation for computing the shapes.

The results from Figure 2c show that InferType’s optimization can greatly mitigate the
performance bottleneck for constraint solving containing deeply nested types. When the
shape computation was enabled, Subpet performed type inference for all the programs in
set2-fs within a reasonable time period. When the shape computation was disabled, Subpet
performed much slower for prog_f5; it could not finish prog_f6 or prog_f7 within a time limit.
These results were similar to those obtained by Typpete given in Table 2b. It indicates that
the better performance by Subpet against Typpete was not simply because of the language
advantage, but because of InferType’s optimization.

Our results demonstrate a tendency that InferType’s optimization has a higher potential
to improve the performance of type inference for programs containing larger nested types.
Subpet with the shape computation outperformed that without the shape computation in
8/29 (27.6%) programs among Figure 2b (set1-Typpete). Among these 8 programs that
Subpet with the shape computation gave a better performance, it outperformed by an
average of 8.87%. For example, program bellman_ford (containing a nested list of list type)
and crafting_challenge (containing a nested dict of dict type) in Figure 2b had a better
performance by 16.7% and 15.1%. Subpet with the shape computation outperformed that
without shape computation in 11/30 (36.7%) programs among Figure 2d (set3-CodeNet).
Among these 11 programs, it outperformed by an average of 40.9%. In the best case
(s631647985), it accelerated the performance of type inference by 108.2%. The programs in
set3-CodeNet have more nested types than programs in set1-Typpte because set3-CodeNet
was collected on purpose by specific keyword search. Since set3-CodeNet has bias collected by
specific keyword searching, we could not clearly show how frequently nested types are used
in real-world Python programs. However, our results provide evidence that at least there are
programs using nested types in wild Python programs. InferType is practically useful to
help implement type inference engines such as Subpet to potentially handle such programs
more efficiently. It is also observable that InferType’s optimization would not always give
a better performance for the constraint solving with nested types. It sometimes degrades
the performance even if the programs contain nested types. For example, the optimization
degraded the performance of the two programs s177586793 and s560922578 by 49.6% and
51.6% in Figure 2d.

Our experiments empirically show the scalability of the shape computation to larger
programs. Figure 2e presents the time results of type inference for the collected programs/-
projects in set4-large. Subpet took around 2 seconds for type inference in average, which
is 10 times longer than the average elapsed time for the programs in set1-Typpte and
set3-CodeNet. InferType’s shape computation does not significantly boost or degrade the
performance of type inference. These results show that it is practically feasible to apply our
shape computation to larger real-world programs.

Figure 2f gives the elapsed time of type inference for the ill-typed programs in our dataset.
Subpet took a longer time to find the type error in type inference when the shape computation
was enabled. This is because InferType launches a second run of constraint solving if it
cannot find a binding to satisfy the given type constraints in the first run for handling the
limitation of our shape computation. Yet, Subpet could detect the type errors in all the
ill-typed programs whenever the shape computation was disabled or enabled.

S. Li, T. Yamazaki, and S. Chiba 23:23

Table 3 Average number of computed shapes and average shape computation time. Each data cell
shows the results by Approximate / Precise shape computation.

set1-Typpete set2-fs set3-CodeNet set4-large set5-ill

shape 23 / 35 17 / 28 41 / 69 370 / 443 17 / 25
time 0.91ms / 74.3ms 0.71ms / 30.4ms 1.75ms / 434ms 68.7ms / 2.58s 0.69ms / 38.9ms

4.3 Assessing the Precision of the Approximate Shape Computation
We assess the precision of our approximate shape computation by counting the number
of computed shapes for type variables, compared with an implemented, precise shape
computation. Instead of computing only part of the shape equations in the approximate
shape computation, the precise shape computation processes all the derived shape equations
including disjunctions. It is implemented using Z3 by a straightforward translation from
shape equations to Z3 formulae. For example, the shape equations in Listing 6 (which are
derived from Listing 4) are translated to the following Z3 formulae to compute the shapes in
the precise shape computation.
(= s_f (Q2 s_x s_fx))
(= (Q2 s_f (Q2 s_x s_fx)) (Q2 (Q2 s_y s_plus) s_e))
(or (and (= s_y Star) (= Star Star) (= Star s_plus))

(and (= s_y Star) (= Star Star) (= Star s_plus)))

s_? represents translated Z3 constants for shape variables, which ranges over a Z3 datatype
declaration zshape for shapes generated as
(declare-datatypes () ((zshape

(Star)
(Q2 (Q2P1 zshape) (Q2P2 zshape)))))

Star represents the symbol *. Q2 represents the symbol ? that takes two arguments, where
Q2P1 and Q2P2 are generated accessors. The precise shape computation outputs a binding of
shape variables to shapes by invoking Z3. InferType then generates and asserts extra Z3
formulae for type variables regarding the computed shapes to optimize constraint solving
same as in Section 3.3.2. Our approximate shape computation is implemented in Java.

The approximate shape computation computes more than half of the shapes that the
precise shape computation computes in average among all the programs in the dataset.
The first row in Table 3 shows the average number of computed shapes of all programs in
each dataset by the approximate and precise shape computation. The approximate shape
computation computed 70.3%, 55.5%, 60.4%, 83.6% and 68.0% shapes of those by the precise
one in each set of programs.

The approximate shape computation is much faster than the precise shape computation.
The second row in Table 3 lists the average elapsed time of the two shape computations for
all programs in each dataset. Same as the measuring before, the elapsed time of the shape
computation for each program was the average of the later 10 runs by looping 20 times. The
elapsed time of the approximate and precise shape computation differed in scale.

In our dataset, we did not find a program that had a faster elapsed time for type inference
with the precise shape computation than approximate by Subpet, though the precise shape
computation could compute more shapes in average and reduce the search space of more type
variables for expected, faster constraint solving. This might suggest that our approximate
shape computation is practically useful enough with respect to the performance, or the
programs in our dataset are relatively small so that the precise shape computation could

ECOOP 2024

23:24 InferType

not show its advantage. We could not show clear evidence to support these claims. Besides,
we did not find a case such that Subpet performed a type inference failure caused by the
limitation of the approximate shape computation as we discussed in Section 3.3.2. This is
because Subpet’s syntax-related typing rules during AST traversal do not generate a type
constraint like (22) given in Section 3.3.2, by excluding whose derived shape equation the
approximate shape computation would imprecisely compute a shape. However, it is possible
that our approximate shape computation encounters this limitation when developing other
languages whose syntax-related typing rules generate such type constraints.

5 Related Work

Language development is enjoying significant growth in number and diversity both by
academia and industry. Language workbenches such as MPS [45] and Xtext [11] are develop-
ment environments that provide high-level mechanisms for implementing domain-specific
languages [12]. Spoofax [18] allows language developers to write declarative specifications
of language definitions to produce parsers, interpreters and editor plugins. Efftinge [10]
presented a Java framework, Xbase, for implementing DSLs based on Xtext. Recent studies
proposed a standardization of name resolution and type checking with a constraint-based
approach integrated in Spoofax [1, 43]. Unlike existing language development toolkits such
as Spoofax, our proposed tool produces constraint-based type inference.

Specifying and implementing type inference using constraints is an established approach.
A number of existing type inference systems adopt constraint-based approaches because of
the modularity of separating constraint generation and solving for providing high flexibility
and extensibility [31, 35, 39, 38, 19, 27]. Our proposed tool adopts the constraint-based type
inference for similar reasons to support various type systems of handling type inequalities
such as subtyping. Besides the constraint-based approaches, one of the most traditional
and influential type inference approaches is the Hindley-Milner type inference [15, 23, 6].
The Hindley-Milner type inference targets one particular type system and infers types
by unification as the heart of its algorithm. Another approach is the bidirectional type
checking [32, 26], which is regarded as local type inference, developed by carefully controlling
the introduction and elimination of type variables for inferring parameter types. Turnstile [5]
is a meta-language for creating typed languages supporting bidirectional type checking.
Compared with Turnstile, InferType is designed for languages supporting global type inference
by the constraint-based approach. Jones introduced wobbly types [30] to distribute over type
constructors for handling GADT type inference using type annotations. Later, Pottier [34]
proposed a stratified type inference with a pre-process of inferring shapes for propagating
type annotations by local type inference. The idea of a two-strata type inference and the
computation for shapes in this research are similar to those in [34, 46]. However, our shapes
are automatically computed from the given type constraints without extra information like
type annotations, and the computed shapes are used for optimizing constraint solving.

Satisfiability Modulo Theories (SMT) is an area of automated deduction for checking the
satisfiability of first-order formulae with respect to logical theories [4, 3]. State-of-the-art
SMT solvers include Yices [9], CVC5 [2], and Z3 [7]. InferType currently relies on Z3 for
performing constraint solving. Translating InferType expressions to a higher-level language
such as JavaSMT [17] can be a possible extension for enabling different SMT solvers. There
have been works on improving the performance of SMT solvers in general such as pruning the
search space by detecting symmetries in the input formulae [8]. Later, Niemetz [25] presented
an approach for accelerating quantified constraint solving. The developed optimization in our
proposal is rather a domain-specific approach to reducing the search space of type variables
in SMT solving based on InferType’s shape computation.

S. Li, T. Yamazaki, and S. Chiba 23:25

SMT solving has been a critical part of several static analyses including automatic type
inference. Swamy [42] presented the language F* with a dependent type and effect system
using a combination of SMT solving and manual proofs. Vazou and Jhala [44] introduced
LiquidHaskell, which is a refinement type-based verifier for Haskell using SMT solvers.
InferType does not directly support such type systems. However, a compiler writer can
handle complex types such as generics by manually resolving them (instantiating fresh type
variables) before encoding them into InferType, though InferType would compute a concrete
type instead of a generic type as the inferred type. Pavlinovic [28] presented an encoding
of the OCaml type system to a weighted MaxSMT problem for localizing type errors when
the type inference fails. InferType considers type errors by providing the type variables in a
minimal set of unsat type constraints for helping locate ill-typed program expressions, while
the generation of a text message is left to the compiler writer. Generating and customizing
type error messages by InferType is treated as our future work. Hassan [14] proposed a
type inference engine, Typpete, that generates Python 3 type annotations by encoding type
constraints as a MaxSMT problem using Z3. In this paper, we implemented a subset of
Typpete by using the proposed tool for the experiments. There are also emerging studies of
statically typing Python programs based on other techniques [21, 13, 24, 29].

6 Conclusion

We presented InferType, a Java library for implementing constraint-based type inference.
InferType performs constraint solving by translation to the Z3 SMT solver. Because the
constraint solving in SMT may be exponentially slow by the increasing search space for
large nested types, we developed an optimization technique for InferType to relieve the
performance bottleneck for better practical usage. InferType pre-computes a structure of a
type variable and reduces the search space of that type variable based on the pre-computed
structure.

We demonstrated the usage of InferType and experimented the effectiveness of its
optimization by implementing a type inference engine for a Python subset using InferType.
We found that, the implemented engine had compatible performance of type inference
compared with a state-of-the-art type inference engine for Python using Z3 with a manual
encoding of Z3 formulae. InferType’s optimization could greatly improve the performance
for programs with deeply nested types. We also observed that InferType could potentially
improve the performance of type inference for programs containing nested types. We believe
that InferType is practically useful to help implement constraint-based type inference for
language development.

References
1 Hendrik Antwerpen, Pierre Neron, Andrew Tolmach, Eelco Visser, and Guido Wachsmuth.

A constraint language for static semantic analysis based on scope graphs. In Proceedings
of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 49–60, January 2016.
doi:10.1145/2847538.2847543.

2 Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir,
Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A
Versatile and Industrial-Strength SMT Solver. In Dana Fisman and Grigore Rosu, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 415–442, Cham,
2022. Springer International Publishing.

ECOOP 2024

https://doi.org/10.1145/2847538.2847543

23:26 InferType

3 Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard: Version 2.0. In
Proceedings of the 8th international workshop on satisfiability modulo theories (Edinburgh,
UK), volume 13, page 14, 2010.

4 Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories, pages 305–343. Springer
International Publishing, Cham, 2018. doi:10.1007/978-3-319-10575-8_11.

5 Stephen Chang, Alex Knauth, and Ben Greenman. Type Systems as Macros. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
’17, pages 694–705, New York, NY, USA, 2017. Association for Computing Machinery. doi:
10.1145/3009837.3009886.

6 Luis Damas and Robin Milner. Principal Type-Schemes for Functional Programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’82, pages 207–212, New York, NY, USA, 1982. Association for Computing Machinery.
doi:10.1145/582153.582176.

7 Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin,
Heidelberg, 2008. Springer-Verlag.

8 David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo. Exploiting
Symmetry in SMT Problems. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors,
Automated Deduction – CADE-23, pages 222–236, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

9 Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer Aided
Verification, pages 737–744, Cham, 2014. Springer International Publishing.

10 Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian Zarnekow, Robert von Massow,
Wilhelm Hasselbring, and Michael Hanus. Xbase: Implementing Domain-Specific Languages
for Java. SIGPLAN Not., 48(3):112–121, September 2012. doi:10.1145/2480361.2371419.

11 Moritz Eysholdt and Heiko Behrens. Xtext: Implement Your Language Faster than the
Quick and Dirty Way. In Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications Companion, OOPSLA
’10, pages 307–309, New York, NY, USA, 2010. Association for Computing Machinery. doi:
10.1145/1869542.1869625.

12 Martin Fowler and R Parsons. Addison-Wesley signature, Domain specific languages . Mas-
sachussets, 2010.

13 google. pytype, 2021. URL: https://google.github.io/pytype/.
14 Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. MaxSMT-Based Type

Inference for Python 3. In Hana Chockler and Georg Weissenbacher, editors, Computer Aided
Verification, pages 12–19, Cham, 2018. Springer International Publishing.

15 R. Hindley. The Principal Type-Scheme of an Object in Combinatory Logic. Transactions of
the American Mathematical Society, 146:29–60, 1969. URL: http://www.jstor.org/stable/
1995158.

16 Donald B. Johnson. A Note on Dijkstra’s Shortest Path Algorithm. J. ACM, 20(3):385–388,
July 1973. doi:10.1145/321765.321768.

17 Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer. JavaSMT: A Unified
Interface for SMT Solvers in Java. In Sandrine Blazy and Marsha Chechik, editors, Verified
Software. Theories, Tools, and Experiments, pages 139–148, Cham, 2016. Springer International
Publishing.

18 Lennart C.L. Kats and Eelco Visser. The Spoofax Language Workbench: Rules for Declarative
Specification of Languages and IDEs. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’10, pages
444–463, New York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/
1869459.1869497.

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1145/3009837.3009886
https://doi.org/10.1145/3009837.3009886
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/2480361.2371419
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://google.github.io/pytype/
http://www.jstor.org/stable/1995158
http://www.jstor.org/stable/1995158
https://doi.org/10.1145/321765.321768
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497

S. Li, T. Yamazaki, and S. Chiba 23:27

19 Milod Kazerounian, Brianna M. Ren, and Jeffrey S. Foster. Sound, Heuristic Type Annotation
Inference for Ruby. In Proceedings of the 16th ACM SIGPLAN International Symposium on
Dynamic Languages, DLS 2020, pages 112–125, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3426422.3426985.

20 Kevin Knight. Unification: A Multidisciplinary Survey. ACM Comput. Surv., 21(1):93–124,
March 1989. doi:10.1145/62029.62030.

21 Jukka Lehtosalo, Guido van Rossum, and Ivan Levkivskyi. mypy, June 2012. URL: http:
//mypy-lang.org/.

22 John R. Levine, Tony Mason, and Doug Brown. Lex & Yacc (2nd Ed.). O’Reilly & Associates,
Inc., USA, 1992.

23 Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348–375, 1978. doi:10.1016/0022-0000(78)90014-4.

24 Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. Static Type Analysis by Abstract
Interpretation of Python Programs. In Robert Hirschfeld and Tobias Pape, editors, 34th
European Conference on Object-Oriented Programming (ECOOP 2020), volume 166 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 17:1–17:29, Dagstuhl, Germany, 2020.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2020.17.

25 Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark Barrett, and Cesare Tinelli. Syntax-
Guided Quantifier Instantiation. In Jan Friso Groote and Kim Guldstrand Larsen, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 145–163, Cham,
2021. Springer International Publishing.

26 Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored Local Type Inference. In
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’01, pages 41–53, New York, NY, USA, 2001. Association for Computing
Machinery. doi:10.1145/360204.360207.

27 Lionel Parreaux. The Simple Essence of Algebraic Subtyping: Principal Type Inference with
Subtyping Made Easy (Functional Pearl). Proc. ACM Program. Lang., 4(ICFP), August 2020.
doi:10.1145/3409006.

28 Zvonimir Pavlinovic, Tim King, and Thomas Wies. Finding Minimum Type Error Sources.
In Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pages 525–542, New York, NY, USA,
2014. Association for Computing Machinery. doi:10.1145/2660193.2660230.

29 Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu. Static
Inference Meets Deep Learning: A Hybrid Type Inference Approach for Python. In Proceedings
of the 44th International Conference on Software Engineering, ICSE ’22, pages 2019–2030, New
York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3510003.3510038.

30 Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn. Simple
unification-based type inference for GADTs. SIGPLAN Not., 41(9):50–61, September 2006.
doi:10.1145/1160074.1159811.

31 Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.
32 Benjamin C. Pierce and David N. Turner. Local Type Inference. ACM Trans. Program. Lang.

Syst., 22(1):1–44, January 2000. doi:10.1145/345099.345100.
33 François Pottier. A Framework for Type Inference with Subtyping. SIGPLAN Not., 34(1):228–

238, September 1998. doi:10.1145/291251.289448.
34 François Pottier and Yann Régis-Gianas. Stratified type inference for generalized algebraic

data types. SIGPLAN Not., 41(1):232–244, January 2006. doi:10.1145/1111320.1111058.
35 Francois Pottier and Didier Remy. The Essence of ML Type Inference, pages 389–489. MIT

press, January 2005. doi:10.7551/mitpress/1104.003.0016.
36 Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir

Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost, Luca
Buratti, Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss.
CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of Coding Tasks, 2021.
arXiv:2105.12655.

ECOOP 2024

https://doi.org/10.1145/3426422.3426985
https://doi.org/10.1145/62029.62030
http://mypy-lang.org/
http://mypy-lang.org/
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.4230/LIPIcs.ECOOP.2020.17
https://doi.org/10.1145/360204.360207
https://doi.org/10.1145/3409006
https://doi.org/10.1145/2660193.2660230
https://doi.org/10.1145/3510003.3510038
https://doi.org/10.1145/1160074.1159811
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/291251.289448
https://doi.org/10.1145/1111320.1111058
https://doi.org/10.7551/mitpress/1104.003.0016
https://arxiv.org/abs/2105.12655

23:28 InferType

37 J Alan Robinson. Computational logic: The unification computation. Machine intelligence,
6:63–72, 1971.

38 Michael I. Schwartzbach. Type inference with inequalities. In S. Abramsky and T. S. E.
Maibaum, editors, TAPSOFT ’91, pages 441–455, Berlin, Heidelberg, 1991. Springer Berlin
Heidelberg.

39 Tatsurou Sekiguchi and Akinori Yonezawa. A complete type inference system for subtyped
recursive types. In Masami Hagiya and John C. Mitchell, editors, Theoretical Aspects of
Computer Software, pages 667–686, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

40 Jeremy Siek and Walid Taha. Gradual Typing for Objects. In Erik Ernst, editor, ECOOP
2007 – Object-Oriented Programming, pages 2–27, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

41 Richard M. Stallman. Bison: The Yacc-Compatible Parser Generator, 2015. URL: https:
//api.semanticscholar.org/CorpusID:60543798.

42 Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon
Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-
Karim Zinzindohoue, and Santiago Zanella-Béguelin. Dependent Types and Multi-Monadic
Effects in F*. SIGPLAN Not., 51(1):256–270, January 2016. doi:10.1145/2914770.2837655.

43 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. Scopes as
Types. Proc. ACM Program. Lang., 2(OOPSLA), October 2018. doi:10.1145/3276484.

44 Niki Vazou, Eric L. Seidel, and Ranjit Jhala. LiquidHaskell: Experience with Refinement
Types in the Real World. SIGPLAN Not., 49(12):39–51, September 2014. doi:10.1145/
2775050.2633366.

45 Markus Voelter and Vaclav Pech. Language Modularity with the MPS Language Workbench.
In Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, pages
1449–1450. IEEE Press, 2012.

46 Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. OUT-
SIDEIN(X): modular type inference with local assumptions. J. Funct. Program., 21:333–412,
September 2011. doi:10.1017/S0956796811000098.

https://api.semanticscholar.org/CorpusID:60543798
https://api.semanticscholar.org/CorpusID:60543798
https://doi.org/10.1145/2914770.2837655
https://doi.org/10.1145/3276484
https://doi.org/10.1145/2775050.2633366
https://doi.org/10.1145/2775050.2633366
https://doi.org/10.1017/S0956796811000098

Qafny: A Quantum-Program Verifier
Liyi Li #

Iowa State University, Ames, IA, USA
Mingwei Zhu #

University of Maryland, College Park, MD, USA

Rance Cleaveland #

University of Maryland, College Park, MD, USA
Alexander Nicolellis #

Iowa State University, Ames, IA, USA

Yi Lee #

University of Maryland, College Park, MD, USA
Le Chang #

University of Maryland, College Park, MD, USA

Xiaodi Wu #

University of Maryland, College Park, MD, USA

Abstract
Because of the probabilistic/nondeterministic behavior of quantum programs, it is highly advisable to
verify them formally to ensure that they correctly implement their specifications. Formal verification,
however, also traditionally requires significant effort. To address this challenge, we present Qafny,
an automated proof system based on the program verifier Dafny and designed for verifying quantum
programs. At its core, Qafny uses a type-guided quantum proof system that translates quantum
operations to classical array operations modeled within a classical separation logic framework. We
prove the soundness and completeness of our proof system and implement a prototype compiler
that transforms Qafny programs and specifications into Dafny for automated verification purposes.
We then illustrate the utility of Qafny’s automated capabilities in efficiently verifying important
quantum algorithms, including quantum-walk algorithms, Grover’s algorithm, and Shor’s algorithm.

2012 ACM Subject Classification Theory of computation → Program verification; Theory of
computation → Quantum information theory

Keywords and phrases Quantum Computing, Automated Verification, Separation Logic

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.24

Related Version Extended Version: https://arxiv.org/abs/2211.06411 [24]

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.12
Software (Source Code): https://zenodo.org/records/10529900

Acknowledgements We thank Finn Voichick for his helpful comments and contributions during the
work’s development. This paper is dedicated to the memory of our dear co-author Rance Cleaveland.

1 Introduction

Quantum computers can be used to program substantially faster algorithms compared
to those written for classical computers. For example, Shor’s algorithm [48] can factor
a number in polynomial time, which is not known to be polynomial-time-computable in
the classical setting. Developing more and more comprehensive quantum programs and
algorithms is essential for the continued practical development of quantum computing
[11, 49]. Unfortunately, because quantum systems are inherently probabilistic and must
obey quantum physics laws, traditional validation techniques based on run-time testing are
virtually impossible to develop for large quantum algorithms. This leaves formal methods as
a viable alternative for program checking, and yet these typically require a great effort; for
example, four experienced researchers needed two years to formally verify Shor’s algorithm
[38]. To alleviate the effort required for formal verification, many frameworks have been
proposed to verify quantum algorithms [26, 56, 3, 59, 20, 16] using interactive theorem

V1.1

A
rt
ifa

cts Available

ECOOP

© Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and
Xiaodi Wu;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 24; pp. 24:1–24:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:liyili2@iastate.edu
https://orcid.org/0000-0001-8184-0244
mailto:mzhu1@umd.edu
mailto:rance@cs.umd.edu
mailto:akn5@iastate.edu
mailto:ylee1228@umd.edu
mailto:lchang21@umd.edu
mailto:xwu@cs.umd.edu
https://orcid.org/0000-0001-8877-9802
https://doi.org/10.4230/LIPIcs.ECOOP.2024.24
https://arxiv.org/abs/2211.06411
https://doi.org/10.4230/DARTS.10.2.12
https://doi.org/10.4230/DARTS.10.2.12
https://zenodo.org/records/10529900
https://doi.org/10.4230/DARTS.10.2.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Qafny: A Quantum-Program Verifier

sound/complete☑

Qafny Dafnyimplementation⚙
SQIR lang-trans⚙

QASM

extract
☑

GHZ Qwalk Shor’s

☑ ☑ quantum☑ classical☑

...

C# Java PHP

extract⚙

lib-calls

executable

☑ verified
⚙ tested

Figure 1 Dafny Development Stages/Key Aspects.

|0⟩ H

f(|j⟩) = (−i)j |j⟩
...

∑2n-1
j=0 (−i)j |j⟩...|0⟩ H

Figure 2 State Preparation Circuit.

provers, such as Isabelle, Coq, and Why3, by building quantum semantic interpretations and
libraries. Some attempts towards proof automation have been made by creating new proof
systems for quantum data structures such as Hilbert spaces; however, building and verifying
quantum algorithms in these frameworks are still time-consuming and require great human
effort. Meanwhile, automated verification is an active research field in classical computation
with many proposed frameworks [17, 42, 27, 39, 37, 18, 50, 31, 44, 45, 21, 6] showing strong
results in reducing programmer effort when verifying classical programs. None of the existing
quantum verification frameworks utilize these classical verification infrastructures, however.

We present Qafny, a framework that enables programmers to develop and verify quantum
programs based on quantum program semantics and classical automated verification infra-
structure. It has several elements (Figure 1). The core is a strongly typed, flow-sensitive
imperative quantum language Qafny, admitting a classical separation-logic-style proof sys-
tem, in which users specify quantum programs and input the properties to be verified as pre-
and post-conditions and loop invariants, such as GHZ, Quantum Walk, and Shor’s algorithm.
Qafny programs and specifications are verified via translation to a classical Hoare/separation
logic framework implemented in the Dafny program verifier [22]. Qafny programs may also
be compiled into quantum circuits and run on a quantum computer via the Qafny to SQIR
and SQIR to OpenQASM 2.0 [7] compilers in our technical report (TR) [24] C.6. Quantum
programs can be components of hybrid classical-quantum (HCQ) programs, so the compiled
Qafny code can also be a library function called by an HCQ program defined. For example,
one can extract the compiled Dafny program to a programming language, such as C#, PHP,
and Java, and utilize quantum programs compiled from Qafny to OpenQASM [21].

A key component of the design of Qafny is to encode quantum states as array-like
structures and quantum operations as aggregate array operations on the states. In Figure 2,
a quantum state in superposition ψ =

∑2n-1
j=0 1 |j⟩ is prepared by applying a Hadamard gate

to each qubit. Qafny treats ψ as an array containing 2n elements, one for each indexed basis
element in ψ. Each element is a pair of a complex and a natural number (computational
basis, essentially a bitstring). For example, Bell pair 1√

2 |00⟩+ 1√
2 |11⟩ can be thought of as a

two-element array, with two pairs: (1√
2 , |00⟩) and (1√

2 , |11⟩), where the first one is a complex
number and the second one is a bitstring that can be represented as a natural number.
Applying a quantum oracle (f(|j⟩) = (−i)j |j⟩) on ψ, which evolves each indexed element
1 |j⟩ to (−i)j |j⟩, is similar to an array map function that applies f ′(αj , j) = ((−1)jαj , j)
to each element j in the 2n-array. The design and analysis of many quantum algorithms
leverage the representation of different groups of qubits in terms of classical arrays [13, 35, 47].
Besides the opportunities for automated reasoning provided by representing quantum states
as arrays, Qafny also uses language abstractions such as quantum conditionals and loops,
which generalize quantum controlled gates to enable local reasoning in the presence of
quantum entanglement. In the prior works above, the usual approach in reasoning about

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:3

quantum controlled gates such as CNOT and controlled-U gates is to transform these operations
into a monolithic representation, such as a unitary matrix, not scaling up well for automated
verification, because the relations among different entries, representing inductive relation
among program constructs, are largely omitted. In Qafny, reasoning about comprehensive
constructs, such as controlled gates, amount to building a structural inductive relation among
different parts, such as a quantum conditional and its subparts, through deliberately designed
proof rules in Sections 3.4 and 4.4; such design permits automated local reasoning.

These designs pose several challenges: 1) quantum operations can be performed on any
qubit positions, e.g., f above could apply on arbitrary bits in every bitstring j; 2) performing
automated local reasoning requires one to know which states and qubits can be excluded
locally, but qubits can form entangled groups that are typically viewed as not separable;
and 3) the Qafny proof system should obey quantum physical laws, such as no-cloning
and no quantum observer effects. To address these problems, we first introduce different
types of quantum-state representations and special data structures (loci in Section 3) to
partition qubits into disjoint entanglement groups for local reasoning. We then combine
a flow-sensitive type system (Section 4.3) with our proof system, capable of 1) statically
identifying the quantum state types and tracking entanglement group transformations and
2) performing type-guided quantum-state rewrites in the assertions and automated local
operation reasoning on canonicalized quantum states, without violating quantum laws.

The paper’s contributions are listed as follows.
We present the Qafny language, including a big-step semantics and flow-sensitive type
system, which provides a simple way of enforcing quantum program properties, such as
no-cloning and no observer breakdown. We also prove type soundness for Qafny in Coq.
The Qafny type-guided proof system permits classical-array-operation views of quantum
operations and captures the inductive behaviors of quantum conditionals and loops.
Soundness and relative completeness are also proved in Coq. To the best of our knowledge,
Qafny provides the first proof-rule definitions for quantum conditionals and for-loops.
We exhibit a prototype Qafny to Dafny compiler as evidence of connecting quantum-
program verification to classical Hoare/separation logic. We verify a number of quantum
algorithms (Figure 16) with a high degree of automation. Sections 5.2 and 7 compares
proof automation in Qafny with other frameworks.
We faithfully implement several algorithms, such as GHZ, Shor’s, and quantum walk, as
case studies in tje paper to demonstrate how Qafny can help programmers to efficiently
verify quantum-algorithm implementations. The program operations of these examples
are a high-level abstraction of the algorithms’ quantum circuit-based description, while
the Qafny program state specifications are directly based on the algorithms’ state
representations based on Dirac notations.

2 Background

Here, we provide background information on quantum computing.

Quantum Value States. A quantum value state1 consists of one or more quantum bits
(qubits), which can be expressed as a two-dimensional vector (αβ) where the amplitudes α
and β are complex numbers and |α|2 + |β|2 = 1. We frequently write the qubit vector

1 Most literature mentioned Quantum value states as quantum states. Here, we refer to them as quantum
value states or quantum values to avoid confusion between program and quantum states.

ECOOP 2024

24:4 Qafny: A Quantum-Program Verifier

as α |0⟩ + β |1⟩ (the Dirac notation [8]), where |0⟩ = (1
0) and |1⟩ = (0

1) are computational
basis-kets. When both α and β are non-zero, we can think of the qubit being “both 0 and 1
at once,” a.k.a. in a superposition [35], e.g., 1√

2 (|0⟩+ |1⟩) represents a superposition of |0⟩
and |1⟩. Larger quantum values can be formed by composing smaller ones with the tensor
product (⊗) from linear algebra, e.g., the two-qubit value |0⟩ ⊗ |1⟩ (also written as |01⟩)
corresponds to vector [0 1 0 0]T . However, many multi-qubit values cannot be separated
and expressed as the tensor product of smaller values; such inseparable value states are called
entangled, e.g. 1√

2 (|00⟩+ |11⟩), known as a Bell pair, which can be rewritten to
∑1
d=0

1√
2 |dd⟩,

where dd is a bit string consisting of two bits, each of which must be the same value (i.e.,
d = 0 or d = 1). Each term 1√

2 |dd⟩ is named a basis-ket [35], consisting an amplitude (1√
2)

and a basis vector |dd⟩.

Quantum Computation and Measurement. Computation on a quantum value consists
of a series of quantum operations, each acting on a subset of qubits in the quantum value.
In the standard form, quantum computations are expressed as circuits, as in Figure 3a,
which depicts a circuit that prepares the Greenberger-Horne-Zeilinger (GHZ) state [12] – an
n-qubit entangled value of the form: |GHZn⟩ = 1√

2 (|0⟩⊗n + |1⟩⊗n), where |d⟩⊗n =
⊗n-1
d=0 |d⟩.

In these circuits, each horizontal wire represents a qubit, and boxes on these wires indicate
quantum operations, or gates. The circuit in Figure 3a uses n qubits and applies n gates: a
Hadamard (H) gate and n−1 controlled-not (CNOT) gates. Applying a gate to a quantum value
evolves it. Its traditional semantics is expressed by multiplying the value’s vector form by the
gate’s corresponding matrix representation: n-qubit gates are 2n-by-2n matrices. Except for
measurement gates, a gate’s matrix must be unitary and thus preserve appropriate invariants
of quantum values’ amplitudes. A measurement operation extracts classical information
from a quantum value. It collapses the value to a basis state with a probability related to
the value’s amplitudes (measurement probability), e.g., measuring 1√

2 (|0⟩ + |1⟩) collapses
the value to |0⟩ with probability 1

2 , and likewise for |1⟩, returning classical value 0 or 1,
respectively. A more general form of quantum measurement is partial measurement, which
measures a subset of qubits in a qubit array; such operations often have simultaneity effects
due to entanglement, i.e., in a Bell pair 1√

2 (|00⟩+ |11⟩), measuring one qubit guarantees the
same outcome for the other – if the first bit is measured as 0, the second bit is too.

Quantum Conditionals. Controlled quantum gates, such as controlled-not gates (CNOT),
can be thought of as quantum versions of classical operations, where we view a quantum
value as an array of basis-kets and apply an array map operation of the classical operation
to every basis-ket. This is evident when using Dirac notation. For example, in preparing
a two-qubit GHZ state (Figure 3a, also a Bell pair) for qubit array x, the H gate evolves
the value to 1√

2 |00⟩ + 1√
2 |10⟩ (same as 1√

2 (|0⟩ + |1⟩) ⊗ |0⟩). The quantum conditional
maps the classical conditional if (x[0]) {x[1]← x[1] + 1} onto the two basis-kets, where the
operation x[1] + 1 acts as a modulo 2 addition to flip x[1]’s bit. Here, we do not flip the
x[1] position in the first basis-ket (1√

2 |00⟩) due to x[0] = 0, and we flip x[1] in the second
basis-ket because of x[0] = 1. Such behaviors can be generalized to other controlled gates,
such as the controlled-U gate appearing in Shor’s algorithm (Figure 6), where U refers to a
modulo-multiplication operation. The controlled nodes (Boolean guards) in these quantum
conditionals can also be generalized to other types of Boolean expressions, e.g., it can be a
quantum inequality ((κ <n) @ x[i]) that compares every basis vector of qubit array κ’s value
state with the number n and stores the result in qubit x[i], and the controlled node queries
x[i] to determine if the conditional body is executed, more in Sections 4 and 6.2.

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:5

|0⟩ H • . . .

|0⟩ • . . .

|0⟩ . . .
......

. . . •
|0⟩

(a) GHZ Circuit.

(b) GHZ For-loop Analogy.

1 { x[0, n) 7→ |0⟩ }
2 x[0] ← H;
3 { x[0, 1) 7→ 1√

2 (|0⟩+ |1⟩) ∗ x[1, n) 7→ |0⟩ }
4 for j ∈ [1, n) && x[j - 1]
5 { x[0, j) 7→

∑1
d=0

1√
2 |d⟩ ∗ x[j, n) 7→ |0⟩ ∗ j ≤ n }

6 x[j] ← x[j] + 1;
7 { x[0, n) 7→

∑1
d=0

1√
2 |d⟩ ∗ x[n, n) 7→ |0⟩ }

8 { x[0, n) 7→
∑1

d=0
1√
2 |d⟩ }

(c) Qafny GHZ Program and Proof.

Figure 3 GHZ Examples. x[t1, t2) 7→ |0⟩means 0 is a bitstring of length t2-t1. x[t1, t2) 7→
∑1

d=0 |d⟩
means d is a bitstring of length t2-t1 and d ∈ [0, 1] is a bit. ∗ is the separation conjunction. In (c),
black parts are Qafny programs, while blue and gray parts are Qafny state predicates.

Quantum Oracles. Quantum algorithms manipulate input information encoded in “oracles,”
which are callable black-box circuits. Quantum oracles are usually quantum-reversible
implementations of classical operations, especially arithmetic operations. Their behavior
is defined in terms of transitions between single basis-kets. We can infer its global state
behavior based on the single basis-ket behavior through the quantum summation formula
below. This resembles an array map operation in Figure 2. oqasm [23] is a language that
permits the definitions of quantum oracles with efficient verification and testing facilities
using the summation formula.

∀j. |xj⟩ −→ f(|xj⟩)
Σjαj |xj⟩ −→ Σjαjf(|xj⟩)

No Cloning and Observer Effect. The no-cloning theorem suggests no general way of
copying a quantum value. In quantum circuits, this is related to ensuring the reversible
property of unitary gate applications. For example, the Boolean guard and body of a
quantum conditional cannot refer to the same qubits, e.g., if (x[1]) {x[1]← x[1] + 1} violates
the property as x[1] is mentioned in the guard and body. The quantum observer effect refers
to leaking information from a quantum value state. If a quantum conditional body contains
a measurement or classical variable updates, the quantum system breaks down due to the
observer effect. Qafny enforces no cloning and no observer breakdown through the syntax
and flow-sensitive type system.

3 Qafny Design Principles: Locus, Type, and State

Here, we show the Qafny fundamental design principles for quantum program verification.
We use the GHZ example in Figure 3a to highlight these principles, with a proof outline in
Figure 3c; x is initialized to an n-qubit Nor typed value |0⟩ (n number of |0⟩ qubits). After
preparing a superposition (x[0]← H) for a single qubit x[0] in line 2, we execute a quantum for-
loop that entangles each pair of adjacent qubits in x to prepare the GHZ state. We can unroll
each iteration of the loop as a quantum conditional (if (x[j-1]) {x[j]← x[j] + 1}). When
verifying the program in Qafny, it is only needed to provide the program and specifications
in blue, with the grayed out parts automatically inferred. We show critical features in our
type-guided proof system, making the above verification largely automatic.

ECOOP 2024

24:6 Qafny: A Quantum-Program Verifier

3.1 Loci, Types, and States

Figure 4 shows Qafny loci, types, and states, which are used for tracking possibly entangled
qubits. In GHZ (Figure 3c), each loop step in lines 4-6 entangles the qubit x[j] with
x[0, j), i.e., the entangled qubit group is expanded from x[0, j) to x[0, j + 1). However, the
entanglement here is implicit: the program syntax does not directly tell if x[j] is entangled
with x[0, j) but relies on an analysis to resolve the entanglement scopes, which is captured
by introducing
1) loci (κ) to group possibly entangled qubits,
2) standard kind environments (Ω) to record variable kinds (explained below), and
3) locus type environments (σ) to keep track of both loci and their quantum state types.

Qafny variables may represent one of three kinds 2 of values (Figure 4). C and M kinds
are scalars; the former is an integer3, and the latter is a measurement outcome (r, n) where
r is the probability of outcome n. Q m kind variables represent a physical m-length qubit
array conceptually living in a heap. For simplicity, we assume no aliasing in variable names,
no overlapping between qubit arrays referred to by any two different variables, and scalar
and qubit array variables are always distinct. Quantum values are categorized into three
different types: Nor, Had and EN. A normal value (Nor) is an array (tensor product) of
single-qubit values |0⟩ or |1⟩. Sometimes, a (Nor)-typed value is associated with an amplitude
z, representing an intermediate partial program state; an example is in Section 6.1. A
Hadamard (Had) typed value represents a collection of qubits in superposition but not
entangled, i.e., an n-qubit array 1√

2 (|0⟩ + α(r0) |1⟩) ⊗ ... ⊗ 1√
2 (|0⟩ + α(rn−1) |1⟩), can be

encoded as 1√
2n

⊗n-1
j=0 (|0⟩+ α(rj) |1⟩), with α(rj) = e2πirj (rj ∈ R) being the local phase, a

special amplitude whose norm is 1, i.e., |α(rj)| = 1. The most general form of n-qubit values
is the entanglement (EN) typed value, consisting of a linear combination (represented as an
array) of basis-kets, as

∑m
j=0 zjβjηj , where m is the number of elements in the array. In

Qafny, we extend traditional basis-ket structures in the Dirac notation to be the above form,
so each basis-ket of the above value contains not only an amplitude zj and a basis βj but also
a frozen basis stack ηj , storing bases not directly involved in the current computation. Here,
βj can always be represented as a single |cj⟩ by the equation in Figure 4. Every βj in the
array has the same cardinality, e.g., if |c0| = n (β0 = |c0⟩), then |ci| = n (βj = |cj⟩) for all j.

A Qafny quantum state (φ), representing a quantum heap, maps loci to quantum values.
Loci in a heap φ partition it into regions that contain possibly entangled qubits, with the
guarantee that cross-locus qubits are not entangled. Each locus is a list of disjoint ranges
(s), each represented by x[n,m) – an in-place array slice selected from n to m (exclusive)
in a physical qubit array x (always being Q kind). Ranges in a locus are pairwise disjoint,
written as s1 F s2. For conciseness, we abbreviate a singleton range x[j, j + 1) as x[j]. At
the type level, we maintain a locus type environment (σ) mapping loci to quantum types:
any quantum state φ always has an entry in σ, guaranteeing that dom(φ) = dom(σ), i.e., loci
mentioned in φ and σ are the same. Locus type environments are stateful, i.e., a statement
that starts with the environment σ could end up with a different one σ′ because a locus
could be modified during the execution. In addition to the locus type environment, we keep
a kind environment between variables and their kinds. However, it is scoped and immutable
as the kind of any scoped variable does not change.

2 C and M kinds are also used as context modes in type checking. See Figure 9.
3 Any classical values are permitted in our implementation. For simplicity, we only consider integers here.

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:7

Basic Terms:
Nat. Num m,n ∈ N Real r ∈ R Amplitude z ∈ C Phase α(r) ::= e2πir

Variable x, y Bit d ::= 0 | 1 Bitstring c ∈ d+ Basis Vector β ::= (|c⟩)∗

Modes, Kinds, Types, and Classical/Quantum Values:
Mode g ::= C | M
Classical Scalar Value v ::= n | (r, n)
Kind gk ::= g | Q n
Frozen Basis Stack γ ::= (|β|)
Full Basis Vector η ::= βγ
Basic Ket w ::= zη
Quantum Type τ ::= Nor | Had | EN
Quantum Value (Forms) q ::= w | 1√

2n

⊗n-1
j=0 (|0⟩+ α(rj) |1⟩) |

∑m
j=0 wj

Quantum Loci, Environment, and States
Qubit Array Range s ::= x[n,m)
Locus κ ::= s concatenated op F

Kind Environment Ω ::= x→ gk

Type Environment σ ::= κ : τ concatenated op ⊎
Quantum State (Heap) φ ::= κ : q concatenated op ⊎

Syntax Abbreviations and Basis/Locus Equations∑0
j=0 wj ≃ w0

∑m
j=0 wj ≃

∑
j wj 1γ ≃ γ zβ(|∅|) ≃ zβ zβ(|β′|) ≃ zββ′

|c1⟩ |c2⟩ ≡ |c1c2⟩ x[n, n) ≡ ∅ ∅ F κ ≡ κ x[n,m) F κ ≡ x[n, j) F x[j,m) F κ where n ≤ j ≤ m

Figure 4 Qafny element syntax. Each range x[n, m) in a locus represents the number range
[n, m) in physical qubit array x. Loci are finite lists, while type environments and states are finite
sets. The operations after “concatenated op” are concatenations for loci, type environments, and
quantum states.

On the bottom of Figure 4, we show abbreviations (≃) rules for presentation purposes;
A ≃ B means we write B to mean A. The left-most rule shows that Nor typed value is a
singleton EN typed array; see the type-guided state rewrites in Section 3.3. We can also omit
the (||) in a basis-ket presentation and color the basis stack with a hat sign −, e.g., 1√

2 |0⟩ |1⟩
means 1√

2 |0⟩ (| |1⟩ |); additionally, 1√
2 |0⟩ |1⟩ means 1√

2 |0⟩ |1⟩ (|∅|). Below the ≃ rules in the
figure, we present structural equations (≡) among bases and loci: 1) the locus concatenation
F holds identity and associativity equational properties; 2) a range (x[n, n)) containing 0
qubit is empty; and 3) it is free to split a range (x[n,m)) into two (x[n, j) and x[j,m)),
preserving the disjointness of F.

3.2 Simultaneity for Tracking Qubit Positions and Entanglement Scopes
Qafny uses locus transformations, captured by the type inference on program operations,
to track entanglement scopes. Figure 5 describes the automated proof steps for verifying
a loop-step in Figure 3c. The bottom pre-condition contains the quantum values for the
two disjoint loci x[0, j) and x[j, n). The quantum conditional’s Boolean guard and body are
applied to the qubits x[j-1] and x[j], respectively, appearing in the above two loci. The
application entangles x[j] with the locus x[0, j) and transforms the locus to be x[0, j+1), by
appending x[j] to the end of x[0, j). The append, as the first (bottom) proof step in Figure 5,
happens automatically through rewrites guided by the locus transformations in the type
environment σ associated with each proof triple. After the rewrites, we preserve the property
of no entangled cross-locus qubits.

In the above example, the static rewrites of a locus in a type environment simultaneously
gear and change the rewrites of the locus value form in the associated state. We call this
manipulation mechanism simultaneity. As shown in Section 1, quantum operations can
apply on arbitrary qubit positions, which might seriously harm proof automation, based on
previous experiments [16, 3] (Section 5.2), even if they tried hard for automation tactics. It
is necessary to statically track qubit positions to permit the canonicalization of quantum
state rewrites, allowing a uniform way of defining proof rules for operations.

ECOOP 2024

24:8 Qafny: A Quantum-Program Verifier

Ω; {κ2 : EN} ⊢M

{
κ2 7→

1
√

2
|0⟩ |1⟩|1⟩

}
e
{
κ2 7→

1
√

2
|1⟩ |1⟩|1⟩

} P-Oracle

Ω; {κ1 : EN} ⊢M

{
κ1 7→

1
√

2
|1⟩ |0⟩|1⟩

}
e
{
κ1 7→

1
√

2
|1⟩ |1⟩|1⟩

} EQ

Ω; {κ1 : EN} ⊢M

{
F (x[j-1], κ1) 7→

1∑
d=0

1
√

2
|d⟩ |0⟩

}
e
{
κ1 7→

1
√

2
|1⟩ |1⟩|1⟩

} M-F

Ω; {κ : EN} ⊢C

{
κ 7→

1∑
d=0

1
√

2
|d⟩ |0⟩

}
if (x[j-1]) e

{
U(¬x[j-1]) 7→

1∑
d=0

1
√

2
|d⟩ |0⟩ ∗ U(x[j-1]) 7→

1
√

2
|1⟩ |1⟩|1⟩

} P-If

Ω;σ ⊢C

{
x[0, j) 7→

1∑
d=0

1
√

2
|d⟩ ∗ x[j, n) 7→ |0⟩

}
if (x[j-1]) e

{
x[0, j+1) 7→

1∑
d=0

1
√

2
|d⟩ ∗ x[j+1, n) 7→ |0⟩

}
κ = x[j-1] F κ1 κ1 = x[0, j-1) F x[j] κ2 = x[j] F x[0, j-1)
e = x[j] ← x[j] + 1; σ = {x[0, j) : EN , x[j, n) : Nor} U(b) = U(b , x[j-1] , κ)

Figure 5 Detailed automated proof for a loop-step in GHZ. Constructed from the bottom up.

To permit automated proof inference, we design the uniformity in Qafny proof rules
to require that the locus fragments for qubits that an operation is directly applied always
be prefixed. For example in Figure 5 P-If, instead of having locus x[0, j+1), we rewrite it
further to κ (x[j-1] F x[0, j-1) F x[j]), so the qubit x[j-1] that the Boolean guard is applied
to appears at the start position. These rewrites simultaneously and appropriately rearrange
the quantum value associated with the loci. In a Qafny quantum state, qubits in a locus are
arranged as a list of indices pointing to qubit positions. The locus indices point to particular
qubits in a Nor and Had typed value since they essentially represent an array of qubits. An
EN typed value consists of a list of basis-kets; the locus indices refer to the corresponding
bases appearing in each basis-ket.

x[j-1]F x[0, j-1) F x[j] 7→
∑1

d=0
1√
2
|d⟩ |d⟩ |0⟩ x[0, j-1)Fx[j]7→ 1√

2
|1⟩|0⟩|1⟩ x[j]Fx[0, j-1) 7→ 1√

2
|0⟩|1⟩|1⟩

In the three example states above from Figure 5, the first maps the locus κ (x[j-1] F
x[0, j-1)Fx[j]) to the pre-state in the bottom of line P-If, where |d⟩ is expanded to |d⟩ |d⟩. In
each basis-ket (d is 0 or 1), the first qubit x[j-1] of the locus κ corresponds to the first basis
bit, while the last qubit x[j] corresponds to |0⟩, the last basis bit. Applying an operation on
x[j] performs the application on the last basis bit |0⟩ for every basis-ket. We can also refer a
consecutive fragment of a locus to its basis bits, e.g., range x[0, j-1) refers to |d⟩, the middle
portion of each basis-ket, provided that they have the same cardinality. In this paper, we call
the corresponding basis bits of qubits or locus fragments for a value (or a basis-ket set) as the
qubit’s/locus’s position bases of the value (or the basis-ket set). A locus’s position bases are
linked and moved according to the rewrites of the locus, e.g., the middle and right examples
above represent the rewrites from locus κ1 = x[0, j-1) F x[j] to κ2 = x[j] F x[0, j-1) in the
pre-states (bottom to upper) of Figure 5 line EQ.

The rewrite moves x[j] in κ1 to the front in κ2; correspondingly, x[j]’s position basis
(|0⟩) is also moved to the front. These examples show the functionality of frozen basis stacks.
The two basis-kets’ frozen basis stacks both contain a basis |1⟩, which are not referenced
by any part of a locus and therefore unreachable qubits. As shown in Section 1, we want
local reasoning and preserving quantum theorems, i.e., a quantum state for a program piece
does not mention qubits that are not reachable in the piece, e.g., accessing x[j-1] above
inside the conditional body means a violation of no-cloning. However, quantum states can
be entangled, so unreachable qubits cannot be separated from the states. Instead, we hide

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:9

the unreachable qubits, such as x[j-1], in the frozen stack and retrieve it after jumping out
of the conditional body. A comprehensive example is given in Section 6.2. We show how to
unfreeze the frozen bases and explain the motivation for having frozen bases shortly below.

3.3 Rewrites based on Locus Type and State Equivalence Relations
The Qafny type system maintains simultaneity through the type-guided state rewrites,
formalized as equivalence relations (Section 4.3). Other than the locus qubit position
permutation introduced above, the types associated with loci in the environment also play an
essential role in the rewrites. In Qafny, a locus represents a possibly entangled qubit group.
From the study of many quantum algorithms [2, 4, 35, 48, 1, 43, 30, 14], we found that the
establishment of an entanglement group can be viewed as a loop structure of incrementally
adding a qubit to the group at a time, representing the entanglement’s scope expansion; as
the analogy in Figure 3b, qubits in the blue part are added to the orange part one by one.
This behavior is similar to splits and joins of array elements if we view quantum states as
arrays. However, joining and splitting two EN-typed values are hard problems 4. Another
critical observation in studying many quantum algorithms is that the entanglement group
establishment usually involves splitting a qubit in a Nor/Had typed value and joining it to an
existing EN typed entanglement group. We manage these join and split patterns type-guided
equations in Qafny, suitable for automated verification. The GHZ example above (Figure 3c
line 5) is an example of Nor and an EN type state split and join, where in each loop-step
in Figure 3c, a Nor-typed qubit x[j] is split from locus x[j, n) and moved to the end of the
EN-typed locus x[0, j). Details are in Section 4.3.

3.4 The Qafny Proof System Glance Via Quantum Conditional Proofs
We integrate our type system with the Qafny proof system, where Qafny’s type-guided
proof triple (Ω;σ ⊢g

{
P

}
e

{
Q

}
) states that from a pre-condition P , executing e results in

a post-condition Q, provided that P and Q are resp. well-formed w.r.t σ and σ′, where
Ω, σ ⊢g e ▷ σ′ is a valid typing judgment (explained in Section 4.3).

A key design principle for proof automation rules is compositional and rule generalization,
i.e., automated proof steps should be compositional, where each proof step is localized
regarding a localized state, and the generalization means that automation should not depend
on the specific local states. The issue with quantum proof rule designs is entanglement, i.e., a
program execution on a local state might have global effects, which force the proof automation
system to perform case analyses on the local states to resolve the global effects. For example,
in verifying the conditional if (x[j-1]) e in the bottom of Figure 5, e can be applied to an
entangled qubit state outside the visibility of qubits mentioned in e. Since e can be arbitrarily
complicated, the prior work [56] handles the verification of the quantum conditional by
expanding it as a whole matrix applied to a whole quantum state and performing case
analyses. For proof automation, we need to design a uniform procedure, expressed as proof
rules, to derive the verification; such a task is handled by predicate transformers and frozen
stacks built on our locus structures.

An example is given at the line P-If in Figure 5, we utilize two locus predicate trans-
formers F and U to transform the pre- and post-conditions so that they focus on the loci
and basis-kets relevant to the current computation. In verifying the quantum conditional
(if (x[j-1]) {x[j]← x[j]+1}), we first apply F to transform the pre-condition. For the value

4 The former is a Cartesian product; the latter is ≥ NP-hard, both unsuitable for automated verification.

ECOOP 2024

24:10 Qafny: A Quantum-Program Verifier

1√
2 |0⟩ |0⟩+ 1√

2 |1⟩ |0⟩, we filter out the basis-ket 1√
2 |0⟩ |0⟩, as the Boolean guard (x[j-1]) is

not satisfiable for x[j-1]’s position basis (|0⟩) of the basis-ket. For the remaining basis-ket
1√
2 |1⟩ |0⟩, we freeze x[j-1]’s position basis (|1⟩), by pushing |1⟩ to the frozen stack as an

unreachable position, highlighted by |1⟩, since it represents the qubit appearing in the
Boolean guard that should not join any computation in e (x[j] ← x[j]+1). A frozen stack
represents the link between the local state and its entangled global state. Each basis-ket in a
superposition state can be associated with a single frozen stack, and we utilize a predicate
transformer to manipulate all these frozen stacks in a state, recording the side-effects of the
entangled global state caused by local state changes.

Notice that the locus is transformed from κ to κ1 by removing x[j-1] to preserve
simultaneity. The post-condition κ1 7→ 1√

2 |1⟩ |1⟩|1⟩ contains only the computation result
of the basis-ket 1√

2 |1⟩ |0⟩, and we want the final post-state to contain all other missing
pieces, which is the task of the two U transformers. U(b, x[j-1], κ) points to the basis-
ket satisfying the Boolean guard (1√

2 |1⟩ |0⟩), from the above result post-condition. The
transformer transforms x[j-1]’s position basis, currently in the stack, back to its normal
position. U(¬b, x[j-1], κ) represents the basis-ket not satisfying the guard (1√

2 |0⟩ |0⟩), where
we retrieve it from the pre-condition through the transformer. Finally, the two transformers
transform and assemble the two states into one as the post-condition at the bottom Figure 5.
Section 4.4 contains more details.

4 Qafny Formalism

This section formalizes Qafny’s syntax, semantics, type system, proof system, and the
corresponding soundness and completeness theorems. Running example in Figure 6 describes
quantum order finding, the core component of Shor’s algorithm (complete one in TR [24] C.5).
The program assumes that an n-qubit H gate and an addition (y[0, n)+1) respectively applied
to ranges x[0, n) and y[0, n) before line 3. The for-loop entangles range y[0, n) with every qubit
in x[0, n), one per loop step, and applies a modulo multiplication in each step. measure(y)
(partial measurement) in line 8 non-deterministically outputs a classical value at % N for y,
and interconnectively rearranges x[0, n)’s quantum state, with all basis kets’ bases related to
a period value p. We unveil the details along with the section.

4.1 Qafny Syntax
Qafny is a C-like flow-sensitive language equipped with quantum heap mutations, quantum
conditionals, and for-loops. We intend to provide users with a high-level view of quantum
operations, e.g., viewing H and QFT[−1] gates as state preparation, quantum oracles (µ in
[23]) as quantum arithmetic operations, and controlled gates as quantum conditionals and
loops. As in Figure 7, aside from standard forms such as sequence (e ; e) and SKIP ({}),
statements e also include let binding (let x = am in e), quantum heap mutations (_←− _),
quantum/classical conditionals (if (b) e), and loops (for j ∈ [a1, a2) && b {e}). The let
statement binds either the result of an arithmetic expression (a) or a computational basis
measurement operator (measure(y)) to an immutable C/M kind variable x in the body e. This
design ensures all classical variables are immutable and lexically scoped to avoid quantum
observer breakdown due to mutating a classical variable inside a quantum conditional body.

(1) int u = 0; if (x[0]) u = 1; ✗ (2) if (x[0]) let u = 1 in {}; ✓ (3) let u = 1 in if (x[0]) {}; ✓

Here, case (1) declares u as 0 and changes its value to 1 inside the quantum conditional,

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:11

1 < a < N E(t) = x[t, n) 7→ 1√
2n - t

⊗n-t-1
i=0 (|0⟩+ |1⟩) ∗ x[0, t) F y[0, n) 7→

∑2t-1
i=0

1√
2t
|i⟩ |ai % N⟩

1 {x[0, n) 7→ 1√
2n

⊗n-1
j=0 (|0⟩+ |1⟩) ∗ y[0, n) 7→ |0⟩ |1⟩} { x[0, n) : Had , y[0, n) : Nor }

2 { E(0) } { x[0, n) : Had , x[0, 0) F y[0, n) : EN }
3 for j ∈ [0, n) && x[j]
4 { E(j) } { x[j, n) : Had , x[0, j) F y[0, n) : EN }
5 y[0, n) ← a2j

· y[0, n) % N ;
6 { E(n) } { x[0, 0) : Had , x[0, n) F y[0, n) : EN }
7 { x[0, n) F y[0, n) 7→

∑2n-1
i=0

1√
2n
|i⟩ |ai % N⟩ } { x[0, n) F y[0, n) : EN }

8 let u = measure(y) in ...

9
{

x[0, n) 7→ 1√
r

∑r-1
k=0 |t + kp⟩ ∗ p = ord(a, N)

∗ u = (p
2n , at % N) ∗ r = rnd(2n

p)

}
{ x[0, n) : EN }

Figure 6 Snippets from quantum order finding in Shor’s algorithm; full proof in TR [24] C.5.
ord(a, N) gets the order of a and N . rnd(r) rounds r to the nearest integer. We interpret integers
as bitstrings in |i⟩ and |ai % N⟩. The right column presents the types of all loci involved.

oqasm Expr µ

Arith Expr a ::= x | x[i, j) | v | a1 + a2 | a1 · a2 | ...
Bool Expr b ::= x[a] | (a1 = a2) @ x[a] | (a1 < a2) @ x[a] | ...
Predicate Locus K ::= κ | M (x, n, κ) | F (b, κ, κ) | U(b, κ, κ)
Predicate P, Q, R ::= a1 = a2 | a1 < a2 | K 7→ q | P ∧ P | P ∗ P | ...
Gate Expr op ::= H | QFT[−1]

C/M Kind Expr am ::= a | measure(y)
Statement e ::= {} | κ←− op | κ←− µ | let x = am in e

| e1 ; e2 | if (b) e | for j ∈ [a1, a2) && b {e}

Figure 7 Core Qafny syntax. Element syntax is in Figure 4 and oqasm is in [23]. QFT[−1] refers
to the QFT and reversed QFT. An arithmetic expression x is a C/M kind variable, x[i, j) is a quantum
array range, and v is a C/M kind value. x[a] is the a-th element of qubit array x.

which creates an observer effect because u’s value depends on qubit x[0]. Cases (2) and (3)
show that our immutable let binding can avoid the issue because the binding in (2) can be
compiled to (3) due to the immutability; thus, u’s value does not depend on the qubit.

A quantum heap mutation operation mutates qubit array data by applying to a locus
κ either a unitary state preparation operation (op) (one of Hadamard H, quantum Fourier
transformation QFT, and its inverse QFT−1) or a unitary oracle operation (µ). 5 Other unitary
operations, including quantum diffusion and amplification operations, are in TR [24] C.1.

Quantum reversible Boolean guards b are implemented as oqasm oracle operations,
expressed by one of (a1 = a2) @ x[a], (a1 < a2) @ x[a], and x[a], which intuitively amounts
to computing a1 = a2, a1 < a2 and false respectively as b0 and storing the result of
b0 ⊕ x[a] as a binary in qubit x[a].6 In both conditionals and loops, guards b are used to
represent the qubits that are controlling. In addition to the let bindings, the quantum
for-loop also introduces and enumerates C-kind value j over interval [a1, a2) with j visible
to both the guard b and the loop body e. As a result of immutability, loops in Qafny are
guaranteed to terminate. If all variables in the guard b are classical, the conditional or

5 µ can define all quantum arithmetics, e.g., x[j]+1 (Fig. 3c) & a2j

y[0, n) % N (Fig. 6). See [23].
6 a1 and a2 can possibly apply to a range, like y[0, n), in an entangled locus.

ECOOP 2024

24:12 Qafny: A Quantum-Program Verifier

S-ExpC
(φ, e[n/x]) ⇓ φ′

(φ, let x =n in e) ⇓ φ′

S-ExpM
(φ, e[(r, n)/x]) ⇓ φ′

(φ, let x = (r, n) in e) ⇓ φ′

S-OP
◦ = op ∨ ◦ = µ

(φ ⊎ {κ F κ′ : q}, κ←− ◦) ⇓ φ ⊎ {κ F κ′ : J◦K|κ|
q}

S-If
FV (Ω, b) = κ JbK|κ|

q = q⟨κ, b⟩+ q⟨κ,¬b⟩ (φ ⊎ {κ′ : S|κ|(q⟨κ, b⟩)}, e) ⇓ φ ⊎ {κ′ : q′}
(φ ⊎ {κ F κ′ : q}, if (b) e) ⇓ φ ⊎ {κ F κ′ : P (q′) + q⟨κ,¬b⟩}

S-Loop
n < n

′ (φ, if (b[n1/j]) e[n1/j]) ⇓ φ′ (φ′
, for j ∈ [n+1, n′) && b {e}) ⇓ φ′′

(φ, for j ∈ [n, n′) && b {e}) ⇓ φ′′

S-Loop1
n ≥ n′

(φ, for j ∈ [n, n′) && b {e}) ⇓ φ

S-Seq
(φ, e1) ⇓ φ′ (φ′

, e2) ⇓ φ′′

(φ, e1 ; e2) ⇓ φ′′

S-Mea
κ = y[0, n) r =

∑
j

|zj |2 (φ ⊎ {κ′ :
∑

j

zj√
r
ηj}, e[(r, {|c|})/x]) ⇓ φ′

(φ ⊎ {κ F κ′ :
∑

j

zj |c⟩ ηj + q⟨κ, c ̸= κ⟩}, let x = measure(y) in e) ⇓ φ′

J◦Kn(
∑

j
zj |cj⟩ ηj) ≜

∑
j zj(J◦K |cj⟩)ηj where (◦ = µ ∨ ◦ = op ∨ ◦ = b) ∧ ∀j |cj | = n

(
∑

i zi|ci⟩ηi + q)⟨κ, b⟩ ≜
∑

i zi|ci⟩ηi where ∀i. |ci| = |κ| ∧ Jb[ci/κ]K = true

Sn(
∑

j zj |cj⟩ βj(|β′
j |)) ≜

∑
j zjβj(| |cj⟩ β′

j |) where ∀j |cj | = n

P (
∑

j zjβj(| |cj⟩ β′
j |)) ≜

∑
j zj |cj⟩ βj(|β′

j |)

Figure 8 Selected semantic rules. {|c|} turns basis c to an integer.

loop becomes a standard classical one, which is differentiated and definable by our type
system, described in TR [24] C. Obviously, users can always view a Qafny program as a
quantum sub-component in a Dafny program, which provides better library support for
classical conditionals. Predicates and predicate loci in Figure 7 describe quantum state
properties in the Qafny proof system, explained in Section 4.4.

4.2 Qafny Semantics
The Qafny semantics is formalized as a big-step transition relation (φ, e) ⇓ φ′, with φ / φ′
being quantum states as described in Figure 4. The judgment relation states that a program
e with the pre-state φ transitions to a post-state φ′. A selection of the rules defining ⇓ may
be found Figure 8, and the additional rules are in TR [24] C.2. FV (Ω,−) produces a locus
by unioning all qubits in − with the quantum variable kind information in Ω; its definition
is given in TR [24] A.

Assignment and Mutation Operations. Rules S-ExpC and S-ExpM define the behaviors
for C and M kind classical variable assignments, which perform variable-value substitutions.
Rule S-OP defines a quantum heap mutation applying a state preparation operation (op)
or an oracle expression (µ) to a locus κ for a EN-typed state. Here, the locus fragment κ to
which the operation is applied must be the very first one in the locus κ F κ′ that refers to the
entire quantum state q. If not, we will first apply equivalence rewrites to be explained in
Section 4.3 to move κ to the front. With κ preceding the rest fragment κ′, the operation’s
semantic function J◦Kn (◦ being H or µ) is then applied to κ’s position bases in the quantum
value q. More specifically, the function is only applied to the first n (equal to |κ|) basis bits
of each basis-ket in the value while leaving the rest unchanged. The semantic interpretations
of the op and µ operations are essentially the quantum gate semantics given in Li et al. [23].
For example, in Figure 5 line P-Oracle, we apply an oracle operation x[j]+1 to x[j], the
first position of the locus κ2 (i.e.,x[j] F x[0, j-1)), which transforms the first basis bit to |1⟩.

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:13

Before the application, we rewrite the pre-state containing κ1 below the line EQ in Figure 5,
to the form corresponding to the locus κ2 above the line.

Quantum Conditionals. As in rule S-If, for a conditional if (b) e, we first evaluate the
Boolean guard b on κ’s position bases (FV (Ω, b) = κ) of the quantum value state q to
JbK|κ|q7 because b’s computation might have side-effects in changing κ’s position bases, as
the example in Section 6.2. The quantum value referred by κ F κ′ is further partitioned into
q⟨κ, b⟩+ q⟨κ,¬b⟩ where q⟨κ, b⟩ is a set of basis-kets whose κ’s position bases satisfying b and
q⟨κ,¬b⟩ is the rest. Since the body e only affects the basis-kets (q⟨κ, b⟩) satisfying the guard
b, we rule out the basis-kets q⟨κ,¬b⟩ (unsatisfying the guard) in e’s computation. We also
need to push κ’s position bases in q⟨κ, b⟩ to the frozen stacks through the Sn operation to
maintain the locus-state simultaneity in Section 3.2.

We describe rule S-If along with an example in Figure 6 line 3-5. Here, the j-th iteration is
unrolled to a quantum conditional if (x[j]) {y[0, n) ← a2j · y[0, n) %N}. The loci involved
in the computation are x[j] and x[0, j) F y[0, n), and their state transitions are given as:{

x[j] : 1√
2 (|0⟩+ |1⟩)

}
⊎

{
x[0, j) F y[0, n) :

∑2j -1
i=0

1√
2j
|i⟩ |ai % N⟩

}
≡

{
x[j] F x[0, j) F y[0, n) :

∑2j -1
i=0

1√
2j+1 |1⟩ |i⟩|a

i % N⟩+
∑2j -1

i=0
1√
2j+1 |0⟩ |i⟩|a

i % N⟩
}

S-If−−→
{

x[j] F x[0, j) F y[0, n) :
∑2j -1

i=0
1√
2j+1 |1⟩ |i⟩|(a

i · a2j

) % N⟩+
∑2j -1

i=0
1√
2j+1 |0⟩ |i⟩|a

i % N⟩
}

≡
{

x[0, j+1) F y[0, n) :
∑2j+1-1

i=0
1√
2j+1 |i⟩ |a

i % N⟩
}

The first equation transition (≡) merges the two locus states and turns the merged state
into two sets (separated by +), respectively representing basis-kets where x[j]’s position
bases are 1 and 0. Since the Boolean guard x[j] has no side-effects, the application JbK|κ| is
an identity. The S-If application performs a modulo multiplication oracle application on the
basis-ket set where x[j]’s position bases being 1, while the last equation merges the two sets
back to one summation formula. The S-If application above can be further decomposed into
two additional transitions in between:

−→
{

x[0, j) F y[0, n) :
∑2j -1

i=0
1√
2j+1 |i⟩|a

i % N⟩|1⟩
}

S-OP−−−→
{

x[0, j) F y[0, n) :
∑2j -1

i=0
1√
2j+1 |i⟩|(a

i · a2j

) % N⟩|1⟩
}

The first transition removes the q⟨κ,¬b⟩ part, e.g., the basis-ket set where x[j]’s position
bases are 0. Additionally, for every basis-ket in the q⟨κ, b⟩ set, e.g., the basis-ket set where
x[j]’s position bases being 1, we freeze κ’s position bases by pushing the bases into the
basis-ket’s stacks through the function application S|κ|(q⟨κ, b⟩), which finds the first |κ| bits
in every basis-ket and push them into the basis-ket’s stack so that e’s application targets locus
κ′ instead of κ F κ′. As the first transition above, for each basis-ket, we push x[j]’s position
basis (|1⟩) to the basis-ket’s stack, as the |1⟩ part and the pointed-to locus is rewritten
to x[0, j) F y[0, n). After applying the body e to the state, for every basis-ket, we pop κ’s
position bases (P (q′)) from the basis-ket’s stack and relabel the locus of the state to be
κFκ′; in doing so, we also need to add the unmodified basis-kets q⟨κ,¬b⟩ back into the whole
state. After applying S-OP on locus x[0, j) F y[0, n) above, we pop |1⟩ from every basis-ket’s
stack and assemble the unchanged part (

∑2j-1
i=0

1√
2j+1 |0⟩ |i⟩|ai % N⟩) back to the state of locus

x[j] F x[0, j) F y[0, n); the result is shown as the state after the S-If−−→ application above.

7 This is defined formally as an oracle, same as µ above.

ECOOP 2024

24:14 Qafny: A Quantum-Program Verifier

T-Par
σ ⪯ σ′ Ω;σ′ ⊢g e ▷ σ

′′

Ω;σ ⊢g e ▷ σ
′′

T-ExpC
x ̸∈ dom(Ω) Ω;σ ⊢g e[n/x] ▷ σ′

Ω;σ ⊢g let x =n in e ▷ σ′

T-ExpM
x ̸∈ dom(Ω) Ω ⊢ a : M Ω[x 7→ M];σ ⊢g e ▷ σ

′

Ω;σ ⊢g let x = a in e ▷ σ′

T-OP
◦ = op ∨ ◦ = µ

Ω;σ ⊎ {κ F κ′ : EN} ⊢g κ←− ◦ ▷ σ ⊎ {κ F κ′ : EN}

T-Mea
Ω(y) = Q n x ̸∈ dom(Ω)

Ω[x 7→ M];σ ⊎ {κ : EN} ⊢C e ▷ σ
′

Ω;σ ⊎ {y[0, n) F κ : τ} ⊢C let x = measure(y) in e ▷ σ′

T-If
FV (Ω, b) = κ FV (Ω, e) ⊆ κ′ Ω;σ ⊎ {κ′ : EN} ⊢M e ▷ σ ⊎ {κ′ : EN}

Ω;σ ⊎ {κ F κ′ : EN} ⊢g if (b) e ▷ σ ⊎ {κ F κ′ : EN}

T-Seq
Ω;σ ⊢g e1 ▷ σ1 Ω;σ1 ⊢g e2 ▷ σ2

Ω;σ ⊢g e1 ; e2 ▷ σ2

T-Loop
x ̸∈ dom(Ω) ∀j ∈ [n1, n2) .Ω;σ[j/x] ⊢g if (b[j/x]) e[j/x] ▷ σ[j+1/x]

Ω;σ[n1/x] ⊢g for x ∈ [n1, n2) && b {e} ▷ σ[n2/x]

Figure 9 Qafny type system. F V (Ω,−) gets a locus containing qubits in − w.r.t. Ω (TR [24] A).

Quantum Measurement. A measurement (let x = measure(y) in e) collapses a qubit array
y, binds a M-kind outcome to x, and restricts its usage in e. Rule S-Mea shows the partial
measurement behavior 8. Assume that the locus containing the qubit array y is y[0, n) F κ′,
the measurement is essentially a two-step array filter: (1) the basis-kets of the EN typed value
is partitioned into two sets (separated by +): (

∑m
j=0 zj |c⟩ |cj⟩) + q⟨κ, c ̸= κ⟩ with κ = y[0, n),

by randomly picking a |κ|-length basis c where every basis-ket in the first set have κ’s position
basis c; and (2) we create a new array value by removing all the basis-kets not having c as
prefixes (the q⟨κ, c ̸= κ⟩ part) and also removing the κ’s position basis in every remaining
basis-ket; thus, the quantum value becomes

∑m
j=0

zj√
r
ηj . Notice that the element size of the

post-state m+1 is smaller than the size of the pre-state before the measurement. Since the
amplitudes of basis-kets must satisfy

∑
i |zi|2 = 1, we need to normalize the amplitude of

each element in the post-state by multiplying a factor 1√
r
, with r =

∑m
j=0 |zj |2 as the sum

of the amplitude squares appearing in the post-state. When proving quantum program
properties, the amplitudes appearing in basis-kets usually follow a periodic pattern that
users can provide, so computing r will be relatively simple, see Section 4.4. In Figure 6, the
measurement (line 8) transitions the state from lines 7 to 9. Locus y[0, n)’s position basis is
|ai % N⟩ for each basis-ket in

∑2n-1
i=0

1√
2n
|i⟩ |ai % N⟩. We then randomly pick the basis value

at % N as a measurement result, stored in u, and the probability of the pick is p
2n where p is

the order of a and N . The probability is computed solely based on p because it represents
the period of the factorization in Shor’s algorithm. The number (r) of remaining basis-kets
in range x[0, n) is computed by rounding 2n

p .

4.3 Qafny Locus Type System
The Qafny typing judgment Ω;σ ⊢g e ▷ σ′ states that e is well-typed under the context
mode g (the syntax of kind g is reused as context modes) and environments Ω and σ. The
kind environment Ω is populated through let and for loops that introduce C and M kind
variables, while Q-kind variable mappings in Ω are given as a global environment. Selected
type rules are in Figure 9; the rules not mentioned are similar and given in TR [24] C.3. For
every type rule, well-formed domains (Ω ⊢ dom(σ)) are required but hidden from the rules,

8 A complete measurement is a special case of a partial measurement when κ′ is empty in S-Mea

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:15

σ ⪯ σ

{∅ : τ} ⊎ σ ⪯ σ

{κ : τ} ⊎ σ ⪯ {κ : τ ′} ⊎ σ
where τ ⊑ τ ′

{κ1 F s1 F s2 F κ2 : τ} ⊎ σ ⪯ {κ1 F s2 F s1 F κ2 : τ} ⊎ σ

{κ1 : τ} ⊎ {κ2 : τ} ⊎ σ ⪯ {κ1 F κ2 : τ} ⊎ σ

{κ1 F κ2 : τ} ⊎ σ ⪯ {κ1 : τ} ⊎ {κ2 : τ} ⊎ σ

(a) Environment Equivalence.

φ ≡ φ

{∅ : q} ⊎ φ ≡ φ

{κ : q} ⊎ φ ≡ {κ : q′} ⊎ φ
where q ≡|κ| q′

{κ1 F s1 F s2 F κ2 : q} ⊎ φ ≡ {κ1 F s2 F s1 F κ2 : q′} ⊎ φ
where q′ = q|κ1|⟨|s1| ≍ |s2|⟩

{κ1 : q1} ⊎ {κ2 : q2} ⊎ φ ≡ {κ1 F κ2 : q′} ⊎ φ
where q′ = q1 ▷◁ q2

{κ1 F κ2 : φ} ⊎ σ ≡ {κ1 : φ1} ⊎ {κ2 : φ2} ⊎ σ
where φ1 ▷◁ φ2 = φ ∧ |φ1| = |κ1|

(b) State Equivalence.

Permutation:

(q1
⊗

q2
⊗

q3
⊗

q4)n⟨i ≍ k⟩ ≜ q1
⊗

q3
⊗

q2
⊗

q4 where |q1| = n ∧ |q2| = i ∧ |q3| = k

(
∑

j zj |cj⟩ |c′
j⟩ |c

′′
j ⟩ ηj)n⟨i ≍ k⟩ ≜

∑
j zj |cj⟩ |c′′

j ⟩ |c
′
j⟩ ηj where |cj | = n ∧ |c′

j | = i ∧ |c′′
j | = k

Join Product:
z1 |c1⟩ ▷◁ z2 |c2⟩ ≜ (z1 · z2) |c1⟩ |c2⟩

∑n
j=0 zj |cj⟩ ▷◁

∑m
k=0 zk |ck⟩ ≜

∑n·m
zj · zk |cj⟩ |ck⟩

|c1⟩ ▷◁
∑

j zjηj ≜
∑

j zj |c1⟩ ηj (|0⟩+ α(r) |1⟩) ▷◁
∑

j zjηj ≜
∑

j zj |0⟩ ηj +
∑

j (α(r) · zj) |1⟩ ηj

Figure 10 Qafny type/state relations. · is math mult. Term
∑n·m P is a summation omitting the

indexing details.
⊗

expands a Had array, as 1√
2n+m

⊗n+m-2
j=0 qj = (1√

2n

⊗n-1
j=0 qj)

⊗
(1√

2m

⊗m-1
j=0 qj).

such that every variable used in all loci of σ must appear in Ω, while Ω ⊢ a : M judges that
the expression a is well-formed and returns an M kind; see TR [24] A and B. The type system
enforces three properties below.

No Cloning and Observer Breakdown. We enforce no cloning by disjointing qubits men-
tioned in a quantum conditional Boolean guard and its body. In rule T-If, κ and κ′ are
disjoint unioned, and the two FV side-conditions ensure that the qubits mentioned in the
Boolean guard and conditional body are respectively within κ and κ′; thus, they do not
overlap. Qafny is a flow-sensitive language, as we enforce no observer breakdown by ensuring
no classical variable assignments through the Qafny syntax and no measurements inside a
quantum conditional through context restrictions. Each program begins with the context
mode C, which permits all Qafny operations. Once a type rule switches the mode to M, as
in T-If, measurement operations are suspended in this scope, as T-Mea is valid only if
the context mode is C. For instance, let’s imagine that the measurement in Figure 6 line 8
lives inside the for-loop in line 5, which our type system would forbid because type checking
through T-Loop calls rule T-If that marks the context mode to M, while the application of
rule T-Mea requires a C mode context to begin with.

Guiding Locus Equivalence and Rewriting. The semantics in Section 4.2 assumes that the
loci in quantum states can be in ideal forms, e.g., rule S-OP assumes that the target locus
κ are always prefixed. This step is valid if we can rewrite (type environment partial order
⪯) the locus to the ideal form through rule T-Par, which interconnectively rewrites the
locus appearing in the state, through our state equivalence relation (≡), as the locus state
simultaneity enforcement (Section 3.2). The state equivalence rewrites have two components.

First, the type and quantum value forms have simultaneity, i.e., given a type τ1 for
a locus κ in a type environment (σ), if it is a subtype (⊑) of another type τ2, κ’s value
q1 in a state (φ) can be rewritten to q2 that has the type τ2 through state equivalence
rewrites (≡n) where n is the number of qubits in q1 and q2. Both ⊑ and ≡n are reflexive and

ECOOP 2024

24:16 Qafny: A Quantum-Program Verifier

types Nor and Had are subtypes of EN, which means that a Nor typed value (|c⟩) and a Had
typed value (1√

2n

⊗n-1
j=0 (|0⟩+ α(rj) |1⟩)) can be rewritten to an EN typed value (TR [24] C.3).

For example, range x[0, n)’s Had typed value 1√
2n

⊗n-1
j=0 (|0⟩+ |1⟩) in Figure 6 line 1 can be

rewritten to an EN type as
∑2n-1
i=0

1√
2n
|i⟩. If such a rewrite happens, we correspondingly

transform x[0, n)’s type to EN in the type environment.
Second, type environment partial order (⪯) and state equivalence (≡) also have sim-

ultaneity – in a proof judgment, we associate the state predicate, representing a state φ,
with the type environment σ by sharing the same domain, i.e., dom(φ) = dom(σ). Thus, the
environment rewrites (⪯) happening in σ gear the state rewrites in φ, e.g., the bottom proof
step of Figure 5 transforms locus x[0, j) in σ to locus κ (x[j-1] F x[0, j-1) F x[j]) above it,
and the state rewrites in the pre-condition predicate happen accordingly as (left to right):

{x[0, j) :
∑1

d=0
1√
2 |d⟩} ⊎ {x[j] : |0⟩} ≡ {x[0, j + 1) :

∑1
d=0

1√
2 |d⟩ |0⟩} ≡ {κ :

∑1
d=0

1√
2 |d⟩ |0⟩}

{x[0, j) : EN} ⊎ {x[j] : Nor} ⪯ {x[0, j + 1) : EN} ⪯ {κ : EN}

Here, we add qubit x[j] (|0⟩) to the end of locus x[0, j) and transform locus x[0, j + 1) to
κ, so the upper proof step (P-If) in Figure 5 can proceed. The above rewrites are derived by
the rules in Figure 10, where the rules in environment partial order and state equivalence are
one-to-one corresponding. The first three lines describe the properties of reflective, identity,
and subtyping equivalence. The fourth line enforces that the environment and state are close
under locus permutation. After the equivalence rewrite, the position bases of ranges s1 and
s2 are mutated by applying the function q|κ1|⟨|s1| ≍ |s2|⟩. One example is the locus rewrite
in Figure 6 line 7 from left to right, as:{

x[0, n) F y[0, n) : EN
}

⪯
{

y[0, n) F x[0, n) : EN
}{

x[0, n) F y[0, n) :
∑2n-1

i=0
1√
2n
|i⟩ |ai % N⟩

}
≡

{
y[0, n) F x[0, n) :

∑2n-1
i=0

1√
2n
|ai % N⟩ |i⟩

}
The last two lines in Figures 10a and 10b describe locus joins and splits, where the latter

is an inverse of the former but much harder to perform practically. In the most general
form, joining two EN-type states computes the Cartesian product of their basis-kets, shown
in the bottom of Figure 10, which is practically hard for proof automation. Fortunately, the
join operations in most quantum algorithms are between a Nor/Had typed and an EN-typed
state, Joining a Nor-typed and EN-typed state puts extra qubits in the right location in
every basis-ket of the EN-typed state as discussed in Section 3.3. Joining a Had-typed qubit
(single qubit state) and EN-typed state duplicates the EN-typed basis-kets. In every loop
step in Figure 6 line 3-5, we add a Had-typed qubit x[j] to the middle of an EN-typed locus
x[0, j) F y[0, n), transform the state to:

{
x[0, j+1) F y[0, n) :

2j -1∑
i=0

1√
2j
|i⟩ |0⟩ |ai % N⟩+

2j∑
j=0

1√
2j-1

|i⟩ |1⟩ |ai % N⟩
}

The state can be further rewritten to the one in Figure 6 by merging the above two parts
(separated by +). Notice that the basis-kets are still all distinct because the two parts are
distinguished by x[j]’s position basis, i.e., |0⟩ and |1⟩. TR [24] F shows practical ways to
perform additional state joins and splits, including an upgraded dependent type system to
permit a few cases of splitting EN typed values.

Approximating Locus Scope. The type system approximates locus scopes. In rule T-If, we
use κ F κ′ as the approximate locus large enough to describe all possible qubits directly and
indirectly mentioned in b and e. Such scope approximation might be over-approximated, which
does not cause incorrectness in our proof system, while under-approximation is forbidden.

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:17

P-Frame
dom(σ) ∩ FV (Ω, R) = ∅

FV (Ω, e) ⊆ dom(σ) Ω;σ ⊢g

{
P

}
e
{
Q

}
Ω;σ ⊎ σ′ ⊢g

{
P ∗ R

}
e
{
Q ∗ R

} P-Con
σ ⪯ σ′

P ⇒ P
′ Ω;σ′ ⊢g

{
P

′
}
e
{
Q

′
}

Q
′ ⇒ Q

Ω;σ ⊢g

{
P

}
e
{
Q

}
P-OP

◦ = op ∨ ◦ = µ

Ω; {κ F κ′ : EN} ⊢g

{
κ F κ

′ 7→ q
}
κ←− ◦

{
κ F κ

′ 7→ J◦K|κ|
q
} P-ExpC

Ω;σ ⊢g

{
P

}
e[n/x]

{
Q

}
Ω;σ ⊢g

{
P

}
let x =n in e

{
Q

}
P-Mea
x ̸∈ dom(Ω) Ω[x 7→ M];σ ⊎ {κ : EN} ⊢C

{
P [M (x, n, κ)/y[0, n) F κ]

}
e
{
Q

}
Ω;σ ⊎ {y[0, n) F κ : EN} ⊢C

{
P

}
let x = measure(y) in e

{
Q

}
P-If

FV (Ω, b) = κ Ω; {κ′ : EN} ⊢M

{
P [F (b, κ, κ′)/κ F κ′]

}
e
{
Q

}
Ω; {κ F κ′ : EN} ⊢g

{
P

}
if (b) e

{
P [U(¬b, κ, κ F κ′)/κ F κ′] ∗Q[U(b, κ, κ F κ′)/κ′]

}
P-Loop
n < n

′ Ω;σ ⊢g

{
P (j) ∧ j <n′

}
if (b) e

{
P (j+1)

}
Ω;σ[n/j] ⊢g

{
P (n)

}
for j ∈ [n, n′) && b {e}

{
P (n′)

}
P-Seq

Ω;σ ⊢g e1 ▷ σ1

Ω;σ ⊢g

{
P

}
e1

{
P

′
}

Ω;σ1 ⊢g

{
P

′
}
e2

{
Q

}
Ω;σ ⊢g

{
P

}
e1 ; e2

{
Q

}
Figure 11 Select proof rules.

For example, if we combine two Had-typed qubits in our system and transform the value to
EN-type as 1

2 (|00⟩+ |01⟩+ |10⟩+ |11⟩), this is an over-approximation since the two qubits are
not entangled. Partially measuring the first qubit leaves the second qubit’s value unchanged
as 1√

2 (|0⟩+ |1⟩).
In addition to the above properties, we allow C-kind classical variables introduced by let

to be evaluated in the type checking stage 9, while tracks M variables in Ω. Rule T-ExpC
enforces that a classical variable x is replaced with its assigned value n in e, and classical
expressions in e containing x are evaluated, so the proof system can avoid handling constants.

4.4 The Qafny Proof System
Every valid proof judgment Ω;σ ⊢g

{
P

}
e

{
Q

}
, shown in Figure 11, contains a pre- and

post-condition predicates P and Q (syntax in Figure 7) for the statement e, satisfying the
type restriction that Ω;σ ⊢g e ▷ σ′; we also enforce that the predicate well-typed restrictions
Ω;σ ⊢ P and Ω;σ′ ⊢ Q, meaning that all loci mentioned in P must be in the right forms and
as elements in dom(σ), introduced in TR [24] B. We state the restrictions as the typechecking
constraint (TC) below:

TC(σ, P,Q) ≜ Ω;σ ⊢g e ▷ σ1 ∧ Ω;σ ⊢ P ∧ Ω;σ1 ⊢ Q

Rule P-Con describes the consequence rule where a well-formed pre- and post-conditions P
and Q under σ is replaced by P ′ and Q′, well-formed under σ′. Under the new conditions, we
enforce a new type constraint TC (σ′, P ′, Q′). Rule P-Frame is a specialized separation logic
frame rule that separates the locus type environment and the quantum value to support local
reasoning on quantum states. Rule M-Frame in Figure 12 describes the predicate semantics

9 We consider all computation that only needs classical computers is done in the compilation time.

ECOOP 2024

24:18 Qafny: A Quantum-Program Verifier

Predicate Model Rules:
M-Map Ω;ψ;σ;φ ⊎ {κ :

∑
j zj |cj⟩(|βj |)} |=g κ 7→

∑
j zj |cj⟩(|β′

j |)
M-Local Ω[x 7→ M];ψ[x 7→ (r, v)];σ;φ |=g P if Ω;ψ;σ;φ |=g P [(r, v)/x]
M-Frame Ω;ψ;σ ⊎ σ′;φ ⊎ φ′ |=g P ∗Q if Ω;ψ;σ;φ |=g P and Ω;ψ;σ′;φ′ |=g Q

Transformation Rules:
M-F F (b, κ, κ′) 7→ q = κ′ 7→

∑
j zjβj(| |cj⟩ β′

j |)
where JbK|κ|q = q⟨κ, b⟩+ q⟨κ,¬b⟩ ∧ q⟨κ, b⟩ =

∑
j zj |cj⟩βj(|β′

j |) ∧ ∀j. |cj | = |κ|

M-U
U(¬b, κ, κ′) 7→

∑
j zj |cj⟩ηj + q⟨κ,¬b⟩

∗U(b, κ, κ′) 7→
∑

j z
′
jβj(| |cj⟩ β′

j |)
= κ′ 7→

∑
j z

′
j |cj⟩βj(|β′

j |) + q⟨κ,¬b⟩ where ∀j. |κ| = |cj |

M-M M (x, n, κ) 7→
∑

j zj |c⟩ηj + q⟨κ, c ̸= κ⟩ = κ 7→
∑

j

zj√
r
ηj ∗ x = (r, {|c|}) where n = |c|

Figure 12 Predicate semantics.

of the separating conjunction ∗, where ψ is a local store mapping from M-kind variables to
M-kind values (r, n); we require dom(ψ) ⊆ dom(Ω) and M-kind variables modeled by M-Local.
Besides predicate well-formedness, the predicate semantic judgment (Ω;ψ;σ;φ |=g P) also
ensures the states (φ) being well-formed (Ω;σ ⊢g φ), defined as follows:

▶ Definition 1 (Well-formed Qafny state). A state φ is well-formed, written as Ω;σ ⊢g φ, iff
dom(σ) = dom(φ), Ω ⊢ dom(σ) (all variables in φ are in Ω), and:

For every κ ∈ dom(σ), s.t. σ(κ) = Nor, φ(κ) = z |c⟩ (|β|) and |κ| = |c| and |z| ≤ 1;
specifically, if g = C, β = ∅ and |z| = 1. 10

For every κ ∈ dom(σ), s.t. σ(κ) = Had, φ(κ) = 1√
2n

⊗n-1
j=0 (|0⟩+ α(rj) |1⟩) and |κ| = n.

For every κ ∈ dom(σ), s.t. σ(κ) = EN, φ(κ) =
∑m
j=0 zj |cj⟩(|βj |), and for all j, |κ| = |cj |

and
∑m
j=0 |z|2 ≤ 1; specifically, if g = C, for all j, βj = ∅ and

∑m
j=0 |z|2 = 1.

Here, an M mode state, representing a computation living in an M mode context, has a
relaxed well-formedness, where

∑m
j=0 |z|2 ≤ 1 and βj ̸= ∅. This is needed for describing the

state inside the execution of a conditional body in rule S-If in Section 4.2, where unmodified
basis-kets are removed before the execution. There is a trick to utilizing the frozen stacks for
promoting proof automation, as the modeling rule M-Map equates two quantum values by
discarding the frozen stack qubits, and we will see an example in Section 6.1.

The predicate syntax (Figure 7) introduces three locus predicate transformers F , U,
and M in the locus syntax category, but their semantics (Figure 12) essentially transform
quantum states in the predicates, as we define them in equational style, explained below.

Assignment and Heap Mutation Operations. Rule P-ExpC describes C-kind variable
substitutions. Rule P-OP is a classical separation logic style heap mutation rule for state
preparations κ←− op and oracles κ←− µ, which analogize such operations as classical array
map operations mentioned in Figure 2. Here, we discuss the cases when the state of the
target loci κ F κ′ is of type EN, while some other cases are introduced in TR [24] C.4. Each
element in the array style pre-state q, for locus κ F κ′, represents a basis-ket zj |cj⟩ ηj , with
|κ| = |cj |. Here, we first locate κ’s position basis |cj⟩ in each basis-ket of q, and then apply
the operations op or µ to |cj⟩.

Quantum Conditionals. As in Section 3.4 and Figure 5, the key in designing a proof rule for
a quantum conditional if (b) {e} with its locus scope κFκ′, is to encode two transformers: F
and U. In rule P-If (Figure 11), we require the σ only contains locus κFκ′, which can be done

10 |κ| and |c| are the lengths of κ and c, and |z| is the norm.

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:19

through P-Frame. We then utilize F (b, κ, κ′) to finish two tasks: (1) it computes b’s side-
effects on the κ’s position bases (JbK|κ|q), and (2) it freezes all basis-kets that are irrelevant
when reasoning about the body e. This freezing mechanism modeled by the equation M-F
(Figure 12) is accomplished at two levels: stashing all kets unsatisfying b (q⟨κ,¬b⟩) and
moving κ’s position bases to basis stacks for the rest of basis-kets. After substituting κ F κ′
for F (b, κ, κ′), besides expelling the parts not satisfying b, we also shrink the locus κ F κ′ to
κ′, which in turn marked the κ’s position basis in every basis-ket inaccessible as κ is now
invisible in the locus type environment.

After the body e’s proof steps, the post-state Q describes the computation result for κ′
without the frozen parts. To reinstate the state for κ F κ′ by retrieving the frozen parts,
we first substitute locus κ F κ′ for U(¬b, κ, κ F κ′) in P , which represents the unmodified
part, unsatisfying b, in the pre-state. We also substitute κ′ for U(b, κ, κ F κ′) in Q, which
represents the part satisfying b, evolved due to the execution of e. Rule M-U (Figure 12)
describes the predicate transformation, empowered by the locus construct U, that utilizes the
innate relation of separating conjunction and logical complement to assemble the previously
unmodified and the evolved parts. Rule P-Loop proves a for loop where P (j) is the loop
invariant parameterized over the loop counter j. Other rules are introduced in TR [24] C.4.

Measurement. A measurement (let x = measure(y) in e) collapses a qubit array y, binds
an M kind outcome to x and restricts its usage in e. These statements usually appear in
periodical patterns in many quantum algorithms, which users formalize as predicates to help
verify algorithm properties. In rule P-Mea, we first select an n-length prefix bitstring c from
one of range y[0, n)’s position bases; it then computes the probability r and assigns (r, {|c|})
to variable x. We then replace the locus y[0, n) F κ in P with a locus predicate transformer
M (x, n, κ) and update the type state Ω and σ by replacing y[0, n) F κ with κ. The construct
M (x, n, κ), with its transformation rule M-M (Figure 12), is introduced to do exactly the
two steps in Section 4.2 for describing measurement operations, i.e., we remove basis-kets
not having c as y[0, n)’s position bases (q⟨κ, c ̸= κ⟩) and truncate y[0, n)’s position bases in
the rest basis-kets.

Ω[u 7→ M]; {x[0, n) : EN} ⊢C
{

M (u, n, x[0, n)) 7→ C
}
{}

{
x[0, n) 7→ D ∗ E

}
Ω; {y[0, n) F x[0, n) : EN} ⊢C

{
y[0, n) F x[0, n) 7→ C

}
let u = measure(y) in {}

{
x[0, n) 7→ D ∗ E

}
C ≜

∑2n-1
j=0

1√
2n
|aj % N⟩ |j⟩ D ≜ 1√

r

∑r-1
k=0 |t + kp⟩ E ≜ p = ord(a, N) ∗ u = (p

2n , at % N) ∗ r = rnd(2n

p)

We show a proof fragment above for the partial measurement in Figure 6 line 8. The proof
applies rule P-Mea by replacing locus y[0, n) F x[0, n) with M (u, n, x[0, n)). On the top, the
pre- and post-conditions are equivalent, as explained below. In locus y[0, n) F x[0, n)’s state,
for every basis-ket, range y[0, n)’s position basis is |aj % N⟩; the value j is range x[0, n)’s
position basis for the same basis-ket. Randomly picking a basis value at % N also filters a
specific j in range x[0, n), i.e., we collect any j having the relation aj % N = at % N . Notice
that modulo multiplication is a periodic function, which means that the relation can be
rewritten at+kp % N = at % N , and p is the period order. Thus, the post-measurement state
for range x[0, n) can be rewritten as a summation of k: 1√

r

∑r-1
k=0 |t + kp⟩. The probability

of selecting |aj % N⟩ is r
2n . In the Qafny implementation, we include additional axioms for

these periodical theorems to grant this pre- and post-condition equivalence so that we can
utilize Qafny to verify Shor’s algorithm.

ECOOP 2024

24:20 Qafny: A Quantum-Program Verifier

4.5 Qafny Metatheory
We now present Qafny’s type soundness and its proof system’s soundness and relative
completeness. These results have all been verified in Coq. We prove our type system’s
soundness with respect to the semantics, assuming well-formedness (TR [24] Definition 5 and
Definition 1). The type soundness shows that our type system ensures the three properties in
Section 4.3 and that the “in-place” style Qafny semantics can describe all different quantum
operations without losing generality because we can always use the equivalence rewrites to
rewrite the locus state in ideal forms.

▶ Theorem 2 (Qafny type soundness). If Ω;σ ⊢g e ▷ σ′ and Ω;σ ⊢g φ, then there exists φ′
such that (φ, e) ⇓ φ′ and Ω;σ′ ⊢g φ′.

Our proof system is sound and relatively complete w.r.t. its semantics for well-typed
Qafny programs. Our system utilizes a subset of separation logic admitting completeness
by excluding qubit array allocation and pointer aliasing. Since every quantum program in
Qafny converges, the soundness and completeness refer to the total correctness of the Qafny
proof system. ψ(e) refers to that we substitute every variable x ∈ dom(ψ) in e with ψ(x).

▶ Theorem 3 (proof system soundness). For any program e, such that Ω;σ ⊢g e ▷ σ′ and
Ω;σ ⊢g

{
P

}
e

{
Q

}
, and for every ψ and φ, such that Ω;σ ⊢g φ and Ω;ψ;σ;φ |=g P , there

exists a state φ′, such that (φ,ψ(e)) ⇓ φ′ and Ω;σ′ ⊢g φ′ and Ω;ψ;σ′;φ′ |=g Q.

▶ Theorem 4 (proof system relative completeness). For a well-typed program e, such that
Ω;σ ⊢g e ▷ σ′, (φ, e) ⇓ φ′ and Ω;σ ⊢g φ, and for all predicates P and Q such that
Ω; ∅;σ;φ |=g P and Ω; ∅;σ′;φ′ |= Q, we have Ω;σ ⊢g

{
P

}
e

{
Q

}
.

5 Qafny Compilation and Implementation Evaluation

Here, we focus on the Qafny proof system compilation to a subset of separation logic.

5.1 Translation from Qafny to Separation Logic
The Qafny types and loci are extra annotations associated with Qafny programs and
predicates for proof automation. In the Qafny implementation in Dafny, these annotations
are not present – qubits are arranged as simple array structures without extra metadata
such as locus types. This section shows how Qafny annotations can be safely erased with no
loss of expressiveness, e.g., loci are represented as virtual-level dynamic sequences without
types, and equational rewrites are compiled with extra operations in the compiled language.
We present a compilation algorithm that converts from Qafny to Sep, a C-like language
admitting a subset of an array separation logic proof system.

Target Compilation Language. Sep is based on a variant of the separation logic introduced
by Yang and O’Hearn [55], which is sound and complete. Mainly, we utilize the allocation
(alloc), heap lookup and mutation operations (mutate) in the work, with three additional
operations (marked red in Figure 13). In Sep, program states are divided into virtual and
physical levels in Figure 14. Every Sep program starts with a physical qubit array, analogous
to physical heap structures. The program operations are applied to qubit sequences of array
indices (A), representing a collection of physical qubit locations that live at the virtual level.
Sep permits immutable program variables (x) representing these sequences.

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:21

A, B ::= n
õp ::= µ | op
ẽ ::= x = alloc(A)

| mutate(n, õp, x)
| (r, n) = pick(x, m)
| filter(x, b)
| amp(x, r)
| ...

Figure 13 Sep Syntax.

Sequence Variable
(Stack)

Sequence Indices
(Virtual Heap)

Qubit Array
(Physical Heap)

Figure 14 Heap Layout.

⇓e ⊧e

→ȇ ⊧ȇ

≫

☑

☑

⚙

Figure 15 Compilation Proof Dia-
gram.

An allocation x = alloc(A) allocates a new array x that copies A’s content and has the
same length as A, while a heap mutation mutate(n, õp, x) mutates the first n elements of the
array pointed to by x, by applying the operation õp. Operations pick, filter, and amp are
variations of heap lookups and mutations. (r, n) = pick(x,m) measures the first m qubits
in x, with the outcome n = {|c|} and its probability r, similar to the computation in S-Mea
(Figure 8). filter(x, b) mutates x’s pointed-to quantum value by filtering out basis-kets
that are not satisfying b, and amp(x, r) multiples r to every basis-kets in x’s quantum value.
Yang and O’Hearn maintain completeness by carefully designing the proof rules so heap
mutations do not modify pointer references. Sep ensures the same property by immutable
variables, i.e., if a sequence changes, we allocate a new array and a new variable pointing to
the array. For example, to join two loci represented by two sequences A and B, respectively
pointed to by variables x and y, we allocate a new space for the two sequences’ concatenation
(A@B); so we compile the join to u = alloc(A@B). We must abandon using x and y after
the join and only refer to u in the following computation.

Compilation Procedure. As shown in Figure 15, we compile the Qafny language to Sep
and achieve the proof system compilation through the proof system completeness in Qafny
and Sep. For every Qafny program, we translate the program and states to Sep. Then, every
provable triple in Qafny can be translated to a provable Sep triple through the language
translation from Qafny to Sep as the diagram (Figure 15). The compilation is defined
by extending Qafny’s typing judgment thusly: Ω;σ ⊢g (θ, φ, e) ≫ (θ, ψ̃, φ̃, ẽ). We include
an initial Qafny state φ, the output local store (ψ̃), mapping variables to qubit location
sequences, and state (φ̃), mapping from locations to quantum values. θ and θ′ are maps
from locus locations in φ to Sep qubit locations in φ̃.

Here, we explain the rules for compilation by examples of compiling the Qafny operations
to Sep. The locus rewrites (Section 4.3) are compiled to the array allocations, such as
the join operation above. Additionally, the split of a locus is compiled to two consecutive
allocations of two sequences, respectively representing the two split result loci. In compiling a
measurement statement (let x = measure(y) in ...), where y locates in the locus y[0, n) F κ,
let’s assume that the locus is mapped in θ by sequence [0, n+m), pointed to by u in ψ̃, while
the range y[0, n) is mapped by the sequence [0, n); the operation is compiled to:

(r, p) = pick(u, m) ; filter(u, u[0, n) = p) ; amp(u,
∑

j

zj√
r

) ; t = alloc([n, n+m))

We first pick a key p, filter out the basis-kets whose u[0, n)’s position bases are not p,
normalize the amplitudes of the remaining basis-kets (Section 4.4), and allocate a new space t
for the quantum residue after the measurement. We also update κ in θ to map to the newly al-
located space of t instead of [n, n+m). We compile an operation x[0, n) F y[0]← (x < 5) @ y[0]
with its initial state φ (C = 1√

2n

⊗n-1
j=0 (|0⟩+ |1⟩)) to Sep, with D =

∑2n-1
j=0 |j⟩ |j < 5⟩. Such

an operation computes the Boolean comparison of x < 5 and stores the value to y[0].

ECOOP 2024

24:22 Qafny: A Quantum-Program Verifier

Algorithm Qafny QBricks SQIR
Runtime
(sec) LOC Runtime

(sec) LOC Runtime
(sec) LOC

GHZ 14.2 16 - - 141 119
Deutsch–Jozsa 8.3 13 74 108 163 408
Grover’s search 26.7 27 253 233 148 1018
Shor’s algorithm 36.3 36 1328 1163 1244 8464

Figure 16 Running time (include theory loading) & LOC
comparison, in an i7 Ubuntu Mach. 8G RAM; -: no data.

Algorithm Runtime
(sec) LOC

Controlled GHZ 6.4 12
Quantum Walk 43.1 49

Figure 17 Qafny data for
case studies in Section 6.

φ =
{
x[0, n) : C, y[0] : |0⟩

}
x[0, n) F y[0] ← (x < 5) @ y[0]

φ′ =
{
x[0, n) F y[0] : D

} ≫
ψ̃ =

{
p : [0, n), t : {n}

}
, φ̃ =

{
[0, n) : C ∗ {n} : |0⟩

}
u = alloc([0, n+1)) ; mutate(n+1, u[0, n) < 5@u[n], u)

ψ̃′ = ψ̃ ∪
{
u : [n + 1 , 2n + 2)

}
, φ̃′ = φ̃ ∪

{
[n + 1 , 2n + 2) : D

}
After the compilation, we create two local variables p and t to represent the loci x and y,
mapping to sequences [0, n) and {n}. We then add u = alloc([0, n + 1)) allocating a new
space [n+1, 2n + 2) to join the two loci. The post-state contains a new variable u, pointing
to the concatenated new sequence [n + 1 , 2n + 2). The old arrays p and t are still in the
stores, but we refer to the locus x[0, n) F y[0] as the newly allocated space in the following
computation by mapping the locus to the new space in θ′. As a future work, we will prove
the proof system compilation correctness from Qafny to Sep, proof strategy in Figure 15.

5.2 Implementation and Comparison to Existing Quantum Verifications
We have implemented a prototype Qafny to Dafny compiler, which faithfully respects the
presented Qafny to Sep compilation algorithm. To validate the soundness of the compiler
implementation, we create many test cases for the compiler. We then insert a number of
bugs in these test cases; Qafny has been able to detect all of them. Dafny’s proof engine
cannot be used to verify arbitrary separation-logic assertions because it only has an implicit
frame rule implementation that allows users to set up variables that can be modified in a
function. However, Qafny only requires a subset of separation logic, and the Qafny loci
disjoint property and non-aliasing guarantee ensures that the Qafny separation conjunctions
are captured by Dafny’s implicit frames when we compile Qafny to Dafny. We utilize the
Qafny to Dafny compiler as an automated verification framework to verify six quantum
programs, shown in Section 6 and Figure 17.

There were two main approaches to verifying quantum programs: program and measurement-
based. The former views quantum program transitions as a state machine and verifies the
inductive relations among transitions, while the latter focuses on the relations between
quantum program measurements and the post-processing classical components – they typic-
ally view quantum components as black boxes with specifications.

Qafny is program-based and other program-based mechanized frameworks for formally
verifying quantum programs, including Qwire [41], SQIR [16, 15] (an upgrade of Qwire), and
QBricks [3], provide libraries in an interactive proof assistant to guide users for building
inductive proofs for quantum programs; each has verified 7-10 quantum programs. The
core of SQIR and QBricks, as well as other executable quantum verification platforms, is a
circuit-description language. Verifying a program in these frameworks inductively builds a
unitary or density matrix as the program’s quantum circuit semantic interpretation. For
example, to verify Shor’s algorithm, both QBricks and SQIR require inductive proofs based
on elementary circuit gates to derive the unitary or density matrix semantics of different sub-
components, including state preparations, oracles, and QFT−1 gates. Additionally, program

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:23

verification in these frameworks requires the development of theories and tactics to capture
program properties, which usually involves the proof of additional theorems. This approach is
qualitatively different from Qafny, where program verification involves embedding assertions
in a program for completing a proof. Qafny identifies a few program structures, such as
oracles and quantum conditionals, and formulates inductive patterns involving these quantum
components as proof rules. These rules interact with quantum program operations and states
for deriving verification proofs, so proofs are largely automated based on this small set of
structures.

Figure 16 shows a quantitative comparison of Qafny, regarding theory/proof statement
running time and numbers of lines (LOC), with respect to QBricks and SQIR for verifying
several quantum programs. The results show that Qafny has the shortest running time and
LOCs for verifying programs with our automated proof engine. The QBricks verification
has better LOCs but a similar running time compared to SQIR. SQIR provides a complete
verification [38] by proving every mathematical theorem involved in the verification, so its
verification proofs are longer than QBricks; QBricks performs better by providing some auto-
matic tactics for sequence operations (e ; e) and taking many math theorems as assumptions
without proof. In testing the two frameworks, we found that the previous claim [16, 15]
that rigorous quantum proofs are one-time cost is problematic because inductive theorem
provers update constantly. Once an update happens, users might need to fix the proofs
(not programs or specifications) in their history code, e.g., our researcher spent three days
fixing minor bugs in the proofs in SQIR and QBricks due to Coq and Why3 version issues.
Moreover, a new program verification in SQIR typically required detailed proofs of additional
theorems beyond the program specifications.

Qafny provides fast prototyping, where we apply the automated verification mechanisms
in many classical systems [40, 22] to verify quantum programs and save programmers’ effort.
Verifying programs in many inductive theorem provers takes weeks and months to finish, while
the same tasks in Qafny cost researchers a few days due to the Qafny features mentioned
above. The fast prototyping in Qafny can also help users to explore and understand new
quantum program patterns such as the two case studies in Section 6, whose running time and
LOCs are shown in Figure 17. Compared to the data of well-known algorithms in Figure 16,
the data for verifying the new programs do not show a significant difference, showing Qafny’s
ability to explore new algorithm behaviors without proving many new theories, which usually
appears in the above quantum verification frameworks.

6 Case Studies

With two examples, we show Qafny as a rapid prototyping tool for quantum programs.

6.1 Controlled GHZ: Composing Quantum Algorithms from Others

|0⟩ H •
|0⟩

GHZ
......

. . .
|0⟩

1
{

x[0] 7→ |0⟩ , y[0, n) 7→ |0⟩
}

2 x[0] ← H;
3

{
x[0] 7→ 1√

2 (|0⟩+ |1⟩) ∗ y[0, n) 7→ |0⟩
}

4 ⇒
{

x[0] F y[0, n) 7→
∑1

d=0 |d⟩|0⟩
}

5 if (x[0]) ghz(y);
6

{
x[0] F y[0, n) 7→ 1√

2 |0⟩+ 1
2 |1⟩ |0⟩+ 1

2 |1⟩
}

Figure 18 Controlled GHZ circuit and proof. ghz(y) is in Fig. 3. Lines 3-4 automatically inferred.

ECOOP 2024

24:24 Qafny: A Quantum-Program Verifier

Automated verification frameworks such as Dafny encourage programmers to build
program proofs based on the reuse of subprogram proofs. However, this perspective is more
or less overlooked in previous quantum proof systems. In SQIR, for example, verifying the
correctness of a controlled GHZ, a simple circuit constructed by extending GHZ with an
extra control qubit, requires generalizing the GHZ circuit to any arbitrary inputs. In Qafny,
users do not need to do this, as shown here.

Figure 18 provides a proof of the Controlled GHZ algorithm based on a proven GHZ
method in Figure 3c. The focal point is the quantum conditional on line 5. For verifying a
GHZ circuit, its input is an n-qubit Nor-typed value of all |0⟩, but the given value, in line
4, is an EN-typed entanglement

∑1
d=0 |d⟩|0⟩. Here is where SQIR gets stuck. In Qafny, we

automatically verify the proof by rule P-If and the equivalence relation to rewrite a singleton
EN value to a Nor one, as

∑0
j=0 zj |cj⟩ ≡ z0 |c0⟩. The detailed proof for the conditional is

given below, where U(b) = U(b, x[0], κ) and κ = x[0] F y[0, n).

Ω; {y[0, n) : Nor} ⊢M

{
y[0, n) 7→ |0⟩|1⟩

}
ghz(y)

{
y[0, n) 7→

1∑
d=0

1
√

2
|d⟩|1⟩

}
Ω; {y[0, n) : EN} ⊢M

{
F (x[0], y[0, n)) 7→

1∑
d=0

|d⟩|0⟩
}

ghz(y)
{
y[0, n) 7→

1∑
d=0

1
√

2
|d⟩|1⟩

} EQ

Ω; {κ : EN} ⊢C

{
κ 7→

1∑
d=0

|d⟩|0⟩
}

if (x[0]) ghz(y)
{
U(¬x[0]) 7→

1∑
d=0

|d⟩|0⟩ ∗ U(x[0]) 7→
1∑

d=0

1
√

2
|d⟩|1⟩

}
Ω; {κ : EN} ⊢C

{
κ 7→

1∑
d=0

|d⟩|0⟩
}

if (x[0]) ghz(y)
{
κ 7→

1
√

2
|0⟩+

1
2
|1⟩ |0⟩+

1
2
|1⟩

}
P-If

After rule P-If is applied, locus y[0, n)’s value is rewritten to a Nor type value on the top
as |0⟩|1⟩, where |0⟩ is n qubits and |1⟩ is frozen in the stack. Since two values are equivalent
as Qafny discards stacks, |0⟩|1⟩ is equivalent to |0⟩, which satisfies the input condition for
GHZ, so all proof obligations introduced to invoke the ghz method are discharged.

6.2 Case Study: Understanding Quantum Walk

0

1 2

3 4 5 6

left right

Figure 19 Tree Structure.

Quantum walk [54, 4, 53] is a quantum version of the classical random walk [36] and an
important framework for developing quantum algorithms. However, most quantum walk
analyses are based on Hamiltonian simulation, which deters many computer programmers
from the quantum walk framework. Here, we show that the discrete-time quantum walk,
at its very least, is a quantum version of breadth-first search; thus, many algorithms [4]
based on Quantum walk can be understood as performing search algorithms in the quantum
setting.

Figure 20 lists the proof outline for the core loop of a discrete-time quantum walk
algorithm to traverse a complete binary tree (structure in Figure 19); each node has a unique
key. The m-depth nodes in the tree have keys j ∈ [2m - 1, 2m+1 - 2), which form a sequence

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:25

q(j) ≜
∑2(j+1) - 3

i=0 zi |⌊log (i+1)⌋⟩ |pat(i, j)⟩ |i+1⟩ |di⟩ where pat(i, j) ≜ |0⟩⊗⌊log (i+1)⌋ |1⟩⊗(j - ⌊log (i+1)⌋)

1
{

x[0, t) 7→ 1√
2t

⊗t-1
i=0 (|0⟩+ |1⟩) ∗ y[0, m) 7→ |0⟩ ∗ h[0, n) 7→ |0⟩ ∗ u[0] 7→ |0⟩ ∗m = 2t ·m < n

}
2 ⇒

{
x[0, t) F y[0, 0) F h[0, n) F u[0] 7→

∑2t-1
k=0

1√
2t
|k⟩ |0⟩ |0⟩ ∗ y[0, m) 7→ |0⟩ ∗m = 2t ·m < n

}
3 for j ∈ [0, m) && (x[0, t) < j + 1) @ y[j]

4
{

x[0, t) F y[0, j) F h[0, n) F u[0] 7→ q(j) +
∑2t-1

k=j
1√
2t
|k⟩ |0⟩ |0⟩ |0⟩ ∗ y[j, m) 7→ |0⟩

}
5 { u[0] ← H;
6 if (u[0]) left(⌊log (j+1)⌋ , h[0, n));
7 if (¬u[0]) right(⌊log (j+1)⌋ , h[0, n)); }
8

{
x[0, t) F y[0, m) F h[0, n) F u[0] 7→ q(m)

}
Figure 20 Quantum walk reachable node verification for a complete binary tree. left and right

reach corresponding children. q(j) is a quantum value with var j. i + 1 is a node key in a tree.

from left to right in depth m-th, such as the sequence 3, 4, 5, 6 in depth 2 in Figure 19. Thus,
a node (key j) has a depth m = ⌊log (j+1)⌋, and its left and right children have keys
2 · j + 1 and 2 · j + 2, respectively representing the left and right operation semantics in
Figure 20, i.e., for any basis |j⟩, with m being the depth and j a node key, the outputs of
applying left and right are |2 · j + 1⟩ and |2 · j + 2⟩, respectively 11.

The algorithm in Figure 20 requires four quantum ranges: a t-qubit range x in superposi-
tion, an m-qubit range where y[j]’s position bases keep the result of evaluating x[0, t) < j + 1
for j-th loop step, an n-qubit node register h storing the node keys, and a single qubit u
acting as the random walk coin and determining the moving direction of the next step (1
for the left and 0 for the right). In line 2, we merge the ranges x, u, and h as the locus
x[0, t) F y[0, 0) F h[0, n) F u[0] (y[0, 0) is empty); at each loop step (lines 3-7), we entangle a
qubit in the range y into the locus. Finally, at line 8, the loop program entangles all these
ranges together as a locus x[0, t) F y[0,m) F h[0, n) F u[0].

In the j-th loop step, we abbreviate locus x[0, t)F y[0, j)Fh[0, n)Fu[0] as κ⟨j⟩, and locus
κ⟨j⟩’s state value is split into two basis-ket sets, separated by + in Figure 20 line 4. To verify
a step, we first split the y[j] qubit, having position basis |0⟩, from range y[j,m), and merge
the qubit into κ⟨j⟩. The split rewrites are given as:

{
κ⟨j⟩ 7→

∑2(j+1) - 3
i=0 zi |⌊log (i+1)⌋⟩ |pat(i, j)⟩ |i+1⟩ |di⟩+

∑2t-1
k=j

1√
2t
|k⟩ |0⟩ |0⟩ |0⟩ ∗ y[j,m) 7→ |0⟩

}
≡

{
κ⟨j+1⟩ 7→

∑2(j+1) - 3
i=0 zi |⌊log (i+1)⌋⟩ |pat(i, j)⟩ |0⟩ |i+1⟩ |di⟩+

∑2t-1
k=j

1√
2t
|k⟩ |0⟩ |0⟩ |0⟩ |0⟩ ∗ y[j+1,m) 7→ |0⟩

}
≡

{
κ⟨j+1⟩ 7→ q′(|0⟩) +

∑2t-1
k=j

1√
2t
δ⟨k, 0⟩ ∗ y[j+1,m) 7→ |0⟩

}
At the last rewrite above, we abbreviate the first part of κ⟨j+1⟩’s value to be q′(|0⟩), and

the second part to be
∑2t-1
k=j

1√
2t
δ⟨k, 0⟩ where δ⟨k, c⟩ = |k⟩ |0⟩ |c⟩ |0⟩ |0⟩. Below, we show the

proof steps (only the pre-condition transitions) for a conditional step in Figure 20 line 3,
which can be divided into two small steps. Here, e is the conditional body in lines 5-7, and
we apply P-Frame to frame out locus y[j+1,m) from the states, so the bottom state only
refers to the locus κ⟨j+1⟩. We further split the second part above (

∑2t-1
k=j

1√
2t
δ⟨k, 0⟩) into two

basis-ket sets: 1√
2t
δ⟨j, 0⟩ and

∑2t-1
k=j+1

1√
2t
δ⟨k, 0⟩.

11 The tree structure is a simplification; comprehensive implementations use Szegedy walk encoding [30].

ECOOP 2024

24:26 Qafny: A Quantum-Program Verifier

Ω; {h[0, n) F u[0] : EN} ⊢M

{
h[0, n) F u[0] 7→

∑2(j+1) - 3
i=0 zi |i+1⟩ |di⟩ β +

1
√

2t
|0⟩ |0⟩ β′

}
e
{
...

}
Ω; {κ⟨j+1⟩ : EN} ⊢M

{
κ⟨j+1⟩ 7→ q′(|1⟩) + 1√

2t
δ⟨j, 1⟩+

∑2t-1
k=j+1

1√
2t
δ⟨k, 0⟩

}
if ((x[0, t) < j + 1) @ y[j]) e

{
...

}
Ω; {κ⟨j+1⟩ : EN} ⊢M

{
κ⟨j+1⟩ 7→ q′(|0⟩) + 1√

2t
δ⟨j, 0⟩+

∑2t-1
k=j+1

1√
2t
δ⟨k, 0⟩

}
if ((x[0, t) < j + 1) @ y[j]) e

{
...

}
We split the P-If proof step (Line 3 in Figure 20) into two small steps above. The bottom

step represents the first half of the F transformer application (Figure 11) in P-If. It views
the Boolean guard (x[0, t) < j + 1) @ y[j] as an oracle application and for every basis-ket in the
locus κ⟨j+1⟩, we compute the Boolean value x[0, t) < j + 1 and store it to y[j]’s position bases.
Unlike the simple Boolean guards appearing in Figures 3c and 6, the Boolean guard here
has side-effects that modify y[j]’s position bases. κ⟨j+1⟩’s value is split into three basis-ket
sets separated by +. In the set q⟨0⟩, range x[0, t)’s position bases have the form |⌊log (i+1)⌋⟩
(the depth of a node key i+1) and the bases’ natural number interpretations are smaller than
j+1; in the sets 1√

2t
δ⟨j, 0⟩ and

∑2t-1
k=j+1

1√
2t
δ⟨k, 0⟩, range x[0, t)’s position bases are |j⟩ and

|k⟩ (j < k). The former’s natural number interpretation is less than j+1, while the latter is
not. Thus, we flip y[j]’s position bases of the two sets after applying the bottom rule above
while leaving the third set unchanged.

The middle step in the above P-If proof step rules out the basis-ket set
∑2t-1
k=j+1

1√
2t
δ⟨k, 0⟩,

because the y[j]’s position bases are all 0; then, we push bases |⌊log (i+1)⌋⟩ |pat(i, j)⟩ |0⟩ and
|k⟩ |0⟩ |0⟩ to the frozen stacks as β and β′ , respectively for the remaining two sets.

Ω; {u[0] F h[0, n) : EN} ⊢M{
u[0] F h[0, n) 7→

∑2(j+1) - 3
i=0 zi |di⟩ |i+1⟩ β + 1√

2t
|0⟩ |0⟩ β′

}
u[0] ← H{
u[0] F h[0, n) 7→

∑2(j+1) - 3
i=0

1√
2zi |di⟩ |i+1⟩ β +

∑2(j+1) - 3
i=0

1√
2zi |di+1⟩ |i+1⟩ β + 1√

2t+1 |0⟩ |0⟩ β′ + 1√
2t+1 |1⟩ |0⟩ β′

}
For the H application in line 5 (Figure 20), we first rewrite the locus, in the pre- and

post-states, from h[0, n) F u[0] to u[0] F h[0, n); shown as the proof triple above. There is
a hidden uniqueness assumption 12 for all basis-kets in q(j) (Figure 20): ∀zβ |di⟩ ∈ q(j)⇒
∀z′ . z′β |di+1⟩ ̸∈ q(j), i.e., if we truncate the u[0] qubit, every basis is still unique in q(j). For
each basis-ket, the H application duplicates the non-u[0] part, with the flip of u[0]’s position
bases. During the process, the amplitude of each basis-ket is reduced by 1√

2 . The left
and right in lines 6 and 7 then move the node key (range h[0, n)’s position basis) of each
basis-ket to its left and right child, depending on the coin bit stored as u[0]’s position
basis; thus, the uniqueness property is preserved (left and right children always have different
keys). Remember that the number of basis-kets is doubled in the H gate application; after the
j-th loop step, all (j-1)-th depth nodes become j-th depth and the two root node basis-kets
(1√

2t+1 |0⟩ |0⟩β′ and 1√
2t+1 |1⟩ |0⟩β′) become 1-st depth nodes; thus, the state, after j-th loop

step, is in superposition containing all nodes up to j-th depth, except the root node.
The above applications also show the necessity of frozen basis stacks. When applying

the conditional, we hide x[0, t)’s position bases to frozen basis stacks, and there are 2(j+1)-3
different such stacks. We need to record the position bases in the frozen basis stacks; so, 1)
when we apply the H gate, we know which basis-kets are associated with a specific position
basis; 2) once the conditional is over, the position bases can be retrieved.

The verification in Figure 20 describes the basic property of the quantum walk algorithm
framework. The biggest advantage of the framework is to permit the manipulation of different
quantum applications on different tree nodes in each loop step, which is why many algorithms
[5, 4, 28, 1] have been developed based on it.

12 In the Dafny implementation, this needs to be an explicit assumption given by the users.

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:27

7 Related Work

This section gives related work beyond the discussion in Section 5.2.

Measurement-based Quantum Proof Systems. Except for the works in Section 5.2,
previous quantum proof systems are measurement-based, including quantum Hoare logic
[56, 26, 10, 57], quantum separation logic (QSL) [20, 59], quantum relational logic [25, 52],
and probabilistic Hoare logic for quantum programs [19], informed the Qafny development.
They differ from Qafny in three main respects, however: 1) their conditionals are solely
classical, while Qafny has quantum conditionals; 2) they mainly focus on the probabilistic
relations between the quantum measurement results and classical components and view
quantum program components as black boxes specified by Hilbert spaces or density matrices;
and 3) most of them have no mechanized implementations, and they do not have a quantum
program compiler. The verification procedure in these frameworks, to some extent, shows
the possibility of verifying mainly hybrid classical-quantum (HCQ) programs by requiring
the input of black-boxed and verified quantum program components.

QSL [20] develops a new separation logic theory (with no executable proof examples,
however) for Hilbert spaces and classical controls, mainly for verifying HCQ programs by
black-boxing quantum components. This differs from the Qafny system, based on classical
separation logic for classical array operations. QSL is based on a notion of frame rules that
split a tensor product state into two parts, similar to our Had typed state split equation.
However, they do not specify when and how a quantum state separation may happen. As
in Section 3, in many cases, quantum state separation is not trivial and might not be
automatically inferred by a proof engine.

Liu et al. [26] contains an example verification for Grover’s search algorithm based on the
SQIR inductive verification style, albeit with worse proof automation (3184 LOC vs. 1018
LOC in Figure 16). CoqQ [60] provides a mechanized automated verification framework
for HCQ programs. However, their proof automation is to connect quantum and classical
components, i.e., they view quantum circuit components as black-boxes. By giving pre-
and post-conditions, they perform proof automation on verifying HCQ programs that view
the quantum components as sub-procedures. There are some examples in CoqQ to verify
quantum components, but they are handled in the same style as SQIR and QBricks above.
See TR [24] D.

Classical Proof Systems. We are informed by separation logic, as articulated in the
classic paper [42], and other papers as well [18, 50, 34, 58, 27, 46]. Primarily, we show a
compilation from Qafny to Sep, representing a subset of separation logic admitting sound
and completeness [55], which was also studied by [51, 9]. The Qafny implementation is
compiled to Dafny [21], a language designed to simplify writing correct code. The natural
proof methodology [27, 37, 29] informs the Qafny development, where it embeds the proofs
of data-structures to a recursive search problem.

8 Conclusion and Future Work

We present Qafny, a system for expressing and automatically verifying quantum programs
that can be compiled into quantum circuits. We develop a proof system that views quantum
operations as classical array aggregate operations, e.g., viewing quantum measurements as
array filters, so that we can map the proof system, which is sound and complete with respect

ECOOP 2024

24:28 Qafny: A Quantum-Program Verifier

to the Qafny semantics for well-typed programs, to classical verification infrastructure. We
implement a prototype compiler in Dafny and use it to verify several quantum programs.
We believe that programmers can utilize Qafny to develop quantum algorithms and verify
them through our automated verification engine with a significant saving of human effort,
as demonstrated in Section 6. The Qafny language is universal in terms of the power of
expressing quantum programs since all gates in the universal RzQ gate set {H, X, RZ, CNOT}
[33] are definable. However, being able to define all possible quantum programs does not
mean that we can utilize Qafny to verify all quantum programs, especially HCQ programs,
automatically. Verifying HCQ programs requires the full power of quantum mixed states,
i.e., users might want to know the probabilistic output of executing a quantum program
with a quantum input state being associated with a probability. Verifying all such programs
requires a powerful classical probability distribution library beyond the current scope of
Qafny, although the existing Qafny implementation does include a restricted library for
reasoning about probability distributions [32] that can verify some HCQ programs.

In future work, we plan to build and verify a complete Qafny implementation in Dafny;
especially, we intend to enhance the probability distribution libraries to automatically verify
more HCQ programs. We also want to show the soundness proof of the implementation
as well as the circuit compilation correctness from Qafny to SQIR (TR [24] C.6). We will
further investigate integrating Qafny with other tools, such as CoqQ [60], to verify HCQ
programs automatically.

References

1 A. Ambainis. Quantum walk algorithm for element distinctness. In 45th Annual IEEE
Symposium on Foundations of Computer Science, pages 22–31, 2004. doi:10.1109/FOCS.2004.
54.

2 Stephane Beauregard. Circuit for shor’s algorithm using 2n+3 qubits. Quantum Info. Comput.,
3(2):175–185, March 2003.

3 Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît Valiron.
An automated deductive verification framework for circuit-building quantum programs. In
Nobuko Yoshida, editor, Programming Languages and Systems - 30th European Symposium on
Programming, ESOP 2021, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, volume 12648 of Lecture Notes in Computer Science, pages 148–177. Springer,
2021. doi:10.1007/978-3-030-72019-3_6.

4 Andrew Childs, Ben Reichardt, Robert Spalek, and Shengyu Zhang. Every NAND formula
of size N can be evaluated in time N1/2+o(1) on a Quantum Computer. CoRR, 2007. doi:
/10.48550/arXiv.quant-ph/0703015.

5 Andrew M. Childs. On the Relationship Between Continuous- and Discrete-Time Quantum
Walk. Communications in Mathematical Physics, 294(2):581–603, October 2009.

6 Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal, Thomas
Santen, Wolfram Schulte, and Stephan Tobies. Vcc: A practical system for verifying concurrent
c. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors,
Theorem Proving in Higher Order Logics, pages 23–42, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

7 Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open quantum
assembly language. arXiv e-prints, July 2017. arXiv:1707.03429.

8 Paul Adrien Maurice Dirac. A new notation for quantum mechanics. Mathematical Proceedings
of the Cambridge Philosophical Society, 35:416–418, 1939.

https://doi.org/10.1109/FOCS.2004.54
https://doi.org/10.1109/FOCS.2004.54
https://doi.org/10.1007/978-3-030-72019-3_6
https://doi.org//10.48550/arXiv.quant-ph/0703015
https://doi.org//10.48550/arXiv.quant-ph/0703015
https://arxiv.org/abs/1707.03429

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:29

9 Mahmudul Faisal Al Ameen and Makoto Tatsuta. Completeness for recursive procedures in
separation logic. Theoretical Computer Science, 631:73–96, 2016. doi:10.1016/j.tcs.2016.
04.004.

10 Yuan Feng and Mingsheng Ying. Quantum hoare logic with classical variables. ACM
Transactions on Quantum Computing, 2(4), December 2021. doi:10.1145/3456877.

11 Sukhpal Singh Gill, Oktay Cetinkaya, Stefano Marrone, Daniel Claudino, David Haun-
schild, Leon Schlote, Huaming Wu, Carlo Ottaviani, Xiaoyuan Liu, Sree Pragna Machupalli,
Kamalpreet Kaur, Priyansh Arora, Ji Liu, Ahmed Farouk, Houbing Herbert Song, Steve
Uhlig, and Kotagiri Ramamohanarao. Quantum computing: Vision and challenges, 2024.
arXiv:2403.02240.

12 Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. Going beyond Bell’s Theorem,
pages 69–72. Springer Netherlands, Dordrecht, 1989. doi:10.1007/978-94-017-0849-4_10.

13 Lov K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.
Lett., 79:325–328, July 1997. doi:10.1103/PhysRevLett.79.325.

14 Thomas Häner, Martin Roetteler, and Krysta M. Svore. Factoring using 2n + 2 qubits with
toffoli based modular multiplication. Quantum Info. Comput., 17(7–8):673–684, June 2017.

15 Kesha Hietala, Robert Rand, Shih-Han Hung, Liyi Li, and Michael Hicks. Proving quantum
programs correct. In Proceedings of the Conference on Interative Theorem Proving (ITP),
June 2021.

16 Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. A verified
optimizer for quantum circuits. In Proceedings of the ACM Conference on Principles of
Programming Languages (POPL), January 2021.

17 C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, October 1969. doi:10.1145/363235.363259.

18 Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey. Cyclic
program synthesis. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2021, pages 944–959, New York,
NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3453483.3454087.

19 Yoshihiko Kakutani. A logic for formal verification of quantum programs. In Anupam Datta,
editor, Advances in Computer Science - ASIAN 2009. Information Security and Privacy, pages
79–93, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

20 Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan. A quantum interpretation of
separating conjunction for local reasoning of quantum programs based on separation logic.
Proc. ACM Program. Lang., 6(POPL), January 2022. doi:10.1145/3498697.

21 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, pages 348–370, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

22 K. Rustan M. Leino and Michał Moskal. Co-induction simply. In Cliff Jones, Pekka Pihlajasaari,
and Jun Sun, editors, FM 2014: Formal Methods, pages 382–398, Cham, 2014. Springer
International Publishing.

23 Liyi Li, Finn Voichick, Kesha Hietala, Yuxiang Peng, Xiaodi Wu, and Michael Hicks. Verified
compilation of quantum oracles. In OOPSLA 2022, 2022. doi:10.48550/arXiv.2112.06700.

24 Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi
Wu. Qafny: A quantum-program verifier, 2024. arXiv:2211.06411.

25 Yangjia Li and Dominique Unruh. Quantum Relational Hoare Logic with Expectations. In
Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on
Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 136:1–136:20, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2021.136.

26 Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying,
and Naijun Zhan. Formal verification of quantum algorithms using quantum hoare logic. In
Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification, pages 187–207, Cham,
2019. Springer International Publishing.

ECOOP 2024

https://doi.org/10.1016/j.tcs.2016.04.004
https://doi.org/10.1016/j.tcs.2016.04.004
https://doi.org/10.1145/3456877
https://arxiv.org/abs/2403.02240
https://doi.org/10.1007/978-94-017-0849-4_10
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/3453483.3454087
https://doi.org/10.1145/3498697
https://doi.org/10.48550/arXiv.2112.06700
https://arxiv.org/abs/2211.06411
https://doi.org/10.4230/LIPIcs.ICALP.2021.136

24:30 Qafny: A Quantum-Program Verifier

27 Christof Löding, P. Madhusudan, and Lucas Peña. Foundations for natural proofs and quantifier
instantiation. Proc. ACM Program. Lang., 2(POPL), December 2017. doi:10.1145/3158098.

28 Guang Hao Low and Isaac L. Chuang. Optimal Hamiltonian Simulation by Quantum Signal
Processing. Physical Review Letters, 118(1), January 2017.

29 Parthasarathy Madhusudan, Xiaokang Qiu, and Andrei Stefanescu. Recursive proofs for
inductive tree data-structures. SIGPLAN Not., 47(1):123–136, January 2012. doi:10.1145/
2103621.2103673.

30 Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum Algorithms for the Tri-
angle Problem. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’05, pages 1109–1117, USA, 2005. Society for Industrial and Applied
Mathematics.

31 Narciso Martí-Oliet and José Meseguer. Rewriting logic as a logical and semantic framework.
In J. Meseguer, editor, Electronic Notes in Theoretical Computer Science, volume 4. Elsevier
Science Publishers, 2000.

32 Microsoft. Probabilistic Z3, 2014. URL: https://github.com/ProbabilisticZ3/src.
33 Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. Automated

optimization of large quantum circuits with continuous parameters. npj Quantum Information,
4(1):23, May 2018. doi:10.1038/s41534-018-0072-4.

34 Daniel Neider, Pranav Garg, P. Madhusudan, Shambwaditya Saha, and Daejun Park. Invariant
synthesis for incomplete verification engines. In Dirk Beyer and Marieke Huisman, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 232–250, Cham,
2018. Springer International Publishing.

35 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, USA, 10th anniversary edition, 2011.

36 KARL PEARSON. The problem of the random walk. Nature, 72(1865):294–294, July 1905.
doi:10.1038/072294b0.

37 Edgar Pek, Xiaokang Qiu, and P. Madhusudan. Natural proofs for data structure manipulation
in c using separation logic. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, pages 440–451, New York, NY,
USA, 2014. Association for Computing Machinery. doi:10.1145/2594291.2594325.

38 Yuxiang Peng, Kesha Hietala, Runzhou Tao, Liyi Li, Robert Rand, Michael Hicks, and
Xiaodi Wu. A formally certified end-to-end implementation of Shor’s factorization algorithm.
Proceedings of the National Academy of Sciences, 120(21):e2218775120, 2023. doi:10.1073/
pnas.2218775120.

39 Xiaokang Qiu, Pranav Garg, Andrei Ştefănescu, and Parthasarathy Madhusudan. Natural
proofs for structure, data, and separation. SIGPLAN Not., 48(6):231–242, June 2013. doi:
10.1145/2499370.2462169.

40 Xiaokang Qiu, Pranav Garg, Andrei Stefanescu, and Parthasarathy Madhusudan. Natural
proofs for structure, data, and separation. In Hans-Juergen Boehm and Cormac Flanagan,
editors, ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 231–242. ACM, 2013. doi:10.1145/
2491956.2462169.

41 Robert Rand. Formally verified quantum programming. PhD thesis, University of Pennsylvania,
2018.

42 J.C. Reynolds. Separation logic: a logic for shared mutable data structures. In Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, pages 55–74, 2002. doi:
10.1109/LICS.2002.1029817.

43 Gustavo Rigolin. Quantum teleportation of an arbitrary two-qubit state and its relation to
multipartite entanglement. Physical Review A, 71(3), March 2005. doi:10.1103/physreva.
71.032303.

https://doi.org/10.1145/3158098
https://doi.org/10.1145/2103621.2103673
https://doi.org/10.1145/2103621.2103673
https://github.com/ProbabilisticZ3/src
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/072294b0
https://doi.org/10.1145/2594291.2594325
https://doi.org/10.1073/pnas.2218775120
https://doi.org/10.1073/pnas.2218775120
https://doi.org/10.1145/2499370.2462169
https://doi.org/10.1145/2499370.2462169
https://doi.org/10.1145/2491956.2462169
https://doi.org/10.1145/2491956.2462169
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1103/physreva.71.032303
https://doi.org/10.1103/physreva.71.032303

L. Li, M. Zhu, R. Cleaveland, A. Nicolellis, Y. Lee, L. Chang, and X. Wu 24:31

44 Grigore Roşu and Andrei Ştefănescu. Matching Logic: A New Program Verification Approach
(NIER Track). In ICSE’11: Proceedings of the 30th International Conference on Software
Engineering, pages 868–871. ACM, 2011. doi:doi:10.1145/1985793.1985928.

45 Grigore Roşu, Andrei Ştefănescu, Ştefan Ciobâcă, and Brandon M. Moore. One-Path Reach-
ability Logic. In Proceedings of the 28th Symposium on Logic in Computer Science (LICS’13),
pages 358–367. IEEE, June 2013.

46 Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer,
and Deepak Garg. Refinedc: Automating the foundational verification of c code with refined
ownership types. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2021, pages 158–174, New York,
NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3453483.3454036.

47 P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Foundations of Computer Science, FOCS ’94, 1994.

48 P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134,
1994. doi:10.1109/SFCS.1994.365700.

49 Matt Swayne. What Are The Remaining Challenges Of Quantum Computing?, 2023. URL:
https://thequantuminsider.com/2023/03/24/quantum-computing-challenges/.

50 Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Automated mutual
explicit induction proof in separation logic, 2016. doi:10.48550/arXiv.1609.00919.

51 Makoto Tatsuta, Wei-Ngan Chin, and Mahmudul Faisal Al Ameen. Completeness and express-
iveness of pointer program verification by separation logic. Information and Computation,
267:1–27, 2019. doi:10.1016/j.ic.2019.03.002.

52 Dominique Unruh. Quantum relational hoare logic. Proc. ACM Program. Lang., 3(POPL),
January 2019. doi:10.1145/3290346.

53 Salvador Elías Venegas-Andraca. Quantum walks: a comprehensive review. Quantum Inform-
ation Processing, 11(5):1015–1106, July 2012. doi:10.1007/s11128-012-0432-5.

54 Thomas G. Wong. Unstructured search by random and quantum walk. Quantum Information
and Computation, 22(1&2):53–85, January 2022. doi:10.26421/qic22.1-2-4.

55 Hongseok Yang and Peter O’Hearn. A semantic basis for local reasoning. In Mogens Nielsen
and Uffe Engberg, editors, Foundations of Software Science and Computation Structures, pages
402–416, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

56 Mingsheng Ying. Floyd–hoare logic for quantum programs. ACM Trans. Program. Lang. Syst.,
33(6), January 2012. doi:10.1145/2049706.2049708.

57 Mingsheng Ying. Toward automatic verification of quantum programs. Form. Asp. Comput.,
31(1):3–25, February 2019. doi:10.1007/s00165-018-0465-3.

58 Bohua Zhan. Efficient verification of imperative programs using auto2. In Dirk Beyer and
Marieke Huisman, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 23–40, Cham, 2018. Springer International Publishing.

59 Li Zhou, Gilles Barthe, Justin Hsu, Mingsheng Ying, and Nengkun Yu. A Quantum Interpret-
ation of Bunched Logic and Quantum Separation Logic. In Proceedings of the 36th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’21, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1109/LICS52264.2021.9470673.

60 Li Zhou, Gilles Barthe, Pierre-Yves Strub, Junyi Liu, and Mingsheng Ying. Coqq: Foundational
verification of quantum programs. Proc. ACM Program. Lang., 7(POPL), January 2023.
doi:10.1145/3571222.

ECOOP 2024

https://doi.org/doi:10.1145/1985793.1985928
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1109/SFCS.1994.365700
https://thequantuminsider.com/2023/03/24/quantum-computing-challenges/
https://doi.org/10.48550/arXiv.1609.00919
https://doi.org/10.1016/j.ic.2019.03.002
https://doi.org/10.1145/3290346
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.26421/qic22.1-2-4
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1007/s00165-018-0465-3
https://doi.org/10.1109/LICS52264.2021.9470673
https://doi.org/10.1145/3571222

Compositional Symbolic Execution for Correctness
and Incorrectness Reasoning
Andreas Lööw
Imperial College London, UK

Daniele Nantes-Sobrinho
Imperial College London, UK

Sacha-Élie Ayoun
Imperial College London, UK

Caroline Cronjäger
Ruhr-Universität Bochum, Germany

Petar Maksimović
Imperial College London, UK
Runtime Verification Inc., Chicago, IL, USA

Philippa Gardner
Imperial College London, UK

Abstract
The introduction of separation logic has led to the development of symbolic execution techniques
and tools that are (functionally) compositional with function specifications that can be used in
broader calling contexts. Many of the compositional symbolic execution tools developed in academia
and industry have been grounded on a formal foundation, but either the function specifications are
not validated with respect to the underlying separation logic of the theory, or there is a large gulf
between the theory and the implementation of the tool.

We introduce a formal compositional symbolic execution engine which creates and uses function
specifications from an underlying separation logic and provides a sound theoretical foundation for,
and indeed was partially inspired by, the Gillian symbolic execution platform. This is achieved by
providing an axiomatic interface which describes the properties of the consume and produce operations
used in the engine to update compositionally the symbolic state, for example when calling function
specifications. This consume-produce technique is used by VeriFast, Viper, and Gillian, but has not
been previously characterised independently of the tool. As part of our result, we give consume and
produce operations inspired by the Gillian implementation that satisfy the properties described by our
axiomatic interface. A surprising property is that our engine semantics provides a common foundation
for both correctness and incorrectness reasoning, with the difference in the underlying engine only
amounting to the choice to use satisfiability or validity. We use this property to extend the Gillian
platform, which previously only supported correctness reasoning, with incorrectness reasoning and
automatic true bug-finding using incorrectness bi-abduction. We evaluate our new Gillian platform by
using the Gillian instantiation to C. This instantiation is the first tool grounded on a common formal
compositional symbolic execution engine to support both correctness and incorrectness reasoning.

2012 ACM Subject Classification Theory of computation → Program verification; Theory of
computation → Program analysis; Theory of computation → Separation logic; Theory of computation
→ Automated reasoning

Keywords and phrases separation logic, incorrectness logic, symbolic execution, bi-abduction

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.25

Related Version Extended Version: https://doi.org/10.48550/arXiv.2407.10838 [18]

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.13

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Andreas Lööw, Daniele Nantes-Sobrinho, Sacha-Élie Ayoun,
Caroline Cronjäger, Petar Maksimović, and Philippa Gardner;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 25; pp. 25:1–25:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2024.25
https://doi.org/10.48550/arXiv.2407.10838
https://doi.org/10.4230/DARTS.10.2.13
https://doi.org/10.4230/DARTS.10.2.13
https://doi.org/10.4230/DARTS.10.2.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

Funding This work was supported by the EPSRC Fellowship “VetSpec: Verified Trustworthy
Software Specification” (EP/R034567/1).

Acknowledgements We would like to thank Nat Karmios for help with preparing the artefact for
this paper. We would also like to thank the anonymous reviewers for their comments.

1 Introduction

One of the main challenges that modern program analysis tools based on static symbolic
execution [1] must face is scalability, that is, the ability to tractably analyse large, dynamic-
ally changing codebases. Such scalability requires symbolic techniques and tools that are
functionally compositional (or simply compositional) where the analysis works on functions
in isolation, at any point in the codebase, and then records the results in simple function
specifications that can be used in broader calling contexts. However, the traditional sym-
bolic execution tools and frameworks based on first-order logic, such as CBMC [16] and
Rosette [32], can only be compositional for functions that manipulate the variable store, but
not for functions that manipulate the heap, limiting their usability.

A key insight is that, to obtain compositionality, the analysis should work with function
specifications that are local, in that they should describe the function behaviour only on the
partial states or resources that the function accesses or manipulates, and a mechanism for
using such specifications when the function is called by code working on a larger state. This
insight was first introduced in separation logic (SL) [24, 29], a modern over-approximating
(OX) program logic for compositional verification of correctness properties, which features
local function specifications that can be called on larger state with the help of the frame
rule. Recently, these ideas have been adapted to under-approximate (UX) reasoning in the
context of incorrectness separation logic (ISL) [28] for compositional true bug-finding.

Ideas from SL and ISL have led to the development of efficient compositional symbolic
execution tools in academia and industry, such as the tool VeriFast [14] and the multi-
language platforms Viper [23] and Gillian [21] for semi-automatic OX verification based on
SL, and Meta’s multi-language platform Infer-Pulse [17] for automatic UX true bug-finding
based on ISL. However, there are issues with the associated formalisms of the tools: either
the function specifications created and used by the tool are not validated with respect to
the underlying separation logic; or there is a large gulf between the formalism and the
implementation of the tool. VeriFast, Viper, and Gillian, on the one hand, all come with
a sound compositional symbolic operational semantics that closely model the tools. These
tools handle the creation and use of function specifications (and the folding and unfolding of
predicates) using two operations, called consume and produce, which, respectively, removes
from and adds to a given symbolic state the symbolic state corresponding to a given assertion.
The formalisms accompanying the tools, however, do not properly connect their function
specifications to the underlying separation logics. Thus, function specifications created
by the tools cannot soundly be used by other tools, and vice versa. On the other hand,
the formalism of Infer-Pulse describes compositional symbolic execution as proof search in
ISL, and similarly with its SL-predecessor Infer [4], thereby making the connection to its
separation logic direct. However, the gap between the formalism and the tool is considerable.

In this paper, inspired by the Gillian platform [11, 21], we formally define a compositional
symbolic execution (CSE) engine that provides a sound theoretical foundation for building
compositional OX and UX analysis tools. Our engine is described by a compositional symbolic
operational semantics using the consume and produce operations to interface with function

A. Lööw et al. 25:3

specifications valid in either SL or ISL. A surprising property of our semantics is that it is
simple to switch between OX and UX reasoning. In more detail, our CSE engine features
the following theoretical contributions:
1. specification interoperability, in the sense that it can both create and use function

specifications validated in an underlying separation logic, allowing for a mix-and-match
of specifications validated in various ways from various sources;

2. an axiomatic approach to compositionality, in that we provide an axiomatic description
of properties for the consume and produce operations, which have not been previously
characterised axiomatically;

3. a general soundness result, which states that, assuming the axiomatic properties of the
consume and produce operations and the validity of function specifications that are used
with respect to the underlying separation logic, the CSE engine is sound and creates
function specifications that are valid with respect to the said logic;

4. a unified semantics, which captures the essence of both the OX reasoning of VeriFast,
Viper, and Gillian, and the UX reasoning in Infer-Pulse, with the difference amounting
only to the choice of using satisfiability or validity, and different axiomatic properties of
the consume and produce operations.

We instantiate our general soundness result by giving example implementations of the
consume and produce operations, inspired by those found in Gillian, which we prove satisfy
the properties laid out by the axiomatic interface. For clarity of presentation, although
both our CSE engine and our consume and produce operations are inspired by Gillian,
we have opted to work with a fixed, linear memory model and a simple while language
instead of the parametric memory model approach of Gillian and its goto-based intermediate
language GIL. The move from a fixed to a parametric memory model is straightforward and
planned future work.

In addition, this paper brings the following practical contributions:
1. a demonstrator Haskell implementation of our CSE engine with example implementations

of the consume and produce operations;
2. an extension of the Gillian platform with automatic compositional UX true bug-finding

using UX bi-abduction in the style of Infer-Pulse, making Gillian the first unified tool for
OX and UX compositional reasoning about real-world code.

The Gillian platform already supported whole-program symbolic testing as found in, for
example, CBMC, and semi-automatic OX compositional verification underpinned by SL as
in, for example, VeriFast. Because our CSE engine has pinpointed the small differences
required for the switch between OX and UX reasoning, we were able to simply extend Gillian
with automatic compositional UX true-bug finding without affecting its other analyses.
Interestingly, UX true bug-finding has not been implemented in a consume-produce engine
before. We demonstrate the additional UX reasoning by extending the CSE engine with UX
bi-abductive reasoning [5, 6, 28, 17], an automatic technique which has enabled compositional
reasoning to scale to industry-grade codebases, and which works by generating function
specifications from their implementations by incrementally constructing the calling context.
We implement this technique following the approach pioneered by OX tool JaVerT 2.0 [10],
where missing-resource errors are used to generate fixes that drive the specification construc-
tion. We evaluate this extension of Gillian using its Gillian-C instantiation, on a real-world
Collections-C data-structure library [25], obtaining promising initial results and performance.

An extended version of this paper is available on arXiv [18], which includes additional
definitions and proofs of the theorems discussed in this paper.

ECOOP 2024

25:4 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

2 Overview: Compositional Symbolic Execution

We give an overview of our CSE engine, together with example analyses that we show can be
hosted on top of this engine. Our CSE engine consists of three engines built on top of each
other, labelled by different reasoning modes, OX and UX, that are appropriate for different
types of analyses. In short, the reasoning modes can be characterised as follows:

Mode Guarantee Consequence rule Analysis

OX Full path coverage Forward logical consequence Full verification in SL
UX Path reachability Backward logical consequence True bug-finding in ISL

The core engine (§4) is a simple symbolic execution engine for our demonstrator pro-
gramming language (§3). It does not use assertions to update symbolic state and is hence
compatible with both OX and UX reasoning. It is sufficient to capture whole-program
symbolic testing found in, e.g., CMBC and Gillian. The compositional engine (§5, §6) is built
on top of this core engine. It can switch between either the OX or UX mode of reasoning,
providing support for the use of SL and ISL function specifications by extending the core
engine with consume and produce operations for updating the symbolic state. In OX mode,
it captures the full verification found in e.g. VeriFast and Gillian, soundly underpinned
by SL. For the first time, in UX mode it also captures ISL analysis, not previously found in a
symbolic execution tool. We demonstrate this by building the UX bi-abductive engine (§7) on
top of the UX compositional engine to automatically fix missing-resource errors (e.g., a miss-
ing heap cell) using the UX bi-abductive technique from Infer-Pulse, to capture automatic
true bug-finding underpinned by ISL.

2.1 Core Engine
The core symbolic execution engine provides a foundation on top of which the other compon-
ents are built. It is essentially a standard symbolic execution engine that is slightly adapted
to handle both usual language errors and the missing-resource errors, which can occur now
that we are working with partial state.

Our engine operates over partial symbolic states σ̂ = (ŝ, ĥ, π̂) comprising: a symbolic
variable store ŝ, holding symbolic values for the program variables; a partial symbolic heap ĥ,
representing the memory on which programs operate; and a symbolic path condition π̂,
holding constraints accumulated during symbolic execution. We work with a simple demon-
strator programming language (cf. §3) and linear heaps: that is, partial-finite maps from
natural numbers to values. The core engine is both OX- and UX-sound, also referred to as
exact (EX) [20], as established by Thm. 1.

Example. In Fig. 1 (left), we define a simple function f. In Fig. 1 (middle), we illustrate
its symbolic execution, which starts from σ̂ = ({c 7→ ĉ, x 7→ x̂ , r 7→ null}, ∅, true), with the
function parameters (c and x) initialised with some symbolic variables (ĉ and x̂), the local
function variables (r) initialised to null, the heap set to empty and the path condition set
to true. Next, executing the if-statement with condition c ≥ 42 yields three branches: one in
which c is not a natural number, in which the execution fails with an evaluation error; one
in which c ≥ 42, in which the execution continues; and one in which c < 42, in which the
program throws a user-defined error. Next, executing the lookup r := [x] results in two more
branches: one in which x is not a heap address (natural number), yielding a type error and
one in which x is a heap address. In that branch, the lookup fails with a missing-resource
error as the heap is empty.

A. Lööw et al. 25:5

f(c, x) {
if (c ≥ 42) {

r := [x];
[x] := c

} else {
error(“c less than 42”)

};
return r

}

if (c ≥ 42) {. . .} else {. . .}
({c 7→ ĉ, x 7→ x̂, r 7→ null}, ∅, true)

r := [x]err err

ĉ /∈ Nat ĉ < 42ĉ ≥ 42

err

x̂ /∈ Nat

miss

x̂ ∈ Nat

. . .
r := [x]

err

x̂ /∈ Nat

(1) miss

(2) fix: x̂ 7→ v̂
[x] := c

(3)

({c 7→ ĉ, x 7→ x̂, r 7→ v̂},

{x̂ 7→ ĉ}, ĉ ≥ 42 ⋆ x̂ ∈ Nat)
success: v̂

Figure 1 Definition and symbolic execution of function f.

Analysis: EX Whole-program Symbolic Testing. The core engine can be used to perform
whole-program symbolic testing in the style of CBMC [16] and Gillian [11], in which the
user creates symbolic variables, imposes some initial constraints on them, runs the symbolic
execution to completion, and asserts that some final constraints hold.

2.2 Compositional Engine

Our compositional engine extends the core engine to support calling, in its respective OX and
UX mode, SL and ISL function specifications, denoted

{
x⃗ = x⃗ ⋆ P

}
f (⃗x)

{
ok : Qok

} {
err : Qerr

}
and

[⃗
x = x⃗ ⋆ P

]
f (⃗x)

[
ok : Qok

] [
err : Qerr

]
,1 respectively, where P is a pre-condition and Qok

and Qerr are success and error post-conditions. A SL specification gives an OX description
of the function behaviour whereas an ISL specification gives a UX description:
(SL) All terminating executions of the function f starting in a state satisfying P either end

successfully in a state that satisfies Qok or fault in a state that satisfies Qerr .
(ISL) Any state satisfying either the success Qok or error post-conditions Qerr is reachable

from some state satisfying the pre-condition P by executing the function f.

The engine also adds support, in both OX and UX mode, for folding and unfolding of
user-defined predicates, describing inductive data-structures such as linked lists.

In both cases, the call to function specifications and the folding and unfolding of predicates
are implemented following the consume-produce engine style, underpinned by consume and
produce operations, which, in essence, remove (consume) and add (produce) the symbolic
state corresponding to a given assertion from and to the current symbolic state. For example,
in Fig. 2, the symbolic execution is in a symbolic state σ̂ and calls a function f (⃗x) by its
specification in ISL mode. The (successful) function call is implemented by first consuming
the symbolic state σ̂P corresponding to the pre-condition P , leaving the symbolic frame σ̂f ,
and then producing into σ̂f the symbolic state σ̂Qok corresponding to the post-condition Qok .

Our approach is novel in two ways: (1) we provide an axiomatic interface that captures
the sufficient properties of the consume and produce operations for the engine to be sound;
and (2) we provide example implementations (in the same style as the rest of the engine,
that is, using inference rules) for the consume and produce operations that we prove satisfy
the axiomatic interface. Moreover, our consume and produce operations switch their behaviour
between the mode of reasoning (OX/UX), as described next.

1 UX quadruples can be split into two triples, but OX quadruples cannot. To unify our presentation, we
consider both types of specifications in quadruple form.

ECOOP 2024

25:6 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

σ̂ = σ̂f · σ̂P

σ̂f σ̂P

y := f(⃗x)

σ̂f σ̂Qok

Properties 1-7 (§5)

[⃗
x = x⃗ ⋆ P

]
f(⃗x)

[
ok : Qok

] [
err : Qerr

]
Axiomatic

Interface

consume(UX, P, θ̂, σ̂) ⇝ (θ̂′, σ̂f)

produce(Qok , θ̂′, σ̂f) ⇝ σ̂f · σ̂Qok

Figure 2 UX function-call rule: successful case.

Axiomatic Interface. We have identified sufficient properties for the consume and produce
operations to be OX or UX sound (cf. Thm. 3). Here we will describe a general idea of the
consume operation, the more complex of the two operations, the signature of which is:

consume(m, P, θ̂, σ̂)⇝ (θ̂′, σ̂f) | abort(v̂)

The consume operation takes a mode m (OX or UX), an assertion P , a substitution θ̂, and a
symbolic state σ̂, where the substitution θ̂ links known logical variables in P to symbolic
values in σ̂. The operation finds which part of σ̂ could match P , resulting in potentially
multiple successful or unsuccessful matches, and then, per match, returns either the pair
(θ̂′, σ̂f), which comprises a substitution θ̂′ and a resulting symbolic state σ̂f , or it aborts with
error information v̂. Some properties the interface of consume mandates are the following:
1. In successful consumption, there exists a symbolic state σ̂P such that σ̂ = σ̂f · σ̂P

(where · denotes state composition, which composes the corresponding components of
the two states together) and that every concrete state described by σ̂P satisfies P . This
tells us that the matched part of σ̂ does correspond to P , that the effect of consume is its
removal from σ̂, and that consumption can be viewed as the frame inference problem [3],
with the resulting state σ̂f constituting the frame;

2. In OX mode, consume does not drop paths; in UX mode, it does not drop information.
The interface allows, e.g., tool developers to design an OX-consume that (soundly) drops
certain information deemed unneeded or a UX-consume that (soundly) drops paths according
to a tool-specific criteria (e.g., as in UX bi-abduction in Infer-Pulse).

Example Implementation: Consume. We provide example implementations for the consume
and produce operations (§6) that explore the similarities between OX and UX reasoning, and
allow us to maintain unified implementations across both reasoning modes. Our consume
operation has a mode switch m, allowing for OX- or UX-specific behaviour, which we use to
control the only difference in our implementation between the two modes: the consumption
of pure (non-spatial) information (cf. Fig. 7, left). For soundness, our implementation of
the consume operation has to be compatible with the SL and ISL guarantees: in OX mode,
consume requires full path coverage, and in UX, it requires path reachability.

We illustrate our consume implementation by example. Consider the symbolic state
σ̂ ≜ (∅, ĥ, π̂), where ĥ ≜ {1 7→ v̂, 2 7→ 10, 3 7→ 100} and π̂ ≜ x̂ > 0 ∧ v̂ > 5, and let us
consume the assertion P ≜ x 7→ y ⋆ y ≥ 10 from σ̂ knowing that θ̂ = {x̂/x}, meaning that
the logical variable x of P is mapped to the symbolic variable x̂ of σ̂. This consumption is
presented in the diagram below:

A. Lööw et al. 25:7

consume(m, P, θ̂, σ̂)

abort([“consPure”, v̂ ≥ 10, π̂ ∧ x̂ = 1])

(θ̂ ⊎ {v̂/y}, (∅, {✘✘✘1 7→ v̂, 2 7→ 10, 3 7→ 100}, π̂ ∧ x̂ = 1 ∧ v̂ ≥ 10))
(θ̂ ⊎ {10/y}, (∅, {1 7→ v̂,✘✘✘✘2 7→ 10, 3 7→ 100}, π̂ ∧ x̂ = 2))
(θ̂ ⊎ {100/y}, (∅, {1 7→ v̂, 2 7→ 10,✭✭✭✭3 7→ 100}, π̂ ∧ x̂ = 3))
abort([“MissingCell”, x̂, π̂ ∧ x̂ /∈ dom(ĥ)])

0: OX

1: UX

2: OX/UX

3: OX/UX

4: OX/UX

the arrows are labelled with the mode m of operation of consume, being either only OX,
or only UX, or OX/UX when the consumption has the same behaviour in both modes;
both our OX and UX consumption branch on all possible matches: in this case, the cell
assertion x 7→ y can be matched to any of the three cells in the heap (branches 0–3), but
it could also refer to a cell that is outside of the heap (branch 4);
when branching occurs, then the branching condition is added to the path condition of
the resulting state (the constraints in blue), ensuring information is not dropped;
the heap cell corresponding to x 7→ y is removed when matched successfully (branches 1,
2, 3), and in those cases we learn the value corresponding to y (substitution extension in
orange where ⊎ denotes disjoint union);
for the heap cell {1 7→ v̂}, our OX consumption (branch 0) must abort since the π̂ does
not imply y ≥ 10 when y = v̂, whereas UX consumption (branch 1) can proceed by
restricting the path condition (constraint in magenta), since dropping paths is sound
in UX; this allows our UX consumption to successfully consume more assertions; OX
consumption cannot do the same since that would render e.g. the function-call rule,
which is implemented in terms of consume, unsound in OX mode;
our UX consumption could alternatively drop the missing-cell abort outcome (branch 4),
however, some analyses, such as bi-abduction, have use for this error information so
we do not drop it.

Analysis: Verification. We use our compositional engine to provide semi-automatic OX
verification: that is, given a function implementation and an OX function specification, the
engine checks if the implementation satisfies the specification. This analysis is semi-automatic
in that the user may have to provide loop invariants as well as ghost commands for, e.g.,
predicate manipulation and lemma application. It is implemented in the standard way for
consume-produce tools.

2.3 Bi-abductive Engine
Bi-abduction is a technique that enables automatic compositional analysis by allowing
incremental discovery of resources needed to execute a given piece of code. It was introduced
in the OX verification setting [5, 6], later forming the basis of the bug-finding tool Infer [4],
and was recently ported to the UX setting of true bug-finding, underpinning Infer-Pulse [17].

Our UX bi-abduction advances the state of the art in two ways. Firstly, UX bi-abduction
has thus far been intertwined with the proof search of the symbolic execution tool it has
formulated for [28, 17]. Inspired by an approach developed in the OX tool JaVerT 2.0 [10],
we add UX bi-abduction as a layer on top of CSE by generating fixes from missing-resource
errors. This covers both missing-resource errors from the execution of the commands of
the language (e.g., in heap lookup, the looked-up cell might not be in the heap) as well as
invocations of consume (e.g., if the resource required by a function pre-condition is not in the
heap). In more detail, when a missing-resource error occurs, a fix is generated and applied to

ECOOP 2024

25:8 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

the current symbolic state, allowing the execution to continue. Secondly, our UX bi-abduction
is able to reason about predicates, allowing us to synthesise and soundly use a broader range
of function specifications from other formalisms and tools, in particular specifications that
capture unbounded behaviour rather than bounded or single-path behaviour.

Analysis: Specification Synthesis and True Bug-finding. We use bi-abduction to power
automatic synthesis of UX function specifications, obtaining one specification per each
constructed execution path. Such function specification synthesis forms the back-end of
Pulse-style true bug-finding, where specifications describing erroneous executions, after
appropriate filtering, can be reported as bugs. Given the guarantees of UX reasoning, any
bug (represented by a synthesised erroneous function specification) found during this process
will be a true bug.

Example: Specification Synthesis. We illustrate how bi-abduction can be used for the
synthesis of UX function specifications, using again the simple function f(c, x) from Fig. 1
(left). The first and the third branches of Fig. 1 (middle) yield the following specifications:[

c = c ⋆ x = x
]

f(c, x)
[
err : err = [“ExprEval”, “c ≥ 42”] ⋆ c /∈ Nat

][
c = c ⋆ x = x

]
f(c, x)

[
err : err = [“Error”, “c less than 42”] ⋆ c < 42

]
noting that information about local variables is discarded, the error value is returned in the
dedicated program variable err, and symbolic variables are replaced with logical variables.

Using bi-abduction, the second branch of Fig. 1 (middle) now becomes Fig. 1 (right). The
second branch of Fig. 1 (middle) has one branch in which x is not a heap address (natural
number), yielding a type error and the following specification[

c = c ⋆ x = x
]

f(c, x)
[
err : err = [“Type”, “x”, x, “Nat”] ⋆ c ≥ 42 ⋆ x /∈ Nat

]
and one branch in which x is a heap address. In that branch, the lookup fails with a
missing-resource error as the heap is empty, but in bi-abductive execution, that is, Fig. 1
(right), instead of failing we first generate the fix x̂ 7→ v̂, where v̂ is a fresh symbolic variable,
and then add it to the heap and re-execute the lookup, which now succeeds. The rest of the
function is executed without branching or errors, the function terminates and returns the
value of r, which is v̂. This branch results in the following specification:[

c = c ⋆ x = x ⋆ x 7→ v
]

f(c, x)
[
ok : x 7→ c ⋆ c ≥ 42 ⋆ ret = v

]
which illustrates an essential principle of bi-abduction, which is to add the fixes applied during
execution (also known as anti-frame, highlighted in red) to the specification pre-condition.

Example: Specification Synthesis with Predicates. To exemplify how predicates can be
useful during specification synthesis, consider the following variant of the standard singly-
linked list predicate: list(x; xs, vs), where x denotes the starting address of the list, and xs
and vs denote node addresses and node values, respectively.2 Both addresses and values are
exposed in the predicate to ensure that no information is lost when the predicate is folded,
making it suitable for UX reasoning. The predicate is defined as follows:

list(x; xs, vs) ≜ (x = null ⋆ xs = [] ⋆ vs = []) ∨
(∃v, x′, xs′, vs′. x 7→ v, x′ ⋆ list(x′; xs′, vs′) ⋆ xs = x : xs′ ⋆ vs = v : vs′)

2 We use the semicolon notation for predicates to be consistent with the main text, where the notation is
used for automation – for the purpose of this section, these semicolons can be read as commas.

A. Lööw et al. 25:9

Further, consider the predicate listHead(x; xs), which tells us that x is the head of the list xs
if xs is not empty and null otherwise, defined as

listHead(x; xs) ≜ (xs = [] ⋆ x = null) ∨ (∃xs′. xs = x : xs′),

and the following specifications of two list-manipulating functions (e.g., proven using pen-
and-paper), which capture the exact behaviour of inserting a value in the front of a list
(LInsert) and swapping of the first two values in a list (LSwapFirstTwo):[

x = x ⋆ v = v ⋆ list(x; xs, vs)
]

LInsert(x, v)
[
ok : list(ret; ret:xs, v:vs) ⋆ listHead(x; xs)

]
[x = x ⋆ list(x; xs, vs)] LSwapFirstTwo(x) [err : list(x; xs, vs) ⋆ |vs| < 2 ⋆ err = “List too short!”]

Using these specifications, we can bi-abduce the following UX true-bug specification of client
code calling these functions, where the discovered anti-frame is again highlighted in red, but
this time contains a predicate:

[x = x ⋆ list(x; xs, vs)]
x := LInsert(x, 42); y := LSwapFirstTwo(x)
[err : ∃x′. list(x′; x′:xs, 42:vs) ⋆ listHead(x; xs) ⋆ |42:vs| < 2 ⋆ err = “List too short!”]

3 Programming Language

We present a simple imperative heap language with function calls on which our analysis engine
operates. The language is standard, except that, in line with previous work on compositional
reasoning and incorrectness [8, 9, 10, 12, 28], we track freed cells in the heap, and separate
language errors and missing-resource errors to preserve the compositionality of the semantics.
We sometimes refer to the definitions of this section as concrete to differentiate them from
the symbolic definitions used in the symbolic engine introduced in subsequent sections.

Syntax. The values are given by: v ∈ Val ::= n ∈ Nat | b ∈ Bool | s ∈ Str | null | [v⃗], where
v⃗ denotes a vector of values. The types are given by: τ ∈ Type ::= Val | Nat | Bool | Str | List.
The types are used to define the semantics of the language; the language itself is dynamically
typed. The expressions, E ∈ PExp, comprise the values, program variables x, y, z, . . . ∈ PVar,
and expressions formed using the standard operators for numerical and Boolean expressions.
The commands are given by the grammar:

C ∈ Cmd ::= skip | x := E | x := nondet | error(E) | x := [E] | [E] := E | x := new |
free(E) | if (E) C else C | C; C | y := f(E⃗)

comprising the variable assignment, variable assignment of a non-deterministically chosen
natural number, user-thrown error, heap lookup, heap mutation, allocation, deallocation,
command sequencing, conditional control-flow and function call. Our results extend to other
control-flow commands, e.g. loops, since these can be implemented using conditionals and
recursive functions. The sets of program variables for expressions pv(E) and commands pv(C)
are standard.

Functions and Function Implementation Contexts. A function implementation, denoted
f (⃗x) { C; return E }, comprises: an identifier, f ∈ Fid ⊆ Str; the parameters, given by a list
of distinct program variables x⃗; a body, C ∈ Cmd; and a return expression, E ∈ PExp, with
pv(E) ⊆ {⃗x}∪pv(C). A function implementation context, γ, maps function identifiers to their
implementations: γ : Fid ⇀fin PVar List × Cmd × PExp, where ⇀fin denotes that the function
is a finite partial function. We often write f (⃗x){C; return E} ∈ γ for γ(f) = (⃗x, C, E).

ECOOP 2024

25:10 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

Stores, Heaps and States. A variable store, s : PVar ⇀fin Val, is a function from program
variables to values. A partial heap, h : Nat ⇀fin (Val ⊎ {∅}), is a function from natural
numbers to values extended with a dedicated symbol ∅ /∈ Val recording that a heap cell
has been freed. Two heaps are disjoint, denoted h1 ♯ h2, when their domains are disjoint.
Heap composition, denoted h1 ⊎ h2, is given by the disjoint union of partial functions
which is only defined when the domains are disjoint. A partial program state, σ = (s, h),
is a pair comprising a store and a heap. State composition, denoted σ1 · σ2, is given by
(s1, h1) · (s2, h2) ≜ (s1 ∪ s2, h1 ⊎ h2) for σ1 = (s1, h1) and σ2 = (s2, h2), which is only defined
when variable stores are equal on their intersection and the heap composition is defined.

Operational Semantics. We use a standard expression evaluation function, JEKs, which
evaluates an expression E with respect to a store s, assuming that expressions do not affect
the heap. It results in either a value or a dedicated symbol /∈ Val, denoting, an evaluation
error, such as a variable not being in the store or a mathematical error. The operational
semantics of commands is a big-step semantics using judgements of the form σ, C ⇓γ o : σ′

which reads “the execution of command C in state σ and function implementation context
γ results in a state σ′ with outcome o”, where o ::= ok | err | miss denotes, respectively, a
successful execution, a language error, and a missing-resource error due to the absence of
a required cell in the partial heap. The separation of the missing-resource errors from the
language errors is important for compositional reasoning, since the language satisfies both
the standard OX and UX frame properties when the outcome is not missing. The semantics
is standard and given in full in [18], along with the frame properties it satisfies.

4 Compositional Symbolic Execution: Core Engine

We present our CSE engine in two stages. In this section, we present the core CSE engine,
given by a standard compositional symbolic operational semantics presented here to establish
notation and introduce key concepts to the non-specialist reader: the definitions are similar
to those for whole-program symbolic execution; the difference is with the use of partial state
which has the effect that we have the distinction between language errors and missing-resource
errors. In §5.3, we extend the core engine with our semantic rules for function calls and
folding/unfolding predicates, using an axiomatic description of the consume and produce
operations given in §5.2.

4.1 Symbolic States
Let SVar be a set of symbolic variables, disjoint from the set of program variables, PVar, and
values, Val. Symbolic values are defined as follows:

v̂ ∈ SVal ::= v | x̂ | v̂ + v̂ | . . . | v̂ = v̂ | ¬ v̂ | v̂ ∧ v̂ | v̂ ∈ τ

A symbolic store, ŝ : PVar ⇀fin SVal, is a function from program variables to symbolic values.
A partial symbolic heap, ĥ : SVal ⇀fin (SVal ⊎ {∅}), is a function from symbolic values
to symbolic values extended with ∅. A path condition, π̂ ∈ SVal, is a symbolic Boolean
expression that captures constraints imposed on symbolic variables during execution. A
(partial) symbolic state is a triple of the form σ̂ = (ŝ, ĥ, π̂). Throughout the paper, we only
work with well-formed states σ̂, denoted Wf (σ̂), the definition is uninformative (it ensures,
e.g., that the addresses of the symbolic heap are interpreted as natural numbers), see [18].
We write σ̂.pc and σ̂[pc := π̂′] to denote, respectively, access and update the state path
condition. We write sv(X) to denote the set of symbolic variables of a given construct X:
e.g., sv(ŝ) for symbolic stores, sv(ĥ) for symbolic heaps, etc.

A. Lööw et al. 25:11

Lookup
JEKπ̂

ŝ ⇓ (v̂, π̂′) ĥ(v̂l) = v̂m

π̂′′ ≜ (v̂l = v̂) ∧ π̂′ SAT(π̂′′)
(ŝ, ĥ, π̂), x := [E] ⇓Γ ok : (ŝ[x 7→ v̂m], ĥ, π̂′′)

Lookup-Err-Val
JEKπ̂

ŝ ⇓ (, π̂′)
v̂err ≜ [“ExprEval”, str(E)]

(ŝ, ĥ, π̂), x := [E] ⇓Γ err : (ŝerr , ĥ, π̂′)

Lookup-Err-Missing
JEKπ̂

ŝ ⇓ (v̂, π̂′) SAT(π̂′ ∧ v̂ ∈ Nat ∧ v̂ ̸∈ dom(ĥ)) v̂err ≜ [“MissingCell”, str(E), v̂]
(ŝ, ĥ, π̂), x := [E] ⇓Γ miss : (ŝerr , ĥ, π̂′ ∧ v̂ ∈ Nat ∧ v̂ ̸∈ dom(ĥ))

Figure 3 Excerpt of symbolic execution rules, where ŝerr = ŝ[err 7→ verr].

Symbolic Interpretations. A symbolic interpretation, ε : SVar ⇀fin Val maps symbolic
variables to concrete values, and is used to define the meaning of symbolic states and state the
soundness results of the engine. We lift interpretations to symbolic values, ε : SVal ⇀fin Val,
with the property that it is undefined if the resulting concrete evaluation faults. Satisfiability
of symbolic values is defined as usual, i.e., SAT(π̂) ≜ ∃ε. ε(π̂) = true. We further lift symbolic
interpretations to stores, heaps, and states, overloading the ε notation.

4.2 Core Engine
The symbolic expression evaluation relation, JEKπ̂

ŝ ⇓ (ŵ, π̂′), evaluates a program expression
E with respect to a symbolic store ŝ and path condition π̂. It results in either a symbolic
value or an evaluation error, ŵ ≜ v̂ | , and a satisfiable path condition π′ ⇒ π, which may
contain additional constraints arising from the evaluation (e.g., to prevent branching on
division by zero). The core CSE semantics is described using the usual single-trace semantic
judgement (below, left) which is used to state UX properties. It also induces the collecting
semantic judgement (below, right), which is used to state OX properties.

σ̂, C ⇓γ o : σ̂′ σ̂, C ⇓γ Σ̂′ ⇐⇒ Σ̂′ = {(o, σ̂′) | σ̂, C ⇓γ o : σ̂′}

We give the lookup rules for illustration in Fig. 3: for example, the rule Lookup branches
over all possible addresses in the heap that can match the given address.

Our CSE semantics is both OX- and UX-sound, which we call exact: OX soundness
captures that no paths are dropped by stating that the symbolic semantics includes all beha-
viour w.r.t. the concrete semantics; UX soundness captures that no information is dropped
by stating that the symbolic semantics does not add behaviour w.r.t. the concrete semantics.

▶ Theorem 1 (OX and UX soundness).

(OX) σ̂, C ⇓γ Σ̂′ ∧ ε(σ̂), C ⇓γ o : σ′ =⇒ ∃σ̂′, ε′ ≥ ε. (o, σ̂′) ∈ Σ̂′ ∧ σ′ = ε′(σ̂′)

(UX) σ̂, C ⇓γ o : σ̂′ ∧ ε(σ̂′) = σ′ =⇒ ε(σ̂), C ⇓γ o : σ′

where ε′ ≥ ε denotes that ε′ extends ε, i.e., ε′(x̂) = ε(x̂) for all x̂ ∈ dom(ε).

5 Compositional Symbolic Execution: Full Engine

Our core CSE engine is limited in that it does not call function specifications written
in a program logic, and it cannot fold and unfold user-defined predicates to verify, e.g.,
specifications of list algorithms. What is missing is a general description of how to update
symbolic state using assertions from the function specifications and predicate definitions. In

ECOOP 2024

25:12 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

VeriFast, Viper and Gillian, this symbolic-state update is given by their implementations of
the consume and produce operations. We instead give an axiomatic interface for describing
such symbolic-state update by providing a general characterisation of these consume and
produce operations (§5.2). Using this interface, we are able to give general definitions of the
function-call rule (§5.3) and the folding and unfolding of predicates that are independent
of the underlying tool implementation. Assuming the appropriate properties stated in the
axiomatic interface, we prove that the resulting CSE engine is either OX sound or UX
sound. Moreover, because the axiomatic interface relates the behaviour of the consume and
produce operations to the standard satisfaction relation of SL and ISL, our function-call
rule is able to use any function specification proven correct with respect to the standard
function specification validity of SL and ISL, including functions specification proven outside
our engine. In the next section (§6), we demonstrate that the Gillian implementation of the
consume and produce operations are correct with respect to our axiomatic interface.3

5.1 Assertions and Extended Symbolic States
We present assertions suitable for both SL and ISL reasoning, and also extend our symbolic
states to account for predicates. It is helpful to make a clear distinction between the logical
assertions and symbolic states: since we work with the linear heap, the gap between assertions
and symbolic states is quite small; with more complex memory models and optimised symbolic
representations of memory, the gap is larger and this distinction becomes essential.

Assertions. Let x, y, z ∈ LVar denote logical variables, distinct from program and symbolic
variables. The set of logical expressions, E ∈ LExp, extends program expressions to include
logical variables. We work with the following set of assertions (other assertions are derivable):

π ∈ BAsrt ≜ E | E ∈ τ | ¬π | · · · | π1 ∧ π2
P ∈ Asrt ≜ π | False |P1 ⇒ P2 | P1 ∨ P2 | ∃x. P |

emp | E1 7→ E2 | E 7→ ∅ | P1 ⋆ P2 | p(E⃗1; E⃗2)

where E , E1, E2 ∈ LExp, x ∈ LVar, and p ∈ Str. The assertions should by now be familiar
from separation logic. They comprise the lift of the usual first-order Boolean assertions
π, assertions built from the usual first-order connectives and quantifiers, and assertions
well-known from separation logic: the empty assertion emp, the cell assertion E1 7→ E2
describing a heap cell at an address given by E1 with value given by E2, the less well-known
assertion E 7→ ∅ describing a heap cell at address E that has been freed, the separating
conjunction P1 ⋆ P2, and the predicate assertions p(E⃗1; E⃗2). The parameters of predicate
assertions p(E⃗1; E⃗2) are separated into in-parameters E⃗1 (“ins”) and out-parameters E⃗2
(“outs”) for automation purposes, as we discuss in §6; this separation does not affect the
logical meaning of the predicate assertions. We write lv(X) to denote free logical variables of
a construct X: e.g., lv(E) for logical expressions, lv(P) for assertions, etc. We say that an
assertion P is simple if it does not syntactically feature the separating conjunction; simple
assertions are used in the definition of matching plans (§6.1).

Predicates. Predicate definitions are given by a set Preds containing elements of type
Str × ⃗LVar × ⃗LVar × Asrt, with the notation p(x⃗in; x⃗out) {P} ∈ Preds, where the string p

denotes the predicate name, the lists of disjoint parameters x⃗in, x⃗out denote the predicate

3 To our best understanding, there is a large overlap between Gillian’s consume and produce operations
and those of Viper and VeriFast. We therefore expect them to also satisfy the OX properties of our
interface (we have however not proven this fact).

A. Lööw et al. 25:13

ins and outs respectively, and the assertion P =
∨

i(∃y⃗i. Pi) denotes the predicate body,
which does not contain program variables and whose free logical variables are contained in
{x⃗in} ∪ {x⃗out} which are disjoint from the bound variables y⃗i, and where the Pi’s (denoting
the assertions of the predicate definition) do not contain disjunctions or existential quantifiers.

Satisfiability. The meaning of an assertion P is defined by capturing the models of P using
the standard satisfaction relation θ, σ |= P where θ : LVar ⇀fin Val is a logical interpretation
represented by a function from logical variables to values and σ is a program state (as defined
in §3). The formal definition is included in the extended version of this paper [18].

Function Specifications. The quadruples
{

x⃗ = x⃗ ⋆ P
}

f (⃗x)
{

ok : Qok
} {

err : Qerr
}

and[⃗
x = x⃗ ⋆ P

]
f (⃗x)

[
ok : Qok

] [
err : Qerr

]
denote, respectively, a SL and an ISL function

specification, as explained in §2.2. We write
〈〈⃗

x = x⃗ ⋆ P
〉〉

f (⃗x)
〈〈

ok : Qok
〉〉 〈〈

err : Qerr
〉〉

to
refer to either. Both quadruples record successful executions and language errors. They are
unable to record missing-resource errors, as these errors do not satisfy the OX and UX frame
properties. Missing errors can be removed automatically via UX bi-abduction (see §7).

Formally, we define function specifications using internalisation [20]. In short, internal-
isation relates internal specifications, which describe the internal behaviour of functions, to
external specifications, which describe the external behaviour of functions. Internalisation is
needed for ISL to allow the logic to drop information about function-local program variables
at function boundaries, since dropping information is in general not allowed in ISL. The full
definitions of function specifications and internalisation are included in [18].

A function specification context, Γ ∈ Fid ⇀fin P(ESpec), maps function identifiers to
a finite set of external specifications ESpec. To simplify the presentation of the paper, we
assume existential quantifiers only occur at the top level of external specifications. We denote
the validity of Γ with respect to γ by |= (γ, Γ), and validity of a function specification with
respect to Γ by Γ |=

〈〈⃗
x = x⃗ ⋆ P

〉〉
f (⃗x)

〈〈
ok : Qok

〉〉 〈〈
err : Qerr

〉〉
.

Extended Symbolic States. To reason about unbounded execution to verify, for example,
specifications of list algorithms, we extend the partial symbolic states defined in §4.1 with
symbolic predicates of the form p(⃗̂v1; ⃗̂v2), with p ∈ Str and ⃗̂v1, ⃗̂v2 ∈ ⃗SVal. An extended
symbolic state σ̂ is a tuple (ŝ, Ĥ, π̂) comprising a partial symbolic state ŝ, a symbolic resource
Ĥ = (ĥ, P̂) with symbolic heap ĥ and multiset of symbolic predicates P̂ , and a symbolic path
condition π̂. Definitions of well-formedness of symbolic state and symbolic interpretations are
extended as expected. We define ε, σ |= (ŝ, Ĥ, π̂) analogously to assertion satisfaction since
the interpretation of a symbolic state with respect to symbolic interpretation ε : SVar ⇀fin Val
is a relation and not a function (cf. §4) due to the presence of symbolic predicates.

The composition of two extended symbolic states is defined by:

(ŝ1, Ĥ1, π̂1) · (ŝ2, Ĥ2, π̂2) ≜ (ŝ1 ∪ ŝ2, Ĥ1 ∪ Ĥ2, π̂1 ∧ π̂2 ∧ Wfc(Ĥ1 ∪ Ĥ2))

where Ĥ1 ∪ Ĥ2 denotes the pairwise union of the components of the symbolic resource and
Wfc(Ĥ1 ∪ Ĥ2) ensures that the composition is well-formed.

5.2 Axiomatic Interface for Consume and Produce
We present our axiomatic interface for the consume and produce operations, used to update
the symbolic state during function call and to fold and unfold the predicates. Given the
substitution θ̂ : LVar ⇀fin SVal, the consume and produce operations have the signatures:

consume(m, P, θ̂, σ̂)⇝ (θ̂′, σ̂f) | abort(v̂) produce(P, θ̂, σ̂)⇝ σ̂′

ECOOP 2024

25:14 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

We assume the following holds initially: state σ̂ and substitution θ̂ are well-formed; and θ̂ covers P

for produce, that is, lv(P) ⊆ dom(θ̂). For properties 1–4 below, consider the following executions:

consume(m, P, θ̂, σ̂)⇝ (θ̂′, σ̂f) where σ̂ = (ŝ, Ĥ, π̂) and σ̂f = (ŝ′, Ĥf , π̂′)
produce(P, θ̂, σ̂)⇝ σ̂′ where σ̂ = (ŝ, Ĥ, π̂) and σ̂′ = (ŝ′, Ĥ ′, π̂′)

▶ Property 1 (Well-formedness). The variable store is not altered: that is, ŝ′ = ŝ and

(consume) Wf (σ̂f) and Wf (θ̂′, π̂′) (produce) Wf (σ̂′)

▶ Property 2 (Path Strengthening). π̂′ ⇒ π̂

▶ Property 3 (Consume Covers P). θ̂′ ≥ θ̂ and dom(θ̂′) ⊇ lv(P)

▶ Property 4 (Soundness).

(consume) ∃ĤP . Ĥ = Ĥf ∪ ĤP ∧ (∀ε, σ. ε, σ |= σ̂P =⇒ ε(θ̂′), σ |= P) where σ̂P ≜ (∅, ĤP , π̂′)a

(produce) ∃ĤP . Ĥ ′ = Ĥ ∪ ĤP ∧ (∀ε, σ. ε, σ |= σ̂P =⇒ ε(θ̂), σ |= P) where σ̂P ≜ (∅, ĤP , π̂′)

▶ Property 5 (Completeness: OX consume). If abort ̸∈ consume(OX, P, θ̂, σ̂) and ε, σ |= σ̂, then

∃θ̂′, σf , σ̂f . consume(OX, P, θ̂, σ̂)⇝ (θ̂′, σ̂f) ∧ ε, σf |= σ̂f

▶ Property 6 (Completeness: UX consume). If consume(UX, P, θ̂, σ̂)⇝ (θ̂′, σ̂f), ε(π̂′) = true and
ε(θ̂′), (∅, hP) |= P , then

ε, (∅, hP) |= σ̂P ∧ (∀hf . ε, (s, hf) |= σ̂f ∧ hP ♯ hf =⇒ ε, (s, hf ⊎ hP) |= σ̂)

▶ Property 7 (Completeness: produce). If ε, (s, h) |= σ̂ and ε(θ̂), (∅, hP) |= P and h ♯ hP , then

∃σ̂P . produce(P, θ̂, σ̂)⇝ σ̂ · σ̂P ∧ ε, (∅, hP) |= σ̂P

a We choose the empty symbolic store for σ̂P ; P does not have program variables so this choice is
arbitrary. The symbolic state σ̂P is the one used in Prop. 6.

Figure 4 The axiomatic interface for the consume and produce operations.

Recall the use of the consume and produce operations in the function call illustrated in
Fig. 2 of §2.2. For consume(m, P, θ̂, σ̂), the initial substitution θ̂ comes from replacing
the function parameters with symbolic values given by the arguments in the function call;
consume matches the precondition P and substitution θ̂ against part of σ̂, removing the
appropriate resource σ̂P and returning the frame σ̂f and the substitution θ̂′ which extends
θ̂ with further information given by the match. For produce(Qok, θ̂′, σ̂f), the produce takes
the postcondition Qok and this resulting substitution θ̂′ and creates a symbolic state which
is composed with σ̂f to obtain σ̂′. Notice that the consume operation can abort with error
information if no match is found. The produce operation does not abort, but it may render
states unsatisfiable, in which case the branch is cut.

In Fig. 4, we present the axiomatic interface of the consume and produce operations,
identifying sufficient properties to prove OX and UX soundness for the function-call rule
and the folding and unfolding of predicates, as we demonstrate in the next section (§5.3).
Properties 1–3 ensure that the operations are compatible with the expected properties of
symbolic execution, including well-formedness Wf (θ̂′, π̂′) of the symbolic substitutions with
respect to path conditions. This property guarantees that the π̂′ implies that θ̂′ does not
map logical variables into , that is, π̂′ ⊨ codom(θ̂′) ⊆ Val.

A. Lööw et al. 25:15

Properties 4–7 give conditions for consume and produce to soundly decompose and compose
symbolic states respectively, while being compatible with symbolic and logical interpretations.
These properties will come as no surprise to those with a formal knowledge of symbolic
execution. However, their identification was not easy, requiring a considerable amount of
back and forth between the soundness proof and the properties to pin them down properly.
We describe the more interesting of the properties described in Fig. 4:

Prop. 2 states that path conditions may only get strengthened: OX and UX consume may
strengthen π̂ to due to branching; additionally UX consume may strengthen π̂ arbitrarily
due to cutting; and produce may add constraints to π̂ arising from P .
Prop. 4, for consume (and similarly for produce), states that the operation is sound:
the symbolic resource of σ̂ can be decomposed as Ĥ = Ĥf ∪ ĤP , i.e., it consists of the
symbolic resources of σ̂P and σ̂f , respectively, and ∀ε, σ. ε, σ |= σ̂P =⇒ ε(θ̂′′), σ |= P

states that all models of σ̂P are models of P .
Prop. 5 captures that successful OX consumptions do not drop paths: if no branch aborts,
and we have a model ε, σ |= σ̂, then there exists a branch σ̂f with a model using the same
ε, i.e., there exist σf such that ε, σf |= σ̂f .
Prop. 6 is as follows: in successful UX consume, any model of the consumed assertion P

must also model the consumed state σ̂P (obtained from Prop. 4), and when extended
with a compatible model of the output state σ̂f it must model the input state σ̂.

Assuming these properties of the consume and produce operations, we are able to prove
that the function-call rule and the predicate folding and unfolding are sound, and thus that
our whole CSE engine is sound (Thm. 3). In §5.3, we give an example (Ex. 2) illustrating
some of the properties in action during a function call.

5.3 Full CSE Engine
We introduce our full CSE engine, extending the core CSE engine (§4) with the ability to
soundly call valid SL and ISL function specifications (§5.1), and to fold/unfold predicates. We
extend and adapt the compositional symbolic operational semantics to carry a specification
context Γ and the mode of execution m (OX or UX), obtaining the judgement σ̂, C ⇓m

Γ o : σ̂′,
and extend the possible outcomes with abort, as consume can abort. The rules are analogous
except for the rules for function calls and predicate folding/unfolding, as detailed below.4

Function-Call Rule. The unified success rule for a function call is in Fig. 5, using the
notation Γ(f)|m to isolate the m-mode specifications of f . A description of each step is
included in the rule itself. In short, given an initial state σ̂, the rule selects a function
specification, consumes the specification pre-condition from σ̂, resulting in σ̂′, and produces
the post-condition of the specification into σ̂′, resulting in the final state σ̂′′. The steps in grey
are uninteresting (about renamings and fresh variables) and can be ignored on a first reading.

▶ Example 2. We show a possible execution of a function call using a function specification,
where we assume we have been given consume and produce example implementations that
satisfy the axiomatic interface. Consider the function f given in §2.1 and the ISL specification
given in §2.3:

[
c = c ⋆ x = x ⋆ P

]
f(c, x)

[
ok : x 7→ c ⋆ c ≥ 42 ⋆ ret = v

]
where P is x 7→ v,

4 The satisfiability check SAT(π̂) used by the rules over-approximates the existence of a model for (ŝ, Ĥ, π̂),
due to the presence of symbolic predicates; for sound reasoning in UX mode, our engine addresses this
source of over-approximation by under-approximating the satisfiability check once by bounded unfolding
of predicates at the end of execution.

ECOOP 2024

25:16 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

(1)
〈〈

x⃗ = x⃗ ⋆ P
〉〉

f (⃗x)
〈〈

ok : Qok
〉〉 〈〈

err : Qerr
〉〉

∈ Γ(f)|m get function specification
(2) JE⃗Kπ̂

ŝ ⇓ (⃗̂v, π̂′) and θ̂ ≜ {⃗̂v/x⃗} evaluate function parameters
(3) consume(m, P, θ̂, σ̂[pc := π̂′])⇝ (θ̂′, σ̂′) consume pre-condition
(4) Qok = ∃y⃗. Q′

ok as Qok is a post-condition
(5) θ̂′′ ≜ θ̂′ ∪ {⃗̂z/y⃗} extend substitution to cover Qok
(6) ⃗̂z, r, r̂ fresh fresh variables
(7) Q′′

ok = Q′
ok{r/ret} and θ̂′′′ = θ̂′′ ∪ {r̂/r} set up return value

(8) produce(Q′′
ok , θ̂′′′, σ̂′)⇝ σ̂′′ produce post-condition

σ̂, y := f(E⃗) ⇓m
Γ ok : σ̂′′[sto := ŝ[y 7→ r̂]]

Figure 5 Unified function-call rule for CSE: success case, where σ̂ = (ŝ, Ĥ, π̂).

here assumed to be in the function specification context Γ. Suppose the symbolic execution
is in a state σ̂ = (ŝ, Ĥ, π̂) and that the next step is σ̂, y := f(50, 1) ⇓UX

Γ ok : σ̂′. Let
Ĥ = ({x̂ 7→ ĉ, ŷ 7→ 1, 3 7→ 5}, ∅) be the symbolic resource, and π̂ = ĉ ≥ 42∧ x̂ ≠ ŷ ∧ x̂ , ŷ ∈ Nat
be the symbolic path condition (the symbolic store ŝ is irrelevant to this computation and
left opaque). We now follow the steps (1) - (8) described in the function-call rule in Fig. 5.

Step (1) is above. Step (2) evaluates the parameters of the function call which in this case
yields the initial substitution is θ̂ = {50/c, 1/x}. Step (3) is to consume the pre-condition of
f: θ̂ identifies the logical variable x with 1, and thus, this θ̂ maps P into 1 7→ v; now we check
whether there exists a resource in Ĥ that matches this. There are two possibilities: either
x̂ = 1 and v = ĉ; or ŷ = 1 and v = 1. Let us choose the first match. Thus, with our axiomatic
description of a consume operation, consume(UX, x 7→ v, θ̂, σ̂) gives the pair (θ̂′, σ̂f), with
substitution θ̂′ = {50/c, 1/x, ĉ/v} and symbolic frame σ̂f = (ŝ, ({ŷ 7→ 1, 3 7→ 5}, ∅), π̂∧ x̂ = 1).
Here θ̂′ ≥ θ̂ as described by Prop. 3 of Fig. 4, the new path condition π̂ ∧ x̂ = 1 is stronger
than the initial π̂, as required by Prop. 2.

Steps (4) - (5) are straightforward: Qok is not existentially quantified and the domain of
θ̂′ covers Qok = x 7→ c ⋆ c ≥ 42 ⋆ ret = v. Steps (6) - (7) set up the return value by renaming
ret with a fresh logical variable r as in Q′′

ok = Qok{r/ret} and defining the substitution
θ̂′′ = θ̂′ ⊎ {r̂/r}, with r̂ a fresh symbolic variable. Step (8) produces the post-condition which
results in (ŝ, ({ŷ 7→ 1, 3 7→ 5, 1 7→ 50}, ∅), π̂′), for some π̂′ that is satisfiable.

We illustrate the general execution of the function-call rule in Fig. 6. Successful consume
may branch (in the figure: σ̂f1 , . . . , σ̂fk

) due to different ways of matching with the symbolic
state σ̂, and the function call will branch accordingly. In both modes, in each successful
branch, say with frame state σ̂fi

, the function-call rule will call produce, which will produce
both Qok and Qerr postconditions of the function specification. The function call propagates
errors from consume, whose error handling can depend on the mode of reasoning. In OX
mode, all errors must be reported; the figure shows an example with two abort outcomes, one
with a symbolic value σ̂miss, representing a missing outcome, and another abort σ̂v̂. In UX
mode, in contrast, errors can be cut: e.g., a consume implementation may choose to report
missing errors (to be used in e.g. bi-abduction, see §7), but cut other errors, as illustrated in
the figure. Lastly, note that consume implementations must represent missing-resource errors
as abort errors. To see why, consider the function do_nothing() { skip; return null } and
the (nonsensical but valid) specification

[
5 7→ 0

]
do_nothing()

[
ok : 5 7→ 0 ⋆ ret = null

]
. Of

course, in the concrete semantics, calling the function will never result in a miss. Now, say the
symbolic engine calls the function using the provided function specification. If the the resource
of the pre-condition is not available in the current symbolic heap, then the consumption of
the pre-condition will fail. Because no concrete execution of the function results in a miss, it
would be unsound for the consumption to report a missing-resource error in this case.

A. Lööw et al. 25:17

y⃗ = f (⃗E)

σ̂

{⃗
x = x⃗ ⋆ P

}
f (⃗x)

{
ok : Qok

} {
err : Qerr

}
consume(OX, P, θ̂, σ̂)

σ̂f1

err : σ̂′′ok : σ̂′

σ̂fk

abort(v̂)

produce(Qok)

produce(Qerr)

. . .

abort : σ̂v̂abort : σ̂miss

abort(miss)

y⃗ = f (⃗E)

σ̂

[⃗
x = x⃗ ⋆ P

]
f (⃗x)

[
ok : Qok

] [
err : Qerr

]
consume(UX, P, θ̂, σ̂)

σ̂f1

err : σ̂′′ok : σ̂′

σ̂fkproduce(Qok)

produce(Qerr)

. . .

abort : σ̂miss

abort(miss)

Figure 6 Branching in OX and UX function calls.

Predicate Rules. To handle the folding and unfolding of predicates in symbolic states, we
extend the language syntax with the following two ghost commands (also known as tactic
commands): C ∈ Cmd ::= · · · | fold p(E⃗) | unfold p(E⃗), where E⃗ ∈ PExp specifies the
values of the in-parameters of the predicate p. In the concrete semantics, these commands
are no-ops, as they are ghost commands. The symbolic-semantics rules are similar to the
function-call rule: in short, a fold of a predicate consumes the body of the predicate, learns
the out-parameters of the predicate, and adds the predicate (with the specified in-parameters
and learnt out-parameters) to the symbolic state; and an unfold of a predicate finds a
corresponding predicate in the symbolic state, learns the out-parameters of the predicate,
and produces the body of the predicate.

Soundness. Our CSE engine is sound: OX soundness, expectedly, has no restrictions on
the predicates; UX soundness, on the other hand, allows only strictly exact predicates (i.e.,
predicates whose bodies are satisfiable by at most one heap [33]) to be folded to ensure that
no information is dropped.

▶ Theorem 3 (Compositional OX and UX soundness). If all UX predicate foldings are limited
to strictly exact predicates, then the following hold:

|= (γ, Γ) ∧ σ̂, C ⇓OX
Γ Σ̂′ ∧ abort ̸∈ Σ̂′ ∧ ε, σ |= σ̂ ∧ σ, C ⇓γ o : σ′ =⇒

∃σ̂′, ε′ ≥ ε. (o, σ̂′) ∈ Σ̂′ ∧ ε′, σ′ |= σ̂′

|= (γ, Γ) ∧ σ̂, C ⇓UX
Γ o : σ̂′ ∧ ε, σ′ |= σ̂′ =⇒ ∃σ. ε, σ |= σ̂ ∧ σ, C ⇓γ o : σ′

Proof. Proofs of rules not related to function calls and predicates are the same as for Thm. 1.
OX soundness of function call follows from soundness of consume (Prop. 4), OX completeness
of consume (Prop. 5), and completeness of produce (Prop. 7). UX soundness of function
call follows from the soundness of consume and produce (Prop. 4) and UX completeness of
consume (Prop. 6). Full details are given in the extended version of this paper [18]. ◀

6 Consume and Produce Implementations

We provide implementations for the consume and produce operations and prove that they
satisfy the properties 1–7 of the axiomatic interface (§5.2). We give the complete set of rules
implementing these operations in the extended version [18] and only discuss the interesting
rules here. Our implementations are inspired by the Gillian OX implementations, although
previous work has only given a brief informal sketch of these implementations [10].

ECOOP 2024

25:18 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

6.1 Implementations
Consume Implementation. As is typical for SL-based analysis tools, our consume operation
works with a fragment of the assertions with no implications, disjunctions, or existentials
(which are handled outside consumption, see, e.g., the function-call rule); which means that
input assertions for consumption are ⋆-separated lists of simple assertions. Following the
implementation of Gillian, our consume operation works by consuming one simple assertion
at a time and is split into two phases, a planning phase and a consumption phase:

consume(m, P, θ̂, σ̂) ≜ let mp = plan(dom(θ̂), P) in consumeMP(m, mp, θ̂, σ̂)

Here our interest lies in the consumption phase: the planning phase of Gillian has been
formalised and discussed by Lööw et al. [19]. We, however, repeat the necessary background
of the planning phase here to keep this paper self-contained.

Consumption Planning. The plan operation has two responsibilities: to resolve the order of
consumption and the unknown variables. The operation takes a set of known logical variables
(above, dom(θ̂)) and an assertion P to plan and returns a matching plan (MP) of the form
[(Asrt, [(LVar, LExp)])]. An MP for an assertion P = P1 ⋆ . . . ⋆ Pn ensures that (1) the simple
assertions Pi of P are consumed in an order such that the in-parameters (ins) of each simple
assertion, i.e., the parameters (logical variables) that must be known to consume the simple
assertion, have been learnt during previous consumption; (2) specifies how out-parameters
(outs) are learnt during consumption, i.e., the remaining parameters (logical variables). For
instance, the in-parameter of the cell-assertion x 7→ z + 1 is x and the out-parameter is
z, where the value of z can be learnt by inspecting the heap and subtracting 1. Another
example is given by the pure assertion x + 1 = y + 3: here, what the in- and out-parameters
are depend on what variables are known, e.g., if we know x we can learn y and vice versa.

▶ Example 4. Say we are to plan the assertion x ≤ 10 ⋆ x 7→ y ⋆ y = z − 10 knowing
that θ̂ = {x̂/x}, that is, x is known but y and z are not. One MP for this assertion is
[(x ≤ 10, []), (x 7→ y, [(y, O)]), (y = z − 10, [(z, y + 10)])], where O is used to refer to the value
of the consumed heap cell. First, by consuming x ≤ 10 we learn nothing (x is already known);
second, when consuming x 7→ y we learn y (from the consumed heap cell); third, since we
learn y in the previous step, we can learn z by manipulating the assertion to z = y + 10.
Another MP is [(x 7→ y, [(y, O)]), (x ≤ 10, []), (y = z − 10, [(z, y + 10)])]. Note that there is no
MP starting with assertion y = z − 10, because y and z are not known initially.

Consuming Assertions. Having discussed the planning phase, we now discuss how pure
assertions, cell assertions, and predicate assertions are consumed.

Consuming Pure Assertions. Fig. 7 contains the consumeMP rules for consuming pure
assertions. The rules are defined in terms of the helper operation consPure(m, π̂, π̂′) = π̂′′ |
abort which depends on the current reasoning mode m:

(i) for m = OX, we check ¬SAT(π̂ ∧ ¬π̂′) which is equivalent to π̂ ⇒ π̂′, hence, the SAT
check corresponds to the entailment check seen in traditional OX reasoning;

(ii) for m = OX, if SAT(π̂ ∧ ¬π̂′), that is, ¬(π̂ ⇒ π̂′), consumption, of course, must abort;
(iii) for m = UX, consPure instead cuts all paths of π̂ that are not compatible with the

input pure assertion π̂′, i.e., forms π̂ ∧ π̂′, and then checks if there are any paths left
after the cut, i.e., checks SAT(π̂ ∧ π̂′).

A. Lööw et al. 25:19

consPure(m, π̂, π̂′) =
π̂ ∧ π̂′, if m = UX and SAT(π̂ ∧ π̂′)
π̂, if m = OX and ¬SAT(π̂ ∧ ¬π̂′)
abort, if m = OX and SAT(π̂ ∧ ¬π̂′)

P is pure outs = [(xi, Ei)|ni=1]
θ̂′ = θ̂ ⊎ {(θ̂(Ei)/xi)|ni=1}

consPure(m, π̂, θ̂′(P)) = π̂′

consumeMP(m, [(P, outs)], θ̂, σ̂)⇝ (θ̂′, σ̂[pc := π̂′]))

P is pure outs = [(xi, Ei)|ni=1]
θ̂′ = θ̂ ⊎ {(θ̂(Ei)/xi)|ni=1} consPure(OX, π̂, θ̂′(P)) = abort

consumeMP(OX, [(P, outs)], θ̂, σ̂)⇝ abort([“consPure”, θ̂′(P), π̂])

Figure 7 Rules for consPure and consumeMP (excerpt), where σ̂ = (ŝ, Ĥ, π̂).

ĥ = ĥf ⊎ {v̂1 7→ v̂2} π̂′ = π̂ ∧ (v̂ = v̂1) SAT(π̂′)
consCell(v̂, σ̂)⇝ (v̂2, σ̂[heap := ĥf , pc := π̂′])

SAT(π̂ ∧ v̂ /∈ dom(ĥ))
consCell(v̂, σ̂)⇝ abort

consPure(m, π̂, θ̂(Ea) ∈ Nat) = π̂′ check for evaluation error
consCell(θ̂(Ea), σ̂[pc := π̂′])⇝ (v̂, σ̂′) branch over all cell consumptions
θ̂subst = {v̂/O} substitution with cell contents
outs = [(xi, Ei)|ni=1] and ((θ̂ ⊎ θ̂subst)(Ei) = v̂i)|ni=1 collect and instantiate outs
θ̂′ = θ̂ ⊎ {(v̂i/xi)|ni=1} extend substitution with outs
consPure(m, (σ̂′).pc, θ̂′(Ev) = v̂) = π̂′′ consume cell contents

consumeMP(m, [(Ea 7→ Ev, outs)], θ̂, σ̂)⇝ (θ̂′, σ̂′[pc := π̂′′])

Figure 8 Rules for consCell and consumeMP (excerpt), where σ̂ = (ŝ, Ĥ, π̂).

▶ Example 5. To exemplify the difference between OX and UX consume, consider calling a
function foo(y) with the precondition y = y ⋆ y ≥ 0. The first step of calling a function
using its function specification is to consume its precondition, which we now illustrate. Say
we are in a symbolic state with path condition π̂ = v̂ > 5 and are calling the function
with an argument that symbolically evaluates to v̂, i.e., we know θ̂(y) = v̂. In OX mode,
the function call aborts: consumeMP’s pure consumption error rule is applicable because
consPure(OX, π̂, θ̂(y) ≥ 10) = abort since SAT(π̂ ∧¬(v̂ ≥ 10)). Intuitively, this means that not
all paths described by π̂ are described by y ≥ 10, i.e., we are “outside” the precondition of the
function. Differently, in UX mode, a call to consPure(UX, π̂, θ̂(y) ≥ 10) cuts the incompatible
paths by strengthen the path condition to π̂ ∧ v̂ ≥ 10. That is, instead of as in OX mode
where execution must abort, in UX mode the execution can continue.

Consuming Cell Assertions. Fig. 8 contains some of the consumeMP rules for consuming a
cell assertion. The rules are defined using the helper operation consCell(v̂, σ̂)⇝ (v̂′, σ̂′) | abort,
which tries to consume the cell at address v̂ in mode m by branching over all possible addresses
in the heap, returning the corresponding value in the heap, v̂′, and the rest of the state, σ̂′,
and returns abort if it is possible for the address v̂ to point outside of heap. In the successful
consumeMP rule (featured in Fig. 8), the operation consPure is used to consume the contents
of the matched cells. The erroneous consumeMP rules are available in [18].

Consuming Predicate Assertions. The consumeMP rules for predicate assertions are gen-
eralisations of the rules for cell assertions, with two main differences: predicates may have
multiple ins and outs whereas cells have a single in and single out, and predicate assertions
refers to symbolic predicates whereas cell assertions refer to the symbolic heap.

ECOOP 2024

25:20 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

ĥ′ ≜ ĥ ⊎ {̂l 7→ v̂∅}
π̂′ ≜ π̂ ∧ l̂ /∈ dom(ĥ) SAT(π̂′)

σ̂′ ≜ σ̂[heap := ĥ′, pc := π̂′]
prodCell(̂l, v̂∅, σ̂) = σ̂′

P pure
π̂′ ≜ π̂ ∧ θ̂(P) SAT(π̂′)

σ̂′ ≜ σ̂[pc := π̂′]
produce(P, θ̂, σ̂)⇝ σ̂′

π̂′ ≜ π̂ ∧ θ̂(Ea) ∈ Nat ∧ θ̂(Ev) ∈ Val
prodCell(θ̂(Ea), θ̂(Ev), σ̂[pc := π̂′]) = σ̂′

produce(Ea 7→ Ev, θ̂, σ̂)⇝ σ̂′

Figure 9 Rules for prodCell and produce (excerpt), where σ̂ = (ŝ, Ĥ, π̂) and v̂∅ denotes a symbolic
value or ∅.

Produce Implementation. The implementation of produce(Q, θ̂, σ̂) is straightforward: it
extends σ̂ with the symbolic state corresponding to Q given θ̂, ensuring well-formedness.
Unlike consume, produce does not require planning and is not dependent on the mode of
execution. An excerpt of rules for produce is given in Fig. 9. Like consume, produce does not
support assertion-level implications, which are usually not found in function specifications or
predicate definitions. However, produce, unlike consume, supports assertion-level disjunctions
since the function specification we synthesise using bi-abduction contains disjunctions (cf. §8).

6.2 Correctness of Implementations
The correctness of the consume and produce implementations amount to showing that they
satisfy properties of the axiomatic interface for consume and produce.

▶ Theorem 6 (Correctness). The consume and produce operations satisfy properties 1-7 (§5.2).

7 Bi-abduction

To enable hosting Pulse-style true bug-finding on top of our CSE engine, it must support UX
bi-abduction. In this section, we show how the engine presented in §5 can be extended to
support UX bi-abduction by catching missing-resource errors that happen during execution
and applying fixes to enable uninterrupted execution instead of faulting. These fixes, stored in
an anti-frame, add the missing resource to the current state and allow execution to continue.
This style of bi-abduction was introduced in the OX setting by JaVerT 2.0 [10]. Here we
show that it can also be applied to the UX setting. We focus on UX bi-abduction for true
bug-finding, but also discuss in §8 how the obtained UX results can be used in an OX setting.

We introduce the judgement for the bi-abductive symbolic engine, σ̂, C ⇓bi
Γ o : (σ̂′, Ĥ),

with outcomes o ::= ok | err , and the anti-frame Ĥ = (ĥ, P̂) containing the anti-heap ĥ

and the anti-predicates P̂. We do not need miss or abort as possible outcomes since if they
happen during execution they will be either fixed by bi-abduction or cut if not. The new
judgement is defined in terms of the judgement σ̂, C ⇓UX

Γ o : σ̂′ and a partial function fix as:

Biab
σ̂, C ⇓UX

Γ o : σ̂′

not_Seq(C) o /∈ {miss, abort}
σ̂, C ⇓bi

Γ o : (σ̂′, (∅, ∅))

Biab-Miss
σ̂, C ⇓UX

Γ o : σ̂′ not_Seq(C) o ∈ {miss, abort}
fix(σ̂′) = (Ĥ, π̂) σ̂ · (Ĥ, π̂), C ⇓bi

Γ o′ : (σ̂′′, Ĥ ′)
σ̂, C ⇓bi

Γ o′ : (σ̂′′, Ĥ ∪ Ĥ ′)

Biab-Seq-Err
σ̂, C1 ⇓bi

Γ o : (σ̂′, Ĥ) o ̸= ok
σ̂, C1; C2 ⇓bi

Γ o : (σ̂′, Ĥ)

Biab-Seq
σ̂, C1 ⇓bi

Γ ok : (σ̂′, Ĥ1) σ̂′, C2 ⇓bi
Γ o : (σ̂′′, Ĥ2)

sv(dom(Ĥ2)) ∩ (sv(σ̂′) \ sv(σ̂)) = ∅
σ̂, C1; C2 ⇓bi

Γ o : (σ̂′′, Ĥ1 ∪ Ĥ2))

A. Lööw et al. 25:21

where not_Seq(C) denotes that C is not a sequence command (i.e., does not have the
form C1; C2), σ̂ ·(Ĥ, π̂) denotes σ̂ ·(∅, Ĥ, π̂∧Wfc(Ĥ)), dom(Ĥ2) = sv(dom(ĥ2))∪sv(dom(P̂2)),
and dom(P̂) denotes all symbolic variables of the ins of the predicates in P̂ . The rule Biab
states that for non-erroneous outcomes, the bi-abductive engine has the same semantics
as the underlying UX engine it is built on top of. The rule Biab-Miss, which is the most
interesting rule, catches missing-resource errors from the underlying UX engine and uses
the fix function to add the missing resource to the current symbolic state and anti-frame,
such that execution can continue. The two rules Biab-Seq-Err and Biab-Seq are two
straightforward sequencing rules for the engine, where the symbolic-variable condition of
Biab-Seq ensures that the anti-frame Ĥ2 does not clash with resource allocated by C1.

To exemplify, say the engine is in symbolic state ({v 7→ 0, a 7→ 13}, (∅, ∅), true) and is
about execute v := [a], i.e., about to retrieve the value of the heap cell with address a. Since
this cell is not in the heap, the rule Lookup-Err-Missing from Fig. 3 is applicable, which
sets the variable err to [“MissingCell”, “a”, 13] and gives outcome miss. Now, in the rule Biab-
Miss, given the data in the err variable, the fix function constructs a fix (({13 7→ v̂}, ∅), true)
where v̂ is a fresh variable. The rule adds this fix to both the current symbolic state and
the anti-frame, resulting in the symbolic state ({v 7→ v̂, a 7→ 13}, ({13 7→ v̂}, ∅), true) and
outcome ok. Other cases are similar. E.g., when abort outcomes from consume represent
missing resource (e.g., when invoked in a function call), fix returns the resources needed for
the execution to continue. The following theorem captures the essence of bi-abduction:

▶ Theorem 7 (CSE with Bi-Abduction: UX Soundness).

σ̂, C ⇓bi
Γ o : (σ̂′, Ĥ) =⇒ σ̂ · (Ĥ, true), C ⇓UX

Γ o : σ̂′

8 Analysis Applications

We discuss the three analysis applications we have built on top of our unified CSE engine, to
demonstrate its wide applicability: EX whole-program automatic symbolic testing (§8.1);
OX semi-automatic verification (§8.2); and UX automatic true bug-finding (§8.3).

We have gathered these three analyses from different corners of the literature. EX symbolic
testing is well understood in the first-order symbolic execution literature. OX verification
is well understood in the consume-produce symbolic execution literature. However, one
novelty here is that the correctness proof of the analysis is established with respect to our
axiomatic interface rather than the consume/produce operations directly, allowing us to
show that function specifications are valid w.r.t. the standard SL definition of validity. In
contrast to the other two analyses, UX bug-finding has not previously been implemented in
consume-produce style, making this a novel contribution. To simplify the presentation, we
consider only non-recursive functions. All applications can be extended to handle bounded
recursion by adding a fuel parameter. Unbounded recursion can be handled in verification
via user-provided annotations, but is not a good fit for automatic bug-finding.

8.1 EX Whole-program Symbolic Testing
Our EX core engine allows us to implement simple non-compositional analyses, such as whole-
program symbolic testing, in the style of CBMC [16] and Gillian [11]. For this analysis, we
augment the input language with three additional commands: x := sym, for creating symbolic
variables; assume(E), for imposing a constraint E on the current state; and assert(E), for
checking that E is true in the current state. The operational semantics for these commands
is given in the extended version of this paper [18].

ECOOP 2024

25:22 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

The testing algorithm is as follows. Given a command C and implementation context γ,
the analysis starts from the state σ̂ ≜ ({x 7→ null | x ∈ pv(C)}, ∅, true), and executes C to
completion. The analysis reports back any violations of the assert commands encountered
during execution. Given the core engine is UX sound, any bug found will be a true bug.
Moreover, if the analysed code contains no unbounded recursion, given the core engine is OX
sound, all existing bugs will be found modulo the ability of the underlying SMT solver.

8.2 OX Verification
We formalise an OX verification procedure, verifyOX, on top of our CSE engine. Given
a specification context Γ, a function f (⃗x) { C; return E } with f /∈ dom(Γ), and an OX
specification tf =

{
x⃗ = x⃗ ⋆ P

} {
ok : Qok

} {
err : Qerr

}
, if verifyOX(Γ, f, tf) terminates

successfully, then we can soundly extend Γ to Γ′ = Γ[f 7→ tf]. The algorithm is given below:
1. Let θ̂ ≜ {x̂/x | x ∈ lv(⃗x = x⃗ ⋆ P)}, ŝ ≜ {x 7→ x̂ | x ∈ x⃗} ∪ {x 7→ null | x ∈ pv(C) \ x⃗},

and σ̂ = (ŝ, ∅, true).
2. Set up symbolic state corresponding to pre-condition: produce(P, θ̂, σ̂)⇝ σ̂′.
3. Execute the function to completion: σ̂′, C; ret := E ⇓OX

Γ Σ̂′. Then, for every (o, σ̂′′) ∈ Σ̂′:
(a) If o = miss or o = abort, abort with an error.
(b) If o = ok, then let θ̂′ = θ̂ ⊎ {(σ̂′′.sto)(ret)/r} for a fresh r and let Q′ = Qok{r/ret}.

Otherwise, o = err , in which case let θ̂′ = θ̂ and Q′ = Qerr .
(c) Consume the post-condition: consume(OX, Q′′, θ̂′, σ̂′′) ⇝ (θ̂′′, σ̂′′′), where Q′ =

∃y⃗. Q′′.
(d) If consumption fails or the final heap is not empty, abort with an error.5

8.3 UX Specification Synthesis and True Bug-finding
Recall that Pulse-style UX bug-finding is powered by UX specification synthesis, where,
after appropriate filtering, synthesised erroneous specification can be reported as bugs. UX
specification synthesis, in turn, is powered by UX bi-abduction (as introduced in §7).

To formalise the specification synthesis procedure, we first define the toAsrt function,
which takes a symbolic state σ̂ = (ŝ, Ĥ, π̂), where Ĥ = (ĥ, P̂), and returns the corresponding
assertion. The function is simple to implement: ŝ becomes a series of equalities, ĥ becomes a
series of cell assertions, P̂ are lifted to predicate assertions and π̂ is lifted to a pure assertion.
Using toAsrt, we can also transform multiple symbolic states into an assertion by transforming
them individually and gluing together the obtained assertions using disjunction.

We generate UX function specifications using the synthesise(Γ, f, P) algorithm, which takes
a specification context Γ, a function f (⃗x) { C; return E } and its candidate pre-condition,
x⃗ = x⃗ ⋆ P , and uses bi-abduction to generate a set of UX specifications describing the
behaviour of f starting from P . As P = emp is a valid starting point, synthesise can be
applied to any function without a priori knowledge. The synthesise algorithm is as follows:
1. Let θ̂ ≜ {x̂/x | x ∈ lv(⃗x = x⃗ ⋆ P)}, ŝ ≜ {x 7→ x̂ | x ∈ x⃗} ∪ {x 7→ null | x ∈ pv(C) \ x⃗},

and σ̂ = (ŝ, ∅, true).
2. Add the symbolic representation of P to σ̂: produce(P, θ̂, σ̂)⇝ σ̂′

3. Execute the function, obtaining a set of traces: σ̂′, C, ret := E ⇓bi
Γ {(oi, (σ̂′

i, Ĥi))|i∈I}.
4. Then, for every obtained (oi, ((ŝ′

i, Ĥ ′
i, π̂′

i), Ĥi)):
a. Complete the candidate pre-condition: Pi ≜ P ⋆ toAsrt((∅, Ĥi, true)).

5 This check is required due to our classical (linear) treatment of resource, appropriate for languages with
explicit deallocation rather than garbage collection.

A. Lööw et al. 25:23

b. Restrict the final store to the return/error variable: ŝ′′
i ≜ ŝ′

i|{x}, where x = ret if
oi = ok and x = err otherwise.

c. Create the post-condition: Qi ≜ toAsrt(ŝ′′
i , Ĥ ′

i, π̂′
i).

d. Return
[
Pi

]
f (⃗x)

[
oi : ∃y⃗. Qi

]
, where y⃗ ≜ lv(Qi) \ lv(Pi).

▶ Theorem 8 (Correctness of synthesise).[
P ′] f (⃗x)

[
o : ∃y⃗. Q

]
∈ synthesise(Γ, f, P) =⇒ Γ |=

[
P ′] f (⃗x)

[
o : ∃y⃗. Q

]
▶ Remark 9. Step 4b corresponds to forgetting the local variables when moving from internal
to external post-condition since symbolic states only have program variables in the store.
▶ Remark 10. Front-end heuristics to filter out “interesting” bugs, i.e., synthesised erroneous
specification, can be easily implemented on top of our bi-abduction (e.g., filtering for manifest
bugs as per Lee et al. [17]); for this paper, however, we are foremost interested in back-end
engine development and therefore consider such front-end issues out of scope.
▶ Remark 11. Specifications with the same anti-frame can be coalesced into one via disjunction
of their post-conditions. Moreover, if a specification does not branch on symbolic variables
created by the execution of C, the pure part of the post-condition can be lifted to the pre-
condition to create an EX specification [20], which can then be used both in OX verification
and UX true bug-finding.
▶ Remark 12. Automatic predicate folding and unfolding may be required in some cases to
prevent redundant fixes: e.g., if y := g(); x := [y] and g has post-condition list(ret, vs), the
list predicate should be unfolded for the lookup to access the first value in the list. Gillian
has heuristics-based automatic folding and unfolding, but we leave its description and the
evaluation of its compatibility with bi-abduction for future work. Without automatic folding
and unfolding, code must not break the interface barrier of the data structures it uses.

9 Evaluation

We have evaluated our CSE engine in the following two practical ways.

9.1 Companion Haskell Implementation
With our engine formalism, we have developed a companion Haskell implementation to
demonstrate that the formalism is implementable (and to catch errors early by executing
simple examples). The Haskell implementation follows the inference rules of σ̂, C ⇓m

Γ o : σ̂′

given in §5, and the specific consume and produce operations in §6. We have implemented the
search through the inference rules inside a symbolic execution monad, similar to other monads
in the literature [7, 22]; the monad handles, e.g., demonic non-determinism (branching),
angelic non-determinism (backtracking), per-branch state and global state.

9.2 Gillian OX and UX Compositional Analysis Platform
Our unified CSE engine took direct inspiration from the Gillian compositional OX platform.
Using the ideas presented here, we returned to Gillian and adapted its CSE engine to handle
both SL and ISL function specifications with real-world consume-produce implementations.
Leveraging the identified difference between OX and UX reasoning, we were able to introduce
UX reasoning to Gillian by adding, in essence, a OX/UX flag to the corresponding function.
As these changes were isolated, existing analyses implemented in Gillian remain unaffected,
including Gillian’s whole-program symbolic testing, previously evaluated on the Collections-
C library [11], and Gillian’s compositional OX verification, previously evaluated on AWS

ECOOP 2024

25:24 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

Table 1 Aggregated results of synthesising function specifications for the Collections-C library
(commit 584e113). Results were obtained by setting the loop and recursive call unrolling limit to 3,
on a MacBook Pro 2019 laptop with 16 GB memory and a 2.3 GHz Intel Core i9 CPU.

Library Functions GIL Inst. Succ. Specs Err. Specs Time (s)
array 45 1784 251 260 1.36
deque 47 2312 271 210 2.25
hashset 14 160 7 112 9.43
hashtable 28 1527 31 147 15.67
list 66 2977 454 615 5.59
pqueue 10 557 90 51 3.96
queue 16 85 133 67 1.36
rbuf 9 181 9 17 0.07
slist 52 2269 292 1873 24.49
stack 16 85 136 88 0.50
treeset 17 214 28 106 0.36
treetable 36 1601 144 276 1.55
other 8 139 14 11 0.03
Total 364 13891 1860 3833 66.62

code [21]. In addition, we have implemented UX bi-abduction in Gillian, following the
fixes-from-errors approach presented in §7, where functions are evaluated bottom-up along
the call graph and previously generated specifications are used at call sites.

To evaluate Gillian’s new support for UX reasoning, we have tested its new UX bi-
abduction analysis on real-world code, specifically, the Collections-C [25] data-structure
library for C. As discussed in §8, specification synthesis using UX bi-abduction constitutes the
back-end of Pulse-style bug-finding and is its most time-consuming part. The Collections-C
library has 2.6K stars on GitHub and approximately 5.2K lines of code, and it uses many
C constructs and idioms such as structures and pointer arithmetic. The data structures
it provides include, e.g., dynamic arrays, linked lists, and hash tables. To carry out the
evaluation, we extended previous work where the Gillian platform has been instantiated to
the C programming language, called Gillian-C. Tbl. 1 presents the results of our new UX bi-
abduction analysis, grouped by the data structures of the library: the numbers of associated
functions; number of corresponding GIL instructions (GIL is the intermediate language used
by Gillian); the number of success and error specifications; and the analysis time. Since
one specification is synthesised per execution path, the number of specifications reflect the
number of execution paths the Gillian engine was able to construct using bi-abduction. In
summary, Gillian-C synthesises specifications for 364 functions of the Collections-C library,
producing 5693 specifications in 66.92 seconds. We believe the results are promising both
in terms of performance and number of specifications synthesised. One anomaly is that
58% of the execution time is spent on 3 of the 343 functions, leading to the creation of
1640 specifications. This anomaly arises because of the memory model currently in use by
Gillian-C and not from a limitation of our formalisation or of the Gillian engine. More
detailed analysis and a selection of generated specifications are available in [18].

10 Related Work

First-order Compositional Symbolic Execution. Static symbolic execution tools and frame-
works based on first-order logic, such as CBMC [16] and Rosette [32, 27], can be made
functionally compositional with respect to the variable store but not with respect to arbitrary
state because they are not able to specify functions that manipulate memory in a way that
would make the reasoning scalable.

A. Lööw et al. 25:25

Compositional Symbolic Execution. We work with a CSE engine with consume and produce
operations, as found in, e.g., the OX tools VeriFast [14], Viper [23], and Gillian [11, 21]. In
contrast, an alternative approach is to describe CSE inside a separation logic using proof
search, as found in, e.g., Smallfoot [2, 3], Infer [4], and Infer-Pulse [17].

Here, we focus on formalising a CSE engine with consumers and producers, which more
accurately models tool implementations. All the current consume-produce tools are based on
OX reasoning. Some have detailed work on formalisation: Featherweight VeriFast [15] provides
a Coq mechanisation inspired by VeriFast; Schwerhoff’s PhD thesis [30] and Zimmerman et
al. [35] provide detailed accounts of Viper’s symbolic execution backend. Previous work has
not, like us, introduced an axiomatic interface for their consume and produce operations.
Because of the interface, our results are established using function specifications whose
meaning is defined in standard SL/ISL-style, in particular, using the standard satisfaction
relation for assertions defined independent of the choice of our CSE engine. This means that
we can use specifications developed outside of our engine, e.g., using theorem provers, and
vice versa. In contrast, the work on Featherweight VeriFast does not define an assertion
satisfaction relation independent of their consume and produce operations. Schwerhoff does
not give a soundness theorem at all. Lastly, Zimmerman et al. give a standard satisfaction
relation (for implicit dynamic frames [31], a variant of SL [26]) but only embed this relation
inside their concrete semantics instead of working with the standard definitions of function
specifications (see Fig. 11 of their paper). Finally, we have demonstrated that our engine
semantics provides a common foundation for OX and UX reasoning, with the difference in
the underlying engine only amounting to the choice to use satisfiability or validity. This
allows a straightforward extension of Gillian to support UX reasoning.

Bi-abduction. Bi-abduction was originally introduced for OX reasoning [5, 6] and led to
Meta’s automatic Infer tool for bug-finding [4]. Recently, it was reworked for UX reasoning
and led to Meta’s Infer-Pulse for true bug-finding [28, 17]. In these works, compositional
symbolic execution is formalised using proof search, in the style of the Smallfoot description of
symbolic execution [2, 3], with bi-abduction embedded into that proof search. In contrast, our
UX bi-abduction is formulated as a separate layer on top of our CSE engine, establishing fixes
from missing-resource errors using an idea introduced for OX bi-abduction by JaVerT 2.0 [10].

Alternating between OX and UX Reasoning. Smash by Godefroid et al. [13] is the most
well-known tool to combine OX and UX reasoning. It is a first-order tool which “alternates”
between OX and UX reasoning to speed up the program analysis implemented by the tool.
However, citing Le et al. [17], who in turn report on personal communication with Godefroid,
Smash-style analyses seem to have faced obstacles when put into practice in that they were
“used in production at Microsoft, but are not used by default widely in their deployments,
because other techniques were found which were better for fighting path explosion.” Our
CSE engine, in contrast, has a completely different motivation in that its purpose is to host
different types of OX and UX analyses.

Program Correctness and Incorrectness. We know of two program logics that work with
both program correctness and incorrectness. Exact separation logic (ESL) [20] combines
the guarantees of both SL and ISL, providing exact function specifications compatible with
both OX verification and UX true bug-finding. Exact specifications are compatible with our
CSE engine, e.g., in UX mode the engine can call exact unbounded function specifications of
list algorithms and still preserve true bug-finding. Outcome logic (OL) [34] is based on OX

ECOOP 2024

25:26 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

Hoare logic with a different approach to handling incorrectness based on the reachability of
sets of states. No tool is currently based on OL; in the future, we hope to be able to extend
straightforwardly our unified approach to incorporate OL.

11 Conclusions

We have introduced a compositional symbolic execution engine capable of creating and using
function specifications arising from an underlying separation logic. Our engine is formally
defined using a novel axiomatic interface which ensures a sound link between the execution
engine and the function specifications using consume and produce operations. Thus, our
engine creates function specifications usable by other tools, and uses function specifications
from various sources, including theorem provers and pen-and-paper proofs. Additionally,
we have captured the essence of the Gillian consume and produce implementations both
operationally, using inference rules, and via an accompanying Haskell implementation, and
shown that our operational description satisfies the properties of the axiomatic interface.
In this way, we offer a degree of assurance that the real-world, heavily-optimised Gillian
implementation is correct.

A surprising property of our semantics is that it provides a common foundation for both
OX reasoning based on SL, and UX reasoning based on ISL. By leveraging the minimal
differences between the OX and UX engines, we have extended the OX Gillian platform to
support UX reasoning. This extension includes function specifications underpinned by ISL,
enabling automatic true bug-finding using UX bi-abduction which our engine incorporates
by creating fixes from missing-resource errors. We evaluate our extension using the Gillian
instantiation to C, the first real-world tool to support both compositional correctness and
incorrectness reasoning, grounded on a common formal compositional symbolic execution
engine. Our instantiation preserves the previous OX verification evaluated on AWS code [21]
and now automatically synthesises UX function specifications for the real-world Collections-C
library using our UX bi-abduction technique.

We believe that our axiomatic interface and formalisation of UX bi-abduction serve as
re-usable techniques, which we hope will provide valuable guidance for the implementation
of the next-generation compositional symbolic execution engines.

References
1 Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi.

A survey of symbolic execution techniques. ACM Computing Surveys, 51(3), 2018. doi:
10.1145/3182657.

2 Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic
assertion checking with separation logic. In International Conference on Formal Methods for
Components and Objects, 2005. doi:10.1007/11804192_6.

3 Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution with separation
logic. In Asian Symposium on Programming Languages and Systems, 2005. doi:10.1007/
11575467_5.

4 Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier for memory
safety of C programs. In NASA Formal Methods Symposium, 2011. doi:10.1007/
978-3-642-20398-5_33.

5 Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Compositional
shape analysis by means of bi-abduction. In Principles of Programming Languages, 2009.
doi:10.1145/1480881.1480917.

https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1145/1480881.1480917

A. Lööw et al. 25:27

6 Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional
shape analysis by means of bi-abduction. Journal of the ACM, 58(6), 2011. doi:10.1145/
2049697.2049700.

7 David Darais, Nicholas Labich, Phúc C. Nguyen, and David Van Horn. Abstracting definitional
interpreters (functional pearl). Proceedings of the ACM on Programming Languages, 1(ICFP),
2017. doi:10.1145/3110256.

8 José Fragoso Santos, Petar Maksimović, Théotime Grohens, Julian Dolby, and Philippa
Gardner. Symbolic execution for JavaScript. In Principles and Practice of Declarative
Programming, 2018. doi:10.1145/3236950.3236956.

9 José Fragoso Santos, Petar Maksimović, Daiva Naudžiūnienė, Thomas Wood, and Philippa
Gardner. JaVerT: Javascript verification toolchain. Proceedings of the ACM on Programming
Languages, 2(POPL), 2018. doi:10.1145/3158138.

10 José Fragoso Santos, Petar Maksimović, Gabriela Sampaio, and Philippa Gardner. JaVerT 2.0:
Compositional symbolic execution for JavaScript. Proceedings of the ACM on Programming
Languages, 3(POPL), 2019. doi:10.1145/3290379.

11 José Fragoso Santos, Petar Maksimović, Sacha-Élie Ayoun, and Philippa Gardner. Gillian,
part I: A multi-language platform for symbolic execution. In Programming Language Design
and Implementation, 2020. doi:10.1145/3385412.3386014.

12 Philippa Gardner, Sergio Maffeis, and Gareth David Smith. Towards a program logic for
JavaScript. In Principles of Programming Languages, 2012. doi:10.1145/2103656.2103663.

13 Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali. Compositional
may-must program analysis: Unleashing the power of alternation. In Principles of Programming
Languages, 2010. doi:10.1145/1706299.1706307.

14 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In NASA
Formal Methods Symposium, 2011. doi:10.1007/978-3-642-20398-5_4.

15 Bart Jacobs, Frédéric Vogels, and Frank Piessens. Featherweight VeriFast. Logical Methods in
Computer Science, 11, 2015. doi:10.2168/LMCS-11(3:19)2015.

16 Daniel Kroening and Michael Tautschnig. CBMC – C bounded model checker. In
Tools and Algorithms for the Construction and Analysis of Systems, 2014. doi:10.1007/
978-3-642-54862-8_26.

17 Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn.
Finding real bugs in big programs with incorrectness logic. Proceedings of the ACM on
Programming Languages, 6(OOPSLA1), 2022. doi:10.1145/3527325.

18 Andreas Lööw, Daniele Nantes-Sobrinho, Sacha-Élie Ayoun, Caroline Cronjäger, Petar Mak-
simović, and Philippa Gardner. Compositional symbolic execution for correctness and incor-
rectness reasoning (extended version), 2024. doi:10.48550/arXiv.2407.10838.

19 Andreas Lööw, Daniele Nantes-Sobrinho, Sacha-Élie Ayoun, Petar Maksimović, and Philippa
Gardner. Matching plans for frame inference in compositional reasoning. In European
Conference on Object-Oriented Programming, 2024. doi:10.4230/LIPIcs.ECOOP.2024.26.

20 Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and Philippa
Gardner. Exact separation logic. In European Conference on Object-Oriented Programming,
2023. doi:10.4230/LIPIcs.ECOOP.2023.19.

21 Petar Maksimović, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa Gardner. Gillian,
part II: Real-world verification for JavaScript and C. In Computer Aided Verification, 2021.
doi:10.1007/978-3-030-81688-9_38.

22 Adrian D. Mensing, Hendrik van Antwerpen, Casper Bach Poulsen, and Eelco Visser. From
definitional interpreter to symbolic executor. In International Workshop on Meta-Programming
Techniques and Reflection, 2019. doi:10.1145/3358502.3361269.

23 Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In Verification, Model Checking, and Abstract Interpretation,
2016. doi:10.1007/978-3-662-49122-5_2.

ECOOP 2024

https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/3110256
https://doi.org/10.1145/3236950.3236956
https://doi.org/10.1145/3158138
https://doi.org/10.1145/3290379
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/2103656.2103663
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/3527325
https://doi.org/10.48550/arXiv.2407.10838
https://doi.org/10.4230/LIPIcs.ECOOP.2024.26
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1145/3358502.3361269
https://doi.org/10.1007/978-3-662-49122-5_2

25:28 Compositional Symbolic Execution for Correctness and Incorrectness Reasoning

24 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs
that alter data structures. In Computer Science Logic, 2001. doi:10.1007/3-540-44802-0_1.

25 Srdja Panić. Collections-C: A library of generic data structures. https://github.com/srdja/
Collections-C, 2014.

26 Matthew J. Parkinson and Alexander J. Summers. The relationship between separation
logic and implicit dynamic frames. In European Symposium on Programming, 2011. doi:
10.1007/978-3-642-19718-5_23.

27 Sorawee Porncharoenwase, Luke Nelson, Xi Wang, and Emina Torlak. A formal foundation
for symbolic evaluation with merging. Proceedings of the ACM on Programming Languages,
6(POPL), 2022. doi:10.1145/3498709.

28 Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard.
Local reasoning about the presence of bugs: Incorrectness separation logic. In Computer Aided
Verification, 2020. doi:10.1007/978-3-030-53291-8_14.

29 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in
Computer Science, 2002. doi:10.1109/LICS.2002.1029817.

30 Malte Hermann Schwerhoff. Advancing Automated, Permission-Based Program Verification
Using Symbolic Execution. PhD thesis, ETH Zürich, 2016.

31 Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In European Conference on Object-Oriented Programming
(ECOOP), 2009. doi:10.1007/978-3-642-03013-0_8.

32 Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual machine for solver-aided
host languages. In Conference on Programming Language Design and Implementation, 2014.
doi:10.1145/2594291.2594340.

33 Hongseok Yang. Local Reasoning for Stateful Programs. PhD thesis, University of Illinois
Urbana-Champaign, 2001.

34 Noam Zilberstein, Derek Dreyer, and Alexandra Silva. Outcome logic: A unifying foundation for
correctness and incorrectness reasoning. Proceedings of the ACM on Programming Languages,
7(OOPSLA1), 2023. doi:10.1145/3586045.

35 Conrad Zimmerman, Jenna DiVincenzo, and Jonathan Aldrich. Sound gradual verification
with symbolic execution. Proceedings of the ACM on Programming Languages, 8(POPL), 2024.
doi:10.1145/3632927.

https://doi.org/10.1007/3-540-44802-0_1
https://github.com/srdja/Collections-C
https://github.com/srdja/Collections-C
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1145/3498709
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3632927

Matching Plans for Frame Inference in
Compositional Reasoning
Andreas Lööw
Imperial College London, UK

Daniele Nantes-Sobrinho
Imperial College London, UK

Sacha-Élie Ayoun
Imperial College London, UK

Petar Maksimović
Imperial College London, UK
Runtime Verification Inc., Chicago, IL, USA

Philippa Gardner
Imperial College London, UK

Abstract
The use of function specifications to reason about function calls and the manipulation of user-defined
predicates are two essential ingredients of modern compositional verification tools based on separation
logic. To execute these operations successfully, these tools must be able to solve the frame inference
problem, that is, to understand which parts of the state are relevant for the operation at hand. We
introduce matching plans, a concept that is used in the Gillian verification platform to automate
frame inference efficiently. We extract matching plans and their automation machinery from the
Gillian implementation and present them in a tool-agnostic way, making the Gillian approach
available to the broader verification community as a verification-tool design pattern.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Separation logic; Theory of computation → Automated reasoning

Keywords and phrases Compositional reasoning, separation logic, frame inference

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.26

Funding This work was supported by the EPSRC Fellowship “VetSpec: Verified Trustworthy
Software Specification” (EP/R034567/1).

Acknowledgements We would like to thank José Fragoso Santos, who conceived the idea of matching
plans (which we formalise in this work) as part of the work on JaVerT [6] and did their original
implementation in Gillian. We would also like to thank the anonymous reviewers for their comments.

1 Introduction

Separation logic [18, 21] has enabled the verification community to develop analyses and
tools that are compositional in the sense that they are able to analyse parts of the program
in isolation and reuse the obtained results in broader contexts. Currently, some of the most
prominent such tools are VeriFast [7], Viper [16], Gillian [13], and CN [20]. These tools
achieve compositionality by being able to use function specifications at call sites instead of
executing function bodies. In addition, to be able to reason about data structures such as
lists and trees, the tools include support for user-defined inductive predicates that describe
these data structures. When using function specifications and manipulating predicates, the
tools have to be able to solve the frame inference problem [3], that is, understand which part
of the state is relevant for the operation that is being performed. The ability to handle this
problem efficiently is essential for their scalability and usability.

© Andreas Lööw, Daniele Nantes-Sobrinho, Sacha-Élie Ayoun, Petar Maksimović, and
Philippa Gardner;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2024.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Matching Plans for Frame Inference in Compositional Reasoning

As part of building tools for compositional analysis, it is up to the tool designers to
choose how to tackle frame inference, and the implications of the associated decisions
should be understood closely as they affect both the tool implementation and the user
experience. For example, two important tool-design questions are: “Which specification
language should the tool use?” and “Is there a particular style in which the specifications
should be written?”. Expectedly, the approaches in the literature are many and varied (which
we discuss further in §7).

In this paper, we present the approach of the Gillian verification tool to the frame inference
problem and show how the choices made allow for efficient and predictable automation. The
approach captures and automates the assertion-adaptation workflow that users must follow
to facilitate frame inference when working with tools that offer less automation, such as
VeriFast and Viper. In more detail, for the assertions of function specifications and predicate
definitions, Gillian automatically constructs a matching plan (MP), which provides:
1. (efficiency) an ordering of the subcomponents of each assertion (technically: the simple

assertions) that guarantees that the associated frame inference will not backtrack, together
with a description of how all associated free and existentially quantified variables can
be learnt; and

2. (predictability) a clean separation between the structural and computational portions of
frame inference.

MPs and their construction have not been described in depth before; we formalise both in
a tool-agnostic way, thereby making the Gillian approach available to the broader verification
community as a verification-tool design pattern.

The paper is structured as follows. We first introduce MPs informally using examples and
discuss the key insights in §2. We then establish the required preliminaries in §3 and introduce
MPs formally in §4, focusing on a core illustrative fragment of MPs as implemented in Gillian.
Next, in §5, we show how to extend the MPs of §4 with more complex features that are
available in Gillian. Finally, we conclude by evaluating the scalability and performance of the
MP-based automation of Gillian (§6) and giving a detailed comparison with related work (§7).

2 Overview

We give an informal overview of matching plans (MPs), the key new concept we introduce in
this paper. We first introduce the required background, which is the consume/produce engine
architecture utilised by modern compositional symbolic execution tools, including VeriFast,
Viper, and Gillian. Then, with the background in place, we introduce MPs using examples.

2.1 Background: Symbolic Execution Based on Consume and Produce
We place ourselves in the setting of semi-automated compositional verification tools based on
symbolic execution [1] and separation logic (SL) and are underpinned by SMT solvers. In this
context, the frame inference problem amounts to, given an assertion and a symbolic state,
understanding which part of the symbolic state corresponds to the assertion. In particular,
we are interested in tools such as VeriFast, Viper, and Gillian, implemented using consumers
and producers, which are spatial variants of the, possibly more familiar, assert and assume,
respectively. To consume/produce an assertion is to remove/add the corresponding spatial
state from/to the current symbolic state and to assert/assume the pure constraints of the as-
sertion. Our presentation focuses on consumption, as production does not require performing
frame inference, and is therefore not of immediate interest. The two main use cases for frame
inference in our setting are the following:

A. Lööw, D. Nantes-Sobrinho, S.-É. Ayoun, P. Maksimović, and P. Gardner 26:3

Use of function specifications to reason about function calls. Given a function specifica-
tion

{
P

}
f(#»x)

{
Q

}
, the verification tool consumes the part of the symbolic state that

corresponds to the function pre-condition P (performing frame inference for P) and in
its place produces a symbolic state that corresponds to the function post-condition Q.

Folding user-defined predicates. Given a predicate definition, folding a predicate consists of
consuming the part of the symbolic state that corresponds to (a disjunct of) the definition
and in its place producing the folded predicate, as discussed in more detail shortly.

Other use cases are similar. For example, reasoning about loops using loop invariants is
largely similar to reasoning about function calls using function specifications.

2.2 Running Example: Folding a List Predicate
MPs help address two problems that arise during consumption and are related to frame
inference: the order of consumption and the learning of variables not given by context, which
we also refer to as learning unknown variables. We illustrate these problems using the
example of folding the standard list(x, vs) predicate that describes a singly-linked list starting
at address x and carrying values vs. It is defined as follows, using standard SL notation,
where “⋆” denotes the separating conjunction and “ 7→” denotes the cell assertion:

list(x, vs) ≜ (x = null ⋆ vs = []) ∨
(∃v, x′, vs′. x 7→ v ⋆ x + 1 7→ x′ ⋆ list(x′, vs′) ⋆ vs = v : vs′)

This predicate has two disjuncts. The first disjunct states that the list is empty (x = null)
and carries no values (vs = []). The second disjunct states that the list is non-empty,
consisting of the list head node (x 7→ v ⋆ x + 1 7→ x′), which contains the node value, v, and
the pointer to the next node, x′, and the tail of the list (list(x′, vs′)), while connecting the
values appropriately (vs = v : vs′, meaning that vs is the result of prepending v to vs′).

Let us now attempt to fold the predicate list(x, vs) in the symbolic heap {1 7→ 1, 2 7→
3, 3 7→ 2, 4 7→ null, 5 7→ 0, 6 7→ 1, 7 7→ 42}, knowing that x = 5.1 As mentioned above, folding
this list means performing frame inference by pinpointing a part of the symbolic state that
corresponds to one of the predicate disjuncts. In consume/produce-based tools, this is done
one simple assertion at a time, where an assertion is defined to be simple iff it does not
contain the separating conjunction. Carving off the existential quantifiers, the first and
second disjunct of the definition of list(x, vs), respectively, have the following simple assertions:

(A1) x = null
(A2) vs = []

(B1) x 7→ v

(B2) x + 1 7→ x′

(B3) list(x′, vs′)
(B4) vs = v : vs′

The first disjunct is relatively straightforward: to consume it means to check if it is possible
for x to equal null and for vs to equal the empty list, which it is not since we know that
x = 5. For the second disjunct, we additionally have to learn the values of the existentially
quantified variables v, x′, and vs′. This can be more or less complex, depending on the
order in which we process the assertions. For example, if we start with (B3), we will have to
perform proof search, trying to guess the values of x′ and vs′ as they are not known, likely
needing to backtrack and make different choices, which can be computationally expensive.

1 For simplicity, in this example we describe symbolic heaps using cell assertions. In practice, one could
choose to represent symbolic heaps differently for the purpose of, for example, efficient symbolic reasoning.

ECOOP 2024

26:4 Matching Plans for Frame Inference in Compositional Reasoning

On the other hand, if we choose (B1) and (B2) first, given that we know x = 5, we could
learn that v = 0 and x′ = 1 trivially by inspecting the heap. From there, we can tackle
(B3) by recursively folding the list list(x′, vs′), ultimately learning vs′ = [1, 2], from which
we can then process (B4), learning that vs = [0, 1, 2]. After having folded the predicate, the
remaining frame is only the single heap cell {7 7→ 42}.

2.3 MPs for Predicate Folding and Function Calls
MPs provide a solution to the two problems illustrated in the previous section: given an
assertion P , an MP for P provides an ordering of the simple assertions of P so that the
consumption of P is guaranteed to not backtrack, as well as a description of how free and
existentially quantified variables of P can be learnt during this consumption.

MPs are based on dividing parameters of assertions and predicates into input parameters
(ins) and output parameters (outs). Intuitively, the ins of an assertion/predicate are the
parameters that are sufficient to be provided so that the rest of the parameters, the outs,
can be learned. For example, for the cell assertion x 7→ y, if we know x we can learn y by
looking it up in the heap: therefore, the in of the cell assertion is x and the out is y. For the
list(x, vs) predicate, on the other hand, the in is x and the out is vs.

Folding predicate example (running example). To give an example of an MP, consider
again the second disjunct of the definition of the list(x, vs) predicate:

x 7→ v ⋆ x + 1 7→ x′ ⋆ list(x′, vs′) ⋆ vs = v : vs′

Assuming that only x is known before consumption, the MP for this disjunct is as follows
(we give a formal definition of MPs in §4):

[(x 7→ v , [(v, O1)]),
(x + 1 7→ x′ , [(x′, O1)]),
(list(x′, vs′) , [(vs′, O1)]),
(vs = v : vs′, [(vs, v : vs′)])]

which captures the following order of the simple assertions and ways of learning variables:
1. x 7→ v comes first, and from it we learn v as the cell assertion out by looking up the value

corresponding to address x (which we know) in the heap, which is expressed using the
placeholder variable O1;

2. x + 1 7→ x′ comes next, and from it we learn x′ again as the cell assertion out, noting
that we know the assertion in x + 1 given that we know x;

3. list(x′, vs′) comes next, and from it we learn vs′ as the predicate out, which can be done
either by recursively folding as described above, or by matching against a predicate
already existing in the symbolic state; and

4. vs = v : vs′ comes last, and from it we learn that vs equals v : vs′.

Function call example. We have exemplified MPs for folding predicate definitions. MPs are
equally useful to handle function specifications. Creating an MP for a function specification
amounts to creating an MP for the function pre-condition, which is effectively the same as
creating an MP for a disjunct of a predicate. Interestingly, the use of ins and outs has as a
consequence that MPs can be created only for function pre-conditions P in which all of the
variables of P can be learnt if the function parameters are known. We have observed that
this is not a restriction in practice, as the parameters are the only means that a function

A. Lööw, D. Nantes-Sobrinho, S.-É. Ayoun, P. Maksimović, and P. Gardner 26:5

can use to access or modify the state. In fact, a specification not obeying this property is
likely either incorrect or contains resources not relevant for the function, which we can easily
signal to the tool user.

2.4 MP-based Automation for Frame Inference
Gillian provides predictable automation for frame inference by providing machinery for
automatically constructing MPs. This automation works by splitting the consumption
process into two phases: a planning phase and a consumption phase – i.e., what we in the
introduction of the paper referred to as “the structural and computational portions of frame
inference” before having introduced consumption. An MP is automatically constructed in
the planning phase. The consumption phase then follows the plan provided by the MP,
which dictates consumption order and how variables are learnt. Because the planning phase
is separate from the rest of consumption, planning is predictable. In particular, whereas the
consumption phase relies on an unpredictable underlying SMT solver, the planning phase
does not. The construction of MPs can therefore be understood (and, in particular, debugged)
without having to take into consideration the more complicated consumption phase.

To compare Gillian with verification tools with no or little automation support for frame
inference, e.g., the VeriFast tool: MPs can be said to capture the assertion-adaptation
workflow tool users must follow when adapting assertions for such tools. Specifically, MPs
capture this workflow by making clear the relationship between ins and outs. E.g., in VeriFast,
the tool essentially requires that the MP can be directly “read off” assertions: the tool leaves
it to the tool user to find both the consumption order and to “factor out” the outs, i.e., the
parameters that will be learned during consumption given the ins. To exemplify, consider
the simple assertion x = 5. Say x is unknown, an MP for this assertion can be directly read
off the assertion: [(x = 5, [(x, 5)])]. Now, consider instead the simple assertion y = x + z and
say that y and z are known. An MP for this assertion is [(y = x + z, [(x, y − z)])]. In a tool
without automation, the assertion would have to be adapted to x = y − z such that how to
learn the unknown variable x could be read off directly from the assertion. A slightly more
complicated example is given by the simple assertion x 7→ x′ + 1 where x is known and x′ is
unknown. An MP for this assertion is [(x 7→ x′ + 1, [(x′, O1 − 1)])], meaning that to adapt
the assertion to a tool without automation, a user would have to introduce an intermediate
variable as follows: x 7→ x′′ ⋆ x′ = x′′ − 1. Similarly, in tools without automation, the
consumption order must be specified by the user as well. E.g., in VeriFast assertions are
consumed in left-to-right order. For example, consider the (contrived but simple) assertion
x > 5 ⋆ x = 6. Say that x is unknown, then there is no MP where x > 5 is consumed
first, because x cannot be learnt from x > 5 without guessing. Instead, the only MP for
the assertion is [(x = 6, [(x, 6)]), (x > 5, [])]. That is, without automation support, the user
would have to switch the order of the simple assertions.

Gillian automates this workflow by automatically constructing MPs, thereby automating
away assertion adaptations such as the adaptations exemplified above. Moreover, the
automation helps in using assertions generated by other tools (which do not necessarily
generate assertions in the style verification tools expect). In §4, we provide a formal
description of a simple planning algorithm that is able to construct MPs for assertions with
unknown variables embedded inside simple arithmetic expressions. This simple planning
algorithm is the theoretical core of the MPs and the MP-based automation of Gillian. This
simple core provides a foundation that can be extended in multiple directions. We discuss
some of those extensions in §5, including an example of extending the learning algorithm to
handle an instance of list-based learning, which originates from a large verification case study
that has been carried out in Gillian where the automation eased the amount of assertion
adaptation needed.

ECOOP 2024

26:6 Matching Plans for Frame Inference in Compositional Reasoning

3 Preliminaries: Assertion Language

As mentioned in the introduction, we introduce the formal description of MPs in two steps.
First, in §4, we formalise a simple version of MPs, which we call core MPs. Second, in §5,
we discuss extensions of core MPs that widen their applicability. In this section, we formally
define the simple assertion language we use to formalise core MPs. In particular, the simple
assertion language we introduce here is for the simple memory model commonly used in
theoretical investigations into separation logic. When we discuss extensions of core MPs
in §5, we show that core MPs are easily extended to other memory models.

Given a set of logical variables x , y, z , . . . ∈ LVar, the syntax of our assertion language is
as follows:

▶ Definition 1 (Syntax of Assertions).

v ∈ Val ≜ n ∈ Int | b ∈ Bool | null | [#»v]
E ∈ Exp ≜ v | x | ¬E | E1 ∧ E2 | E1 + E2 | E1 − E2 | E1 : E2 | E1 < E2 | E1 = E2
P ∈ Asrt ≜ E | emp | E1 7→ E2 | P1 ⋆ P2 | p(# »E1; # »E2)

The values, Val, consist of integers, Booleans, null values, and lists of values. (Note that
we will use the notation [x] to denote both lists with elements x and the type of lists with
elements of type x. E.g., [LVar] denotes the type of lists of LVars.) The expressions, Exp,
are standard, including a representative selection of operators. We do not include program
variables, as they are not needed for our discussion here; they can be treated straightforwardly.
The assertions, Asrt, are also standard, except that predicate assertions, p(# »E1; # »E2), have their
arguments separated into ins and outs, which are used to construct MPs for predicates.

Definitions of predicates (e.g., list from the overview section) come from a set Preds:

▶ Definition 2 (Syntax of Predicates). We describe the predicate definitions of Preds using
the following syntax:

p(#»x in; #»x out) =
n∨

i=1
(∃ #»xi. Pi)

where p ∈ Str (strings), #»x in, #»x out,
#»xi ∈ [LVar], and Pi ∈ Asrt.2 Predicates abide by the

following restrictions: #»x in and #»x out have no duplicates; #»x in and #»x out are disjoint and
for every i ∈ [1, n], #»x in ∪ #»x out and #»xi are disjoint; and Pi only has logical variables from
#»x in ∪ #»x out ∪ #»xi.

The semantics of assertions is standard. Let h : Nat ⇀fin Val (with Nat ⊂ Int) denote a
heap and θ : LVar ⇀fin Val a logical interpretation, and let JEKθ be the standard expression
evaluation function. With these in place, the semantics of assertions is as follows:

▶ Definition 3 (Semantics of Assertions). The satisfaction relation for assertions, denoted by
θ, h |= P , is defined as follows:

θ, h |= E ⇔ JEKθ = true ∧ h = ∅
emp ⇔ h = ∅
E1 7→ E2 ⇔ h = {JE1Kθ 7→ JE2Kθ}
P1 ⋆ P2 ⇔ ∃h1, h2. h = h1 ⊎ h2 ∧ θ, h1 |= P1 ∧ θ, h2 |= P2
p(# »E1; # »E2) ⇔ ∃i. ∃ #»vi. θ[#»x in 7→ J

»E1Kθ, #»x out 7→ J
»E2Kθ, #»xi 7→ #»vi], h |= Pi

for p(#»x in; #»x out) =
∨n

i=1(∃ #»xi. Pi) ∈ Preds

2 Formally, Preds is a set with elements of type (Str, [LVar], [LVar], [([LVar], Asrt)]), but this is not important
for our development.

A. Lööw, D. Nantes-Sobrinho, S.-É. Ayoun, P. Maksimović, and P. Gardner 26:7

We need the following definitions in our discussion on MPs. As discussed in the overview,
MPs are defined over collections of simple assertions:

▶ Definition 4 (Simple Assertion). An assertion P is simple iff it syntactically contains no
separating conjunction: e.g., x 7→ 5 is simple, and so is foo(x ; y, z) regardless of how foo is
defined, but x 7→ 0 ⋆ y 7→ 0 is not simple.

We will also need to talk about the free logical variables of expressions and assertions:

▶ Definition 5 (Free Logical Variables of Expressions and Assertions). We write lv(E) to denote
the free logical variables of an expression E and extend this notation to lists of expressions,
writing lv(#»E). The function lv naturally extends to assertions.

4 Formalisation of Core MPs

We now formally describe a simple version of MPs, which we call core MPs, for the assertion
language introduced in the previous section. We discuss extensions of core MPs in the
next section.

4.1 Formal Definition of MPs
MPs are defined w.r.t. a given knowledge base KB and an assertion P . A knowledge base is
a set of the currently known logical variables, which grows during planning. MPs have type
[(Asrt, [(LVar, Exp)])] and are defined as follows:

▶ Definition 6 (Matching Plans (MPs)). Given a knowledge base KB and an assertion P of
the form P1 ⋆ · · · ⋆ Pn where Pi|ni=1 are simple assertions, MP is a matching plan for P with
respect to KB iff plan(KB, [P1, . . . , Pn], MP), as per the rules in Fig. 1 and Fig. 2.

As a shorthand, we sometimes say that an assertion that has an MP is “plannable” (where
the KB is usually left to be implied by context).

The rules in Fig. 1 and Fig. 2 are designed to ensure that if the simple assertions of P

are consumed in the order specified by an MP of P , then the ins of each simple assertion
P will be known before the simple assertion is consumed. To say this more formally, let
us denote by ins(KB, P) the ins of the assertion P under the knowledge base KB. Now, if
plan(KB, [P1, . . . , Pn], [(Pmi

, _)|ni=1]) holds, then [Pmi
|ni=1] is a permutation of [Pi|ni=1], and

if we let KBi denote the knowledge base before the i-th iteration of the planning, then for
every 1 ≤ i ≤ n, it holds that ins(KBi, Pmi

) ⊆ KBi.
We now explain the rules in Fig. 1 and Fig. 2. We go by bottom-up order, starting with

the rules for expressions.

Explanation of expression planning rules. Fig. 1 contains the rules for expression planning.
The entry point into expression planning is the planExps relation. Here we discuss planning
of a single expression, that is, the relation planExp, and return to the non-single case when
discussing assertion planning. For core MPs, we only include a few basic learning rules
for planExp to illustrate the basic idea. The rule (pure) state that expressions where all
variables are known are trivially plannable. The rule (pure-eq) is more interesting. It says,
given an equality expression where all variables of one side are known, the expression is
plannable if the unknown variables of the other side of the expression can be factored out.
The factoring is done by the learnEq(KB, Ek, Eu) function, where Ek is known and Eu is
unknown. This function, at a high level, tries to move known parts of Eu to Ek until only a

ECOOP 2024

26:8 Matching Plans for Frame Inference in Compositional Reasoning

(list-base)
planExps(KB, [], [])

(list-ind)

1 ≤ i ≤ n planExp(KB, Ei, [(xj , Eij)|kj=1])
KB′ ≜ KB ∪ {xj |kj=1} planExps(KB′, [E1, . . . , Ei−1, Ei+1, . . . , En], res′)

planExps(KB, [E1, . . . , En], [(xj , Eij)|kj=1] ++ res′)

(pure)
lv(E) ⊆ KB

planExp(KB, E , [])
(pure-eq)

lv(Ei) ⊆ KB lv(Ej) ̸⊆ KB
{i, j} = {1, 2} learnEq(KB, Ei, Ej) = res

planExp(KB, E1 = E2, res)

learnEq(KB, Ek, x) ≜ [(x, Ek)]

learnEq(KB, Ek, ¬E) ≜ learnEq(KB, ¬Ek, E)

learnEq(KB, Ek, E1 + E2) ≜

{
learnEq(KB, Ek − E1, E2), if lv(E1) ⊆ KB, lv(E2) ̸⊆ KB
learnEq(KB, Ek − E2, E1), if lv(E1) ̸⊆ KB, lv(E2) ⊆ KB

learnEq(KB, Ek, E1 − E2) ≜

{
learnEq(KB, E1 − Ek, E2), if lv(E1) ⊆ KB, lv(E2) ̸⊆ KB
learnEq(KB, Ek + E2, E1), if lv(E1) ̸⊆ KB, lv(E2) ⊆ KB

Figure 1 Rules: planExps, planExp, and learnEq for expressions.

logical variable is left, which can then be learnt. The function learnEq returns a list since
with support for lists in the expression language it is possible to learn multiple variables
from one expression. We do not include learning rules for lists here but discuss a list-related
extension in §5. Note that including learning rules for different operators is always optional:
learning rules are only required to use operators in learning (i.e., to enable more automation),
operators without special learning rules can still be planned as long as all unknown variables
of the input assertion can be learnt elsewhere.

▶ Example 7. Say, KB = {x, y}. Some simple examples include
learnEq(KB, x, z) = [(z, x)],
learnEq(KB, x, z + 5) = learnEq(KB, x − 5, z) = [(z, x − 5)],
planExp(KB, x = z, [(z, x)]),
planExp(KB, x = ¬z, [(z, ¬x)]), and
planExp(KB, x = z + 5 − y, [(z, x + y − 5)]).

Explanation of assertion planning rules. Fig. 2 contains the rules for assertion planning.
We first discuss planSimple, which is the planning relation for simple assertions. Pure simple
assertions are handled by the (conj) rule. The rule takes a list of expressions formed by the
conjuncts of the input expression. It does so by relying on the planExps relation for planning
of lists of expressions: the relation specifies expression orders for which all outs can be learned
(its definition is similar to the definition of plan, which we discuss shortly). Non-conjunct
pure simple assertions are covered by the degenerate case of the (conj) rule when n = 1.
The (emp) rule is trivial since emp is always plannable. The (heap) rule for cell assertions
E1 7→ E2 states that a cell assertion is plannable if we (at least) to know its ins, that is, the

A. Lööw, D. Nantes-Sobrinho, S.-É. Ayoun, P. Maksimović, and P. Gardner 26:9

(plan-base)
plan(KB, [], [])

(plan-ind)

1 ≤ i ≤ n planSimple(KB, Pi, [(xj , Ej)|kj=1])
KB′ ≜ KB ∪ {xj |kj=1} plan(KB′, [P1, . . . , Pi−1, Pi+1, . . . , Pn], MP)

plan(KB, [P1, . . . , Pn], (Pi, [(xj , Ej)|kj=1]) : MP)

(conj)
n ≥ 1 planExps(KB, [E1, . . . , En], res)

planSimple(KB, ∧n
i=1Ei, res)

(emp)
planSimple(KB, emp, [])

(heap)

lv(E1) ⊆ KB
planExps(KB ∪ {O1}, [E2 = O1], res)

planSimple(KB, E1 7→ E2, res)

(pred)

lv(# »E1) ⊆ KB #»E 2 = [E2i |ni=1]
planExps(KB ∪ {O1, . . . , On}, [E21 = O1, . . . , E2n = On], res)

planSimple(KB, p(# »E1; # »E2), res)

Figure 2 Rules: plan and planSimple for assertions.

logical variables of E1, and E2 is plannable according to planExps. We also need to record
that the out of the cell assertion, that is, E2, equals the contents of the cell at E1 in memory,
and from this equality we may be able to learn further information. Note, however, that
the heap is not available during the planning process, and we therefore use a placeholder
variable O1, which is a reserved logical variable that is not allowed to occur in assertions,
that will be instantiated to the actual heap contents at runtime (see Ex. 8). Finally, the
(Pred) rule generalises the planning of cell assertions to predicates by abstracting all of the
predicate outs using placeholder variables O1, . . . , On to then be instantiated and linked to
E2i

|ni=1 appropriately.

▶ Example 8. To illustrate how placeholder variables work in practice, consider consuming
x 7→ y knowing that x = 41. An MP for this assertion, by (heap), is [(x 7→ y, [(y, O1)])]. Say
the current heap has a cell 41 7→ 42. In this case, at the time of consumption the placeholder
variable O1 will be instantiated with the contents of the cell at x, which equals 42, yielding
y = 42.

We now turn to the main entry point: the plan relation. The main rule of plan, the
(plan-ind) rule, specifies valid orders of the simple assertions of P that guarantee the
learning of all their outs, extending the knowledge base as the outs of each simple assertion
are learnt. At each choice point, the rule is applicable for a simple assertion Pi whose ins are
all known using the planSimple relation, together with all the logical variables xj |kj=1 that
can be learnt from Pi and expressions Ej |kj=1 describing how they can be learnt. The rule
then extends the knowledge base with learnt variables, inductively repeats the planning for
the remaining simple assertions, and finally adds the result of planSimple, (Pi, [(xj , Ej)|kj=1]),
to the full MP.

▶ Example 9. Let P = list(w; vs) ⋆ x 7→ y ⋆ z 7→ w ⋆ z = y + 21 and KB = {x}, and let us
use the provided rules to construct an MP for P. Branching on the (plan-ind) rule, we have
that for i = 1 and i = 3 we cannot apply (pred) and (heap) as we do not know all the

ECOOP 2024

26:10 Matching Plans for Frame Inference in Compositional Reasoning

corresponding ins (in particular, w and z), and for i = 4 we cannot apply (pure-eq) as we do
not know all of the variables on either side of the equality. For i = 2, however, we can apply
(heap) as we know x and we have planExps(KB∪{O1}, [y = O1], [(y, O1)]), which follows from
planExp(KB∪{O1}, y = O1, [(y, O1)]), which in turn follows from learnEq(KB∪{O1}, O1, y) =
[(y, O1)]. Returning to (plan-ind) and continuing until the end, we obtain the following
MP for P :

[(x 7→ y, [(y, O1)]), (z = y + 21, [(z, y + 21)]), (z 7→ w, [(w, O1)]), (list(w; vs), [(vs, O1)])]

4.2 Computing MPs
Given the inference-rule formalisation of MPs in the previous section, it is easy to construct an
algorithm for automatically constructing MPs: a simple greedy algorithm searching through
the plan relation is sufficient to find an MP for a given assertion. We can greedily pick the
first valid choice we find at each choice point of the rules of the plan relation and its auxiliary
relations. That is, no backtracking is needed to explore multiple choice points (note that
here we are referring to backtracking during the construction of MPs, not the backtracking
during consumption that MPs help to avoid as discussed earlier). This is because outs are
only learnt by equality reasoning and therefore learning only happens when forced, so the
order in which outs are learnt does not matter. In §6, we report performance numbers of
this simple greedy algorithm as implemented in Gillian.

Note that no soundness result is needed for MPs to ensure soundness for the verification
tool as a whole: as long as no simple assertions are dropped from a given input assertion,
it is not possible to construct an “incorrect” MP that leads to an unsoundness bug in
the verification tool. This is because an incorrectly constructed MP will simply make the
consumption following the MP to fail and force the verification process to abort. To exemplify,
consider the assertion x = 1 with an empty knowledge base. Say we construct the incorrect
MP [(x = 1, [(x, 0)])], suggesting to instantiate x to 0. During consumption, this MP will
lead to 0 = 1 being consumed, which will of course fail. Similarly, an MP missing one or
more outs will cause the consumption to fail as well. E.g., an incorrect MP [(x = 1, [])] for
the same assertion, where the x variable is missing, will be caught during consumption as
well since x will be left uninstantiated.

4.3 MPs for Function Specifications and Predicates
Given the definition of an MP for an assertion, we can easily define MPs for function
specifications and predicates, as we now explain and exemplify.

MPs for function specifications are defined as follows:

▶ Definition 10 (Matching Plans: Function Specification). An MP for a function specification{
#»x = #»x ⋆ P

}
f(#»x)

{
Q

}
is an MP for P with knowledge base { #»x}.

For function specifications of the above form, where the function parameters #»x are bound to
logical variables #»x , when symbolically executing a function call, the values of #»x are given
by the arguments provided in the call, and #»x can therefore be assumed to be known at the
start of the planning.3

MPs for predicates are defined as follows:

3 As we do not include program variables in assertions, pre-conditions are formally pairs of the form
(#»x, P), but we stylise them to remain in line with the usual SL syntax.

A. Lööw, D. Nantes-Sobrinho, S.-É. Ayoun, P. Maksimović, and P. Gardner 26:11

▶ Definition 11 (Matching Plans: Predicates). An MP for a predicate
p(#»x in; #»x out) =

∨n
i=1(∃ #»xi. Pi), is a list of MPs, [mpi|ni=1], such that mpi is an MP for

Pi with knowledge base { #»x in}.

Recall that the use case for MPs for predicates is predicate folding: to fold a predicate
p(#»x in; #»x out) we have to know its ins #»x in, whereas the existentials from the predicate body
disjuncts need to be inferable from these ins and the outs #»x out can be either provided
or optionally left to be inferred from the ins. Also note that how MPs are defined for
predicates does not depend on how much folding automation the verification tool provides:
from the perspective of planning, it does not matter if the fold was requested manually or
automatically. Lastly note that because the ins and outs of a predicate are given at the time
of definition, failure to construct an MP can be reported early, i.e., at the time of definition,
rather than when the predicate is used in folding.

Examples of plannable predicates include all predicates for standard data structures. We
discuss some data-structure examples in more detail below.

▶ Example 12. We return to the standard SL predicate list(x; vs) from our running example,
where we now have separated the ins and outs. Recall, the predicate is defined as follows:

list(x; vs) ≜ (x = null ⋆ vs = []) ∨
(∃v, x′, vs′. list(x′; vs′) ⋆ x 7→ v ⋆ x + 1 7→ x′ ⋆ vs = v : vs′)

Importantly, despite the fact that the definition of the list predicate is recursive, no recursion
is needed to express (or compute) the MP for the predicate. Per Def. 11, the predicate is
plannable since the following is an MP for the predicate:

[[(x = null, [(x, null)]),
(vs = [], [(vs, [])])],

[(x 7→ v, [(v, O1)]),
(x + 1 7→ x′, [(x′, O1)]),
(list(x′; vs′), [(vs′, O1)]),
(vs = v : vs′, [(vs, v : vs′)])]]

where the first element of the list is an MP for the first disjunct of the predicate body (the
null disjunct) and the second element of the list is an MP for the second disjunct of the
predicate body (the non-null disjunct).

▶ Example 13. We easily see that the following two variants of the singly-linked list predicate
list and the doubly-linked list predicate dlist are plannable:

list(x) ≜ (x = null) ∨ (∃v, x′. x 7→ v, x′ ⋆ list(x′))
list(x; n) ≜ (x = null ⋆ n = 0) ∨ (∃v, x′. x 7→ v, x′ ⋆ list(x′; n − 1))

dlseg(x, x′, y, y′; vs) ≜ (vs = [] ⋆ x = x′ ⋆ y = y′) ∨
(∃x′′, v, vs′. vs = v : vs′ ⋆ x 7→ v, x′′, y′ ⋆ dlseg(x′′, x′, y, x; vs′))

dlist(x, y; vs) ≜ dlseg(x, null, y, null; vs)

▶ Example 14. For a non-list example of a plannable data-structure predicate, we turn to
binary search trees (extending our simple assertion language’s values and expressions with
support for sets):

bst(x; vs) ≜ (x = null ⋆ vs = ∅) ∨
(∃v, l, r, vsl, vsr. x 7→ v, l, r ⋆ bst(r; vsr) ⋆ bst(l; vsl) ⋆

vs = vsl ⊎ {v} ⊎ vsr ⋆ vsl < v ⋆ v < vsr)

ECOOP 2024

26:12 Matching Plans for Frame Inference in Compositional Reasoning

▶ Example 15. Finally, we highlight that is up to the tool user to make sensible choices
for ins and outs, as not all plannable choices need be equally useful in practice. Note that
this is not a requirement introduced by MPs, rather, MPs simply make this requirement
explicit by separating ins from outs. To illustrate, consider the standard acyclic- and
cyclic-list-segment predicates:

lseg(x, y, vs) ≜ (x = y ⋆ vs = []) ∨
(∃x′, v, vs′. x ̸= y ⋆ x 7→ v, x′ ⋆ vs = v : vs′ ⋆ lseg(x′, y, vs′))

clseg(x, y, vs) ≜ (x = y ⋆ vs = []) ∨
(∃x′, v, vs′. x 7→ v, x′ ⋆ vs = v : vs′ ⋆ clseg(x′, y, vs′))

where the only difference between the two is in that the former does not allow the start and
the end pointers to be equal in the second disjunct of its definition (specified by x ̸= y) and
the latter does not have this constraint, and consider the various choices of ins and outs,
with the goal being that the ins should uniquely determine the outs, minimising potential
branching coming from folding. For both lseg and clseg, x has to be an in, as otherwise, given
that the list is singly-linked (forward-pointing), we would have no way of determining where
the list segment starts. Observe that only having x as an in is enough for both disjuncts
in both predicate definitions to be plannable. However, without additional ins, we do not
know where the list segment ends, and folding the predicate would yield up to n branches,
where n is the length of the maximal list segment in the heap starting from x. Adding y as
an in solves this issue for lseg, since then we fix the list segment by knowing both the start
and its end; similarly, we could add vs as an in and then we would know the length of the
list segment, which, together with its start, would also uniquely determine it. Interestingly,
adding y as an in for clseg still does not uniquely determine the cyclic list segment, as its
two disjuncts are not disjoint: for example, in the heap {42 7→ 0, 42}, we could fold both
clseg(42, 42; []) and clseg(42, 42; [0]). Adding vs as an in of clseg, however, does solve the
issue, as the length of the list segment then becomes unambiguous. The same situation
would come up with any predicate whose disjuncts are not disjoint.

5 Extensions

Having formalised core MPs in the previous section, we now discuss important MP extensions
that widen the applicability and usefulness of MPs. The extensions we discuss here are from
the implementation of MPs in the Gillian tool.

Parametric matching plans. To support multiple programming languages (e.g., C and
JavaScript), Gillian is parametric on the memory model used for analysis. In supporting
parametricity, Gillian’s implementation of MPs is parametric as well, which we now show is
a simple extension of core MPs.

Memory models in Gillian are described in terms of core predicates, which represent the
fundamental units of the memory model. Core predicates are described using core-predicate
assertions with syntax c(# »E1; # »E2), where c ∈ Str is the name of the core predicate and # »E1 and
»E2 are the ins and outs of the core predicate. Each memory model instance must provide a
set of core predicates and the ins and outs of each core predicate. For example, for the simple
memory model we used for core MPs, the only core predicate is the cell assertion, E1 7→ E2,
which has E1 as an in and E2 as an out – or, more formally: 7→(E1; E2). Another example is
given by the Gillian C memory model, whose core predicates include a cell core predicate of
the form (Eb, Eo) 7→ Ev, which states that the cell at offset Eo in the block at location Eb

has contents Ev, where Eb and Eo are the ins and Ev is an out, and a block-bound predicate
bound(Eb; n), which states that the block at location Eb has length n.

A. Lööw, D. Nantes-Sobrinho, S.-É. Ayoun, P. Maksimović, and P. Gardner 26:13

From the discussion above, it is straightforward to generalise planning to parametric
planning since core-predicate assertions c(# »E1; # »E2) share syntax with user-defined-predicate
assertions p(# »E1; # »E2) and therefore for the purpose of planning are the same. That is, the
(pred) rule of Fig. 2 can be used to plan core-predicate assertions. Indeed, recall that for
the simple memory model we used for core MPs, the (heap) rule is indeed a special case of
the (pred) rule (see Fig. 2).

Extending learning capabilities. In some large verification projects, it might be desirable
to extend the learning capabilities of the core MP algorithm with project-custom learning
rules: for example, to avoid repetitive manual project-specific massage of assertions to make
them plannable with respect to the simple learning rules of core MPs.

We discuss one such learning extension that has been implemented in Gillian, specifically,
a list-related extension that was added for the largest case study carried out in Gillian:
the verification of C and JavaScript implementations of the deserialisation module of the
AWS Encryption SDK message header [13]. To illustrate, consider the assertion P ≜ a =
al ++ar ⋆ len(al) = l with KB = {a, l}, where ++ denotes list concatenation and len denotes
list length. P is not plannable using the core MP algorithm, because the algorithm can
only learn logical variables: as list length is not injective, al cannot be learned from l and
planning is stuck. However, P becomes plannable if knowledge bases are allowed to also
contain expressions of the form len(x): len(al) can then be learnt from len(al) = l, and both
al and ar can be learnt, respectively, as al = a[0 : len(al)] and ar = a[len(al) : len(a)] from
a = al ++ ar, where E1[E2 : E3] denotes list slicing from index E2 inclusive to index E3
exclusive.

The above example may look simple but was essential for creating MPs of predicates
describing the data structures used in the AWS case study. At a high level, AWS Encryption
SDK message headers are buffers (arrays of bytes) that comprise a number of sections, with
each section having either a static length described by the standard or a dynamic length
derived from content appearing in the earlier sections of the buffer. In that context, the
list-length extension allowed for clear definitions that follow the descriptions in their official
documentation. Otherwise, the predicates would have to be stated using more complex
operators. Specifically, using Gillian notation, (part of) the predicate describing the message
header is as follows:4

pred Header(+rawHeader, ver, type, sId, msgId, ECLen, ECKs, ...) :
rawHeader == ([ver, type] ++ #rawSId ++ msgId ++ #rawECLen ++ #EC ++ ...) *
len(#rawSId) == 2 * UInt16(#rawSId, suiteId) * len(msgId) == 16 *
len(#rawECLen) == 2 * UInt16(#rawECLen, ECLen) *
len(#EC) == ECLen * EncryptionContext(#EC, ECKs) * ...

while without the list-length extension its definition would be as follows:

pred Header(+rawHeader, ver, type, sId, msgId, ECLen, ECKs, ...) :
[ver, type] == rawHeader[0, 2] * #rawSId == rawHeader[2, 4] *
UInt16(#rawSId, suiteId) * msgId == rawHeader[4, 16] *
#rawECLen = rawHeader[20, 22] * UInt16(#rawECLen, ECLen) *
#EC == rawHeader[22, 22 + ECLen] * EncryptionContext(#EC, ECKs) * ...

4 In Gillian notation, the + symbol denotes a predicate in, and the # symbol denotes existential quantific-
ation. The UInt16(+x, y) predicate states that the two bytes given by x can be viewed as an unsigned
16-bit integer y, while the EncryptionContext predicates is specific to the AWS case study and its
meaning is not relevant here.

ECOOP 2024

26:14 Matching Plans for Frame Inference in Compositional Reasoning

By comparing these two definitions, we can see that not only is the latter more difficult to
read and understand, but is also more error-prone, as the list-slicing indices get progressively
more complicated.

This extension approach is not limited to the above list-length example and can be
applied for other expressions: e.g., we might choose to keep a + b in the KB if we know it
but do not know either a or b. These further extensions can be added on an as-needed basis
straightforwardly by modifying the OCaml code of Gillian. An interesting direction for the
future is to develop a small domain-specific language for MP rules (i.e., rules like those in e.g.
Fig. 1) to simplify extending Gillian’s MP algorithm with new rules for extended learning
capabilities.

Support for magic wands. MPs can easily be extended to support the magic wand operator
−−⋆ . Formally, θ, h |= P1 −−⋆ P2 ⇔ (∀h′. h′#h ∧ θ, h′ |= P1 ⇒ θ, (h′ ⊎ h) |= P2) where h′#h

denotes that the heaps are disjoint. Practically, magic wands are helpful to reason about “the
rest” of a structure. For example, iterating over a linked list often requires the introduction
of the list-segment predicate lseg, presented in Ex. 15, in order to specify the beginning of
the list that has already been visited. Instead, the list segment lseg(x, y, vs) can be replaced
by the magic wand list(y, vs′) −−⋆ list(x, vs ++ vs′), meaning that the total list can be
recovered by combining this resource with the rest of the list.

To add support for magic wands, we extend the assertion language with magic wand
assertions of the form p(# »E1; # »E2) −−⋆ q(# »E3; # »E4), where p and q are user-defined predicates. We
chose this syntax as to syntactically capture the in-parameters and out-parameters for each
side of the operator. Such a magic wand assertion forms a simple assertion with # »E1, # »E2 and
»E3 as in-parameters, and # »E4 as outs-parameters. To explain the division of in-parameters and
out-parameters, we give a summary of the underlying algorithm for performing consumption
of magic wands as implemented in Gillian. The algorithm is originally from Viper [23, 5]:5

To consume a magic wand assertion p(# »E1; # »E2) −−⋆ q(# »E3; # »E4) from state σ:
1. Create a state σp by producing the definition of p(# »E1; # »E2) in the empty state.
2. For each simple assertion Q in the definition of q(# »E3; # »E4):

a. Try consuming Q in σp, if it succeeds continue to the next simple assertion;
b. If it fails, try consuming Q in σ instead, if it succeeds, continue to the next simple

assertion;
c. If both fail, abort the consumption.

Step 1 produces the left-hand side of wand, which requires knowing all its parameters.
Therefore, all parameters in # »E1 and # »E2 must be in-parameters of the wand assertion. Then,
step 2 consumes the right-hand side of the wand, which requires knowing all its in-parameters,
but learns its out-parameters in the process. Therefore, # »E3 are in-parameters of the wand
assertion and # »E4 are out-parameters.

To exemplify, say p1(x; y) = x 7→ y and q1(x; y, z) = x 7→ y ⋆ y 7→ z. Further, say we
know x = 1 and y = 2 and are in a state with a heap {2 7→ 3}. The heap satisfies the wand
assertion ∃z. p1(x; y) −−⋆ q1(x; y, z). Indeed, by the above algorithm, the assertion can be
consumed starting from the given heap, learning that z = 3 in the process.

5 For simplicity of presentation, the algorithm presented here assumes the absence of disjunction in the
definitions of p and q.

A. Lööw, D. Nantes-Sobrinho, S.-É. Ayoun, P. Maksimović, and P. Gardner 26:15

6 Scalability and Performance

We now discuss the scalability and performance of MPs. We base our discussion on the MP
implementation in Gillian, specifically, our discussion builds on the largest case study carried
out in Gillian, i.e., the verification of C and JavaScript implementations of the deserialisation
module of the AWS Encryption SDK message header [13]. First, we report MP-related
scale and performance data for the AWS case study. Second, we report on a new MP-based
optimisation we have implemented in Gillian for this paper, which allows for the creation
of aggregate matching plans (AMPs). We show that this optimisation improves the total
verification time of the AWS case study.

AWS case study. To measure the scale and performance of MPs, we have instrumented
Gillian with data-and-performance counters and re-run the verification of the code from
the AWS case study. From this experiment, we have found the cost of building MPs to
be negligible compared to the total verification time. For the C/JS implementation of the
AWS case study, building all MPs takes a total of 0.35s/0.096s, constituting 0.16%/0.25%
of the total verification time. Over that time, MPs are built for 1073/378 assertions that
consist of 41/28 simple assertions on average and 156/272 assertions at most. The creation
of a single MP takes 0.33ms/0.26ms on average and 2.5ms/6.5ms at most. Note that MPs
do not affect the verification time beyond the time it takes to create them; this is because
MPs are separated from the consumption phase: the consumptions that take place during
verification would be the same if the input assertions had instead been manually adopted
(e.g., as illustrated in the discussion on VeriFast in §2).

Aggregate matching plans (AMPs). We discuss and evaluate aggregate matching plans
(AMPs), a new performance optimisation we have implemented in Gillian for this paper.
To illustrate AMPs, recall that an MP for a predicate is a list of MPs for the disjuncts of
the body of the predicate (Def. 11), and that each disjunct is treated independently. AMPs
identify and leverage simple assertions that are shared between disjuncts and represent this
sharing within a tree structure.

To better understand how AMPs work, consider the following predicate:

OptBox(x) ≜ (∃y. x 7→ y ⋆ y = null) ∨ (∃y, z. x 7→ y ⋆ y 7→ z)

and the MPs and AMP for this predicate in Fig. 3.

OptBox(x) (x 7→ y, [(y, O1)]) (y = null, [])

(x 7→ y, [(y, O1)]) (y 7→ z, [(z, O1)])

(a) The matching plans.

OptBox(x) (x 7→ y, [(y, O1)]) (y = null, [])

(y 7→ z, [(z, O1)])

(b) The aggregate matching plan.

Figure 3 Matching plans and aggregate matching plan for OptBox(x).

Without AMPs, Gillian would create 2 MPs, one per disjunct of the predicate, which both
have the same first step (x 7→ y, [(y, O1)]). However, when folding a predicate, Gillian tries
to consume each disjunct of the predicate body in order until one succeeds to completion.
Without AMPs, when the definition that could be folded was the second one, the first step
would be consumed twice in the same symbolic state, duplicating the work. In contrast,
using AMPs it is consumed only once, factoring out such duplicated work.

ECOOP 2024

26:16 Matching Plans for Frame Inference in Compositional Reasoning

In our implementation of AMPs in Gillian, MPs are built for each disjunct of a predicate,
and then aggregated into a single AMP. Before building the individual MPs, simple assertions
within a single disjunct are sorted using a simple sort algorithm, maximising the chance of
the existence of a shared root. A similar process is also performed for function specifications,
as each function can have multiple specifications in Gillian.

Our evaluation of this new optimisation shows that utilising AMPs instead of lists of
MPs in large verification projects leads to substantial performance improvements. For the C
implementation of the AWS case study, AMPs made the total verification time drop from
240s to 211s, that is, a speedup of 12%. AMPs are especially effective when assertions
are obtained from and/or augmented by a compilation process which often adds the same
contextual information, such as type information, to all cases (which is the case for the
Gillian assertion compiler for C).

7 Related Work

We place matching plans in the context of previous work on automated frame inference.
Specifically, we compare matching plans with the approaches of three modern SL-adjacent
and SMT-based semi-automated verification tools: VeriFast [7], Viper [16], and CN [20].

VeriFast. VeriFast [7], whose approach is closest to our work, is a verification tool for C and
Java. It is based on consumers and producers, and its assertion language is the traditional
SL assertion language. Given the similarities between VeriFast and our work, in particular
the shared assertion language, we expect it would be straightforward to adapt our work on
MPs for VeriFast. Currently, the approach of VeriFast offers less automation than MPs, as
it leaves the responsibility of constructing MPs to the tool user, who has to provide the
MP implicitly when providing assertions, e.g., as part of predicate definitions. To illustrate,
consider again the singly-linked list predicate from our running example, now in VeriFast’s
syntax for C:
struct node { int entry; struct node* next; };

predicate list(struct node* x, list<int> vs) =
x == NULL
? vs == nil
: malloc_block_node(x) &*& x->entry |-> ?v &*&

x->next |-> ?x’ &*& list(x’, ?vs’) &*& vs == cons(v, vs’);

Note that this list predicate is defined using the ternary conditional operator rather than
disjunction, and that existentially quantified variables are annotated with a question mark
at first use. In VeriFast, simple assertions are consumed in the order given by the tool
user: e.g., in the non-NULL case of the list predicate, malloc_block_node(x) is consumed before
x->entry |-> ?v, which in turn is consumed before x->next |-> ?x’, and so on. This means
that if the user does not arrange the simple assertions appropriately, the verification will fail
even though there might exist an MP. Further, VeriFast offers less automation than MPs
w.r.t. learning variables: it can only learn a variable if that variable is the single occupant of
an out or the left-hand side of an equality: for example, assuming x is known, VeriFast can
learn y from y == x but not from x == y or x == y + 1.

Another difference between our approach and that of VeriFast is that in our approach ins
and outs are checked at definition time whereas in VeriFast they are checked at use time,
leading to less local/precise error reporting. For example, if we tried to fold a list in VeriFast

A. Lööw, D. Nantes-Sobrinho, S.-É. Ayoun, P. Maksimović, and P. Gardner 26:17

using close list(_, _), where _ denotes that VeriFast should infer the argument, we would
get the error message “Unbound variable ‘x’ ”, referring to the x variable in the list predicate
definition, instead of an error saying that it is not possible to infer an in of a predicate.6

Viper. Viper [16] is a platform for building verification tools. It has been instantiated,
among other languages, to Java and Rust. It is based on consumers and producers, but also
on an alternative assertion language known as implicit dynamic frame theory (IDF) [24],
which combines SL with dynamic frame theory [10].7 Tool users familiar with SL but not
IDF must therefore learn IDF before they can start using Viper. This difference also means
that both consumption and learning outs from ins look different than in our setting, making
a detailed comparison complex. We illustrate this using our linked-list running example, now
in Viper’s IDF syntax:

field entry : Int
field next : Ref

predicate list(this : Ref) {
acc(this.entry) && acc(this.next) &&
(this.next != null ==> list(this.next))

}

function elems(this : Ref) : Seq[Int]
requires list(this) {

unfolding list(this) in
this.next == null ? Seq(this.entry)

: Seq(this.entry) ++ elems(this.next)
}

The above list predicate captures the shape, but not the contents, of lists. The predicate
is expressed using acc, a construct called accessibility predicate, closely resembling the
cell assertions in SL. The contents of lists are specified using a heap-dependent function
elems. Such functions, as their name suggests, are functions over the heap of the current
symbolic state. In the setting of accessibility predicates and heap-dependent functions,
the ins look similar to ins in our setting, but the outs become the return values of heap-
dependent functions. Assertions must be self-framing, in the sense that assertions must ensure
accessibility to at least the locations they read. Self-framedness is checked in a left-to-right
manner in Viper, meaning that the assertion acc(x.f) && 0 < x.f is considered self-framing,
whereas 0 < x.f && acc(x.f) is not. That is, like VeriFast, Viper is sensitive to the order of
simple assertions. Quantifiers, e.g., over array indices, are more prominent in IDF than in
SL, and variables, quantified or otherwise, that cannot be inferred are instantiated by giving
the underlying SMT solver trigger hints [14], in the style of, e.g., Boogie [12].

CN. CN [20] is a verification tool for C, and is designed for, what its authors call, “predictable
proof automation”. One means employed towards this goal is that CN is based on a new
tool-specific assertion language, which uses variable scoping to ensure that outs can always
be learnt. In other words, the limitations of CN’s learning algorithm are reflected directly in

6 VeriFast has support for checking “preciseness of predicates”, which allows for definition-time checking
of their ins and outs. However, this feature does not affect the error reporting at use sites of predicates,
i.e., errors remain nonlocal. The rules are the same as for the run-time check and are described by
inference rules by Jacobs et al. [7] and by prose text by Jacobs et al. [8].

7 Parkinson and Summers [19] establish a formal connection between SL and IDF, and Jost and Summers [9]
(partially) extend the result to include predicates as well.

ECOOP 2024

26:18 Matching Plans for Frame Inference in Compositional Reasoning

syntax of assertions, ensuring that tool users do not accidentally fall out of the plannable
subset of the assertion language. To exemplify, in CN syntax, the singly-linked list predicate
for the same node data type as in the above discussion on VeriFast becomes:8

predicate { list<integer> l } List (pointer p) {
if (p == NULL) {

return { l = nil<integer> };
} else {

let Head = Owned<struct node>(p);
let Tail = List(Head.value.next);
return { l = cons(Head.value.entry, Tail.l) };

}
}

Since new variables, including outs, must be the output of functions, they are necessarily
learnable. The downside of this approach is that tool users have to learn a new specification
language.

Another feature aimed at predictable proof automation is that CN targets a decidable
SMT fragment, disallowing, e.g., nonlinear arithmetic in SMT queries. Instead, these must
be handled manually by tool users, by proving lemmas in, e.g., Coq, and then manually
applying them in CN. This trade-off is not CN-specific and could also be done in an MP-based
approach. Similarly, manual fallbacks for complex quantifiers are required as well.

Other related work. Many other SL and SL-adjacent verification tools share similarities
with the work presented here, all the way back from Smallfoot [2, 3], the very first such
tool. Important differences between our work and Smallfoot include that Smallfoot is not
SMT-based and that its frame inference procedure is more akin to proof search than the
approach presented here, as is the case for its most well-known descendant Infer [4]. Another
important approach to semi-automating SL is embedding one’s verification tool inside an
interactive theorem prover (ITP). A recent example of this approach is RefinedC [22]. Such
tools do not reduce the verification problem to a series of SMT queries but instead to a series
of proof obligations that tool users must then discharge within the ITP by the usual means
available, including various proof automation machinery.

There are also important connections to be highlighted between the work presented
here and logic programming. The above-mentioned work on RefinedC [22] highlights this
connection, as the tool is implemented in the “separation logic programming language”
Lithium (which, in turn, is implemented in Coq), which is introduced in the same paper.
Diaframe [15] is based on similar ideas. Nguyen et al. [17] highlight the connection between
what we call ins and outs and argument modes in logic programming. Lastly, some logic
programming languages contain features that address some of the problems of the traditional
left-to-right evaluation order of logic programming, such as constraint logic programming
and co-routining (e.g., dif/2) (cf. the recent survey by Körner et al. [11]).

Finally, an earlier version of MPs, dubbed unification plans (UPs), was briefly outlined by
Fragoso Santos et al. [6] in the context of the JavaScript analysis tool JaVerT, the forefather
of the Gillian platform. UPs featured a more limited form of learning than our MPs and were
constructed purely syntactically: ins and outs were computed independently of a knowledge
base, which meant that, for example, while it was possible to learn b from b = a or list(a; b)
knowing a, it was not possible to learn c from a = b + c or learn list lengths. No paper has
covered UPs in the same depth we have covered MPs in this paper.

8 The definition is taken from the CN paper, where the authors add: “Note that CN does not currently
support logical functions on lists; this example is for illustration only.”

A. Lööw, D. Nantes-Sobrinho, S.-É. Ayoun, P. Maksimović, and P. Gardner 26:19

References
1 Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi.

A survey of symbolic execution techniques. ACM Computing Surveys, 51(3), 2018. doi:
10.1145/3182657.

2 J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic assertion checking
with separation logic. In International Conference on Formal Methods for Components and
Objects, 2005. doi:10.1007/11804192_6.

3 J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation logic. In
Asian Conference on Programming Languages and Systems, 2005. doi:10.1007/11575467_5.

4 Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier for memory
safety of C programs. In NASA Formal Methods Symposium, 2011. doi:10.1007/
978-3-642-20398-5_33.

5 Thibault Dardinier, Gaurav Parthasarathy, Noé Weeks, Peter Müller, and Alexander J.
Summers. Sound automation of magic wands. In Computer Aided Verification, 2022. doi:
10.1007/978-3-031-13188-2_7.

6 José Fragoso Santos, Petar Maksimović, Gabriela Sampaio, and Philippa Gardner. JaVerT 2.0:
Compositional symbolic execution for JavaScript. Proceedings of the ACM on Programming
Languages, 3(POPL), 2019. doi:10.1145/3290379.

7 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In NASA
Formal Methods Symposium, 2011. doi:10.1007/978-3-642-20398-5_4.

8 Bart Jacobs, Jan Smans, and Frank Piessens. The VeriFast Program Verifier: A Tutorial,
2017. doi:10.5281/ZENODO.1068185.

9 Daniel Jost and Alexander J. Summers. An automatic encoding from VeriFast predicates
into implicit dynamic frames. In Verified Software: Theories, Tools, Experiments, 2014.
doi:10.1007/978-3-642-54108-7_11.

10 Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without
restrictions. In Symposium on Formal Methods, 2006. doi:10.1007/11813040_19.

11 Philipp Körner, Michael Leuschel, João Barbosa, Vítor Santos Costa, Verónica Dahl, Manuel V.
Hermenegildo, Jose F. Morales, Jan Wielemaker, Daniel Diaz, Salvador Abreu, and Giovanni
Ciatto. Fifty years of Prolog and beyond. Theory and Practice of Logic Programming, 22(6),
2022. doi:10.1017/S1471068422000102.

12 K. Rustan M. Leino. This is Boogie 2, 2008. URL: https://www.microsoft.com/en-us/
research/publication/this-is-boogie-2-2/.

13 Petar Maksimović, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa Gardner. Gillian,
part II: Real-world verification for JavaScript and C. In Computer Aided Verification, 2021.
doi:10.1007/978-3-030-81688-9_38.

14 Michał Moskal. Programming with triggers. In Workshop on Satisfiability Modulo Theories,
2009. doi:10.1145/1670412.1670416.

15 Ike Mulder, Robbert Krebbers, and Herman Geuvers. Diaframe: Automated verification of
fine-grained concurrent programs in Iris. In Conference on Programming Language Design
and Implementation, 2022. doi:10.1145/3519939.3523432.

16 Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In Verification, Model Checking, and Abstract Interpretation,
2016. doi:10.1007/978-3-662-49122-5_2.

17 Huu Hai Nguyen, Viktor Kuncak, and Wei-Ngan Chin. Runtime checking for separation
logic. In Verification, Model Checking, and Abstract Interpretation, 2008. doi:10.1007/
978-3-540-78163-9_19.

18 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs
that alter data structures. In Computer Science Logic, 2001. doi:10.1007/3-540-44802-0_1.

ECOOP 2024

https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-031-13188-2_7
https://doi.org/10.1007/978-3-031-13188-2_7
https://doi.org/10.1145/3290379
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.5281/ZENODO.1068185
https://doi.org/10.1007/978-3-642-54108-7_11
https://doi.org/10.1007/11813040_19
https://doi.org/10.1017/S1471068422000102
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1145/1670412.1670416
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-540-78163-9_19
https://doi.org/10.1007/978-3-540-78163-9_19
https://doi.org/10.1007/3-540-44802-0_1

26:20 Matching Plans for Frame Inference in Compositional Reasoning

19 Matthew J. Parkinson and Alexander J. Summers. The relationship between separation
logic and implicit dynamic frames. In European Symposium on Programming, 2011. doi:
10.1007/978-3-642-19718-5_23.

20 Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell, and
Neel Krishnaswami. CN: Verifying systems C code with separation-logic refinement types.
Proceedings of the ACM on Programming Languages, 7(POPL), 2023. doi:10.1145/3571194.

21 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in
Computer Science, 2002. doi:10.1109/LICS.2002.1029817.

22 Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer,
and Deepak Garg. RefinedC: Automating the foundational verification of C code with
refined ownership types. In International Conference on Programming Language Design and
Implementation, 2021. doi:10.1145/3453483.3454036.

23 Malte Schwerhoff and Alexander J. Summers. Lightweight support for magic wands in an
automatic verifier. In European Conference on Object-Oriented Programming, 2015. doi:
10.4230/LIPIcs.ECOOP.2015.614.

24 Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In European Conference on Object-Oriented Programming, 2009.
doi:10.1007/978-3-642-03013-0_8.

https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1145/3571194
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.4230/LIPIcs.ECOOP.2015.614
https://doi.org/10.4230/LIPIcs.ECOOP.2015.614
https://doi.org/10.1007/978-3-642-03013-0_8

The Fault in Our Stars
Designing Reproducible Large-scale Code Analysis Experiments

Petr Maj
Czech Technical University, Prague, Czech Republic

Stefanie Muroya
Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Konrad Siek
Czech Technical University, Prague, Czech Republic

Luca Di Grazia
Università della Svizzera italiana (USI), Lugano, Switzerland

Jan Vitek
Charles University, Prague, Czech Republic
Northeastern University, Boston, MA, USA

Abstract
Large-scale software repositories are a source of insights for software engineering. They offer an
unmatched window into the software development process at scale. Their sheer number and size
holds the promise of broadly applicable results. At the same time, that very size presents practical
challenges for scaling tools and algorithms to millions of projects. A reasonable approach is to
limit studies to representative samples of the population of interest. Broadly applicable conclusions
can then be obtained by generalizing to the entire population. The contribution of this paper is
a standardized experimental design methodology for choosing the inputs of studies working with
large-scale repositories. We advocate for a methodology that clearly lays out what the population
of interest is, how to sample it, and that fosters reproducibility. Along the way, we discourage
researchers from using extrinsic attributes of projects such as stars, that measure some unclear
notion of popularity.

2012 ACM Subject Classification Software and its engineering

Keywords and phrases software, mining code repositories, source code analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.27

Funding This work was supported by the Czech Ministry of Education, Youth and Sports under
program ERC-CZ, grant agreement LL2325, BigCode (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000421).
NSF grants CCF-1910850, CNS-1925644, and CCF-2139612, as well as the GACR EXPRO grant
23-07580X.

Acknowledgements We would like to thank Digital Ocean for their involuntary contribution of
computational resources during the early data gathering phase of our research. We acknoweldge
the reviewers of ICSE’22, and thank the reviewers of ECOOP’23 for their encouragments and for
sticking around until 2024.

1 Introduction

And so it begins...

count the number of stars associated with each repository. The number of stars relate
to how many people are interested in that project. Thus, we assume that stars indicate
the popularity of a project. We select the top 50 projects in each language

© Petr Maj, Stefanie Muroya, Konrad Siek, Luca Di Grazia, and Jan Vitek;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 27; pp. 27:1–27:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2024.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Designing Reproducible Large-Scale Code Analysis Experiments

Sentences like these appear in the methodology sections of software engineering papers, with
sometimes, little more in terms of experimental design. This paper aims to convince readers
that using extrinsic features of projects, such as popularity, may limit applicability of results
of the studies relying on them. Instead one should select projects based on their intrinsic
features and spell out expectations as well as threats to validity.

Empirical software engineering studies are experiments performed on a corpus of software
to validate some hypotheses. For instance, one could take projects written in various languages
and attempt to show that some language feature has an impact on the quality of the code
written using it. The value of large-scale corpus study often does not lie in what we learn
about the projects that were analyzed, but rather in what these can teach us about the larger
population. There is limited value in, say, finding out that a new Java language feature is
beneficial in a handful cases if we cannot generalize that result to a broader portion of the
Java ecosystem.

Yet, many papers in the field do not articulate how broadly applicable their results are
expected to be. Even the simple question of how the projects that were analyzed were
selected is not clear. While large-scale code repositories, such as GitHub, are a boon to
the software engineering community, their sheer size requires care. We argue that better
experimental design will strengthen research done in the field.

Consider Table 1 which has a meta-study of three years of the Mining Software Repositories
conference. Forty-one papers relied on subsets of GitHub. Out of those, five papers lacked
sufficient information about their dataset to determine how they selected their inputs, twenty-
one used GitHub stars to obtain a subset of projects, ten used simple combinations of
attribute thresholds and only five relied on random sampling over the entire population.

Table 1 Experimental design in MSR 2019, 2020 and 2021.

papers class description # of projects

5 Unknown Unknown or proprietary 1–35K
21 Stars Filter projects using stars 5–2M
10 Other Other filter for projects 7–290K
5 Random Filter and sample randomly 6–51K

What is the right choice here? None of the papers analyzed the entire ecosystem as that
would mean tens to hundreds of millions of projects. The question thus becomes how to
sample the population of projects hosted on GitHub. In this paper, we criticize the use of
GitHub stars as they are appealing and popular, yet also dangerous. But, really, our point
generalizes to any extrinsic attributes of a project. So, again, what is the right choice? The
answer is, of course, that it depends. The rest of this paper attempts to shed some light on
how to make a reasoned choice of inputs.

First, let us return to stars and ponder why they play such an important role in our
experimental methodology? We believe expectations and pragmatics are the explanation.
Community standards are largely set by the papers we publish. The literature codifies
expectations for authors of the next batch of papers. These expectations slowly evolve in
response to reviewer attitudes. So, we use stars because our peers do. And just as importantly
for the pragmatic reason that GitHub does not provide an index of projects, nor does it
allow to query over intrinsic attributes of code. Finding inputs is thus hobbled by limitations
of our tools. Stars play a double role. They are a queryable index of projects as GitHub
does provide an interface to obtain them. They also come with an expectation that starred
projects enjoy some notion of quality [8]. This paper will show that stars do not necessarily
correlate with quality and that they introduce reproduction barriers.

P. Maj, S. Muroya, K. Siek, L. Di Grazia, and J. Vitek 27:3

We propose a methodology for designing reproducible software engineering experiments
over large-scale repositories with the explicit goal of improving the generalizability of our
results. The methodology is in line with evolving community standards [23] but specific to
large-scale code analysis. We propose to follow the following protocol when designing a new
experiment:
1. Population Hypothesis: Give a brief description of the population of interest the

research should generalize to; it may be narrow such as “programs written by students
learning JavaScript” or as broad as “commercial code”.

2. Frame Oracle: Give a procedure for deciding if a project belongs to the population of
interest. The procedure should be efficiently computable over intrinsic attributes of a
project. An oracle could, say, return projects with a single JavaScript file created by a
user with no previous commits.

3. Sampling Strategy: Describe a strategy for selecting a subset of the entire population.
Ideally, specified algorithmically. An example is random sampling without replacement
from a known seed.

4. Validity: Give an argument as to how the oracle and the sampling strategy are valid
means to obtain representative samples. This can be a discussion of how to check result
quality, such as manual inspection of samples written by beginners, and threats to validity.

5. Reproduction Artifacts: Publish an artifact that reproduces exactly the reported
results, and supports changes to either the input or the details of the experiment.

Reproducibility has nuances. Our emphasis is on providing support for the following three use
cases: Repetitions which run the reproduction artifact to obtain bit-for-bit equal results. This
is the most stringent use case and often requires a reproduction artifact that bundles code and
inputs. Reanalysis alters either the method or its input, it requires an executable artifact and
a method for acquiring new inputs. Finally, reproductions are independent implementations
that require the paper to have an unambiguous description of all experimental details.1

Supporting reproducibility can be greatly simplified with appropriate tooling. Our work
builds on the CodeDJ infrastructure (codedj-prg.github.io). Our contributions are:
1. A dataset of 2Mio+ projects with intrinsic attributes precomputed.
2. A characterization of stars as a means to select inputs for code analysis experiments.
3. A methodology that can be readily adopted to improve reproducibility.
4. A reproduction that highlights challenges to generalization due to project selection.

Our community has been moving towards broader adoption of the practice of artifact
evaluation [11]. While artifacts are clearly helpful as they make papers providing them
easier to reproduce, the selection of inputs is often hardwired and not considered part of
the reproduction. The impact of our proposal, if adopted, would be to encourage authors of
large-scale code studies to consider the collection of the inputs to their work to be part of
the experiment and thus make it easy to change the way inputs are selected.

Road map. The structure of the paper is as follows.
Section 2 begins with a short overview of the state with respect to methodologies for
project selection and tooling to support it.
Section 3 takes four practical examples, papers published at the Mining Software Reposit-
ories conference, and attempts to couch their experimental design in the terms introduced
above. These example suggest that authors are not always clear about their intent and
strategy. While looking at these papers we found a number of practical impediments to
reproducibility.

1 The terminology comes from [24] and was used by SIGPLAN artifact evaluation committees.

ECOOP 2024

codedj-prg.github.io

27:4 Designing Reproducible Large-Scale Code Analysis Experiments

Section 4 describes characteristics of the projects hosted on Github and argues that stars
cannot yield a representative sample of developed projects.
Section 5 outlines our proposal for how to design large-scale program analysis experiments.
Section 6 follows our guidelines and attempts to repeat the studies of Section 3 while
perturbing the experimental inputs.
Section 7 is responsive to reviewers of this paper and their request to reproduce an
experiment from a paper with a verified artifact.
Section 8 concludes and gives some parting thoughts. This paper improves on the state
of the art in that it argues for a structured experimental design that relies on tooling for
input selection.

2 Related work

We review relevant advice, warnings and the state of tooling.

2.1 Community standards
A push towards reproducibility is underway. The standards framework of Ralph et al. [23]
includes a section on experimental design and specifically on sampling. This is further explored
by Baltes and Ralph [1]. They argue that software engineering faces a generalizability crisis.
In their meta-analysis of 120 papers, they find that convenience sampling2 is widely used
to select projects to analyze from a large population. Convenience sampling rarely leads to
representative samples, and – without a careful study of potential sources of bias – can lead
to conclusions that do not generalize. They explain this state of affairs by a fundamental
challenge: the lack of appropriate sampling frames to access elements of the population of
interest. Earlier work by Nagappan et al. [19] already attempted to address this problem
by defining the notion of sample coverage as a way to assess the quality of the data used as
input to an experiment. Even closer to our paper is the study by Cosentino et al. [4] which
reported that out of 93 large corpus papers, 63 papers failed to provide replication datasets.
Most papers did not use random samples and omitted mentions of any limitations.

2.2 Mining repositories
GitHub is a popular data source. Warnings about its perils go back to the work of Kalli-
amvakou et al. [10] which highlighted “noise” among hosted projects. In particular, they
point out, tiny and inactive projects dominate the platform. Lopes et al. [13] poured oil on
that fire, showing that up to 95% of the files containing code in some language ecosystems
were copies of one another and filtering by stars reduces the proportion of duplicates without
eliminating them. One way researchers have strived to find signal in GitHub’s sea of noise is
to use stars. But what do stars mean? We would like them to be correlated with quality
code, code worth analyzing. Borges and Valente [2] conducted a user survey that found
the most common reasons for starring a project was to show appreciation (e.g. starred this
repository because it looks nice) and bookmark it (e.g. starred it because I wanted to try
it later). They also warn against promotional campaigns to drive up ratings. Popularity
of projects was studied by Han et al. [8], they found that while users believe stars are a
measure of a project’s popularity, intrinsic attributes such as branches, open issues and

2 The Wikipedia definition of convenience sampling is a type of non-probability sampling that involves
the sample being drawn from that part of the population that is close to hand.

P. Maj, S. Muroya, K. Siek, L. Di Grazia, and J. Vitek 27:5

contributors are better predictors. Expending on that result, Munaiah et al. [18] propose
classifier for engineered projects, which they define as projects that leverage sound software
engineering principles. They show that the classifier outperforms stars. Pickerill et al. [22]
further improved classification with an approach based on time-series clustering.

2.3 Tools for miners

A number of infrastructures have been developed to assist researchers in the field. The most
ubiquitous was, the now defunct, GHTorrent [6]. The project offered a continuously updated
database of metadata about public projects that was a valuable building block for other
tools. Boa is complementary as it lets users write sophisticated queries over source code [5].
CodeDJ is a newer infrastructure that supports queries over both meta-data and file contents
and is language agnostic [15]. Recent works address performance issues of querying at scale
[14, 17]. Of these, only CodeDJ ensures reproducible queries.

3 State of practice

How do people design experiments for large-scale code studies? This section gives some
examples that we believe to be representative which we will revisit later when we attempt to
reproduce the results with different inputs. For each paper, we provide a brief summary of
the scientific claims made by the authors. Then, we attempt, with our best understanding of
the work, to reverse engineer a version of the protocol laid out in the introduction. We, thus,
give an account of each paper’s population hypothesis, a description of the frame oracle,
sampling strategy, validation and reproduction artifacts. We conclude the section with some
observations general reproduction issues that show up in these papers.

3.1 MSR 2020: What is software

“Software” has an intuitive definition, namely code, but there is more. The paper by Pfeif-
fer [21] classifies the content of repositories in categories such as code, data and documentation.
They, then, observe that software is more than just code. Documentation is an integral
constituent of software, and software without data is often correlated with libraries, and
finally that software without code is rare, but exists. The paper answers the question “what
are the constituents of software and how are they distributed?” The paper argues that existing
definitions of the term are non-descriptive, inconclusive and even contradictory.

Population Hypothesis: Implicitly, the population is all inclusive.

Frame Oracle: Given the lack of details, we assume all projects on GitHub belong.

Sampling Strategy: the authors carry out convenience sampling by choosing popular
repositories. Stating “by popularity we mean the starred criteria with which GitHub users
express liking similar to likes in social networks.” Most-starred projects in 25 languages were
acquired by executing one query by language, saying that “without language qualifier, the
API returns only 1,020 repositories in total, which we decided is not enough for our study.”

Validity: No discussion of relevant issues or threats.

Reproducibility Artifacts: A listing of files and repositories is provided along with the code
of the classifier and a notebook. Repository contents were not preserved.

ECOOP 2024

27:6 Designing Reproducible Large-Scale Code Analysis Experiments

3.2 MSR 2020: Method chaining
In an object-oriented language, a method chain occurs when the result of a method invocation
is the receiver of a subsequent invocation. In Java, chains manifest as sequences of calls
connected by dots. Nakamura et al. [20] analyze trends in usage of method chains and
conclude that they increase over a period of eight years.
Population Hypothesis: Java projects developed “by real-world programmers.” The authors
state that they ”did not apply any filter to the collected repositories. This supports the
generalizability of our results.” The authors also consider generalization beyond Java, saying
“our results are more likely to be applied to a language that does not provide such a construct
(e.g. PHP and JavaScript). The empirical study of this hypothesis is future work.”
Frame Oracle: Implicitly, all Java projects hosted on GitHub.
Sampling Strategy: The authors use convenience sampling, taking 2,814 projects that
appeared at least once in the list of the 1K most-starred projects in November 2019. Projects
were deduplicated and filtered for syntactically invalid files.
Validity: No discussion of relevant issues.
Reproducibility Artifacts: Project metadata and computed chain lengths are available.
Communication with the authors reveals that their reproduction package is not available.

3.3 MSR 2019: Style analyzer
Each software project seems to develop its own formatting conventions. Markotsev et al. [16]
demonstrate that an unsupervised learning algorithm can automate project-specific code
formatting. They reproduce styles with a high degree of precision for a set of repositories.
Population Hypothesis: The authors speak of “real projects” and their artifact support
JavaScript, so we assume an expectation that the projects “developed” in a sense similar
to [18].
Frame Oracle: All developed JavaScript projects hosted on GitHub.
Sampling Strategy: Convenience sampling yielded 19 JavaScript projects with high star
counts.
Validity: Authors manually inspected projects in the selection.
Reproducibility Artifacts: A GitHub repository containing the tool and a file with project
URLs along with their head and base commits is provided. Contents of repositories are not
included. Run scripts did not run out of the box.

3.4 MSR 2020: Code smells
Code smells are programming idioms correlated with correctness or maintenance issues.
Jebnoun et al. [9] contrast code smells in projects related to deep learning and general purpose
software. Their claim is that for large and small projects there is a statistical difference in
the occurrence of code smells, whereas medium sized projects are indistinguishable.
Population Hypothesis: The paper focuses on two populations: projects related to deep
learning, and general purpose software. For pragmatic reasons, they focus on Python as it is
popular for machine learning.
Frame Oracle: Python projects with keywords indicating machine learning, discarding
tutorials. Furthermore, the authors “also carefully select popular and mature DL projects
from them by employing maturity and popularity metrics (e.g., issue count, commit count,
contributor count, fork count, stars).”

P. Maj, S. Muroya, K. Siek, L. Di Grazia, and J. Vitek 27:7

Sampling Strategy: A staged strategy was employed. The authors relied on judgment
sampling to manually select 59 deep learning projects. For general purpose projects, they
used a top-starred list of 106 Python projects from [3] and randomly sampled 59 projects.
Projects were further clustered into small (≤ 4, 000), medium, and large (≥ 15, 000) based
on size.
Validity: No issues were discussed.
Reproducibility Artifacts: A listing of the 59 deep learning projects is provided.

3.5 Summary and discussion
The papers we have reviewed do not explicitly talk about any of the four points in our
protocol, in all cases we had to reverse engineer (or guess) some of them. This suggests that
our proposal would improve the generalizability of the research.

While the mentioned research projects were done with care, there were challenges repro-
ducing them out of the box. Common sources of reproducibility failures that occur in the
papers we have reviewed are:

Missing descriptions: Failure to specify either one of: population hypothesis, frame
oracle or sampling strategy. Reproduction is fraught with perils and an apple-to-apple
comparison between papers is difficult. This affects [21, 20, 16, 9] as their descriptions
are open to interpretation.
Missing projects: Even with a list of URLs, the corresponding projects may vanish at any
time (e.g., deleted or made private). Reproductions are partial at best, we have seen a
project disappear while being downloaded. This affects [21, 20, 16, 9].
Fading stars: Stars are volatile. [20] observed close to 3,000 projects in the top 1K
during a period of two months. Without a history of star attribution and a timestamp,
reconstructing the star listings is not possible. Stars volatility also caused problems
for [9].
Shifting contents: The contents of a project change with new commits. To reconstruct
the data, ids of the last observed commit must be specified. Even that is not foolproof as
Git histories can be updated destructively. This affects [21, 20, 9].
Language attribution: Projects contain code in many languages. For reproduction
attribution must be specified. While delegating to, e.g. GitHub, is reasonable, one should
be aware that GitHub has changed their attribution algorithm several times. Double
counting a project is sometimes valid. This affects [21, 20, 16].
Deterministic replay: Non-determinism must be limited. Random sampling seeds should
be specified. This affects [16].

4 Mapping the GitHub landscape

The meta-study of Table 1 highlights the dominant position of GitHub as a data source in
large-scale code analysis studies. The size of GitHub is such that it is necessary to resort to
sampling to yield manageable datasets. As shown in the previous section, authors often look
for some notion of “developed” projects, that is, they want projects that contains code of
some quality.

We claimed that convenience sampling using stars as a proxy for various other character-
istics of “real-world” software is flawed. While this may sound plausible to some readers,
it should be backed up with data. Given the size of GitHub, this section uses sampling to
answer the following questions: Are starred projects a representative sample of all projects?

ECOOP 2024

27:8 Designing Reproducible Large-Scale Code Analysis Experiments

and Are starred projects a representative sample of developed projects? where what it means
for a project to be developed is purposefully left open as there is no agreement on a precise
definition of the term.

Since the later parts of this paper require Java, Python and JavaScript, we acquire
samples of these three ecosystems. We use CodeDJ to do this. It is an open source project
that allows users to create a dedicated input project database and ensure reproducibility of
queries.

We used random sampling over the entire GHTorrent dataset to select which projects to
acquire in each of the languages of interest. The number of downloaded projects is somewhat
arbitrary as it is based on available hardware during the acquisition phase. The datastore
has 1,111,950 Java projects, 216,602 Python projects and 1,259,856 JavaScript projects. To
give an idea of the scale, our Java dataset accounts for 20% of all non-forked GitHub Java
projects. To get a manageable size, we down-sample further, randomly selecting 1Mio Java
and JavaScript projects, and 200K Python projects.

4.1 Attributes
With CodeDJ, it is easy to write queries that compute project attributes. For this paper, we
calculate five attributes that highlight the differences between projects:

C-index: A developer handle has a C-index of n if that developer was party to at least
n commits to n projects (i.e. n2 commits). The C-index of a project is the highest such
number across developers. This measures developer expertise.
Age: The age of a project is the number of days separating the first commit and the
most recent commit. This correlates with the maturity of a project.
Devs: The count of unique developer handles in the git logs; includes both the author of
a code change and the committer of that change. Devs approximates the size of a team,
as some individuals may have more than one handle this is an upper bound.
Locs: The total number of lines in files that are recognized as code, in any language,
and appear in the head of the default branch.
Versions: A version is implicitly created for each commit touching a file, be that for
creation, deletion or update. This counts versions in the entire project’s history including
branches. Versions measure the activity in a project.

While we make no claims that these attributes suffice to fully describe a software project, we
have found them to be an effective summary in many interesting dimensions.

4.2 Stars v. All
What do these attributes tell us about the overall population and about starred projects?
If starred projects were representative of the entire population, they would share the same
statistical distribution.

Fig. 1 is a histogram of each attribute; the x-axis is log scaled values in the unit of each
attribute, the y-axis is the proportion of projects normalized for the maximum height. Grey
denotes the whole population, red and blue denote the 1K most starred projects written
in Java and Python respectively. The black, red and blue bars denote the median of their
respective populations.

Consider the grey bars for the whole population, when comparing Java and Python, we
see the same general shapes. The C-index is low, with a median of 2 for Java and Python.
This means that half of the projects hosted on GitHub, have developers who have made at
most two commits. The median age of Java projects is 7 days, while Python projects trend

P. Maj, S. Muroya, K. Siek, L. Di Grazia, and J. Vitek 27:9

Figure 1 Comparing datasets.

slightly older, 46 days. The median number of developers for both languages is 2. As for
median lines of code, Java project are slightly larger than Python, 655 compared to 448. The
median number of commits (versions) is 16 for both languages. Overall, this confirms that
most projects are small, short-lived and created by relative newcomers.

The top 1K starred projects have a very different make up. Visually it is clear from the
fact that every distribution is shifted right. Starred projects are larger, older, with more
experienced developers. While there are slight differences between languages, the overall
picture is consistent.

Consider for instance, the C-index and age attributes. While many starred projects are
team efforts, a significant number of projects have few contributors. Their C-index is high,
with median of 19 for Java and 15.5 for Python, suggesting that experienced developers tend
to contribute to popular repositories. The median age projects is more surprising with 2,581
and 1,440 days. Manual inspections suggest that many starred projects are indeed long lived
but also have been inactive for years. Projects rarely “loose” stars, so if a project gets to the
top there is a chance it will stay there long past its useful lifetime.

The answer to our first question is clearly negative. Starred projects are not representative
of the overall population. This is not necessarily a bad thing, as folklore suggests that most
of GitHub is uninteresting. Perhaps it is the case that starred projects are more “interesting.”

4.3 Stars v. Developed
Researchers often look for engineered [18, 22] or developed projects – informally, projects
created with some care – alas there is little agreement on a precise definition.

Slightly easier, perhaps, is to settle on what we do not want, the projects that are
uninteresting, one that are clearly of little value for any reasonable research question.
Moreover, one could hope that the complement of uninteresting projects are the projects
researchers look for. Let us define a project as uninteresting if it has less than 100 lines of

ECOOP 2024

27:10 Designing Reproducible Large-Scale Code Analysis Experiments

code, fewer than 7 days old, and fewer than 10 commits. When this definition is used to
filter projects, this rather low bar manages to eliminate 71% of Java and 55% of Python
projects. For the purpose of this discussion we term the remaining projects are developed or
interesting. It would be nifty if stars were a proxy for filtering out uninteresting projects.

Fig. 2 shows the distribution of the whole population in Grey (in the same way as in
Fig. 1), the interesting projects in Black and the top 1K starred projects in Red. Clearly, the
shape of the Black and Red distributions do not align suggesting that stars do not represent
interesting projects.

Manual inspection of the starred project highlights their main issue – stars are extrinsic
properties without a direct connection to any attributes of a project. Unlike our computed
attributes, stars grow monotonically. Their meaning is unclear as users award them for
various reasons including humor and shock value. Some projects earned stars because of a joke
not fit for this audience (e.g. github.com/dickrnn/dickrnn.github.io), or have dared
users to star junk (github.com/gaopu/java). Stars do not measure quality or usefulness of
repositories.

To further illustrate the limitation of stars as a filter, we take, for each attribute, the 20
projects with the lowest score for that attribute. Table 2 shows a manual classification of
these projects. None of these projects is useful: externals lack histories, widgets are small
and biased by their application domain, babies are too small to yield much insights, and the
remaining ones only have code snippets.

Versions

Locs

Devs

Age

C−Index

1 10 100 1k 10k 100k 1m 10m

Entire Dataset
Interesting
Top Stars

Figure 2 Comparing developed and starred projects.

github.com/dickrnn/dickrnn.github.io
github.com/gaopu/java

P. Maj, S. Muroya, K. Siek, L. Di Grazia, and J. Vitek 27:11

Table 2 Categorizing 200 starred projects.

Category Java Python Description
Externals 9% 5% Infrequent synchronization with another repository.

Widgets 43% 0% Tiny projects with little activity, popular UI widgets or plugins.
Docs 4% 15% Interview questions, course materials, games, knitting patterns.

Tutorials 17% 9% Educational materials, tutorials and example applications.
Babies 16% 32% Valid but extremely small projects with little activity.

Artifacts 0% 21% Research artifacts developed elsewhere and deposited for sharing.
Deprecates 1% 5% Deprecated projects, no code on the main branch.

The answer to our second question is also negative. Starred projects are not representative
of the interesting ones. To summarize what we learned about stars, they capture extrinsic
characteristics of GitHub projects and are at best an indirect and noisy proxy for a robust
frame oracle.

4.4 How to select projects?
What to use for project selection if not stars? We argue that selection must be based on
intrinsic features – measurable attributes of a project’s contents. While one may use machine
learning [18, 22] to build classifiers, in this paper we will use our five computed attributes
(we leave machine learning as an interesting area of future work).

0.00

0.25

0.50

0.75

1.00

1 10 100 1k 10k 100k 1m

%

Locs
Versions

Age
C-Index

Devs
Stars

Figure 3 Cumulative Density Functions.

Fig. 3 is the cumulative density function of the various attributes for Java (the shapes of
the curves for Python are similar). The interpretation of each line is what percentage of the
dataset is filtered for a particular attribute value. Project selection can be performed by a
combination of attributes with cutoffs. We do not argue for a particular formula; researchers
must make their own choices in this respect.

For instance, if one were to use 10 days of age as a cutoff, then 52% of the dataset would
be filtered out. Whereas picking a 10 star cutoff, filters out 98% of projects.3

3 The discontinuity of C-Index at 65 is odd. After manual investigation, we found that there is a single
developer with that C-index, it turns out that the “developer” is a bot doing automated updates.

ECOOP 2024

27:12 Designing Reproducible Large-Scale Code Analysis Experiments

4.5 Validity of our dataset
We noticed an oddity around project ages in our dataset. Experience with GitHub trained
us to expect the unexpected. Our investigation started with a plot of creation dates.

Fig. 4 shows the log scaled counts of new projects over time. While there is a steady
progression in the count of projects created each year, we see a significant drop in 2015 and
a plateau until 2019.

Figure 4 Creation date.

We reviewed our pipeline to no avail. We use GHTorrent to acquire all available URLs.
Then, we randomly sample projects from that list. We validated both acquisition and
sampling. This leaves us with two hypotheses. First is a consistent flaw in the CodeDJ
downloader causing some projects to fail to download. 17% URLs obtained from GHTorrent
point to dead projects, but there is no apparent bias. Second some projects could be missing
in GHTorrent.

Another issue showed up on inspection, JavaScript project ages are significantly higher
than those of other languages. We found that GitHub timestamps are frequently inconsistent.
Why should JavaScript be more affected? Until an explanation can be found, we removed
JavaScript from the overall comparison and use JavaScript projects in the reproduction with
extreme care.

5 Reproducible large-scale analysis experiment design

This paper proposes that researchers conducting experiments over large-scale software
repositories follow a specific experimental design methodology to ensure their work can
be reproduced and increase chances that their results generalize as expected. While the
mechanics of reproducibility of the actual experiment itself vary, the setup of the experiment
is a common problem. The proposed methodology has five steps, we encourage researchers
to document each of these steps explicitly.

5.1 Population hypothesis
Formulating a population hypothesis lets researchers stake a claim about the applicability
of their work. This represents the population to which the result of an experiment should
generalize to. The statement of that hypothesis can be brief and appeal to intuition, the
other parts of the description flesh out the details.

P. Maj, S. Muroya, K. Siek, L. Di Grazia, and J. Vitek 27:13

Ideally, we would like our results to be as broadly applicable as possible, but pragmatically
designing experiments that back up overly broad claims is difficult. Some populations of
interest are difficult to sample, for instance “commercial software” is a relatively simple
and unambiguous description but one that we typically cannot sample from as most of the
commercial software is not in the public domain. Other populations can be difficult to
identify. Imagine a study of the challenges linked to retraining imperative programmers to
use functional idioms. Finding code written by such developers can be done manually but
is difficult to automate. It is often easier to describe a population by intrinsic features of
projects such as the language used to write the code or some estimate of the size of the
project.

5.2 Frame oracle
A frame oracle is a, possibly noisy, deterministic algorithm for deciding if a project belongs
to the population of interest. The oracle is our best approximation of the population of
interest. An executable and reproducible oracle allows to compare different papers with the
same selection. The description of the oracle should specify the data source along with any
information required to acquire projects. The procedure for evaluating a project should be
clear and based on intrinsic attributes. A paper should at least have a short description of
the oracle, full details should be given in the reproduction artifact.

5.3 Sampling strategy
The literature has an abundant advice on sampling (see e.g. [12]). Briefly, a sampling
strategy picks the type of sampling (probabilistic or non-probabilistic) and describes the
steps used to obtain a sample. The sampling implementation is expected to be found in the
reproduction artifact.

Many works use convenience sampling as it is simpler, cheaper and less time consuming.
A better alternative is some form of probabilistic sampling as it is more likely to yield a
representative sample. Probabilistic sampling can be staged if the structure of the population
is more complex. The simplest approach is random sampling where each element has the same
chance of being picked. We often have to resort to stratified sampling when the population
is divided into subgroups of different sizes. Typically we sample without replacement as we
do not want to pick the same project multiple times.

5.4 Validity
The validity section argues, when there are reasons for doubt, why using the frame oracle
and the sample strategy results in representative samples of the population of interest. This
section should address potential sources of bias and attempts by the authors to control for
them. This section also should address any foreseen challenges to reproducibility and offer
means to mitigate them.

5.5 Reproducibility artifacts
Finally, we advocate to link the paper to a reproduction artifact that contains code and data
to support experimental repeatability and reanalysis.

Section 3 listed issues with reproducibility. In some cases, the authors did not give a
precise description of the steps needed for reproduction. Following our proposed methodology
along with a reproduction artifact will greatly help.

ECOOP 2024

27:14 Designing Reproducible Large-Scale Code Analysis Experiments

The second category of issues are more pragmatic, it is difficult to repeat the analysis
of a paper because some aspect of the data used is not available. We suggest that research
infrastructures should support this task.

An example of an infrastructure is CodeDJ which is both a continuously updated datastore
and a database that can be queried by a DSL. We adopted it for our work and illustrate how
it helps with reproducibility. The implementation of a frame oracle and sampling strategy
can be combined into a single expression. Fig. 5 shows a query which starts by filtering out
projects containing fewer than 80% JavaScript code, then it uses pre-computed attributes
Locs, Age and Devs to filter further. The last stage of filtering involves computing an
attribute on the fly, here we sum up the commits in the project, before performing random
sampling.

database.projects().filter(|p| {
p.language_composition().map_or(false, |langs| {

langs.into_iter().any(|(lang, rate)| { lang == JavaScript && rate >= 80 })
})

})
.filter_by(AtLeast(Locs, 5000))
.filter_by(AtLeast(Age, Duration::from_months(12)))
.filter_by(AtLeast(Devs, 2))
.filter_by(AtLeast(Count(Commits), 100))
.sample(Random(30, SEED)))

Figure 5 Project selection with CodeDJ.

CodeDJ is split between a persistent datastore in which every data item is timestamped,
and an ephemeral database used to service queries. A reproducible query is a Rust crate
archived in a git repository associated to the datastore. Running the query produces a receipt
which is the hash of a commit automatically added to the archive repository. The receipt
can be used to share the query (exactly as executed) and its results (exactly as produced). It
can be used to retrieve the Rust crate and re-execute the code. Code re-execution is helped
by the fact that queries are deterministic and the crate contains a list of all dependencies,
a timestamp, and all random seeds. When a query with an embedded date is executed,
CodeDJ accesses the exact state of the datastore at the specified date. Since CodeDJ stores
the contents of files, entire experiments can be fully reproduced.

6 Reproductions

We illustrate the use of the proposed methodology by revisiting the papers we discussed
in section 3. For each paper, we attempt reproduction where we vary the input. The
original papers used stars in their selection, we will explore different inputs based on intrinsic
attributes.

If the results of the reproduction match the original results, then it suggests that stars
were an appropriate filter. If the reproduction departs, this suggests that there may be need
to conduct further experiments to be confident in the results.

For each paper, we picked a subset of the scientific claims to fit the reproduction in the
available space. We use our proposed methodology to describe the details of the reproduction.

One may wonder how we selected the paper to reproduce. Our criteria were (1) papers
that used automated techniques to analyze properties of the code contained in Github
projects, (2) their population of interest was a large subset of Github, (3) a working artifact
could be located, and (4) the input could be changed with ease. We did not cherry-pick as
even positive results would be interesting. Our choice was limited by the fact that many

P. Maj, S. Muroya, K. Siek, L. Di Grazia, and J. Vitek 27:15

Figure 6 Proportion of projects without code, data or documentation.

papers either did not have artifacts or that they were not working anymore. Furthermore,
some papers had hardwired they selection of projects by, for example, preprocessing the
input data and omitting to include the tooling to repeat that processing. Given more time,
more works could be reproduced.

6.1 Reproduction: What is software

This reproduction aims to validate two findings of [21]: (C1) 4% of repositories do not contain
code, data and documentation; (C2) 2% of repositories do not contain documentation.

Population Hypothesis: The universe of software projects.

Frame Oracle: To understand the impact of project selection we consider two oracles. O1
accepts any project hosted on GitHub. O2 removes uninteresting projects (as defined above).

Sampling Strategy: We report on three samples. S0 is a convenience sample of starred
following [21]. S1 and S2 are random samples without replacement from O1 and O2
respectively, stratified by language and deduplicated.

Validity: Our reproduction differs in the number of languages (3 v. 25) and by categorizing
files based on the file path alone. We tested stability of our results with multiple samples of
varying sizes and manually inspected the produced labels.

Reproduction Artifact: Our artifact contains a CodeDJ receipt for this query.

6.1.1 Results

Fig. 6 shows results for claims C1 and C2. Compare the percentages between S0 (original)
and S1 (target population). Statistical analysis is not required to see that the difference is
significant. The sample S2 (without uninteresting projects) is there to illustrate the impact
of slightly more developed population, but even these are still quite different.

Would the results agree if we included more languages? The three languages we down-
loaded account for most of GitHub, it is conceivable that other languages could affect results,
but that would just push the generalizability issue somewhere else as the claims would
become language-specific.

ECOOP 2024

27:16 Designing Reproducible Large-Scale Code Analysis Experiments

6.2 Reproduction: Method chaining
Nakamura et al. [20] claim that 50% of projects in 2018 had method chains longer than 7
while in 2010 that number was 42%. They state that “chains of length 8 are unlikely to
be composed by programmers who tend to avoid method chaining, this result is another
supportive evidence for the widespread use of method chaining.”
Population Hypothesis: The universe of real-world Java programs.
Frame Oracle: We accept any Java project hosted on GitHub and delegate to Github for
language attribution.
Sampling Strategy: Stratified sampling to randomly select projects with commits in 2010
and 2018.
Validity: To reproduce the original results, we performed stratified sampling to get top
starred projects active in the target years. The authors used a different sample of top stars.
The original paper had different sample sizes for each year, but those are not specified. We
fix the sample size to 250. The authors could not locate the code of their chain detector, so
we use our own implementation.
Reproduction Artifact: Our artifact contains a CodeDJ receipt for this query.

6.2.1 Results
Fig. 7 shows the difference in proportion of projects at various chain lengths. The solid
line uses stars, colors represent different random samples. For instance, if we pick chains of
length 8, the number used by [20], the difference is a 13% increase in the number of projects
between 2011 and 2018. The differences for our random samples are -2%, 0.6% and 0.7%.
In other words, the samples from this particular population do not seem to show the effect
expected by the authors. We surmise that some notion of developed project may show more
favorable results, but without more guidance in the population hypothesis it is hard to guess
which to pick.

Figure 7 Difference in chain lengths.

P. Maj, S. Muroya, K. Siek, L. Di Grazia, and J. Vitek 27:17

6.3 Reproduction: Style analyzer
Markovtsev et al. [16] builds a model of the style of a repository and apply this model
on a held-out part of that repository to produce corrections. Their experiment uses 19
top-starred JavaScript project to gauge the precision with which the tool flags formatting
discrepancies and the relationship between this precision and the size of the project. They
report a precision of 94% (average, weighed by project size) and better overall performance
for large projects and projects with better style guidelines.
Population Hypothesis: Developed JavaScript projects.
Frame Oracle: JavaScript projects with at least 80% JavaScript code, Loc ≥ 5000, Age
≥ 12 ∗ 31 and Devs ≥ 2.
Sampling Strategy: We randomly select 10 sets of 30 projects. This is more projects than
the original sample to account for errors in processing. After processing is finished, following
the original paper, we randomly select 19 projects out of the pool of successfully processed
projects.
Validity: Given that the author’s artifact lacks a configuration, we used the default one.
This increases project size, as compared to the published numbers, by 38% per project (up
to a maximum of 154%) and causes precision to diverge by 2.2% on average, and up to 7.9%.

The tool failed to process 4 projects: freecodecamp and atom due to errors in unicode
processing, express due to a programming bug, and 30-seconds-of-code due to bad file
identification. Three of the missing projects were located close to the median in terms of
precision, prediction rate, and project size in the original paper, while axios was in the lower
quartile for sample count.

Style analyzer analyzes each project at two points in its history specified by a base commit
and a head commit. The base commit is a point in the past which the tool checks out to
learn the project’s formatting style. The head commit is a more recent point used to evaluate
the model and calculate precision. The original paper provides head and base commits for
each project in their experiment, but does not specify the method of selecting these commits.
We pick the current head of the default branch as the head commit. For base commit we pick
one that lies at an offset equal to 10% of the number of all commits in the default branch
from the head commit. This retrieves different commits than the original paper, which causes
a 3% median change in precision (up to 17%– telescope) and a median project size increase
of 76%, and up to 311% (reveal.js).
Reproduction Artifact: Datasets, receipts from submitted queries, style analyzer’s reports
and scripts for the entire experimental pipeline are included in the artifact.

6.3.1 Results
We recreate a plot of the effect of the number of items in the training set on precision from
the original paper in Fig. 8. The training set consists of snippets created around tokens/AST
nodes relevant to formatting (whitespace, indentation, quotes, zero-length gaps). We plot the
selection from the original paper along three selections from our interesting project frames.
In addition, we plot the distributions of precision in each selection in

In Fig. 9, we compare the precision scores in each sample with the selection used in the
original paper using a Mann-Whitney U test to show which samples performed statistically
differently from the original. The scatter plots show a different grouping of results from
the original paper. The groupings in the scatter plot visibly differ between selections. The
distribution comparison shows that our selections generate significantly smaller training

ECOOP 2024

27:18 Designing Reproducible Large-Scale Code Analysis Experiments

Figure 8 Relationship between label groups and precision.

Figure 9 Comparing label group count and precision.

sets in all cases and yield lower precision. In addition, 3 out of the 10 interesting project
selections produced significantly lower precision, with the remainder producing a statistically
equivalent distribution.

Overall, we see our selections yielding precision between 0.9 and 0.95 (the paper sets a
precision of 0.95 as a benchmark for success). We also do not see a clear relationship between
the number of label groups and precision, such as the one the authors note in the original
paper.

6.4 Reproduction: Code smells
We seek to validate the claim of [9] that for large and small projects there is a statistical
difference in the occurrence of code smells between machine learning and most popular
Python repositories, whereas medium sized projects are indistinguishable.
Population Hypothesis: Mature Python projects in all application domains including
machine learning.

P. Maj, S. Muroya, K. Siek, L. Di Grazia, and J. Vitek 27:19

Frame Oracle: Projects with C-Index ≥ 5, or Age ≥ 180, or Locs ≥ 10, 000, or Versions
≥ 100.

Sampling Strategy: The deep learning projects were provided by the authors. Out of 59
projects, 57 were still accessible on August 2nd 2021. At download time there were 6 small,
13 medium, and 38 large deep learning projects. For the reproduction of the original results,
we used a staged strategy, first convenience sampling the top starred Python projects and
amongst those used stratified sampling to select 57 projects with a similar distribution of
sizes. To generalize the results we used quota sampling to match the size distribution.

Validity: Our reproduction uses the Locs reported by CodeDJ. The date the authors
downloaded the repositories is unknown. We use the content of the main branch of each
repository as of April 1st, 2020. The authors say “each of repositories is pre-processed
and prepared for code smell detection”, however details are missing. We used the default
thresholds of their tool.

Reproduction Artifact: A CodeDJ receipt is included in our reproduction package along
with code to run the experiment.

6.4.1 Results

Fig. 10 contrasts the distribution of code smells for deep learning projects, top starred
projects, and three random samples. Computing the p-values with the non-parametric
Mann-Whitney Wilcox shows that while we were able to reproduce the statistically significant
results for the small projects, we disagree on the large most popular projects with the original.
The disagreement is even greater in the random samples where no large projects and only
one small project is statistically different. Generalizability of the results is thus questionable.

0.03
0.24

0.22

0.57
0.29

0.25

0.04
1

0.06

1
1

0.07

1

10

100

1k

10k

100k

Deep Learning Top Stars Samples

sm

el
ls

small
medium
large

Figure 10 Comparing Smells. Numbers are p-Values indicating a significance of the difference
from the deep learning projects. Statistically significant different p-Values (cutoff at 0.05) are shown
in color, insignificant ones are in gray.

ECOOP 2024

27:20 Designing Reproducible Large-Scale Code Analysis Experiments

7 Collaborative Reproduction

We perform one last reproduction in which we obtain the assistance of the study’s authors
to validate whether stars are a good input selection strategy. For this reproduction we
selected a distinguished paper from the Foundations of Software Engineering conference
(2020), “The Evolution of Type Annotations in Python” [7]. The paper has a reusable artifact
for repetition of the original results. Our reproduction only required to change the list of
GitHub URLs used as input in the analysis. The authors helpfully allowed us to run the
rather computationally intensive workload on their machine.

The original study reported the following protocol for input selection. “We group projects
by creation date, considering projects created in the years 2010 to 2019, into ten groups. We
sort each group by number of stars and select the top-1000 per group, which yields a total of
10,000 projects. The rationale for first grouping and then sampling is to avoid biasing our
study toward projects created in a particular time frame, e.g., mostly old projects. Removing
projects that we could not clone, e.g., because they became unavailable since the beginning of
our study, the total number of analyzed repositories is 9,655.”

The first research questions was related to the evolution in the number of type annotations
in projects. The main insight from the work was that “better developer training and automated
techniques for adding type annotations are needed, as most code still remains unannotated,
and they call for a better integration of gradual type checking into the development process.”

For this reproduction, we discussed input selection criteria with the authors and arrived
at the following formulation.
Population Hypothesis: Python projects in all application domains with earliest commit
date in 20154 as this was the year when early adoption of type annotations began.
Frame Oracle: Python projects whose life span is longer or equal to 7 days and that have
over 100 lines of Python code. The study authors intended their work to be representative of
most of the Python ecosystem, but closer inspection of some of the small projects suggested
that they would introduce noise. The particular cutoffs were chosen heuristically.
Sampling Strategy: Projects were grouped by year active and, for each year, a random
sample of 1200 projects was selected. The goal was to get close to a thousand usable projects
for each year. As some of the projects in our database are no longer available, the sample
size is increased heuristically.

Fig. 11 illustrates the reproduction results (and mirrors Fig. 2 in [7]). The plot on the
left shows the number of type annotations found per thousand lines of code in the projects
being looked at. The red line has the new data, the blue one is for the original study. The
y-axis is logarithmic. The two lines start at zero in 2015. Both data sets tell a similar story:
type annotations are gradually added to projects. The plot on the right shows the total
number of annotations found each year in all projects. The y-axis is in thousands. In 2021,
the original data had close to 800,000 annotation while the new data is under 250,000.

Both data sets are large. The original one contains 1,123,393 commits and the new data
set 1,535,824 – suggesting that projects are slightly larger in the randomly selected data then
in the most starred projects. In both cases, only a fraction of the repositories have types. In
the old data 668 repositories are type-annotated, whereas in the new data 1,040 projects
have at least one type. The fraction of commits that change a type annotation is small in
both cases 5.5% in the original data and 2.1% in the new data.

4 2015 is when type annotations were added to Python.

P. Maj, S. Muroya, K. Siek, L. Di Grazia, and J. Vitek 27:21

0.3

1.0

3.0

10.0

30.0

2015 2016 2017 2018 2019 2020 2021

Ty
pe

 a
nn

ot
at

io
ns

 p
er

 th
ou

sa
nd

 li
ne

s
of

 c
od

e

1

10

100

1000

2015 2016 2017 2018 2019 2020 2021

N
um

be
r o

f a
nn

ot
at

io
ns

 (i
n

th
ou

sa
nd

s)

Data

New

Original

Figure 11 Types in Python.

Overall, the reproduction verifies and, even, strengthens the conclusion of the original
paper. Five years after introduction of type annotations, their use remains rather limited.
Having said this, it is true that actual values reported are different enough to be noticeable.

8 Conclusions

Sometimes, doing it wrong is so much easier than the alternative, that we convince ourselves
that a little wrong can be right enough. Our paper is unusual. While it purports to contain a
call to arms for better experimental practices, it is just as much a record of our own journey
to that goal. What reads as criticism is really written in self-reflection. So, what can a
researcher take away from this paper? There are three ideas we would like to leave the reader
with.

Generalizability. The value of an experiment often lies as much in what it generalizes to, as
in the experiment’s outcome. We found that many researchers rely on GitHub stars to pick
representative samples of software projects, yet starred projects tend to be larger in most
dimensions than typical ones, also that they are more likely to be inactive, and that their
ranking is not a measure of intrinsic qualities of the code. Hopefully, this paper is the last
nail in that coffin. More generally, we advocate for the use of probabilistic sampling over
populations defined by intrinsic attributes of software, and also for clear and standardized
documentation of experimental design.

Reproducibility. The value of a scientific experiment also lies in our ability to reproduce
it. Carrying out reproducible experiments over large-scale software repositories is hard.
Especially when aiming to support the three reproduction modalities: repetition, as practiced
in artifact evaluation, where an artifact is re-executed to obtain identical results; reanalysis,
where the artifact or its input are modified; and independent reproduction, where the entire
experiment is re-implemented from scratch. The first modality requires faithful replay and
is best served if all data used is included with the artifact. The second, requires support
for automatically acquiring new representative samples. The third needs an unambiguous
description of all experimental steps. We advocate for reproductions artifacts that supports
the first two modes, and a detailed description of the experiment for the last.

ECOOP 2024

27:22 Designing Reproducible Large-Scale Code Analysis Experiments

Tooling. Generalizability and reproducibility, while worthy goals, represent much work, and
they are work that is orthogonal to the scientific goals of researchers. The only reasonable
answer is to provide tooling that automates acquisition of representative samples and
generation of reproduction artifacts. In this paper, we used CodeDJ and found it helpful as it
let us specify queries over attributes of the code for many projects, while also supporting
experimental repetition and reanalysis through historical queries. It has its limitations, we
found execution times to be somewhat long and doubt it will scale to the whole of GitHub.

Our vision for a brighter future is one where the community agrees on standard tools and
techniques for this kind of experiment, tools which automate the acquisition and packaging
of input datasets and the re-execution of entire experiments.

References
1 S Baltes and P Ralph. Sampling in software engineering research: a critical review and

guidelines. Empir. Softw. Eng., 27(4):94, 2022. doi:10.1007/s10664-021-10072-8.
2 H Borges and M Tulio Valente. What’s in a github star? understanding repository starring

practices in a social coding platform. Journal of Systems and Software, 2018. doi:10.1016/j.
jss.2018.09.016.

3 Z Chen et al. Understanding metric-based detectable smells in python software. Information
and Software Technology, 2018. doi:10.1016/j.infsof.2017.09.011.

4 V Cosentino, J Izquierdo, and J Cabot. Findings from GitHub: Methods, datasets and
limitations. In Mining Software Repositories (MSR), 2016. doi:10.1145/2901739.2901776.

5 R Dyer, H Nguyen, H Rajan, and T Nguyen. Boa: A language and infrastructure for analyzing
ultra-large-scale software repositories. In Int. Conf. on Software Engineering (ICSE), 2013.
doi:10.5555/2486788.2486844.

6 G Gousios and D Spinellis. GHTorrent: GitHub’s data from a firehose. In Mining Software
Repositories (MSR), 2012. doi:10.1109/MSR.2012.6224294.

7 L Di Grazia and M Pradel. The evolution of type annotations in python: An empirical study.
In European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2022. doi:10.1145/3540250.3549114.

8 J Han et al. Characterization and prediction of popular projects on GitHub. In Computer
Software and Applications Conf. (COMPSAC), 2019. doi:10.1109/COMPSAC.2019.00013.

9 H Jebnoun et al. The scent of deep learning code. In Mining Software Repositories (MSR),
2020. doi:10.1145/3379597.3387479.

10 E Kalliamvakou et al. The promises and perils of mining GitHub. In Mining Software
Repositories (MSR), 2014. doi:10.1145/2597073.2597074.

11 S Krishnamurthi and J Vitek. The real software crisis: repeatability as a core value. Commun.
ACM, 58(3), 2015.

12 S Lohr. Sampling: Design and Analysis. Cengage Learning EMEA, 2010.
13 C Lopes et al. Déjà Vu: A map of code duplicates on GitHub. Proc. ACM Program. Lang.

(OOPSLA), 2017. doi:10.1145/3133908.
14 Y Ma et al. World of code: enabling a resarch workflow for mining and analyzing the universe

of open source vcs data. Empirical Softw. Eng., 2021. doi:10.1007/s10664-020-09905-9.
15 P Maj et al. CodeDJ: Reproducible queries over large-scale software repositories. In European

Conf. on Object-Oriented Programming (ECOOP), 2021. doi:10.1145/2658987.
16 V Markovtsev et al. Style-analyzer: fixing code style inconsistencies with interpretable

unsupervised algorithms. In Mining Software Repositories (MSR), 2019. doi:10.1109/MSR.
2019.00073.

17 T Mattis, P Rein, and R Hirschfeld. Three trillion lines: Infrastructure for mining github
in the classroom. In Conf. on Art, Science & Eng. of Programming <Programming>, 2020.
doi:10.1145/3397537.3397551.

https://doi.org/10.1007/s10664-021-10072-8
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1016/j.infsof.2017.09.011
https://doi.org/10.1145/2901739.2901776
https://doi.org/10.5555/2486788.2486844
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1145/3540250.3549114
https://doi.org/10.1109/COMPSAC.2019.00013
https://doi.org/10.1145/3379597.3387479
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/3133908
https://doi.org/10.1007/s10664-020-09905-9
https://doi.org/10.1145/2658987
https://doi.org/10.1109/MSR.2019.00073
https://doi.org/10.1109/MSR.2019.00073
https://doi.org/10.1145/3397537.3397551

P. Maj, S. Muroya, K. Siek, L. Di Grazia, and J. Vitek 27:23

18 N Munaiah et al. Curating github for engineered software projects. Empirical Software
Engineering, 2017. doi:10.1007/s10664-017-9512-6.

19 M Nagappan, T Zimmermann, and C Bird. Diversity in software engineering research. In
Foundations of Software Engineering (FSE), 2013. doi:10.1145/2491411.2491415.

20 T Nakamaru et al. An empirical study of method chaining in Java. In Mining Software
Repositories (MSR), 2020. doi:10.1145/3379597.3387441.

21 R Pfeiffer. What constitutes software? In Mining Software Repositories (MSR), 2020.
doi:10.1145/3379597.3387442.

22 P Pickerill et al. Phantom: curating github for engineered software projects using time-series
clustering. Empir Software Eng, 2020. doi:10.1007/s10664-020-09825-8.

23 P Ralph. SIGSOFT empirical standards released. Softw. Eng. Notes, 46(1):19, 2021. doi:
10.1145/3437479.3437483.

24 J Vitek and T Kalibera. R3: Repeatability, reproducibility and rigor. SIGPLAN Not., 2012.
doi:10.1145/2442776.2442781.

ECOOP 2024

https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1145/3379597.3387441
https://doi.org/10.1145/3379597.3387442
https://doi.org/10.1007/s10664-020-09825-8
https://doi.org/10.1145/3437479.3437483
https://doi.org/10.1145/3437479.3437483
https://doi.org/10.1145/2442776.2442781

Static Basic Block Versioning
Olivier Melançon #

Université de Montréal, Canada

Marc Feeley # Ñ

Université de Montréal, Canada

Manuel Serrano # Ñ

Inria/UCA, Inria Sophia Méditerranée, Sophia Antipolis, France

Abstract
Basic Block Versioning (BBV) is a compilation technique for optimizing program execution. It
consists in duplicating and specializing basic blocks of code according to the execution contexts of
the blocks, up to a version limit. BBV has been used in Just-In-Time (JIT) compilers for reducing
the dynamic type checks of dynamic languages. Our work revisits the BBV technique to adapt
it to Ahead-of-Time (AOT) compilation. This Static BBV (SBBV) raises new challenges, most
importantly how to ensure the convergence of the algorithm when the specializations of the basic
blocks are not based on profiled variable values and how to select the good specialization contexts.
SBBV opens new opportunities for more precise optimizations as the compiler can explore multiple
versions and only keep those within the version limit that yield better generated code.

In this paper, we present the main SBBV algorithm and its use to optimize the dynamic type
checks, array bound checks, and mixed-type arithmetic operators often found in dynamic languages.
We have implemented SBBV in two AOT compilers for the Scheme programming language that we
have used to evaluate the technique’s effectiveness. On a suite of benchmarks, we have observed that
even with a low limit of 2 versions, SBBV greatly reduces the number of dynamic type tests (by
54% and 62% on average) and accelerates the execution time (by about 10% on average). Previous
work has needed a higher version limit to achieve a similar level of optimization. We also observe a
small impact on compilation time and code size (a decrease in some cases).

2012 ACM Subject Classification Software and its engineering → Just-in-time compilers; Software
and its engineering → Source code generation; Software and its engineering → Object oriented
languages; Software and its engineering → Functional languages

Keywords and phrases Compiler, Ahead-of-Time Compilation, Optimization, Dynamic Languages

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.28

1 Introduction

Optimizing compilers perform various analyses to discover properties of the program that
are preconditions for performing optimizations. In a Just-In-Time (JIT) compiler, the cost
of these analyses and optimizations is a critical issue as the time they take becomes part of
the program’s execution time. The use of expensive analyses and optimizations incur a long
warm-up where the first part of a program’s execution is sluggish and the program may even
terminate before it has reached an optimization steady state.

Basic Block Versioning (BBV) is an optimization approach that strikes a balance between
the optimization cost and the speed of the generated code to achieve a fast warm-up time
and reasonably good execution speed. BBV has been used in JIT compilers for dynamically
typed programming languages; in research compilers for JavaScript [5, 6] and Scheme [27, 28],
and it is now used successfully in production in the official Ruby implementation [7, 8].

BBV uses the program’s Control Flow Graph (CFG) created by the compiler as a
template for creating a specialized CFG. For this, BBV traverses the CFG starting at its
entry point while keeping track of the context that contains program properties of relevance

© Olivier Melançon, Marc Feeley, and Manuel Serrano;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 28; pp. 28:1–28:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:olivier.melancon.1@umontreal.ca
https://orcid.org/0009-0007-7688-3208
mailto:feeley@iro.umontreal.ca
http://www.iro.umontreal.ca/~feeley/
https://orcid.org/0009-0005-5237-8712
mailto:Manuel.Serrano@inria.fr
http://www-sop.inria.fr/members/Manuel.Serrano/
https://orcid.org/0000-0002-5240-1610
https://doi.org/10.4230/LIPIcs.ECOOP.2024.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Static Basic Block Versioning

for specialization, such as the type of the values contained in the live variables. Each basic
block has a set of contexts. The information contained in this set is conservative: for each
possible program state when that basic block is reached during a program execution, there
must be at least one context consistent with that state. Due to its conservative nature, it is
allowed to have unreachable contexts in the set. In principle, each basic block of the original
CFG could be specialized to all contexts in its context set, including unreachable contexts.
The specialized versions of a basic block may contain optimizations that are valid in the
corresponding context, such as the elimination of type checks when the type of a value has
been determined at an earlier point in the execution.

An important concern is that multiple specialized copies of each basic block may be
created, leading to a larger amount of code (bloat) and a longer compile time, load time,
and execution time (due to the reduced performance of the instruction cache, among other
reasons). In theory the bloat can be exponential in the size of the program.

Previous works use the same approach to this issue: a cap is placed on the number of
versions for each basic block (i.e., the number of versions is no greater than N, typically a
small number like 5 or 10). In a JIT compiler the versions of a basic block are generated as
the program’s execution advances and reaches a basic block with a new context. This variant
of BBV is called lazy BBV. When a new context is encountered and this would cause the
version limit to be reached, a version specialized to that context must not be created because
it would prevent another specialization if one was needed later in the execution. Instead, a
fully generic version that covers all possible contexts is created as the last version and is
used whenever a new version would be needed. Lazy BBV is relatively simple to implement
but it has some important limitations:

Lazy BBV is a greedy algorithm. The versions that are generated before the
generic version, which are the first ones encountered at execution time, may not be the
versions that are part of hot code. For example, if some function is used both during the
initialization phase and in the main part of the program, then the specializations will be
focused on what happens in the initialization phase. This function may be hot code when
called from the main part of the program in a new context and, because the version limit
is reached, it will be using the generic version (likely the slowest of them all).
High specialization is hard to achieve reliably. The precision of the versioning
context, i.e., the number and information content of the program properties it tracks, has
a direct impact on how quickly the slow generic version is used. For example, a precise
versioning context that tracks not only the type but the range of values of an integer
loop iteration variable starting at 1 and incremented at each iteration, will be able to
create specialized versions of the first few iterations of the loop body (one version for each
specific value of the iteration variable below N). This will not work well for loops that
have a large number of iterations, because the iterations N and above will be handled by
a slow generic version of the loop body. On the other hand, a context of this precision will
work very well for programs where the loops have fewer than N iterations because BBV
will completely unroll these loops. The BBV implementer will have to choose a moderate
precision of the versioning context to avoid using the generic version too quickly, and
consequently this will miss optimizations in some cases, such as total loop unrolling.
It requires JIT compilation. The nature of a JIT compiler makes it easy to ensure
that versions for unreachable contexts are never created. Unfortunately, this entails a
warm-up time at execution, and in some use cases JIT compilation is not an option. In [5],
an eager variant of BBV suitable for an Ahead-of-Time (AOT) compiler was described
and compared to lazy BBV. That implementation of eager BBV yielded comparatively

O. Melançon, M. Feeley, and M. Serrano 28:3

poor speed and bloat because specialization is not guided by the actual need of a program
execution and parts of the CFG that are explored are not typically executed, such as
error cases and out-of-line handlers. Consequently, the specialized versions created before
the limit is reached are more likely to be irrelevant at improving execution speed.

In this paper we describe a new design for a BBV algorithm suitable for an AOT compiler
that mitigates these limitations. Our algorithm also traverses the CFG to determine which
contexts reach each basic block. The first main difference with previous work is the handling
of the version limit. When a new context is encountered and this would cause the version
limit to be exceeded, the algorithm heuristically chooses a pair of contexts reached for that
basic block and replaces them by a merged context that is more conservative than the
contexts in the pair (in other words, a more general context). The algorithm continues
traversing the CFG until a fixed-point is reached, i.e., no new versions need to be created.
The use of context merging allows contexts to be very precise at first, and it is the algorithm
that reduces the precision as needed to keep the number of versions within the limit. The
second main difference with previous work is the refinement of the notion of types to integer
intervals to allow the BBV optimization to remove integer arithmetic overflow checks and
array indexing bound checks.

In the next section, we present our algorithm and discuss its termination. In Section 3
we extend the algorithm with more precise contexts. The implementation in two mature
compilers is explained and evaluated in Section 4. Related work is given in Section 5.

2 The Static BBV Algorithm

In this section we present the Static BBV (SBBV) algorithm. We will start with an overview
by illustrating the algorithm’s behavior using the traditional find function that many
dynamic and functional languages provide.

2.1 SBBV by Example
The find function takes a predicate and a list of values and it returns the first element
of the list that satisfies the predicate or false if no such element is found. In the Scheme
programming language [17], which we use throughout this paper, it can be defined as:

1 (define (find p x) ;; p is the predicate and x is the list to search
2 (if (pair? x) ;; is the list non−empty?
3 (if (p (car x)) ;; call predicate on the first element
4 (car x) ;; return it if it satisfies the predicate
5 (find p (cdr x))) ;; otherwise, continue searching the rest of the list
6 #f)) ;; return false when no element in the list satisfies the predicate

The safety of this code is guaranteed by verifying the validity of the arguments of the
primitive operations at run time. In this example, the primitive operations for which a type
verification is needed are the car and cdr accessors (lines 3-5) and the function invocation
of the predicate (line 3). In safe mode, a Scheme compiler adds the required dynamic checks
to the code, making the possible points of failed safety checks explicit:

1 (define (find p x)
2 (if (pair? x)
3 (if ((if (procedure? p) p (fail)) (if (pair? x) (car x) (fail)))
4 (if (pair? x) (car x) (fail))
5 (find p (if (pair? x) (cdr x) (fail))))
6 #f))

Here we use calls to the fail function to indicate cases where execution cannot continue
due to a failed verification. The fail function is special in that it never returns.

ECOOP 2024

28:4 Static Basic Block Versioning

One might expect a smart compiler, such as one implementing occurrence typing [32], to
discover that the type tests on x are redundant, but let us assume that no such optimization
is applied. This is done for illustrative purpose and because one of our objectives is to show
that SBBV subsumes other optimization techniques, such as occurrence typing.

The unoptimized CFG of find is displayed in Figure 1a. SBBV will produce an optimized
version of that CFG with fewer dynamic checks. For that, it propagates the information
about variables in order to produce specialized versions of the basic blocks. For instance,
block #12 (Figure 1a) checks that the end of the list is not yet reached by testing if x is a
pair. In the positive branch, that is the path starting at block #4, it is known to be a pair
and no further type tests are needed to ensure the correct execution until an assignment to x
occurs (i.e., the other tests that x is a pair are redundant).

The CFG produced by SBBV is shown in Figure 1b. We observe that SBBV has isolated
the first iteration of the loop of the find function and the other iterations are handled by
the loop formed by the subgraph { #23, #25, #27, #29, #31, #32 }. In that loop the type of
p is never tested because it has been tested in the first iteration before entering the loop
handling the other iterations, and the argument x is only tested once per iteration, which is
a necessary part of the loop termination logic. We also observe that for this simple example,
SBBV has produced an optimal CFG in the sense that in a dynamic context with no global
knowledge about the variable types and the data structure types, it executes the minimum
number of dynamic checks required to ensure a safe execution. In Section 4.2 we evaluate
the number of type tests SBBV is able to remove on more realistic programs.

In the rest of this section, we present and explain the algorithm that transforms the
graph of Figure 1a into that of Figure 1b.

2.2 The Algorithm
SBBV specializes a CFG, which might either denote the whole program to be compiled or
only a fragment of it. For instance, it can be decided to use SBBV for specializing each
function in isolation or to specialize the whole program at a time. The main function of the
algorithm (Algorithm 1) takes a basic block to specialize and the initial context used for that
specialization as parameters. The data structures it uses are presented in Figure 2. A context
is a mapping of variable names to value information. In this section these mappings associate
variables to types. We will see in Section 3.2 that contexts can contain more precise type
information. The algorithm specializes each instruction of the basic block and it recursively
specializes the blocks that follow the basic block currently under specialization.

The algorithm performs a breadth-first traversal of the CFG. For that, it uses a work queue
where it pushes the basic blocks and contexts that need further specializations. Specializing
a block may cause the algorithm to specialize new blocks. For instance, when the algorithm
scans the block #12 of Figure 1a, it discovers that in the positive branch the variable x is
known to be a pair and then, it pushes onto the work queue the demand of a new specialization
of the block #4 for the context { x 7→ pair }.

If the block extracted from the queue has not been merged (we explain in a moment what
it means for a block to be merged), then it is specialized (line 10). This, in turn, can add
new pending specializations to the queue. The algorithm proceeds until the queue is empty.

To ensure the convergence of the algorithm, it is enough to ensure that the function
BlockNewVersion (Algorithm 2) pushes a new block onto the queue if and only if no such
block has already been specialized for the requested context as the contexts contain a finite
number of variable to value mappings. However, this convergence criteria is not enough in
practice, the code size expansion of the specialization should also be controlled. This is the

O. Melançon, M. Feeley, and M. Serrano 28:5

(a) Original unspecialized CFG. (b) Specialized CFG.

Figure 1 The original and specialized CFGs of the find function. Basic blocks have a numeric
label for easy reference. In the specialized CFG, basic blocks have the same color as the original
block they were specialized from (whose label is in square brackets). For instance, block #19 is a
specialized version of block #4 of the original CFG. In the specialized CFG, the contexts of the
specializations are displayed in blue. It can be observed that a given block can be specialized
multiple times. For instance, block #12 has been specialized twice (blocks #18 and #31) and block
#4 has been specialized twice (blocks #19 and #32). Blocks #7, #10, and #16 have no version in the
specialized CFG because they do not have a reachable specialized context. Blocks #9 and #15 have
been specialized to an unconditional jump because the ($pair? x) test is known to be true.

context: ctx, ctx0, ...
types: a list of mappings of variable to type information

basic block: bb, bb0, ...
instrs: a list of instructions
versions: a list of specialized basic blocks

specialized basic block: bs, bs0, ...
bb: the corresponding basic block
merge: a specialized basic block into which it has been merged or false
ctx: a context

Figure 2 The data structures used in the SBBV algorithm.

ECOOP 2024

28:6 Static Basic Block Versioning

Algorithm 1 Main algorithm.

1: function SBBV(bb0, ctx0) ▷ specialize a CFG starting with the block bb0
2: wq ← empty_queue ▷ create a fresh queue used for this specialization
3: bs0 ← BlockNewVersion(bb0, ctx0, wq) ▷ push the request for specialization of bb0
4: while ¬wq.isempty() do
5: bs← wq.pop() ▷ fetch the first bb of the queue
6: bb← bs.bb ▷ get the original unspecialized bb
7: if |{∀b ∈ bb.versions,¬b.merge}| > VERSION_LIMIT(bb) then
8: BlockMergeSome(bb, wq) ▷ too many specializations, merge
9: if ¬bs.merge then

10: BlockSpecialize(bs, wq) ▷ specialize the block only if not already merged
11: return bs0 ▷ return the specialization of the initial block

purpose of the test at line 7 of Algorithm 1. If the number of specialized versions of a single
block exceeds a threshold, which is a parameter of the algorithm, some specializations of
that block must be merged (see line 8).

The ancillary function BlockNewVersion is responsible for creating new blocks to be
specialized. First, it checks if the requested block already exists, in which case it returns
it. Otherwise, it creates a fresh version and pushes it onto the queue (line 9). Note that at
this stage the instructions of the block are not scanned nor specialized. Pushing the block
onto the queue is a mere request for specialization. It might be the case that at the moment
where the block will be popped from the queue that this block has been merged into a less
specialized version. This happens to prevent code size explosion.

Algorithm 2 Create or fetch a specialized version.

1: function BlockNewVersion(bb, ctx, wq)
2: if ctx ∈ bb.versions then
3: return BlockLive(bb.versions[ctx]) ▷ return the already specialized block
4: else
5: bs← new basic block ▷ create a fresh empty basic block
6: bb.versions[ctx] = bs ▷ connect the new block and the parent block
7: bs.bb = bb ▷ initialize the new block
8: bs.ctx = ctx

9: wq.push(bs) ▷ push it onto the queue for future specialization
10: return bs

The utility function BlockLive returns the first specialized version of a block that has
not been merged into a more general version.

Algorithm 3 Follow a chain of merged blocks.

1: function BlockLive(bs)
2: if bs.merge then
3: return BlockLive(bs.merge)
4: else
5: return bs

When the number of specializations of a basic block bb exceeds VERSION_LIMIT(bb),
some contexts need to be merged. Note that we express the version limit as a function of the
basic block to allow the algorithm to adapt the limit to different types of basic blocks, such as

O. Melançon, M. Feeley, and M. Serrano 28:7

those marked by the compiler front-end as probably benefiting from more specialization. This
function could simply return a constant value, as we have done in our experiments. Context
merging is done by the function BlockMergeSome (Algorithm 4). It selects two versions
not already merged (line 2), computes the union of the two corresponding contexts (line 3),
and then replaces the merged blocks in the CFG (line 14). Merging is only triggered when a
version is removed from the work queue (Algorithm 1, line 5). This allows the number of
versions to temporarily exceed the version limit. This delayed merging increases the choices
available to the selection heuristic and possibly leads to better merges.

Merging a block in the CFG entails deleting all incoming edges of the merged blocks to
redirect them to the block resulting from the merge. Any deletion of an edge may render
some specialized block unreachable from the CFG’s entry point. Similarly, an added edge
can make some previously unreachable block reachable anew. Keeping track of unreachable
blocks is required since those no longer have to be traversed and must not be considered
when selecting versions to merge in BlockMergeSome (line 2). This can be done efficiently
by maintaining an Even-Shiloach tree [14] of the CFG to help the SBBV algorithm detect
whenever the reachability of a specialized block changes. Any block made unreachable by a
merge is marked so that it is no longer considered in the merge selection and CFG traversal.

Algorithm 4 Merge blocks.

1: function BlockMergeSome(bb, wq)
2: bs1, bs2 ← Θ2{ ∀b ∈ bb.versions,¬b.merge } ▷ select two versions to merge
3: ctx← bs1.ctx

⋃
△ bs2.ctx ▷ merge the two corresponding contexts

4: bs← BlockNewVersion(bb, ctx, wq) ▷ create a new block for the merge
5: if bs1 ≡ bs then ▷ replace the merged blocks
6: BlockMergeAndReplace(bs2, bs)
7: else if bs2 ≡ bs then
8: BlockMergeAndReplace(bs1, bs)
9: else

10: BlockMergeAndReplace(bs1, bs)
11: BlockMergeAndReplace(bs2, bs)
12: function BlockMergeAndReplace(obs, mbs)
13: obs.merge ← mbs ▷ mark that obs is merged into mbs

14: replace obs with mbs in the CFG ▷ patch the CFG

The operator Θ2 selects two unmerged specializations for the block bb. For the sake of
the correctness of the algorithm, this operator might select any two versions. For instance, it
could select two random versions. Of course, a better operator would positively impact the
result of the compilation. In Section 4.3 we present the operator we have used so far.

The behavior of the merge operator
⋃
△ is independent of the SBBV algorithm but it must

produce a new context that at least encompasses the contexts of the merged blocks. The
natural solution is to use a lattice for organizing the information associated with variables
and to go up some level for each merge. We will use the following lattice:

fixnum flonum bignum pair string bool vector . . . procedure

any

⊥

ECOOP 2024

28:8 Static Basic Block Versioning

Note that a number can be a flonum (floating point numbers), a fixnum (small integers
that fit in a machine word), or a bignum (integers that don’t fit in a machine word). While
this would be a good match for JavaScript numerical types, for a full Scheme, or Python,
implementation there would also be a representation for rational and complex numbers, but
we will ignore them to simplify the discussion.

Consider the merge of two contexts mapping a variable v respectively to the types fixnum
and flonum. The merge operation should produce a context mapping v to any. In Section 3.2
we show the use of a more precise lattice for representing properties.

The last part of the SBBV algorithm is in charge of specializing blocks. It merely creates
a new block where the instructions have been specialized one by one.

Algorithm 5 Specialize a block and its instructions.

1: procedure BlockSpecialize(bs, wq)
2: bb← bs.bb
3: ctx← bs.ctx
4: for all i ∈ bb.instrs do
5: (ni, nctx) ← InsSpecialize(i, ctx, wq)
6: bs.instrs ← bs.instrs + ni

7: ctx← nctx

Specializing an instruction that implements a type test produces a new context. For
instance, when specializing the block #12 of Figure 1a, in the positive branch, the argument
x is known to be a pair. The block #4 is then specialized with a context that reflects that
information, which is then propagated to following blocks. Conversely, on the negative branch,
the argument x is known not to be a pair. This information too, is propagated to following
blocks. To handle these evolutions of the contexts, the procedure BlockSpecialize updates
the context it uses for specializing the instructions after each iteration (Algorithm 5, line 7).

The function InsSpecialize selects a specializer appropriate for the instruction.

Algorithm 6 Specialization of an instruction.

1: function InsSpecialize(i, ctx, wq)
2: if i.kind is “goto” then return InsSpecializeGoto(i, ctx, wq)
3: else if i.kind is “if” then return InsSpecializeIf(i, ctx, wq)
4: else if i.kind is ... then ...
5: else return (i, ctx)

The specialization of a goto instruction mostly consists in forwarding the specialization
context ctx to the target of the instruction. For instance, when specializing the goto in block
#1 of Figure 1a with the context {x 7→ pair, p 7→ procedure} the goto instruction triggers
the specialization of the block #12 with the same context. The instruction brings no new
knowledge about the variables types so it returns an unmodified context.

Algorithm 7 Specialization of goto instructions.

1: function InsSpecializeGoto(i, ctx, wq)
2: ni← i.dup()
3: ni.target ← BlockNewVersion(i.target, ctx, wq)
4: return (ni, ctx)

O. Melançon, M. Feeley, and M. Serrano 28:9

The specialization of an if is more involved because this is where new knowledge is
acquired and where requests for new specializations are emitted. If the test of the expression
is not a type test, the specialization behaves as the specialization of a goto instruction
(Algorithm 8, line 2). If the instruction implements a type check and if the context is such
that the test always succeeds, then the instruction is replaced with a goto instruction which
directly branches to the positive block (line 6). This is illustrated by the specialization of
the block #6 of Figure 1a into the block #23 of Figure 1b. Conversely, if the test is known to
evaluate to false, the instruction is replaced with a nop instruction.

Algorithm 8 Specialization of if instructions.

1: function InsSpecializeIf(i, ctx, wq)
2: if ¬ i.test is a typecheck then
3: ni← i.dup()
4: ni.target ← BlockNewVersion(i.target, ctx, wq)
5: return (ni, ctx)
6: else if ctx.types.isTrue(i.test) then
7: ni ← new insGoto(i.target)
8: return InsSpecialize(ni, ctx, wq)
9: else if ctx.types.isFalse(i.test) then

10: ni← new insNop()
11: return (ni, ctx)
12: else
13: ni ← i.dup()
14: ctx+ ← ctx ∪ { i.test.var 7→ i.test.type }
15: ctx− ← ctx ∪ { i.test.var 7→ ¬ i.test.type }
16: ni.target ← BlockNewVersion(i.target, ctx+, wq)
17: return (ni, ctx−)

The most interesting situation is when the result of the type test cannot be inferred from
the current context (line 12). In that case, two new contexts are created, in accordance to
the narrowing rules for that test. The positive branch of the test will be specialized with a
context reflecting the success of the type test and the context reflecting a negative result is
returned to the procedure BlockSpecialize (for instance, see the block #12 of Figure 1a
that creates the context of the block #19 of Figure 1b).

3 Improved Specializations

In Section 2 we have presented the general SBBV algorithm. We have exposed its principles
that we have illustrated with a simple type analysis that maps variable usages to types. In
this section, we show how the algorithm can be extended to specialize the blocks according
to more fine-grained information.

3.1 Variable Aliasing
The contexts used in the example in Figure 2 enables SBBV to specialize blocks according
to the type of the variables. However, it does not keep track of variable aliases, which
jeopardizes the benefit of the optimization. Compilers tend to introduce many temporaries
for evaluating expressions and if these aliases are not handled efficiently by the SBBV
specialization, what is learned about a variable’s value will not be propagated to the other

ECOOP 2024

28:10 Static Basic Block Versioning

context: ctx, ctx0, ...
types: a list of mappings of variable to type information
equiv: a list of equivalence classes

Figure 3 Extended specialization contexts with variable class equivalence.

variables containing the same value. Thankfully, handling aliases merely requires extending
the definition of the contexts and to handle the specialization of the mov instruction, which
assigns a value to a variable. The new definition of the contexts is extended into that of
Figure 3. The specialization of the mov instruction, that copies a variable into another and
that is represented by the ← operator in the CFGs, is given in Algorithm 9. For the sake of
simplicity, this extension keeps track of aliasing of read-only variables only. Assigned variables
are never treated as aliases of other variables. Also, not presented here, the specialization of
the if instruction (Algorithm 8) is modified so that it also propagates the gathered type
information to the variable’s aliases.

Algorithm 9 Specialization of mov instructions.

1: function InsSpecializeMov(i, ctx, wq)
2: nctx← ctx

3: nctx.equiv[i.target]← ∅
4: if i.source is a read-only variable then
5: nctx.equiv[i.target]← {i.source}
6: return (i, nctx)

3.2 Specialization of Arithmetic Operations
The SBBV algorithm is general-purpose and it can be applied to other properties of the
variables and values to go beyond type check removal. In this section we show how to leverage
this flexibility to also specialize the basic blocks according to fixnum integer intervals lo..hi,
where lo and hi are values in the fixnum range. This will allow the compiler to generate
code using fixnum arithmetic operators that are fast (because they directly map to machine
instructions) and removing overflow checks and bound checks.

The benefits of this extension can be illustrated on the expression (+ x 1), which adds 1
to x, a very common operation in most programs. The specific operation executed depends
on the type of x. The result could be a fixnum, a flonum, a bignum, or the operation could
raise an exception if x is not a numerical type. Moreover, the result of (+ x 1) will be a
bignum if x is maxfix, the largest fixnum value. A similar dispatch is part of the semantics
of most arithmetic operators (-, *, . . .) and comparison operators (=, <, . . .), and in the
general case, such as (+ x y), the dispatch is on the combination of types of x and y .

Optimizing compilers usually inline the handling of the most common cases, such as
all operands being fixnums, and all operands being flonums, and defer the handling of the
remaining cases to an out-of-line function. For example, the expression (+ x 1) could be
expanded by the compiler to this code:

(if ($fixnum? x)
(or ($fx+? x 1) ;; fixnum add 1 with overflow check (#f returned on overflow)

($+ x 1)) ;; call $+ function to handle bignum result case
(if ($flonum? x)

($fl+ x 1.0) ;; flonum add 1
($+ x 1))) ;; call $+ function to handle other cases including errors

O. Melançon, M. Feeley, and M. Serrano 28:11

Here we use names prefixed with ‘$’ to indicate internal operations of the system:
($fixnum? x) and ($flonum? x) test to see if x is a fixnum, or a flonum respectively.
($+ x y) is an addition function in the runtime system that handles all possible type
combinations for x and y , including those that raise an exception.
($fl+ x y) adds two flonums to give a flonum result.
($fx+? x y) adds two fixnums to give a fixnum result or false in the case of an overflow.
This operation includes an overflow check that makes it somewhat more expensive than
($fx+ x y) that does not check for overflow (note the absence of the trailing ‘?’).

When the CFG of the above expansion of (+ x 1) is processed by the SBBV algorithm
various optimizations can happen. If the context indicates that x is a fixnum then the
($fixnum? x) test in the specialized basic block is an unconditional jump to the CFG of (or
($fx+? x 1) ($+ x 1)), effectively removing the code that handles flonums, bignums, and
other types. Moreover, if it is known that x is in the interval lo..hi where hi < maxfix, then
the result of ($fx+? x 1) is in the fixnum interval lo+1..hi+1, so an overflow is impossible,
i.e., ($fx+? x 1) is necessarily a fixnum. Consequently the CFG can be specialized to ($fx+
x 1), which is a machine integer addition with no overflow check.

Other languages, such as Ruby, support similar generic arithmetic, but more importantly,
languages such as JavaScript [16] and Python that do not expose small integers require that
the compiler be able to detect when operations can be implemented as fixnum operations.
Hence, these fast implementations must be able to detect when an operation overflows and,
exactly as Scheme does, promote the number in such a case (JavaScript promotes them to
IEEE floating point numbers, Python to bignums).

To extend the analysis, we refine the definition of specialization contexts (Figure 4) and
we refine the lattice of values (Figure 5). Fixnum values are now represented with intervals.

Handling numerical values requires us to modify the specialization of the if and the
fixnum arithmetic with overflow instructions, such as $fx+?. The first one must compute
new interval approximations to be propagated in the positive and negative branches by using
interval narrowing techniques [11]. The second one must implement arithmetic operations
over intervals [23], such as xlo..xhi + ylo..yhi = (xlo + ylo)..(xhi + yhi).

Algorithm 10 Specialization of if instructions with numerical values.

1: function InsSpecializeIf(i, ctx, wq)
2: if i is an integer comparison then
3: (ctx+, ctx−) ← intervalNarrowing(i, ctx)
4: ni ← i.dup()
5: ni.target ← BlockNewVersion(i.target, ctx+, wq)
6: return (ni, ctx−)
7: else
8: as in algorithm 8

For instance, let us assume the specialization of the instruction “if ($fx> i 3)” in a
context {i 7→ minfix..10}. The new InsSpecializeIf will generate the two new contexts
{i 7→ 4..10} and {i 7→ minfix..3} for the positive and negative outcomes respectively.

The numerical operation specialization replaces a numerical operator, such as $fx+?,
whose result is known not to overflow with a faster operator that does not check for overflow,
such as $fx+. It must also implement some widening operation [10] in order to hasten the
convergence of the algorithm. Without widening the algorithm would require a number
of iterations proportional to the size of the interval representing numbers, which would be
prohibitive. The widening is handled by the

⋃
△ operator of the Algorithm 4 (see Section 2.2).

ECOOP 2024

28:12 Static Basic Block Versioning

context: ctx, ctx0, ...
types: a list of mappings of variable to type information
equiv: a list of equivalence classes
range: a list of mappings of variable to integer intervals

Figure 4 Specialization contexts extended with integer intervals.

fixnum flonum bignum pair string bool vector . . . procedure

any

interval

⊥

(a) extended lattice.

. . . 1..3 . . .

fixnum = minfix..maxfix

1..2. . . 2..3 . . .

1..1. . . 2..2 3..3 . . .

⊥

(b) interval lattice.

Figure 5 Extending the lattice used for variable values to handle integer intervals.

3.3 Vector Support

The previous section showed how to extend SBBV to approximate integer values as intervals
described with two integer bounds. While this enables the compiler to remove overflow
checks, it is insufficient to remove bound checks of vector accesses as the length of a vector is
generally unknown statically and cannot be represented with an exact integer value.

To handle vectors we introduce a refined representation of intervals. With this extension
interval bounds can be represented with integers as before, but also with the symbolic value
[[v]]−i that is equal to the length of vector v minus the integer offset i ⩾ 0. Here we assume
that the length of a vector is always a nonnegative fixnum. For instance, the interval 0..[[v]]−1
denotes all the nonnegative fixnums that are lower than the length of the vector v, in other
words, the valid indexes of vector v. The upper bound of that interval, i.e., [[v]]−1, itself
denotes a fixnum in the interval −1..maxfix−1.

We illustrate the benefit of this extension to SBBV with a variant of the find function
presented in Section 2 that operates on vectors and lists:

1 (define (findv p x)
2 (if (vector? x)
3 (let ((len (vector-length x)))
4 (let loop ((i 0))
5 (if (< i len)
6 (let ((e (vector-ref x i)))
7 (if (p e)
8 e
9 (loop (+ i 1))))

10 #f)))
11 (find p x)))

O. Melançon, M. Feeley, and M. Serrano 28:13

1 (define (findv p x)
2 (if ($vector? x)
3 (let ((len (if ($vector? x) ($vector-length x) ($fail))))
4 (let loop ((i 0))
5 (if (if (and ($fixnum? i) ($fixnum? len))
6 ($fx< i len)
7 (if (and ($flonum? i) ($flonum? len))
8 ($fl< i len)
9 ($< i len)))

10 (let ((e (if (and ($vector? x) ($fixnum? i)
11 ($fx>= i 0) ($fx< i ($vector-length x)))
12 ($vector-ref x i)
13 ($fail))))
14 (if ((if ($procedure? p) p ($fail)) e)
15 e
16 (loop (if (and ($fixnum? i) ($fixnum? 1))
17 (or ($fx+? i 1) ($+ i 1))
18 (if (and ($flonum? i) ($flonum? 1))
19 ($fl+ i 1)
20 ($+ i 1))))))
21 #f)))
22 (find p x)))

Figure 6 The code of the findv function where all dynamic checks are explicit.

Figure 7 The specialized CFG of the findv function showing that the index calculations are
done entirely with fixnums with no overflow checks and no vector bound checks. For brevity, we
write [[x]] instead of [[x]]−0, and the interval [[x]]..[[x]] is abbreviated to [[x]].

ECOOP 2024

28:14 Static Basic Block Versioning

Figure 6 shows the code after the compiler has blindly expanded each operation to include
all required dynamic checks. The refinements of SBBV presented in this section enables the
compiler to create the specialized CFG shown in Figure 7, which is optimal (all bound checks
and overflow checks have been removed). There is only a procedure check for parameter p in
the first iteration of the loop, and only if parameter x is a non-empty vector.

This refinement does not impact the SBBV algorithm nor does it demand to change the
specialization of the arithmetic instructions but it requires us to extend the interval operators
to treat cases where at least one bound is a symbolic value. For example, in the case of the
interval addition xlo..xhi + ylo..yhi = (xlo + ylo)..(xhi + yhi), the addition of the lower bounds
(xlo + ylo) is computed from the following rules, where i and j denote integer values, and v

and w denote vector identifiers:

i +lo j 7→ i + j

([[v]]−i) +lo j 7→ j − i

j +lo ([[v]]−i) 7→ ([[v]]−i) +lo j

([[v]]−i) +lo ([[w]]−j) 7→ −i − j

and the addition of the upper bounds (xhi + yhi) is computed from the following rules, where
overflow denotes an upper bound that is not a fixnum:

i +hi j 7→ i + j

([[v]]−i) +hi j 7→ [[v]]−(i − j) if i ⩾ j

([[v]]−i) +hi j 7→ overflow if i < j

j +hi ([[v]]−i) 7→ ([[v]]−i) +hi j

([[v]]−i) +hi ([[w]]−j) 7→ overflow

The narrowing operations for comparisons are similar to that of regular intervals, considering
that vector lengths are themselves modelled as intervals from 0..maxfix. Below are the rules
for the narrowing of x < y from which the rules for the other comparisons can be derived:

Narrowing rule for: x < y with {x 7→ xlo..xhi, y 7→ ylo..yhi}

Positive outcome: {x 7→ xlo.. minhi(xhi, yhi − 1), y 7→ maxlo(xlo + 1, ylo)..yhi}
Negative outcome: {x 7→ maxlo(xlo, ylo)..xhi, y 7→ ylo.. minhi(xhi, yhi)}

maxlo(x, y) 7→ x if vallo(x) > vallo(y) else y

minhi(x, y) 7→ x if valhi(x) < valhi(y) else y

vallo(i) 7→ i

vallo([[v]]−i) 7→ i

valhi(i) 7→ i

valhi([[v]]−i) 7→ maxfix - i

It is noteworthy that, as a result of the interval widening, some of the inferred intervals are
somewhat conservative (for example at block #28 the interval for len could have been 1..[[v]]).
The widening loses some information but makes computing a fix-point faster.

4 Experiments

In this section we demonstrate the practicality of SBBV through experiments. To ensure
that our results are not overly system specific, we have integrated an SBBV pass in the
compilation pipeline of two existing Scheme compilers, Bigloo [19] and Gambit [20]. Both

O. Melançon, M. Feeley, and M. Serrano 28:15

of these are independently developed mature optimizing AOT Scheme to C compilers that
use a CFG representation of the compiled program. Moreover these compilers are used
as back-ends of optimizing compilers for JavaScript [31, 30] and Python [22]. Bigloo and
Gambit implement a slew of features and classical optimizations such as constant-folding,
function inlining, flat closures, and lambda-lifting. Any performance improvements would
constitute a notable achievement given the many years of fine-tuning that went into their
development. We put this in perspective in Section 4.5.

Adding SBBV to these compilers allows them to use the type, range and value of variables
to perform flow sensitive code specialization that is tailored to the program logic, with low code
bloat. The experiments have been designed to demonstrate further performance improvements
by SBBV than by other optimization techniques implemented by these compilers.

We evaluate the impact of SBBV by applying it to a suite of benchmarks. Each benchmark
is compiled with and without SBBV to measure its impact on the number of dynamic checks,
program size, execution time, and compilation time. Section 4.1 provides a brief description
of the benchmark suite. Benchmarks were executed on a machine with an Intel Core i7-7700K,
48 GB of RAM, and under Debian 10.13 with kernel version SMP Debian 4.19.269-1.

In order to measure SBBV’s impact on the number of dynamic checks, both compilers
have been instrumented to count the number of dynamic checks during a program execution.
Executions for measuring time and dynamic checks are done separately to ensure that
counting checks does not affect the measured execution time. Execution time is measured
by profiling each executable with “perf stat” to measure its execution real-time. Each
benchmark is parameterized such that its execution lasts at least five seconds on our machine,
and is repeated 50 times, removing the top and bottom 5 outliers. The parameters of
each benchmark are provided as command-line arguments to ensure that the compiler does
not optimize for specific values or types. All timing results in this section are the average
execution time of each benchmark. The relative standard deviation of the execution time
never exceeds 0.24% on macrobenchmarks, and 2.20% on microbenchmarks; consequently we
omit standard deviations in figures to improve readability.

4.1 Benchmark Programs
Our benchmark suite combines programs from two sources: the R7RS benchmark suite [1]
that is commonly used for evaluating the performance of Scheme systems, and benchmark
programs used in [30] that have Scheme and JavaScript versions.

We use both macrobenchmarks and microbenchmarks, which we classify according to their
size (fewer than 150 lines of code is a microbenchmark). These two classes are distinguished
because microbenchmarks stress a narrow set of features and consequently are poor predictors
of the overall performance of a system. We only use microbenchmarks as instruments for
shedding light on specific behaviors of the SBBV algorithm.

Here is a brief description of the benchmark programs:
Macrobenchmarks:

almabench (430 LOC): Compute the celestial coordinates of the sun at noon. Uses
floating point numbers, vectors, and assignments.
boyer (610 LOC): Prolog-like rule-directed rewriting engine. Uses pairs and symbols.
compiler (11,740 LOC): Old version of the Gambit Scheme compiler generating
M68000 code. Uses pairs, symbols, vectors, and strings.
conform (490 LOC): Graph type checker using equivalence classes. Uses lists and
strings.

ECOOP 2024

28:16 Static Basic Block Versioning

dynamic (2,350 LOC): Dynamic type inference for Scheme. Uses lists, symbols, and
higher-order functions.
earley (660 LOC): Earley parser parsing an ambiguous grammar. Uses vectors, lists,
small integers and symbols.
leval (560 LOC): Scheme interpreter based on closures. Uses lists, symbols, and
higher-order functions.
maze (740 LOC): Hexagonal grid maze generator. Uses vectors and small integers.
nucleic (3,510 LOC): 3D structure determination of a nucleic acid. Uses vectors and
floating point numbers.
peval (630 LOC): Partial evaluator for Scheme. Uses lists, symbols, and higher-order
functions.
scheme (1,090 LOC): Other Scheme interpreter based on closures. Uses lists, symbols,
and higher-order functions.
slatex (2,470 LOC): Scheme to Latex processor. Uses characters, strings, lists, vectors,
and small integers.

Microbenchmarks:
ack (10 LOC): Ackermann function. Uses small integers and recursion.
bague (110 LOC): Solver of the baguenaudier puzzle. Uses small integers and vectors.
fib (20 LOC): Fibonacci function. Uses small integers and recursion.
fibfp (20 LOC): Fibonacci function. Uses floating point numbers and recursion.
nqueens (40 LOC): Solver of the N-queens puzzle. Uses lists, small integers, and
recursion.
primes (40 LOC): Sieve algorithm for finding primes. Uses lists and small integers.
tak (20 LOC): Takeuchi function. Uses small integers and recursion.

4.2 Counting Dynamic Checks
In the Bigloo and Gambit implementations, many built-in procedures implicitly check the
type of their arguments and signal an error if they are invalid, such as arithmetic on non-
number types or index out of bound when indexing a vector. Polymorphic operators also use
implicit dynamic type checks to dispatch computation to specialized primitives.

To measure dynamic checks, all built-in procedures used in our benchmarks are redefined
with macros that use inline checks. This is semantically equivalent to operations that apply
checks and dispatch to specialized primitives implicitly. For instance, the BBVvector-ref
and BBV+ macros implement the vector-ref and + operations respectively:

1 (define-macro (BBVvector-ref v i)
2 ‘(let ((v ,v) (i ,i))
3 (if (and ($vector? v) ($fixnum? i)
4 ($fx>= i 0) ($fx< i ($vector-length v)))
5 ($vector-ref v i)
6 (error "vector-ref error")))))
7

8 (define-macro (BBV+ x y)
9 ‘(let ((x ,x) (y ,y))

10 (if (and ($fixnum? x) ($fixnum? y))
11 (or ($fx+? x y) ($+ x y))
12 (if (and ($flonum? x) ($flonum y))
13 ($fl+ x y)
14 ($+ x y)))))

The macros use specialized operators (prefixed with $ in the example), making all checks
explicit (type checks, array bound checks, and integer overflow checks) and ensuring that
both compilers perform the same set of checks and in the same order (see Section 3.2 for the
definitions of $fx+?, $+, and the other primitive operations).

O. Melançon, M. Feeley, and M. Serrano 28:17

When SBBV has determined the type of a value, the type tests that are in the expansion of
these macros ($fixnum?, $flonum?, etc) are effectively removed. Similarly, SBBV’s interval
analysis may determine the range of possible integer values, allowing comparisons such as
($fx>= i 0) to be removed, and calls to overflow checking operators such as ($fx+? x y)
to be replaced by the non-overflow checking ($fx+ x y) when the result cannot overflow.

However, not all dynamic checks originate from safe operators since programmers can add
type tests and bound checks as part of their program’s logic. For this reason, we distinguish
between checks introduced by safe operators, which we call safety checks in the context of
this experiment, and those introduced by the programmer. The number of safety checks is
computed by replacing all operators, such as BBVvector-ref and BBV+, by unsafe ones that
execute no type tests, overflow checks or array bound checks. By subtracting the number of
checks executed by the unsafe version of a program from the number of checks of its safe
version, we obtain the number of safety checks.

4.3 Merge Selection
Applying SBBV requires a heuristic for selecting which versions of a block to merge when that
block’s version limit is exceeded. This corresponds to choosing a concrete implementation for
the Θ2 operator from Algorithm 4. The quality of the selection function impacts the general
performance of the SBBV algorithm. The current Bigloo and Gambit implementations use a
merge heuristic that is rudimentary but still sufficient to establish the benefit of the approach.

In our implementations, when the version limit of a basic block is exceeded, versions that
are the most similar are merged first. The similarity of two versions is computed by counting
how many variables have the same type when entering the block. While both Bigloo and
Gambit implement a selection by similarity, the exact implementations of their selection
functions differ slightly due to how they represent types internally.

Given that the versions selected depend solely on the contexts when entering a block,
this is a local merge heuristic. It requires no usage analysis of each variable in the block and
its successors. A nonlocal merge heuristic could lead to better results if it prioritizes some
versions over others with the objective of maximizing the benefits for the whole program.
The space of possible merge heuristics is large and we intend to explore it in future work.

4.4 Results
We first present broad results before diving into a deeper analysis in the subsequent sections.

SBBV permits a trade-off between code size and dynamic checks removal. As the version
limit increases, more blocks are duplicated and more dynamic checks are removed. This
comes at the cost of increased executable size and compilation time. We found a limit
of 2 versions to offer a good trade-off between checks removal, size, and compilation time.

Figure 8 shows the proportion of safety checks removed by SBBV, such as type, overflow,
and array bound checks. In all benchmarks, the number of checks decreases when compared
to the executable without SBBV. This indicates that SBBV can remove dynamic checks that
the existing optimizations of Bigloo and Gambit could not remove.

The proportion of checks removed varies between Bigloo and Gambit, despite both
compilers applying the same SBBV algorithm. Bigloo removes more checks without applying
SBBV, thus leaving fewer checks to be removed by SBBV. However, the absolute number of
remaining checks is similar between both implementations. To a lesser extent, differences in
the implementations of the heuristic for selecting versions to merge also influence the number
of removed checks by each compiler.

ECOOP 2024

28:18 Static Basic Block Versioning

Benchmark

S
el

f R
el

at
iv

e
D

yn
am

ic
 C

he
ck

0.00

0.20

0.40

0.60

0.80

1.00

alm
ab

en
ch

bo
ye

r

co
mpil

er

co
nfo

rm

dy
na

mic
ea

rle
y

lev
al

maz
e

nu
cle

ic
pe

va
l

sc
he

me
sla

tex ac
k

ba
gu

e fib fib
fp

nq
ue

en
s

pri
mes tak

Bigloo Gambit

Figure 8 Relative number of safety checks executed for benchmarks compiled with and without
SBBV (limit of 2 versions), separately for Bigloo and Gambit. 1.0 corresponds to compilation
without SBBV. Lower values indicate fewer dynamic checks with SBBV.

Benchmark

S
el

f R
el

at
iv

e
E

xe
cu

tio
n

Ti
m

e

0.00

0.20

0.40

0.60

0.80

1.00

almabench boyer compiler conform dynamic earley leval maze nucleic peval scheme slatex

Bigloo Gambit

Figure 9 Relative execution time of macrobenchmarks compiled with and without SBBV (limit
of 2 versions), separately for Bigloo and Gambit. 1.0 corresponds to compilation without SBBV.
Lower values indicate better performance with SBBV.

Although the number of dynamic checks decreases with higher version limits, it does
not always lead to a similar reduction of the execution time. Figure 9 shows that all
macrobenchmarks execute faster with SBBV and a limit of 2 version (by 10% on average).
However, no significant speedup is observed by further increasing the version limit. The
relation between the version limit and execution time is discussed further in Section 4.4.3.

Increasing the version limit allows for more specialized versions. In the following sections,
we take into account the impact of the version limit on the removal of dynamic checks,
program size, execution speed, and compilation time. Each benchmark is compiled with
version limits ranging from 1 to 5, as well as with limits of 10 and 20 versions, and it is
compared to a compilation without SBBV. Limits higher than 5 are probably not very
practical due to diminishing returns for the added compilation time. We tested with limits
of 10 and 20 versions mostly to check the performance in extreme cases.

4.4.1 Dynamic Checks
Figure 10 shows the proportion of safety checks remaining after SBBV with increasing version
limits. We estimate the number of remaining safety checks by subtracting checks in the unsafe
version of a benchmark from those in the benchmark compiled with SBBV. To compute the
total number of safety checks without SBBV, we apply the same formula to each benchmark
compiled with no optimization, which effectively preserves all checks.

O. Melançon, M. Feeley, and M. Serrano 28:19

(a) Gambit.

(b) Bigloo.

Figure 10 Effect of SBBV on the removal of dynamic checks (type, overflow, and array bound
checks) with increasing version limits. Each cell shows the proportion of safety checks remaining
for a given version limit and benchmark when compared to an unoptimized execution. The first
row shows checks when SBBV is not applied and only existing optimization techniques are used. A
ratio of 1 means that no dynamic checks were removed. Lower values indicate that more checks
were removed.

Figures 10a and 10b show, on the first row, the proportion of remaining checks after
applying the standard Gambit and Bigloo optimization techniques (No SBBV). The following
rows display results with SBBV and specific version limits. For all benchmarks, SBBV removes
more checks than the standard optimizations. As the version limit increases, more specialized
versions are generated, allowing removal of additional checks.

For low version limits, the number of dynamic checks steeply decreases as the limit
increases. However, beyond a version limit of about 4, there is a diminishing return for
almost all benchmarks. In some benchmarks, an upper bound is rapidly reached beyond
which almost no more checks are removed (such as boyer at 1 version). In these cases,
further increasing the limit contributes to the generation of relatively unimportant versions.
Conversely, new useful versions are still discovered when increasing the version limit beyond
10 for some benchmarks (such as tak with Gambit).

Increasing the version limit sometimes increases the number of dynamic checks. For
instance, in Figure 10a, the number of dynamic checks increases when incrementing the
version limit from 2 to 3 in the nqueens benchmark with Bigloo. Increasing the version limit
delays the merge of excess versions until more candidates are discovered. Given additional
choices, the selection function may choose differently, merging a useful version that would
have been kept otherwise. This highlights the room for improvement of our selection function.

ECOOP 2024

28:20 Static Basic Block Versioning

(a) Gambit.

(b) Bigloo.

Figure 11 Program size with increasing version limits, relative to using the standard optimizations
(No SBBV). Each cell shows the ratio between the program size with and without SBBV for a given
version limit and benchmark. Lower values are better.

4.4.2 Program Size

We measured the program size of benchmarks compiled with SBBV. The size in bytes of
each benchmark is obtained by disassembling its executable and subtracting the position of
compiler specific labels. Hence, only the size of the code corresponding to each benchmark,
excluding any runtime procedures, is considered.

Since SBBV applies code duplication, higher version limits generally generate larger
programs. Yet, low version limits may result in smaller executables. In the case of a limit of
a single version, this is to be expected because SBBV becomes akin to a static type inference
analysis without code duplication, which removes some unnecessary checks. However, for
low enough version limits higher than one, SBBV can still reduce program size. In these
cases, the removal of dynamic checks outweighs the duplication of basic blocks.

Figure 11b shows the relation between the size of a benchmark and the allotted version
limit in Bigloo. On average, macrobenchmarks are smaller up to a limit of 5 versions. In
general, the size increases with the version limit, but remains reasonably low with an average
growth of about 1.7× on macrobenchmarks with a limit as high as 20 versions.

Figure 11a shows a similar pattern in Gambit, but with a higher growth rate. In the
worst case, a growth of about 10× is observed (boyer, limit of 20 versions), highlighting
the need to select a low enough version limit to curb code bloat. We found a version limit
ranging from 2 to 4 to be a good compromise between removed dynamic checks and size.

O. Melançon, M. Feeley, and M. Serrano 28:21

(a) Gambit.

(b) Bigloo.

Figure 12 Execution time with SBBV and increasing version limits, relative to the standard
optimizations (No SBBV). Each cell shows the ratio between the execution time with and without
SBBV for a given version limit and benchmark. Lower values are better.

4.4.3 Execution Time

Figure 12 shows how the execution time of each benchmark varies with the version limit.
Comparing performance to the number of dynamic checks from Figure 10 shows that a
lower number of checks is not correlated to a faster execution in general. With Bigloo
(Figure 12b), macrobenchmarks compiled with SBBV execute, on average, about 10% faster
than without SBBV regardless of the version limit. With Gambit (Figure 12a), a similar
speedup is observed for version limits below 4. Beyond this limit, execution speed still
benefits, albeit to a lesser extent. We suspect that this discrepancy is caused by the increased
code bloat observed with Gambit for high version limits, which reduces the performance of
the instruction cache.

While some benchmarks benefit from a high version limit, the code speed and version
limit is only vaguely correlated and contains noise. When optimizing for code speed, using a
default version limit for all programs is suboptimal and it is good to give the programmer a
manual control over the limit to explore the tradeoffs.

We explain this in part by hard-to-predict hardware optimizations by modern processor
architectures. In particular, branch prediction makes dynamic type checking extremely cheap
in typical code where a type check frequently returns the same result. Moreover, Bigloo
and Gambit implement inexpensive type checks using pointer tagging. We hypothesize that
SBBV would have a higher performance impact in implementations with more costly dynamic
checks, such as NaN tagging, or object representations that need a memory access to check
the type, such as BiBOP and object-oriented languages such as Java, Python, and Ruby.

ECOOP 2024

28:22 Static Basic Block Versioning

(a) Gambit.

(b) Bigloo.

Figure 13 Compilation time with increasing version limits, relative to using the standard
optimizations (No SBBV). Each cell shows the ratio between the compilation time with and without
SBBV for a given version limit and benchmark. Lower values are better.

This highlights the need to refine the merge selection function. In the future, we intend
to explore the space of possible merge heuristics, including nonlocal heuristics. We also wish
to explore dynamic version limits, for instance by increasing the version limit of basic blocks
that are likely to be in megamorphic code, as is done by YJIT [7, 8]

4.4.4 Compilation Time
We measured the compilation time for each benchmark and version limit and compared it
to the compilation time without SBBV. Figure 13 shows the effect of the version limit on
compilation time. In general, compilation time increases with the version limit. The reasons
for this increase are twofold: firstly a higher version limit leads to more specialized versions of
basic blocks within a control flow graph, secondly the increased size of the C code generated
by Bigloo and Gambit leads to increased compilation time by the C compiler. Consequently,
a lower program size is correlated to a shorter compilation time.

In the extreme case of a limit of 20 versions, compilation time increased by about 22× in
the worst case (almabench with Gambit). However, in Section 4.4.1 we showed that there is
a diminishing return from increasing the limit beyond about 4 versions. Choosing a limit of 2
caps the worst observed compilation time increase to about 1.5× with Gambit (almabench)
while reaping most of the benefit of SBBV. On the same benchmark, Bigloo has a large
compilation time increase starting at a limit of 1. This is due to the combined effect of a
large function with multiple dispatch points and a live variable recalculation by the compiler
that is not done by Gambit (register allocation is done before SBBV in the case of Gambit,
and after SBBV in the case of Bigloo).

O. Melançon, M. Feeley, and M. Serrano 28:23

Program Node.js Bigloo 4.6a Gambit 4.9.4-377 Chez Racket
21.7.1 No SBBV SBBV No SBBV SBBV 9.5.1 7.2

almabench 6.31 15.68 14.46 14.64 13.86 17.69 19.30
boyer 40.31 7.40 7.22 8.21 6.49 8.09 12.38
earley 56.75 14.90 13.83 10.87 10.34 9.53 24.73
leval 18.42 7.53 6.47 12.03 9.74 7.16 16.96
maze 10.07 7.47 6.70 6.75 5.73 12.01 12.12
bague 305.04 12.90 11.19 15.54 12.93 21.01 19.33

Figure 14 Average execution times of the benchmarks from [30] in seconds. Bold numbers
indicate the fastest execution time for each benchmark. Lower is better.

4.5 Putting the Results in Context
The significance of the above results can be best appreciated through a comparison with
other systems whose performance is more widely known. Our goal is to show that both
Gambit and Bigloo are competitive with some of the leading implementations of dynamically
typed languages, and thus that using SBBV is attractive in the context of high-performance
implementations to increase performance further.

The Node.js system is a good comparable given that the JavaScript V8 JIT compiler
on which it is based has been extensively engineered and it executes a dynamically typed
programming language with similar core constructs as Scheme, to which prototype object-
oriented features are added. The Chez Scheme [26] and Racket [25] systems are also interesting
as high-performance representatives of the Lisp/Scheme family.

In order to do a fair comparison of systems for different languages, we use benchmark
programs that have been translated to both Scheme and JavaScript in previous work [30].
Those programs are a subset of those used in the previous sections. Because of the similarity
of JavaScript and Scheme, a systematic translation of the constructs is possible while avoiding
important stylistic changes that would compromise the validity of the comparison. We have
used the latest versions of those systems available at the time of writing through the Debian
package manager (Node.js 21.7.1, Chez Scheme 9.5.1, and Racket 7.2). We measure the
program execution time and, for Gambit and Bigloo, we compile the program without SBBV
and with SBBV and a limit of 2 versions. Figure 14 gives the execution times in seconds.

The execution time for Gambit and Bigloo without SBBV is faster than Node.js on all
the benchmarks except almabench, up to 24× faster for bague. Node.js does better on
almabench than any other system because V8 has special optimizations for floating point
numbers and arrays that are used by almabench. Gambit and Bigloo without SBBV are
in the same ballpark as Chez Scheme, faster on roughly half the benchmarks. Racket is
typically slower than Chez Scheme, on which it is built internally. When SBBV is used, both
Bigloo and Gambit are consistently faster than without SBBV, including on benchmarks
on which they already outperformed other compilers. This reinforces our belief that SBBV
allows some optimizing compilers for dynamically typed programming language to generate
even better code.

5 Related Work

Basic Block Versioning (BBV) was introduced by Chevalier-Boisvert and Feeley [5] as a
technique for type check removal in JavaScript. The lazy BBV variant, suitable for JIT
compilers, only generates versions that are executed, so it limits code bloat. On the other

ECOOP 2024

28:24 Static Basic Block Versioning

hand, when the version limit is reached a fully generic version must be used, which negatively
impacts type check reduction. SBBV avoids falling back on a generic version by selecting
a set of versions that cover all cases but that are at least somewhat specialized. As shown
in their Figure 7, a version limit of 2, which is their setting maxvers=1, shows a modest
reduction of type checks for many benchmarks when compared to maxvers=5 because the
fallback on the fully generic version is reached too quickly. SBBV achieves good performance
with lower version limits. A variant of lazy BBV is used in production in the YJIT compiler
inside CRuby [7, 8], also falling back on a fully generic version upon reaching the version
limit (which can be 4, 10, or 20 depending on the situation).

The eager BBV variant described in [5] is suitable for AOT compilers, like SBBV, but
suffers from large code bloat so it was deemed impractical and not explored further [5]. In
comparison, SBBV with a version limit of 2, which achieves a comparable level of dynamic
check removal, causes an average code size increase of 9% for Gambit and a decrease of 19%
for Bigloo.

SBBV can be explained by the theory of abstract interpretation introduced by Cousot
and Cousot [10]. The authors presented a theoretical framework for building lattice-based
fixed point algorithms. Their work ensures that the SBBV algorithm converges. Furthermore,
their seminal paper introduced union with widening. Widening not only ensures that the
algorithm converges, but also that it converges fast enough to be practical.

SBBV generalizes well-known optimization techniques such as loop-unrolling [2], constant-
folding [2], and tail duplication [24]. Tail duplication replicates the code after conditional
branches instead of merging the control flow to a single basic block. This permits propagating
the information acquired from a condition beyond the body of each branch, allowing further
optimizations.

Determining when to apply tail duplication remains a challenge. Leopoldseder et al.
proposed a simulation-based approach to determine which duplications are the most promising
in term of optimization opportunities while minimizing code size [18]. This is analogous to
how the choice of a selection function impacts the efficiency of SBBV.

More recently, D’Souza et al. applied tail duplication in TASTyTruffle, a Scala JIT
compiler using Truffle. TASTyTruffle performs tail duplication at the AST level to generate
guarded versions of polymorphic functions that are then specialized by the Graal compiler [13].

Our work is related to occurrence typing that is in particular used in Racket [33].
Occurrence typing is a type system that allows a context-sensitive refinement of variable
types during static analysis, for instance by typing a variable differently in each branch of a
conditional statement. In the context of our work, occurrence typing synergizes well with
tail duplication to further propagate context-sensitive type information.

Partial function inlining can also be done if SBBV is applied interprocedurally. We have
not done this in the current work because it is tricky to extend the versioning contexts to
track code pointers for function entry and return points. This will require future work.

Code optimization by duplication and specialization has been extensively studied and
used for various programming languages [12, 3, 29, 4, 9]. Recently Flückiger et al. [15]
optimized the compilation of R programs by function specialization. They show that this
technique makes programs run 1.7× faster on average. Subsequently a study by Mehta et
al. [21] has used a mechanism that keeps multiple versions of a given function specialized for
contexts encountered at runtime by JIT compilers. Specialized versions of a function are
stored in an external repository, allowing switching between versions when de-optimization
occurs and to reuse versions of functions across executions and programs. SBBV is related
to these techniques but the granularity of cloning is finer as it clones basic blocks while all

O. Melançon, M. Feeley, and M. Serrano 28:25

those previous works clone whole function bodies. This enables SBBV to better control the
code expansion and to spend the cloning budget on relevant specializations without falling
back on a fully generic version or using de-optimization, which is not an option in an AOT
context. This sort of fine optimization tuning is out of reach for techniques that specialize at
the level of whole function bodies.

6 Conclusion

Previous work has shown that the lazy variant of Basic Block Versioning (BBV) is effective in
practice for optimizing dynamic checks in JIT compilers for dynamic languages [5, 27, 7, 8].
The static BBV (SBBV) approach that we have described in this paper is a variant of BBV
that determines, through a fix-point program analysis, a set of basic block versions that are
appropriate for the program and that covers all possible contexts without exceeding some
versioning limit. This gives control over the code bloat induced by the multiple specializations
of individual basic blocks in a way that avoids falling back on an unoptimized generic version
of the basic block when the versioning limit is reached. SBBV is thus particularly interesting
for use in AOT compilers and consequently it does not suffer from a warmup time.

At the core of the SBBV algorithm is a heuristic to drive the merging of previously
generated versions to keep the number of versions within the allowed limit. We have shown
through experiments that even a simple merge heuristic removes dynamic checks effectively
in practice.

As a second contribution, we have shown in this paper how to extend the BBV approach
to implement optimizations that go beyond the elimination of dynamic type checks. We
have shown how to use it to remove integer overflow checks and bound checks effectively. By
doing so, we have shown that the BBV approach can be viewed as a general programming
analysis methodology that can be used to implement various optimizations that otherwise
are implemented in isolation using dedicated techniques.

References
1 R7RS benchmarks. https://github.com/ecraven/r7rs-benchmarks, April 2024.
2 David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for high-

performance computing. ACM Comput. Surv., 26(4):345–420, 1994. doi:10.1145/197405.
197406.

3 Jeff Bezanson, Jiahao Chen, Benjamin Chung, Stefan Karpinski, Viral B. Shah, Jan Vitek,
and Lionel Zoubritzky. Julia: dynamism and performance reconciled by design. Proc. ACM
Program. Lang., 2(OOPSLA):120:1–120:23, 2018. doi:10.1145/3276490.

4 Craig Chambers and David M. Ungar. Customization: optimizing compiler technology for
SELF, a dynamically-typed object-oriented programming language. In Richard L. Wexelblat,
editor, Proceedings of the ACM SIGPLAN’89 Conference on Programming Language Design
and Implementation (PLDI), Portland, Oregon, USA, June 21-23, 1989, pages 146–160. ACM,
1989. doi:10.1145/73141.74831.

5 Maxime Chevalier-Boisvert and Marc Feeley. Simple and effective type check removal through
lazy basic block versioning. In John Tang Boyland, editor, 29th European Conference on Object-
Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic, volume 37
of LIPIcs, pages 101–123. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:
10.4230/LIPICS.ECOOP.2015.101.

6 Maxime Chevalier-Boisvert and Marc Feeley. Interprocedural type specialization of JavaScript
programs without type analysis. In Shriram Krishnamurthi and Benjamin S. Lerner, editors,
30th European Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016,
Rome, Italy, volume 56 of LIPIcs, pages 7:1–7:24. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPICS.ECOOP.2016.7.

ECOOP 2024

https://github.com/ecraven/r7rs-benchmarks
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/3276490
https://doi.org/10.1145/73141.74831
https://doi.org/10.4230/LIPICS.ECOOP.2015.101
https://doi.org/10.4230/LIPICS.ECOOP.2015.101
https://doi.org/10.4230/LIPICS.ECOOP.2016.7

28:26 Static Basic Block Versioning

7 Maxime Chevalier-Boisvert, Noah Gibbs, Jean Boussier, Si Xing (Alan) Wu, Aaron Patterson,
Kevin Newton, and John Hawthorn. YJIT: a basic block versioning JIT compiler for CRuby,
pages 25–32. ACM, 2021. doi:10.1145/3486606.3486781.

8 Maxime Chevalier-Boisvert, Takashi Kokubun, Noah Gibbs, Si Xing (Alan) Wu, Aaron
Patterson, and Jemma Issroff. Evaluating YJIT’s performance in a production context: a
pragmatic approach. In Rodrigo Bruno and Eliot Moss, editors, Proceedings of the 20th
ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes,
MPLR 2023, Cascais, Portugal, 22 October 2023, pages 20–33. ACM, 2023. doi:10.1145/
3617651.3622982.

9 Keith D. Cooper, Mary W. Hall, and Ken Kennedy. A methodology for procedure cloning.
Comput. Lang., 19(2):105–117, 1993. doi:10.1016/0096-0551(93)90005-L.

10 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Robert M.
Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California, USA, January
1977, pages 238–252. ACM, 1977. doi:10.1145/512950.512973.

11 Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of generalized
type unions. In David B. Wortman, editor, Proceedings of an ACM Conference on Language
Design for Reliable Software (LDRS), Raleigh, North Carolina, USA, March 28-30, 1977,
pages 77–94. ACM, 1977. doi:10.1145/800022.808314.

12 Iulian Dragos and Martin Odersky. Compiling generics through user-directed type specialization.
In Ian Rogers, editor, Proceedings of the 4th workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems, ICOOOLPS 2009,
Genova, Italy, July 6, 2009, pages 42–47. ACM, 2009. doi:10.1145/1565824.1565830.

13 Matt D’Souza, James You, Ondrej Lhoták, and Aleksandar Prokopec. TASTyTruffle:
Just-in-time specialization of parametric polymorphism. Proc. ACM Program. Lang.,
7(OOPSLA2):1561–1588, 2023. doi:10.1145/3622853.

14 Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–4, 1981.
doi:10.1145/322234.322235.

15 Olivier Flückiger, Guido Chari, Ming-Ho Yee, Jan Jecmen, Jakob Hain, and Jan Vitek.
Contextual dispatch for function specialization. Proc. ACM Program. Lang., 4(OOPSLA):220:1–
220:24, 2020. doi:10.1145/3428288.

16 ECMA International. Standard ECMA-262 - ECMAScript language specification, June 2015.
6th edition. URL: http://www.ecma-international.org/ecma-262/6.0/.

17 Richard Kelsey, William D. Clinger, and Jonathan Rees. Revised5 report on the algorithmic
language Scheme. ACM SIGPLAN Notices, 33(9):26–76, 1998. doi:10.1145/290229.290234.

18 David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon, and Hans-
peter Mössenböck. Dominance-based duplication simulation (DBDS): code duplication to
enable compiler optimizations. In Jens Knoop, Markus Schordan, Teresa Johnson, and Michael
F. P. O’Boyle, editors, Proceedings of the 2018 International Symposium on Code Generation
and Optimization, CGO 2018, Vösendorf / Vienna, Austria, February 24-28, 2018, pages
126–137. ACM, 2018. doi:10.1145/3168811.

19 Manuel Serrano. Bigloo. http://www-sop.inria.fr/indes/fp/Bigloo/, 2024.
20 Marc Feeley. Gambit. https://gambitscheme.org, 2024.
21 Meetesh Kalpesh Mehta, Sebastián Krynski, Hugo Musso Gualandi, Manas Thakur, and Jan

Vitek. Reusing just-in-time compiled code. Proc. ACM Program. Lang., 7(OOPSLA2):1176–
1197, 2023. doi:10.1145/3622839.

22 Olivier Melançon, Marc Feeley, and Manuel Serrano. An executable semantics for faster
development of optimizing Python compilers. In João Saraiva, Thomas Degueule, and
Elizabeth Scott, editors, Proceedings of the 16th ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2023, Cascais, Portugal, October 23-24, 2023, pages
15–28. ACM, 2023. doi:10.1145/3623476.3623529.

https://doi.org/10.1145/3486606.3486781
https://doi.org/10.1145/3617651.3622982
https://doi.org/10.1145/3617651.3622982
https://doi.org/10.1016/0096-0551(93)90005-L
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/1565824.1565830
https://doi.org/10.1145/3622853
https://doi.org/10.1145/322234.322235
https://doi.org/10.1145/3428288
http://www.ecma-international.org/ecma-262/6.0/
https://doi.org/10.1145/290229.290234
https://doi.org/10.1145/3168811
http://www-sop.inria.fr/indes/fp/Bigloo/
https://gambitscheme.org
https://doi.org/10.1145/3622839
https://doi.org/10.1145/3623476.3623529

O. Melançon, M. Feeley, and M. Serrano 28:27

23 Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to Interval Analysis.
SIAM, 2009. doi:10.1137/1.9780898717716.

24 Frank Mueller and David B. Whalley. Avoiding conditional branches by code replication. In
David W. Wall, editor, Proceedings of the ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation (PLDI), La Jolla, California, USA, June 18-21, 1995,
pages 56–66. ACM, 1995. doi:10.1145/207110.207116.

25 PLT Inc. Racket. https://racket-lang.org/, 2024.
26 R. Kent Dybvig. Chez Scheme. https://www.scheme.com/, 2024.
27 Baptiste Saleil and Marc Feeley. Interprocedural specialization of higher-order dynamic

languages without static analysis. In Peter Müller, editor, 31st European Conference on
Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain, volume 74
of LIPIcs, pages 23:1–23:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPICS.ECOOP.2017.23.

28 Baptiste Saleil and Marc Feeley. Building JIT compilers for dynamic languages with low
development effort. In Stephen Kell and Stefan Marr, editors, Proceedings of the 10th
ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages,
VMIL@SPLASH 2018, Boston, MA, USA, November 4, 2018, pages 36–46. ACM, 2018.
doi:10.1145/3281287.3281294.

29 Manuel Serrano. JavaScript AOT compilation. In Tim Felgentreff, editor, Proceedings of the
14th ACM SIGPLAN International Symposium on Dynamic Languages, DLS 2018, Boston,
MA, USA, November 6, 2018, pages 50–63. ACM, 2018. doi:10.1145/3276945.3276950.

30 Manuel Serrano. Of JavaScript AOT compilation performance. Proc. ACM Program. Lang.,
5(ICFP):1–30, 2021. doi:10.1145/3473575.

31 Manuel Serrano and Marc Feeley. Property caches revisited. In José Nelson Amaral and
Milind Kulkarni, editors, Proceedings of the 28th International Conference on Compiler
Construction, CC 2019, Washington, DC, USA, February 16-17, 2019, pages 99–110. ACM,
2019. doi:10.1145/3302516.3307344.

32 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of Typed
Scheme. In George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San
Francisco, California, USA, January 7-12, 2008, pages 395–406. ACM, 2008. doi:10.1145/
1328438.1328486.

33 Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In Paul
Hudak and Stephanie Weirich, editors, Proceeding of the 15th ACM SIGPLAN international
conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA, September
27-29, 2010, pages 117–128. ACM, 2010. doi:10.1145/1863543.1863561.

ECOOP 2024

https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1145/207110.207116
https://racket-lang.org/
https://www.scheme.com/
https://doi.org/10.4230/LIPICS.ECOOP.2017.23
https://doi.org/10.4230/LIPICS.ECOOP.2017.23
https://doi.org/10.1145/3281287.3281294
https://doi.org/10.1145/3276945.3276950
https://doi.org/10.1145/3473575
https://doi.org/10.1145/3302516.3307344
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1863543.1863561

Generalizing Shape Analysis with Gradual Types
Zeina Migeed #

University of California, Los Angeles (UCLA), CA, USA

James Reed #

Fireworks AI, Redwood City, CA, USA

Jason Ansel #

Meta, Menlo Park, CA, USA

Jens Palsberg #

University of California, Los Angeles (UCLA), CA, USA

Abstract
Tensors are multi-dimensional data structures that can represent the data processed by machine
learning tasks. Tensor programs tend to be short and readable, and they can leverage libraries and
frameworks such as TensorFlow and PyTorch, as well as modern hardware such as GPUs and TPUs.
However, tensor programs also tend to obscure shape information, which can cause shape errors
that are difficult to find. Such shape errors can be avoided by a combination of shape annotations
and shape analysis, but such annotations are burdensome to come up with manually.

In this paper, we use gradual typing to reduce the barrier of entry. Gradual typing offers a way
to incrementally introduce type annotations into programs. From there, we focus on tool support
for type migration, which is a concept that closely models code-annotation tasks and allows us to do
shape reasoning and utilize it for different purposes. We develop a comprehensive gradual typing
theory to reason about tensor shapes. We then ask three fundamental questions about a gradually
typed tensor program. (1) Does the program have a static migration? (2) Given a program and some
arithmetic constraints on shapes, can we migrate the program according to the constraints? (3) Can
we eliminate branches that depend on shapes? We develop novel tools to address the three problems.
For the third problem, there are currently two PyTorch tools that aim to eliminate branches. They
do so by eliminating them for just a single input. Our tool is the first to eliminate branches for
an infinite class of inputs, using static shape information. Our tools help prevent bugs, alleviate
the burden on the programmer of annotating the program, and improves the process of program
transformation.

2012 ACM Subject Classification Software and its engineering → Software notations and tools

Keywords and phrases Tensor Shapes, Gradual Types, Migration

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.29

Related Version Full Version: https://web.cs.ucla.edu/~palsberg/paper/ecoop24.pdf

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.14

Acknowledgements We thank Akshay Utture, Micky Abir and Shuyang Liu for helpful comments.

1 Introduction

Multidimensional data structures are a common abstraction in modern machine learning
frameworks such as PyTorch [13], TensorFlow [1], and JAX [5]. A significant portion of
programs written using these frameworks involve transformations on tensors. Tensors in this
setting are n-dimensional arrays. A tensor is characterized by its rank and shape. The rank
is the number of dimensions. For example, a matrix is two-dimensional; hence it is a rank-2

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Zeina Migeed, James Reed, Jason Ansel, and Jens Palsberg;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 29; pp. 29:1–29:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zeina@cs.ucla.edu
https://orcid.org/0000-0002-5277-4564
mailto:james@fireworks.ai
mailto:jansel@meta.com
https://orcid.org/0009-0007-5207-2179
mailto:palsberg@ucla.edu
https://orcid.org/0000-0003-4747-365X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.29
https://web.cs.ucla.edu/~palsberg/paper/ecoop24.pdf
https://doi.org/10.4230/DARTS.10.2.14
https://doi.org/10.4230/DARTS.10.2.14
https://doi.org/10.4230/DARTS.10.2.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Generalizing Shape Analysis with Gradual Types

tensor. The shape captures the lengths of all axes of the tensor. For example, in a 2 × 3
matrix, the length of the first axis is 2 and the length of the second axis is 3; hence its shape
is (2, 3).

Programming with tensors provides the programmer with high level and easy to understand
constructs. Furthermore, tensors can utilize modern hardware such as GPUs and TPUs for
parallelization. For those reasons, programming with tensors is preferred over programming
with scalars and nested loops.

Tensors in programming languages present the challenge that their shapes are hard to
track. Modern machine learning frameworks support a plethora of operations on tensors,
with complex shape rules. Addition for example, typically supports broadcasting, which is a
mechanism that allows us to add tensors of different shapes, which is not intuitive. Complex
shape rules make shapes hard to determine in programs, because shape information rarely
explicitly appears in them. As a result, shape errors occur frequently [31].

When not caught statically, shape errors will appear at runtime, which is undesirable
because we would only know about the error when the wrong operation is finally invoked on
concrete runtime values. Tensor computations are costly and a program may take a long
time to run before finally crashing with an error. Additionally, some shape errors occur only
for specific input shapes.

The ability to reason about shapes is useful in various contexts in the machine learning area.
It can prevent programmers from making mistakes and since programmers routinely transform
machine learning programs [17], shape reasoning can also help program transformation tools
to make valid program transformations because program transformations may depend on
shape information.

Users often add asserts or comments to help them reason about shapes. These tasks
have a high cognitive load on users, especially when they are dealing with complex tensor
operations. Shape asserts present even further challenges; they can manifest in the form of
branches on program shapes. We observed this pattern on various transformer benchmarks
[30]. Thus, in that pattern, the result of a branch depends on the shape of the program
input, so the branch result can vary over different inputs. In machine learning programs,
branches can be undesirable because they limit the back-ends a program can be run on, such
backends include TensorRT and XLA. The reason control-flow is undesirable is it complicates
fix-point analysis, particularly in shape propagation [17]. In practice, various tools handle
this challenge in different ways. Some tools reject such programs entirely while other tools
run the program on a single input to eliminate branches. Running a program on a single
input means that branch elimination is correct for just one input, which is an unsatisfactory
solution.

Aiming to prevent the need for ad-hoc shape asserts, entire systems have been build to
detect shape errors such as [15] and [24]. However, these systems are too specific. They
lack a general theoretical foundation that enables their solution to be adapted to a variety
of contexts, including incorporating their logic into compilers and program transformation
tools.

A fundamental approach towards shape analysis is designing a type system that supports
reasoning about shapes. In that approach, shapes are type annotations. Traditionally, types
have been used to solve similar problems in the area of programming languages. A fully
static type system with tensor shapes [20] has limitations. First, a static type system may
need to be elaborate in order to capture the complexities of machine learning programs,
which are typically written in permissive languages such as Python. As a result, refinement
or polymorphic types may be needed. Second, a static type system has a high barrier of entry

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:3

because it requires the user to come up with non-trivial type annotations in advance. Third,
many machine learning programs are in Python, so they are usually only partially typed.
Therefore, fully typed programs are not readily available, which prevents this approach from
being backwards-compatible.

A common way to circumvent the requirement of having fully typed programs is to use
gradual types. In a gradually typed system, type annotations are not needed for the program
to compile, when a compiler does type erasure. However, for a gradually typed system to be
widely usable, it should enable principled yet practical tool support. Previous work such as
[9] designed a gradually typed system for shapes but it is so powerful that practical, elaborate
tool support may be hard to obtain. We believe that the key to shape analysis with gradual
types is to balance between (1) the expressiveness of a gradually typed system and (2) the
ease of tool support in that system.

We show that gradual types can help us tackle shape-related problems in a principled and
unified way. We introduce a gradual typing system that reasons about shapes and enables
tool support.

We distill the challenge of shape analysis into three key problems that we can ask of every
gradually typed tensor program, and we introduce a general theory to solve all of them:

Q(1): Static migration: Does the program have a static migration?
Q(2): Migration under arithmetic constraints: Given a program and some arithmetic
constraints on shapes, can we migrate the program according to the constraints?
Q(3): Branch elimination: Can we eliminate branches that depend on shapes?

We use PyTorch as the setting for our tool design and evaluation, though our approach
is more generally applicable. For Q(1) and Q(2), PyTorch does not currently have any
comparable tools, so our tools for those challenges do something new in the PyTorch setting.

For Q(3), we incorporate our shape reasoning into two existing PyTorch tools that aim
to eliminate branches from PyTorch programs. After augmenting both tools with our logic,
we are able to improve the performance and accuracy of both tools as we will describe below.
Our contributions can be summarized as follows:
1. A gradually typed tensor calculus that satisfies static gradual criteria [23].
2. A formal characterization of Q(1), Q(2) and Q(3) and their solutions.
3. A demonstration of how our approach works for Q(1) and Q(2) on four benchmarks.
4. For Q(3), a comparison on six benchmarks, against HuggingFace Tracer (HFTracer) [30],

a PyTorch tool. HFTracer eliminates all branches based on a single input, while we
eliminate all branches based on infinite classes of inputs. We use constraints to represent
infinite classes of inputs.

5. For Q(3), a comparison on five benchmarks against TorchDynamo [2], a PyTorch tool.
TorchDynamo eliminates 0% of the branches in these benchmarks, while we eliminate
branches by 40% to 100% on infinite classes of inputs.

The full version has Appendices A–F with definitions and proofs.

2 Three Migration Problems

In this section, we introduce our type system informally, and we postpone the formal details
to Section 3. A tensor type in our system is of the form TensorType(d1, . . . , dn) where
d1, . . . , dn are dimensions.

Every gradually typed system has a type Dyn, which represents the absence of static type
information. In our system, Dyn can appear as a dimension, in which case the dimension is
unknown. Dyn can also appear as a tensor annotation, in which case even the rank of the
tensor is unknown.

ECOOP 2024

29:4 Generalizing Shape Analysis with Gradual Types

In a gradual type system, a precision relation refers to the replacement of some of the
occurrences of Dyn with static types. Dyn is the least precise type because it contains no type
information. TensorType(1, 2, 3) and TensorType(1, 2) are unrelated by the precision relation
because we cannot go from one type to another by replacing Dyn occurrences with more
informative types, while TensorType(Dyn, 2) is less precise than TensorType(1, 2) because
we can replace the Dyn in
TensorType(Dyn, 2) with 1 to get TensorType(1, 2). This relation extends to programs.
Program A is less precise than program B if we can replace some occurrences of Dyn in
program A to get to program B. Intuitively, program B is more static than program A.
Precision gives rise to the migration space [12]. Given a well-typed program P , its migration
space is the set of well-typed programs that are at least as precise as P .

Intuitively, the migration space captures all ways of annotating a gradually typed program
more precisely. Those possibilities form a partially ordered set, and our goal is to help the
programmer find the migration paths they are looking for. With that in mind, let us look at
examples of how reasoning about the migration space is beneficial for solving key problems
about the shapes in a gradually typed program. Specifically, in Section 2, we will see two
examples about Q(1) and Q(2) respectively, and in Section 2, we will see an example about
Q(3).

For an example of static migration, consider Listing 1 which has a type error.

1 class ConvExample(torch.nn.Module):
2 def __init__(self):
3 super(BasicBlock, self).__init__()
4 self.conv1 = torch.nn.Conv2d(in_channels=2, ..)
5 self.conv2 = torch.nn.Conv2d(in_channels=4, ..)
6

7 def forward(self, x: TensorType([Dyn, Dyn])):
8 self.conv1(x)
9 return self.conv2(x)

Listing 1 Ill-typed convolution.

In line 7, x is annotated with TensorType([Dyn, Dyn]). This is a typical gradual typing
annotation which indicates that x is a rank-2 tensor. The annotation does not specify what
the dimensions are. In line 8, we are applying a convolution to x. Intuitively, convolution is
a variant of matrix multiplication; neural networks use it to extract features from images.
According to PyTorch’s documentation, for the convolution to succeed, x cannot be rank-2.
Thus, the type error stems from a wrong type annotation. The migration space of this
program can easily inform us that the program is ill-typed, because the space will be empty.
The reason for that is that the migration space of a well-typed program should contain at
least one element, which is the program itself. A tool that can reason about the migration
space can easily catch this bug in a single step.

Let us fix this bug by replacing the wrong type annotation with a correct one. In Listing 2,
we change x’s annotation from a rank-2 annotation to a rank-4 annotation: TensorType([Dyn,
Dyn, Dyn, Dyn], which is correct. This program compiles, but it contains a more subtle
bug. Let us look closely at the code to understand why.

In line 4, we initialize a field, self.conv1, representing a convolution, torch.nn.Conv2d,
which takes various parameters. The parameter that’s relevant to our point is called
in_channels and it is set to 2. In line 5, we are initializing another field, self.conv2, but
this time, we set the in_channels to 4. In line 7, we have a function that takes a variable x
and calls both convolutions on it in lines 8 and 9. To understand why this program contains
a bug, we must ask: how does the value of in_channels relate to x’s shape? PyTorch’s

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:5

documentation [14] states that in the simplest case, the input to a convolution has the shape
(N, in_channels, H,W). Indeed, in line 7, x is annotated with TensorType([Dyn, Dyn,
Dyn, Dyn], a typical gradual typing annotation indicating that x is a rank-4 tensor. The
annotation does not state what the dimensions are, but it is still consistent with the shape
stated in the documentation. Notice however that x’s second dimension should match the
value of in_channels, while we have two values for in_channels that do not match. This
mismatch will cause the program to crash if it ever receives any input, but not before. Our
key questions can help us discover the bug statically across all inputs.

1 class ConvExample(torch.nn.Module):
2 def __init__(self):
3 super(BasicBlock, self).__init__()
4 self.conv1 = torch.nn.Conv2d(in_channels=2, ...)
5 self.conv2 = torch.nn.Conv2d(in_channels=4, ...)
6

7 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):
8 self.conv1(x)
9 return self.conv2(x)

Listing 2 Gradually typed convolution.

By determining whether we can replace all the Dyn dimensions with numbers (which
is the answer to Q(1) from our key questions), we can discover that it is impossible to
assign a number to the second dimension of x and thus detect the error before running the
program. More generally, the absence of a static typing may reveal that a program cannot
run successfully on any input.

How can we benefit from the migration space to answer Q(1) and thus detect that this
program cannot be statically typed? The migration space for this program contains programs
where x is annotated to be a rank-4 tensor. A tool that can reason about the migration
space can then take an extra constraint on the second dimension of x. The constraint should
say that the second dimension must be a number. This constraint will narrow down the
migration space to an empty set. The reason is that there is no such well-typed program.
Therefore, we can conclude that the program cannot be statically typed because the second
dimension cannot be assigned a number.

Let us fix the bug. One way to fix the bug is by removing self.conv1 from the program.
We get the program in Listing 3.

1 class ConvExample(torch.nn.Module):
2 def __init__(self):
3 super(BasicBlock, self).__init__()
4 self.conv2 = torch.nn.Conv2d(in_channels=4, ..)
5 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):
6 return self.conv2(x)

Listing 3 Gradually typed convolution.

The program can run to completion and there can be various correct ways to annotate it.
The current annotation for the variable x is that it is a tensor with four dimensions, but
each dimension is denoted by Dyn, so the values of the dimensions are unknown. Suppose we
want to specify constraints on those dimensions and determine if there are valid migrations
that satisfy those constraints. This would be useful, not just for the user, but for compilers,
since they can use those constraints to optimize for resources.

We can require some of the dimensions of x to be static and then provide arithmetic
constraints on each of them. In this example, let us require all dimensions to be static. A
tool can accept four constraints indicating this requirement. Then it can accept constraints

ECOOP 2024

29:6 Generalizing Shape Analysis with Gradual Types

that specify ranges on those dimensions. For example, the first dimension could be between
5 and 20. The second dimension can only have one possible value, which is 4. So it is enough
to have a constraint requiring that dimension to be a number. The third dimension could
also be between 5 and 20, while the fourth dimension could be between 2 and 10.

By giving these constraints as input to a tool, we are constraining the space to only the
subspace that satisfies the constraints. A tool may find that this subspace indeed contains
programs and outputs one of them. As a result, we may get the program in Listing 4. As
shown, x has now been statically annotated with TensorType([19, 4, 19, 9]).

1 class ConvExample(torch.nn.Module):
2 def __init__(self):
3 super(BasicBlock, self).__init__()
4 self.conv2 = torch.nn.Conv2d(in_channels=4, ..)
5 def forward(self, x: TensorType([19, 4, 19, 9])):
6 return self.conv2(x)

Listing 4 Statically typed convolution.

1 class ConvControlFlow(torch.nn.Module):
2 def __init__(self):
3 super().__init__()
4 self.conv = torch.nn.Conv2d(
5 in_channels=512, out_channels=512, kernel_size=3)
6

7 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):
8 if self.conv(x).dim() == 4:
9 return torch.relu(x)

10 else:
11 return torch.nn.Dropout(x)

Listing 5 Branch elimination.

The program in Listing 5 can run to completion, and interestingly it contains control-flow
in the form of a branch. We want to eliminate this branch. We refer to eliminating branches
from a program by the term branch elimination. Eliminating branches enables programs to
run on back-ends where branches are undesirable. For example, HFTracer runs a program
on a single input and computes the result of the branch and eliminates it accordingly.
While the result of a branch could be fixed for all program inputs, the result may also vary.
Thus, running a program on just a single input to eliminate a branch yields unsatisfactory
branch elimination. We enable better branch elimination by finding all inputs for which a
branch evaluates to a given result by reasoning about the program statically. We provide
a mechanism to denote the set of inputs for which a branch evaluates to the given result.
Notice that we reason about the static information given. Thus, if a variable has type Dyn,
we optimistically assume that the program is well-typed and that the value for that variable
will have the appropriate type at runtime.

The program in Listing 5 contains a condition that depends on shape information. This
is a common situation, where ad-hoc shape-checks are inserted in a program to reason about
its shapes. Line 8 has function that takes a variable x and applies a convolution to it, with
self.conv(x), and a condition that checks if the rank of self.conv(x) is 4. Since x is
annotated as a rank-4 tensor on line 7, and convolution preserves the rank, self.conv(x)
must also be rank-4. So the condition must always be true under the information given by
x’s type annotation. We should be able to prove that the condition in line 8 always returns
true without receiving any input for the program, by inspecting all the valid types that
the program could possibly have. The migration space is useful for this analysis because it
captures all possible, valid type annotations for a program.

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:7

Thus, under the convolution type rules, if self.conv(x).dim() == 4 evaluates to true,
then x is also rank-4, which is consistent with x’s current annotation.

In contrast, if self.conv(x).dim() == 4 evaluates to false, i.e self.conv(x).dim()
!= 4 is true, then this means that x is not rank-4. However, the migration space of a
program can never include inconsistent ranks for a variable. Therefore, it is impossible to
have self.conv(x).dim() != 4, while also having that x is rank-4. A tool that reasons
about the migration space as well as arbitrary predicates can make this conclusion. In this
example, we can make a definitive conclusion about the result of this condition and we can
re-write our program accordingly, as shown in Listing 6. We will expand on and formalize
this idea in Section 5. In particular, we will detail how we reason about the migration space
in the presence of branches, and explain why our approach works.

1 class ConvControlFlow(torch.nn.Module):
2 def __init__(self):
3 super().__init__()
4 self.conv = torch.nn.Conv2d(
5 in_channels=512, out_channels=512, kernel_size=3)
6

7 def forward(self, x: TensorType([Dyn, Dyn, Dyn, Dyn])):
8 return torch.relu(x)

Listing 6 Branch elimination.

3 The Gradual Tensor Calculus

In this section, we describe our design choices, core calculus, and type system, and we prove
that our type system satisfy gradual typing criteria.

Our design choices are guided by enabling four key requirements: (1) modularity and
backwards compatibility, (2) tool support, (3) expressiveness, and (4) minimality of our
language. We have made these four choices in the context of tool support for PyTorch, but
they can be extended to other frameworks. Here, we outline those design choices.

First, we require our system to support modularity and backwards compatibility for
programs. A gradually typed system suits our needs because it supports partial type
annotations. One of the implications of this support is that gradually typed programs can
compile with any amount of type annotations. In a gradually typed system, a missing type
is represented by the Dyn type.

The Dyn type can sometimes be assigned to a variable that has been used in different
parts of the program with different, possibly inconsistent types. This type is useful when the
underlying static type system is not flexible enough to fully type that program. For example,
we may have a program that takes a batch of images with a dynamic batch size, as well
as dynamic sizes, but with a fixed number of channels. In this case, a possible type would
be TensorType(Dyn, 3, Dyn, Dyn), which indicates a batch of images, where the batch size is
dynamic and the sizes are dynamic but the number of channels, which is 3, is fixed. Another
example is that a variable could be assigned a rank-2 tensor at one point in the program,
then a rank-3 tensor at a different point. A suitable type for that variable could simply
be Dyn. In both examples, if we did not have the Dyn type, we would need more complex
annotations. The Dyn type allows the gradual type checker to admit programs statically,
and determine how to handle variables with Dyn types at runtime. The flexibility of gradual
types stems from the consistency relation, which is symmetric and reflexive but not transitive.
This relation allows a gradual type checker to statically admit programs in the absence of
type information.

ECOOP 2024

29:8 Generalizing Shape Analysis with Gradual Types

(Program) p ::= decl∗ return e

(Declaration) decl ::= x : τ
(Expression) e ::= x | reshape(e, τ) | Conv2D(cin, cout, κ, e) | add(e1, e2)

(Integer Tuple) κ ::= (c∗)
(Const) c ::= ⟨Nat⟩

(Tensor Type) t, τ ::= Dyn | TensorType([d1, . . . , dn])
(Static Tensor Type) S, T ::= TensorType([D1, . . . , Dn])

(Dimension Type) d, σ ::= Dyn | D
(Dimension) U,D ::= ⟨Nat⟩

x /∈ dom(Σ)
Σ, x →∗ Σ, 0, 1 (V ar Fail) x : R ∈ Σ

Σ, x →∗ Σ, R, 0 (V ar)

Σ, e →∗ Σ, R, 1
Σ, reshape(e, TensorType(d1, . . . , dn)) →∗ Σ, R, 1

(Reshape Fail)

Σ, e →∗ Σ, R, 1
Σ, Conv2D(cin, cout, κ, e) →∗ Σ, R, 1

(Conv2D Fail)

Σ, e1 →∗ Σ, R1, 1 ∨ Σ, e2 →∗ Σ, R2, 1
Σ, add(e1, e2) →∗ Σ, R2, 1

(Add Fail)

Σ, e →∗ σ,R, 0
Σ, reshape(e, TensorType(d1, . . . , dn)) →∗ Σ,Reshape(R, (d1, . . . , dn))

(Reshape)

Σ, e →∗ Σ, R, 0
Σ, Conv2D(cin, cout, κ, e) →∗ Σ,Conv2D(cin, cout, κ,R)

(Conv)

Σ, e1 →∗ Σ, R1, 0 Σ, e2 →∗ Σ, R2, 0
Σ, add(e1, e2) →∗ Σ,Add(R1, R2)

(Add)

Figure 1 Gradual tensor calculus, syntax and semantics.

Second, we require tool support. We design a simple type system for a core language to
enable us to define and solve problems for tool support in a tractable way. Tool support is
tractable because we define type migration syntactically. We base our approach on capturing
the migration space by extending the constraint-based approach of [12] to solve our three
key questions.

Third, we require our system to be expressive enough to capture non-trivial programs. Our
type system is more expressive than PyTorch’s existing type-system, which does not reason
about dimensions. Our language consists of a set of declarations followed by an expression.
This structure is a convenient representation for the PyTorch neural network models we
encountered, which mainly consisted of a function which takes a set of parameters. In the
function body are tensor operations applied on those parameters. This calculus structure is
inspired by the calculus from [18]. Rink highlighted that many DSLs can be mapped to their
language. Besides adapting the structure of that calculus, we choose three core operations
that present different challenges for tool support, and then extend our support to 50 PyTorch
operations.

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:9

Fourth, we require our language to be minimal so we can focus on our core problems.
First, we do not introduce branches to our core grammar since, in practice, all tools on which
we ran our experiments either do not accept programs with branches or aim to eliminate
branches. As [17] noted, many non-trivial tensor programs do not contain branches or
statements. In Section 5 we extend the core language with branches and we show how to
eliminate them.

Second, we do not consider runtime checks to support gradual types. Those checks
are often a bottleneck for the performance of gradually typed programs [25, 8]. There
has been extensive research to alleviate performance issues by weakening these checks. As
shown by [7], the notion of soundness in gradual types is not an all-or-nothing concept. [7]
discuss three notions of soundness at different levels of strength and how they relate to
performance: higher-order embedding of [26], first-order embedding, as seen in Reticulated
Python [28] and erasure embedding, as seen in TypeScript [4]. Similar to [18] and [17],
we observe that a language free from higher-order constructs represents a large subset of
programs that are written in the machine learning area. As such, runtime errors are not as
interesting when compared to those that arise in languages with constructs such as branches
and lambda-abstraction. Furthermore, runtime checks impose a computation cost on already
costly tensor computations. A key goal of tensor programming is high performance so adding
run-time checks seems undesirable. Thus, we leave out runtime aspects in this paper.

Figure 1 shows our core calculus. A program consists of a list of declarations followed
by a return statement that evaluates an expression. We use ϵ to denote the empty list of
declarations. The program takes its input via those declarations. The dynamic type is
denoted by Dyn. A dimension can be Dyn, and a tensor can also be Dyn. A tensor is denoted
by the constructor TensorType(σ1, . . . , σn) where σ1, . . . , σn are dimensions. However, if we
denote a dimension by U or D, it means the dimension is a number and cannot be Dyn. Our
language has four kinds of expressions. A variable x refers to one of the declared variables.
The expression add(e1, e2) adds two tensors e1 and e2. The expression reshape(e, τ) takes an
expression e and a shape τ and reshapes e to a new tensor of shape τ if possible. Reshaping
can be thought of as a re-arrangement of a tensor’s elements. That requires the initial
tensor to have the same number of elements as the reshaped tensor. We require that τ
can have a maximum of one Dyn dimension. Finally the expression Conv2D(cin, cout, κ, e)
applies a convolution to e, given a number representing the input channel cin, a number
representing the output channel cout, and a pair of numbers representing the kernel κ. For
example, in Listing 2, we had self.conv1(x), which in our calculus can be expressed as
Conv2D(2, 2, (2, 2), x). The full version of convolution in PyTorch has more parameters. We
have accounted for those parameters in our implementation, but because they create no new
problems for us, our quest for minimality led us to leaving them out.

The operational semantics in Figure 1 evaluates an expression in an environment Σ that
maps each declared variable to a tensor constant. Specifically, if e is an expression, R is
a tensor constant, and E an error state (0 for success, 1 for failure), then the judgment
Σ, e →∗ R,E means that e evaluates to R in error state E.

The semantics uses the helper functions Add, Reshape, and Conv2D that each produces
both a tensor constant and an error state. In Appendix C, we give full details of those
functions and we state their key properties. Here we summarize what they do. The function
Add extracts shapes from T1 and T2 and pads them such that they match, and then checks if
the tensors are broadcastable based on the updated shapes. If they are not broadcastable, it
returns the empty tensor with E = 1. Otherwise, it expands the tensors T1 and T2 according
to the broadcasting rules of PyTorch that we omit here. It initializes a resulting tensor with

ECOOP 2024

29:10 Generalizing Shape Analysis with Gradual Types

Consistency
τ ∼ τ (c-refl-t) d ∼ d (c-refl-d) d ∼ Dyn (d-refl-dyn) τ ∼ Dyn (t-refl-dyn)

t ∼ τ
τ ∼ t

(c-sym-t) d ∼ σ
σ ∼ d

(c-sym-d)

∀i ∈ {1, . . . , n} : di ∼ d′
i

TensorType(d1, . . . , dn) ∼ TensorType(d′
1, . . . , d

′
n)

(c-tensor)

Type Precision

τ ⊑ τ (refl-t) d ⊑ d (c-refl-d) Dyn ⊑ d (refl-dyn-1) Dyn ⊑ τ (refl-dyn-2)
∀i ∈ {1, . . . , n} : di ⊑ d′

i

TensorType(d1, . . . , dn) ⊑ TensorType(d′
1, . . . , d

′
n)

(p-tensor)

Program and Expression Precision

∀i ∈ {1, . . . , n} : decl′
i ⊑ decli e′ ⊑ e

decl′
1, . . . , decl′

n return e′ ⊑ decl1, . . . , decln return e
(p-prog) τ ′ ⊑ τ

x : τ ′ ⊑ x : τ
(p-decl)

e ⊑ e (p-refl)
Matching

TensorType(τ1, . . . , τn) ✄n TensorType(τ1, . . . , τn)
Dyn ✄n TensorType(l) where l = [Dyn, . . . , Dyn] and |l| = n

Static context formation

ϵ ⊢ ∅
(s-empty) decl∗ ⊢ Γ x /∈ dom(Γ)

decl∗ x : τ ⊢ Γ, x : τ (s-var)

Figure 2 Auxiliary functions.

the broadcasted dimensions and perform element-wise addition between the broadcasted
tensors and return that tensor with E = 0. The function Reshape performs dimension
checks to ensure that reshaping is possible, returning the empty tensor and E = 1 if the
checks fails. Otherwise, it performs reshaping and returns the reshaped tensor with E = 0.
The function Conv2D extracts the dimensions of the input tensor I, as well the dimensions
for the kernel κ and uses them to determine the size of the output tensor. It then performs
convolution and populates the output tensor one element at a time and return the updated
tensor along with E = 0.

The semantics satisfies the following theorem, which says that in an environment, an
expression evaluates to a tensor but may end with failure.

▶ Theorem 1. ∀Σ, e : ∃ a tensor constant R : ∃E ∈ {0, 1} : Σ, e →∗ R,E.

Figure 2 contains gradual typing relations that are used in our gradual typechecking, as
well as the static context formation rules. Those relations allow the typechecker to reason
about the Dyn type. Matching, denoted by ✄, and consistency, denoted by ∼, are standard
in gradual typing and are lifted from equality in the static counter part of the system.
Matching and consistency are both weaker than equality because they account for absent
type information. Thus, if some type information is missing, matching and consistency
apply. Matching is a relation that pattern-matches two types. It is useful for arrow types

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:11

decl∗ ⊢ Γ Γ ⊢ e : τ
⊢ decl∗ return e ok

(ok-prog) x : τ ∈ Γ
Γ ⊢ x : τ (t-var)

Γ ⊢ e : TensorType(D1, . . . , Dn)
∏n

1 Di =
∏m

1 Ui

Γ ⊢ reshape(e, TensorType(U1, . . . , Um)) : TensorType(U1, . . . , Um)
(t-reshape-s)

Γ ⊢ e : TensorType(σ1, . . . , σm)
m∏
1
σi mod

n∏
1
di = 0 ∨

n∏
1
di mod

m∏
1
σi = 0 ∀di, σi ̸= Dyn and

Dyn occurs exactly once in d1,, dm, σ1, . . . , σn, or
Dyn occurs more than once in d1,, dm,

Γ ⊢ reshape(e, TensorType(d1, . . . , dn)) : TensorType(d1, . . . , dn)
(t-reshape-g)

Γ ⊢ e : τ where either τ = Dyn, or τ = TensorType(σ1 . . . σn) and
Dyn occurs more than once with at least one occurrence in δ and σ1,, σm,

Γ ⊢ reshape(e, δ) : δ
(t-reshape)

Γ ⊢ e : t t✄4 TensorType(σ1, σ2, σ3, σ4) τ = calc-conv(t, cout, κ) cin ∼ σ2

Γ ⊢ Conv2D(cin, cout, κ, e) : τ
(t-conv)

Γ ⊢ e1 : t1 Γ ⊢ e2 : t2 (τ1, τ2) = apply-broadcasting(t1, t2) τ1 ∼ τ2

Γ ⊢ add(e1, e2) : τ1 ⊔∗ τ2
(t-add)

Figure 3 Type rules.

in traditional type systems. Specifically, an arrow type t1 → t2 matches itself. Type Dyn
matches Dyn → Dyn. The ability to expand Dyn to become a function type Dyn → Dyn is
valid in gradual types because it allows the system to optimistically consider the type Dyn
to be Dyn → Dyn. We have adapted this definition to our system. First, we annotated
matching with a number n to denote the number of dimensions involved. So we have that
TensorType(τ1, . . . , τn) ✄n TensorType(τ1, . . . , τn) because any type matches itself. Similar
to how traditionally, Dyn✄Dyn → Dyn, we have that Dyn✄n TensorType(Dyn, . . . , Dyn), where
Dyn, . . . , Dyn are exactly n dimensions. Throughout this paper, we will only use matching
with i = 4 so we may use matching as ✄ instead of ✄4. Consistency is a symmetric, reflexive,
and non-transitive relation that checks that two types are equal, up to the known parts
of the types. For example, the type Dyn contains no information, so it is consistent with
any type, while the dimensions 3 and 4 are inconsistent because they are unequal. Figure 2
contains the formal definitions for matching and consistency. The judgment decl∗ ⊢ Γ says
that from the declarations decl∗ we get the environment Γ. We do static context formation
with the rules (s-empty) and (s-var).

Figure 3 shows our type rules. We use shorthands that are defined in Appendix B. Let
us go over each type rule in detail. ok-prog and t-var are standard.

t-reshape-s is the static type rule for reshape. It models that for reshape to succeed, the
product of the dimensions of the input tensor shape must equal the product of dimensions of
the desired shape. t-reshape-g assumes we have one missing dimension. Here we are modeling
that PyTorch allows a programmer to leave one dimension as unknown (denoted by -1)
because the system can deduce the dimension at runtime, see https://pytorch.org/docs/

ECOOP 2024

https://pytorch.org/docs/stable/generated/torch.reshape.html
https://pytorch.org/docs/stable/generated/torch.reshape.html

29:12 Generalizing Shape Analysis with Gradual Types

stable/generated/torch.reshape.html. We can still determine if reshaping is possible
using the modulo operation instead of multiplication. In this approach, we admit a program
if we cannot prove it is ill-typed statically. t-reshape admits the expression if too many
dimensions are missing.

To maintain minimality, t-conv deals with only the rank-4 case of convolution. t-conv
expects a rank-4 tensor, so it uses matching (✄4) to check the rank. Next, cin should be
equal to the second dimension of the input, so the rule uses a consistency (∼) check. Since
the output of a convolution should also be rank-4, then apply calc-conv which, given a
rank-4 input and the convolution parameters, computes the dimensions of the output shape.
If a dimension is Dyn, then the corresponding output dimension will also be Dyn.

Finally, t-add adds two dimensions. Unlike scalar addition, the types of the operands do
not have to be consistent. The reason is that broadcasting may take place. Broadcasting
is a mechanism that considers two tensors and matches their dimensions. Two tensors are
broadcastable if the following rules hold:
1. Each tensor has at least one dimension
2. When iterating over the dimension sizes, starting at the trailing dimension, the dimension

sizes must either be equal, one of them is 1, or one of them does not exist
That tensors involved in broadcasting do not actually get modified to represent the mod-
ified shapes. This implies that the input shapes are not always consistent. Instead, the
broadcasted result is only reflected in the output of the operation. Therefore, we have
defined apply-broadcasting to simulate broadcasting on the inputs and consider what the
types for these inputs would be, if broadcasting was to actually modify the inputs. In a
static type system, the types of the modified inputs should be equal for addition to succeed.
In gradual types, the types of the modified inputs should be consistent because equality
lifts to consistency. We accomplish these requirements in our type rule. In particular,
apply-broadcasting takes care of broadcasting the dimensions. Suppose that we are adding
a tensor of shape TensorType(Dyn, 2, Dyn) to a tensor of size TensorType(1, 2, 2). Then the
output must be TensorType(Dyn, 2, 2). The reason is that the first Dyn could be any number
as per the broadcasting rules. So we cannot assume its value. The last dimension; however,
must be 2 according to the rules. We have that:

apply-broadcasting(TensorType(Dyn, 2, Dyn), TensorType(1, 2, 2)) =
(TensorType(Dyn, 2, Dyn), TensorType(Dyn, 2, 2))

After simulating broadcasting, we may proceed as if we are dealing with regular addition.
In other words, we check that the modified dimensions are consistent and get the least upper
bound: TensorType(Dyn, 2, Dyn) ⊔ TensorType(Dyn, 2, 2) = TensorType(Dyn, 2, 2).

We will cover one last special case for addition. Simply applying the least upper bound
to the modified input types of addition is not general enough to cover the following case.
Suppose we are adding a tensor of shape Dyn to a tensor of shape TensorType(1, 2), then
we must output Dyn because the output type could be a range of possibilities. In this case,
apply-broadcasting does not modify the types because the tensor of shape Dyn could range
over many possibilities. We then apply our modified version of the least upper bound denoted
by ⊔∗, which behaves exactly like ⊔ except when one of the inputs is Dyn, where it returns
Dyn to get that: TensorType(1, 2) ⊔∗ Dyn = Dyn.

We prove that our type system satisfies the static criteria from [23]. First, we prove the
static gradual guarantee, which describes the structure of the migration space. Second, we
prove the conservative extension theorem, which shows that our gradual calculus subsumes
its static counter-part in Appendix A. This result is no coincidence: we first designed the

https://pytorch.org/docs/stable/generated/torch.reshape.html
https://pytorch.org/docs/stable/generated/torch.reshape.html
https://pytorch.org/docs/stable/generated/torch.reshape.html

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:13

statically typed calculus in Appendix A and then we gradualized it according to [6]. We
denote a well-typed program in the statically typed tensor calculus by ⊢st p : ok. The full
definitions and proofs can be found in Appendix D.

▶ Theorem 2 (Monotonicity w.r.t precision). ∀p, p′ : if ⊢ p : ok ∧ p′ ⊑ p then ⊢ p′ : ok.

▶ Theorem 3 (Conservative Extension). For all static p, we have: ⊢st p : ok iff ⊢ p : ok

4 The Migration Problem as a constraint satisfiability problem

A migration is a more static, well-typed version of a program. We can define that P ′ is
a migration of P (which we write P ≤ P ′) iff (P ⊑ P ′ ∧ ⊢ P ′ : ok). Given P , we define
the set of migrations of P : Mig(P) = {P ′ | P ≤ P ′}. Our goal is to use constraints to
capture the migration space. Every solution to our constraints for a program must map to a
corresponding migration for the same program. In other words, one satisfying assignment to
the constraints results in one migration.

Our approach involves defining constraints whose solutions are order-isomorphic with
the migration space. However, due to the arithmetic nature of our constraints, our solution
procedure uses an SMT solver to find a satisfying assignment, which would equate to finding
a migration. Later in this paper, we will show how to use this framework to answer our three
key questions.

We have two grammars of constraints, see Figure 4: one for source constraints and one
for target constraints. We will generate source constraints and then map them to target
constraints (as explained in Appendix E), and finally process the target constraints by an
SMT solver. Having two grammars is not strictly necessary, but it makes the constraint
generation process more tractable and simplifies the presentation. We can view the source
grammar as syntactic sugar for the target grammar.

Our source constraint grammar has fourteen forms of constraints, the most interesting
of which we will introduce here. A precision constraint is of the form τ ⊑ x. Here, x
indicates a type variable for the variable x from the program. Thus, x in the constraint
τ ⊑ x captures all types that are more precise than τ . Because we prioritize tractability of
the migration space, we set the upper bound of tensor ranks to 4, via a constraint of the form
|[[e]]| ≤ 4. We make this decision because all benchmarks we considered had only tensors with
ranks that are upper-bounded by this number. We also have consistency constraints of the
form D ∼ δ, ⟨e⟩ ∼ ⟨e⟩, matching constraints of the form [[e]] ✄ TensorType(δ1, δ2, δ3, δ4), and
least upper bound constraints of the form ⟨e⟩ ⊔∗ ⟨e⟩. Those are gradual typing constraints
that we use to faithfully model our gradual typing rules. Our constraint grammar also
contains short-hands such as can-reshape([[e]], δ) and apply-broadcasting([[e]], [[e]]). Those
short-hands are good for representing the type rules as well. can-reshape expands to further
constraints which evaluate to true if [[e]] can be reshaped to δ. Similarly, when expanded,
apply-broadcasting([[e]], [[e]]) captures all possible ways to broadcast two types.

In our target constraint grammar, we use n to range over integer constants. We use v as a
meta variable that ranges over variables that, in turn, range over TensorType(list(ζ))∪{Dyn}
and we use ζ as a meta variable that ranges over variables that range over IntConst∪{Dyn}.
This grammar is useful for our constraint resolution process. In particular, the first step of
solving our constraints is to translate them to low-level constraints, drawn from our target
grammar, before feeding them to an SMT solver.

Since our constraints involve gradual types, let us describe how we encoded types so that
they can be understood by an SMT solver. Because we fixed the upper bound for tensor
ranks to be 4, we chose to encode tensor types as uninterpreted functions, which means

ECOOP 2024

29:14 Generalizing Shape Analysis with Gradual Types

(Source Constraints) ψ ::= ψ ∧ ψ | ψ ∨ ψ | True | [[x]] = x | [[e]] = τ | τ ⊑ x |
|[[e]]| ≤ 4 | D ∼ δ | ⟨e⟩ ∼ ⟨e⟩ |
[[e]] ✄ TensorType(ζ1, ζ2, ζ3, ζ4) |
[[e]] = ⟨e⟩ ⊔∗ ⟨e⟩ | can-reshape([[e]], δ) |
[[e]] = calc-conv([[e]], cout, κ) |
⟨e⟩, ⟨e⟩ = apply-broadcasting([[e]], [[e]])

(Target Constraints) ψ ::= ψ ∧ ψ | ψ ∨ ψ | ¬ψ | True |
v = TensorType(ζ, . . . , ζ) |
v = Dyn | v = v | ζ = n | ζ = Dyn | ζ = ζ |
ζ = ζ · n+ n | (ζ1 · . . . · ζm) mod (ζ ′

1 · . . . · ζ ′
n) = 0

Figure 4 Source constraints and target constraints.

that we have a constructor for each of our ranks, of the form TensorType1, TensorType2,
TensorType3, and TensorType4. Each of the functions take a list of dimensions. Moving
on to the dimensions, we have that dimensions are either Dyn or natural numbers. We can
easily represent natural numbers in an SMT solver but we must also represent Dyn. One way
to encode a Dyn dimension d is as a pair (d1, d2). If d1 = 0, then d = Dyn. Otherwise, d is a
number, and its value is in d2. Let us formalize the constraint generation process next.

From p, we generate constraints Gen(p) as follows. Let p have the form decl∗ return e.
Let X be the set of declaration-variables x occurring in e, and let Y be a set of variables
disjoint from X consisting of a variable [[e′]] for every occurrence of the subterm e′ in e. Let
Z be a set of variables disjoint from X and Y consisting of a variable ⟨e1⟩, ⟨e2⟩ for every
occurrence of the subterm add(e1, e2) in e. Finally, let V be a set of variables disjoint from
X, Y , and Z consisting of dimension variables ζ. The notations [[e]] and ⟨e⟩ are ambiguous
because there may be more than one occurrence of some subterm e′ in e or some subterm e′′

in e. However, it will always be clear from context which occurrence is meant. For every
occurrence of ζ, it is implicit that we have a constraint 0 ≤ ζ to ensure that the solver assigns
a dimension in N. We omit writing this explicitly for simplicity. With that in mind, we
generate the constraints in Figure 5. Let us go over the rules in Figure 5. The rules use
judgments of the form ⊢ x : τ : ψ for declarations, and it uses judgments of the form ⊢ e : ψ
for expressions. In both cases, ψ is the generated constraint.

t-decl uses the precision relation ⊑ to insure that a migration will have a more precise
type, while t-var propagates the type information from declarations to the program.

t-reshape considers all possibilities of reshaping any tensor e with rank, at most 4, via
the constraint [[e]] ≤ 4. This restriction constraint captures all rank possibilities for [[e]] in
addition to [[e]] being Dyn. For each possibility, the number of occurrences of Dyn in δ and
[[e]] varies. This impacts the arithmetic constraints that make reshaping possible, as we can
see from the typing rules. As such, can-reshape simulates all such possibilities and generates
the appropriate constraints.

t-conv contains matching and consistency constraints, to model matching and consistency
in convolution’s typing rule. We have a constraint calc-conv, which generates the appropriate
arithmetic constraints for the output of the convolution, based on the convolution typing
rule, again accounting for the possibility of the input e having a gradual type.

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:15

⊢ x : τ : τ ⊑ x ∧ |x| ≤ 4
(t-decl)

⊢ x : x = [[x]]
(t-var)

⊢ e : ψ

⊢ reshape(e, δ) : ψ ∧ [[reshape(e, δ)]] = δ ∧ can-reshape([[e]], δ) ∧ |[[e]]| ≤ 4
(t-reshape)

⊢ e : ψ
⊢ Conv2D(cin, cout, κ, e) : ψ ∧ [[e]] ✄ TensorType(ζ1, ζ2, ζ3, ζ4) ∧ cin ∼ ζ2 ∧

[[Conv2D(cin, cout, κ, e)]] = calc-conv([[e]], cout, κ)

(t-conv)

⊢ e1 : ψ1 ⊢ e2 : ψ2

⊢ add(e1, e2) : ψ1 ∧ ψ2 ∧ [[add(e1, e2)]] = ⟨e1⟩ ⊔∗ ⟨e2⟩ ∧
(⟨e1⟩, ⟨e2⟩) = apply-broadcasting([[e1]], [[e2]]) ∧ ⟨e1⟩ ∼ ⟨e2⟩ ∧

|[[e1]]| ≤ 4 ∧ |[[e2]]| ≤ 4 ∧ |[[add(e1, e2)]]| ≤ 4

(t-add)

Figure 5 Constraint generation.

t-add contains least upper bound constraints and consistency constraints, similar to the
add typing rule. We constrain the inputs e1 and e2, as well as the expression itself, add(e1, e2)
to all be either Dyn or tensor of at most rank-4, via a ≤ constraint. We use the function
apply-broadcasting, which simulates broadcasting on the shapes, on dummy variables ⟨e1⟩
and ⟨e2⟩ (notice that the real shapes of e1 and e2 are represented by [[e1]] and [[e2]]). We
check ⟨e1⟩ and ⟨e2⟩ for consistency and obtain the least upper bound.

Let φ be a mapping from tensor-type variables to TensorType(list(ζ)) ∪ {Dyn}, and also
from dimension-type variables to IntConst ∪ {Dyn}. We define that a target constraint ψ
has solution φ, written φ |= ψ, in the following way:

The following is true: Provided:
φ |= ψ ∧ ψ′ φ |= ψ and φ |= ψ′

φ |= ψ ∨ ψ′ φ |= ψ or φ |= ψ′

φ |= ¬ψ not (φ |= ψ)
φ |= True always
φ |= v = TensorType(ζ1, . . . ζn) φ(v) = TensorType(φ(ζ1), . . . φ(ζn))
φ |= v = Dyn φ(v) = Dyn
φ |= v = v′ φ(v) = φ(v′)
φ |= ζ = n φ(ζ) = n

φ |= ζ = Dyn φ(ζ) = Dyn
φ |= ζ = ζ ′ φ(ζ) = φ(ζ ′)
φ |= ζ = ζ · n+ n′ φ(ζ) = φ(ζ ′) · n+ n′

φ |= (ζ1 · . . . · ζm)mod (ζ ′
1 · . . . · ζ ′

n) = 0 (φ(ζ1) · . . . · φ(ζm))mod (φ(ζ ′
1) · . . . · φ(ζ ′

n)) = 0

▶ Definition 4. φ ≤ φ′ iff dom(φ) = dom(φ′) ∧ ∀x ∈ dom(φ) : φ(x) ⊑ φ′(x)

Let Gen(P) be the constraint generation function and Sol(C) be the set of solutions to
constraints C. Then we can state the order-isomorphism theorem as follows:

▶ Theorem 5 (Order-Isomorphism).
∀P : (Mig(P),⊑) and (Sol(Gen(P)),≤) are order-isomorphic.

ECOOP 2024

29:16 Generalizing Shape Analysis with Gradual Types

The order-isomorphism theorem states that we have captured the migration-space with
our constraints such that, for a given program, the solution space and the migration-space
are order-isomorphic. For the proof, see Appendix F.

Our algorithm for code annotation is shown in Algorithm 1.

Algorithm 1 Code annotation.

Input: Program P

Output: Annotated program P ′

1: Constraint Generation. Generate constraints C = Gen(P).
2: Constraint Solving. Solve C and get a solution φ that maps variables to types.
3: Program Annotation. In P , replace each declaration x : τ with x : φ(x), to get P ′.

Let us now revisit Listing 1 but this time with variable x annotated by Dyn. We will
show how to migrate a calculus version of the program by generating constraints and passing
them to an SMT solver. Let us recall that this listing had two expressions that map to the
following expressions in our calculus: Conv2D(2, 2, (2, 2), x) and Conv2D(4, 2, (2, 2), x).

The first step is to generate high-level constraints:

Dyn ⊑ v1 (1)
v1 ≤ 4 (2)

v1 ✄ TensorType(ζ3, ζ4, ζ5, ζ6) (3)
2 ∼ ζ4 (4)

v2 = calc-conv(v1, 2, (2, 2), (2, 2), (2, 2), (2, 2)) (5)
v1 ✄ TensorType(ζ9, ζ10, ζ11, ζ12) (6)

4 ∼ ζ10 (7)
v8 = calc-conv(v1, 2, (2, 2), (2, 2), (2, 2), (2, 2)) (8)

Let us go over what each equation is for. Constraint (1) denotes that the type annotation
for the variable x must be as precise or more precise than Dyn. Constraint (2) denotes that
the type annotation for x could either be Dyn or a tensor with at most four dimensions. We
use the ≤ notation to denote this. Notice that the type variable for x is v1. Constraints
(3), (4), and (5) are for Conv2D(2, 2, (2, 2), x), while constraints (6), (7), and (8) are for
Conv2D(4, 2, (2, 2), x). More specifically, constraints (3) and (6) determine the input shape of
a convolution while constraints (5) and (8) determine the output shape of a convolution.

The main differences between the constraints for our core calculus and the ones in our
implementation is that calc-conv takes some additional parameters in our implementation
because we have implemented the full version of convolution.

The constraints above are high-level constraints which are yet to be expanded. For
example, ✄ and ≤ constraints get transformed to equality constraints. We will skip writing
out the resulting constraints for simplicity. After expanding these constraints and running
them through an SMT solver, we get a satisfying assignment. In case multiple satisfying
assignments exist, we use the one that the SMT solver picks. The fact that we got a satisfying
assignment lets us know that the migration space is non-empty, which means that the
program is well-typed. Let us go through some of relevant assignments:

φ(v1) = Dyn

φ(v2) = TensorType(Dyn, 2, Dyn, Dyn)
φ(v8) = TensorType(Dyn, 2, Dyn, Dyn))

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:17

Here, v1 is the type of x, v2 is the type of the first convolution and v8 is the type of the second
convolution. We can see that these assignments are a valid typing to the program because
the outputs of both convolutions should be 4-dimensional tensors with the second dimension
being 2, which stands for the output channel. And since the input x has been assigned Dyn
by our SMT solver, we cannot determine the last two dimensions of a convolution output.
While this is a reasonable output, it may not be helpful to the programmer. Furthermore,
this program would not accept any concrete output. We know this from our constraints.
From constraints (3) and (7), we have that ζ4 = ζ10. Then from (4), (8), which are 2 ∼
ζ4 and 4 ∼ ζ10, we can see that the only satisfying solution is Dyn. This means that the
program cannot be statically typed. Next, we will see how to prove this formally.

Let us discuss how to extend our approach to solve Q(1) and Q(2). In the example above,
the migration space is non-empty and we may want to know if we can statically type the
program. We have established that we cannot. As a first step, we may want to take our
core constraints above, which we will call C, and restrict the input to a rank-4 tensor. So
we can consider the constraint C ∧ x = TensorType(ζ ′

1, ζ
′
2, ζ

′
3, ζ

′
4) where ζ ′

1, . . . , ζ
′
4 are fresh

variables. We can begin to impose restrictions on ζ ′
1, . . . , ζ

′
4 to make them concrete variables.

For example, if we restrict the last dimension to be a number, we can add the constraint
ζ ′

4 ̸= Dyn. After running our constraints through the solver, we get the following assignments:

φ(v1) = TensorType(Dyn, Dyn, Dyn, 28470)
φ(v2) = TensorType(Dyn, 2, Dyn, 14236)
φ(v8) = TensorType(Dyn, 2, Dyn, 14236)

To prove that no concrete assignment to the second dimension of x is possible, we simply
add ζ ′

2 ̸= Dyn to our original constraints and the constraints will be unsatisfiable, so we
conclude that the second dimension of x can only be Dyn.

We can also answer Q(2) by feeding the solver additional arithmetic constraints about
dimensions. In our example, if we want the first dimension of x to be between 3 and 10, we
can add the constraint ζ ′

1 <= 3 ∧ ζ ′
1 >= 10 to C ∧ x = TensorType(ζ ′

1, ζ
′
2, ζ

′
3, ζ

′
4) and rerun

our solver.
Our migration solution is based on a satisfiability problem: is our migration problem

decidable? If so, what is the time complexity? The migration problem is decidable if the
underlying constraints are drawn from a decidable theory. Those underlying constraints
are the ones given by the grammar in Section 4. Let us for a moment ignore constraints of
the form (ζ1 · . . . · ζm) mod (ζ ′

1 · . . . · ζ ′
n) = 0. We observe that all the other constraints are

drawn from a well-known decidable theory. Specifically, the other constraints are drawn from
quantifier-free Presburger arithmetic extended with uninterpreted functions and equality.
The satisfiability problem for this theory is NP-complete [21]. Once we add constraints
of the form (ζ1 · . . . · ζm) mod (ζ ′

1 · . . . · ζ ′
n) = 0, the decidability-status of the satisfiability

problem is unknown, to the best of our knowledge. Fortunately, only three operations
need this additional constraint: Reshape, View, or Flatten. All the other 47 operations
that our implementation supports need only constraints in the NP-complete subset. Our
implementation translates all of the constraints to Z3 format, and while our benchmarks do
need constraints outside the NP-complete subset, our experiments terminated. In every case,
Z3 terminated with either sat or unsat. Thus, the generated constraints are simple enough
for Z3 to solve, even if the general case is undecidable.

The complexity of migration depends on the size of the constraint we generate. The
bottleneck is the ≤ constraint; let us see how to expand it.

From: |[[e]]| ≤ 4
To: [[e]] = Dyn ∨ [[e]] = TensorType(ζ1) ∨ . . . ∨ [[e]] = TensorType(ζ1, ζ2, ζ3, ζ4)

ECOOP 2024

29:18 Generalizing Shape Analysis with Gradual Types

where ζ1, . . . , ζ4 are fresh variables. This yields a complexity of 4n in the number of ≤
constraints. So assuming that any additional constraints are drawn from the NP-complete
subset, the problem will still be decidable. Note that if we are working with a fixed rank,
then these constraints will be generated in polynomial time in the size of the program. Below
we will see how solving the problem for a fixed rank has practical benefits.

5 Extending our approach to do Branch Elimination

We introduce our approach to branch elimination via the following example.
1 class ReshapeControlFlow(torch.nn.Module):
2 def __init__(self):
3 super().__init__()
4

5 def forward(self, x: Dyn):
6 if x.reshape(100).size()[0] < 100:
7 return torch.dropout(x, p=0.5, train=False)
8 else:
9 return torch.relu(x)

Listing 7 An example of graph-break elimination

In contrast to listing 5, where the conditional depends of the rank of the input, listing 7 has
a conditional that depends on the value of one of the dimensions in the input shape. Listing
7 uses the reshape function, which takes a tensor and re-arranges its elements according
to the desired shape. In this case, we reshape x to have the shape TensorType([100]). For
reshaping to succeed, the initial tensor must contain the same number of elements as the
reshaped tensor. Notice that since x is typed as Dyn, the program will type check. In
the expression x.reshape(100).size(), the expression size() will return the shape of
x.reshape(100), which is [100]. We are then getting the first dimension of the shape in the
expression x.reshape(100).size()[0], which is 100. Thus, by inspecting the conditional if
x.reshape(100).size()[0] < 100, we can see that the conditional should always evaluate
to false. Thus, we can remove the true branch from the program and produce listing 8.
In contrast, TorchDynamo breaks Listing 7 into two different programs: one for when the
condition evaluates to true, and another for when the condition evaluates to false.

1 class ReshapeControlFlow(torch.nn.Module):
2 def __init__(self):
3 super().__init__()
4

5 def forward(self, x: Dyn):
6 return torch.relu(x)

Listing 8 An example of graph-break elimination

Let us see an example of how to extend our constraint-based solution to eliminate the
extra branch. For listing 7, here are the constraints for x.reshape(100).size()[0] in line
6. The variable ζ4 is for the result of the entire expression. Note that the PyTorch expression
x.reshape(100) is the same as the calculus expression reshape(x, TensorType(100)).

Dyn ⊑ v1 ∧ v1 ≤ 4 (1)
v2 = TensorType(100) ∧ can-reshape(v1, TensorType(100)) (2)
v2 = v3 (3)
(v3 = Dyn ∧ ζ4 = Dyn) ∨ ((ζ4 = GetItem(v3, 1, 0) ∨ ζ4 = GetItem(v3, 2, 0) ∨

ζ4 = GetItem(v3, 3, 0) ∨ ζ4 = GetItem(v3, 4, 0)) (4)

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:19

Above, the constraint (1) is for x. Notice that v1 is the type variable for x. Constraint
(2) is for reshape(x, TensorType(100)). Next, when encountering the size function in
a program, we simply propagate the shape at hand with an equality constraint, which is
seen in equation (3). If we are indexing into a shape, we consider all the possibilities for
the sizes of that shape and generate constraints accordingly. In particular, we have that
(v3 = Dyn ∧ ζ4 = Dyn) because a shape could be dynamic, which means that if we index
into it, we get a Dyn dimension. But since we restricted our rank to 4, we can consider the
possibilities of the index being 1, 2, 3 or 4, which is what the remaining constraints do.

We extend our constraint grammar with constructs that enable us to represent size()
and indexing into shapes. This includes constraints of the form ζ = GetItem(v, c, i), where v
is the shape we are indexing into, c is the assumed tensor rank, and i is the index of the
element we want to get. We can map the new constraints to Z3 constraints easily.

Next we generate a constraint (ζ4 < 100) for the condition and a constraint ¬(ζ4 < 100)
for its negation. If C are the constraints for the program up to the point of encountering a
branch, then we generate both C ∧ ζ4 < 100 and C ∧ ¬(ζ4 < 100).

We evaluate both sets of constraints. One set must be satisfiable while the other must be
unsatisfiable for us to remove the branch. If we are unable to remove the branch. this means
that the input set is still too general such that for some inputs, the branch may evaluate to
true and for other inputs, the branch may evaluate to false. In such case, we can ask the user
to capture a stricter subset of the input by further constraining it. We can then re-evaluate
our constraints again to see if we are able to remove the branch.

We extend our grammar with conditional expressions if cond then e1 else e2. Algorithm 2
describes how to eliminate a single branch.

Algorithm 2 Branch elimination.

Input: Program p.
Output: A possibly modified p with a branch eliminated.

1: Let C = the constraints for p up to encountering a branch if cond then e1 else e2.
2: Let ccond = the constraints for cond.
3: if (C ∧ ccond) is satisfiable and (C ∧ ¬ccond) is unsatisfiable then
4: Rewrite the branch to e1
5: else if (C ∧ ccond) is unsatisfiable and (C ∧ ¬ccond) is satisfiable then
6: Rewrite the branch to e2
7: else
8: Require the user to change the shape information
9: end if

6 Implementation

PyTorch has three tool-kits that rely on symbolic tracers [3]. Let us go over each one. First,
torch.fx [17] is a common PyTorch tool-kit and has a symbolic tracer. Symbolic tracing
is a process of extracting a more specialized program representation from a program, for
the purpose of analysis, optimization, serialization, etc. torch.fx does not accept programs
containing branches and the torch.fx authors emphasize that “most neural networks are
expressible as flat sequences of tensor operations without control flow such as if-statements
or loops [17]”. HFtracer [29] eliminates branches by symbolically executing on a single input.
Finally, TorchDynamo [2] handles dynamic shapes by dividing the program into fragments.

ECOOP 2024

29:20 Generalizing Shape Analysis with Gradual Types

Figure 6 Our core tool and the three tracers.

This process is called a graph-break. Specifically, when encountering a condition that depends
on shape information and where shape information is unknown, the program is broken into
two parts. One fragment is for when the result of the condition is true, and another is for
when the result of the condition is false. Graph-breaks result in multiple programs with no
branches.

As a technical detail, code annotation for the purpose of program understanding and
better documentation is meant to be performed on a source language; branch elimination is
done at trace-time, on an intermediate representation. For the purpose of better readability,
we presented all the examples in Section 2 in source code syntax. In some of our larger
benchmarks, the source code is different from the intermediate representation because more
high-level constructs were used, such as statements. However, statements do not influence
our theoretical results. We did not include sequences in our theory because they did not
introduce additional challenges to our problem. Finally, there are some constructs in PyTorch
that propagate variable shapes, such as dim() and size(). There are also getters which index
into shapes. Those constructs were used to write ad-hoc shape-checks. We dealt with them
in our implementation by propagating shape information accordingly.

We have implemented approximately 6000 LOC across three different tracers. Figure 6
summarizes how our implementation works. First, we implement a core constraint generator.
This generator takes a program (in our benchmarks case, a program is generated via
torch.fx), and generates core, source constraints for it. Next is the constraint translator
which consists of two phases. In the first phase, it encodes the gradual types found in the
program then translates the source constraints into target constraints. Note that a program
is annotated, possibly with a Dyn type for every variable. In the second phase, it translates
the target constraints into Z3 constraints, which is a 1:1 translation.

Next, we modify each of TorchDynamo and HFtracer to incorporate our reasoning and
use it for branch elimination. We must incorporate our logic into the tracers because branch
elimination happens at trace-time, unlike program migration which requires a whole program.

Our implementation faithfully follows our core logic, although we have made some practical
simplifications. First, our implementation focuses on supporting 50 PyTorch operations that
our benchmarks use. Each of those operations has its own constraints and supporting all 50

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:21

was multiple months of effort. Second, for the view operation (which is similar to reshape in
terms of types, see https://pytorch.org/docs/stable/generated/torch.Tensor.view.
html), we have skipped implementing dynamism and required the solver to provide concrete
dimensions. This allowed us to carry out branch elimination without requiring an additional
constraint that disables dynamism, although the same effect can be accomplished in this
manner as well. Third, Conv2D may accept rank-3 or rank-4 inputs, but we have limited
our implementation to the rank-4 case, since this is the case that is relevant to most of our
benchmarks.

We ran our experiments on a MacBook Pro with an 8-Core CPU, 14-Core GPU and
512GB DRAM.

7 Experimental Results

We answer the following three questions.

Q(1): Can our tool determine if the migration space is non-empty? If so, can it determine
if the migration space contains a static migration and if so, can it find one? Yes. Our
tool is the first to affirmatively answer all three questions.
Q(2): Given an arithmetic constraint on a dimension, can our tool determine if there is a
migration that satisfies it and if so, can it find one? Yes. Our tool is the first to retrieve
migrations that provably satisfy arbitrary arithmetic constraints.
Q(3): Can our tool prove that branch elimination is valid for an infinite set of inputs,
not just for a single input? If so, does it allow us to represent the set of inputs for which
a branch evaluates to true or false? Yes. We incorporate our logic into two different
tools and eliminate branches in all benchmarks we considered for infinite classes of input,
characterized via constraints. Neither tool was able to achieve this without our logic.

Figure 7 contains our benchmark names, the source of the benchmark, lines of code,
and the number of flatten and reshape operations in each benchmark. The flatten and
reshape operations are special because our analysis of them involves multiplication and
modulo constraints. Our benchmarks are drawn from two well-known libraries, TorchVision
and Transformers [30, 29], with the exception of two microbenchmarks that we use as
examples in Section 2. We used different benchmarks for different experiments. The first
four models do not contain branches, making them suitable for Q(1) and Q(2). They are
interesting because BmmExample has a shape mismatch, ConvExample cannot be statically
migrated, and AlexNet and ResNet50 are well-known neural-network models. Our experience
is that tensor programs are tricky to type, and that our tool offers feedback that helps
the user narrow down the migration space by adding constraints. The next six models are
suitable for our HFTracer experiments. Those experiments required reasoning about whole
programs and our tool was able to reason about them in under two minutes. The final four
benchmarks are of a larger size. We do not support all the operations in those benchmarks.
However, this did not pose a problem because in TorchDynamo, we were not required to
reason about entire programs. Instead, we were required to reason about program fragments,
which made our tool terminate in under three minutes.

We ran our tool in the following way to answer Q(1).
1. Generate the core constraints and check if they are satisfiable. If not, stop right away;

The program is ill-typed.
2. Determine if the input variable can have a concrete rank by asking the solver for migrations

of concrete ranks from one to four. If none exist, the input variable was used at different
ranks throughout the program.

ECOOP 2024

https://pytorch.org/docs/stable/generated/torch.Tensor.view.html
https://pytorch.org/docs/stable/generated/torch.Tensor.view.html

29:22 Generalizing Shape Analysis with Gradual Types

Benchmark Source LOC Flatten Reshape Used for
BmmExample this paper 4 0 0 Q(1)
ConvExample this paper 6 0 0 Q(1)

AlexNet TorchVision 24 1 0 Q(1)
ResNet50 TorchVision 177 1 0 Q(1)
Electra Transformers 525 0 48 Q(2)
Roberta Transformers 533 0 48 Q(2)

MobileBert Transformers 2103 0 96 Q(2)
Bert Transformers 528 0 48 Q(2)

MegatronBert Transformers 1018 0 96 Q(2)
XGLM Transformers 104 0 14 Q(2) and Q(3)
Marian Transformers 1733 0 315 Q(3)

MarianMT Transformers 1735 0 315 Q(3)
M2M100 Transformers 1762 0 319 Q(3)

BlenderBot Transformers 2380 0 451 Q(3)

Figure 7 Benchmark information.

Q(1) Q(2)
Benchmark Static migration? Time(s) Arithmetic constraints? Time(s)

BmmExample No 0.03 No 0.03
ConvExample No 0.05 Yes 0.08

AlexNet Yes 2 Yes 2
ResNet50 Yes 5 Yes 347

Figure 8 Q(1) and Q(2): static migration and migration under arithmetic constraints.

3. If the input variable can be assigned concrete ranks, pick one of them and ask the tool to
statically annotate all dimensions.

4. If the solver cannot statically annotate all dimensions, relax this requirement for each
dimension to determine which one cannot be statically annotated.

We first traced our benchmarks using torch.fx, then ran the above steps on the output.
The first step simply involves running our tool, while the second and third steps require the
user to pass constraints to the tool and rerun it. Determining if a variable has a certain
rank requires a single run with our tool. Determining if a dimension can be static requires a
single run with our tool. The final step involves removing constraints. Each time we remove
a constraint from a dimension, we can run our tool once to determine a result.

The first part of Figure 8 summarizes our results. The first column in the figure is the
benchmark name. The second column asks if the benchmark has a static migration and
the third column measures the time it took to answer this question and retrieve a static
migration. For ConvExample, the input can only be rank-4 and the second dimension can
only be Dyn. BmmExample has a type error. Finally, ResNet50 and AlexNet can be fully
typed and the inputs can only be rank-4 in both cases.

We ran our tool in the following way to answer Q(2). First we follow the steps for
answering Q(1), and if any dimensions can be static, then we apply further arithmetic
constraints on some of those dimensions and ask for a migration that satisfies them. We ran
the steps above in our extension of torch.fx. The second part of Figure 8 summarizes our
results. The fourth column asks if arithmetic constraints can be imposed on at least one

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:23

of the dimensions and the fifth column measures the time it took to answer this question
and retrieve a migration that satisfies an arithmetic constraint. For ResNet50 and AlexNet,
we added arithmetic constraints. For ConvExample, we fixed the example like we did in
Section 2 then added arithmetic constraints. We obtained valid migrations that satisfy our
constraints for all benchmarks, except for BmmExample which is ill-typed and thus has an
empty migration space.

We ran our tool in the following way to answer Q(3). We ran our extension of HFtracer,
starting with annotating the input with Dyn and then gradually increasing the precision of
our constraints to provide the solver with more information to eliminate more branches. The
number of times we run our tool here depends on how much information the user gives the
tool about the input. If the tool receives static input dimensions, then this will be enough to
eliminate all branches that depend on shapes. But since we aim to relax this requirement, we
could start with a Dyn shape then gradually impose constraints, first with rank information,
then with dimension information.

We were able to eliminate all branches this way. We followed similar steps in our
TorchDynamo extension but we faced some practical concerns because TorchDynamo currently
does not carry parameter information between program fragments. We had to resolve this
issue manually by passing additional constraints at every new program fragment.

Figure 9 details our HFtracer experiments on 6 workloads. Figure 9 contains the original
number of branches in the program, the remaining branches after running our extension,
without imposing any constraints on the input, and the number of remaining branches after
running our extension, with the constraints in Figure 9 on the input. The second-to-last
column of the figure is the time it takes to perform branch elimination with constraints.

HFtracer also eliminates all branches from the 6 workloads. However, it does this by
running the program on an input. We can obtain a similar result by giving a constraint
describing the shape of the input because we observed that for all benchmarks we considered,
an actual input is not needed to eliminate all branches, and we can relax this requirement
much further. Specifically, for some benchmarks, no constraints are needed at all to eliminate
all branches, while for others, it is enough to specify rank information. For one of the
benchmarks, we can specify a range of dimensions for which branches can be eliminated.
Figure 9 details the constraints.

Finally figure 10 represents branch elimination for TorchDynamo. There are two modes
of operation in TorchDynamo called static and dynamic. In the static mode, the tracer
traces the program with one input which is provided by the user. Branch elimination is
therefore valid for a single input. In Dynamic mode, the tracer also takes an input but
it only records rank information and ignores the values of the dimensions. So if a branch
depends on dimension information, a graph-break will occur. We focused on benchmarks
where branches depend on dimension information. In figure 10, we impose constraints on the
dimensions and eliminate branches which decreases the number of times TorchDynamo breaks
the program when tracing. The first column in the figure indicates the benchmark names.
Next is the original number of branches with TorchDynamo. Then we have the remaining
number of branches after incorporating our reasoning. Finally, we measure time in seconds.
The input constraints are range and rank constraints, as exemplified by the constraints for
XGLM shown in Figure 9.

From our experiments, we observed that slowdowns can be due to the kind of constraints
involved and the number of constraints to solve. Our tool typically handles benchmarks
that are under 1000 lines of code easily. However, range constraints impose overhead. For
example, ResNet50 and XGLM contain such constraints and they were the slowest in Figure

ECOOP 2024

29:24 Generalizing Shape Analysis with Gradual Types

remaining branches
without with Time

Benchmark original constr. constr. (s) our constraints
Electra 3 3 0 1 T ensor(x, y)
Roberta 3 0 0 3 none

MobileBert 3 3 0 1 T ensor(x, y)
Bert 3 0 0 3 none

MegatronBert 3 0 0 5 none
XGLM 5 4 0 22 T ensor(x, y) ∧ x > 0 ∧ 1 < y < 2000

Figure 9 Q(3): HFtracer number of remaining branches.

Benchmark original with constraints Time(s)
XGLM 5 0 45
Marian 44 26 70

MarianMT 44 26 75
M2M100 47 22 130

BlenderBot 35 19 40

Figure 10 Q(3): TorchDynamo number of remaining branches.

9. For the experiments under Q(1) and Q(2), we let the tools run more than 5 minutes, but
for Q(3) we limit to 5 minutes. The benchmarks in figure 10 are over 1000 lines, and for
some branches, branch elimination with TorchDynamo times out after 5 minutes.

There are two limitations to our TorchDynamo experiments. First, since PyTorch has
various operations with many layers of abstractions and edge cases, not every edge case was
implemented. Given that this only affected a few branches, we chose to skip those branches.
This did not affect our experiments because TorchDynamo does not require all branches to
be removed. Each branch removed will result in one less graph-break. TorchDynamo induces
graph-breaks for reasons other than control flow. When graph-breaks happen, we have to
re-write an input constraint for the resulting fragments because there is currently no clear
mechanism in passing parameter information from one fragment to another. We manually
passed input constraints to program fragments until eliminating at least 40% of branches
and have stopped after that due to the large size of the benchmarks and program fragments.
We leave parameter preservation during graph-breaks to the TorchDynamo developers.

8 Related work

We first discuss related work about shapes in tensor programs.
[15] show how to do shape checking based on assertions written by programmers. Their

assertions can reason about tensor ranks and dimensions, with arithmetic constraints. Our
work also supports such constraints. Their tool executes a program symbolically and looks for
assertion violations. The more assertions programmers write, the more shape errors their tool
can report. Their tool uses Z3 to solve constraints of a size that can be up to exponential in
the size of the program. Our approach is similar in that it enables programmers to annotate a
program with types and to type check the program and thereby catch shape errors. Another
similarity is that we use Z3 to solve constraints of exponential size. Our approach differs by
going further: we have tool support for annotating any program with types and for removing
unnecessary runtime shape checks. Additionally, we have proved that our type system has
key correctness properties.

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:25

[9] define a gradually typed system for tensor computations and, like us, they prove that
it has key correctness properties. They use refinement types to represent tensor shapes, they
enable programmers to write type annotations, and they do best-effort shape inference. Their
refinements share some characteristics with the assertions used by [15], as well as with our
constraints. They found that, for each of their benchmarks, few annotations are sufficient to
statically type check the entire program. They focus on shape checking and shape inference,
while we focus on generalizing shape analysis for various tasks including program migration
and branch elimination. Their approach adds the traditional gradual runtime checks [22] in
cases where annotations and shape inference fall short. Our work differs by enabling program
optimizations through removing runtime checks, while we leave out gradual runtime checks.
Conceptually, our approach and the one from [9] differ in that we define type migration
syntactically, while they follow a semantic interpretation of gradual types. It is unclear how
migration would be defined in their context. Another difference is that we have demonstrated
scalability: their benchmark programs are up to 258 lines of code, while our benchmark
programs are up to 2,380 lines of code. We were unable to do an experimental comparison
because our tool works with PyTorch, while their tool works with OCaml-Torch.

[31] analyzed the root causes of bugs in TensorFlow programs by scanning StackOverFlow
and GitHub. They identified four symptoms and seven root causes for such bugs. The
most common symptoms are functional errors, crashes, and build failure, while common
root causes are data processing errors, type confusion, and dimension mismatches. Our type
system can help spot those root causes because key parts of such code will have type Dyn,
even after migration.

[11] use static analysis to detect shape errors in TensorFlow. Their approach statically
detects 11 of the 14 TensorFlow bugs reported by [31], but has no proof of correctness. Our
approach differs from [11] by being able to annotate a program with types and being able to
remove unnecessary runtime checks. Our work can reason about programs without requiring
any type annotations and only taking into account the shape information from the operations
used in the program, while [11] requires a degree of type information. In contrast, we have
proved that our type system has key migratory properties, such as that our constraints
represent the entire migration space for a program, allowing us to extract and reason about
all existing shape information from the program according to the programmer’s needs.

[10] is a static analysis tool that detects shape errors in PyTorch programs. Their
approach is different than ours in that it detects errors via symbolic execution. It considers
all possible execution paths for a program to reason about shapes. The number of execution
paths can be large. In contrast, our approach reasons about shapes which can be given in
the form of type annotations or can be detected from the program.

[27] consider a dynamic analysis tool for TensorFlow, called ShapeFlow, to detect shape
errors. The advantage of this approach is that, like our approach, it does not require type
annotations, but their analysis holds for only particular inputs, in contrast to our approach,
which reasons about programs across all possible inputs. Unlike our work, their approach
has not been formalized, but there is empirical evidence to support that it detects shape
errors in most cases. Because we reason about programs statically, our work is more suitable
for compiler optimizations and program understanding. Our shape analysis approach can be
used to annotate programs. In contrast, ShapeFlow is more suitable if a programmer desires
a light-weight form for error detection that works in most cases.

[20] designed an intermediate representation called Relay. It is functional, like our calculus,
but is statically-typed, unlike our gradual type system. Its goals are similar to ours in that it
aims to balance expressiveness, portability, and compilation. Unlike our system, as a static

ECOOP 2024

29:26 Generalizing Shape Analysis with Gradual Types

type system, Relay requires type annotations for every function parameter. Similar to our
approach, their work focuses on the static aspect of the problem and has left the runtime
aspect to future work.

[19] extends [20] by using a static polymorphic type system for shapes, which we leave
to future work. This system has a type named Any, which enables partial annotations, but
which appears to provide less flexibility than our Dyn type because of the absence of type
consistency.

Next we discuss two closely related papers on migratory typing.
[12] defined the migration space for a gradually typed program as the set of all well-

typed, more-precise programs. They represented the migration space for a given program
by generating constraints where each solution represents a migration. The constraint-based
approach enables them to solve migration problems for a λ-calculus. We adapted their
definition of type migration and migration space to our context of a tensor calculus and
rather different types. We use their idea of a migration space and constraints to give an
algorithm that annotates a program with types and an algorithm that removes unnecessary
runtime checks. In contrast to their approach, we use an SMT solver (Z3) because it can
deal with the arithmetic nature of tensor constraints.

[16] build a tool which extends [12], by providing several criteria for choosing migrations
from the migration space. Their work is about simple types, while our work is about tensor
shapes. While their work is specifically focused on reasoning about the migration space for
program annotation, we reason about the migration space more generally, by using it for
general tensor reasoning tasks including program annotation and branch elimination. Their
gradual language contains traditional gradual runtime checks, while we leave out runtime
aspects.

9 Conclusion

We have presented a method that reasons about tensor shapes in a general way. Our method
involves a gradual tensor calculus with key properties and support for decidable shape
analysis for a large set of operations. Our algorithm is practical because it works on 14
non-trivial benchmarks across three different tracers. We expect that our approach to branch
elimination can be extended to handle other forms of shape-based optimization.

References
1 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: Large-scale machine learning on heterogeneous distributed systems, 2016.
doi:10.48550/arXiv.1603.04467.

2 Jason Ansel. TorchDynamo. Software release, January 2022. URL: https://github.com/
pytorch/torchdynamo.

3 Jason Ansel, Animesh Jain, David Berard, Will Constable, Will Feng, Sherlock Huang, Mario
Lezcano, CK Luk, Matthias Reso, Michael Suo, William Wen, Richard Zou, Edward Yang,
Michael Voznesensky, Evgeni Burovski, Alban Desmaison, Jiong Gong, Kshiteej Kalambarkar,
Yanbo Liang, Bert Maher, Mark Saroufim, Phil Tillet, Shunting Zhang, Ajit Mathews, Horace

https://doi.org/10.48550/arXiv.1603.04467
https://github.com/pytorch/torchdynamo
https://github.com/pytorch/torchdynamo

Z. Migeed, J. Reed, J. Ansel, and J. Palsberg 29:27

He, Bin Bao, Geeta Chauhan, Zachary DeVito, Michael Gschwind, Laurent Kirsch, Jason
Liang, Yunjie Pan, Marcos Yukio Siraichi, Eikan Wang, Xu Zhao, Gregory Chanan, Natalia
Gimelshein, Peter Bell, Anjali Chourdia, Elias Ellison, Brian Hirsh, Michael Lazos, Yinghai Lu,
Christian Puhrsch, Helen Suk, Xiaodong Wang, Keren Zhou, Peng Wu, and Soumith Chintala.
Pytorch 2: Faster machine learning through dynamic Python bytecode transformation and
graph compilation. In Proceedings of ASPLOS’24, International Conference on Architectural
Support for Programming Languages and Operating Systems, 2024.

4 Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript. In Richard
Jones, editor, ECOOP 2014 – Object-Oriented Programming, pages 257–281, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

5 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs. Software release,
2018. URL: http://github.com/google/jax.

6 Matteo Cimini and Jeremy Siek. The gradualizer: A methodology and algorithm for gener-
ating gradual type systems. In Proceedings of POPL’16, ACM Symposium on Principles of
Programming Languages, New York, 2016. ACM.

7 Ben Greenman and Matthias Felleisen. A spectrum of type soundness and performance. Proc.
ACM Program. Lang., 2(ICFP), July 2018. doi:10.1145/3236766.

8 Ben Greenman and Zeina Migeed. On the cost of type-tag soundness. In PEPM, 2018.
9 Momoko Hattori, Naoki Kobayashi, and Ryosuke Sato. Gradual tensor shape checking, 2022.

doi:10.48550/arXiv.2203.08402.
10 Ho Young Jhoo, Sehoon Kim, Woosung Song, Kyuyeon Park, DongKwon Lee, and Kwangkeun

Yi. A static analyzer for detecting tensor shape errors in deep neural network training code. In
Proceedings of the ACM/IEEE 44th International Conference on Software Engineering (ICSE),
2022.

11 Sifis Lagouvardos, Julian T Dolby, Neville Grech, Anastasios Antoniadis, and Yannis Smarag-
dakis. Static analysis of shape in tensorflow programs. In ECOOP, Germany, 2020. LIPICS.

12 Zeina Migeed and Jens Palsberg. What is decidable about gradual types? Proc. ACM Program.
Lang., 4(POPL), December 2019. doi:10.1145/3371097.

13 Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS 2017 Workshop on Autodiff, 2017. URL: https://openreview.net/forum?
id=BJJsrmfCZ.

14 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019. URL: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

15 Adam Paszke and Brennan Saeta. Tensors fitting perfectly, 2021. doi:10.48550/arXiv.2102.
13254.

16 Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha. Solver-
based gradual type migration. In ACM SIGPLAN Conference on Object Oriented Programming,
Systems, Languages and Applications (OOPSLA), New York, 2021. ACM.

17 James K. Reed, Zachary DeVito, Horace He, Ansley Ussery, and Jason Ansel. Torch.fx:
Practical program capture and transformation for deep learning in python. Accessed Jul 12,
2024, 2021. doi:10.48550/arXiv.2112.08429.

18 Norman A. Rink. Modeling of languages for tensor manipulation. ArXiv, abs/1801.08771,
2018.

ECOOP 2024

http://github.com/google/jax
https://doi.org/10.1145/3236766
https://doi.org/10.48550/arXiv.2203.08402
https://doi.org/10.1145/3371097
https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=BJJsrmfCZ
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.48550/arXiv.2102.13254
https://doi.org/10.48550/arXiv.2102.13254
https://doi.org/10.48550/arXiv.2112.08429

29:28 Generalizing Shape Analysis with Gradual Types

19 Jared Roesch, Steven Lyubomirsky, Marisa Kirisame, Josh Pollock, Logan Weber, Ziheng
Jiang, Tianqi Chen, Thierry Moreau, and Zachary Tatlock. Relay: A high-level IR for deep
learning. CoRR, abs/1904.08368, 2019. arXiv:1904.08368.

20 Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa Kirisame, Tianqi
Chen, and Zachary Tatlock. Relay: a new IR for machine learning frameworks. In Proceedings
of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming
Languages. ACM, June 2018. doi:10.1145/3211346.3211348.

21 Sanjit A. Seshia and Randal E. Bryant. Deciding quantifier-free presburger formulas using
parameterized solution bounds. Logical Methods in Computer Science, 1:1–26, 2005.

22 Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In IN SCHEME
AND FUNCTIONAL PROGRAMMING WORKSHOP, pages 81–92, 2006.

23 Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. Refined
criteria for gradual typing. In SNAPL, pages 274–293, Germany, 2015. LIPICS.

24 Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. Perses: Syntax-
guided program reduction. In ICSE’18, International Conference on Software Engineering,
2018.

25 Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias
Felleisen. Is sound gradual typing dead? In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 456–468, 2016.

26 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed
scheme. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’08, pages 395–406, New York, NY, USA, 2008. ACM.
doi:10.1145/1328438.1328486.

27 Sahil Verma and Zhendong Su. Shapeflow: Dynamic shape interpreter for tensorflow, 2020.
doi:10.48550/arXiv.2011.13452.

28 Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. Big types in little runtime:
Open-world soundness and collaborative blame for gradual type systems. SIGPLAN Not.,
52(1):762–774, 2017.

29 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Perric Cistac, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-
the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 38–45. Association
for Computational Linguistics, October 2020. URL: https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

30 Wayne Wolf. Computers as Components, Principles of Embedded Computing System Design.
Morgan Kaufman Publishers, 2000.

31 Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. An empirical
study on tensorflow program bugs. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2018, pages 129–140, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3213846.3213866.

https://arxiv.org/abs/1904.08368
https://doi.org/10.1145/3211346.3211348
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.48550/arXiv.2011.13452
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1145/3213846.3213866

Verifying Lock-Free Search Structure Templates
Nisarg Patel
New York University, NY, USA

Dennis Shasha
New York University, NY, USA

Thomas Wies
New York University, NY, USA

Abstract
We present and verify template algorithms for lock-free concurrent search structures that cover a
broad range of existing implementations based on lists and skiplists. Our linearizability proofs are
fully mechanized in the concurrent separation logic Iris. The proofs are modular and cover the
broader design space of the underlying algorithms by parameterizing the verification over aspects
such as the low-level representation of nodes and the style of data structure maintenance. As
a further technical contribution, we present a mechanization of a recently proposed method for
reasoning about future-dependent linearization points using hindsight arguments. The mechanization
builds on Iris’ support for prophecy reasoning and user-defined ghost resources. We demonstrate
that the method can help to reduce the proof effort compared to direct prophecy-based proofs.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Separation logic; Theory of computation → Shared memory algorithms

Keywords and phrases skiplists, lock-free, separation logic, linearizability, future-dependent lineariz-
ation points, hindsight reasoning

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.30

Related Version Extended Version: https://arxiv.org/abs/2405.13271 [36]

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.15 [35]
Software: https://doi.org/10.5281/zenodo.11051385 [37]

Funding This work is funded in parts by NYU Wireless and by the United States National Science
Foundation under grants CCF-2304758, 1840761, 2304758, and 25-74100-F1202. Further funding
came from an Amazon Research Award Fall 2021. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not reflect the views of
Amazon.

Acknowledgements We thank Sebastian Wolff for many insightful discussions and his suggestions to
improve the presentation of the paper.

1 Introduction

A search structure is a key-based store that implements a mutable map of keys to values
(or a mutable set of keys). It provides five basic operations: (i) create an empty structure,
(ii) insert a key-value pair, (iii) search for a key and return its value, (iv) delete the entry
associated with a key, and (v) update the value associated with a particular key. Because of
their general usefulness, search structures are ubiquitous in data-intensive workloads.

Earlier works [19, 34, 18] developed a framework to verify a wide range of lock-based
implementations of concurrent search structures. Specifically, they proved that these imple-
mentations are linearizable [11].

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Nisarg Patel, Dennis Shasha, and Thomas Wies;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 30; pp. 30:1–30:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0006-6859-2542
https://orcid.org/0000-0002-7036-3312
https://orcid.org/0000-0003-4051-5968
https://doi.org/10.4230/LIPIcs.ECOOP.2024.30
https://arxiv.org/abs/2405.13271
https://doi.org/10.4230/DARTS.10.2.15
https://doi.org/10.4230/DARTS.10.2.15
https://doi.org/10.5281/zenodo.11051385
https://doi.org/10.4230/DARTS.10.2.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Verifying Lock-Free Search Structure Templates

A core ingredient of the framework is the idea of template algorithms [39]. A template
algorithm dictates how threads interact but abstracts away from the concrete layout of nodes
in memory. Once the template algorithm is verified, its proof can be instantiated on a variety
of search structures.

The template algorithms of [19, 34, 18] use locks as a synchronization technique. Locks
ensure non-interference on portions of memory to guarantee that certain needed constraints
hold in spite of concurrency.

The disadvantage of locks is that if a thread holding a lock on some portion of memory p

stops, then no other thread can get a conflicting lock on p. For that reason, some practical
implementations such as Java’s ConcurrentSkipListMap [33] use lock-free algorithms.

This paper shows how to capture multiple variants of concurrent lock-free skiplists and
linked lists in the form of template algorithms. Thus, proving the correctness of such a
template algorithm results in a proof that is applicable to many variants at once. Our
template algorithms are parametric in the skiplist height and allow variations along the
following three dimensions: (i) maintenance style (eager vs lazy) (ii) node implementations
and (iii) the order of maintenance operations on the higher levels of the skiplists.

By instantiating our template algorithm with appropriate maintenance operations and
node implementations we obtain verified versions of existing (skip)list algorithms from the
literature such as the Herlihy-Shavit skiplist algorithm [10, § 14], the Michael set [31], and
the Harris list algorithm [9]. We also obtain a new concurrent skiplist algorithm that has not
been considered before. The new algorithm is correct by construction thanks to our modular
verification framework.

We mechanize our development in the concurrent separation logic Iris [14, 16]. One
technical contribution of our work is a formalization of hindsight reasoning [32, 22, 6, 7, 26, 27]
in Iris. Hindsight reasoning has shown its usefulness in dealing with future-dependent and
external linearization points, a challenge that commonly arises in lock-free data structures.

Specifically, we build on the hindsight theory developed in [27], providing a mechanism
in Iris where one can establish that a linearization point has passed by inferring knowledge
about past states using a form of temporal interpolation.

To our knowledge, our development is the first formalization of hindsight theory in a
foundational program logic. The usefulness of the developed theory extends beyond our
lock-free template algorithms. In fact, we demonstrate that it can help to reduce the proof
effort compared to alternative proof techniques in Iris. To this end, we reverify the multicopy
template algorithms of [34] using our formalization of hindsight as opposed to our previous
tailor-made proof argument for dealing with future-dependent linearization points. The new
approach reduces the proof effort by 53%.

To summarize, our contributions are (i) template algorithms for a wide variety of lock-
free search structure algorithms, (ii) mechanized proofs of linearizability based on hindsight
reasoning in Iris. The result is, to our knowledge, the first formal verification of fully-functional
lock-free algorithms for skiplists of unbounded height.

2 The Skiplist Template Algorithm

A skiplist is a search structure over a totally ordered set of keys K. We focus our discussion
on skiplists that implement mutable sets rather than maps. The extension of the presented
algorithms to mutable maps is straightforward. The data structure is composed of sorted
lists at multiple levels, with the base list determining the actual contents of the structure,
while higher level lists are used to speed up the search. An example is shown in Figure 1. A

N. Patel, D. Shasha, and T. Wies 30:3

45-∞ 4 3013 ∞22 34 40

L0
L1
L2
L3

n1 n2 n3 n4 n5 n6 n7hd tl

Figure 1 Skiplist with four levels. A node that is marked (logically deleted) at a level is shaded
gray at that level. The red line indicates the path taken by a traversal searching for key 42.

skiplist node contains a key and has a height, determining how many higher level lists this
node is a part of. Each node has a next pointer for each of its levels. Two sentinel nodes
signify the head (hd with key −∞) and the tail (tl with key ∞) of the skiplist. Lock-free
linked lists often use the technique of logical deletion by marking a node before it is physically
unlinked from the list. This involves storing a mark bit together with the next pointer, so as
to allow reading and updating them together in a single (logically) atomic step. Lock-free
skiplist implementations also use this technique. Since a skiplist node can be part of multiple
lists, it has one mark bit per level.

The traversal for a key not only goes left to right as usual, but also top to bottom. The
red line in Figure 1 depicts a traversal searching for key 42. The traversal begins at the
highest level of the head node. At each non-base level, the traversal continues till it reaches
a node with a key greater than or equal to the search key. Thereafter, the traversal drops
down a level, and continues at the lower levels until it terminates on the bottom level at the
first node whose key is greater than or equal to the search key.

The traversals in a concurrent skiplist perform maintenance in the form of physically
unlinking encountered marked nodes. In Figure 1, node n5 has been unlinked at level 2,
thus the traversal does not visit it at that level. Operations that mark and change the next
pointers at the higher levels do not affect the actual contents of the structure. We therefore
consider them to be part of the maintenance.

Many variants of lock-free skiplist algorithms have been proposed in the literature and
implemented in practice. These variants differ in (i) their node implementations, (ii) the
styles of maintenance operations and/or (iii) the orders in which they perform maintenance
operations with regard to other operations.

For example, node implementations in low-level languages often use bit-stealing [10] (or
an equivalent of Java’s AtomicMarkableReference) so that both the next pointer and mark
bit can be atomically read or updated. Other implementations use more complex solutions.
For instance, the skiplists in [8] use nodes with back links to reduce traversal restarts due
to marked nodes. Java’s ConcurrentSkipListMap [33] implements each node as a list of
simpler nodes, one per level. The higher level nodes have both right pointers and down
pointers, while the base nodes only have right pointers. Java’s implementation also uses
marker nodes for marking, instead of bit-stealing.

In terms of style of maintenance, the traversal in the Michael Set [31] and Herlihy-Shavit
lock-free skiplist [10, § 14] unlinks one marked node at a time. By contrast, the traversal
in the Harris List [9] unlinks the entire sequence of marked nodes in one shot with a single
CAS operation. The variants also differ in the order of marking of a node at higher levels.
In the Herlihy-Shavit skiplist, the marking of a node goes from top level to the bottom level.
This differs from skiplists in [33] and [8], whose marking goes from bottom to top.

Despite the differences in the skiplist algorithms described above (and others to be
invented in the future), the bulk of their correctness reasoning remains the same. A goal of
this paper is to show how to exploit that fact.

ECOOP 2024

30:4 Verifying Lock-Free Search Structure Templates

Template algorithm. Our template algorithm for skiplists abstracts away from node-level
implementation details and the way in which traversals perform maintenance. As we shall see,
the particular details regarding how the data is stored internal to the node does not affect
the correctness of the core operations - search, insert and delete. Nor is the correctness
affected by whether the traversal unlinks one marked node at a time or an entire sequence of
marked nodes. We also show that the order in which maintenance operations are performed
on the higher levels of the list does not matter for correctness. In summary, the template
algorithm we present abstracts from: (i) node-level details; (ii) the style of unlinking marked
nodes and (iii) the order of maintenance operations on higher levels.

The template algorithm is assumed to be operating on a set of nodes N that contains
the two sentinel nodes head hd and tail tl. Let the maximum allowed height of a skiplist
node be L (> 1). Each node n is associated with (i) its key key(n) ∈ K = N ∪ {−∞, ∞},
(ii) its height height(n) ∈ [1, L) , (iii) the next pointers next(n, i) ∈ N for each i from 0 to
height(n) − 1, and (iv) its mark bits per level mark(n, i) ∈ {true, false} for each i from 0
to height(n) − 1. When discussing next(n, i) or mark(n, i), we implicitly assume that i lies
between 0 and height(n) − 1. We sometimes say a node n is unmarked to mean that it is
unmarked at the base level, i.e., mark(n, 0) = false. The structural invariant maintains the
following facts: key(hd) = −∞, key(tl) = ∞, height(hd) = height(tl) = L, next(tl, i) = tl for
all i, next(hd, L − 1) = tl, mark(hd, i) = mark(tl, i) = false for all i.

The core operations of the skiplist template are expressed using helper functions such
as findNext and markNode that abstract from the details of the node implementation. We
describe the behavior of these helper functions as and when we encounter them. The template
is instantiated by implementing these functions. The helper functions are assumed to be
logically atomic, i.e., appear to take effect in a single step during its execution.

Figure 2 shows the core operations of the skiplist template algorithm. (We omit the
code for the data structure initialization as it is straightforward.) All three operations begin
by allocating two arrays ps and cs via allocArr, each of size L and values initialized to
hd and tl respectively. These arrays are then populated by the traverse operation as it
computes the predecessor-successor pair for operation key k at each level. Intuitively, these
pairs indicate where k would be inserted at each level. The template algorithm here abstracts
away from the concrete traverse implementation. We later consider two implementations
of traverse that differ in the way that maintenance is performed, as discussed earlier.

As far as the core operations are concerned, they rely on traverse to satisfy the following
specification. First, it returns a triple (p, c, res) where p and c are nodes and res a Boolean
such that p = ps[0], c = cs[0] and res is true iff k is contained in c. Second, the node c must
have been unmarked at some point during the traversal; and third, for each 0 ⩽ i < L, the
traversal observes that key(ps[i]) < k ⩽ key(cs[i]).

Let us now describe the core operations, starting with the search operation. The
search operation simply invokes the traverse function, whose result establishes whether
k was in the structure. The delete operation starts similarly by invoking traverse and
checking if the key is present in the structure. If it is, then delete invokes the maintenance
operation maintainanceOp_del, which attempts to mark c at the higher levels (i.e. all levels
except 0). We provide the implementation of maintainanceOp_del in a moment. Once
maintainanceOp_del terminates, delete finally attempts to mark c via markNode at the
base level. If marking succeeds, it terminates by invoking traverse (which performs the
task of physically unlinking marked nodes at all levels) and returning true. Otherwise, a
concurrent thread must have already marked c, in which case delete returns false.

N. Patel, D. Shasha, and T. Wies 30:5

1 let search k =
2 let ps = allocArr L hd in
3 let cs = allocArr L tl in
4 let _, _, res = traverse ps cs k in
5 res
6

7 let delete k =
8 let ps = allocArr L hd in
9 let cs = allocArr L tl in

10 let p, c, res = traverse ps cs k in
11 if not res then
12 false
13 else
14 maintainanceOp_del c;
15 match markNode 0 c with
16 | Success -> traverse ps cs k; true
17 | Failure -> false

18 let insert k =
19 let ps = allocArr L hd in
20 let cs = allocArr L tl in
21 let p, c, res = traverse ps cs k in
22 if res then
23 false
24 else
25 let h = randomNum L in
26 let e = createNode k h cs in
27 match changeNext 0 p c e with
28 | Success ->
29 maintainanceOp_ins k ps cs e; true
30 | Failure -> insert k

Figure 2 The template algorithm for lock-free skiplists. The template can be instantiated
by providing implementations of traverse and the helper functions markNode, createNode and
changeNext. The markNode i c attempts to mark node c at level i atomically, and fails if c has been
marked already. createNode k h cs creates a new node e of height h containing k, and whose next
pointers are set to nodes in array cs. Finally, changeNext i p c cn is a CAS operation attempting to
change the next pointer of p from c to cn. changeNext i p c cn succeeds only if mark(p, i) = false
and next(p, i) = c. Other functions used here include randomNum to generate a random number and
maintenance operations associated with insert and delete. maintainanceOp_del marks node c at
the higher levels, while maintainanceOp_ins inserts a new node e at the higher levels.

The insert operation also begins with traverse. If the traversal returns true, then the
key must already have been present. Hence, insert returns false in this case. Otherwise, a
new node e is created using createNode. The node’s height is determined randomly using
randomNum, which generates a random number h such that 0 < h < L. After creating a new
node, the algorithm attempts to insert it into the list by calling changeNext at the base level
(line 27). If the attempt succeeds, insert proceeds by invoking the maintenance operation
maintainanceOp_ins, which also inserts the new node into the list at all higher levels. The
insert then returns with true. If the changeNext operation fails, then the entire operation
is restarted.

We now describe the maintenance operations for insert and delete, shown in Figure 3.
The maintenance operations here differ from those in traditional skiplist implementations
in regards to the order in which maintenance is performed at higher levels. In traditional
implementations, the marking of a node goes from top to bottom, while insertion of a new
node goes from bottom to top. The skiplist template presented here makes sure that the
base level gets marked at the end and the insertion first happens at the base level, but it
imposes no order on how it proceeds at higher levels. That is, when marking a node, a
delete thread could for instance first mark odd levels, then even levels and finally the base
level 0. The maintenance operations in the skiplist template captures all such permutations.
As our proof shows later, the order of maintenance at higher levels has no bearing on the
correctness of the algorithm.

The maintainanceOp_del marks node c from levels 1 to height(c). It begins by reading
the height of c as h, and generating a permutation of [1 . . . (h − 1)] stored in array pm via
the permute function. The maintainanceOp_del_rec then recursively marks c in the order
prescribed by pm. Note that the maintenance continues regardless of whether markNode
succeeds or fails, because c will be marked at the end regardless.

ECOOP 2024

30:6 Verifying Lock-Free Search Structure Templates

1 let maintainanceOp_del_rec i h pm c =
2 if i < h-1 then
3 let idx = pm[i] in
4 markNode idx c;
5 maintainanceOp_del_rec (i+1) h pm c
6 else
7 ()
8
9 let maintainanceOp_del c =

10 let h = getHeight c in
11 let pm = permute h in
12 maintainanceOp_del 0 h pm c

13 let maintainanceOp_ins_rec i h pm ps cs e =
14 if i < h-1 then
15 let idx = pm[i] in
16 let p = ps[idx] in
17 let c = cs[idx] in
18 match changeNext idx p c e with
19 | Success ->
20 maintainanceOp_ins_rec (i+1) h pm ps cs e
21 | Failure ->
22 traverse ps cs k;
23 maintainanceOp_ins_rec i h pm ps cs e
24 else
25 ()
26
27 let maintainanceOp_ins k ps cs e =
28 let h = getHeight e in
29 let pm = permute h in
30 maintainanceOp_ins 0 h pm ps cs e

Figure 3 The maintenance operations for the skiplist. The getHeight c helper function returns
height(c). The permute function generates a permutation of [1 . . . (h − 1)] as an array.

The maintainanceOp_ins begins in the same way by reading the height, generating
the permutation and invoking maintainanceOp_ins_rec. The maintainanceOp_ins_rec
first collects the predecessor-successor pair at the current level from arrays ps and cs,
respectively. Then it tries to insert the new node e using changeNext on predecessor node p.
If changeNext succeeds, then the recursive operation continues. Otherwise, it recomputes
the predecessor-successor pairs using traverse. After the recomputation, the insertion is
retried at the same level.

We can now finally turn to the implementations of traverse. We consider two imple-
mentations that differ in their treatment of marked nodes. The eager traversal attempts
to unlink every marked node it encounters, while the lazy traversal simply walks over the
marked nodes till it reaches an unmarked node. The traversal then attempts to unlink the
entire marked segment at once. The two implementations are similar in other aspects, so we
discuss only the eager traversal in detail here.

The eager traversal is shown in Figure 4. The traverse function is implemented using
mutually-recursive functions eager_rec and eager_i1. The function eager_rec populates
the arrays ps and cs with the predecessor-successor pair at level i computed by eager_i.
The eager_i performs a traversal at level i by first reading the mark bit and next pointer of
c using findNext. If c is found to be marked, then eager_i attempts to physically unlink
the node using changeNext. In the case that changeNext fails (because either p is marked
or it does not point to c anymore), eager_i simply restarts the traverse function. In the
case of Success of changeNext, the traversal continues. If c is unmarked, then traverse_i
proceeds by comparing k to key(c). For key(c) < k, the traversal continues with c and cn.
Otherwise, eager_i ends at c, returning (p, c, true) if key(c) = k and (p, c, false) otherwise.
As mentioned before, eager_i attempts to unlink immediately whenever a marked node is
encountered.

1 For ease of exposition, the implementation of the eager traversal shown in Figure 4 differs slightly from
the version we have verified in Iris. The Iris version uses option return types instead of mutually-recursive
functions in order to obtain a more modular proof of the eager traversal. We use the mutually recursive
implementation here for clarity of exposition.

N. Patel, D. Shasha, and T. Wies 30:7

1 let eager_i i k p c =
2 match findNext i c with
3 | cn, true ->
4 match changeNext i p c cn with
5 | Success -> eager_i i k p cn
6 | Failure -> traverse ps cs k
7 | cn, false ->
8 let kc = getKey c in
9 if kc < k then

10 eager_i i k c cn
11 else
12 let res = (kc = k ? true : false) in
13 (p, c, res)

14 let eager_rec i ps cs k =
15 let p = ps[i+1] in
16 let c, _ = findNext i p in
17 let p′, c′, res = eager_i i k p c in
18 ps[i] <- p′;
19 cs[i] <- c′;
20 if i = 0 then
21 (p′, c′, res)
22 else
23 eager_rec (i-1) ps cs k
24

25 let traverse ps cs k =
26 eager_rec (L - 2) ps cs k

Figure 4 The eager traversal for the skiplist template. findNext i k c returns a pair
(next(c, i), mark(c, i)). The getKey c helper function returns key(c).

3 Proof Intuition

Our goal is to show that the skiplist template is linearizable. That is, we must prove that
each of the core operations take effect in a single atomic step during its execution, the
linearization point, and satisfies the sequential specification shown in Figure 5. For the
skiplist template, we define the abstract state C(N) to be the union of the logical contents
C(n) of all nodes in N , where C(n) := (mark(n, 0) ? ∅ : {key(n)}). In other words, the
abstract state of the structure is a collection of keys contained in unmarked nodes at the
base level. There are existing techniques from the literature that help us analyze the skiplist

Ψop(k, C, C ′, res) :=

C ′ = C ∧ (res ⇔ k ∈ C) op = search

C ′ = C ∪ {k} ∧ (res ⇔ k ̸∈ C) op = insert

C ′ = C \ {k} ∧ (res ⇔ k ∈ C) op = delete

Figure 5 Sequential specification of a search structure. k refers to the operation key, C and C′

to the abstract state before and after operation op, respectively, and res is the return value of op.

template. The two main techniques that we rely on are the Edgeset Framework [39] and
Hindsight Reasoning [32, 22, 6, 7, 26, 27]. We begin by giving a brief overview of the two
techniques, proceeded by the analysis of the skiplist template using these techniques.

3.1 The Edgeset Framework
The Edgeset Framework provides a common terminology to capture how search operations
navigate in a variety of search structures. We view each search structure as a mathematical
graph whose edges are associated with an edgeset, a label that is a set of keys. We denote
the edgeset from n to n′ by es(n, n′), and k ∈ es(n, n′) signifies that a search for key k

will proceed from node n to n′. In the context of the skiplist template, we define the
edgeset leaving n to be all values greater than the key in n if n is unmarked. If node
n is marked, then the edgeset leaving n is the entire keyspace. Formally: es(n, n′) :=
(n′ = next(n, 0) ∧ mark(n, 0) = false ? (key(n), ∞) : K). Note that, our definition of edgesets
in the skiplist template depends only on the base list, and not on higher level mark bits and
next pointers.

ECOOP 2024

30:8 Verifying Lock-Free Search Structure Templates

A notion defined in terms of edgesets is the inset of a node, denoted by inset(n), signifying
a set of keys for which a search will arrive at n. In order to understand the concept of inset
intuitively, consider Figure 6. The inset of node n4 is (2, ∞), because, for all keys greater
than 2, the search will enter n4. We say node n1 is the logical predecessor of n4 if it is
the first unmarked predecessor of n4. The inset of the root is K and the inset of n is the
intersection of K with the edgesets of all nodes between the root and n. For sorted linked
lists in general, a more local notion gives the same result: the inset of an unmarked node n

is (key(n′), ∞), where n′ is the logical predecessor of n.
In contrast to inset, we define the outset as the union of all its outgoing edgesets:

outset(n) :=
⋃

n′∈N es(n, n′).
We can now define the keyset of a node n as keyset(n) := inset(n)\outset(n), i.e. intuitively,

the set of keys for which a search enters n but never leaves. The importance of keysets is
that if k is in keyset(n), then k is either in the contents of n or is nowhere in the structure.
In Figure 6, the keyset of n4 is (2, 9] and in general, the keyset of an unmarked node n

is (keyset(n′), key(n)] where n′ is its logical predecessor. The keyset of a marked node is ∅
because its outset is the set of all keys K.

The technical definition of inset relies on the global data structure graph, defined as a
solution to the following fixpoint equation

∀n ∈ N. inset(n) = in(n) ∪
⋃

n′∈N

es(n′, n) ∩ inset(n′)

where in(n) := (n = hd ? K : ∅). Thus, the inset is a global quantity and hence difficult to
reason about. Fortunately, this is where the Flow Framework [20, 21, 28] comes in handy.
It allows us to reason about quantities that can be expressed as a solution to a fixpoint
equation (like inset) in a local manner by attaching flow values to the node. The framework
then provides tools to track changes to the flow values that are induced by changes to the
underlying graph. Our approach to encoding keysets in Iris using the Flow Framework is
borrowed from [18]. We defer further details on this matter to the later sections.

As mentioned above, keyset(n) intuitively is the set of all keys that n is responsible for.
Consider Figure 6 again, a thread executing search(6) without any interference will reach
node n4 and terminate, concluding that 6 is not present in the structure. In this sense, we
say n4 is responsible for key 6 and therefore 6 is part of n4’s keyset. The keysets of all nodes
partition the set of all keys and provide the crucial Keyset Property:

∀ n ∈ N, k ∈ K. k ∈ keyset(n) ⇒ (k ∈ C(N) ⇔ k ∈ C(n)) (KeysetPr)

This property enables one to lift a proof of the specification at the node level to a proof of
the sequential specification Ψop. A particular situation where (KeysetPr) proves indispensable
is when search fails to find the search key. Note that search observes only the nodes it
visited, and hence has only a partial view of the structure. When search fails to find the
key, the proof has to reconcile this partial view of the structure with the global view. In
essence, if a concurrent invocation of search on key k fails to find the key, can we conclude
that there was a point in time during its execution when k was in fact not present in the
structure? Here, the property (KeysetPr) helps us reconcile facts gathered by search with
the global state of the structure. Specifically, if search can determine a node n such that
k ∈ keyset(n) and k /∈ C(n), then we can immediately infer that k was not present in the
structure at that point in time.

N. Patel, D. Shasha, and T. Wies 30:9

0

hd

2

n1

4

n2

7

n3

9

n4

15

n5

∞

tl

9

Figure 6 Possible state of the base list in the skiplist template. Nodes are labeled with the value
of their key field. Edges indicate next pointers. Marked (logically deleted) nodes are shaded gray.
keyset(hd) = {0}, keyset(n1) = (0, 2], keyset(n4) = (2, 9] and keyset(tl) = (9, ∞). The keyset of a
marked node is always ∅.

4

n1

7

n2

9

n3

7

p c

(a)

4

n1

7

n2

9

n3

7

p c

(b)

4

n1

7

n2

9

n3

7

p c

(c)

4

n1

7

n2

9

n3

7 n4

p c

(d)

delete(7)

⇝

⇝

insert(7)

Figure 7 Possible states of search(7) on the base level in presence of interference from concurrent
delete(7) and insert(7).

3.2 Hindsight Reasoning
Lock-free structures often exhibit future-dependent linearization points. That is, the lineariz-
ation point of an operation cannot be determined at any fixed moment, but only at the end
of the execution, once any interference of other concurrent operations has been accounted for.
To understand the interference issue, consider the search operation. Since, search returns
the result of traverse, let us look at the eager traversal implementation. To simplify the
explanation further, let us assume that the maximum height allowed for every non-sentinel
node is one. Then, we can ignore the eager_rec function and focus on eager_i called at
the base level.

Let there be a thread T executing search(7). Concurrently, there is a thread Td executing
delete(7) and a thread Ti executing insert(7). Figure 7 shows interesting scenarios that
thread T might potentially observe. Box (a) captures the state of the structure at the
beginning of the eager_i call processing n2. Let Scenario 1 be the situation when thread
T faces no interference from Td and Ti. Here, thread T finds the key 7 in n2 and eager_i
returns true. The point when eager_i finds n2 to be unmarked becomes the linearization
point for this scenario.

Now consider Scenario 2 to be the situation where thread Td marks n2 before eager_i
processes it, as shown in Box (b). Thread T will attempt to unlink n2, and assuming no
further interference, the unlink will result in the structure in Box (c). Thread T will process

ECOOP 2024

30:10 Verifying Lock-Free Search Structure Templates

n3 next, finding n3 to be unmarked with key greater than 7, and will terminate with result
false. So when is the linearization point in this scenario? It cannot be when T finds n3
unmarked when processing it. Because there could be further interference from thread Ti

which inserts key 7 in a new node as shown in Box (d). The new node could be added right
before T reads the mark bit of n3. Thus, when eager_i finds n3 unmarked and returns false,
key 7 could actually be present in the structure at that point in time.

The linearization point is actually the point in time shown in Box (c), i.e., right after n2 is
unlinked. However, thread T cannot confirm this when n2 is unlinked because eager_i may
not terminate at n3 with false as the result. The reason is that by the time T processes n3, it
could get marked in a manner similar to n2 in Box (b), resulting in the unlinking of n3 and
potentially a restart. That Box (c) is the linearization point is confirmed when T has found
n3 to be unmarked later. The structure maintains the invariant that once a node is marked,
it remains marked. Using this invariant, an analysis of thread T ’s history concludes that n3
must have been unmarked at the point when n2 was unlinked. Once eager_i terminates at
n3 with false, an analysis can establish in hindsight that Box (c) indeed was the linearization
point.

Hindsight reasoning as formalized in [26, 27] is designed to deal with situations like the
search in Figure 7. It enables temporal reasoning about computations using a past predicate
⟐q, which expresses that proposition q held true at some prior state in the computation
(up to the current state). For instance, ⟐(next(n1, 0) = n2) holds in Box (c) even though
next(n1, 0) = n3 at that point. The reason is that next(n1, 0) = n2 was true at an earlier
point in time, namely in Box (b). Note that the past operator ⟐ abstracts away the exact
time point when the predicate held true. Note also that a past predicate is not affected by
concurrent interferences, as it merely records some fact about a past state.

There are two ways to establish a past predicate that are relevant for our proofs. The
first is to establish the predicate in the current state directly. That is, ⟐q holds if q holds
in the current state. As an example, we obtain (next(n1, 0) = n2) when findNext on n1
returned n2 in Box (a). Thus, for all subsequent states including Box (b) and (c), we get
⟐(next(n1, 0) = n2). The second way to establish a past predicate is through the use of
temporal interpolation [27]. That is, one proves a lemma of the form: if there existed a past
state that satisfied property q and the current state satisfies r , then there must have existed
an intermediate state that satisfied o. Such lemmas can then be applied, e.g., to prove that
if thread T finds n3 to be unmarked in Scenario 2, then it must have been unmarked when
n2 was unlinked in Box (c).

Equipped with the Edgeset Framework and hindsight reasoning, we are now ready to
analyze the core operations of the skiplist template.

3.3 Proof Outline for Core Operations
We refer to a linearization point as modifying if the operation changes the abstract state of
the data structure (like in the case of a succeeding delete and insert) and otherwise refer to
it as unmodifying (like search and in the case of a failing delete or insert). The modifying
linearization points of the skiplist template are easier to reason about because they are not
future-dependent. For delete, the linearization point occurs when markNode succeeds, and
similarly, for insert the linearization point occurs when the call to changeNext on line 27
succeeds. The proof strategy for unmodifying linearization points is to combine (KeysetPr)
with the ⟐ operator from hindsight reasoning. Let us expand on this proof strategy in detail
and show why the skiplist template is linearizable.

N. Patel, D. Shasha, and T. Wies 30:11

We begin by describing the specification for traverse that is assumed for analyzing the
core operations of the template. Then, we analyze each of the operations in detail. Finally,
we show how the eager implementations of traverse satisfies the specification that was
assumed in the beginning. Along the way, we introduce (as and when necessary) invariants
maintained by the skiplist template that are crucial for proving linearizability.

Specification of traverse. The function traverse ps cs k updates arrays ps and cs with
predecessor-successor pairs for each level and returns a triple (p, c, res) that satisfies the
following past predicate regarding node c: ⟐(k ∈ keyset(c) ∧ (res ⇔ k ∈ C(c))). Recall that
our definition of edgesets in Section 3.1 implies the following invariant:

Invariant 1 For all nodes n, if mark(n, 0) is set to true then keyset(n) = ∅.

Using Invariant 1, we can establish that c is unmarked at the base level at the time point
when k ∈ keyset(c) holds. Note that traverse may physically unlink marked nodes. However,
this step does not change the abstract state of the structure. Hence, the specification for
traverse involves no change of the abstract state.

We now consider each of the core operations in detail.

Proof of search. Function search returns res out of the triple (p, c, res) returned by
traverse. The specification of traverse says res ⇔ k ∈ C(c) at some point, say t, during
its execution. The specification additionally guarantees k ∈ keyset(c) at time t. These two
facts, combined with the (KeysetPr) at time point t, allow us to immediately infer that res is
true iff k was in the structure at that point. Hence, we can establish that (res ⇔ k ∈ C(c))
was true at some point during the execution of search.

Proof of delete. We analyze delete by case analysis on the value res returned by traverse.
If res is false, then again we can establish that k was not in the structure at some point during
traverse’s execution by the same reasoning used in the proof of search. So let us consider
the case that res is true. By the specification of traverse, we can establish a time point when
c was unmarked and contained k. The delete operation then calls maintainanceOp_del
which marks c at all the higher levels. Finally, the markNode on Line 15 attempts to mark c
at the base level. If markNode succeeds, then this step becomes the linearization point of
delete and k can be considered to be deleted from the structure. But if markNode fails,
then we gain the knowledge that mark(c, 0) = true. Hindsight reasoning allows us to infer
that c was marked at the base level by a concurrent thread between the end of traverse
and the invocation of markNode. The point right after c was marked by a concurrent thread
becomes the linearization point of delete in this case, as we can determine that k was not
present in the structure at that point.

This hindsight reasoning relies on two facts: first, the key of a node never changes and
second, once a mark bit is set to true by a successful markNode operation (at line 15 in
delete or line 4 in maintainanceOp_del), no other operation will set it back to false. In
fact, these two facts are invariant for the skiplist template:

Invariant 2 For all nodes n and level i, once mark(n, i) is set to true, it remains true.
Invariant 3 For all nodes n, key(n) remains constant.

ECOOP 2024

30:12 Verifying Lock-Free Search Structure Templates

Proof of insert. Similar to delete, we begin by case analysis on res returned by traverse.
If res is true, then we can establish that k was already present in the structure at some point.
Otherwise, res is false and insert creates a new node e with key k. Using changeNext, an
attempt is made to insert node e between nodes p and c. If the attempt succeeds, then
k is now part of the structure and this becomes the linearization point. The following
maintainanceOp_ins operation does not change the abstract state of the structure, and
thus, has no effect in terms of linearizability. If the changeNext fails, then insert simply
restarts.

As is evident with the proof outline for the core operations, the specification assumed for
traverse plays a critical role in case the operation exhibits an unmodifying linearization
point. Let us now turn to traverse and show how its specification can be proved. We
analyze the eager traversal in detail in the following section. The proof argument for the
lazy version is similar.

3.4 Proof Outline for Eager Traversal

As stated earlier, traverse returns (p, c, res) such that ⟐(k ∈ keyset(c) ∧ (res ⇔ k ∈ C(c))).
Since the returned triple is the result of a call to eager_i at the base level, let us begin by
analyzing the behavior of this call.

In the sequential setting, the traversal in a search structure maintains the invariant that
the search key is always in the inset of the current node. This invariant holds by the design
of the Edgeset Framework. Unfortunately, this invariant no longer holds for the skiplist
template in the concurrent setting as evidenced by Box (c) in Figure 7. However, we argue
first that eager_i does maintain the invariant that the search key was in the inset of the
current node c between the start of the traversal and the point at which the eager_i accesses
c. We call this the inset in hindsight invariant.

We prove this invariant inductively. We make use of the following locally maintained
invariants: (i) At all times, there is one list, denoted the reachable list, from the head node
that includes all unmarked and some marked nodes. (This list is characterized by the set of
nodes with non-empty inset, see Figure 6 for intuition). (ii) The keys in the reachable list
are sorted. A consequence of these two invariants is that if a node n is in the reachable list
(whether n is marked or not) and has a key less than k, then k is in the inset of n.

To prove that inset in hindsight is an invariant, we have to show that (a) it is an invariant
when eager_i takes a step (Line 2) when traversing the base level, and (b) that we can
establish inset in hindsight when eager_rec initiates eager_i (Line 17) at the base level.

To show (a), observe that if a node n becomes unlinked from the reachable list, then it
will never again be part of the reachable list. Hence, if n is not in the reachable list when
eager_i begins executing at the base list, then eager_i will never visit n. The contrapositive
of this statement allows us to say that if eager_i reaches some node c, then it must have
been part of the reachable list at some point during the execution of eager_i. Additionally,
eager_i proceeds to the node following c only when key(c) < k. With the help of invariants
(i) and (ii) above, we can thus establish that k was in the inset of n at some point.

To show (b), we must do a case analysis on whether node p (Line 16) is marked. If it is
unmarked, then it is straightforward to establish that k is in the inset of c currently. However,
if p is marked, then we require temporal interpolation based on the following invariant:

Invariant 4 For all nodes n and level i, once mark(n, i) is set to true, next(n, i) does not
change.

N. Patel, D. Shasha, and T. Wies 30:13

This invariant tells us that if p was known to be unmarked in the past, and it is marked
currently, then p must have been pointing to c right before it got marked. At that point in
time, we can establish that k must have been in the inset of c.

This completes the inductive proof that inset in hindsight is indeed an invariant maintained
by the traversal. The inset in hindsight invariant is sufficient to prove the traverse
specification by the following simple argument. If the traverse encounters k in an unmarked
node n, then traverse will return true as it should. If, by contrast, traverse encounters an
unmarked node n such that key(n) > k, then by the inset in hindsight invariant, k must have
been in the inset of n at some point t in the past and k cannot be in the outset of n (because
key(n) > k and n is unmarked), so therefore k must have been in the keyset of n at time t.

4 Hindsight Reasoning in Iris

Linearizability in Iris is defined via (logically) atomic triples [4, 16]. Intuitively, an atomic
triple

〈
x. P

〉
e

〈
v. Q

〉
says that at some point during the execution of e, the resources

described by the precondition P will be updated to satisfy the postcondition Q for return
value v in one atomic step. The variable x can be thought of as the abstract state of the data
structure before the update at the linearization point.

Linearizability of a search structure operation op can be expressed by an atomic triple of
the form

Inv(r) −∗
〈

C. CSS(r, C)
〉

op r k
〈

res. ∃ C ′. CSS(r, C ′) ∗ Ψop(k, C, C ′, res)
〉
. (ClientSpec)

Here, r is the pointer to the head of the data structure. The predicate CSS(r, C) is the
representation predicate that relates the head pointer with the contents C of the structure.
The predicate Inv(r) is the shared data structure invariant. It can be thought of as a
thread-local precondition of the atomic triple, which we express using separating implication.
The invariant ties CSS(r, C) to the data structure’s physical representation and may contain
other resources necessary for proving the atomic triple. The predicate Ψop(k, C, C ′, res)
captures the sequential specification of the structure. The specification essentially says there
is a single atomic step in op where the abstract state changes from C to C ′ according to the
sequential specification Ψop(k, C, C ′, res) (Figure 5). This step is op’s linearization point.
We call (ClientSpec) the client-level atomic specification for the data structure under proof.

Proving atomic triples. The proof of establishing an atomic triple involves a linearizability
obligation that must be discharged directly at the linearization point. However, it can be
challenging to determine the linearization point precisely and to discharge the linearizability
obligation exactly at that point. When the program execution reaches a potential linearization
point that depends on future interferences by other threads, then the proof will fail if it is
unable to determine whether the linearizability obligation should be discharged now or later.
In Iris, this challenge is overcome using prophecy variables [15], which enable the proof to
reason about the remainder of the computation that has not yet been executed.

Another challenge is that the linearization point of an operation may be an atomic step
of another operation that is executed by a different thread (like in Scenario 2 discussed in
Section 3.2). Data structures that demonstrate such behavior are said to deploy helping. This
behavior complicates thread modular reasoning. The conventional solution to this challenge
in Iris is to use a helping protocol [15, 34, 13]. The helping protocol is specified as part
of the shared data structure invariant and consists of a registry that tracks which threads
are expected to be linearized by other threads as well as conditional logic that governs the
correct transfer and discharge of the associated linearizability obligations.

ECOOP 2024

30:14 Verifying Lock-Free Search Structure Templates

Both the use of prophecy variables and the helping protocol need to be tailored to the
specific data structure at hand, which adds considerable overhead to the proof. To reduce this
overhead, we present an alternative proof method that enables linearizability proofs based
on hindsight arguments in Iris. Rather than identifying the linearization point precisely, the
proof can establish linearizability in hindsight using temporal interpolation in the style of
the intuitive proof argument for the skiplist template presented in Section 3.2.

Hindsight specification. Our proof method offers an intermediate specification, a Hoare
triple specification, which in essence expresses that linearizability has been established in
hindsight. In our Iris formalization, we show that any data structure whose operations satisfy
the hindsight specification also satisfy the client-level atomic specification. This proof relates
the two specifications via prophecy variables and a helping protocol. However, the helping
protocol is data structure agnostic, making our proof method applicable to a broad class of
structures exhibiting future-dependent unmodifying linearization points.

From the perspective of a proof author using our method to prove linearizability of some
structure, one has to only establish the hindsight specification to obtain the proof of the
client-level atomic specification. To this end, our method provides further guidance to the
proof author.

In order to use hindsight reasoning, one has to have the history of computation at hand.
Here, we offer a shared state invariant with a mechanism to store the history. The shared
state invariant has three main components: a mechanism to store the history, the helping
protocol, and finally, an abstract predicate that can be instantiated with invariants specific
to the structure at hand. The first two components are data structure agnostic. The proof
author only needs to specify the data structure-specific invariant and what information about
the data structure state should be tracked by the history.

In the rest of this section, we discuss our method in detail. We begin with the hindsight
specification, followed by a discussion of the shared state invariant and how to use it.

4.1 Linearizability in Hindsight
We motivate the hindsight specification using the challenges we face when proving the client-
level atomic specification for the delete operation of the skiplist template. Let us recall the
intuitive proof argument for delete from Section 3.3. As per the observation regarding the
modifying and unmodifying linearization points, a delete thread with modifying linearization
point can fulfill the obligation at the point when the structure is modified. However, a
delete thread with an unmodifying linearization point requires helping.

Prophecy reasoning. An important detail of our proof method is how it determines whether
a thread requires helping. In the following, we refer to the operation that a thread performs
at its linearization point as its decisive operation. In delete, the traversal observes node
c to be unmarked at some point during execution. In the case where c is marked by the
time that the thread calls its decisive operation markNode (in Line 15), the thread requires
helping from the thread that marks c.

In order to determine in advance whether a thread requires helping, our proof method
attaches a prophecy to each thread. A prophecy in Iris can predict a sequence of values
and is treated as a resource that can be owned by a thread. Ownership of a prophecy p

is captured by the predicate Proph(p, pvs), where pvs is the list of predicted values. The
predicate signifies the right to resolve p when the thread makes a physical step that produces
some result value v. The resolution of p establishes equality between v and the head of the

N. Patel, D. Shasha, and T. Wies 30:15

list pvs (i.e., the next value predicted by p). The resolution step yields the updated predicate
Proph(p, pvs′) where pvs′ is the tail of pvs. This mechanism enables the proof to do a case
analysis on the predicted values pvs before these values have been observed in the program
execution2.

The prophecy attached to a thread predicts the results of the thread’s decisive operation.
In case of delete, the decisive operation is the call to markNode in the base list, while for
insert, it is the call to changeNext in the base list. Note that a thread may restart if its
decisive operation fails (like in the case of insert). Therefore, the prophecy needs to predict
a sequence of result values, one for each attempted call to the thread’s decisive operation.

For the purpose of this discussion, we assume that the prophecy predicts a sequence of
Success or Failure values. If the sequence contains a Success value, then the decisive
operation will succeed and the thread will modify the structure. Otherwise, the thread’s
linearization point is unmodifying. Let predicate Upd(pvs) hold when pvs contains at least
one Success value.

The proof author only needs to identify the decisive operations that potentially change the
abstract state of the structure (like markNode as discussed above) by resolving the prophecy
around these decisive calls.

Hindsight specification. Before we can present the hindsight specification, we need
to provide necessary details regarding the atomic triples in Iris. An atomic
triple

〈
x. P

〉
e

〈
v. Q

〉
is defined in terms of standard Hoare triples of the form

∀ Φ.
{

AUx.P,Q(Φ)
}

e
{

v. Φ(v)
}

. The predicate AUx.P,Q(Φ) is the atomic update token
and represents the linearizability obligation of the atomic triple. At the beginning of each
atomic step that the thread takes up to its linearization point, the token offers the resources
in P and the token itself transforms into a choice. That is, at the end of the atomic step,
the prover has to chose to either commit the linearization or abort. When committing, the
prover has to show that the thread’s atomic step transforms the resources in P to those in Q,
receiving Φ(v) from the update token in return, which serves as the receipt of linearization
of the atomic triple. In case of an abort, the prover needs to show that the thread’s atomic
step reestablishes P .

We also need to introduce two more auxiliary predicates:

Thread(tid, t0): this predicate is used to register the thread with identifier tid in the
shared invariant. The argument t0 denotes the time when thread tid began its execution.
PastLin(op, k, res, t0): this predicate holds if there was a past state in the history between
time t0 and the point when this predicate is evaluated for which the sequential specification
Ψop held with result res. It essentially captures whether the sequential specification was
true for any point after time t0.

We now have all the ingredients to present the hindsight specification:

∀ tid t0 pvs. Inv(r) −∗ Thread(tid, t0) −∗{
Proph(p, pvs) ∗ (Upd(pvs) −∗ AUop(Φ))

}
op r k

res. ∃pvs′. Proph(p, pvs′) ∗ pvs = (_ @ pvs′)
∗ (Upd(pvs) −∗ Φ(res))

∗ (¬Upd(pvs) −∗ PastLin(op, k, res, t0))

(HindSpec)

2 For further details on prophecies in Iris, we refer to [15].

ECOOP 2024

30:16 Verifying Lock-Free Search Structure Templates

We explain it piece by piece. The local precondition Thread(tid, t0) ties the thread to its
identifier tid and provides knowledge that tid begins executing at time t0. The Hoare
triple can be best understood by observing how prophecy resources are allowed to change
(highlighted in brown) and what are the obligations when Upd(pvs) holds (in teal) versus
when it does not hold (in magenta). Let us look at each of these in detail. First, the prophecy
resource Proph(p, pvs) in the precondition changes to Proph(p, pvs′) in the postcondition
where pvs′ is a suffix of pvs. It basically says that operation op is allowed to resolve the
prophecy p as many times as it needs and then return the remaining resource at the end.

Now let us consider the case when Upd(pvs) holds. The precondition here provides the
atomic update token AUop(Φ) to op, expecting the receipt of linearization Φ(res) in return.
Thus, the responsibility of linearization is delegated to op when Upd(pvs) holds. We can gain
better insight by relating this situation to the delete operation from the skiplist template as
before. This case corresponds to when markNode (from line 15) succeeds as Upd(pvs) holds
here. The point when markNode succeeds becomes the linearization point and so the thread
does not require help from other threads to linearize. The hindsight specification simply asks
for the receipt from linearization Φ(res) at the end.

Finally, let us consider the case when Upd(pvs) does not hold. The precondition provides no
additional resources here, while the postcondition requires the predicate PastLin(op, k, res, t0).
In simple terms, this means that if Upd(pvs) is not true, i.e., the prophecy says the thread
is not going to modify the structure, then the hindsight specification allows exhibiting a
past state from history when the sequential specification was true. Relating again to delete,
if the markNode fails, then the thread can look at the history of the structure and exhibit
precisely the point when the decisive node got marked.

The proof argument for establishing the hindsight specification is significantly simpler
than if one were to attempt a direct proof of the client-level atomic specification. In particular,
the proof author does not need to reason about helping and atomic update tokens in last
case discussed above. Instead, they only need to reason about the structure-specific history
invariant.

Soundness of the hindsight specification. Our proof that relates the hindsight specification
for op to the atomic triple specification involves a helping protocol. The details of the helping
protocol and the soundness proof for the hindsight specification are similar to those of the
proofs presented in [15, 34]. We therefore provide only a brief summary here. Additional
details regarding the proof and the helping protocol can be found in [36].

Before op begins executing, the proof creates the prophecy resource Proph(p, pvs) assumed
in the precondition of the hindsight specification. If the prophecy determines that the thread
requires helping, then its client-level atomic triple is registered to a predicate which encodes
the helping protocol as part of the shared state invariant Inv(r). The registered atomic triple
serves as an obligation for the helping thread to commit the atomic triple. This obligation
will be discharged by the appropriate concurrent operation determined by the op’s sequential
specification Ψop. The proof then uses the hindsight specification to conclude that it can
collect the committed triple from the shared predicate. The committed triple serves as a
receipt that the obligation to linearize has been fulfilled.

To govern the transfer of linearizability obligations and fulfillment receipts between
threads via the shared invariant, the helping protocol tracks a registry of thread IDs with
unmodifying linearization points that require helping from other concurrent threads. Each
thread registered for helping is in either pending state or done state, depending on whether
the thread has already been linearized. A thread registered for helping must be able to

N. Patel, D. Shasha, and T. Wies 30:17

determine its current protocol state in order to be able to extract its committed atomic triple
from the registry. For this purpose, the helping protocol includes a linearization condition
that holds iff a registered thread tid has linearized (and is, hence, in done state).

From the point of view of a thread which does the helping, the linearization condition
forces its proof to scan over the pool of uncommitted triples registered in the helping protocol
and identify those that need to be linearized at its linearization point, changing their protocol
state from pending to done. This step involves a proof obligation for the helping thread to
show that the sequential specification of tid’s operation is indeed satisfied at the linearization
point.

One crucial innovation in our helping protocol is that we have formulated a linearization
condition that is parametric in the sequential specification of the data structure operations,
making the soundness proof for the hindsight specification applicable to many structures
at once. In particular, we deal with the aspect of scanning and updating the registry in
the proof of the helping thread, the proof author simply invokes a lemma provided by our
method at the identified linearization points. Therefore, the helping protocol mechanism
remains fully opaque to the proof author.

4.2 Invariant for Hindsight Reasoning
Hindsight arguments involve reasoning about past program states. Our encoding therefore
tracks information about past states using computation histories. We define computation
histories as finite partial maps from timestamps, N, to snapshots, S. A snapshot describes an
abstract view of a program state. It is a parameter of our method. For instance, a snapshot
may capture the physical memory representation of the data structure under proof, while
abstracting from the remainder of the program state. Another parameter is a function | · |
that computes the abstract state of the data structure from a given snapshot.

Inv(r) := ∃ H T C. CSS(r, C) ∗ |H(T)| = C

∗ Hist(H, T) ∗ Invhelp(H, T) ∗ Invtpl(r, H, T)
Invtpl(r, H, T) := resources(r, H(T))

∗ (∀t, 0 ⩽ t ⩽ T ⇒ per_snapshot(H(t)))
∗ (∀t, 0 ⩽ t < T ⇒ transition_inv(H(t), H(t + 1)))

Figure 8 Definition of the shared state invariant encoding the hindsight reasoning. Variable H

represents the history, T the current timestamp in use and C the abstract state of the structure.

Figure 8 shows a simplified definition of the invariant that encodes the hindsight reasoning.
For sake of brevity, we provide only a high-level overview of the predicates used in the invariant.
The predicate Hist(H, T) contains the mechanism to track the history of snapshots. That
is, H denotes the history that has been observed so far and T is the current time stamp.
Using appropriate ghost resources, it ensures that the timestamps are non-decreasing and
past states recorded in H are preserved by future updates to the history. This allows us to
define a past predicate ⟐s,t0(q) with the intuitive meaning that the history contains state
s recorded after (or at) time t0 for which proposition q holds true. The exact definition of
the past predicate uses the ghost resources used to preserve the past states. The predicate
Hist(H, T) also guarantees that dom(H) = {0 . . . T }, ensuring that there are no gaps in the
history.

ECOOP 2024

30:18 Verifying Lock-Free Search Structure Templates

The conjunct |H(T)| = C and the predicate CSS(r, C) together tie the abstract state C

of the data structure to the latest snapshot in the history. The predicate CSS(r, C) is the
dual of the representation predicate CSS(r, C) used in the client-level atomic specification.
Both represent one half of an ownership over the abstract state of the structure, keeping the
abstract state defined by Inv(r) synchronized with the representation predicate CSS(r, C).

The helping protocol predicate Invhelp(M, T) contains a registry of thread IDs with
unmodifying linearization points that require helping from other concurrent threads. For
each thread ID tid in the registry, the protocol stores information such as the start time of
the thread, whether it has been linearized or not, etc.

The predicate Invtpl(r, H, T) captures invariants particular to the data structure under
proof. It is further composed of three abstract predicates that are meant to be instantiated
with the structure specific invariants. The three predicates serve the following purpose. The
first predicate resources(r, H(T)) ties the current snapshot to the physical representation of
the structure. The predicate Hist(H, T) contains a conjunct (∀t, t < T ⇒ H(t) ̸= H(t + 1)).
Together with the predicate resources, this conjunct forces a thread to update the history
whenever the structure is modified.

The predicate per_snapshot(H(T)) captures the structural invariants that hold for any
given snapshot. For instance, when proving the skiplist template, this predicate holds facts
about the nodes hd and tl having maximum height, etc. The predicate transition_inv(s, s′)
captures a transition invariant on snapshots observed in the history. That is, it constrains
how certain quantities evolve over time. Again as an example from the skiplist template
proof, the fact that a node marked in s remains marked in s′ is included here. Crucially, the
facts in transition_inv(s, s′) allow temporal interpolation required to establish facts about
past states in the history (like in Section 3.2).

To summarize, the proof author defines the snapshot of the structure, the function | · |,
and instantiates the three abstract predicates in Invtpl appropriately. The resulting shared
state invariant then tracks the history and handles the helping protocol without requiring
further fine-tuning to the data structure at hand.

5 Verifying the Skiplist Template

We relate the intuitive proof argument from Section 3 to the development on hindsight
reasoning in Iris in Section 4 to obtain a complete proof of the skiplist template. To achieve
this, we must perform three tasks required by the proof method in Section 4. The first
task is to determine the decisive operations that potentially alter the structure, and resolve
the prophecy around those operations. As discussed previously, the decisive operations are
markNode for delete and changeNext for insert. The search operation does not modify
the abstract state and hence, it has no decisive operation.

The second task is to define a snapshot in the context of the skiplist template and
instantiate Invtpl appropriately. This includes the predicate resources that ties the concrete
state of the structure to the latest snapshot, as well as invariants that allow temporal
interpolation. The third and the final task is to prove the hindsight specification for the core
operations.

In this section we focus on the second task of defining the snapshot and providing
invariants necessary to formalize the intuitive proof argument. Once, we have set up the
right invariants, the formalized proof follows the intuitive proof very closely. We explain this
with delete as an example.

N. Patel, D. Shasha, and T. Wies 30:19

Invtpl(r, H, T) := resources(r, H(T))
∗ (∀t, 0 ⩽ t ⩽ T ⇒ per_snapshot(H(t)))
∗ (∀t, 0 ⩽ t < T ⇒ transition_inv(H(t), H(t + 1)))

resources(s) := ∗
n∈FP(s)

Node(n, mark(s, n), next(s, n), key(s, n), height(s, n))

∗ resources_keyset(s)
transition_inv(s, s′) := (FP(s) ⊆ FP(s′))

∗ (∀n, key(s′, n) = key(s, n) ∧ height(s′, n) = height(s, n))
∗ (∀n i, mark(s, n, i) = true ⇒ mark(s′, n, i) = true)
∗ (∀n i, mark(s, n, i) = true ⇒ next(s′, n, i) = next(s, n, i))

Figure 9 Instantiating Invtpl with invariants of the skiplist template.

5.1 Snapshot and the Skiplist Template Invariant
Recall that the notion of keysets are central to the intuitive proof argument for the core
operations of the skiplist template. Hence, a snapshot of the structure must contain
information about the keysets. For encoding keysets in Iris, we borrow heavily from [18],
especially the keyset camera and the representation of keysets via the Flow Framework.

We define the snapshot of the skiplist template as a tuple containing the following
components:

the set of nodes N comprising the structure (also referred to as the footprint below)
the abstract state of the structure (a set of keys)
the mark bits (a map from N to N → Bool, i.e., a Boolean per level)
the next pointers (a map from N to N → N)
the keys (a map from N to K)
the height of nodes (a map from N to N)
the representation of flow values

We reparameterize the mark(n, i) function introduced earlier to take the snapshot as an
argument. Thus, we use mark(s, n, i) to mean the mark bit of node n at level i in snapshot
s. We redefine next(·), key(·), keyset(·) and other such functions similarly by adding the
snapshot s as an additional parameter. We also use FP(s) to represent the footprint of the
snapshot s.

We now present the skiplist template invariant in Figure 9. The resources predic-
ate ties the snapshot to the concrete state through an intermediary node-level predicate
Node(n, k, h, mk, nx). This predicate actually ties the physical representation of a node in
the heap to the abstract quantities (key(·), height(·), mark(·) and next(·), respectively) that
the skiplist template relies on. The Node predicate also owns all the resources needed to
execute the helper functions. The skiplist template proof is parametric in the definition of
Node. Thus, we achieve proof reuse across skiplist variants that follow the same high-level
skiplist algorithm, but implement the node differently. We provide more details on this
matter later. We discuss some concrete node implementations in Section 6.

The predicate resources_keyset(s) capture the ownership resources required for keyset
reasoning. Using the ghost resources in Iris and the keyset camera from [18], it ensures that
the keysets and the logical contents of nodes in s satisfy (KeysetPr).

ECOOP 2024

30:20 Verifying Lock-Free Search Structure Templates

1
〈

k h mk nx. Node(n, k, h, mk, nx)
〉

getKey n
〈

k. Node(n, k, h, mk, nx)
〉

2
〈

k h mk nx. Node(n, k, h, mk, nx)
〉

getHeight n
〈

h. Node(n, k, h, mk, nx)
〉

3
〈

k h mk nx. Node(n, k, h, mk, nx) ∗ (i < h)
〉

findNext i n
〈

n′. Node(n, k, h, mk, nx) ∗ (nx(i) = n′)
〉

4

5
〈

k h mk nx. Node(n, k, h, mk, nx) ∗ (i < h)
〉

markNode i n

6

〈
x. Node(n, k, h, mk′, nx) ∗ (mk(i) = true ⇒ x = Failure ∗ mk′ = mk)

∗(mk(i) = false ⇒ x = Success ∗ mk′ = mk[i ↣ true])

〉
7

8
〈

k h mk nx. Node(n, k, h, mk, nx) ∗ (i < h)
〉

changeNext i n n′ e

9

〈
x. Node(n, k, h, mk, nx ′) ∗ ((mk(i) = true ∨ nx(i) ̸= n′) ⇒ x = Failure ∗ nx ′ = nx)

∗((mk(i) = false ∧ nx(i) = n′) ⇒ x = Success ∗ nx ′ = nx[i ↣ e])

〉

Figure 10 Specifications of the helper functions used by the skiplist template.

The predicate per_snapshot captures structural invariants that hold for all snapshots
recorded in the history. This includes invariants of three kinds: first, invariants to ensure that
each component of the snapshot is of the correct type and the maps (from nodes to mark bits,
next pointers, etc.) are defined for all nodes in the footprint; second, the node-level invariants
relating the node’s inset, outset, mark bit, etc (like Invariant 1); and third, invariants about
the hd and tl nodes, such as key(s, hd) = −∞, height(tl) = L, etc.

The predicate transition_inv(s, s′) captures invariants about how certain quantities evolve
over time, such as that mark bits once set to true remain true. The invariants 2, 3, and
4 presented in Section 3 are part of this predicate. These invariants form the crux of the
hindsight reasoning, as they enable temporal interpolation.

Before we go into the formal proof argument for delete, we must discuss how to reason
about the node-level helper functions. Figure 10 shows the specification for the helper
functions assumed by the skiplist template. The specifications are logically atomic, i.e., they
behave like a single atomic step in the template. The preconditions for all of the functions
rely solely on the predicate Node. The functions getKey, getHeight and findNext read
various components of the node. Note that findNext reads both the mark bit and the next
pointer together.

The specification for functions markNode and changeNext is slightly more complex because
they potentially change the structure. Let us explain them briefly. For markNode on node
n at level i, the return value (Success or Failure) is determined by whether n is already
marked at i. If it is, then the function returns Failure without modifying the node. If it
is unmarked, then markNode successfully marks it, and updates the node accordingly. The
specification for changeNext can be interpreted similarly. Here, the return value hinges upon
the mark bit being false and the next pointer of n pointing to n′ at i.

5.2 Proof of delete

We now have all the ingredients to show that delete satisfies (HindSpec). We provide only
a high-level summary of the proof here. Please see [36] for more details.

The precondition provides access to the invariant Inv(r) and knowledge that the thread ID
is tid with start time t0. Additionally, the thread has the right to resolve prophecy p around
the decisive operations, and if the thread observes a successful decisive operation, then the
atomic update AU(Φ) is available to help with the linearization. The delete operation begins
with traverse. Using the ⟐ operator defined in Section 4.2, we express the postcondition of
traverse as

N. Patel, D. Shasha, and T. Wies 30:21

⟐s,t0(k ∈ keyset(s, c) ∧ (res ⇔ k ∈ C(s, c))).

Intuitively, this assertion captures that there is a past state s in the history (after time point
t0) in which k is in the keyset of c and res is true iff k is in the logical contents of c.

The argument here proceeds by case analysis on res. Let us first consider the case that
res is false. The delete operation also terminates with false. Since the thread terminates
without any calls to the decisive operations, this case corresponds to the ¬Upd(pvs) case
in the postcondition of (HindSpec). The postcondition requires delete to establish the
predicate PastLin(del, k, false, t0). In this context, establishing this predicate amounts to
identifying a witness past state in which k was not part of the abstract state. Clearly, this is
witnessed by state s from the specification of traverse. Applying (KeysetPr) in state s, we
can establish the predicate PastLin(del, k, false, t0).

Now, let us consider the case that res is true. The maintainanceOp_del marks node c at
the higher level, but the interesting part of the proof is when the decisive operation markNode
is called at the base level (Line 15). Again there are two cases to consider, depending on
whether markNode succeeds. If markNode succeeds, then we can establish Upd(pvs) as we
see a Success value being resolved. In this case, the precondition of (HindSpec) provides the
atomic update AU(Φ). Since, the thread has modified the abstract state, this becomes the
linearization point. The thread can linearize with AU(Φ) to obtain the receipt Φ and satisfy
its postcondition. The proof also has to update the history with the new snapshot of the
structure, as c goes from being unmarked to marked.

The final (and most interesting) case is when markNode fails. Here again, we must establish
PastLin(del, k, false, t0) to complete the proof of (HindSpec). Two facts are useful: (i) in
the past state s referred to in the traverse spec, we can establish that mark(s, c) = false;
and (ii) since the markNode has failed, in the current state say s0, mark(s0, c) = true.
Hence, by using the second conjunct of transition_inv in Figure 9 and temporal interpolation
on the two facts above, we can infer the existence of two consecutive states s1 and s2,
such that mark(s1, c) = false and mark(s2, c) = true. Clearly, a concurrent delete thread
marked c in state s2. Hence, this state becomes the witness to establish the predicate
PastLin(del, k, false, t0). This completes the proof that delete satisfies (HindSpec).

6 Proof Mechanization and Evaluation

We now shed light on the mechanization of the hindsight methodology, as well as its application
to the skiplist template. We additionally reverify the multicopy template from [34] using
our new hindsight specification to modularize the proof effort. Although the multicopy
algorithms are lock-based, hindsight reasoning is helpful in their verification. The case study
demonstrates a substantial reduction in proof size due to the encoding of hindsight reasoning
in Iris, illustrating the generality of our contribution. Our development is available as a
VM and docker image on Zenodo [37].

All of the proofs we discuss below are mechanized in Iris/Coq. The templates, traversals
and the node implementations are written in Iris’s default programming language Hea-
pLang. In order to correctly capture the dependence between different layers of the proofs
(such as hindsight specification and the templates, the templates and the traverse/node
implementations), we heavily make use of Coq’s module system.

The organization of our proofs is shown in Figure 11. Going from left to right, the
first column relates to the formalization of hindsight reasoning in Iris. The box “Hindsight”
captures the assumptions regarding the hindsight specification from Section 4. These

ECOOP 2024

30:22 Verifying Lock-Free Search Structure Templates

−→ 99
satisfies assumes

Hindsight

Client-level Spec

Node

Traverse

Skiplist Template

Multicopy Template

Node Impl. 1

Node Impl. 2

Eager Traversal

Lazy Traversal

Figure 11 The structure of our proofs. Each box represents a collection of modules relevant to
the label. The dashed arrows represent module dependence, i.e., assumption of specifications. The
normal arrows represent implementation of the target module (fulfillment of the assumptions).

assumptions not only include the hindsight specification itself but also the relevant definitions
of snapshots, histories, etc. The module “Client-level Spec” relates the client-level specification
expressed in terms of atomic triples to the hindsight specification used for the template-level
proofs. The corresponding proof involves the reasoning about prophecies and the helping
protocol, which is done once and for all and applicable to all data structures that fulfill the
assumptions made in the “Hindsight” module.

The middle column consists of modules for the two verified templates (skiplist and
multicopy) and the associated proofs verifying the template operations against the hindsight
specification. We discuss them in turn.

Skiplist template case study. The skiplist template, as described in Figure 2, abstracts from
the concrete implementations of nodes and the traverse operation. Hence, we package their
specifications into separate modules. To ensure that the specified data structure invariant
for the skiplist template is not vacuous, we also verified an init routine that initializes the
data structure and establishes the invariant.

The final column shows modules for the two node implementations of the skiplist template,
as well as the eager and lazy traversal discussed in Section 2. The helper functions markNode
and changeNext are implemented using an atomic CAS operation in both of the node
implementations. The crux of the node implementation for the skiplist template is to
determine a memory representation of the mark bit and the next pointer (at some level)
such that both values can be read or written together with one atomic CAS operation. The
first node implementation does this by using a sum type. The second node implementation
is conceptually similar but uses more low-level data types instead of a sum type.

The traversal and node implementations above correspond to several existing lock-free
(skip)list algorithms from the literature. The Herlihy-Shavit skiplist algorithm [10, § 14] is
obtained by instantiating our template with the eager traversal, the node implementation
2, and maintenance operations that link higher-level nodes in increasing order of level and
unlink nodes in the opposite order. The Michael set [31] is obtained as a degenerate case of
the Herlihy-Shavit template instantiation where the skiplist is restricted to L = 2 (For L = 2,
Level 1 consists of only a fixed single edge between the sentinel nodes. So, conceptually,
Level 1 can be ignored in this case.)

We obtain a novel variant of a skiplist by replacing the eager traversal in the Herlihy-
Shavit instantiation with the lazy traversal. The lazy traversal is inspired by the Harris list
algorithm [9], which is obtained as a degenerate case of this new lazy skiplist algorithm by
restricting it to L = 2.

N. Patel, D. Shasha, and T. Wies 30:23

Table 1 Summary of the proof effort. For each module, we show the number of lines of program
code, lines of proof, total number of lines, and the proof-checking time in seconds. The code for the
initialization and the core operations of the skiplist (entries with (∗)) is technically defined in the
“Skiplist” module, however here we present them separately for each operation to provide a better
picture. The count for Herlihy-Shavit is the summation of rows “Hindsight”, “Client-level Spec”, all
“Skiplist” modules, “Node Impl. 2” and “Eager Traversal”.

Skiplist Template (Iris/Coq)
Module Code Proof Total Time
Flow Library 0 5330 5330 33
Hindsight 0 950 950 11
Client-level Spec 9 329 338 18
Skiplist 12 1693 1705 26
Skiplist Init(∗) 6 319 325 15
Skiplist Search(∗) 7 62 69 6
Skiplist Insert(∗) 37 3457 3494 111
Skiplist Delete(∗) 28 2401 2429 72
Node Impl. 1 118 908 1026 35
Node Impl. 2 106 836 942 35
Eager Traversal 38 1165 1203 96
Lazy Traversal 47 2063 2110 145
Total 408 19513 19921 603

Herlihy-Shavit 243 11212 11455 390

We present a summary of the proof effort for the skiplist template in Table 1. The
proof-checking time was measured on the Docker image running on an Apple M1 Pro chip
with 16GB RAM. The flow library contains the Iris formalization of the Flow Framework
developed in [18, 34]. As a minor contribution, we extend this library with general lemmas for
reasoning about graph updates that have an affect on an unbounded number of nodes. These
lemmas are useful for the proofs of insert, delete and lazy traverse. The unbounded
updates, as well as the maintenance operations, are the reason for the relatively high number
of proof lines for the insert and delete operations.

Multicopy template case study. The multicopy template from [34] generalizes search
structures such as the lock-based Log-Structured Merge (LSM) tree used widely in modern
database systems. It satisfies the Map ADT specification, with search and upsert (for
insert/update) as its core operations. To deal with the complexity of future-dependent
external linearization points, the original proof relies on an intermediate template-level
specification based on the concept of search recency.

Table 2 presents a detailed comparison of the multicopy template proofs from [34] versus
the new proof based on the hindsight framework. The original proof consists of a total
of 2779 lines. By contrast, the definitions (“Defs”) and “Client-level Spec” proofs can be
factored out of the total cost of the hindsight-based proof, because it is part of the hindsight
library itself. Hence, the new proof based on hindsight reasoning consists of only 1310 lines,
which is a reduction of 53%. To summarize, the improvement stems from the fact that the
original proof relies on an intermediate specification and a helping protocol that is tailored
to multicopy structures, while our new proof uses a helping protocol that is shared among
all proofs that build on the new hindsight proof method.

ECOOP 2024

30:24 Verifying Lock-Free Search Structure Templates

Table 2 Comparison of multicopy template proofs. The column “Original” shows the number
of lines from the proofs in [34], while “Hindsight” shows them for our new proof effort. Module
“Defs” represents definitions required for proving the client-level specification (helping invariant,
history predicate, etc). Module “Client-level Spec” contains the proof relating the intermediate
specification (Search Recency Specification from [34] and Hindsight Specification in our paper) to the
client specification. Module “LSM” contains definitions required to instantiate the frameworks for
LSM trees. Modules “Search” and “Upsert” refer to the proofs for the search and upsert operations,
respectively. Entries in “()” for the “Hindsight” column are not included in the total due to being
part of the hindsight library.

Multicopy Template (Iris/Coq)
Module Original Hindsight
Defs 866 (950)
Client-level Spec 434 (338)
LSM 741 540
Search 411 399
Upsert 327 371
Total 2779 1310

While the majority of the reduction in the proof size stems from the elimination of
structure-specific specifications and helping protocol proofs, we also saw a minor reduction in
the size of the remainder of the proof. One outlier is the proof of upsert. Here, the increase
is attributed to the fact that the proof has to construct a fresh snapshot when the operation
succeeds. However, this construction is conceptually simple and could be factored out into
more abstract lemmas that are provided directly by the hindsight library.

7 Related Work

The formal verification of linearizability has received much attention in recent years. We
refer to [5] for a survey of relevant techniques and focus our discussion to the most closely
related works.

Our work builds on the idea of template algorithms for lock-based concurrent search
structures of [19, 34, 18], which we extend to the setting of lock-free implementations. A
common challenge when verifying linearizability of lock-free data structures is the prevalence
of future-dependent and external linearization points. Hindsight theory [32, 22, 6, 7, 26, 27]
has emerged as a suitable technique to address this challenge in the context of concurrent
search structures. To our knowledge, we are the first to formalize hindsight reasoning within a
foundational program logic. Tools like Poling [40], plankton [26, 27], and nekton [25] automate
hindsight reasoning at the expense of an increased trusted code base. However, these tools
currently cannot handle complex data structures with unbounded outdegree like skiplists.
Also, they do not aim to characterize the design space of related concurrent data structures
like our template algorithms do.

Other techniques for dealing with future-dependent linearization points include argu-
ments based on forward simulation (e.g., by tracking all possible linearizations of ongoing
operations [12], tracking a partial order [17], or using commit points [3]) and backward
simulation (e.g., using prophecy variables [1, 23, 15]). Our encoding of hindsight reasoning
in Iris combines forward reasoning (by tracking the history of the data structure state) and
backward reasoning (by using prophecies). However, the details of this encoding are for the
most part hidden from the proof engineer by providing a higher-level reasoning interface

N. Patel, D. Shasha, and T. Wies 30:25

based on past predicates and temporal interpolation as proposed in [27]. Our comparison
with a prior proof of multicopy structure templates [34] suggests that this abstraction helps
to reduce the proof complexity.

Several works propose techniques for automatically verifying concurrent skiplists. Abdulla
et al. [2] propose a technique for verifying linearizability of lock-free list-based data structures
using forest automata. The evaluation considers bounded skiplists with up to 3 levels.
However, the implementation does not scale to larger bounds and the unbounded case is
outside the scope of the technique. We note that the height of the skiplist is tied to the
expected runtime of the skiplist operations. To guarantee the expected worst-case runtime
bounds, the skiplist’s height must be of order O(log(n)) where n is the expected maximal
number of entries in the list. For this reason, real-world skiplist implementations are also
parametric in the height. Heights up to 63 levels are feasible in deployed skiplists [24], so the
restriction to height 3 in [2] is unrealistic. By contrast, our proofs cover skiplists of arbitrary
height.

Sánchez and Sánchez [38] present an SMT-based approach towards an automated veri-
fication of concurrent lock-based skiplists. The approach is based on a decidable theory of
unbounded skiplists. However, it does not consider lock-free implementations and focuses on
establishing shape invariants preserved by the structure instead of proving linearizability.

Unlike these automated tools, our approach does not rely on data-structure specific
decidable theories for reasoning about inductive properties of heap graphs. Instead, we build
on the Flow Framework [20, 21, 28], which enables local reasoning about such properties over
general graphs in separation logic. As a minor contribution, we extend the mechanization
of the Flow Framework from [19] with lemmas to reason about graph updates that affect
properties of an unbounded number of nodes.

There are some skiplist algorithms that are not immediately covered by our template
algorithm. For example, skiplists based on the algorithm presented in [8] such as Java’s
ConcurrentSkipListMap [33] use backlinks to avoid restarts when a traversal fails. However,
we believe that our template algorithm can be extended to subsume such algorithms by
abstracting from the restart policy, similarly to how the present template abstracts from the
maintenance policy.

In this paper, we assume a programming language with a garbage collected semantics.
The rationale for this assumption is that issues arising from manual memory reclamation can
be addressed by orthogonal means. For instance, [29, 30] propose a technique that decouples
the proof of data structure correctness from that of the underlying memory reclamation
algorithm, allowing the correctness proof of the data structure to be carried out under the
assumption of garbage collection. Recent work also showed how to carry out such modular
proofs in program logics like Iris [13].

8 Conclusions and Future Work

This paper shows how to verify some of the most challenging concurrent data structure
algorithms in existence. The accompanying proofs are fully mechanized in the foundational
program logic Iris. The proofs are modular and cover the broader design space of the
underlying algorithms by parameterizing the verification over aspects such as the low-level
representation of nodes and the style of data structure maintenance.

Besides being the first work to verify unbounded lock-free skiplists, the work has developed
technologies for Iris, particularly hindsight reasoning, that can be useful in many applications.

ECOOP 2024

30:26 Verifying Lock-Free Search Structure Templates

Our proofs guarantee safety but not liveness. This limitation is shared by the algorithms
they verify: in any highly concurrent (minimal or no locking) setting, a thread t may never
complete because of other threads that overtake it. Fortunately, this never happens in
practice where threads all advance more or less at the same pace. Verifying liveness under
such fairness assumptions remains an interesting direction for future work.

Another area of future work is to verify algorithms that mix locking parts with lock-free
parts both for single copy and multicopy search structures. We believe that the present
framework will be a good basis for that effort.

References
1 Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theor. Comput.

Sci., 82(2):253–284, 1991.
2 Parosh Aziz Abdulla, Lukás Holík, Bengt Jonsson, Ondrej Lengál, Cong Quy Trinh, and

Tomás Vojnar. Verification of heap manipulating programs with ordered data by extended
forest automata. In ATVA, volume 8172 of Lecture Notes in Computer Science, pages 224–239.
Springer, 2013.

3 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil. Proving
linearizability using forward simulations. In CAV (2), volume 10427 of Lecture Notes in
Computer Science, pages 542–563. Springer, 2017.

4 Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. Tada: A logic for
time and data abstraction. In ECOOP, volume 8586 of Lecture Notes in Computer Science,
pages 207–231. Springer, 2014.

5 Brijesh Dongol and John Derrick. Verifying linearisability: A comparative survey. ACM
Comput. Surv., 48(2):19:1–19:43, 2015.

6 Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky, and Sharon Shoham.
Order out of chaos: Proving linearizability using local views. In DISC, volume 121 of LIPIcs,
pages 23:1–23:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

7 Yotam M. Y. Feldman, Artem Khyzha, Constantin Enea, Adam Morrison, Aleksandar Nanevski,
Noam Rinetzky, and Sharon Shoham. Proving highly-concurrent traversals correct. Proc.
ACM Program. Lang., 4(OOPSLA):128:1–128:29, 2020.

8 Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In PODC, pages
50–59. ACM, 2004.

9 Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In DISC, volume
2180 of Lecture Notes in Computer Science, pages 300–314. Springer, 2001.

10 Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kaufmann,
2008.

11 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

12 Prasad Jayanti, Siddhartha Jayanti, Ugur Yavuz, and Lizzie Hernandez. A universal, sound, and
complete forward reasoning technique for machine-verified proofs of linearizability. PACMPL,
8(POPL), January 2024. doi:10.1145/3632924.

13 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang.
Modular verification of safe memory reclamation in concurrent separation logic. Proc. ACM
Program. Lang., 7(OOPSLA2):828–856, 2023.

14 Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. J. Funct. Program., 28:e20, 2018. doi:10.1017/S0956796818000151.

15 Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany,
Derek Dreyer, and Bart Jacobs. The future is ours: prophecy variables in separation logic.
Proc. ACM Program. Lang., 4(POPL):45:1–45:32, 2020.

https://doi.org/10.1145/3632924
https://doi.org/10.1017/S0956796818000151

N. Patel, D. Shasha, and T. Wies 30:27

16 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
In POPL, pages 637–650. ACM, 2015.

17 Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew J. Parkinson. Proving lineariz-
ability using partial orders. In ESOP, volume 10201 of Lecture Notes in Computer Science,
pages 639–667. Springer, 2017.

18 Siddharth Krishna, Nisarg Patel, Dennis E. Shasha, and Thomas Wies. Verifying concurrent
search structure templates. In PLDI, pages 181–196. ACM, 2020.

19 Siddharth Krishna, Nisarg Patel, Dennis E. Shasha, and Thomas Wies. Automated Verification
of Concurrent Search Structures. Synthesis Lectures on Computer Science. Morgan & Claypool
Publishers, 2021.

20 Siddharth Krishna, Dennis E. Shasha, and Thomas Wies. Go with the flow: compositional
abstractions for concurrent data structures. Proc. ACM Program. Lang., 2(POPL):37:1–37:31,
2018.

21 Siddharth Krishna, Alexander J. Summers, and Thomas Wies. Local reasoning for global graph
properties. In ESOP, volume 12075 of Lecture Notes in Computer Science, pages 308–335.
Springer, 2020.

22 Kfir Lev-Ari, Gregory V. Chockler, and Idit Keidar. A constructive approach for proving data
structures’ linearizability. In DISC, volume 9363 of Lecture Notes in Computer Science, pages
356–370. Springer, 2015.

23 Hongjin Liang and Xinyu Feng. Modular verification of linearizability with non-fixed lineariza-
tion points. In PLDI, pages 459–470. ACM, 2013.

24 Meta. Facebook Open Source Library: ConcurrentSkipList. https://github.com/facebook/
folly/blob/main/folly/ConcurrentSkipList.h. Last accessed: Apr 2024.

25 Roland Meyer, Anton Opaterny, Thomas Wies, and Sebastian Wolff. nekton: A linearizability
proof checker. In CAV (1), volume 13964 of Lecture Notes in Computer Science, pages 170–183.
Springer, 2023.

26 Roland Meyer, Thomas Wies, and Sebastian Wolff. A concurrent program logic with a future
and history. Proc. ACM Program. Lang., 6(OOPSLA2):1378–1407, 2022.

27 Roland Meyer, Thomas Wies, and Sebastian Wolff. Embedding hindsight reasoning in
separation logic. Proc. ACM Program. Lang., 7(PLDI):1848–1871, 2023.

28 Roland Meyer, Thomas Wies, and Sebastian Wolff. Make flows small again: Revisiting the
flow framework. In TACAS (1), volume 13993 of Lecture Notes in Computer Science, pages
628–646. Springer, 2023.

29 Roland Meyer and Sebastian Wolff. Decoupling lock-free data structures from memory
reclamation for static analysis. Proc. ACM Program. Lang., 3(POPL):58:1–58:31, 2019.

30 Roland Meyer and Sebastian Wolff. Pointer life cycle types for lock-free data structures with
memory reclamation. Proc. ACM Program. Lang., 4(POPL):68:1–68:36, 2020.

31 Maged M. Michael. High performance dynamic lock-free hash tables and list-based sets. In
SPAA, pages 73–82. ACM, 2002.

32 Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh. Verifying
linearizability with hindsight. In PODC, pages 85–94. ACM, 2010.

33 Oracle. Java concurrent skiplist set. https://docs.oracle.com/en/java/javase/21/docs/
api/java.base/java/util/concurrent/ConcurrentSkipListSet.html. Last accessed: Jan
2024.

34 Nisarg Patel, Siddharth Krishna, Dennis E. Shasha, and Thomas Wies. Verifying concurrent
multicopy search structures. Proc. ACM Program. Lang., 5(OOPSLA):1–32, 2021.

35 Nisarg Patel, Dennis Shasha, and Thomas Wies. Verifying Lock-free Search Structure Templates
/ Artifact. Software (visited on 2024-08-23). URL: https://doi.org/10.4230/DARTS.10.2.15.

36 Nisarg Patel, Dennis Shasha, and Thomas Wies. Verifying lock-free search structure templates.
CoRR, abs/2405.13271, 2024. arXiv:2405.13271.

ECOOP 2024

https://github.com/facebook/folly/blob/main/folly/ConcurrentSkipList.h
https://github.com/facebook/folly/blob/main/folly/ConcurrentSkipList.h
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/ConcurrentSkipListSet.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/ConcurrentSkipListSet.html
https://doi.org/10.4230/DARTS.10.2.15
https://arxiv.org/abs/2405.13271

30:28 Verifying Lock-Free Search Structure Templates

37 Nisarg Patel, Dennis Shasha, and Thomas Wies. Verifying Lock-free Search Structure Templates
/ Artifact, April 2024. Software (visited on 2024-08-23). doi:10.5281/zenodo.11051385.

38 Alejandro Sánchez and César Sánchez. Formal verification of skiplists with arbitrary many
levels. In ATVA, volume 8837 of Lecture Notes in Computer Science, pages 314–329. Springer,
2014.

39 Dennis E. Shasha and Nathan Goodman. Concurrent search structure algorithms. ACM
Trans. Database Syst., 13(1):53–90, 1988.

40 He Zhu, Gustavo Petri, and Suresh Jagannathan. Poling: SMT aided linearizability proofs. In
CAV (2), volume 9207 of Lecture Notes in Computer Science, pages 3–19. Springer, 2015.

https://doi.org/10.5281/zenodo.11051385

Ozone: Fully Out-of-Order Choreographies
Dan Plyukhin #

University of Southern Denmark, Odense, Denmark

Marco Peressotti #

University of Southern Denmark, Odense, Denmark

Fabrizio Montesi #

University of Southern Denmark, Odense, Denmark

Abstract
Choreographic programming is a paradigm for writing distributed applications. It allows program-
mers to write a single program, called a choreography, that can be compiled to generate correct
implementations of each process in the application. Although choreographies provide good static
guarantees, they can exhibit high latency when messages or processes are delayed. This is because
processes in a choreography typically execute in a fixed, deterministic order, and cannot adapt to
the order that messages arrive at runtime. In non-choreographic code, programmers can address
this problem by allowing processes to execute out of order – for instance by using futures or reactive
programming. However, in choreographic code, out-of-order process execution can lead to serious
and subtle bugs, called communication integrity violations (CIVs).

In this paper, we develop a model of choreographic programming for out-of-order processes that
guarantees absence of CIVs and deadlocks. As an application of our approach, we also introduce an
API for safe non-blocking communication via futures in the choreographic programming language
Choral. The API allows processes to execute out of order, participate in multiple choreographies
concurrently, and to handle unordered data messages. We provide an illustrative evaluation of our
API, showing that out-of-order execution can reduce latency and increase throughput by overlapping
communication with computation.

2012 ACM Subject Classification Computing methodologies → Concurrent computing methodologies

Keywords and phrases Choreographic programming, Asynchrony, Concurrency

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.31

Related Version Full Version: https://arxiv.org/abs/2401.17403 [27]

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.16
Software (Source Code): https://github.com/dplyukhin/ozone

Funding Partially supported by Villum Fonden (grant no. 29518). Co-funded by the European
Union (ERC, CHORDS, 101124225). Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European Union or the European Research Council.
Neither the European Union nor the granting authority can be held responsible for them.

1 Introduction

Choreographic programming [25] is a paradigm that simplifies writing distributed applications.
In contrast to a traditional development style, where one implements a separate program
for each type of process in the system, choreographic programming allows a programmer to
define the behaviors of all processes together in a single program called a choreography [26].
Through endpoint projection (EPP), a choreography can be compiled to generate the programs
implementing each process that would otherwise need to be written by hand. Aside from
convenience, the advantage of this approach is that certain classes of bugs (such as deadlocks)

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Dan Plyukhin, Marco Peressotti, and Fabrizio Montesi;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 31; pp. 31:1–31:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dplyukhin@imada.sdu.dk
https://orcid.org/0009-0004-8712-7895
mailto:peressotti@imada.sdu.dk
https://orcid.org/0000-0002-0243-0480
mailto:fmontesi@imada.sdu.dk
https://orcid.org/0000-0003-4666-901X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.31
https://arxiv.org/abs/2401.17403
https://doi.org/10.4230/DARTS.10.2.16
https://doi.org/10.4230/DARTS.10.2.16
https://github.com/dplyukhin/ozone
https://doi.org/10.4230/DARTS.10.2.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Ozone: Fully Out-of-Order Choreographies

1 : p1.produce() → val q.x1;
2 : p2.produce() → val q.x2;
3 : q.compute(q.x1) → val p1.y1;
4 : q.compute(q.x2) → val p2.y2

(a) Choreography. (b) In-order execution. (c) Out-of-order execution.

Figure 1 A choreography where out-of-order execution can improve performance.

are impossible by construction [8]. Choreographic programming has been applied to popular
languages such as Java [16] and Haskell [32], and has been used to implement real-world
protocols such as IRC [23].

Processes in choreographic programs typically execute in a fixed, sequential order. Con-
sider Figure 1a, which shows a simple choreography performed by processes p1, p2, and
q. The syntax p.e → val q.x means “p evaluates expression e and sends the result to q,
which binds the result to a local variable x”. Under the usual semantics for choreographies,
p1.produce() and p2.produce() can be evaluated in parallel because p1 and p2 are distinct
processes. However, q must execute each step sequentially: first q waits until it receives x1;
then q waits until it receives x2; and only then can q send p1 the result of processing x1.

Figure 1b depicts an execution of the choreography, showing the drawback of a fixed
processing order: if x2 arrives before x1, q wastes time waiting for x1 instead of processing
x2. Ideally, q would evaluate compute(q.x1) and compute(q.x2) according to the arrival
order of x1 and x2, as shown in Figure 1c. Assuming these two expressions are safe to
reorder, such an optimization would allow q to overlap computation with communication
and reduce the average latency experienced by p1 and p2. We are therefore interested in
studying choreographic programming models where processes may execute some statements
out of order, or even concurrently. We call such processes out-of-order processes and the
corresponding choreographies (fully) out-of-order choreographies.

Processes with out-of-order features have been considered in prior work. Process models
such as the actor model [2] or the π-calculus with delayed receive [24] are expressive enough
to implement the behavior in Figure 1c, but these models lack the static guarantees of
choreographic programming. More recently, Montesi gave a semantics for nondeterministic
choreographies [26], i.e., choreographies with nondeterministic choice. Nondeterministic
choreographies can implement the execution in Figure 1c, but they are unwieldy when it
comes to expressing out-of-order process execution: they require explicitly writing all possible
schedulings, lest getting a suboptimal program. For our example, we would get a choreography
twice the size of the one in Figure 1a (cf. Section 6). Consequently, nondeterministic
choreographies are both hard to write and brittle – a typical drawback when using syntactic
operators to express interleavings. This raises the question:

Can we develop a choreographic programming model for out-of-order processes that
marries the simple syntax of Figure 1a with the semantics of Figure 1c?

The simplicity of this problem is deceptive, since common-sense approaches can lead to
pernicious compiler bugs. For instance, consider Figure 2: two microservices cs (a “content
service”) and ks (a “key service”) send values txt, key to a server s (lines 1 and 2). The server

D. Plyukhin, M. Peressotti, and F. Montesi 31:3

in turn forwards those values to a client c (lines 3 and 4). Notice that if s is an out-of-order
process, then it can forward the results in any order, as shown in Figures 2b and 2c. This
causes a problem for c: since both txt and key were sent by s, and since both values have
the same type (String), c has no way to determine whether the first message contains txt (as
in Figure 2b) or key (as in Figure 2c). This problem is easy for compiler writers to miss,
leading to disastrous nondeterministic bugs where variables are bound to the wrong values.
We call such bugs communication integrity violations (CIVs).

In this paper, we investigate CIVs and other complications that arise from mixing
choreographies with out-of-order processes. Our investigation brings forward necessary
elements that are missing from previous research on choreographic programming [26] and
the neighbouring approach of multiparty session types (which use simpler choreographies
without data or computation) [19, 15, 1, 33]. Although the problem in Figure 2 can easily be
solved by attaching static information (such as variable names) to each message, we show in
Section 2 that a general solution requires mixing static and dynamic information, replicated
across multiple processes. We also find that formalizing fully out-of-order choreographies
requires several features uncommon in standard choreographic programming models, such as
scoped variables and an expanded notion of well-formedness.

We make the following key contributions:
1. We present O3, a formal model for asynchronous, fully out-of-order choreographies.1 Our

model prevents CIVs by attaching integrity keys to messages. A nice consequence of our
solution is that messages no longer need to be delivered in FIFO order. We prove that
O3 choreographies ensure deadlock-freedom (Theorem 2) and communication integrity
(Theorem 4).

2. We present an EPP algorithm to project O3 choreographies into out-of-order processes.
We prove an operational correspondence theorem, which states that a choreography and
its projection evolve in lock-step (Theorem 6). The key to making this proof tractable is
a new notion of well-formedness that formalizes a communication integrity invariant. The
theorem implies that a correct compiler will not generate code with deadlocks or CIVs.

3. We demonstrate the applicability of our approach by developing Ozone, a non-blocking
communication API for the choreographic programming language Choral [16].2 Choreo-
graphies implemented with Ozone can use futures [4] to process messages concurrently
(as in Figure 1c) without violating communication integrity. We evaluate Ozone with
microbenchmarks and a model serving pipeline [34]. Our results confirm that out-of-order
execution can dramatically reduce latency and increase throughput for choreographies,
putting the performance of hand-written reactive processes within reach of choreographic
programmers (we compare to actors written in the popular Akka framework [3]).

The paper is structured as follows. Section 2 explores CIVs and other issues in out-of-order
choreography models. Section 3 presents our formal model O3. Section 4 presents our model
for out-of-order processes and our EPP. Section 5 presents our non-blocking API for Choral
and our evaluation. We conclude with related work in Section 6 and discussion in Section 7.

2 Overview

In this section we explore the challenges that must be solved to develop a fully out-of-order
choreography model, along with our approach.

1 The name O3 derives from our model being Out Of Order.
2 The name Ozone derives from O3 being the chemical formula for ozone.

ECOOP 2024

31:4 Ozone: Fully Out-of-Order Choreographies

1 : cs.getT ext() → val s.txt;
2 : ks.getKey() → val s.key;
3 : s.txt → val c.txt;
4 : s.key → val c.key;
5 : c.display(txt);
6 : c.decrypt(key)

(a) Choreography. (b) Safe execution. (c) Buggy execution.

Figure 2 A choreography where naïve out-of-order execution is unsafe. Process c cannot
distinguish whether the first message it receives represents key or txt.

(a) Using selections. (b) Using integrity keys.

Figure 3 Two approaches to prevent CIVs: selections and integrity keys.

2.1 Intraprocedural Integrity
Informally, communication integrity is the property that messages communicated in a
choreography are bound to the correct variables. To ensure this, processes might need extra
information; in Figure 2, process c needs to know which value will arrive first: txt or key.

A traditional solution would be for s to send a selection to c. Selections are communications
of constant values, used in choreography languages when one process makes a control
flow decision that other processes must follow. Figure 3a shows how s could send the
selection [KEY] to inform c that key will arrive before txt. Indeed, this is the approach used
by nondeterministic choreographies [26]. However, selections impose overhead: any time
nondeterminism could occur, the programmer would need to insert new selection messages.
These extra messages would have both a cognitive cost for the programmer (as programs
become littered with selections) and a runtime cost in the form of an extra message.

Instead, we opt to pair each message with a disambiguating tag called an integrity key.
When c receives a message, it checks the integrity key to find the meaning of the message.
Figure 3b uses line numbers as integrity keys. For example, the txt message is tagged with
the number 3 because it was produced by the instruction on line 3 in Figure 2. Equivalently,
one could use variable names (assuming that all variables have distinct names), message
types (assuming that all messages have distinct types), or operators [7]; essentially these are
all ways to combine messages with selections. However, as we will see in the next section,
none of these solutions will suffice once we introduce procedures and recursion.

Integrity keys have another advantage over selections: they make it safe for the network to
reorder messages. For instance, the selection in Figure 3a will only prevent CIVs if key and txt
are delivered in the same order they were sent. Thus previous theories and implementations

D. Plyukhin, M. Peressotti, and F. Montesi 31:5

(a) (b) (c)

Figure 4 The challenges of non-FIFO delivery. Part (a) depicts head-of-line blocking when using
a FIFO transport protocol: The message containing k arrives first, but it cannot be processed until
t arrives. Part (b) depicts a CIV caused by using an unordered transport protocol without integrity
keys. Part (c) depicts how the processes can use integrity keys to prevent CIVs.

of choreographic languages require a transport protocol that ensures reliable FIFO communic-
ation [16, 26]. These models are therefore susceptible to head-of-line blocking [31], where one
delayed message can prevent others from being processed (Figure 4a). Figure 4b shows why
FIFO is necessary in these models: unordered messages can cause CIVs. Because our model
combines unordered messages, integrity keys, and out-of-order processes, it circumvents the
head-of-line blocking problem – as shown in Figure 4c.

2.2 Procedural Choreographies
Choreographies can use procedures parameterised on processes for modularity and recur-
sion [11, 26]. Figure 5a shows an example: a procedure X with three roles (i.e., process
parameters) a, b, c. The procedure X is invoked twice – once with processes p, q, r1 (line 7)
and again with p, q, r2 (line 8). In the body of X, role a produces a value and sends it to b;
then b transforms the value and sends it to c; finally, c processes the value and sends it to
a. As usual in most programming languages, we will assume the variables a.w, b.x, c.y, and
a.z are locally scoped – this is in contrast to many choreography models, where variables at
processes are all mutable fields accessible anywhere in the program.

In existing choreography models, a process can only participate in one choreographic
procedure at a time. This is no longer the case with fully out-of-order choreographies.
Consider Figure 5a, where process p invokes procedure X twice. The process may begin by
invoking the first procedure call (line 7), computing p.w (line 2), and sending p.w to r1 (line
3). Then, instead of executing its next instruction – i.e. becoming blocked by waiting for a
message on line 5 – p can skip the instruction and proceed to invoke the second procedure
call (line 8). Thus, we can have an execution like in Figure 5b, in which p sends a message
to r1 as part of the first procedure call and immediately sends a message to r2 as part of
the second procedure call. This unusual semantics is exactly what we would expect in a
choreography language with non-blocking receive – such as in Choral, when using the Ozone
API to bind the result of a communication to a future (Section 5).

2.2.1 Interprocedural Integrity
Concurrent choreographic procedures add another dimension of complexity to the communic-
ation integrity problem. Figures 5b and 5c show why: depending on the order that r1 and
r2’s messages arrive at q, the messages from q may arrive at p in any order. (This occurs even

ECOOP 2024

31:6 Ozone: Fully Out-of-Order Choreographies

1 : X(a, b, c) =
2 : val a.w = produce();
3 : a.w → val b.x;
4 : b.transform(x) → val c.y;
5 : c.process(y) → val a.z;
6 : a.store(w, z)
7 : X(p, r1, q);
8 : X(p, r2, q)

(a) (b) (c)

Figure 5 A choreography and two possible executions. In both diagrams, the green lines
correspond to X(p, q, r1) and the blue lines correspond to X(p, q, r2).

if we assume reliable FIFO delivery!) Like in the previous section, p cannot distinguish which
message pertains to which procedure invocation. But now static information is insufficient
to ensure communication integrity: both messages from q pertain to the same variable in the
same procedure, so the integrity keys fail to distinguish the different procedure calls. We call
this the interprocedural CIV problem.

The example above shows that integrity keys need dynamic information prevent CIVs.
We can solve the problem by combining the line numbers used in Section 2.1 with some
session token t that uniquely identifies each procedure invocation. Applied to Figures 5b
and 5c, p could inspect the session token to determine whether the messages pertain to the
first procedure call (line 7) or the second (line 8). But this requires p and q to somehow
achieve a priori agreement about which tokens correspond to which procedure invocations.

One solution to the interprocedural CIV problem would be to select a “leader” process
for each procedure call, and let the leader compute a session token for all the other roles to
use. However, this would make the leader a bottleneck: until the other participants receive
the token, senders would not be able to send messages, and recipients would not be able
to discern which procedure invocation their incoming messages pertain to. We therefore
propose a method for processes to compute session tokens independently, using only local
data, such that they still agree on the same value of the token for each procedure invocation.

Observe that a procedure call is uniquely identified by its caller (i.e. the procedure call
that called it) and its line number l. Assuming the caller already has a unique token t, the
callee’s token can be computed as some injective function nextToken(l, t). This function
would need to satisfy two properties:

Determinism: For any input pair l, t, nextToken(l, t) always produces the same value t′.
Injectivity: Distinct input pairs l, t produce distinct output tokens.

Determinism ensures that if two processes in the same procedure call (with token t) invoke
the same procedure (on line l) then both processes will agree on the value of nextToken(l, t).
Injectivity ensures that if a process concurrently participates in two different procedure calls
(with distinct tokens t1, t2) and invokes two procedures (on lines l1, l2 – possibly l1 = l2)
then the resulting session tokens will be distinct (nextToken(l1, t1) ̸= nextToken(l2, t2)). In
the next section, we realize these constraints by representing tokens as lists of line numbers
and defining nextToken to be the list-prepend operator.

D. Plyukhin, M. Peressotti, and F. Montesi 31:7

C ::= {Xi(p, p.x) = Ci}i∈I (decls)
C ::= I; C (seq) | { C } (block)

| 0 (end)
I ::= l, t : p.e → val q.x (comm) | l, t : p → q[L] (sel)

| l, t : val p.x = e (expr) | l, t : if e@p then C1 else C2 (cond)
| l, t : X(p, a) (call) | l, t : p⇝ q.x (comm†)
| l, t : p⇝ q[L] (sel†) | l, t : p. X(q, a) { C } (call†)

t ::= t (placeholder) | τ (token†)
e ::= f(e) (app) | a (atom)
a ::= v@p (val) | p.x (var)

Figure 6 Syntax for choreographies in O3. Terms marked with † only appear at runtime.

3 Choreography Model

In this section we present O3, a formal model for asynchronous, fully out-of-order choreo-
graphies. Statements can be executed in any order (up to data dependency) and messages
can be delivered out of order. The section concludes with proofs of deadlock-freedom and
communication integrity.

3.1 Syntax
The syntax for choreographies in O3 is defined by the grammar in Figure 6. Two example
choreographies are shown in Figure 7; we explain their semantics in Section 3.2.2.

A choreography C is executed in the context of a collection of procedures C . Each
procedure Xi(p, p.x) = Ci is parameterized by a list of roles p = p1, . . . , pn and role-local
parameters p.x = pj1 .x1, . . . , pjm

.xm where every parameter pjk
.xk is located at one of the

roles in p. We assume that procedures do not contain runtime terms (such as l, t : p⇝ q.x).
A choreography C consists of a sequence of instructions I, followed by the end symbol 0

which is often omitted. Each instruction is prefixed with a line number l and a token t. We
call this pair an integrity key. If Ci is the body of a procedure in C , then the token t on
every instruction in Ci must be a token placeholder t. When the procedure is invoked, all
token placeholders t in Ci will be replaced with a fresh token value τ .

We assume that line numbers in C are similar to line numbers in a real computer program:
Each instruction I in C has a distinct line number l. When a procedure Xi(p, p.x) = Ci

is invoked, the line numbers in Ci will remain unchanged. This will allow us to access the
static location of an instruction at runtime in order to compute the integrity key.

There are five kinds of instructions. A communication p.e → val q.x; C instructs process
p to evaluate expression e and send it to process q, which will bind the result to q.x in the
continuation C. A selection p → q[L]; C conveys knowledge of choice [26]: it instructs p to
send a value literal L to q, informing q that a decision (represented by L) has been made.
A local computation val p.x = e; C instructs p to evaluate e and bind the result to p.x in
C. A conditional if e@p then C1 else C2; C instructs p to evaluate e and for the processes
to proceed with C1 or C2 according to the result. A procedure call Xi(p, a); C instructs
processes p to invoke procedure Xi(q, q.y) = Ci defined in C , with processes p playing roles

ECOOP 2024

31:8 Ozone: Fully Out-of-Order Choreographies

BuyItem(s, b, b.itemID) =
1, t : b.itemID → val s.itemID;
2, t : val s.item? = sell(s.itemID);
3, t : s.item? → val b.item?

4, τ0 : BuyItem(seller, buyer1, 123@buyer1);
5, τ0 : BuyItem(seller, buyer2, 543@buyer2)

(a)

StreamIt(p, c) =
1, t : p.produce() → val c.x;
2, t : val c.z = consume(c.x);
3, t : if (itemsLeft() > 0)@p then

4, t : p → c[More]
5, t : StreamIt(p, c)

else
6, t : p → c[Done]

7, τ0 : StreamIt(p1, c);
8, τ0 : StreamIt(p2, c)

(b)

Figure 7 Two example choreographies. On the left, processes buyer1 and buyer2 concurrently
attempt to buy products from seller. On the right, producers p1 and p2 concurrently send streams
of data to a shared consumer c.

q and arguments a (which may take the form of values v@p or variables p.x) substituted for
parameters q.y in Ci. In addition to these basic instructions, a choreography may contain
blocks { C }; C ′ which limit the scope of variables defined in C so they do not extend to C ′.

In addition, choreographies can contain runtime instructions that represent an instruction
in progress; these terms are an artifact of the semantics, not written explicitly by the
programmer. A communication-in-progress p ⇝ q.x indicates that p sent a message to q,
which q has not yet received. Similarly, a selection-in-progress p⇝ q[L] indicates that p sent
a selection. A procedure-call-in-progress p. X(q, a) { C } indicates that some processes have
invoked X, and others have not – we leave the details to Section 3.2.

Expressions e are composed of atoms a (i.e. variables p.x and values v@p) and function
applications f(e). Although the variables p.x are immutable, we assume that a function
f evaluated by p can mutate p’s state as a side-effect. Technically, having side-effects
in our theory is not necessary. However, most choreographic programming theories and
implementations equip processes with mutable state [26]; this includes Choral, the language
we use to implement the Ozone API in Section 5.

3.2 Semantics
We now give a fully out-of-order semantics for choreographies in O3. The semantics is a
labelled transition system on configurations

〈
C, Σ, K

〉
, where C is a choreography, Σ is a

mapping from process names p to process states σ, and K is a mapping from process names
p to multisets of messages M yet to be delivered to p. We also assume there exists a set of
unchanging procedure declarations C , not shown explicitly in the configuration.

An initial configuration is a configuration
〈

C, Σ, K
〉

where Σ maps each p to an arbitrary
state, K maps each p to the empty set, and all instructions in C use the same token τ0, called
the initial token. We assume initial configurations to be well-formed, cf. Section 3.3. The
transition relation (p−→) is on configurations, where p identifies which process took a step.

D. Plyukhin, M. Peressotti, and F. Montesi 31:9

Messages in our semantics are represented as triples (l, τ, v). Here l is the line number
of the communication that sent the message, τ is the token associated with the procedure
invocation that sent the message, and v is a value called the payload. Together, the pair (l, τ)
is called the integrity key of the message; the line number prevents intraprocedural CIVs
(Section 2.1) while the token prevents interprocedural CIVs (Section 2.2).

3.2.1 Transition rules
Figure 8 defines the semantics for O3, which extends textbook models for procedural
and asynchronous choreographies to allow full out-of-order execution [26]. That is, in a
choreography of the form I1; I2; C, the statement I2 can always be executed before I1 unless:
1. (Data dependency) I1 binds a variable p.x that is used in I2; or
2. (Control dependency) I1 is a selection of the form p → q[L] or p ⇝ q[L], and I2 is an

action performed by q.

The semantics for communication is defined by rules C-Send and C-Recv. In C-Send for
the communication term l, τ : p.e → val q.x, the expression e is evaluated in the context of p’s
state using the notation Σ(p) ⊢ e ⇓ (v, σ). Evaluating e produces a value v and a new state σ

for p; we assume that (⊢) is defined for any e that contains no free variables and for any state
Σ(p). The C-Send rule transforms the communication term into a communication-in-progress
term l, τ : p ⇝ q.x and adds the message (l, τ, v) to q’s set of undelivered messages. The
message can subsequently be received by q using the C-Recv rule. This rule removes the
communication-in-progress term and substitutes the message payload v into the continuation
C. Notice that the integrity key l, τ of the message is matched against the integrity key of the
communication-in-progress, l, τ : p⇝ q.x. Notice also that the semantics for communication
is not defined if the token t is merely a placeholder t – it must be a token value τ . Indeed, in
Section 3.3 we show that placeholders only appear in C , never in C.

Rules C-Select and C-OnSelect closely mirror the semantics of C-Send and C-Recv
– the key difference is that a label L is communicated instead of a value. Rules C-Compute
and C-If are standard, except for changes made to use lexical scope instead of global scope:
C-Compute substitutes the value v into the continuation C (instead of storing it in the
local state Σ) and C-If places the continuation Ci in a block to prevent variable capture. To
garbage collect empty blocks, C-If uses a concatenation operator (#) defined as:

{I; C} # C ′ = {I; C}; C ′ {0} # C ′ = C ′

The C-Delay rule is used in choreography models to enable a limited form of out-of-
order execution, where unrelated processes execute concurrently: given a choreography I; C,
C-Delay would ordinarily prevent any q from executing in C if q is somehow involved in I.
Our formulation of the rule is weakened: q is only prevented from executing in C if I is a
selection at q, i.e. a control dependency. The rule still respects data dependencies, however,
by design of the other rules – for instance, l, τ : p.x → val q.y cannot be evaluated until x is
bound to a value. Thus our version of C-Delay enables full out-of-order execution.

The rules C-First, C-Enter, C-Last, and C-Delay-Proc model procedure calls, with
extra machinery to model how processes can execute their roles in a choreographic procedure
in parallel until they need to interact. Given a procedure call l, τ : X(p, a), C-First models
how p ∈ p has entered the procedure before any of the other processes. The rule replaces
the procedure call with a procedure-call-in-progress l, τ : p \ p. X(p, a) { C ′

1 } to reflect this
fact; the choreography C ′

1 is the body of the procedure, which p may begin executing via the
C-Delay-Proc rule. The remaining processes can enter the procedure via the C-Enter
rule, and the last process to enter the procedure uses the C-Last rule. As we explain below,
these rules also compute new integrity keys for the callee procedure to prevent CIVs.

ECOOP 2024

31:10 Ozone: Fully Out-of-Order Choreographies

The key novelty of our semantics for procedures is the use of nextToken. In C-First, the
body C ′

1 is obtained by computing the token τ ′ = nextToken(l, τ) and substituting τ ′ for all
occurrences of the token placeholder t. Notice that the semantics makes it appear as if the
processes have synchronized to compute the next token; in Section 4, we give a semantics
where each process computes the next token independently and in Theorem 6 we prove that
the two models correspond. Hence the apparent synchronization has no runtime cost.

As discussed in Section 2.2.1, nextToken : N × Token → Token is a pure injective function
for computing new tokens (of type Token) using integrity keys (of type N× Token). To ensure
the integrity keys from two concurrent procedures never collide, nextToken must produce
unique, non-repeating keys upon iterated application. One way this can be realized is by
representing Token = N∗ as lists of numbers, the initial token τ0 as an empty list [], and
implementing nextToken(l, τ) = l :: τ , i.e. prepending the line number l to the list. Intuitively,
this means the token associated with a procedure invocation is a simplified call stack of line
numbers from which the procedure was called.

3.2.2 Discussion
Figure 7a expresses a choreography in which two buyer processes concurrently buy items from
a seller process. In the initial configuration, buyer1 can enter the procedure on line 4, buyer2
can enter the procedure on line 5, and seller can enter either procedure. If buyer2 enters first
(using C-Delay and C-Enter), it can proceed to send 543@buyer2 to seller (using C-Com).
Then seller can enter the procedure on line 5 (using C-Delay and C-Last) and proceed to
receive the message from buyer2 (using C-Recv). This execution would be impossible in a
standard choreography model because seller would need to complete the procedure invocation
on line 4 before it could enter the procedure on line 5. The added concurrency ensures that
slowness in buyer1 does not prevent buyer2 from making progress.

Notice the out-of-order semantics of Figure 7a also adds nondeterminism. Suppose buyer1
and buyer2 attempt to buy the same item and the seller only has one copy. One of the buyers
will receive the item, and the other will receive a null value. In a standard choreography
model, the item would always go to buyer1. In O3, the item will be sold nondeterministically
according to the order that messages arrive to the seller. This nondeterminism can be
problematic – it makes reasoning about choreographies harder – but also increases expressivity:
nondeterminism is essential in distributed algorithms like consensus and leader election.
Reasoning about nondeterminism in choreographies is an important topic for future work.

Figure 7b shows we can also express recursive choreographies. In each iteration of the
procedure StreamIt, a producer p sends a value to a consumer c (line 1) and decides whether
to start another iteration (line 3). Then the producer asynchronously informs the consumer
about its decision (lines 4 and 6) and can proceed with the next iteration (line 5) without
waiting for the consumer. Because messages in O3 are unordered, the consumer can consume
items (line 2) from different iterations in any order; this prevents head-of-line blocking [31].

In the initial choreography of Figure 7b, producers p1, p2 and a consumer c invoke two
instances of StreamIt. As in Figure 7a, the two procedures evolve concurrently; a slowdown
in p1 will not prevent c from consuming items produced by p2.

3.3 Properties
In this section we prove that O3 choreographies are deadlock-free and we formalize the
communication integrity property. Combined with the EPP Theorem presented in Section 4,
these results imply that projected code inherits the same properties.

D. Plyukhin, M. Peressotti, and F. Montesi 31:11

Σ(p) ⊢ e ⇓ (v, σ) M = K(q) ⊎ {(l, τ, v)}
C-Send〈

l, τ : p.e → val q.x; C, Σ, K
〉 p−→

〈
l, τ : p⇝ q.x; C, Σ[p 7→ σ], K[q 7→ M]

〉
(l, τ, v) ∈ K(q) M = K(q) \ {(l, τ, v)}

C-Recv〈
l, τ : p⇝ q.x; C, Σ, K

〉 q−→
〈

C[q.x 7→ v@q], Σ, K[q 7→ M]
〉

M = K(q) ∪ {(l, τ, L)}
C-Select〈

l, τ : p → q[L]; C, Σ, K
〉 p−→

〈
l, τ : p⇝ q[L]; C, Σ, K[q 7→ M]

〉
K(q) = {(l, τ, L)} ∪ M

C-OnSelect〈
l, τ : p⇝ q[L]; C, Σ, K

〉 q−→
〈

C, Σ, K[q 7→ M]
〉

Σ(p) ⊢ e ⇓ (v, σ)
C-Compute〈

l, τ : val p.x = e; C, Σ, K
〉 p−→

〈
C[p.x 7→ v@p], Σ[p 7→ σ], K

〉
Σ(p) ⊢ e ⇓ v if v = true then i = 1 else i = 2

C-If〈
l, τ : if e@p then C1 else C2; C, Σ, K

〉 p−→
〈

{ Ci } # C, Σ, K
〉

〈
C1, Σ, K

〉 p−→
〈

C′
1, Σ′, K′ 〉

C-Block〈
{ C1 }; C2, Σ, K

〉 p−→
〈

{ C′
1 } # C2, Σ′, K′ 〉

〈
C, Σ, K

〉 q−→
〈

C′, Σ′, K′ 〉
I is not a selection at q

C-Delay〈
I; C, Σ, K

〉 q−→
〈

I; C′, Σ′, K′ 〉
(X(q, q.y) = C1) ∈ C C′

1 = C1[q, q.y, t 7→ p, a, τ ′]
p ∈ p τ ′ = nextToken(l, τ)

C-First〈
l, τ : X(p, a); C2, Σ, K

〉 p−→
〈

l, τ : p \ p. X(p, a) { C′
1 }; C2, Σ, K

〉
p ∈ p

C-Enter〈
l, τ : p. X(q, a) { C1 }; C2, Σ, K

〉 p−→
〈

l, τ : p \ p. X(q, a) { C1 }; C2, Σ, K
〉

C-Last〈
l, τ : p. X(q, a) { C1 }; C2, Σ, K

〉 p−→
〈

{ C1 } # C2, Σ, K
〉

〈
C1, Σ, K

〉 p−→
〈

C′
1, Σ′, K′ 〉

p /∈ p
C-Delay-Proc〈

l, τ : p. X(q, a) { C1 }; C2, Σ, K
〉 p−→

〈
l, τ : p. X(q, a) { C′

1 }; C2, Σ′, K′ 〉
Figure 8 Semantics for fully out-of-order choreographies.

ECOOP 2024

31:12 Ozone: Fully Out-of-Order Choreographies

∀v, (l, τ, v) /∈ K(q)
C-WF-Send⟨l, τ : p.e → val q.x, K⟩✓

(l, τ, L) /∈ K(q)
C-WF-Select⟨l, τ : p → q[L], K⟩✓

p distinct p.x distinct pn(C) ⊆ p
∀p.x ∈ p.x, p ∈ p ⟨I, K⟩✓ for each I ∈ stats(C)

C contains no runtime terms keys(C) distinct ∀(l, t) ∈ keys(C), t = t
C-WF-Def

X(p, p.x) = C✓

⟨l, τ : X(q, a), K⟩✓ (X(q1, . . . , qn, q1.x1, . . . , qm.xm) = C′) ∈ C

{r1, . . . , rk} ⊆ {p1, . . . , pn} ∀i ≤ k, j ≤ n if ri = pj then JCKri = JC′Kqj

C-WF-Calling⟨l, τ : r1, . . . , rk. X(p1, . . . , pn, a1, . . . , am) { C }, K⟩✓

stats(0) = ϵ

stats(I; C) = stats(I), stats(C)
stats({ C }) = stats(C)
stats(l, t : if e@q then C1 else C2) =

(l, t : if e@q then C1 else C2), stats(C1), stats(C2)
stats(l, t : q. X(p, a) { C }) =

(l, t : q. X(p, a) { C }), stats(C)
stats(l, t : η) = (l, t : η) otherwise
stats(C) = [stats(C) | p ∈ pn(C)]
keys(C) = [(l, t) | (l, t : η) ∈ stats(C)]

pn(0) = ∅
pn(I; C) = pn(I) ∪ pn(C)
pn({ C }) = pn(C)
pn(l, t : p.e → val q.x) = {p, q}
pn(l, t : p⇝ q.x) = {q}
pn(l, t : p → q[L]) = {p, q}
pn(l, t : p⇝ q[L]) = {q}
pn(l, t : val p.x = e) = {p}
pn(l, t : if e@p then C1 else C2) =

{p} ∪ pn(C1) ∪ pn(C2)
pn(l, t : X(p, a)) = p
pn(l, t : q. X(p, a) { C }) = p
pn(v@p) = {p}
pn(p.x) = {p}

Figure 9 Well-formedness (representative rules).

To prove these properties we need an invariant that characterizes how the rules of O3
preserve the intuition from Section 2. For example, consider the following configurations:〈

l, τ0 : p⇝ q.x, Σ, {p 7→ ∅, q 7→ ∅}
〉

(1)〈
l, τ0 : p.e → val q.x, Σ, {p 7→ ∅, q 7→ {(l, τ, v)}}

〉
(2)〈

{1, τ : p.e → val q.x}; {1, τ : p.e′ → val q.x}, Σ, {p 7→ ∅, q 7→ ∅}
〉

(3)〈
3, τ0 : p. X(p, q) { 1, τ0 : p.e → val q.x }, Σ, {p 7→ ∅, q 7→ ∅}

〉
(4)

Configuration (1) is not reachable because l, τ : p ⇝ q.x never occurs unless q has an
undelivered message from p. Dually, configuration (2) is not reachable because p has a message
in its queue that, according to the choreography, has not yet been sent. Configuration (3)
is unreachable because the two instructions share the same integrity key; we will show
that nextToken ensures such configurations never arise. Likewise, nextToken also forbids
configuration (4), since the token of the instruction 1, τ0 : p.e → val q.x must have been
derived from the integrity key of the enclosing call 3, τ0 : p. X(p, q) { . . . }. Specifically,
τ0 ≠ nextToken(3, τ0). To specify this last property, recall that tokens are represented as lists
of integers l1 :: l2 :: We say (l1, t1) is a prefix of (l2, t2) – written (l1, t1) ≺ (l2, t2) – if
the list l1 :: t1 is a prefix of l2 :: t2 and that the keys are disjoint if neither is a prefix of the
other.

D. Plyukhin, M. Peressotti, and F. Montesi 31:13

Following convention, we formalize the properties of reachable configurations by defining
which configurations and procedures are well-formed. Figure 9 highlights the most interesting
rules that define well-formedness, where ✓ reads “well-formed” – the rest can be found in
the full version of this paper [27]. In particular, well-formedness ensures that:
1. (C-WF-Send) l, τ : p⇝ q.x occurs in C if and only if (l, τ, v) ∈ K(q) for some v.
2. (C-WF-Select) l, τ : p⇝ q[L] occurs in C if and only if (l, τ, L) ∈ K(q).
3. (C-WF-Def) Each I in C has a distinct integrity key l, t, where t is not a placeholder.
4. (C-WF-Calling) If the integrity key of I is a prefix of the integrity key of I ′ then I is a

communication-in-progress l, t : p. X(p, a) { C ′ } and I ′ is in C ′.
Well-formedness also guarantees other properties seen in other choreography models, e.g.,
that procedures contain no free variables and that processes waiting to enter a procedure have
the same local behaviour in the original procedure body and the current choreography [26].
As in prior work [26, 13], the latter check is made by using endpoint projection (JCKp), which
returns the local behaviour of a process in a choreography and is defined later in Section 4.3.

▶ Theorem 1 (Preservation). If
〈

C, Σ, K
〉

is well-formed and
〈

C, Σ, K
〉 p−→

〈
C ′, Σ′, K ′ 〉

,
then

〈
C ′, Σ′, K ′ 〉

is well-formed.

Proof. By induction on the rules of p−→. We focus on the rules for communication and
procedure invocation.

C-Send replaces l, τ : p.e → val q.x with l, τ : p⇝ q.x and adds a message (l, τ, v). By
the induction hypothesis, (l, τ, v) is not already in K.

C-Recv eliminates l, τ : p⇝ q.x and removes a message (l, τ, v). Since each instruction
has a distinct integrity key by hypothesis, no other l, τ : p⇝ q.x term occurs in C.

C-First introduces new terms into the choreography by invoking the call l1, τ1 : X(p, a).
By the induction hypothesis, for any other instruction l2, t2 : I in C, either (a) keys l1, t1
and l2, t2 are disjoint; or (b) l2, t2 : I is a call-in-progress containing l1, τ1 : X(p, a). In case
(a), disjointness implies any instruction in the body of the procedure C ′[q, q.y, t 7→ p, p.x, τ ′]
will also have a key that is disjoint from l2, t2. In case (b), notice ∀l, (l2, t2) ≺ (l1, t1) ≺
(l, nextToken(l1, t1)); hence any interaction in the body has a key where (l2, t2) is a prefix. ◀

▶ Theorem 2 (Deadlock-Freedom). If
〈

C, Σ, K
〉

is well-formed, then either C ≡ 0 or〈
C, Σ, K

〉 p−→
〈

C ′, Σ′, K ′ 〉
for some p, C ′, Σ′, K ′.

Proof. By induction on the structure of C, making use of the full definition of well-
formedness [27]. In each case, we observe the first instruction I of C can always be executed.
For instance, if I ≡ l, τ : p.e → val q.x then the C-Send rule can be applied because
well-formedness implies e has no free variables. If I ≡ l, τ : p⇝ q.x, there must be a message
(l, τ, v) ∈ K(q) because the configuration is well-formed. The other cases follow similarly. ◀

We end this section with a formalization of communication integrity. Consider the buggy
execution in Figure 2: in a model without integrity keys, the execution reaches a configuration〈

s⇝ c.txt; s⇝ c.key; . . . , Σ, c 7→ vkey, vtxt

〉
,

where vkey is the value produced by ks.getKey() and vtxt is the value produced by cs.getText().
A CIV occurs if the configuration can make a transition that consumes s⇝ c.txt and vkey

together, binding c.txt to vkey. We therefore want to ensure:
There is only one way a communication-in-progress instruction can be consumed; and
The instruction is consumed together with the correct message.

ECOOP 2024

31:14 Ozone: Fully Out-of-Order Choreographies

▶ Definition 3 (Send/receive transitions). A send transition
〈

C, Σ, K
〉 p−→

〈
C ′, Σ′, K ′ 〉

is
a transition with a derivation that ends with an application of C-Send. Likewise, a receive
transition is a transition with a derivation that ends with C-Recv.

▶ Theorem 4 (Communication Integrity). Let e = c0
p1−−→ · · · pk+1−−−→ ck+1 be an execution

ending with a send transition ck
p−→ ck+1, which produces instruction l, τ : p ⇝ q.x and

message m. Let e′ = c0
p1−−→ · · · pn−−→ cn (n > k) be an execution extending e, where

l, τ : p ⇝ q.x has not yet been consumed. Then there is at most one receive transition
cn

q−→ cn+1 consuming l, τ : p⇝ q.x. Namely, it is the transition that consumes l, τ : p⇝ q.x

and m together.

Proof. By definition of C-Send, m has the form (l, τ, v). By definition of C-Recv, if there
exists a transition cn → cn+1 that consumes l, τ : p⇝ q.x, then the transition also consumes
a message (l, τ, v′), for some v′. It therefore suffices to show the message (l, τ, v′) is unique
and that v′ = v. This follows by induction on the length m of the extension:

Base case: Well-formedness implies there is no message (l, τ, v′) in ck. Hence the message
(l, τ, v) in ck+1 is unique.
Induction step: Observe that the transition cm → cm+1 cannot remove (l, τ, v); this
would require consuming l, τ : p⇝ q.x, which cannot happen in e′ by hypothesis. Also
observe that the transition cannot add a new message with integrity key (l, τ); this
would require consuming an instruction l, τ : p′.e → val q.x′, which cannot exist in cm by
well-formedness. Hence (l, τ, v) is unique in cm+1. ◀

4 Process Model and Endpoint Projection

4.1 Syntax
Figure 10 presents the syntax for out-of-order processes. A term p[P] is a process named
p with behavior P . Networks, ranged over by N, M , are parallel compositions of processes.
Compared to prior work, certain process instructions need to be annotated with integrity
keys (for instance, message send p !l,t e and procedure call l, t : X(p, a)). In addition, when
receiving a message it is no longer necessary to specify a sender – it suffices to write ?l,t x; P

instead of the more traditional p ?l,t x; P – because integrity keys functionally determine the
variable to which the message payload should be bound.

P ::= {Xi(pi, xi) = Ci}i∈I (decls)
P, Q ::= I; P (seq) | { P } (block)

| 0 (end)
I ::= p !l,t e (send) | ?l,t x (receive)

| val x = e (expr) | p ⊕l,t L (choice)
| N{(li, τ, Li) ⇒ Pi}i∈I (branch) | if e then P else Q (cond)
| l, t : X(p, a) (call)

e ::= f(e) (app) | a (atom)
a ::= x (var) | v (val)

N, M ::= p[P] (proc) | (N | M) (par)

Figure 10 Syntax for out-of-order processes.

D. Plyukhin, M. Peressotti, and F. Montesi 31:15

4.2 Semantics
The semantics for out-of-order processes appears in Figure 11. It is a labelled transition
system on process configurations

〈
N, Σ, K

〉
, where N is a network and Σ, K have the same

meaning as in Section 3.2. We also assume an implicit set of procedure declarations P.
The transition rules of Figure 11 are similar to prior work. P-Send adds a message (l, τ, v)

to the undelivered messages of q, whereas P-Recv removes the message and substitutes
it into the body of the process. Similarly, P-Select adds (l, τ, L) to the message set and
P-OnSelect selects a branch from the set of options N{(lj , τj , Lj) ⇒ Pj}j∈J . P-Call
invokes a procedure, locally computing the next token and substituting the body of the
procedure into the process. Rules P-Compute, P-If, and P-Par are standard.

The key novelty of out-of-order processes is the P-Delay rule, which allows a process to
perform instructions in any order, up to data- and control-dependencies. The latter implies
processes cannot evaluate instructions nested within an if or N-expression.

4.3 Endpoint Projection
Figure 13 defines the endpoint projection (EPP) JCK of a choreography C, translating it
into a network. The rules follow from simple modifications to the textbook definition of
EPP [26]. Projecting a conditional on a process that does not evaluate the guard uses the
auxiliary partial operator ⊔, which produces a term that can react to the different branches
by receiving different selections (this is standard).

Figure 12 shows networks projected from the choreographies of Figure 7. Notice the
choreographic procedures BuyItem and StreamIt are each split into two process procedures –
one for each role. Communications in the choreography are, as usual, projected into send and
receive instructions. Conditionals in the choreography are projected into an if-instruction at
one process and a branch-instruction at the other processes awaiting its decision.

Below we formulate the hallmark EPP Theorem, which states that a choreography C and
its projection JCK evolve in lock-step, up to the usual (⊒) relation from Montesi [26] (given
in Figure 14). Importantly, we update the theorem to restrict our attention to well-formed
networks and choreographies. We say that a network N is well-formed if the keys in each
process are distinct, i.e., keys(P) is distinct for each p[P] in N (keys(P) is given in Figure 14).
The restriction allows us to ignore processes such as p[N{(1, τ, L) ⇒ P1}; N{(1, τ, L) ⇒ P2}],
which could only be projected from a choreography where two distinct instructions have the
same integrity key (1, τ). This leads to the following lemma:

▶ Lemma 5. Let C, Q be well-formed. If Q ⊒ JCKq then keys(Q) ⊇ keysq(C), where

keysq(C) = [(l, t) | (l, t : p⇝ q.x) ∈ stats(C)], [(l, t) | (l, t : p.e → val q.x) ∈ stats(C)].

The key difficulty of proving the EPP Theorem was finding the right definition of well-
formedness (Theorems 1 and 4). With the definition established, the entire proof follows
directly from textbook induction principles (c.f. [26]). We sketch the proof in the full version
of this paper [27].

▶ Theorem 6 (EPP Theorem). Let
〈

C, Σ, K
〉

be a well-formed configuration.
1. (Completeness) If

〈
C, Σ, K

〉 p−→
〈

C ′, Σ′, K ′ 〉
then

〈
JCK, Σ, K

〉 p−→
〈

N ′, Σ′, K ′ 〉
for some well-formed N ′ where N ′ ⊒ JC ′K.

2. (Soundness) If
〈

N, Σ, K
〉 r−→

〈
N ′, Σ′, K ′ 〉

for some well-formed N where N ⊒ JCK,
then

〈
C, Σ, K

〉 p−→
〈

C ′, Σ′, K ′ 〉
for some C ′ where N ′ ⊒ JC ′K.

ECOOP 2024

31:16 Ozone: Fully Out-of-Order Choreographies

Σ(p) ⊢ e ⇓ (v, σ) M = K(q) ⊎ {(l, τ, v)}
P-Send〈

p[q !l,τ e; P], Σ, K
〉 p−→

〈
p[P], Σ[p 7→ σ], K[q 7→ M]

〉
(l, τ, v) ∈ K(q) M = K(q) \ {(l, τ, v)}

P-Recv〈
q[?l,τ x; Q], Σ, K

〉 q−→
〈

q[Q[x 7→ v]], Σ, K[q 7→ M]
〉

M = K(q) ∪ {(l, τ, L)}
P-Select〈

p[q ⊕l,τ L; P], Σ, K
〉 p−→

〈
p[P], Σ, K[q 7→ M]

〉
K(q) = {(li, τ, Li)} ∪ M i ∈ I

P-OnSelect〈
q[N{(lj , τ, Lj) ⇒ Qj}j∈I ; Q], Σ, K

〉 q−→
〈

q[{Qi}; Q], Σ, K[q 7→ M]
〉

Σ(p) ⊢ e ⇓ (v, σ)
P-Compute〈

p[val x = e; P], Σ, K
〉 p−→

〈
p[P [x 7→ v]], Σ[p 7→ σ], K

〉
Σ(p) ⊢ e ⇓ v if v = true then i = 1 else i = 2

P-If〈
p[if e then P1 else P2; P], Σ, K

〉 p−→
〈

p[{Pi}; P], Σ, K
〉

〈
p[P1], Σ, K

〉 p−→
〈

p[P ′
1], Σ′, K ′ 〉

P-Block〈
p[{P1}; P2], Σ, K

〉 p−→
〈

p[{P ′
1}; P2], Σ′, K ′ 〉

〈
p[P], Σ, K

〉 p−→
〈

p[P ′], Σ′, K ′ 〉
P-Delay〈

p[I; P], Σ, K
〉 p−→

〈
p[I; P ′], Σ′, K ′ 〉

(X(q, y) = Q) ∈ P nextToken(l, τ) = τ ′
P-Call〈

p[l, τ : X(p, a); P], Σ, K
〉 p−→

〈
p[{Q[q, y, t 7→ p, a, τ ′]}; P], Σ, K

〉
〈

N, Σ, K
〉 p−→

〈
N ′, Σ′, K ′ 〉

P-Par〈
N | M, Σ, K

〉 p−→
〈

N ′ | M, Σ′, K ′ 〉
Figure 11 Semantics for out-of-order processes.

D. Plyukhin, M. Peressotti, and F. Montesi 31:17

BuyItem1(b) =
?1,t itemID;
val item? = sell(itemID);
b !3,t item?

BuyItem2(s, itemID) =
s !1,t itemID;
?3,t item?

seller[4, τ0 : BuyItem1(buyer1);
5, τ0 : BuyItem1(buyer2)] |

buyer1[4, τ0 : BuyItem2(seller, 123)] |
buyer2[5, τ0 : BuyItem2(seller, 543)]

(a)

StreamIt1(c) =
c !1,t produce();
if (itemsLeft() > 0) then

c ⊕4,t More; 5, t : StreamIt1(c)
else c ⊕6,t Done

StreamIt2(p) =
?1,t x; val z = consume(x);
N {(4, t, More) ⇒ 5, t : StreamIt2(p),

(6, t, Done) ⇒ 0}
p1[7, τ0 : StreamIt1(c)] |
p2[8, τ0 : StreamIt1(c)] |
c[7, τ0 : StreamIt2(p); 8, τ0 : StreamIt2(p)]

(b)

Figure 12 Processes projected from Figure 7.

5 A Non-Blocking Communication API for Choral

In this section, we show how the ideas in O3 can be applied in practice. To this end, we
consider Choral [16]: a state-of-the-art choreographic programming language based on Java.
Choral is designed to support real-world programming and interoperate with Java, so it is
much more sophisticated than our minimalistic theory. Data locations in Choral are lifted to
the type level and communication is expressed by invoking methods of channel objects.

Choral’s intended programming model consists of sequential processes that block to receive
messages. However, to improve performance programmers can use Java’s CompletableFuture
API, thereby introducing intraprocess concurrency and out-of-order execution. This breaks
the programming model and introduces CIVs (cf. Section 2) that could cause crashes or silent
memory corruption. Motivated by our formal model, we developed Ozone: an API for Choral
programmers to safely mix choreographies with futures. In the remainder of this section, we
introduce Choral and Ozone and we show how programmers can mix choreographies with
futures achieve significant speedups in practical applications.

5.1 Concurrent Messages

We introduce the Ozone API with an implementation of the choreographic procedure
from Figure 2. The implementation is shown in Figure 15, which defines a class called
ConcurrentSend parameterized by four roles (i.e. process parameters): KS, CS, S, and C.
In this class, the start method implements the procedure itself. As in our formal model,
the procedure is parameterized by distributed data: On line 3, parameter key is a String
located at KS; txt is a String located at CS; and client is a Client object at C, representing
the client’s user interface. The start procedure is also parameterized by session tokens,
which we introduced in Figure 15, on line 4. The parameter Token@(KS, CS, S, C) tok is

ECOOP 2024

31:18 Ozone: Fully Out-of-Order Choreographies

JC K =
⋃
i∈I

JXi(p, p.x) = CiK

JXi(p, p.x) = CiK = {Xi,j(p \ pj , Jp.xKpj) = JCiKpj | p = p1, . . . , pn, j ≤ n}

Jl, t : p.e → val q.x; CKr =

q !l,t e; JCKr if r = p
?l,t x; JCKr if r = q
JCKr otherwise

Jl, t : p⇝ q.x; CKr =

{
?l,t x; JCKr if r = q
JCKr otherwise

Jl, t : val p.x = e; CKr =

{
val x = JeKr; JCKr if r = p
JCKr otherwise

Jl, t : p → q[L]; CKr =

q ⊕l,t JeKr; JCKr if r = p
N{(l, t, L) ⇒ JCKr} if r = q
JCKr otherwise

Jl, t : p⇝ q[L]; CKr =

{
N{(l, t, L) ⇒ JCKr} if r = q
JCKr otherwise

Jl, t : if e@p then C1 else C2; CKr =

if JeKr then JC1Kr else JC2Kr; JCKr if r = p
JC1Kr ⊔ JC2Kr; JCKr if r ∈ pn(C1, C2) \ p
JCKr otherwise

Jl, t : Xi(p, a); CKr =

{
l, t : Xi,j(p \ pj , JaKpj); JCKpj if r = pj where p = p1, . . . , pn

JCKr otherwise

Jl, t : q. Xi(p, a) { C1 }; C2Kr =

l, t : Xi,j(p \ pj , JaKpj); JC2Kpj if r ∈ q and r = pj

JC1; C2Kr if r ∈ p \ q
JC2Kr otherwise

J{ C1 }; C2Kr = {JC1Kr}; JC2Kr

Ja1, . . . , anKr = Ja1Kr, . . . , JanKr

Jf(e1, . . . , en)Kr = f(Je1Kr, . . . , JenKr)

Jv@pKr =

{
v if r = p
⊥ otherwise

Jp.xKr =

{
x if r = p
⊥ otherwise

(N{(li, τi, Li) ⇒ Pi}i∈I) ⊔ (N{(lj , τj , Lj) ⇒ Pj}j∈J) = N{(lk, τk, Lk) ⇒ Pk}k∈I∪J

if {Li : i ∈ I} # {Lj : j ∈ J }

Figure 13 Endpoint projection.

D. Plyukhin, M. Peressotti, and F. Montesi 31:19

0 ⊒ 0
(P1; P2) ⊒ (Q1; Q2) if Pi ⊒ Qi for i = 1, 2
(if e then P1 else P2) ⊒ (if e then Q1 else Q2) if Pi ⊒ Qi for i = 1, 2
I1 ⊒ I2 if I1 = I2 or I1 = I1 ⊔ I2

keys(0) = ϵ

keys(I; P) = keys(I), keys(P)
keys(p !l,t e) = (l, t)
keys(?l,t x) = (l, t)
keys(val x = e) = ϵ

keys(p ⊕l,t L) = (l, t)

keys(N{(li, τi, Li) ⇒ Pi}i∈I) =
[(li, τi) | i ∈ I], [keys(Pi) | i ∈ I]

keys(if e then P1 else P2) = keys(P1), keys(P2)
keys(l, t : X(p, a)) = (l, t)
keys({P1}; P2) = keys(P1), keys(P2)

Figure 14 Auxiliary definitions for the EPP Theorem (⊒ and keys).

1 public class ConcurrentSend@(KS, CS, S, C) {
2 public void start(
3 String@KS key, String@CS txt, Client@C client,
4 Token@(KS, CS, S, C) tok,
5 AsyncChannel@(KS, S) ch1, AsyncChannel@(CS, S) ch2, AsyncChannel@(S, C) ch3
6) {
7 // Services send data to the server.
8 CompletableFuture@S keyS = ch1.fcom(key, 1@(KS,S), tok);
9 CompletableFuture@S txtS = ch2.fcom(txt, 2@(CS,S), tok);

10

11 // Server forwards data to the client.
12 ch3.fcom(keyS, 3@(S,C), tok)
13 .thenAccept(client::decrypt);
14 ch3.fcom(txtS, 4@(S,C), tok)
15 .thenAccept(client::display);
16 }
17 }

Figure 15 An implementation of the choreography in Figure 2 using Choral and the Ozone API.

syntactic sugar for the parameter list Token@KS tok_KS, ..., Token@C tok_C.3 The last
three parameters on line 5 are channels. In Choral, channels are used to communicate data
from one role to another. If ch is a channel of type Channel@(A,B)<T> and e is an expression
of type T@A, then the expression ch.com(e) is a communication that produces a value of
type T@B.

Our main contribution in the Ozone API is a custom channel AsyncChannel@(A,B)<T>
with a method fcom for safely communicating data with non-blocking semantics. The fcom
method is similar to com, but with the following differences:

Whereas com takes one argument, fcom takes three: a payload, a line number, and a
session token. The latter two arguments form an integrity key, of which both the sender
and receiver have a copy.

3 This syntactic sugar is provided for readability and is not currently supported by the Choral compiler.
We will also use syntactic sugar for lambda expressions and omit obvious type annotations later in this
section. Our actual implementation uses desugared versions of the syntax.

ECOOP 2024

31:20 Ozone: Fully Out-of-Order Choreographies

1 public class ConcurrentSend_KS {
2 public void start(
3 String key, Token tok_KS,
4 AsyncChannel ch1
5) {
6 ch1.fcom(key, 1, tok_KS);
7 }
8 }
9 public class ConcurrentSend_S {

10 public void start(
11 Token tok_S, AsyncChannel ch1,
12 AsyncChannel ch2, AsyncChannel ch3
13) {
14 CompletableFuture keyS =
15 ch1.fcom(1, tok_S);
16 CompletableFuture txtS =
17 ch2.fcom(2, tok_S);
18

19 ch3.com(keyS, 3, tok_S);
20 ch3.com(txtS, 4, tok_S);
21 }
22 }

23 public class ConcurrentSend_CS {
24 public void start(
25 String txt, Token tok_CS,
26 AsyncChannel ch2
27) {
28 ch2.fcom(txt, 2, tok_CS);
29 }
30 }
31

32 public class ConcurrentSend_C {
33 public void start(
34 Client client, Token tok_C,
35 AsyncChannel ch3
36) {
37 ch3.fcom(3, tok_C)
38 .thenAccept(client::decrypt);
39 ch3.fcom(4, tok_C)
40 .thenAccept(client::display);
41 }
42 }

Figure 16 Endpoint projection of Figure 15.

When the receiver B executes a com instruction, its thread becomes blocked until the
value (of type T@B) has been delivered. In contrast, fcom creates a Java future (of type
CompletableFuture@B<T>) which is a placeholder at B that will hold a value of type T
once the message is delivered. Instead of blocking, fcom immediately returns that future
to the calling thread. The thread can then assign a callback to handle the message and
proceed with other useful work.

Lines 8 and 9 of Figure 15 show fcom being used to transport key and txt to the server S.
The expression 1@(KS, S) is sugar for the list 1@KS, 1@S and we assume the replicated value
tok is expanded into the list tok_KS, tok_S. Thus both sender and receiver pass integrity
keys as arguments to fcom.

Lines 12-15 of Figure 15 show how the server S and client C use the future values. On line
12, the server uses an overloaded version of fcom that takes CompletableFuture@S instead of
T@S. The method assigns to the future a callback, which forwards the result to the client once
the future has been completed. The result of fcom on line 12 is a CompletableFuture@C,
to which the client binds a callback on line 13: when the key from S finally arrives at C,
the client will proceed to invoke the method client.decrypt with the key as an argument.
Lines 14 and 15 do the same, but with the value of txt. As we will see below, the values of
key and txt can arrive at the client in any order, so the callbacks on lines 13 and 15 can
execute in any order – even in parallel.

5.1.1 Endpoint projection
By running the Choral compiler, ConcurrentSend@(KS,CS,S,C) is projected to generate four
Java classes, shown in Figure 16. Each class implements the behavior of its corresponding
role. For example, ConcurrentSend_KS implements the behavior of KS. Its start method is
parameterized by: key, which corresponds to the key in Figure 15; tok_KS, the copy of the
token tok belonging to KS; and ch1, a channel endpoint that connects KS to S. Following the
reasoning in Figure 13, these behaviors will not exhibit deadlocks or communication integrity
errors when composed (assuming the implementations of Choral and Ozone are correct).

D. Plyukhin, M. Peressotti, and F. Montesi 31:21

1 public class ConcurrentClients@(KS, CS, S, C1, C2) {
2 public void start(
3 AsyncChannel@(KS, S) ch1, AsyncChannel@(CS, S) ch2,
4 AsyncChannel@(S, C1) ch3, AsyncChannel@(S, C2) ch4,
5 KeyService@KS keyService, ContentService@CS contentService,
6 Client@C1 client1, String@(KS, CS) clientID1,
7 Client@C2 client2, String@(KS, CS) clientID2,
8 Token@(KS, CS, S, C1, C2) tok
9) {

10 (new ConcurrentSend2()).start(ch1, ch2, ch3,
11 keyService.getKey(clientID1), contentService.getContent(clientID1),
12 client1, tok.nextToken(0@(KS,CS,S,C1)));
13

14 (new ConcurrentSend2()).start(ch1, ch2, ch4,
15 keyService.getKey(clientID2), contentService.getContent(clientID2),
16 client2, tok.nextToken(1@(KS,CS,S,C2)));
17 }
18 }

Figure 17 A Choral choreography invoking ConcurrentSend2.

1 public class ConcurrentClients_KS {
2 public void start(...) {
3 (new ConcurrentSend2_KS()).start(ch1,
4 keyService.getKey(clientID1),
5 tok.next(0));
6

7 (new ConcurrentSend2_KS()).start(ch1,
8 keyService.getKey(clientID2),
9 tok.next(1));

10 }
11 }

12 public class ConcurrentClients_S {
13 public void start(...) {
14 (new ConcurrentSend2_S()).start(
15 ch1, ch2, ch3, tok.next(0));
16

17 (new ConcurrentSend2_S()).start(
18 ch1, ch2, ch3, tok.next(1));
19 }
20 }

Figure 18 Endpoint projection of Figure 17 (representative examples).

Let us see how integrity keys prevent CIVs in Figure 16. Notice that the Choral instruction
CompletableFuture@S keyS = ch1.fcom(key, 1@(KS,S), tok); on line 8 of Figure 15 is
projected into two instructions:
1. ch1.fcom(key, 1, tok_KS) at the sender KS; and
2. CompletableFuture keyS = ch1.fcom(1, tok_S) at the receiver S.
The former instruction is parameterized by a payload and an integrity key and produces
nothing. The latter instruction is parameterized only by an integrity key (with no payload)
and produces a future. When KS sends key to S, it combines the payload with integrity key
(1, tok_KS). Dually, S creates a future that will only be completed when a message with
the integrity key (1, tok_S) is received. Since tok_KS and tok_S have the same value, the
send- and receive-operations are guaranteed to match.

On lines 14-17 of Figure 16, the server S sets listeners for key and txt. On lines 19-20, S
schedules the values to be forwarded to C; notice that even with FIFO channels, key and
txt may arrive in any order. Consequently, S may forward their values to C in any order.
On lines 37-40 of Figure 16, the client creates futures to hold the values of key and txt and
sets callbacks to be invoked when the values arrive. Here we see the importance of integrity
keys: the client uses (3, tok_C) and (4, tok_C) to disambiguate the key message from
the txt message. Without integrity keys, mixing Choral choreographies with Java Futures
would be unsafe. As shown in Section 4.3, our solution is correct even when the underlying
transport protocol can deliver messages out of order.

ECOOP 2024

31:22 Ozone: Fully Out-of-Order Choreographies

25 50 75 100 125 150
Requests per second

0

500

1000

1500

2000

2500

La
te

nc
y

(m
s)

Ozone (median)
Ozone (99pi)
Choral (median)
Choral (99pi)

(a) Concurrent producers latency (lower is better).

0 10
Latency (ms)

0
250
500
750

1000

Fr
eq

ue
nc

y

txt (Choral)

0 10
Latency (ms)

0
250
500
750

1000

Fr
eq

ue
nc

y

key (Choral)

0 10
Latency (ms)

0
250
500
750

1000

Fr
eq

ue
nc

y

txt (Ozone)

0 10
Latency (ms)

0
250
500
750

1000

Fr
eq

ue
nc

y

key (Ozone)

(b) Concurrent senders latency (further left is better).

Figure 19 Microbenchmark.

100 200 300 400 500
Requests per second

50

100

150

200

250

300

Th
ro

ug
hp

ut
(re

sp
on

se
s/

se
c)

Ozone
Choral
Akka
max

(a) Throughput (higher is better).

100 200 300 400 500
Requests per second

0

2000

4000

6000

8000

10000

12000
La

te
nc

y
(m

s)
Ozone (median)
Ozone (99pi)
Choral (median)
Choral (99pi)
Akka (median)
Akka (99pi)

(b) Latency (lower is better).

Figure 20 Model serving.

5.2 Procedure calls

Section 5.1 showed how the line numbers in an integrity key could prevent CIVs. We now
briefly show how the tokens in an integrity key prevent interprocedural CIVs. Figure 17
depicts a choreography that invokes two instances of ConcurrentSend2: the first instance
with client C1, and the second instance with client C2. On lines 12 and 16, the roles all
compute fresh tokens for each procedure they’re involved in, like in our formal model;
the syntax tok.nextToken(0@(KS,CS,S,C1)) is sugar for tok_KS.nextToken(0@KS),
..., tok_C1.nextToken(0@C1), and the method t.nextToken(l) implements the func-
tion nextToken(l, t). These fresh tokens ensure that, even if messages from KS to S are
delivered out of order there is no chance that messages from the first procedure invocation
will be confused for messages from the second invocation.

5.3 Evaluation

We evaluated Ozone with microbenchmarks based on Figures 1 and 2 and with a model
serving benchmark from Wang et al [34]. The experiments were carried out on a six-node
Linux cluster, with two Intel Xeon Gold 6130 CPUs and 384 GB of memory per node and
an average bandwidth of 15 Gbps.

D. Plyukhin, M. Peressotti, and F. Montesi 31:23

Gateway

W1

W2

Batcher

M1

M2

Workers Models

ids
imgs

ids

imgs

im
g1

im
g2

img id

results

im
g ids

results

1

2

6

3

5

4

Figure 21 Architecture for the image classi-
fication pipeline.

Figure 22 Control flow comparison between
hand-written Akka processes and Ozone.

The first microbenchmark is a version of Figure 1 from the introduction. Each producer
iteratively invokes the choreography at a fixed rate and, in response to each request, the server
simulates computation by sleeping for 0–5 milliseconds. Figure 19a shows the median and
99th percentile latency for server responses to worker requests. In the Choral implementation,
the server quickly becomes a bottleneck because of its fixed processing order: a request from
p1 must be handled before a request from p2, and both requests must be handled for the i-th
iteration before they can be handled for the (i+1)-th iteration. In the Ozone implementation,
requests from different producers can be handled out of order and producers can start a new
instance of the choreography without waiting for the second one to complete. Consequently
the server spends less time waiting for requests, so it can handle much higher request rates.

The second microbenchmark is a version of Figure 2 from Section 2, in which the server
sends messages to the microservices ks and cs and forwards their responses to the client.
Each microservice takes 0–5 milliseconds to compute its response. The latency histogram for
the Choral implementation (top) shows how the time for the client to receive txt depends on
the time to compute txt, but the time to receive key depends on both the time to compute
txt and the time to compute key. In contrast, the Ozone implementation (bottom) allows
the server to forward key to the client without waiting for txt – thereby reducing the average
latency for key by more than 30%.

To measure the impact of Ozone on a realistic application, we ported the image classifica-
tion pipeline of Wang et al [34] to Choral (Figure 21). In this pipeline, images are received
by a Gateway that performs load balancing and forwards the images to a pair of Worker
services for preprocessing. A Batcher service collects requests and sends them as a batch to
a Model service, which fetches the processed images and performs image classification. This
architecture allows applications to harness intra-GPU parallelism by increasing the batch
size (at the cost of latency) and inter-GPU parallelism by increasing the number of Model
services. Figure 20 shows the performance for Choral and Ozone implementations of the
pipeline, using sleeps to simulate computation. The plots also show the performance of an
implementation in the Akka actor framework [3] and the theoretical maximum throughput of
the Model services.

The Choral implementation has a bottleneck: after the Batcher sends work to a Model,
it waits for the Model’s response and becomes blocked. In the Ozone implementation,
the Batcher binds the Model service’s response to a CompletableFuture and continues
receiving requests from the Gateway. Consequently, the throughput and latency for the
Ozone implementation can scale with the number of requests until both Models become
saturated with work. Figure 20 shows our library scales similarly to hand-written reactive
processes in Akka, though the latter perform slightly better under high load because the

ECOOP 2024

31:24 Ozone: Fully Out-of-Order Choreographies

Akka framework is heavily optimized to handle network congestion; these same optimizations
can be applied to Choral, but they are orthogonal to our present work. We conclude that
our methodology can achieve good performance while providing the benefits of choreographic
programming: (i) absence of bugs like deadlocks and mismatched communications (e.g.,
sending a message with the wrong type or at the wrong time) [16, 26, 23]; (ii) and improved
readability, since control flow is easier to follow in choreographies than in processes (see
Figure 22), as discussed in [32, 21, 23, 16].

6 Related Work

In early choreographic languages, the sequencing operator I; C had strict sequential semantics;
concurrency could only be introduced via an explicit parallel operator C || C ′ [30, 22, 7].
Explicit parallelism was later replaced by a relaxed sequencing operator I; C that would allow
instructions in C to be evaluated before I under certain conditions [8]. This presents the
benefits of offering a simple syntax for choreographies and, at the same time, automatically
inferring what can be safely executed concurrently. For these reasons, relaxed sequencing has
been adopted in most recent works on choreographic programming (e.g., [18, 16, 17, 13, 20, 21])
and its textbook presentation [26]. Our present work makes the sequencing operator even
more relaxed, allowing all instructions to be executed out of order, up to data- and control-
dependency. To the best of our knowledge, our model is the first to support non-FIFO
communication in the setting of choreographic programming.

Our work is closely related to choreographic multicoms: sets of communications that can
be executed out of order, up to data dependency [12]. However, multicoms do not allow
computation to be performed out of order, as in Figure 1c. Multicoms therefore do not need
to address the communication integrity problem, which we focus on in this work. Relatedly,
previous work investigated modeling asynchronous communication by making send actions
non-blocking [8, 19, 10, 28, 18, 26], but none of considered non-blocking receive. Thus, they
are not expressive enough to capture the behaviors that we are interested in here.

In terms of expressivity, there is some overlap between our model and nondeterministic
choreographies [26], which use an explicit choreographic choice operator C +p C ′. Non-
deterministic choreographies can implement the execution in Figure 1c with:buyer1.id → val seller.id1;

buyer2.id → val seller.id2;
. . .

 +seller

buyer2.id → val seller.id2;
buyer1.id → val seller.id1;

. . .

Figure 2 can also be expressed with nondeterministic choreographies:

1 : cs.getText() → val s.txt;
2 : s → c[TxtFirst];
3 : s.txt → val c.txt;
4 : c.display(c.txt);
5 : ks.getKey() → val s.key;
6 : s.key → val c.key;
7 : c.decrypt(c.key)

+s

8 : ks.getKey() → val s.key;
9 : s → c[KeyFirst];

10 : s.key → val c.key;
11 : c.decrypt(c.key);
12 : cs.getText() → val s.txt;
13 : s.txt → val c.txt;
13 : c.display(c.txt)

Compared to O3, these implementations are much larger because they require programmers
to statically encode all desired schedules. One can easily forget to include some schedules
or encode them incorrectly: for instance, if one moved line 12 up to line 10 above, it would
eliminate the extra concurrency that was gained by receiving the messages out of order.
Thus, our approach is more robust and simpler for the programmer.

D. Plyukhin, M. Peressotti, and F. Montesi 31:25

On the other hand, nondeterministic choreographies can express some programs that
our model cannot. For example, choreographic choice can assign different variable names
to messages, according to their arrival order. Other choreographic languages include non-
deterministic operators [22, 6], but they do not support computation (a requirement for
choreographic programming) or recursion.

Choral is arguably the most powerful implementation of choreographic programming to
date, but there are also others that target, e.g., Haskell, Java, Jolie, and Rust [8, 9, 29, 32, 21].
We believe that implementing the out-of-order semantics of O3 in these languages is possible,
too. However, it would likely require more work that touches also the implementation of EPP
because, differently from Choral, these languages do not support user-defined communication
primitives. Since Choral is more expressive than all other current choreographic programming
languages, we have targeted the most general case.

In [23], the authors introduce a Choral library for handling protocols that might deliver
messages out of order. Unlike Ozone, this library requires explicitly writing which parts of a
choreography are independent. Dependencies between actions also need to be managed at
a low level via side-effects. In our approach, out-of-order communications can be elegantly
combined by using futures. Furthermore, the work in [23] does not deal with CIVs (which
might arise if programmers are not careful) and presents no formal model.

A more loosely related line of research is that on multiparty session types (MPSTs) [19],
where abstract choreographies without data or computation are used as protocol specifica-
tions that are compiled to “local session types”. Similarly to most work on choreographic
programming, some works on MPSTs allow for non-blocking send, but not non-blocking
receive as in O3. Previous work considered reordering actions in local session types [14], but
these reorderings are necessarily limited because asynchronous multiparty session subtyping
is undecidable in general [5]. Interprocedural MPSTs have been presented [15], but unlike
O3, the procedure calls require a central coordinator. Similar comments hold for recent
investigations that add nondeterminism because of crashes [1, 33]. More generally, it is
unclear whether “concurrency up to data dependency” could be expressed with MPSTs in
their current form, since the types do not encode data dependencies.

7 Conclusion

We investigated a model for choreographic programming in which processes can execute out of
order and messages can be reordered by the network. These features improve the performance
of choreographies, without requiring programmers to rewrite their code, by allowing processes
to better overlap communication with computation. However, compilers that use these
features must have mechanisms in place to prevent communication integrity violations (CIVs).
We presented a scheme to prevent CIVs by attaching dynamically-computed integrity keys
to each message. Our results enlarge the class of behaviors that can be captured with
choreographic programming without renouncing its correctness guarantees.

An important subject for future work is confluence. Statements can read and write to
the local state of a process, so executing statements out of order can cause nondeterminism.
Sometimes this nondeterminism is desirable (for instance, to implement consensus algorithms)
but sometimes the nondeterminism is unexpected and causes bugs. In our formal model,
nondeterminism could be controlled manually by allowing programmers to insert synthetic
data dependencies. For example, below we use a hypothetical keyword barrierp to prevent a
file from being closed before it has been written-to:

val p.file = open(“foo.txt”); p.write(p.file, “hello”); barrierp; p.close(p.file)

ECOOP 2024

31:26 Ozone: Fully Out-of-Order Choreographies

More generally, future work could develop a static analysis that identifies when two statements
are not safe to execute out of order.

Another opportunity for static analysis to improve on our work concerns the size of session
tokens. We chose to represent session tokens as lists of integers, which allowed processes to
compute new session tokens without coordinating with one another. However, this encoding
means the size of a token is proportional to the depth of the call stack – a problem for
tail-recursive programs such as StreamIt in Figure 7b. Fortunately, it is easy to see that
communication integrity in StreamIt could be achieved in constant space by representing the
token as a single integer, incremented upon each recursive call, assuming that processes do
not participate in multiple instances of the choreography concurrently. With static analysis,
a compiler could identify such programs and use a more efficient session token representation.

References
1 Manuel Adameit, Kirstin Peters, and Uwe Nestmann. Session types for link failures. In

Ahmed Bouajjani and Alexandra Silva, editors, Formal Techniques for Distributed Objects,
Components, and Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held
as Part of the 12th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings, volume 10321 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2017. doi:10.1007/978-3-319-60225-7_1.

2 Gul Agha. ACTORS - a Model of Concurrent Computation in Distributed Systems. MIT Press
Series in Artificial Intelligence. MIT Press, Cambridge, MA, 1990.

3 Akka. https://akka.io/, 2024.
4 Henry C. Baker and Carl Hewitt. The incremental garbage collection of processes. In James

Low, editor, Proceedings of the 1977 Symposium on Artificial Intelligence and Programming
Languages, USA, August 15-17, 1977, pages 55–59. ACM, 1977. doi:10.1145/800228.806932.

5 Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro. A
sound algorithm for asynchronous session subtyping and its implementation. Log. Methods
Comput. Sci., 17(1), 2021. URL: https://lmcs.episciences.org/7238.

6 Mario Bravetti, Ivan Lanese, and Gianluigi Zavattaro. Contract-driven implementation of
choreographies. In Christos Kaklamanis and Flemming Nielson, editors, Trustworthy Global
Computing, 4th International Symposium, TGC 2008, Barcelona, Spain, November 3-4, 2008,
Revised Selected Papers, volume 5474 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2008. doi:10.1007/978-3-642-00945-7_1.

7 Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured Communication-Centered
Programming for Web Services. ACM Transactions on Programming Languages and Systems,
34(2):1–78, June 2012. doi:10.1145/2220365.2220367.

8 Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: Multiparty asynchronous
global programming. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome,
Italy - January 23 - 25, 2013, pages 263–274. ACM, 2013. doi:10.1145/2429069.2429101.

9 Luís Cruz-Filipe, Anne Madsen, Fabrizio Montesi, and Marco Peressotti. Modular choreo-
graphies: Bridging alice and bob notation to java. In Gokila Dorai, Maurizio Gabbrielli,
Giulio Manzonetto, Aomar Osmani, Marco Prandini, Gianluigi Zavattaro, and Olaf Zim-
mermann, editors, Joint Post-proceedings of the Third and Fourth International Confer-
ence on Microservices, Microservices 2020/2022, May 10-12, 2022, Paris, France, volume
111 of OASIcs, pages 3:1–3:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/OASICS.MICROSERVICES.2020-2022.3.

10 Luís Cruz-Filipe and Fabrizio Montesi. On Asynchrony and Choreographies. Electronic
Proceedings in Theoretical Computer Science, 261:76–90, November 2017. doi:10.4204/EPTCS.
261.8.

https://doi.org/10.1007/978-3-319-60225-7_1
https://akka.io/
https://doi.org/10.1145/800228.806932
https://lmcs.episciences.org/7238
https://doi.org/10.1007/978-3-642-00945-7_1
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.4230/OASICS.MICROSERVICES.2020-2022.3
https://doi.org/10.4204/EPTCS.261.8
https://doi.org/10.4204/EPTCS.261.8

D. Plyukhin, M. Peressotti, and F. Montesi 31:27

11 Luís Cruz-Filipe and Fabrizio Montesi. Procedural choreographic programming. In Ahmed
Bouajjani and Alexandra Silva, editors, Formal Techniques for Distributed Objects, Components,
and Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held as Part of
the 12th International Federated Conference on Distributed Computing Techniques, DisCoTec
2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings, volume 10321 of Lecture Notes
in Computer Science, pages 92–107. Springer, 2017. doi:10.1007/978-3-319-60225-7_7.

12 Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Communications in choreographies,
revisited. In Hisham M. Haddad, Roger L. Wainwright, and Richard Chbeir, editors, Proceedings
of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France, April
09-13, 2018, pages 1248–1255. ACM, 2018. doi:10.1145/3167132.3167267.

13 Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. A formal theory of choreographic
programming. J. Autom. Reason., 67(2):21, 2023. doi:10.1007/S10817-023-09665-3.

14 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-free asynchronous message
reordering in rust with multiparty session types. In Jaejin Lee, Kunal Agrawal, and Michael F.
Spear, editors, PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Seoul, Republic of Korea, April 2 - 6, 2022, pages 246–261. ACM, 2022.
doi:10.1145/3503221.3508404.

15 Romain Demangeon and Kohei Honda. Nested protocols in session types. In Maciej Koutny
and Irek Ulidowski, editors, CONCUR 2012 - Concurrency Theory - 23rd International
Conference, CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceedings,
volume 7454 of Lecture Notes in Computer Science, pages 272–286. Springer, 2012. doi:
10.1007/978-3-642-32940-1_20.

16 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Choral: Object-oriented
choreographic programming. ACM Trans. Program. Lang. Syst., 46(1):1:1–1:59, 2024.
doi:10.1145/3632398.

17 Eva Graversen, Andrew K. Hirsch, and Fabrizio Montesi. Alice or bob?: Process polymorphism
in choreographies. J. Funct. Program., 34, 2024. doi:10.1017/S0956796823000114.

18 Andrew K. Hirsch and Deepak Garg. Pirouette: Higher-order typed functional choreographies.
Proc. ACM Program. Lang., 6(POPL):1–27, 2022. doi:10.1145/3498684.

19 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

20 Sung-Shik Jongmans and Petra van den Bos. A predicate transformer for choreographies -
computing preconditions in choreographic programming. In Ilya Sergey, editor, Programming
Languages and Systems - 31st European Symposium on Programming, ESOP 2022, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, volume 13240 of Lecture Notes in Computer
Science, pages 520–547. Springer, 2022. doi:10.1007/978-3-030-99336-8_19.

21 Shun Kashiwa, Gan Shen, Soroush Zare, and Lindsey Kuper. Portable, efficient, and practical
library-level choreographic programming. CoRR, abs/2311.11472, 2023. doi:10.48550/arXiv.
2311.11472.

22 Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. Bridging the gap
between interaction- and process-oriented choreographies. In Antonio Cerone and Stefan
Gruner, editors, Sixth IEEE International Conference on Software Engineering and Formal
Methods, SEFM 2008, Cape Town, South Africa, 10-14 November 2008, pages 323–332. IEEE
Computer Society, 2008. doi:10.1109/SEFM.2008.11.

23 Lovro Lugović and Fabrizio Montesi. Real-world choreographic programming: Full-duplex
asynchrony and interoperability. The Art, Science, and Engineering of Programming, 8(2),
October 2023. doi:10.22152/programming-journal.org/2024/8/8.

24 Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi. Math-
ematical Structures in Computer Science, 14(5):715–767, October 2004. doi:10.1017/
S0960129504004323.

ECOOP 2024

https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1145/3167132.3167267
https://doi.org/10.1007/S10817-023-09665-3
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1145/3632398
https://doi.org/10.1017/S0956796823000114
https://doi.org/10.1145/3498684
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.48550/arXiv.2311.11472
https://doi.org/10.48550/arXiv.2311.11472
https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.22152/programming-journal.org/2024/8/8
https://doi.org/10.1017/S0960129504004323
https://doi.org/10.1017/S0960129504004323

31:28 Ozone: Fully Out-of-Order Choreographies

25 Fabrizio Montesi. Choreographic Programming. Ph.D. thesis, IT University of Copenhagen,
2013. URL: https://www.fabriziomontesi.com/files/choreographic-programming.pdf.

26 Fabrizio Montesi. Introduction to Choreographies. Cambridge University Press, Cambridge,
2023.

27 Dan Plyukhin, Marco Peressotti, and Fabrizio Montesi. Ozone: Fully out-of-order choreo-
graphies. CoRR, abs/2401.17403, 2024. doi:10.48550/arXiv.2401.17403.

28 Johannes Aman Pohjola, Alejandro Gómez-Londoño, James Shaker, and Michael Norrish.
Kalas: A Verified, End-To-End Compiler for a Choreographic Language. In June Andronick
and Leonardo de Moura, editors, 13th International Conference on Interactive Theorem
Proving, ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237 of LIPIcs, pages 27:1–27:18.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITP.2022.27.

29 Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro.
Dynamic choreographies: Theory and implementation. Log. Methods Comput. Sci., 13(2),
2017. doi:10.23638/LMCS-13(2:1)2017.

30 Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the theoretical foundation
of choreography. In Proceedings of the 16th International Conference on World Wide Web,
pages 973–982, Banff Alberta Canada, May 2007. ACM. doi:10.1145/1242572.1242704.

31 Michael Scharf and Sebastian Kiesel. Head-of-line Blocking in TCP and SCTP: Analysis
and Measurements. In Proceedings of the Global Telecommunications Conference, 2006.
GLOBECOM ’06, San Francisco, CA, USA, 27 November - 1 December 2006. IEEE, 2006.
doi:10.1109/GLOCOM.2006.333.

32 Gan Shen, Shun Kashiwa, and Lindsey Kuper. Haschor: Functional choreographic programming
for all (functional pearl). Proc. ACM Program. Lang., 7(ICFP):541–565, 2023. doi:10.1145/
3607849.

33 Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A multiparty session typing
discipline for fault-tolerant event-driven distributed programming. Proc. ACM Program. Lang.,
5(OOPSLA):1–30, 2021. doi:10.1145/3485501.

34 Stephanie Wang, Eric Liang, Edward Oakes, Benjamin Hindman, Frank Sifei Luan, Audrey
Cheng, and Ion Stoica. Ownership: A distributed futures system for fine-grained tasks. In James
Mickens and Renata Teixeira, editors, 18th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2021, April 12-14, 2021, pages 671–686. USENIX Association,
2021. URL: https://www.usenix.org/conference/nsdi21/presentation/cheng.

https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://doi.org/10.48550/arXiv.2401.17403
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.1145/1242572.1242704
https://doi.org/10.1109/GLOCOM.2006.333
https://doi.org/10.1145/3607849
https://doi.org/10.1145/3607849
https://doi.org/10.1145/3485501
https://www.usenix.org/conference/nsdi21/presentation/cheng

Tenspiler: A Verified-Lifting-Based Compiler for
Tensor Operations
Jie Qiu #

Pittsburgh, PA, USA

Colin Cai #

University of California, Berkeley, CA, USA

Sahil Bhatia #

University of California, Berkeley, CA, USA

Niranjan Hasabnis #

Intel Labs, Menlo Park, CA, USA

Sanjit A. Seshia #

University of California, Berkeley, CA, USA

Alvin Cheung #

University of California, Berkeley, CA, USA

Abstract
Tensor processing infrastructures such as deep learning frameworks and specialized hardware
accelerators have revolutionized how computationally intensive code from domains such as deep
learning and image processing is executed and optimized. These infrastructures provide powerful
and expressive abstractions while ensuring high performance. However, to utilize them, code must
be written specifically using the APIs / ISAs of such software frameworks or hardware accelerators.
Importantly, given the fast pace of innovation in these domains, code written today quickly becomes
legacy as new frameworks and accelerators are developed, and migrating such legacy code manually
is a considerable effort.

To enable developers in leveraging such DSLs while preserving their current programming
paradigm, we present Tenspiler, a verified-lifting-based compiler that uses program synthesis to
translate sequential programs written in general-purpose programming languages (e.g., C++ or
Python code that does not leverage any specialized framework or accelerator) into tensor operations.
Central to Tenspiler is our carefully crafted yet simple intermediate language, named Tensir,
that expresses tensor operations. Tensir enables efficient lifting, verification, and code generation.
Unlike classical pattern-matching-based compilers, Tenspiler uses program synthesis to translate
input code into Tensir, which is then compiled to the target API / ISA. Currently, Tenspiler
already supports six DSLs, spanning a broad spectrum of software and hardware environments.
Furthermore, we show that new backends can be easily supported by Tenspiler by adding simple
pattern-matching rules for Tensir. Using 10 real-world code benchmark suites, our experimental
evaluation shows that by translating code to be executed on 6 different software frameworks and
hardware devices, Tenspiler offers on average 105× kernel and 9.65× end-to-end execution time
improvement over the fully-optimized sequential implementation of the same benchmarks.

2012 ACM Subject Classification Software and its engineering → Compilers

Keywords and phrases Program Synthesis, Code Transpilation, Tensor DSLs, Verification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.32

Related Version Full Version: https://arxiv.org/abs/2404.18249 [29]

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.17

V1.1

A
rt
ifa

cts Available

ECOOP

© Jie Qiu, Colin Cai, Sahil Bhatia, Niranjan Hasabnis, Sanjit A. Seshia, and
Alvin Cheung;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 32; pp. 32:1–32:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jieq@berkeley.edu
https://orcid.org/0009-0001-8874-7314
mailto:cai9@berkeley.edu
mailto:sahilbhatia@berkeley.edu
mailto:niranjan.hasabnis@intel.com
mailto:sseshia@berkeley.edu
mailto:akcheung@berkeley.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2024.32
https://arxiv.org/abs/2404.18249
https://doi.org/10.4230/DARTS.10.2.17
https://doi.org/10.4230/DARTS.10.2.17
https://doi.org/10.4230/DARTS.10.2.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

Funding This work was supported in part by DARPA Contract FA8750-23-C-0080, a Google BAIR
Commons project, NSF grants IIS-1955488, IIS-2027575, ARO W911NF2110339, ONR N00014-21-1-
2724, and DOE award DE-SC0016260, DE-SC0021982, and the Sloan Foundation.

Acknowledgements We would like to thank Jayaram Bobba and Zhongkai Zhang from Intel’s Habana
team for inputs on Gaudi architecture, TPC-C programming model, and obtaining high-performance
from TPC kernels. We would like to thank Hasan Genc and Sophia Shao for helpful insights into
Gemmini code generation.

1 Introduction

We have witnessed an explosion of new computational infrastructures for tensor computation
in recent years: from software frameworks such as TensorFlow to specialized hardware
accelerators like tensor processing units. Such infrastructures arise due to new application
domains such as image processing and training deep learning (DL) models, and they often
expose their functionality via various domain-specific languages (DSLs) that range from
specialized instruction sets such as vectorized instructions to high-level programming interfaces
such as Apple’s MLX [27] or TensorFlow’s XLA [37].

To leverage the optimization offered by such infrastructures, applications must be written
against the provided programming interfaces: developers must first master each DSL’s
programming model to write new code, and existing applications must be rewritten. This
problem is recurring as new DSLs keep appearing targeting different application domains.
Manually rewriting existing applications is tedious and increases the likelihood of introducing
bugs. The classical way of addressing such issues is to build transpilers [15, 5, 6, 19, 25, 26]
that translate code from paradigms developers are familiar with (e.g., C++ code using
the STL library) to the one provided by the target DSL (e.g., NumPy API). Nonetheless,
building such a transpiler is resource-intensive, error-prone, and each one is specialized to
a specific target DSL. For instance, existing compilers such as Dexter [6], STNG [19], and
C2TACO [25] target specific DSLs like Halide and TACO, and are not easily extensible to
support new operators or backends. While recently developed DL models such as GPT have
shown promise in code translation, they do not provide any guarantees on the correctness of
output. Moreover, GPT fails to generate even syntactically correct code for DSLs it has not
seen in training data, limiting its applicability to new or less popular DSLs.

In this paper, we describe a tensor compiler that addresses these challenges. We introduce
Tenspiler– a compiler designed to automate the transpilation of code to multiple tensor
processing frameworks and hardware accelerators. Tenspiler uses verified lifting [12] (VL), a
technique using inductive program synthesis to infer provably equivalent program summaries
expressed using a user-defined intermediate representation (IR), and generate executable
code from the synthesized summary to the target DSL. In contrast to conventional compilers
that rely on pattern-matching to compile code, VL uses a search-based technique for the
translation process. The two key steps of VL are:

Search Phase: This stage lifts the input code to an equivalent program written using a
user-provided IR, where the IR is used to model the functionality of each operator in the
target DSL. Lifting is formulated as a syntax-guided synthesis [8] problem.
Verification: Once lifted, a theorem prover is used to validate if the synthesized summary
is functionally equivalent to the input. If so, executable code is produced by calling
the user-provided code generator from the summary; otherwise, another summary is
generated by the search phase.

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:3

The key to making lifting efficient lies in the design of the IR (i.e., how the target DSL is
modeled). In prior work [5, 6, 7, 34, 21], each function or instruction exposed by the target
DSL is modeled explicitly. While doing so makes the search efficient, such explicit modeling
makes the compiler hard to extend to other DSLs. With Tenspiler, we introduce, for the
first time, a single unified IR, Tensir, that is designed for tensor operations and can easily
generate code to multiple tensor processing software frameworks and hardware accelerators.
Surprisingly, Tensir is a small language based on tensor algebra that includes commonly
used vector and matrix operations. While other unifying IR exists (e.g., MLIR [23]), they are
targeted for classical pattern-matching compilers. As we will discuss in Sec. 5 and Sec. 4.2,
Tensir instead is designed for synthesis-based compilers and thus aims to enable both
efficient search and verification.

In summary, this paper makes the following contributions:
1. We describe the design of Tensir for transpiling code to tensor processing DSLs. Tensir

is simple yet expressive enough to model the functionalities provided by different software
frameworks and hardware accelerators, and enables efficient code transpilation using
verified lifting, as detailed in Sec. 3.

2. Based on Tensir, we devise various optimization techniques to make synthesis and
verification tractable, and scale to real-world programs in Sec. 5.

3. We implement Tenspiler, a verified lifting-driven transpiler built using Tensir as the
modeling language. We demonstrate the effectiveness of Tenspiler by using it to lift
real-world code from 10 different suites to 6 different open-source and commercially-
available tensor processing software frameworks and hardware accelerators. We illustrate
the ease of constructing such transpilers by building one for MLX, a new tensor processing
framework that was released only four months ago, using less than 200 lines of code in
Sec. 6.

We have released Tenspiler’s code on https://github.com/tenspiler/tenspiler.

2 Overview

Tenspiler takes in C/C++ or Python code as input1 and transpiles it to a functionally
equivalent program that leverages different software frameworks and hardware accelerators
(details described in Sec. 4.3) for tensor computation. As mentioned, Tenspiler uses verified
lifting to first translate the source program into Tensir. Unlike traditional pattern-matching
compilers, Tenspiler formulates code translation as a search for a program expressed in
Tensir that is provably semantic-equivalent to the input. Doing so avoids the need to
devise pattern-matching rules and prove their correctness. To make the search scalable,
instead of directly searching within the DSL exposed by each target, we designed a high-
level IR called Tensir that abstracts away the low-level implementation details of each
DSL operator and captures only their semantics, unifying various DSLs into a common
set of tensor operators. Tenspiler uses a program synthesizer (currently Rosette [36], a
synthesizer for finite domain theories) to lift the input code to Tensir during the search
phase. The synthesized output is then verified using a theorem prover (currently, an SMT
solver, CVC5 [10]) for the unbounded domain. “Unbounded domain” means the verification

1 Tenspiler currently supports a subset of the C/C++ and Python language (in particular it does not
support code that uses pointers or objects, which we have not encountered such use in our benchmarks).
It also expects any external libraries used in the input to be functionally modeled, which is how
Tenspiler currently supports code that uses the STL::vector library.

ECOOP 2024

https://github.com/tenspiler/tenspiler

32:4 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

1 inline uint8_t screen_8x8 (uint8_t a, uint8_t b) { return a + b - (a * b) / 255; }
2 vector <vector <int >> screen_blend (vector <vector <int >> b, vector <vector <int >> a) {
3 vector <vector <int >> out; int m = b.size (); int n = b[0]. size ();
4 for (int row = 0; row < m; row ++) {
5 vector <int > r_v;
6 for (int col = 0; col < n; col ++)
7 r_v. push_back (screen_8x8 (b(col , row), a(col , row)));
8 out. push_back (r_v);}
9 return out ;}

(a) Original Blend function in C++.

1 def t_t(x, y, operation):
2 if len(x) < 1 or len(x) != len(y): return []
3 else: return [operation (x[0] , y[0])] + t_t(x[1:] , y[1:] , operation)
4
5 def t_s(x, a, operation):
6 if len(x) < 1: return []
7 else: return [operation (x[0]) , a] + t_s(x[1:] , a, operation)

(b) Operators in Tensir. We represent tensor_scalar as t_s and tensor_tensor as t_t.

1 def inner_loop (row , col , b, a, r_v , out):
2 return col >= 0 and col <= len(b[0]) and row >= 0 and row < len(b) and
3 r_v == t_t(t_t(b[row][: col], a[row][: col], +) ,
4 t_s(t_t(b[row][: col], a[row][: col], *) , 255 , /) , -) and
5 out == t_t(t_t(b[: row], a[: row], +) , t_s(t_t(b[: row], a[: row], *) , 255 , /) , -)
6
7 def outer_loop (row , col , b, a, row_vec , out):
8 return row >= 0 and row < len(b) and
9 out == t_t(t_t(b[: row], a[: row], +) , t_s(t_t(b[: row], a[: row], *) , 255 , /) , -)

(c) Synthesized loop invariants.

1 def screen_blend (b, a): return b + a - b * a // 255 # NumPy / TensorFlow / PyTorch /MLX
2 uchar256 Screen8x8 (uchar256 a, uchar256 b) { # TPC -C implementation for Gaudi
3 uchar256 c = v_u8_mul_b (a, b) * v_reciprocal_fast_f32 (255) ;
4 uchar256 d = v_u8_add_b (a, v_u8_sub_b (b, c));
5 return d; }

(d) Generated executable code for different tensor processing DSL.

Figure 1 End-to-End example of using Tenspiler to transpile code.

is performed for all possible program states, not just a bounded set of states (e.g., all states
where integers are represented using 8 bits) that Rosette considers during the synthesis phase.
Once verified, Tenspiler then translates the Tensir program to the concrete syntax of the
target DSL using simple pattern-matching rules.

We illustrate Tenspiler using the example in Fig. 1a as our S (source), where S
implements blending, a common image processing operation. It lightens the base color by
iterating over each pixel, implemented as a nested loop over all the rows and cols in the
image. Our goal is to transpile this code to the target DSLs supported by Tenspiler as
shown in Fig. 1d.

Tenspiler first translates the input code to Tensir. To be discussed in Sec. 4, Tensir
consists of several operators that model common tensor algebra operations, two of which are
shown in Fig. 1b. The t_t function performs element-wise operations (one of +, −, ∗, /, %)
on tensors x and y and is defined recursively on each element. Meanwhile, t_s performs
element-wise scalar operations on tensor x using the scalar value a and is similarly defined.
Importantly, both operators are purely functional models of the tensor operations that lack
implementation details that a specific target might leverage (e.g., tiling, vectorization, etc).
The idea is that if S can be expressed using only these operators via lifting, then the lifted
program can be easily translated to the targeted backends.

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:5

In Tenspiler, lifting is formulated as a Syntax-Guided Synthesis (SyGuS) [8] problem,
where the goal is to synthesize a semantically equivalent program summary (PS), represented
as a sequence of operators from our Tensir, with the input code as the specification. A
search space (specified using grammar) describes the set of potential candidate programs for
the given specification. An input program S is semantically equivalent to the synthesized
expression S’ if for all possible program inputs i, S(i) = S’(i).

Tenspiler uses symbolic search to solve the synthesis problem. Symbolic search is
typically implemented through enumerative or deductive search, and using constraint-solving
approaches which often rely on domain-specific heuristics to scale. As a SyGuS problem,
symbolic search is implemented as enumerating different expressions over a user-provided
grammar, where the grammar encodes all possible combinations of operators in the target
DSL up to a specified depth. However, as the depth increases, the number of choices grows
exponentially, making the search intractable. As we will discuss in Sec. 5, Tensir is designed
to make synthesis scalable. For S, the synthesis phase returns the following solution:
def lifted_program (b, a): return t_t(t_t(b, a, +) , t_s(t_t(b, a, *) , 255 , /) , -)

As Tenspiler’s synthesizer currently can only reason about finite domains, all synthesized
solutions are checked for full functional equivalence using an automated theorem prover.
Since S has loops, checking equivalence with the generated program on all inputs requires
loop invariants. Such invariants are synthesized during the synthesis phase by constructing a
grammar similar to the PS grammar. For instance, for S, the synthesis phase yields two loop
invariants (one for each loop) alongside a PS. As shown in Fig. 1c, these loop invariants
are not arbitrary; within the loop invariants, the output variable, out, is expressed as a
combination of operators from the Tensir that help prove the synthesized PS. We will
leverage this to improve synthesis efficiency, to be explained in Sec. 5

With the synthesized solution expressed in Tensir, the final step is to translate it into the
concrete syntax of the target DSL(s). In Tenspiler, this is done via simple pattern-matching
rules. In Fig. 1d, we present the translated code for different supported DSLs. As we will
discuss in Sec. 4.3, Tensir is designed such that generating executable code is straightforward.
In fact, the code generators for the different tensor processing infrastructures supported by
Tenspiler are highly similar to each other, as we will discuss in Sec. 6.

3 The TENSIR Intermediate Representation

We now discuss our intermediate representation, Tensir, which plays a pivotal role in
Tenspiler. While prior lifting-based compilers all use search to compile programs, their IRs
are specialized for their use cases. Those IRs consist of operators from the target languages,
describing their high-level semantics while avoiding low-level implementation details. For
example, Casper [5] was built to translate sequential Java to MapReduce programs. The
MapReduce framework consists of several versions of map that differ by their input types.
However, Casper only defines one operator in its IR that models map’s functionality, and
decides on the implementation to use during code generation. While doing so makes synthesis
tractable, it also makes the compiler inflexible as adding another target (e.g., a hardware
accelerator that supports map over tensors) will require modeling its functionality, which
may be incompatible with the existing map from Casper’s IR.

To address this challenge, we designed a novel IR, Tensir, by studying the DSLs provided
by various software frameworks and hardware accelerators for tensor computation. Tensir is
rooted in tensor algebra and is designed for flexibility, allowing translation to both software
(deep learning frameworks, vector processing libraries) and hardware environments (machine

ECOOP 2024

32:6 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

learning accelerators) as to be discussed in Sec. 4.3. This flexibility enables developers
to select which target to execute the translated code based on availability and specific
performance requirements. Given the dynamic nature of tensor processing infrastructures,
Tensir can be modified easily in terms of both adding support for new tensor operators and
new target backends. This is illustrated in Sec. 6, where it only took 200 lines of code for
Tenspiler to support Apple’s recently introduced MLX framework [27].

Comparison with MLIR. MLIR [23] is a compiler infrastructure that enables the represent-
ation and transformation of code at various levels of abstraction. The core idea behind MLIR
is to provide a unified IR that can capture the semantics of the program at different levels of
detail (dialects), from high-level abstractions down to low-level, target-specific instructions.
Developers can use MLIR by progressively lowering the code through different dialects until
it reaches a level suitable for the target hardware. While MLIR and its dialects offer a
powerful infrastructure for progressively targeting multiple hardware backends, we found
that the existing dialects do not fully support all the operators required for our use case.
Independently, both the linalg and tensor dialects do not support all the operators Tensir
supports. For example, the select operator, which is crucial for image processing kernels
that apply operations conditioned on pixel values, is not supported by any MLIR dialects.
Additionally, unifying these dialects can be challenging for developers. Instead of unifying,
recent work such as mlirSynth [14] has explored using program synthesis to translate between
different MLIR dialects. In contrast, Tensir is designed to be flexible and easily extensible.
Developers can add new operators to Tensir by simply describing their high-level semantics,
and new backend support can be incorporated by defining simple pattern-matching rules.
This approach allows developers to extend Tensir without going into the intricacies of
MLIR. Moreover, Tensir can practically be compiled into different MLIR dialects, providing
developers the flexibility to leverage the MLIR infrastructure if desired.

3.1 Language Definition
The operators and grammar of Tensir are shown in Fig. 2. Tensir operates on tensors2

and includes various operations. The core strength of Tensir lies in tensorOp, which forms
the backbone of tensor operations, including a diverse range of manipulations on tensors,
such as element-wise operations, tensor vector multiplication, and reductions. These are
grouped into different categories:

tensor_scalar operations describe element-wise operations involving tensors and scalars,
such as scalar multiplication of each element in a matrix.
tensor_tensor operations perform element-wise operations between two tensors, such
as element-wise multiplication of two tensors.
Tensor reshaping such as transpose.
tensor_vec_prod operation denotes tensor-vector products, enabling operations like
matrix-vector multiplication.3
Tensor reductions such as reduce_max and reduce_sum, which focus on aggregating tensor
values, with the former determining the maximum element and the latter computing the
sum across specified dimensions.

2 In the grammar, the T ensor Literal refers to 1D or 2D tensors as we did not encounter higher
dimensional tensors in our benchmarks.

3 While we can also define a tensor-tensor product operator, we did not encounter such benchmarks in
our evaluation and hence omitted it from Tensir’s grammar.

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:7

p ∈ Op := scomp | tcomp | ccontrol

tcomp ∈ tensorOp := tensor_scalar(t, l, o) | tensor_tensor(t, t, o) |
transpose(t) | tensor_vec_prod(t, t) | a

scomp ∈ scalarOp := reduce_max(t) | reduce_sum(t)
o ∈ op := + | − | / | ∗ | %

ccontrol ∈ controlflowOp := ite(cond, i, i)
cond ∈ boolExpr := i rop i

i ∈ inp := l | t

rop ∈ relOp := > | < | == | ¬
a ∈ accessOp := take(t, l) | tail(t, l) | slice(t, l, l1, l2)

l := Integer Literal | size(t, l) | scomp

t := Tensor Literal | tcomp

Figure 2 Tensir grammar.

The recursive nature of Tensir’s grammar allows tensor operations to be composed,
facilitating the expression of complex algorithms encountered in source code. Tensir
extends its expressiveness beyond tensor operations by also including a control flow operator
(controlflowOp). It integrates control flow through the ite operator, enabling conditional
logic into tensor computation. This operator is crucial for translating real-world loopy
programs that contain branches.

Tensir is notable not only for its diversity of operations but also for the granularity of
each operator, which significantly enhances its utility in translating code. The fine-grained
nature of operations, from basic element-wise computations to advanced tensor reductions and
control flow constructs, allows the grammar to capture the diverse tensor computation present
in the input. Moreover, the selected set of operations aligns with the core functionalities
supported by most tensor processing infrastructures. This ensures that Tensir can seamlessly
integrate with various frameworks and accelerators, offering flexibility in supporting multiple
target DSLs. This comprehensive yet concise grammar serves as a bridge between traditional
loop-based programming paradigms and the highly parallelizable world of tensor computation,
providing a clear and expressive language for describing mathematical operations on tensors.

Besides tensor operations, Tensir also supports tensor accessing and manipulation:

take(t, n) extracts n elements from the beginning.

tail(t, n) returns all the elements in tensor t after the first n elements.

slice(t, l, s, e) extracts a contiguous sub-tensor from t from indices s (inclusive)
to e (exclusive) along dimension l.

size(t, l) returns the size of tensor t in dimension l.

Such functions are used to express the loop invariants and program summaries in the synthesis
phase, as we describe next.

ECOOP 2024

32:8 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

Figure 3 An overview of the Tenspiler Framework.

4 Transpiling Code Using Tenspiler

As shown in Fig. 3, Tenspiler is designed to translate a program in high-level languages,
source (S), into another program that leverages different tensor processing infrastructures.
Tenspiler currently support a vector processing library (NumPy) for CPU execution, DL
frameworks (PyTorch, TensorFlow, MLX) for GPU execution, and ISAs for specialized
hardware accelerators (Gaudi, Gemmini). Tenspiler is a verified-lifting-based compiler,
leveraging search to find a program within the target domain. Instead of relying on traditional
pattern-matching rules, Tenspiler translates source programs with a 3-phase workflow:
1. synthesis,
2. verification, and
3. backend code generation.
Tenspiler uses a single IR, Tensir, to facilitate all 3 phases of its workflow. Tensir is
designed to include tensor processing operators common to all target backends. As shown in
the figure, the synthesis phase takes in S and generates a program summary expressed using
Tensir. Then, in the verification phase, Tenspiler verifies the generated summaries to
ensure their semantic equivalence with S. Finally, in the code generation phase, the Tensir
program is translated to the concrete syntax of the target DSL(s).

4.1 Synthesis
The objective of this phase is to search for a program expressed using the operators in Tensir,
and to ensure that the generated program is semantically equivalent to S. We formulate the
search as a SyGuS problem [8] characterized by three parameters:
1. the specification describing the property the synthesized Tensir expression should

satisfy,
2. the search space that describes the space of possible solutions,
3. the search algorithm which searches for the candidate programs.

For Tenspiler, the specification is to find a functionally equivalent program to S.
Various methods exist to express this specification, such as using input-output examples,
bounded-model checking, and verification conditions (VC) [18].

In Tenspiler, we use VCs as the specification for the synthesis phase as it provides
full guarantees (i.e., for all program states up to a bound, e.g., states where all integers are
encoded using 8 bits) on the equivalence of S and the translated program. VCs are logical
expressions encoding the correctness properties of S.

Specifically, given a program P with vars representing all the variables appearing in P ,
and pre, post, inv representing the pre-conditions, the post-condition, and the invariant(s),
respectively, the VCs for a program with loops consist of the following clauses:

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:9

1. Initial Condition: ∀ vars. pre(vars) → inv(vars): loop invariants must hold before
the loop begins its execution.

2. Loop Preservation: ∀ vars, vars′. inv(vars) ∧ P (vars, vars′) → inv(vars′): if the
invariant holds before a loop iteration, they should continue to hold after that iteration.

3. Post-Condition: ∀ vars. inv(vars) → post(vars): invariants should hold once the loop
has completed its execution.

There exist standard techniques for generating VCs from a given source program [11]. In
Tenspiler, the PS and invariants in the VCs are generated as placeholders as S is analyzed,
with their bodies to be synthesized during the synthesis phase.

Next, we define the search space for synthesis. This space outlines the potential solutions
for both the PS and invariant(s), describing the solutions that could potentially satisfy
the VC. Expressed as a context-free grammar (CFG), the search space imposes syntactic
constraints on the structure of the outputs. In Tenspiler, the goal is not to find any PS or
invariants but ones that represent the output variables in S as some sequence of operators
from Tensir, expressed mathematically as:

∀ o ∈ outputV ars. o = p, where p ∈ Op as defined in Fig. 2. (1)

This states that all return variables in S should be expressed as a program from Tensir.
With the specification in the form of VCs, p expressed using Tensir, and the search space
for the PS and invariants, the synthesis problem can be formally defined as:

∃ inv0, inv1, . . . , PS ∈ G. ∀σ. V C(S, inv0, inv1, ..., PS, σ) (2)

The goal of synthesis is then to find expressions from the search space G for PS and invs
such that, for all program states σ, they satisfy the VC.

For Tenspiler, we use an off-the-shelf symbolic search engine, Rosette [36], which uses
constraint solving to address the synthesis problem. In a constraint-solving-based approach,
the specification ϕ (i.e., VC) and the search space G are encoded as a single formula, and an
SMT solver is then utilized to find a model that satisfies the formula. As a constraint-based
solver, increasing the number of constraints makes the problem more challenging. Given that
ϕ is fixed for a particular benchmark, the design of the G becomes crucial. In Sec. 5, we
discuss how the design of Tensir helps keep the grammar size reasonable and scales the
synthesis process.

4.2 Verification
During the synthesis phase, as the PS and loop invariant(s) are validated against the VC
only for a bounded set of program states,4 it is essential to check their validity for all program
states. Tenspiler uses an SMT solver to do so by negating the VC in program verification
i.e., checking if ¬V C(S, inv1, inv2, ..., PS, σ) is satisfiable for some σ. The placeholders
in the VC are substituted with the synthesized bodies of PS and invs. If the solver cannot
find any such σ, then the generated PS and invs are correct for all possible program states,
thus proving PS and invs hold for all program states. If a σ is found, then Tenspiler will
iterate back to the synthesis phase in search of another candidate expression.

Besides using SMT solvers for Eq. (2), Tenspiler also leverages SMT solvers’ support of
algebraic data types (ADT) to allow users to define common data structures such as lists
and tuples. Internally, Tenspiler models tensors using the list data structure defined using

4 We are unaware of any SyGuS solvers that can validate against an unbounded set of program states
efficiently, including state of the art solvers such as Z3 and CVC5.

ECOOP 2024

32:10 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

1 (assert (forall ((data (Tensor Int)) (a Int) (idx Int))
2 (=> (>= index 0) ∧ (<= index len(data))
3 (= t_s(data [: idx],a ,*) (+ [data [0]*a] t_s(data [1: idx], a, *))))))

Figure 4 Example of an inductive axiom for the tensor_scalar operator in Tensir described
using SMT-LIB. “+” corresponds to the concat operator.

ADTs. We use ADT’s accessor and constructor functions to retrieve and create new tensors.
All the tensor accessing functions like slice, take are modeled as recursive functions over
the list data structure. Currently, while image processing kernels use integers and deep
learning kernels operate over floats, we verify all the benchmarks using the theory of integers
and reals, due to poor solver support for reasoning about floats.

Since the verification of loop invariants is undecidable in general, we define additional
axioms for the operators in Tensir to aid verification. These axioms describe the behavior of
functions that cannot be automatically deduced by the solver. Identifying the axioms requires
an understanding of the program’s semantics and the properties that need verification. Such
axioms describe simple attributes such as distributivity, associativity, and commutativity of
the tensor operators. In Fig. 4, we show an inductive axiom for the tensor_scalar operator
which states that the result for a given index is determined by the product of the first element
of the tensor and an integer, plus the result for the remaining sub-tensor up to that index. As
shown, having tensors as first-class objects in Tensir greatly simplifies the task of defining
these properties. Instead of defining these properties using low-level SMT-LIB list data
structures, Tensir enables users to define them at the tensor level, abstracting away the
low-level solver-related details. This high-level representation greatly simplifies the task of
defining these properties and makes the axioms more readable and maintainable.

4.3 Code Generation
After successfully verifying the synthesized Tensir program, the final stage in Tenspiler’s
workflow is to translate the Tensir program into the concrete syntax of a target DSL.
Tensir makes this easy as it inherently represents tensor operations supported by all the
target DSLs, and code can be generated using simple syntax-driven rules that map Tensir
operators to their DSL-specific counterparts.

To translate the Tensir expression into an executable DSL program, our code generation
step recursively processes each part of the Tensir expression. Fig. 5 illustrates a portion
of the code generation function for PyTorch. The function maps Tensir variables to their
names (line 3), literals to their values (line 5), and function calls to their PyTorch equivalents
based on function signatures (lines 6-15).

Consider the running example in Fig. 1a, where the synthesized Tensir solution is
t_t(t_t(b, a, +), t_s(t_t(b, a, *), 255, /), -). This expression represents a t_t
function call with the - operator, which maps to torch.subtract as shown in line 13.
Next, the codegen function is called recursively on the two arguments, t_t(b, a, +) and
t_s(t_t(b, a, *), 255, /). This results in the final translated PyTorch expression as
torch.subtract(torch.add(b, a), torch.divide(torch.add(b, a), 255)).

To extend support for a new backend, one simply needs to replace the DSL operator
names in lines 11, 15, 17, and 19. For example, in MLX’s codegen, torch.add on line 11
would be replaced by mlx.core.add.

This direct and syntactic translation simplifies the integration of new tensor-based target
DSL into Tenspiler, as one would only need to add simple translation rules in the code
generation process. For instance, we add support for MLX by changing only 65 lines of code
to an existing 200-line template, as its API closely follows that of NumPy.

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:11

1 def codegen (expr: Expr):
2 if isinstance (expr , Var):
3 return expr.name ()
4 elif isinstance (expr , Lit):
5 return expr.val ()
6 elif isinstance (expr , Call):
7 f_name , args = expr.name () , expr. arguments ()
8 if f_name in {"t_t", "t_s"}:
9 op = args [-1]

10 if op == "+":
11 return f" torch .add ({ codegen (args [0]) },{ codegen (args [1]) })"
12 # corresponding MLX return statement
13 # return f"mlx.core.add ({ codegen (args [0]) },{ codegen (args [1]) })"
14 elif op == "-":
15 return f" torch . subtract ({ codegen (args [0]) },{ codegen (args [1]) })"
16 elif op == "*":
17 return f" torch . multiply ({ codegen (args [0]) },{ codegen (args [1]) })"
18 elif op == "/":
19 return f" torch . divide ({ codegen (args [0]) },{ codegen (args [1]) })"
20 ...

Figure 5 Code generation for the element-wise add operator to different targets.

As a part of this work, we have implemented support for six different target DSLs
in our code generator: NumPy, TensorFlow, PyTorch, MLX (an ML framework for
Apple silicon), TPC-C (C-based programming language for Intel’s Gaudi processor), and
Gemmini (an open-source neural network accelerator generator).5

5 Synthesis Optimizations

A naive approach to constructing the grammar for search space is to enumerate all possible
combinations of Tensir expressions up to a fixed depth. For Tensir as defined in Fig. 2, if
we focus solely on the compute operators, a depth-4 grammar (i.e., sequence of 4 operators)
results in a search space of ∼200k expressions, since it grows exponentially with the depth
and the number of operations. In Fig. 6, we show a small part of the depth-4 grammar. We
have devised several optimizations to reduce the search space and make the search tractable.

5.1 Restricting Operators
First, we generate the grammar based on types, i.e., we only include the operators whose
output types match with the expected return type. In the case of S in Fig. 1a, since the return
type is vector⟨vector⟨int⟩⟩, all reduction operations are excluded. In Fig. 6, the operators
in v4 and l4 will be removed (shown in red). These correspond to operators returning 1-D
vectors and integers respectively.

5.2 Restricting Program States
We further optimize the search space by restricting the set of program states in Eq. (2).
Instead of satisfying the VC for all σ, we find PS and invs that satisfy a bounded set.
Bounded synthesis is crucial because most SyGuS solvers have limited support for recursive
function definitions and require SMT solvers for validation. However, SMT solvers lack
inherent support for reasoning about Tensir operators that are not covered by the standard
theories defined in SMT-LIB [9] and require additional axioms to be defined. We instead

5 We provide further details of these DSLs in Appendix A in the extended version of this paper[29].

ECOOP 2024

32:12 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

out := m4 | v4 | l4

m4 := tensor_scalar(m3, l4, o) | tensor_tensor(m3, m3, o) |
transpose(m3) | ite(cond4, m3, m3) | m3

v4 := tensor_scalar(v3, l4, o) | tensor_tensor(v3, v3, o) |
tensor_vec_prod(m3, v3) | ite(cond4, v3, v3) | v3

l4 := reduce_max(l3) | reduce_sum(l3) | l3

cond4 := l3 rop l3

...

l1 := 255 | size(t1)
t1 := a⟨a1, a2 ... an⟩ | b⟨b1, b2 ... bn⟩ a⟨a1, a2 ⟩ | b⟨b1, b2⟩

rop := > | < | == | ¬
o := + | − | / | ∗

Figure 6 A depth 4 general synthesis grammar for the source in Fig. 1a.

integrate bounded synthesis by restricting the maximum unrollings of recursive operators,
thereby eliminating the need for additional axioms. Specifically, we restrict the program
states by limiting the lengths of the data structures and the sizes of the data types. For
instance, in Tenspiler, we constrain all 1D tensors to length 2 and the integers to 6 bits or
less for the first rounds of synthesis. In Fig. 6, all the tensor literals in t1 are changed from
an unbounded length “n” (shown in orange) to length 2 (shown in blue). If the synthesized
choices fail to verify, we then increase the bounds in subsequent rounds. Note that since the
synthesized solutions only work for a restricted set of program states, we invoke the theorem
prover for subsequent verification to check if PS and invs are valid for all states.

5.3 Leveraging Expression Trees

Despite the above two optimizations, the synthesis search space remains large. For example,
in the context of S in Fig. 1a for which we need to synthesize two invs and one PS, a depth-4
grammar, after removing the reduction operations, still presents around 100k potential
solutions just for PS. Tensir plays a significant role in the further pruning of this search
space. The design of Tensir operators effectively bridges the gap between high-level tensor
operations and the loop-based paradigm commonly used for computing on tensors. This
property of Tensir allows us to leverage the expression-tree-based filtering approach, which
we describe next, to efficiently prune the synthesis search space.

Our approach starts with the static analysis of S to identify the computations performed;
the static analysis pass emits an expression tree that represents the computation. For
example, the pre-order traversal of the expression tree for S from Fig. 1a is: (- (+ b a)
(/ (* b a) 255)). In Fig. 6, this results in the pruning of tensor_scalar and ite(cond5,
m4, m4) at the top-level (shown in teal) and similarly operators at other depths (m4, m3)
are filtered. The generated expression tree is then transformed into an abstract expression
tree, where variables and constants are replaced with placeholders, resulting in a synthesis
template.

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:13

The abstract expression tree for S is then: (- (+ var var) (/ (* var var) lit)).
This abstract expression tree guides Tenspiler in identifying the sequence of Tensir
operators. In this example, Tenspiler deduces the sequence of operators from the tree as:
t_t(t_t(var, var, +), t_s(t_t(var, var, *), lit, /), -), where var and lit are
variables and literals to be synthesized, respectively.

Our expression trees are amenable to vectorized operations, which simultaneously perform
the same computation on multiple data elements. Specifically, each level of the tree corres-
ponds to an operation with the branches indicating data flow. In the example expression
shown above, we see element-wise subtraction, addition, scalar division, and element-wise
multiplication orchestrated such that it aligns with the vectorized execution of the original
computation.

This approach is not confined to specific operators but is adaptable to a range of operations
in Tensir. It can identify constructs like if-else blocks, where ite arguments are determined
using the same expression tree strategy, allowing the synthesis process to determine the
optimal sequence of operators within the constructs. This flexibility extends to reduction
operators and other complex operations, aiding in the synthesis of efficient operational
sequences.

5.4 Constraining Variables
The final optimization is to pinpoint specific variables (vars such as a,b in Fig. 1a) and
literals (lits such as 255 in Fig. 1a) to be used in the grammar. Specifically, we constrain
the variables to the set of live variables and also constrain constants to the set of constants
that have appeared in the program. This strategy simplifies the computational task, avoiding
the complexity of synthesizing a complete depth-4 operator sequence. By leveraging our
expression tree-based approach, the search space reduces to 64 expressions, and the synthesizer
promptly yields the correct solution within 76 secs: t_t(t_t(b, a, +), t_s(t_t(b, a,
*), 255, /), -).

5.5 Overall Synthesis Algorithm
The algorithm described in Fig. 7 summarizes the synthesis phase in Tenspiler. This phase
is used to search for the bodies of PS and invariants which satisfy the VC. The synthesis
is an iterative process conducted over multiple rounds, assuming a filtered search space
leveraging type-based and expression tree optimizations described earlier. We start with the
tensor bound size set to 2 which corresponds to restricting the program states optimization.
In each round, we invoke Rosette’s search algorithm (line 5) to generate candidates for
PS and invs. Upon obtaining a solution, the candidate undergoes validation against the
VC for all program states, as the synthesis phase only checks within a constrained set of
program states. We invoke a verifier (CVC5) (line 8) to perform this check. If the verifier
yields “UNSAT,” the generated candidates are correct. Conversely, if “SAT” is returned,
indicating incorrect candidates (line 11), the VC is augmented with blocking constraints.
These constraints state that the generated PS or invs in next round should differ from those
in the previous rounds. This iterative process continues for a specified number of rounds
(max_rounds) before incrementing the tensor bound sizes. In cases where Rosette’s search
algorithm does not produce a solution initially (line 13), indicating an overly restrictive
grammar, the initial grammar is expanded to include additional options for both PS and
invariants, such as choices for loop bounds, indexing, and operator sequences. We keep a
separate timer (not shown in Fig. 7) that maintains a maximum time bound for the entire
synthesis process.

ECOOP 2024

32:14 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

1 def synthesis_algorithm (spec , tensor_size_bound , holing_grammar , search_algorithm ,
verifier , max_rounds , timeout):

2 r = 0 # rounds within one list bound
3 # bounded synthesis optimization
4 while r < max_rounds :
5 ps_inv = search_algorithm (spec , holing_grammar) # rosette
6 if ps_inv is not None:
7 ps_r , inv_r = ps_inv
8 if verifier (specification , ps_r , inv_r) == " UNSAT ": return ps_r , inv_r
9 else:

10 spec = spec and (ps != ps_r) and (inv != inv_r) #add blocking constraint
11 r += 1
12 else:
13 expand_holing_grammar (holing_grammar)
14 # Increment tensor size bound
15 return synthesis_algorithm (spec , tensor_size_bound + 1, holing_grammar ,

search_algorithm , verifier , max_rounds , timeout)

Figure 7 Tenspiler synthesis algorithm.

6 Experiments

We evaluate Tenspiler’s effectiveness in converting code into various tensor processing
infrastructures using 10 loop-based real-world benchmark sets: blend, Llama [24], blas,
darknet, dsp, dspstone, makespeare, mathfu, simpl_array, and utdsp. The blend
benchmarks focus on image processing kernels, the Llama benchmarks contain traditional
deep learning applications, and the rest 8 are all sourced from various existing software
libraries, such as the BLAS linear algebra library and the TI signal processing library, and
are used recently to evaluate C to TACO translations [25]. This combination of benchmarks
allows for a comprehensive assessment of Tenspiler’s effectiveness and adaptability across
diverse domains and programming paradigms.

1. Used in prior work [6], the blend benchmarks consist of 12 functions dedicated to
point-wise image blending operations – a fundamental aspect of image processing known
for diverse visual effects. These functions span 180 lines of C++ code, and 10 are
characterized by doubly-nested loops, which are common in image processing algorithms.

2. Llama benchmarks are derived from the C++ based inference code of Llama2 [24], an
open-source LLM from Meta. We labeled the portion of code to be lifted from the source
code without doing any extensive syntax or code logic edits. These benchmarks include 11
functions capturing essential operations like computing activations, attention mechanisms,
and layer norms. They total around 106 lines of code, with 2 functions incorporating
doubly-nested loops.

3. blas: 2 benchmarks from the BLAS [13] linear algebra library.
4. darknet: 10 neural network functions sourced from the Darknet [2] deep learning

framework.
5. dsp: 12 signal processing functions from the TI library [4].
6. dspstone: Kernels from the DSPStone suites [38] that target digital signal architectures.
7. makespeare: Programs originally from Rosin [31] that manipulate integer arrays.
8. mathfu: 11 mathematical functions extracted from the Mathfu library [3].
9. simpl_array: 5 functions for computations on integer arrays originally from prior

work [35].
10. utdsp: Kernels from the UTDSP suite [33] that targets digital signal architectures.

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:15

6.1 Evaluation Setup
The synthesis and verification phases for all benchmarks are executed on a MacBook Pro
2 GHz Quad-Core Intel Core i5 Processor with a timeout of 1 hour. After lifting the code
to Tensir, the code generator, as explained in Sec. 4.3, generates executable code for each
target backend. In the next section, we first describe the datasets used for evaluating the
performance of lifted benchmarks. Then, we describe each target backend used for executing
these benchmarks.

6.1.1 Datasets for Evaluation
To mimic real-world settings, we evaluate the translated code on actual datasets instead of
generating random inputs.

For the blend image processing benchmarks, blas, darknet, dsp, dspstone,
makespeare, mathfu, simpl_array, and utdsp, we source images from ImageNet [17], a
large-scale image dataset. We process these images as grayscale to ensure pixel values fall
within the appropriate range. For benchmarks with 1-D tensor inputs, we flatten the images
before feeding them as inputs and pass them in as they are for 2-D tensor inputs. For the
blending layers in the blend benchmarks, we generate random pixel values from 0 to 255.
We randomly select a set of 10,000 images from the dataset for evaluation.

For the Llama benchmarks, we evaluate the synthesized code using weights from Vi-
cuna [16], an open-source LLM with similar model size as Llama2.6 Some kernels operate
over model weights, for which we directly use the weight matrices from Vicuna. For kernels
operating over inputs, we simulate embeddings by creating random 32-bit float vectors within
the range [0, 1). The evaluation primarily uses the 33B-parameter Vicuna model; however, for
evaluating the MLX framework, the 7B-parameter version is used due to memory limitations.

6.1.2 Target Software Frameworks and Hardware Accelerators
The core objective of Tenspiler is to translate sequential programs to a spectrum of diverse
target DSLs, which can then be executed on conventional CPUs, GPUs, or specialized
hardware accelerators. Although finding the optimal target DSL for the given input program
would be an interesting feature in Tenspiler, currently Tenspiler is designed to provide
users with the flexibility of choosing their preferred environment.

For our experimental evaluation, we choose 6 different target DSLs as we mentioned in
Sec. 4.3: NumPy, TensorFlow, PyTorch, MLX, TPC-C, and Gemmini. We believe
that our comprehensive selection of DSLs is necessary to test the robustness of Tenspiler.

The Tensir design greatly simplified this process as NumPy, TensorFlow, PyTorch, and
MLX have similar APIs, and each of these DSLs uses only 200 lines of code for generating
executable code.

To establish a baseline for execution performance, we compile C++ code for all the
benchmarks using gcc-8.3.0 with -O3 flag and then run them on an Intel Xeon 8380 CPU.
Given that each DSL is tailored to enhance performance on specific hardware, we conduct
evaluation across five distinct platforms: the Intel Xeon 8380 CPU, Nvidia V100 GPU, Apple
M1 Pro, Intel Gaudi 2 processor, and the Gemmini accelerator.7 In all, we utilized 7 different

6 We did not use Llama2 model weights as they are not publicly available.
7 Due to lack of physical device, Gemmini evaluations are done on a simulator with limited computing

power and no file system support. Thus, it is compared with smaller random inputs.

ECOOP 2024

32:16 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

DSL-hardware device combinations for our experiments: (1) NumPy-CPU, (2) TensorFlow-
V100, (3) PyTorch-V100, (4) MLX-Apple M1 (5) TPC-C-Gaudi, (6) PyTorch-Gaudi, and (7)
Gemmini. This comprehensive mapping of each backend to its corresponding device enables
us to accurately assess the benefits Tenspiler provided through lifting.8

6.2 Synthesis Timings
In this section, we present the time Tenspiler takes to synthesize and verify solutions
for each of our benchmarks. During the synthesis phase, we apply all the optimizations
mentioned in Sec. 5 with a 1 hour timeout. Tenspiler synthesizes the correct translations
for all the benchmarks under 15 mins.

Fig. 8 illustrates the synthesis performance for our 10 benchmark suites. Fig. 8a illustrates
the synthesis performance for the blend benchmarks. All but three benchmarks are syn-
thesized in one synthesis (and verification) iteration, with an average synthesis time of 40.7
seconds and a median synthesis time of 2.357 seconds. Single-loop benchmarks synthesize
with an average of 2.17 seconds and a median of 1.92 seconds. Double-loop benchmarks,
on the other hand, have an average of 128.91 seconds and a median of 22.74 seconds for
synthesis.

The three benchmarks that take more than one round of synthesis are softmax1,
transformer1, and transformer2 from the LLama suite. softmax1 fails to synthesize
within one round because the initial grammar is overly restrictive for its loop invariant.
transformer1 and transformer2 involve complex indexing constraints for their invariants,
initially leading to spurious solutions with tensor size limit of 2. transformer2 finds the
correct solution after 6 tries, while transformer1 exhausts the maximum number of tries
(10) with tensor size 2. We then increase the tensor size limit to 3 for transformer1 and a
correct solution is generated within 3 rounds.

6.2.1 Analysis
We observe that synthesis difficulty is correlated to both the number of loops and the
complexity of the Tensir solution. For example, the dot benchmark in the blas benchmark
set has a single loop. Its Tensir solution is reduce_sum(t_t(a, b, *)), which has two
operators and only two arguments, a and b, to be synthesized. This benchmark synthesizes
in around two seconds. On the other hand, the transformer_part1 benchmark from the
LLama benchmark set has a doubly-nested loop and a complex solution with six operators.
All arguments to these operators must be synthesized, with some requiring 3 expressions such
as head * head_size + head_size and sqrt(head_size * 1). This benchmark takes
around 1300 seconds to synthesize.

In addition to synthesis challenges, we recognize that the tree approach may restrict the
ability of Tenspiler to synthesize different solutions. However, through manual verification,
we confirm that Tenspiler consistently generates optimal solutions across our benchmarks.
We evaluate the solutions using expression length as the cost function. Generally, shorter
expressions mean fewer function calls and thus lower execution cost. To illustrate, we use
the linear_dodge example from the blend benchmarks for which the synthesized solution
is as follows:
def linear_dodge (a, b): t_t(a, b, +)

8 The exact configurations of all the hardware devices and their software environments are described in
Appendix C in the extended version of this paper[29]

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:17

(a) blend benchmarks (image processing). (b) utdsp benchmarks.

(c) DSP benchmarks. (d) simpl_array benchmarks.

(e) darknet benchmarks. (f) blas benchmarks.

(g) mathfu benchmarks. (h) dspstone benchmarks.

(i) Llama benchmarks (ML kernels). (j) makespeare benchmarks.

Figure 8 Synthesis timings for all the benchmark suites. Benchmark name legend in Appendix B
in the extended version of this paper[29].

After relaxing the constraint on the tree structure, we were able to synthesize a different
solution as shown below:

def linear_dodge (a, b): t_t(a, t_s(b, -1, *) , -)

The latter solution is longer in length, and involves 2 tensor operations – a tensor_tensor
operation and a tensor_scalar operation – as opposed to 1 tensor_tensor operation
synthesized using the tree approach. Therefore, it is less optimized. In addition, the tree
approach also speeds up the synthesis process as shorter expressions are easier to synthesize.

ECOOP 2024

32:18 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

(a) blend benchmarks. (b) utdsp benchmarks.

(c) dsp benchmarks. (d) blas benchmarks.

(e) darknet benchmarks. (f) simpl_array benchmarks.

(g) mathfu benchmarks. (h) dspstone benchmarks.

(i) Llama benchmarks. (j) makespeare benchmarks.

Figure 9 Kernel speedup over baseline. Benchmark name legend in Appendix B in the extended
version of this paper[29].

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:19

6.3 Performance Timings
In this section, we evaluate the performance of the original input code – sequential C++
programs compiled with gcc -O3 – by comparing them with their translated versions executed
across different target backends as detailed in Sections 6.1.2 and 6.1.1.

Kernel Performance. Kernel performance focuses on computation time excluding data
transfer overhead. We see significant improvements as illustrated in Figures 9, with an average
speedup of 105.1× across all benchmarks. Notably, the Gaudi 2 processor demonstrates an
exceptional speedup of 241×, highlighting the advantages of migrating legacy code to newer
hardware platforms. For other backends such TensorFlow, PyTorch, MLX and NumPy we
see speedups of 46×, 244×, 10.5× and 26.12× respectively.

However, compatibility issues can emerge with certain backends. For example, the
Gemmini accelerator does not support certain operations in our Tensir like tensor_tensor
element-wise multiplication, slice, and tail. To address this, we only translate supported
Tensir operations from the synthesized PS, and default to running the unsupported
operations using sequential C on CPUs. Out of 69 benchmarks, 41 are translatable to
Gemmini ’s instruction set architecture (ISA), yet only 10 can be fully expressed using
Gemmini instructions alone. Challenges are notable in benchmarks like screen_blend
(Fig. 9a), where element-wise vector multiplication must fallback to execution on a less
powerful CPU. Furthermore, most Gemmini’s instructions require square matrices inputs.
This means that we need to pad vector inputs to square matrices before being able to utilize
Gemmini’s instructions, effectively squaring the data volume to be processed. This results in
varied performance as shown in Fig. 9i and Fig. 9e.

End-to-end Performance. While frameworks and accelerators deliver substantial kernel
performance enhancements, a comprehensive assessment must account for end-to-end bench-
mark times, encompassing initial setup and data movement between the host (CPU) and
the accelerator device. Our focus here is on data transfer (TensorFlow, PyTorch, and Gaudi
processor) and memory management (C++). As illustrated in Fig. 10, we again observe an
overall speedup, averaging 9.7×. In particular, CPU libraries like NumPy and MLX show
more improvements with the notable advantage of avoiding transferring data to specialized
hardware. These benchmarks, involving the processing of 1D or 2D character vectors, benefit
largely from C++’s efficient handling of contiguous data structures. Meanwhile, Gaudi 2
drivers encounter performance bottlenecks due to the overheads associated with hardware
initialization and frequent small data transfers. This significant upfront cost, especially
pronounced in small-scale data operations, leads to a much less announced speedup. We
believe such a phenomenon is uncommon in real-world use cases such as training deep learning
models, due to techniques like batch processing or pipelining to minimize data transfers or
to overlap computations with communications, thereby reducing or hiding transfer overhead
and enhancing overall efficiency.

Compare Against Pattern Matching-Based Compilers. As outlined in Sec. 1, Tenspiler
is designed to address the limitations inherent in traditional transpilers that rely on pattern
matching to compile. Such compilers are resource-intensive to develop and prone to errors. To
the best of our knowledge, no existing compiler matches the breadth of DSL support offered
by Tenspiler. However, specialized compilers, such as Numba [28], have been introduced
for accelerators like GPUs. Numba leverages LLVM IR to generate GPU-accelerated code
from Python code, making it a suitable candidate for comparison.

ECOOP 2024

32:20 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

(a) blend benchmarks. (b) utdsp benchmarks.

(c) dsp benchmarks. (d) blas benchmarks.

(e) darknet benchmarks. (f) simpl_array benchmarks.

(g) mathfu benchmarks. (h) dspstone benchmarks.

(i) Llama benchmarks. (j) makespeare benchmarks.

Figure 10 E2E speedup over baseline. Benchmark name legend in Appendix B in the extended
version of this paper[29].

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:21

1 vector <float > matmul (vector <vector <float >> weight , vector <float > input) {
2 vector <float > output ;
3 int m = weight .size ();
4 int n = input .size ();
5 for (int row = 0; row < m; row ++) {
6 float curr = 0;
7 for (int col = 0; col < n; col ++) {
8 curr += weight [row][col] * input [col];}
9 output . push_back (curr);}

10 return output ;}

(a) Original matmul function in C++.

1 @cuda .jit ()
2 def matmul (weight , input , res):
3 m = len(weight)
4 n = len(input)
5 for i in range (m):
6 curr = 0
7 for j in range (n):
8 curr += weight [i][j] * input [j]
9 res[i] = curr

(b) Numba kernel annotated version of matmul.

Figure 11 Manually rewritten Numba example.

For benchmarking purposes, we utilize the same datasets, test cases, and setup described
previously in Sec. 6. Benchmarks are rewritten in Python and adapted to conform to CUDA
kernel requirements by removing return statements, as shown in Fig. 11. Additionally,
relevant data are cast to NumPy arrays as Numba focuses on optimizing code written against
NumPy’s API. These syntactic requirements represent a limitation of Numba’s approach. In
contrast, Tenspiler operates directly on the original benchmark implementations.

Experimental results demonstrate that GPU-based PyTorch and TensorFlow code gener-
ated by Tenspiler performs, on average, 1.87× faster than code annotated with Numba.
Remarkably, while Numba benefits from years of development by expert engineers, Tens-
piler achieves superior performance with only 200 additional lines of code dedicated to
code generation. A closer examination of the compiled PTX assembly code for the matmul
benchmark, which shows a 2.6× speedup, reveals that the Numba-generated code lacks the
use of advanced instructions and techniques such as fused multiply-add (FMA), tiled-based
computation models, or shared memory,9 which are crucial for peak performance. These
techniques are standards in PyTorch and TensorFlow with optimized kernels. In contrast,
Numba requires extensive manual tuning to implement, evident in the more complex and
faster matmul example in its documentation.10 Tenspiler, by automatically recognizing
and translating matrix multiplication operations to leverage the pre-optimized kernels, avoids
the complexities of manual code optimization while achieving high performance.

6.4 Ablation Study

In our ablation study, we evaluate using our benchmark suites the effectiveness of the
optimizations (described in Sec. 5) in making synthesis scale.

9 See Appendix D in the extended version of this paper[29] for the PTX code.
10 For the detailed example of an optimized matmul function with shared memory for Numba, see

https://numba.readthedocs.io/en/stable/cuda/examples.html#id30

ECOOP 2024

https://numba.readthedocs.io/en/stable/cuda/examples.html#id30

32:22 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

(a) blend benchmarks. (b) utdsp benchmarks.

(c) dsp benchmarks. (d) simpl_array benchmarks.

(e) darknet benchmarks. (f) blas benchmarks.

(g) mathfu benchmarks. (h) dspstone benchmarks.

(i) Llama benchmarks. (j) makespeare benchmarks.

Figure 12 Synthesis timings for all the benchmarks with and without Tenspiler’s tree-based
optimization. Benchmark name legend in Appendix B in the extended version of this paper[29].

Bounded Synthesis. In this experiment, we keep the type-based filtering and tree approach
while removing the incremental bounded synthesis optimizations. We start with a static
tensor bound of 4 instead of the incremental approach. With this, 6 of the 12 blend
benchmarks time out. In addition, benchmarks involving 2D tensors that do not time out
see an average of 36.75× slowdown.

Tree Approach. For this experiment, we include type-based filtering and remove the
expression tree approach for grammar filtering. We assume a fixed depth for the grammar,
i.e., including all operators up to the specified depth, and increase it upon synthesis failure
(starting at depth 1). Without static analysis, no assumptions are made about the operators,
slice indices, variables, or constants, necessitating their synthesis. Unlike the tree approach
with a fixed number of placeholders, this approach exhibits scalability issues as the number
of grammar choices increases exponentially with depth. Therefore, only benchmarks with
depth 1 and 2 expressions could be successfully synthesized.

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:23

Figure 13 Prompts for LLM.

As illustrated in Fig. 12, without the tree based optimization, 42 out of the total
69 benchmarks timed out. In particular, all benchmarks of the blend, blas, dspstone,
makespeare, and utdsp suites timed out. For the benchmarks that succeed, the synthesis
phase slows down by an average 101.55× compared to the tree-based grammar filtering
approach due to the need to synthesize additional expressions in both PS and invs.

6.5 Comparison with LLMs
LLMs have shown promising results in various programming-related tasks, such as code
generation, translation, and testing. However, these models suffer from a lack of formal
verification of the translated code and face challenges in adapting to new DSLs or backends
that are not well-represented in their training corpus.

To test the capabilities of LLMs in generating code for new or low-resource DSLs, we
prompt a state-of-the-art proprietary LLM Claude Opus [1] (our evaluation using other
LLMs such as GPT4 shows similar results). We selected three backends for this experiment:
MLX, a completely new DSL, Gaudi, and Gemmini, which are not well represented in the
training corpus of these models. We prompted Claude Opus to generate code for these DSLs
for the linear_dodge benchmark from the blend suite. The prompt instructions are shown
in Fig. 13. In Fig. 14 we show the code generated by the LLM for the three prompts.

Upon analysis, we found that all three generated programs were incorrect. The Gemmini-
generated code in Fig. 14a partially uses the correct APIs (mvin, mvouts), but the computation
with config_ex is incorrect. For the Gaudi-generated code in Fig. 14b, the model hallucinates
the TPC-C library, which does not exist in the actual Gaudi programming model. The
MLX-generated code in Fig. 14c has the correct call to the library function add, but the
imports are incorrect, making the code non-functional. In addition to the generated code
being incorrect, it is challenging to verify these outputs formally as syntactically translating
the generated code to SMT-LIB is not trivial. The experiment highlights two significant
challenges in generating verified code using LLMs mentioned earlier. In contrast, Tenspiler,
which uses a verified lifting-based approach, can easily handle these challenges. LLMs cannot
be directly prompted to generate code in new DSLs. LLMs could potentially be fine-tuned
or prompted with few-shot learning to generate code in an IR, which can then be utilized
within the Tenspiler’s framework for verification; however, we leave this as future work.

6.6 Extension to Higher-Dimensional Tensors
Our benchmarks only involve 1D and 2D tensors, as most operations are performed on images
(the blend benchmarks) and weight matrices (the LLama benchmarks). In this section, we
demonstrate that Tenspiler can be extended to support higher-dimensional tensors with the
generalizability of Tensir and the synthesis optimizations discussed in Sec. 5. Specifically,
we extend Tensir to accommodate 3D tensors and all corresponding element-wise operations.

ECOOP 2024

32:24 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

(a) LLM generated Gemmini Code. (b) LLM generated Gaudi Code.

(c) LLM generated MLX Code.

Figure 14 LLM generated code for the prompt.

Additionally, we adapt the operator restriction optimization (introduced in Sec. 5.1) to apply
to 3D tensors. When the source program returns a 3D tensor, our grammar is restricted to
include only element-wise 3D tensor operations. We also retain the program state restriction
optimization technique from Sec. 5.2. Furthermore, we extend our support to leverage
expression trees performed on individual elements in tensors, as detailed in Sec. 5.3, to guide
the search for vectorized operations within 3D tensor spaces.

We evaluate Tenspiler’s synthesis optimizations on artificial benchmarks involving 3D
tensors. We create these benchmarks by combining random element-wise operations. The
maximum depth of these benchmarks is chosen to be 5 to match that of all our existing
real-world benchmarks, as described in Sec. 6. Results in Fig. 15 show that the synthesis
time grows linearly with the depths of the benchmarks. The depth-1 benchmark synthesizes
the fastest in 6 seconds, while the depth-5 benchmark takes the longest, in 184 seconds.

The sharp increase in timing for depth 5 expressions in Fig. 15 is due to the number of
expressions we are synthesizing and their complexity. A benchmark with 3 loops involves
synthesizing 3 invariants and 1 post-condition, each with expression sizes up to depth 5.
Despite these challenges, we easily extend Tenspiler’s optimizations and synthesize these
benchmarks well within the 1 hour timeout. As future work, to further scale Tenspiler’s
synthesis algorithm for handling more complex benchmarks, we could explore strategies such
as guiding the search process using machine learning techniques, implementing bottom-up
synthesis starting with inner loops first, performing bounded synthesis with unrolled loops,
and combining these approaches with Tenspiler’s current synthesis optimizations.

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:25

Figure 15 Synthesis timings for artificial 3D tensor benchmarks.

7 Related Work

Verified Lifting. Verified lifting uses program synthesis to translate code instead of designing
traditional pattern-matching compilers, and has been used across application domains [15, 5,
6, 19, 21]. Adapting these prior compilers for translation to tensor operations is nontrivial.
Tenspiler introduces a novel tensor algebra-based to make synthesis efficient, and supports
a diverse set of backends.

Code Translators. Tenspiler differs from other code translation approaches. While
symbolic methods like pattern-matching compilers [30] face challenges with the error-prone
nature of their rules, Tenspiler uses a search-based approach to avoid these complexities.
Neural techniques [32, 26], treat translation as a machine translation task but struggle to
ensure correctness. In contrast, Tenspiler uses a theorem prover to guarantee semantic
equivalence between the translated and source code. More recently, despite the success of
LLMs in programming tasks, they are unable to translate code to unfamiliar frameworks or
custom hardware ISAs. Tenspiler’s approach of searching in an Tensir and using simple
rules for translation makes it easy to support new backends.

Intermediate Representations. LLVM [22], MLIR [23] and TACO’s IR [20] are examples of
IRs that generate code to multiple backends. LLVM in addition can generate optimized code
for various hardware targets. MLIR introduces “dialects,” allowing specific optimizations
for different domains or hardware targets. Despite their versatility, LLVM and MLIR were
originally designed for traditional pattern-matching compilers, posing challenges for search-
based compilers due to their extensive set of operators. In contrast, Tensir is designed for
expressing tensor operations to be used in search-based compilers. As discussed, Tensir
enables efficient lifting, verification, and code generation.

8 Conclusions

We presented our experience in building Tenspiler, a compiler that leverages verified lifting
to transpile code to leverage tensor processing infrastructures. At the core of Tenspiler
is Tensir which concisely captures various tensor computations. Tenspiler efficiently
translates all 69 real-world benchmarks and can generate code to be executed on 6 different
software and hardware backends. The generated code achieves an average speedup of 105×
for kernel and 9.65× for end-to-end execution compared to the input.

ECOOP 2024

32:26 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

References
1 Claude Model. https://www.anthropic.com/news/claude-3-family. [Online].
2 Darknet. http://pjreddie.com/darknet/. [Online].
3 Mathfu. https://github.com/google/mathfu. [Online].
4 Texas Instrument Digital Signal Processing (DSP) Library for MSP430 Microcontrollers.

https://www.ti.com/tool/MSP-DSPLIB. [Online].
5 Maaz Bin Safeer Ahmad and Alvin Cheung. Automatically leveraging mapreduce frameworks

for data-intensive applications. In Gautam Das, Christopher M. Jermaine, and Philip A.
Bernstein, editors, Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 1205–1220. ACM,
2018.

6 Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil. Automat-
ically translating image processing libraries to halide. ACM Trans. Graph., 38(6), November
2019. doi:10.1145/3355089.3356549.

7 Maaz Bin Safeer Ahmad, Alexander J. Root, Andrew Adams, Shoaib Kamil, and Alvin Cheung.
Vector instruction selection for digital signal processors using program synthesis. In Proceedings
of the 27th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’22, pages 1004–1016, New York, NY, USA, 2022. Association
for Computing Machinery. doi:10.1145/3503222.3507714.

8 Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,
Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
Syntax-guided synthesis. In 2013 Formal Methods in Computer-Aided Design, pages 1–8, 2013.
doi:10.1109/FMCAD.2013.6679385.

9 SMT-LIB Authors. SMT-LIB Standard. https://smtlib.cs.uiowa.edu/. [Online].
10 Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,

Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir,
Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A
versatile and industrial-strength smt solver. In Dana Fisman and Grigore Rosu, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages 415–442, Cham, 2022.
Springer International Publishing.

11 Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs. In
Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, PASTE ’05, pages 82–87, New York, NY, USA, 2005. Association for
Computing Machinery. doi:10.1145/1108792.1108813.

12 Sahil Bhatia, Sumer Kohli, Sanjit A. Seshia, and Alvin Cheung. Building Code Transpilers for
Domain-Specific Languages Using Program Synthesis. In Karim Ali and Guido Salvaneschi,
editors, 37th European Conference on Object-Oriented Programming (ECOOP 2023), volume
263 of Leibniz International Proceedings in Informatics (LIPIcs), pages 38:1–38:30, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
ECOOP.2023.38.

13 L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint Whaley, James
Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry, et al. An updated set
of basic linear algebra subprograms (blas). ACM Transactions on Mathematical Software,
28(2):135–151, 2002.

14 Alexander Brauckmann, Elizabeth Polgreen, Tobias Grosser, and Michael FP O’Boyle. mlir-
synth: Automatic, retargetable program raising in multi-level ir using program synthesis. In
2023 32nd International Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 39–50. IEEE, 2023.

15 Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Optimizing database-backed
applications with query synthesis. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, pages 3–14, New York, NY,
USA, 2013. ACM. doi:10.1145/2491956.2462180.

https://www.anthropic.com/news/claude-3-family
http://pjreddie.com/darknet/
https://github.com/google/mathfu
https://www.ti.com/tool/MSP-DSPLIB
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1145/3503222.3507714
https://doi.org/10.1109/FMCAD.2013.6679385
https://smtlib.cs.uiowa.edu/
https://doi.org/10.1145/1108792.1108813
https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://doi.org/10.1145/2491956.2462180

J. Qiu, C. Cai, S. Bhatia, N. Hasabnis, S. A. Seshia, and A. Cheung 32:27

16 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL:
https://lmsys.org/blog/2023-03-30-vicuna/.

17 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. doi:10.1109/CVPR.2009.5206848.

18 C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, 1969.

19 Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. Verified lifting
of stencil computations. SIGPLAN Not., 51(6):711–726, June 2016. doi:10.1145/2980983.
2908117.

20 Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe.
The tensor algebra compiler. Proc. ACM Program. Lang., 1(OOPSLA), October 2017. doi:
10.1145/3133901.

21 Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and Joseph M. Hellerstein. Katara:
synthesizing crdts with verified lifting. Proc. ACM Program. Lang., 6(OOPSLA2):1349–1377,
2022.

22 Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization, CGO ’04, page 75, USA, 2004.
IEEE Computer Society.

23 Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar,
River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: A compiler
infrastructure for the end of moore’s law, 2020. arXiv:2002.11054.

24 llamacpp. https://github.com/leloykun/llama2.cpp/, 2024. Accessed: 2024-01-19.
25 José Wesley de Souza Magalhães, Jackson Woodruff, Elizabeth Polgreen, and Michael F. P.

O’Boyle. C2taco: Lifting tensor code to taco. In Proceedings of the 22nd ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences, GPCE
2023, pages 42–56, New York, NY, USA, 2023. Association for Computing Machinery. doi:
10.1145/3624007.3624053.

26 Benjamin Mariano, Yanju Chen, Yu Feng, Greg Durrett, and Işil Dillig. Automated transpil-
ation of imperative to functional code using neural-guided program synthesis. Proc. ACM
Program. Lang., 6(OOPSLA1), April 2022. doi:10.1145/3527315.

27 Apple mlx. https://ml-explore.github.io/mlx/, 2024.
28 Numba. https://numba.readthedocs.io/en/stable/cuda/overview.html, 2024.
29 Jie Qiu, Colin Cai, Sahil Bhatia, Niranjan Hasabnis, Sanjit A. Seshia, and Alvin Cheung.

Tenspiler: A verified lifting-based compiler for tensor operations, 2024. arXiv:2404.18249.
30 Cosmin Radoi, Stephen J. Fink, Rodric Rabbah, and Manu Sridharan. Translating imperative

code to mapreduce. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages 909–927, New
York, NY, USA, 2014. ACM.

31 Christopher D Rosin. Stepping stones to inductive synthesis of low-level looping programs. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33(01), pages 2362–2370,
2019.

32 Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsuper-
vised translation of programming languages. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL: https://proceedings.neurips.cc/
paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html.

ECOOP 2024

https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/2980983.2908117
https://doi.org/10.1145/2980983.2908117
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://arxiv.org/abs/2002.11054
https://github.com/leloykun/llama2.cpp/
https://doi.org/10.1145/3624007.3624053
https://doi.org/10.1145/3624007.3624053
https://doi.org/10.1145/3527315
https://ml-explore.github.io/mlx/
https://numba.readthedocs.io/en/stable/cuda/overview.html
https://arxiv.org/abs/2404.18249
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html

32:28 Tenspiler: A Verified-Lifting-Based Compiler for Tensor Operations

33 Mazen AR Saghir. Application-specific instruction-set architectures for embedded DSP applica-
tions. Citeseer, 1998.

34 Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh,
Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Licking. Packet transactions:
High-level programming for line-rate switches. In Marinho P. Barcellos, Jon Crowcroft, Amin
Vahdat, and Sachin Katti, editors, Proceedings of the ACM SIGCOMM 2016 Conference,
Florianopolis, Brazil, August 22-26, 2016, pages 15–28. ACM, 2016.

35 Sunbeom So and Hakjoo Oh. Synthesizing imperative programs from examples guided by
static analysis. In International Static Analysis Symposium, pages 364–381. Springer, 2017.

36 Emina Torlak and Rastislav Bodik. Growing solver-aided languages with rosette. In Proceedings
of the 2013 ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013, pages 135–152, New York, NY, USA, 2013. ACM.
doi:10.1145/2509578.2509586.

37 Tensorflow xla. https://www.tensorflow.org/xla/architecture, 2024.
38 Vojin Zivojnovic. Dspstone: A dsp-oriented benchmarking methodology. Proc. Signal Processing

Applications & Technology, Dallas, TX, 1994, pages 715–720, 1994.

https://doi.org/10.1145/2509578.2509586
https://www.tensorflow.org/xla/architecture

Compiling with Arrays
David Richter #

Technische Universität Darmstadt, Germany

Timon Böhler #

Technische Universität Darmstadt, Germany

Pascal Weisenburger #

University of St. Gallen, Switzerland

Mira Mezini #

Technische Universität Darmstadt, Germany
The Hessian Center for Artificial Intelligence (hessian.AI), Darmstadt, Germany

Abstract
Linear algebra computations are foundational for neural networks and machine learning, often
handled through arrays. While many functional programming languages feature lists and recursion,
arrays in linear algebra demand constant-time access and bulk operations. To bridge this gap, some
languages represent arrays as (eager) functions instead of lists. In this paper, we connect this idea
to a formal logical foundation by interpreting functions as the usual negative types from polarized
type theory, and arrays as the corresponding dual positive version of the function type. Positive
types are defined to have a single elimination form whose computational interpretation is pattern
matching. Just like (positive) product types bind two variables during pattern matching, (positive)
array types bind variables with multiplicity during pattern matching. We follow a similar approach
for Booleans by introducing conditionally-defined variables.

The positive formulation for the array type enables us to combine typed partial evaluation and
common subexpression elimination into an elegant algorithm whose result enjoys a property we call
maximal fission, which we argue can be beneficial for further optimizations. For this purpose, we
present the novel intermediate representation indexed administrative normal form (AiNF), which
relies on the formal logical foundation of the positive formulation for the array type to facilitate
maximal loop fission and subsequent optimizations. AiNF is normal with regard to commuting
conversion for both let-bindings and for-loops, leading to flat and maximally fissioned terms. We
mechanize the translation and normalization from a simple surface language to AiNF, establishing
that the process terminates, preserves types, and produces maximally fissioned terms.

2012 ACM Subject Classification Software and its engineering → Domain specific languages

Keywords and phrases array languages, functional programming, domain-specific languages, normal-
ization by evaluation, common subexpression elimination, polarity, positive function type, intrinsic
types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.33

Related Version Full Version: https://arxiv.org/abs/2405.18242

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.18
Software: https://github.com/stg-tud/ainf-compiling-with-arrays [32]

archived at swh:1:dir:8e0e755d11e4e3e91fb05bf8df1a5c8bec0f553a

Funding Timon Böhler : LOEWE/4a//519/05/00.002(0013)/95.
Pascal Weisenburger : Swiss National Science Foundation (SNSF, No. 200429).
Mira Mezini: LOEWE/4a//519/05/00.002(0013)/95; HMWK cluster project The Third Wave of
Artificial Intelligence (3AI).

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 33; pp. 33:1–33:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.richter@tu-darmstadt.de
https://orcid.org/0000-0002-8672-0265
mailto:timon.boehler@tu-darmstadt.de
https://orcid.org/0009-0002-9964-7367
mailto:pascal.weisenburger@unisg.ch
https://orcid.org/0000-0003-1288-1485
mailto:mezini@informatik.tu-darmstadt.de
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/LIPIcs.ECOOP.2024.33
https://arxiv.org/abs/2405.18242
https://doi.org/10.4230/DARTS.10.2.18
https://doi.org/10.4230/DARTS.10.2.18
https://github.com/stg-tud/ainf-compiling-with-arrays
https://archive.softwareheritage.org/swh:1:dir:8e0e755d11e4e3e91fb05bf8df1a5c8bec0f553a;origin=https://github.com/stg-tud/ainf-compiling-with-arrays;visit=swh:1:snp:e92b86a1a72b7e96bb4c6207f6d6a157de14195f;anchor=swh:1:rev:a8a88bca53396f58df5ae5d1da0755f1b02b01b8
https://doi.org/10.4230/DARTS.10.2.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Compiling with Arrays

1 Introduction

Linear algebra computations are of rising importance due to their foundational role in neural
networks and other machine learning systems. The fundamental unit of computation in linear
algebra is the multidimensional array (or just array from now on). Linear algebra programs
are full of computations that construct arrays from other arrays, such as element-wise sum,
matrix multiplication, convolution, (transformer) attention, and more.

In functional programming we usually work with lists not arrays. Lists are inductively
defined data types, and processed using recursion. Even element access on lists is implemented
by recursion, so it has to traverse the list until the element is found, giving it running time1

linear in the size of the list. Arrays, on the other hand, should have constant-time access
and be processed using bulk operations. As such arrays do not fit into the usual pattern
of inductive data types. A number of functional programming languages that aim to
facilitate programming of array computations have been proposed [12, 37, 31]. Aiming for
high expressivity with few language constructs, they leverage the idea that arrays can be
represented as functions [12, 37, 31], or that arrays are eager functions [28].

Functions are lazy in the sense that a function definition does not perform any computation
and the function body is only executed when a function is applied. Arrays are eager in
the sense that all contents of an array are evaluated during construction, and array access
does not perform further computation. Prior work had this intuition on the duality between
arrays and functions, and here we ground that correspondence on proof-theoretic concepts,
which explain why arrays are eager and functions are lazy and yield further convenient
consequences.

A key insight of our work is that arrays can be interpreted as a positively polarized version
of the function type. The connection between the positive and negative formulation of data
types and the computational interpretation of elimination forms as pattern matching has been
developed in the context of polarized type theory and focused logic [39, 1, 9, 10, 8, 19, 40].
Thus, similarly to how pattern matching on a binary tuple introduces two variables, the
computational content of pattern matching on an array of size N is the introduction of
N -many variables. Further, we explore pattern matching on Booleans by introducing
conditional variables. This insight provides the foundation for the design of the indexed
administrative normal form (AiNF), an intermediate representation for array computations.
We also present a simple surface array language, called Polara, and show how these
changes together (the positive formulation for the array type and a negative presentation of
Booleans) enables us to combine typed partial evaluation (a.k.a normalization by evaluation)
and common subexpression eliminiation into an elegant optimization algorithm overcoming
some challenges usually associated to partial evaluation.

In particular, partial evaluation of let-binding is not safe in the sense of always resulting
in a better, or at least equal, performance than the original. This is because a variable may
appear multiple times, hence substituting it multiple times would duplicate code. Ideally,
common subexpression elimination (CSE) would remove redundancies introduced by partial
evaluation. But the presence of scopes, as e.g., introduced by functions, loops, and branches
– all constructs that prevail in array computations – can complicate CSE. While compilers
can rectify these issues by using additional rules often summarized under the general term of
code motion, this comes at the cost of having to decide in what order and how often to apply
these additional rules, i.e., it implies creating an optimization schedule, which complicates
the algorithm.

1 We distinguish run-time (as in run-time library) from running time as the time it takes to run something.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:3

let z =
let y1 = x + 1
2 * y1

let y2 = x + 1
...

(a) Nested lets.

let y1 = x + 1
let z = 2 * y1

let y2 = x + 1
...

(b) Flat let-bindings.

let f = fun i:nat.
let y1 = x + 1
2 * y1

let y2 = x + 1
...

(c) Functions.

let z = if c then
let y1 = x + 1
2 * y1

else
2 * x

let y2 = x + 1
...

(d) Branches.

Figure 1 Sample programs.

Instead of these complications, with AiNF, we propose a novel intermediate representation
for array programs based on logical foundations that avoids the complexity of optimization
schedules. Like ANF, which is normal with regard to commuting conversion of let-bindings
implying maximal flatness, AiNF is normal with regard to commuting conversions of for-loops,
thus enabling what we call maximal loop fission. Maximal loop fission is a fundamental prop-
erty to enable further optimizations such as dead code elimination or common subexpression
elimination. We provide a translation of Polara into AiNF, which performs maximal loop
fission and loop invariant code motion.

Contributions. In summary, this paper makes the following contributions:
We present AiNF, an intermediate representation that makes use of the unconventional
idea of treating arrays as positive types from polarized type theory. AiNF is normal with
regard to commuting conversion for both let-bindings and for-loops, leading to flat and
maximally fissioned terms.
We present Polara, a simple surface array language, along with a translation of Polara
to AiNF, for which we prove termination, type preservation, and maximal fission.
We present an optimization algorithm for AiNF based on normalization by evaluation and
common subexpression elimination, for which we prove termination and type preservation.

2 Problem Statement

Typed partial evaluation is a powerful optimization technique [17], which can reduce excessive
terms by applying computation laws. For example, it can reduce a projection on a pair
(a, b).1 ≡ a by applying β-reduction. Or, it can eliminate superfluous branches like in
if x then (if x then a else b) else c ≡ if x then a else c by applying uniqueness laws (e.g.,
η-expansion).

But, while shining on its logical foundation, partial evaluation is not a safe optimization.
A safe optimization has to either reduce the running time of a program or at least preserve it.
Partial evaluation of let-bindings is not safe because a variable may appear multiple times,
hence substituting it multiple times would duplicate code. Ideally, common subexpression
elimination (CSE) would remove all redundancies introduced by partial evaluation. But
scopes introduced by nested let-bindings, functions, and branches complicate CSE. For
illustration, below we consider a few examples of redundancies that can occur in programs
and how CSE handles them.

In Figure 1a, a program with nested let-bindings is shown. Here, the variable z is bound
to 2 * y1, where y1 is bound to the successor of x; and then the variable y2 is bound to the
successor of x as well. It is easy to see that y1 is redundant with y2, yet y1 is not in scope
at the definition of y2, so we cannot simply replace one by the other. The problem can be

ECOOP 2024

33:4 Compiling with Arrays

avoided by bringing the program into a form, where no let-binding is nested inside another
let-binding, such that all previously bound variables are in scope for the whole remaining
expression. Consider the program shown in Figure 1b, which is equivalent to the previous
program, but this time no expression has a subexpression. Now, the former definition is
in scope at the latter definition, and thus y2 can be replaced by y1, thereby eliminating a
duplicate subexpression.

As mentioned, functions and branches introduce scope as well, and therefore complicate
CSE. Yet, the solution of flattening the code is not as straightforward to apply. To illustrate
the problem with functions, consider the program shown in Figure 1c, which defines a function
f. Inside the function the successor of x is bound to y1, and outside the function it is bound
redundantly to y2. To share the expressions, we could consider moving the definition of y1
out of the functions. But moving an expression out of a function is not safe, as long as we
do not know whether the function will be called at all.

To illustrate the problem with branches, consider the program shown in Figure 1d. Here,
the result of a conditional expression is bound to the variable z, in one branch the successor
of x is bound to y1, and after the conditional expression the successor of x is bound to the
variable y2. Similar to the function case, to share the expressions, we could consider moving
the definition of y1 out of the branch, but that is again not a safe optimization, as long as
we do not know that this branch is taken.

To rectify the issues outlined above compilers use additional rules often summarized
under the general term of code motion. But this comes at the cost of introducing the problem
of having to decide in what order and how often to apply these additional rules (i.e., creating
an optimization schedule).

Our work avoids the complexity of optimization schedules. We argue that – instead of
complicating the CSE algorithm with optimization schedules – a better approach is to design
an intermediate representation for array programs, which like ANF bans nested expressions.
This simplifies the optimization of array programs, which now can safely rely on algorithms
based on logical foundations such as partial evaluation and CSE. The novel intermediate
representation, called AiNF, is informally presented in the following along with a simple
surface arrays language and the optimized translation of the latter to the former.

3 AiNF, Polara, and Simplified Optimizations

We describe the two key insights on which our approach is based (Sections 3.1 and 3.2),
introduce Polara and AiNF by example (Section 3.3), and explain how AiNF simplifies
optimizations (Section 3.4).

3.1 The Duality of Functions and Arrays
The list type is an inductive datatype defined by its constructors nil for the empty list
and cons for constructing a list from another list with an additional element. Accordingly,
algorithms over lists work by recursion, expressed with functions and branches. As element
access on lists is implemented by recursion, it has to traverse the list until the element is
found, giving it running time linear in the size of the list. Arrays, on the other hand, enjoy
constant-time access and feature bulk operations. The consequence is that arrays do not to
fit into the usual pattern of inductive data types. Nevertheless, because custom semantics
would require further proofs to ensure soundness, arrays are occasionally modelled as lists,
with the hint that the actual running time can differ (in Lean for example2).

2 https://lean-lang.org/lean4/doc/array.html

https://lean-lang.org/lean4/doc/array.html

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:5

In functional array languages, we exploit the equivalence of an array of type X and
length n with a function from a natural number below n to a value of type X. Forward, this
equivalence allow us to access (get) elements of an array by its index. Backward, we create
(tabulate) an array from a function describing each individual element based on their index.
The forward direction is indeed already very much ingrained in everyday programming, as
array access a[i] and function application a(i) look very much alike in many languages, and
even share identical syntax in some.

Arrayn X ↔ (Finn → X)

get : Arrayn X → (Finn → X)
tabulate : (Finn → X) → Arrayn X

But something important changes in the conversion from a function to an array, and vice
versa. Functions are lazy, in the sense that the evaluation of a function is delayed until it is
applied, while arrays are eager, in the sense that all elements of an array have already been
evaluated and on array access only need to be looked up. Also, in a language with (side)
effects, the two types can be distinguished in that a function application can trigger effects,
while an array access cannot trigger effects. Dually, constructing a function cannot trigger
effects, while constructing an array can trigger effects.

We can put the relationship between functions and arrays on a logical foundation by
considering the difference between positive and negative types [39]. A positive type is
defined by a set of constructors (introduction forms), and we get a single corresponding
destructor (elimination form) for it with one continuation for the content of each possible
constructor (pattern matching). A negative type is defined by a set of destructors, and we get
a single corresponding constructor for it that has to provide one value for each destructor to
extract (copattern matching). Positive types are usually associated with eager (call-by-value)
evaluation, and negative types with lazy (call-by-name) evaluation. Many types can be
defined either as a positive or as a negative type. For illustration, we consider the positive
and the negative formulations of the product type below.

Products as Positive and as Negative Types. The product type as a positive type × has a
single constructor (a, b) (Intro). A corresponding destructor (Elim) can be systematically
derived as pattern matching on the constructor. Reduction (Beta) occurs when a destructor
is applied to a constructor, and they eliminate each other.

Intro
Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ (a, b) : A × B

Elim
Γ ⊢ p : A × B Γ, a : A, b : B ⊢ c : C

Γ ⊢ let (a, b) = p; c : C

Beta
Γ ⊢ a : A Γ ⊢ b : B Γ, x : A, y : B ⊢ c : C

Γ ⊢ (let (x, y) = (a, b); c) ≡ c[x := a, y := b]

Alternatively, products can also be defined as negatives types ⊗. In this case, we give primacy
to a set of destructors, namely the projections p.fst and p.snd (Elim1, Elim) to access the
individual elements of a tuple p, and derive systematically the corresponding constructor
(Intro) providing one value for each destructor to extract. Beta reduction occurs (Beta1,
Beta1) when a destructor is applied to a constructor by extracting the corresponding value.

ECOOP 2024

33:6 Compiling with Arrays

Elim1
Γ ⊢ p : A ⊗ B

Γ ⊢ p.fst : A

Elim2
Γ ⊢ p : A ⊗ B

Γ ⊢ p.snd : B

Intro
Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ (fst = a; snd = b) : A ⊗ B

Beta1
Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ (fst = a, snd = b).fst = a

Beta2
Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ (fst = a, snd = b).snd = b

Functions as Negative and Positive Types. Usually, the function type is considered a
negative type. It has a single destructor – function application f a (Elim) – and the
corresponding constructor is systematically derived by copattern matching on the possible
destructors (Intro). When a destructor is applied to the constructor, we extract the value
provided as the body of the function, and substitute the variable with the argument (Beta).

Elim
Γ ⊢ f : A → B Γ ⊢ a : A

Γ ⊢ f a : B

Intro
Γ, a : A ⊢ b : B

Γ ⊢ fun a. b : A → B

Beta
Γ, x : A ⊢ b : B Γ ⊢ a : A

Γ ⊢ (fun x. b) a ≡ b[x := a]

The function type can also be represented as a positive type. In this case, the function
is primarily defined through its constructor, and the destructor is systematically derived
from pattern matching on the constructor. But the interpretation of positive function types
comes with some challenges for the metatheory. The introduction form of a function turns
a term-in-the-context-of-a-variable a : A ⊢ b : B into a function (fun a. b) : A → B. Thus,
the corresponding elimination form of a function (fun a. b) : A → B should introduce
a variable of type term-in-the-context-of-a-variable a : A ⊢ b : B into the context. But
to properly model that, we need a judgment where we have a context in the context,
in other words a “higher-order judgment” [26, 25]. A judgment is higher-order when an
entailment ⊢ occurs inside the context of another entailment An implementation of higher-
order judgments needs to ensure that a variable which has such a judgment as a type
is only used in larger contexts, where all required variables are available. For example,
b : (a : A ⊢ B) ⊢ b : B is invalid, given that b must occur in a context where an a : A is
available; while b : (a : A ⊢ B) ⊢ (fun a:A. b) : A → B is valid, because a variable a : A has
been introduced such that the use of b afterwards is safe.

Intro
Γ, a : A ⊢ b : B

Γ ⊢ (fun a. b) : A → B

Elim
Γ ⊢ f : A → B Γ, x : (a : A ⊢ B) ⊢ c : C

Γ ⊢ let (fun a. x) = f ; c : C

Beta
Γ, a : A ⊢ b : B Γ, x : (a : A ⊢ B) ⊢ c : C

Γ ⊢ let (fun a. x) = (fun a. b); c ≡ c[x := b]

Interpreting positive function types as arrays. We avoid the challenges of interpreting
functions as positive types by proposing to interpret positive function types as arrays,
re-interpreting the rules of the positive function type as the rules of the array type. We
require the argument type to be the type of natural numbers below some number n, which
corresponds to the index type of an array. Traditionally, functional programming works with
lists and not arrays, therefore the constant-time access of arrays is not accurately represented
by the model; in functional array languages [15, 37], arrays tend to live in the shadow of the

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:7

function type, as their introduction and elimination forms depend on (higher-order) functions.
Interpreting the array as a positive function type makes them independent and puts them
on an equal footing to the other types with regard to their logical foundation.

We distinguish positive functions, i.e., arrays, from normal functions by using ⇒ for the
type, writing (for a. b) as the introduction form for arrays, while the elimination form is
given, as always, by pattern matching on all possible introduction forms:

Intro
Γ, x : A ⊢ b : B

Γ ⊢ (for x. b) : A ⇒ B
A = Finn

Elim
Γ ⊢ f : A ⇒ B Γ, x : (a : A ⊢ B) ⊢ c : C

Γ ⊢ let (for a. x) = f ; c : C
A = Finn

Beta
Γ, a : A ⊢ b : B Γ, x : (a : A ⊢ B) ⊢ c : C

Γ ⊢ let (for a. x) = (for a. b); c ≡ c[x := b]

Intuitively, analogously to how pattern matching on a product introduces two variables (one for
each projection of the product), pattern matching on an array introduces a family of variables,
one for each element. For illustration, consider b[a := 2] as b2, and (let (for a. b) = f ; c) as
(let (b0, b1, ..., bn−1) = f ; c).

Arrays Enable CSE. Flattening let-bindings usually helps CSE. More precisely the rule
that is used to create the ANF representation is the let-let commuting conversion:

(let y = (let x = e1; e2); e3) ≡
(let x = e1; let y = e2; e3)

Note that the following let-fun commuting conversion is not safe because on the left-hand
side e1 is evaluated at most once, even if it was used multiple times in e2; but on the
right-hand side it will be evaluated once for each usage in e2.

(let y = (fun i. let x = e1; e2); e3) ≡
(let (fun i. x) = (fun i. e1); let y = (fun i. e2); e3)

On the other hand, the let-for commuting conversion that we use in AiNF below is safe
and states that the following two lines are equivalent. As array construction is evaluated
eagerly, the expression e1 is evaluated just once for each iteration, on both sides of the
equation.

(let y = (for i. let x = e1; e2); e3) ≡
(let (for i. x) = (for i. e1); let y = (for i. e2); e3)

Intuitively, this rule allows us to split a complex loop into multiple simpler loops, hence
it is closely connected to loop fission. If we use this rule to split every loop as much as
possible, then we end up with a normal form in which every loop only contains a single
operation. First performing loop fission as much as possible helps with implementing other
optimizations, for example allows CSE to remove redundancies that it could not otherwise
eliminate.

The use of this rule means that frequently both the left side and the right side of a variable
definition are surrounded by the same form (on the left as a pattern form, on the right as a
term form), so we will introduce some syntactic sugar and write let for i. (x = e1); e2 to
mean let (for i. x) = (for i. e1); e2 in the following.

ECOOP 2024

33:8 Compiling with Arrays

3.2 Lifting Branching into the Context
A different problem arises with values of the Boolean type, Booleans have two constructors,
true and false (Intro1, Intro2). They have one destructor, the conditional expression
(Elim), where one continuation is provided for each constructor, the consequent and the
alternative. A conditional reduces to the consequent when the condition is true (Beta1),
and to the alternative when the condition is false (Beta2).

Intro1

Γ ⊢ true : bool

Intro2

Γ ⊢ false : bool

Elim
Γ ⊢ p : bool Γ ⊢ e : C Γ ⊢ f : C

Γ ⊢ if p then e else f

Beta1
Γ ⊢ e : C Γ ⊢ f : C

Γ ⊢ if true then e else f ≡ e

Beta2
Γ ⊢ e : C Γ ⊢ f : C

Γ ⊢ if false then e else f ≡ f

The let-if commuting conversion below is safe with regard to running time. But applying the
commuting conversion duplicates the expression e3. If e3 is a big expression, then even if
duplicating it in different branches may not impact the running time, having nested branches
will lead to a blow-up of the code size exponential in the number of branches (which is also
bad for the compiling time).

(let z = (if e0 then e1 else e2); e3) ≡
(if e0 then (let z=e1; e3) else (let z=e2; e3))

Essentially, the above rule bubbles up conditionals to the top of the expression. Instead,
we propose to trickle down the conditionals using conditionally defined variables and state a
new let-if commuting conversion that does not duplicate the branches. To avoid duplicating
branches, we introduce a syntactically single-branch if. A single-branch if produces a
conditional value, i.e., a value that can only be accessed if the condition is true, and the
single-branch if! produces a value that can only be accessed if the condition is false.

Analogously, we have let-bindings for conditional variables let (if e. x) := ... (or let
(if! e. x) := ...), which define a variable x that can only be accessed if the condition e is
true (or false, respectively). Two simple syntactical conditions can be used to check whether a
conditional variable is accessible: First, a conditional variable is accessible on the right-hand
side of the definition of another conditional variable that has the same condition. In other
words, a conditional variable can be used to define the value of another conditional variable
with the same condition. Second, a conditional variable is accessible in one of the branches
of a standard two-branched if condition. In other words, two mutually exclusive conditional
variables can be combined with an if to define a non-conditional variable.

Using the single-branch if, we can now express a let-if commuting conversion, that does
duplicate e3. Here the double-branched if is seperated into two single-branch ifs and e3
remains to be executed once afterwards:

(let z = (if e0 then e1 else e2);
e3)

≡
(let (if e0. z1) = (if e0. e1);
let (if! e0. z2) = (if! e0. e2);
let z = (if e0 then z1 else z2);
e3)

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:9

Table 1 Common linear algebra operations in Polara; NumPy for reference.

Name NumPy Polara

Vector addition v + w for i. v[i] + w[i]

Matrix addition A + B for i j. A[i,j] + B[i,j]

Element-wise product (vector) v * w for i. v[i] * w[i]

Element-wise product (matrix) A * B for i j. A[i,j] * B[i,j]

Outer product np.multiply.outer(A, B) for i j k l. A[i,j] * B[k,l]

Trace A.trace() sum i. A[i, i]

Transpose A.transpose() for i j. A[j, i]

Matrix multiplication A @ B for i k. sum j. A[i,j] * A[j,k]

Matrix-vector multiplication A @ v for i. sum j. A[i,j] * v[j]

Correct use of conditional values will thus frequently lead to the use of the same condition
on the variable bound by a let and in a single-branched if in the bound expression. We will
thus make use of syntactic sugar writing let if e0. (x1 = e1); e2 to mean let (if e0.
x1) = (if e0. e1); e2.

3.3 Polara and AiNF by Example
In this section, we informally introduce both Polara and AiNF. We do so by giving examples
of array operations and programs in Polara and showing the result of compiling them to
AiNF. Just for reference, we will also provide versions of the Polara examples written in
the widely-adopted array programming library NumPy [14]. Please note that the focus of
this paper lies in the exploration of AiNF, rather than Polara. The latter serves merely as
a vehicle to elucidate how AiNF effectively facilitates optimizations during the translation
process from a surface array language. Hence, compared to NumPy, we have purposely kept
it closer to low-level imperative code.

In Polara, an expression e is either a constant c, or an arithmetic operator e + e,
function application e e, array access a[i], array construction for i:n. e, or summation
sum i:n. e, as well as pairs (e, e) and projection e.1, e.2. The array construction for
i:n. e constructs an array of length n by repeatedly evaluating e, with i bound to the values
from 0 to n-1. For example, for i:3. 10*i evaluates to [0, 10, 20]. We will write for i. e
if the size of the array can be inferred from the context. Summation is syntactic sugar for
constructing an array and then summing it, so sum i.e ≡ sum (for i. e).

In Table 1, we list several common linear algebra operations and compare how they can
be expressed using the linear algebra library NumPy and Polara. We assume as given that
the vectors v, w and matrices A, B are of appropriate sizes.

Dense Layer. As a slightly more involved example, we show how a dense neural network
layer can be implemented in NumPy, Polara, and AiNF, respectively. The NumPy example
makes use of the built-in matrix multiplication operator @. While such an operation can
be implemented as function in Polara, we show an example that only relies on the few
Polara primitives, using the for looping construct and indexing. Likewise, while the
NumPy definition uses the built-in maximum function and addition, the Polara version uses
an explicit loop that performs element-wise multiplication and additions across the vectors.

Compared to the untyped NumPy program, we also declare the types of the arguments.
A type n⇒flt describes an array of floating point numbers with size n.

Obviously, the corresponding AiNF program (Figure 2a) is rather lengthy, as every
intermediate result gets assigned to a variable, just like in ANF.

ECOOP 2024

33:10 Compiling with Arrays

def dense(b, W, x):
return np.maximum(0, W @ x + b)

NumPy

dense(b:n⇒flt, W:n⇒m⇒flt, x:m⇒flt): n⇒flt :=
for i. max(0, (sum j. W[i][j] * x[j]) + b[i])

Polara

Convolution. We now describe how to express convolution in Polara. Convolution involves
moving a vector, called the kernel, across another vector while repeatedly calculating the
dot product. For this example, we need to subtract two indices to indicate that we shift
one array while keeping the other as it is. In the AiNF example (Figure 2b), we create a
two-dimensional array x10 containing all the possibilities for shifting the array y. For example
if y = [1,2,3], then x10 is a matrix of size 3×3 so that tmp1 = [[1,2,3], [2,3,1], [3,1,2]].
We then form the dot product of each entry with x.

def conv(x, y):
return np.convolve(x, y, 'same') NumPy

conv(x: n⇒flt, y: (n+m-1)⇒flt): m⇒flt :=
for i. sum j. x[j] * y[j+i]

Polara

Black-Scholes. Black-Scholes is a simplified mathematical model for the dynamics of
derivative investments in financial markets. The Black-Scholes formula provides an estimate
for the price of the call option (buying) and the put option (selling) of a European-style
option given the original price S, the strike price K, the expiration time T , the force-of-risk
r and the standard deviation σ. The interesting part, from an array programming language’s
perspective, is that with a naive implementation of the calls and puts as separate functions,
common subexpression elimination is not able to identify the redundant computation across
these functions over two separate loops.

In particular, note the redundant definition of d1 and d2 in the calls and the puts
function. This code gets inlined into the blackScholes function, but the two function calls
land in separate loops. Nevertheless, using loop fission the output can be reduced to just 22
lines of AiNF (see Figure 2c); without fission and CSE the generated code would have 54
lines.

calls(S: flt, K: flt, T: flt: r: flt: sigma: flt): flt :=
let d1 := (log (S / K) + (r + sigma * sigma / 2) * T) / (sigma * sqrt T)
let d2 := d1 - sigma * sqrt T
S * normCdf d1 - K * exp (0 - var r * var T) * normCdf d2

puts(S: flt, K: flt, T: flt: r: flt: sigma: flt): flt :=
let d1 := (log (S / K) + (r + sigma * sigma / 2) * T) / (sigma * sqrt T)
let d2 := d1 - sigma * sqrt T
K * exp (0 - r * T) * normCdf (0 - d2) - S * normCdf (0 - d1)

blackScholes(arr: (n ⇒ flt)): n ⇒ (flt × flt) :=
let S := 1; let K := 1; let r := 1; let sigma := 1
let Calls: (n ⇒ flt) := for i. calls(S, K, arr[i], r, sigma)
let Puts: (n ⇒ flt) := for i. puts(S, K, arr[i], r, sigma)
for i. (Calls[i], Puts[i])

Polara

3.4 Simplifying Optimizations with AiNF
This section provides an overview showing how some classical optimizations can be applied
to AiNF and illustrates why our novel normal form simplifies their implementation.

To improve readability, we will sometimes present AiNF code in a way that deviates
from the actual representation by putting multiple operations in one line, when this does not
affect the optimization.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:11

dense(b: n ⇒ flt, W: n ⇒ m ⇒ flt,
x: m ⇒ flt): n ⇒ flt :=

let for i:n, (x0 : flt := 0)
let for i:n, j:m, (x1 : m ⇒ flt := W[i])
let for i:n, j:m, (x2 : flt := x1[j])
let for i:n, j:m, (x3 : flt := x[j])
let for i:n, j:m, (x4 : flt := x2 * x3)
let for i:n, (x5 : m ⇒ flt := for j:m, x4)
let for i:n, (x6 : flt := sum x5)
let for i:n, (x7 : flt := b[i])
let for i:n, (x8 : flt := x6 + x7)
let for i:n, (x9 : flt := max x0 x8)
let (x10: n ⇒ flt := for i:n, x9)
x10 AiNF

(a) AiNF for a dense layer.

conv(x: n ⇒ flt, y: p ⇒ flt): m ⇒ flt :=
let for i:m, j:n, (x0 : flt := x[j])
let for i:m, j:n, (x1 : fin p := j + i)
let for i:m, j:n, (x2 : flt := y[x1])
let for i:m, j:n, (x3 : flt := x0 * x2)
let for i:m, (x4 : n ⇒ flt := for j:n, x3)
let for i:m, (x5 : flt := sum x4)
let (x6 : m ⇒ flt := for i:m. x5)
x6

where p = n+m-1 AiNF

(b) AiNF for convolution.

blackScholes(arr: n ⇒ flt): n ⇒ flt × flt :=
let for i1:n, (x0 : flt := 1.500000)
let for i1:n, (x1 : flt := i0[i1])
let for i1:n, (x2 : flt := x0 * x1)
let for i1:n, (x4 : flt := sqrt x1)
let for i1:n, (x5 : flt := x2 / x4)
let for i1:n, (x6 : flt := normCdf x5)
let for i1:n, (x7 : flt := 0.000000)
let for i1:n, (x9 : flt := x7 - x1)
let for i1:n, (x10 : flt := exp x9)
let for i1:n, (x19 : flt := x5 - x4)
let for i1:n, (x20 : flt := normCdf x19)
let for i1:n, (x21 : flt := x10 * x20)
let for i1:n, (x22 : flt := x6 - x21)
let for i1:n, (x37 : flt := x7 - x19)
let for i1:n, (x38 : flt := normCdf x37)
let for i1:n, (x39 : flt := x10 * x38)
let for i1:n, (x47 : flt := x7 - x5)
let for i1:n, (x48 : flt := normCdf x47)
let for i1:n, (x49 : flt := x39 - x48)
let for i1:n, (x50 : (flt × flt) := (x22, x49))
let (x51 : (n ⇒ flt × flt) := for i1:1, x50)
x51 AiNF

(c) AiNF for a Black-Scholes.

Figure 2 Generated AiNF.

Loop Fission. Loop fission is an optimization pass that prepares code to improve the
effectiveness of dead code elimination. Standard dead code elimination can only delete whole
loops. Loop fission splits a loop into parts, so that individual parts that are not used can be
removed. In AiNF, the body of each loop is a single operation, which means that any AiNF
program is necessarily as fissioned as possible. A simple partial evaluation pass on AiNF can
then perform dead-code elimination.

Below, the left side shows an array computation in Polara. On the right, that same
computation has been transformed to AiNF, which implies loop fission. The code follows
the principle from ANF that expressions should be atomic, i.e., only have one operation. In
terms of array programming, this leads to the first loop being split into three loops. Partial
evaluation could then reduce the full program to just for i. f(xs[i]).

let x = for i.
let ys = f(xs[i])
let zs = f(xs[i])
(ys, zs)

for i.
fst x[i]

Polara

let for i. (ys = f(xs[i]))
let for i. (zs = f(xs[i]))
let for i. (x = (ys, zs))
let for i. (y = fst x)
let z = for i. y
z

AiNF

A further advantage of loop fission is that it improves loop fusion: Splitting a program
into as many loops as possible, gives more freedom to the algorithm for combining loops
again.

ECOOP 2024

33:12 Compiling with Arrays

n ∈ N f ∈ F x ∈ Var i ∈ Idx

Types t ::= fin n | flt | t ×̂ t | t →̂ t | n ⇒̂ t

Constants c ::= n | f | +̂ | ·̂ | −̂ | /̂ | app | get | pair | fst | snd | sum
Polara e ::= c e | x | fun x:t. e | for x:n. e | ite e e e | let e; e

AiNF a ::= let C[x = p]; a | x

Primitives p ::= c x | i | fun i:t. x | for i:n. x | ite x x x

Scope Contexts C[·] ::= · | C[fun i:t. ·] | C[for i:n. ·] | C[if x̸=0. ·] | C[if x=0. ·]

Figure 3 Polara and AiNF.

Common subexpression elimination. We can now see how AiNF helps with CSE. On the
left, we recapitulate the example from above; on the right, we can see the same program in
AiNF.

let f = for i.
let y = x+1
let y' = 2*y
y'

let z = x+1
...

Polara

let for i. (y = x + 1)
let for i. (y' = 2 * y)
let for i. (f = y')

let for i. (z = x + 1)
...

AiNF

The loop computing f has been broken down into two loops. As a result, z is clearly
redundant, as it performs the same computation in the same scope as y. Therefore, compared
to array languages using higher-order functions, AiNF allows us to use the simple, standard
approach to CSE, and nonetheless remove redundancies between expressions inside and
outside of loops.

Loop invariant code motion. Loop invariant code motion (LICM), which moves constants
out of a loop, is another optimization that benefits from AiNF. In AiNF, this would correspond
to dropping an unused index; hence, the implementation of LICM is very simple. On the
left, we generate an array ys, in which every element is the constant 1. We then compute
an array zs that makes use of ys. Notice that the index i that is bound in the creation of
ys is not used. We can therefore eliminate that loop, adjusting uses of ys accordingly from
ys[i:=j] to ys, as seen on the right.

let for i. (ys = 1)
let zs = for i. f(xs[i], ys)
...

AiNF

let ys = 1
let zs = for i. f(xs[i], ys)
...

AiNF

4 Mechanization

We mechanized Polara, partial evaluation of Polara, AiNF, the translation from Polara
to AiNF, and common subexpression elimination over AiNF, using the dependently typed
programming language Lean 4 [7].

4.1 Polara and Partial Evaluation
Polara. The Polara grammar uses the set of natural numbers, floating point numbers,
variables and indices (Figure 3), but the distinction between variables and indices is only
relevant for AiNF. Types are floating point numbers, products, functions, and arrays, as well
as bounded natural numbers, i.e. fin n is the type of numbers smaller than n. Constants are

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:13

n < m

⊢ n : fin m
⊢ f : flt ⊢ app : (t1→̂t2) → t1 → t2 ⊢ get : (n⇒̂t1) → fin n → t1

⊢ pair : t1 → t2 → (t1×̂t2) ⊢ fst : (t1×̂t2) → t1 ⊢ snd : (t1×̂t2) → t2

⊢ +̂ : fin n → fin m → fin (n + m − 1) ⊢ +̂ : flt → flt → flt ⊢ sum : (n⇒̂flt) → flt

Var
x:t ∈ Γ
Γ ⊢ x : t

Const
⊢ c : ti → t′ Γ ⊢ ei : ti

Γ ⊢ c ei : t′

Fun
Γ, x:t1 ⊢ e : t2

Γ ⊢ fun x:t1. e : t1 → t2

For
Γ, i:fin n ⊢ e2 : t

Γ ⊢ for i:n. e2 : n⇒̂t

Let
Γ ⊢ e1 : t1 Γ, x:t1 ⊢ e2 : t2

Γ ⊢ let x = e1; e2 : t2

Ite
Γ ⊢ e1 : fin 2 Γ ⊢ e2 : t Γ ⊢ e3 : t

Γ ⊢ ite e1 e2 e3 : t

Figure 4 Polara’s type system.

natural number and floating point literals, arithmetic symbols, function application (app),
array access (get), pair construction (pair), first and second projection (fst, snd), and array
summation (sum). Polara terms are variable access, n-ary constant application, function
abstraction, array construction, branching (ite), and let-binding. We decided to put first-order
syntax forms such as function application, array access, pairing, and the product projections
into the constants, because they are all handled uniformly by the following algorithms, while
the higher-order syntax forms, i.e., the ones that bind variables, such as function abstraction,
array construction, branching, and let-binding are kept in the terms because they are all
treated differently.

Intrinsic Types. The typing rules for Polara are given in Figure 4. First, we give the
types for constants. Note that we use the → symbol for the typing judgement of constants
that take arguments. This is not to be confused with the type constructor →̂. The typing
rules for variables (Var), function abstractions (Fun), and let-bindings (Let) are standard.
The rule Const allows one to apply a constant to a number (possibly zero) of arguments.
For example, as app has type (t1→̂t2) → t1 → t2, the expression app e1 e2 has type t2 when
e1 : t1→̂t2 and e2 : t1. The For rule shows that constructing an array with for requires an
expression of type nat for the size and another expression, which can use the (numerical)
index i and whose type gives the element type of the array. The Ite rule states that the
condition has to be of type nat and the two branches have to be of the same type (the
condition is considered true if nonzero).

PHOAS. Our formal development uses parametric higher-order abstract syntax
(PHOAS) [29, 5], allowing us to leverage the binders of the host language as binders for
the guest language. Terms are parametrized by an abstract denotation of types Γ, and
variables contain a value of that type. By using PHOAS, we can avoid certain technicalities
relating to variable binding such as capture-avoiding substitution, thereby streamlining the
implementation.

ECOOP 2024

33:14 Compiling with Arrays

Static Size. As mentioned above, our array types have the form n ⇒ a, where n is the size
of the array. The fact that the size of an array is always part of its static type, implies that
the sizes of all arrays are known at compile time. This guarantees that indexing can be
statically checked for out-of-bounds array accesses, ensuring the absence of run time errors
without requiring run time checks.

Because Polara is not polymorphic, expressions operating on arrays are fixed to specific
array sizes. For example, there is no single expression in Polara that can map a function
over an array of arbitrary size. This restriction is alleviated because our language is embedded,
allowing us to reuse polymorphism from the host language. More concretely, we can define a
function in the host language that for each number n returns a Polara term implementing
map on an array of size n (here, λ belongs to the host language and fun belongs to Polara):

map : (n : N) → (Γ ⊢ (t1→̂t2) →̂ (n⇒̂t1) →̂ (n⇒̂t2))
map := λn. fun f a. for i. f a[i]

Termination. The use of static array sizes ensures that array indexing is total. In fact,
every language construct in Polara is deterministic and terminating, making the language
total; hence it is not Turing-complete. Most notably, we eschew general recursion in favor of
the more well-behaved looping construct for. The lack of non-termination allows us to give a
simple denotational semantics and guarantees termination of normalization, as described
next.

Normalization by Evaluation (NbE). Normalization is defined in Figure 5 by a denotation
for types (JtKΓ : Type), a corresponding denotation for terms and constants (such that when
e has type t, then (JeKΓ : JtKΓ)), as well as functions quote (η), splice (η′), and norm. Note
the additional argument Γ – this is a peculiarity of the PHOAS representation, where Γ
determines the denotation of variables. This argument can take different values, depending on
which information we want to extract from a term. For example, when pretty-printing a term
we want to produce a string, so we associate every variable also with a string (Γ t := String).
For NbE, every term should be translated to the denotation of their type, so we associate
every variable to the denotation J·KΓ of its type using Γ. The function norm takes a value
of type (∀Γ. Γ ⊢ t) and returns one of the same type. The quantification means that we
can only use variables that were created by the language’s binding constructs, so the type
represents closed terms.

The denotation of a bounded natural number is a bounded natural number term, the
denotation of a floating point number is a floating point number term, the denotation of a
product is a product of the denotations, the denotation of a function is a function of the
denotations, the denotation of an array is a function from a bounded natural number term
to a denotation of the array’s content. Later, for code generation, we will again distinguish
functions and arrays. But for the purpose of normalization by partial evaluation (NbE), we
model arrays as functions so as to reduce the need for rules for both of them.

The quote η and splice η′ functions perform eta-expansion of terms by recursion over the
types. Quote turns denotations into terms, and splice turns terms back into denotations.
The denotation of a Polara term is a corresponding host-language value of that term (i.e., a
Lean value in our mechanization). NbE then evaluates terms in the environment of splicing,
followed by quoting the denotation back into a term.

Constants denote functions that check for whether their argument is known, and the
partial evaluation of their argument; otherwise, they quote/splice the term into a denotation
of the type.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:15

J·KΓ : Ty → Type
Jfin nKΓ = Γ ⊢ fin n

JfltKΓ = Γ ⊢ flt
Jt1 ×̂ t2KΓ = Jt1KΓ × Jt2KΓ
Jt1 →̂ t2KΓ = Jt1KΓ → Jt2KΓ
Jn ⇒̂ tKΓ = (Γ ⊢ fin n) → JtKΓ

(a) Denotation of types.

Jite e1 e2 e3K =
Je2K if Je1K = 1
Je3K if Je1K = 0
η′(ite Je1K (ηJe2K) (ηJe3K)) otherwise

(b) Denotation of ite.

J·K : (J·KΓ ⊢ t) → JtKΓ
JxK = x

Jfun i. eK = λi. Je iK
Jfor i. eK = λi. Je iK
Jc eK = JcK JeK
Jlet e1; e2K = Je2K Je1K

JappK e1 e2 = e1 e2
JgetK e1 e2 = e1 e2
JpairK e1 e2 = (e1, e2)
JfstK e = e.1
JsndK e = e.2
JsumK e = η′ (sum (η e))
J+̂K n1 n2 = n1 + n2
J+̂K e1 e2 = e1 +̂ e2

(c) Denotation of terms and constants.

η : ∀t. JtKΓ → (Γ ⊢ t)
η (t1 →̂ t2) e = fun i : t1. η t2 (e (η′ t1 i))
η (n1 ⇒̂ t2) e = for i : n1. η t2 (e (η′ t1 i))
η (t1 ×̂ t2) e = tup (η t1 e.1) (η t2 e.2)
η (fin n) e = e

η flt e = e

η′ : ∀t. (Γ ⊢ t) → JtKΓ
η′ (t1 →̂ t2) e = λi. app (η′ t2 e) (η t1 i)
η′ (n1 ⇒̂ t2) e = λi. get (η′ t2 e) (η t1 i)
η′ (t1 ×̂ t2) e = (η′ t1 (fst e), η′ t2 (snd e))
η′ (fin n) e = e

η′ flt e = e

norm : (∀Γ. Γ ⊢ t) → (∀Γ. Γ ⊢ t)
norm e = η JeK

(d) Quote η, splice η′, and normalization norm.

Figure 5 Typed partial evaluation.

4.2 AiNF and Common Subexpression Elimination

FOAS. An essential component for implementing common subexpression elimination is the
ability to compare to terms for equality. As we cannot decide equality over functions, we
have to convert from parametric higher-order abstract syntax (PHOAS) to first-order syntax
(FOAS) to get decidable equality for identifiers and terms containing variables.

AiNF. In AiNF, we distinguish between variables x and indices i (Figure 3). Variables are
introduced by let-binding, while indices are introduced by functions and loops. An AiNF
term is a sequence of pattern-matching let-bindings of primitives, ending in a final variable
(Figure 3, AiNF). An essential property of AiNF is thus, that it is both maximally fissioned
(each for loop just has a single operation as a body) and maximally flat (an AiNF term is a
single list of terms without subterms, executed one after another). Pattern matching contexts
C have one hole for the variable, and one form for each higher-order argument to any term
former, namely array construction, function abstraction, if-consequence, and if-alternative.
Primitives are constant application, indices, variable access, function abstraction, and array
construction.

ECOOP 2024

33:16 Compiling with Arrays

CJ · K · : (⊢ t1) → (Var t1 → AiNF t2) → AiNF t2

CJ x K k = L x M k

CJ i K k = L i M k

CJ c e1 e2 K k = CJe1K λ x1. CJe2K λ x2. L c x1 x2 M k

CJfun i:t. eK k = C[fun i:t. ·]JeK λ x. L fun i:t. x M k

CJfor i:e1. e2K k = CJe1K λ x1. C[for i:x1. ·]Je2K λ x2. L for i:x1. x2 M k

CJite e1 e2 e3K k = CJe1K λ x1. C[if x1=0. ·]Je2K λ x2. C[if x2 ̸=0. ·]Je3K λ x3. Lite x1 x2 x3M k

CJlet e1; e2K k = CJe1K λ x1. CJe2 x1K k

(a) Fission.

L · M : Prim t1 → (Var t1 → AiNF t2) → AiNF t2
L x M k = k x

L p M k = let x = p; k x where x unique

(b) Smart binding.

Figure 6 Fission with smart binding.

Conversion to AiNF (Figure 6) exploits the fact that continuation-passing-style auto-
matically flattens code. The function CJ e K k takes as inputs a Polara term e, a pattern
matching context C, and a continuation k, and returns an AiNF term. In the mechanization
the function uses a reader monad as well to generate unique variable names. The function
is initialized with the empty pattern matching context, and the identity continuation; the
variable counter is initialized with zero.

Another important helper function is smart binding L p M k, which takes a primitive p

and a continuation k. Smart binding ensures that every primitive term passed to it is bound
to a variable name, and that variable name is passed to the continuation. If the primitive
term is a variable already, this variable name is passed to the continuation; otherwise the
term is bound to a unique variable name, incrementing the counter.

Translation to AiNF by CJ e K k recurses structurally over the term e. In the case of
a variable or an index, the term is forwarded to smart binding. In the case of a constant
application (exemplary shown for binary constant application), first the first subterm is
translated, then in the continuation the second subterm is translated, and in the continuation
the term is reconstructed as a primitive with variable referencing the name of the translated
subterms, which is passed to smart binding to generate a new name for this term, passing the
continuation along. In the case of function abstraction, array construction, and conditional
expressions, the subterms are translated as well, but in adapted contexts, and the final term
is passed as well to smart binding to generate a name for it, and the continuation is passed
along. Concretely, in the case of function abstraction, the function body is translated in a
context which includes the function argument. In the case of array construction, the array
body is translated in a context which includes the iteration variable. In the case of conditional
expressions, the consequence is translated in a context which includes the condition, and the
alternative is translated in a context which includes the negation of the condition. Finally,
in the case of let-binding, first the right-hand side of the binding is translated, and then the
body of the binding.

CSE. In addition to deciding equality for terms, a further complication with common
subexpression elimination is that we also need to decide equality in the presence of already
established equalities. For example consider the term x=v, y=v, z=(x+y), q=(y+x), t=z+1,

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:17

Ren = [(t1 : Ty) × Var t1 × Var t1]
Nam = [(t1 : Ty) × Prim t1 × Var t1]
CSE : Ren → Nam → AiNF t2 → AiNF t2
CSE r σ x = (σ, renr x)

CSE r σ (let C[x = p]; a) =

CSE r (let C ′[x = p′]; σ) a

if lookup σ C ′ x p′ = none

CSE ([x := x′] :: r) σ′ a

if lookup σ C ′ x p′ = some (x′, σ′)
where p′ = renr p

where C ′ = renr C

Figure 7 Common subexpression elimination.

r=q+1, Correct CSE should eliminate it to x=v, z=(x+x); t=z+1; rename [y→x; q→z;
r→t], Notice how the later eliminations are dependent on the earlier ones. If we simply
rename the remaining term every time we detect a variable to be redundant, then this
algorithm would perform exponentially worse, because every renaming is a traversal over
the whole remaining term, and CSE itself is already a traversal over the whole term. To
keep everything with a single traversal, we adapt CSE to carry a renaming with it, which is
applied just before a term is checked for redundancy.

CSE (Figure 7) takes a renaming, a naming, and an AiNF term, and returns a new
AiNF term of the same type. A renaming is a list of pairs of variables of the same type,
representing that the first variable is to be replaced by the second. A naming is a list of pairs
of a primitive and a variable of the same type, representing that the primitive term has been
previously bound to that variable. CSE works by structural recursion over the term. When
the input term is just a variable, it simply applies the renaming. When the input term is a
let-binding, then the renaming is applied to the term as well. The renamed term is looked
up in the list of previously defined terms. If the term has not been bound to a variable
name already (none), then the term is now let-bound to a variable, inside a renamed pattern
matching context C. CSE proceeds with the remaining terms a, remembering that the term
p′ has been bound to σ, so that future redundant occurrences of p′ can be eliminated. If the
term has already been bound to a variable name (some x′), then no let-binding is produced,
but only the renaming is extended to replace future references to x to the already existing x′

instead. CSE proceeds with the remaining terms a, remembering that the term p′ has been
bound to σ, so that future redundant occurrences of p′ can be eliminated.

4.3 Mechanization in Lean

In this section, we present excerpts from the Lean mechanization and relate them to the
paper formalization. The type of terms Tm corresponds to (Γ ⊢ t) and features constructors
for variables and constants (var, cst0 etc.). In the paper, we do not write these constructors
explicitly, so we would write x rather than var x. We define the following types corresponding
to the above definitions of syntax (Figure 3) in Lean.

ECOOP 2024

33:18 Compiling with Arrays

inductive Var : Ty ✮ Type -- Variables Var
inductive Par : Ty ✮ Type -- Indices Idx

inductive Ty -- Types t
inductive Const0 : Ty ✮ Type -- Constants c (nullary)
inductive Const1 : Ty ✮ Ty ✮ Type -- Constants c (unary)
inductive Const2 : Ty ✮ Ty ✮ Ty ✮ Type -- Constants c (ternary)
inductive Tm (Γ: Ty ✮ Type): Ty ✮ Type -- Terms e

inductive Prim : Ty ✮ Type -- Primitives p
inductive Env : Type -- Scoped Contexts C
inductive AINF : Ty ✮ Type -- AINF a

Lean

In particular, we define the following functions in Lean. The function Ty.de corresponding
to denotation of types J·KΓ, quote to η and splice to η′, Const0.de, Const1.de, Const2.de
and Tm.de were shown as term, constant, and its denotations J·K. Finally, norm is defined
using term denotations and quote.

def Ty.de (Γ : Ty ✮ Type): Ty ✮ Type

def quote {Γ} : {α : Ty} ✮ Ty.de Γ α ✮ Tm Γ α

def splice {Γ} : {α : Ty} ✮ Tm Γ α ✮ Ty.de Γ α

def Const0.de : Const0 α ✮ Ty.de Γ α

def Const1.de : Const1 β α ✮ Ty.de Γ β ✮ Ty.de Γ α

def Const2.de : Const2 γ β α ✮ Ty.de Γ γ ✮ Ty.de Γ β ✮ Ty.de Γ α

def Tm.de : Tm (Ty.de Γ) α ✮ Ty.de Γ α

def Tm.norm : (∀ Γ, Tm Γ α) ✮ Tm Γ α

| e ⇒ quote (Tm.de (e _))
Lean

The smart_bnd function takes an additional number argument, wrapped inside a reader
monad, which is used for creating fresh variables. In the paper, we leave this out and just
stipulate that the variable is fresh. The same applies to toAINF. When discussing CSE in
the paper, we describe renamings. The rename functions define how a renaming is applied.
CSE also requires us to check equality of expressions, which is done with the beq functions.
The CSE function in the paper also calls lookup, which is not defined there. It corresponds
to the built-in ListMap.lookup. Our code also contains a function Env.or, which merges two
environments. This is used to allow CSE to remove redundancies which appear in different,
but compatible, environments.

In particular, we define the following functions in Lean, corresponding to the functions
above:

def Prim.beq : Prim α ✮ Prim α ✮ Bool
def AINF.beq : AINF α ✮ AINF α ✮ Bool
def AINF.smart_bnd : Env ✮ Prim α ✮ (VPar α ✮ Counter (AINF β)) ✮ Counter (AINF β)
def Tm.toAINF (e : Tm VPar α) : AINF α

def Var.rename : Ren ✮ Var α ✮ Var α

def VPar.rename (r: Ren): VPar α ✮ VPar α

def Env.rename (r: Ren): Env ✮ Env
def Prim.rename (r: Ren): Prim α ✮ Prim α

def AINF.rename (r: Ren): AINF α ✮ AINF α

def AINF.rename (r: Ren): AINF α ✮ AINF α

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:19

def Env.or (Γ: Env) (∆: Env): Tern ✮ Option Env := fun t ⇒ match Γ, ∆ with
def RAINF.upgrade : RAINF ✮ Var b ✮ Env ✮ Option RAINF
def AINF.cse' : Ren ✮ RAINF ✮ AINF α ✮ (RAINF × VPar α)
def merge: RAINF ✮ VPar α ✮ AINF α

def AINF.cse : Ren ✮ RAINF ✮ AINF α ✮ AINF α

| r, σ, a ⇒ let (b, c) := a.cse' r σ; merge b.reverse c
Lean

4.4 Proofs
In this section, we show that normalization and translation to AiNF are type-preserving, i.e.
given a well-typed term, they always produce a valid term of the same type. We also show
that translation to AiNF produces maximally fissioned terms.

We use an intrinsically typed approach where the type system of the object language is
included in the encoding of the data type for the language’s syntax. Therefore, the host
languages type system ensures only well-typed terms can be constructed.

Following an intrinsically typed approach means that the soundness properties hold
simply because our (appropriately typed) definitions type check. We do not have to state
and prove explicit, separate theorems, because the types of the functions already carry the
necessary information.

▶ Theorem 1 (Well-typedness of Optimization).
Our optimization procedure is terminating and type preserving.

Proof. Termination is ensured by Lean’s built-in termination check. The fact that normal-
ization terminates relies on Polara being a total language. In particular, the absence of
unbounded recursion and the combination of static array sizes with intrinsic typing avoids
infinite loops and out-of-bounds accesses, ensuring that our normalization function always
successfully terminates. Type preservation is ensured by intrinsically-typed mechanization;
consider the types of normalization and CSE in Lean:

def Tm.norm : (∀ Γ, Tm Γ α) ✮ Tm Γ α

| e ⇒ quote (Tm.de (e _))
def AINF.cse : Ren ✮ RAINF ✮ AINF α ✮ AINF α

| r, σ, a ⇒ let (b, c) := a.cse' r σ; merge b.reverse c
Lean

Intrinsic typing defines the typing of the object language (here, Polara) using the typing of
the host language (here, Lean), so the host language’s type checker prevents the creation
of ill-typed object language programs. This means that an element of (∀ Γ, Tm Γ α) is a
well-typed Polara program and an element of AINF α is a well-typed AiNF term. Further,
given a well-typed term, each function returns a well-typed term, which is what we mean by
soundness with regard to the type system. ◀

▶ Theorem 2 (Well-typedness of Translation).
Our translation procedure is terminating and type preserving.

Proof. Again, termination is guaranteed by Lean’s termination checker. The argument for
type preservation is similar to the one above: As both Polara and AiNF are defined using
intrinsic typing, we can only construct well-typed programs. Consider the type of toAINF
(we omit the definition):

def Tm.toAINF (e : Tm VPar α) : AINF α
Lean

If one tried to define toAINF in a way that produces an ill-typed program, the definition
would be rejected by the type checker. ◀

ECOOP 2024

33:20 Compiling with Arrays

Finally, AiNF is inductively defined to be maximally fissioned, i.e., as a list of primitives
without subterms, therefore the act of translating Polara terms into AiNF in a total
programming language performs loop fission by definition.

▶ Theorem 3 (Maximal Fission).
Our translation into AiNF produces terms with maximal fission.

Proof. Consider the definition of AiNF terms:

inductive AINF : Ty ✮ Type
| ret : VPar α ✮ AINF α

| bnd : Env ✮ Var α ✮ Prim α ✮ AINF β ✮ AINF β
Lean

Here, a value of type VPar α can be a variable or a parameter. A value of type Prim α is
a primitive (not nested) operation. The constructor bnd represents a variable assignment
while ret returns a variable or parameter and represents the end of the program. From this
inductive definition, it is apparent that all AiNF terms have a flat structure where nested
expressions are impossible. Recall that, in AiNF, each assignment is considered its own
separate loop. Because the body of each assignment only contains a single primitive, each
loop has a body only consisting of one operation and hence an AiNF term is guaranteed
to be maximally fissioned. Because the translation function toAINF has output type AINF α,
it can only produce such maximally fissioned terms. Further, Lean’s termination checker
ensures that toAINF is total, and so always returns an AiNF term in finite time. ◀

5 Related Work

5.1 Intermediate Languages
Early work by Steele [38] implemented a continuation-passing-style (CPS) IR in a functional
compiler, stressing the suitability of CPS for compilation, as it closely mimics how control
flow is expressed with jumps in hardware instructions, and makes evaluation order explicit in
the syntax. Appel [2] observed that beta-reductions in the lambda calculus are unsound in the
presence of side effects as they could duplicate the effect. Yet, CPS, which makes evaluation
order explicit, enables to perform certain optimizations, such as dead code elimination (DCE),
and common subexpression elimination (CSE), by exploiting that in CPS every subterm is
referenced by a unique name.

Sabry and Felleisen [34] identified that additional power of compiling in CPS [30] corre-
sponds to the additional rules of the monadic computational language [24]. Of particular
importance is the so-called associativity law of the monad, i.e., the let-let commuting conver-
sion, enabling the flattening of code. Then, Flanagan [11] coined the name “A-normal form
(ANF)” for the now popular IR, which in contrast to CPS, expresses sequential execution by
simple let-binding rather than continuations. The difference between ANF and the monadic
language is that ANF forbids nested let-bindings, i.e., code must be normal with regard to
the associativity rule of the monad.

However, Kennedy [18] showed that moving from CPS to ANF did not take into account
branching. More precisely, while the let-let commuting conversion enables the flattening of
code, the let-if commuting conversion duplicates code into each branch, in the worst case
leading to blow-up of code size exponential in the number of branches. Given that recursion
always includes a branch for base case(s) and step case(s), the same problem appears with
recursion. Kennedy therefore argued for a return to CPS.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:21

The issue was resolved by Maurer et al. [22], who provided an implementation of ANF
for use in the Glasgow Haskell Compiler (GHC), and further simplified by Cong et al. [6]
who provided implementations for MiniScala and Lightweight-Modular-Staging (LMS). Cong
showed that it is possible to combine the simplicity of let-bindings for sequential execution
and the power of continuations for further control flow, by adding control operators to ANF,
which enable to capture the current continuation.

In our work, we highlight the importance of commuting conversions, and extend the idea
of having an intermediate language that intrinsically encodes maximal let-let conversion to
an intermediate language that also intrinsically encodes maximal let-for and let-if commuting
conversion, without exponential blow-up of code size. Further, as this work lies in the context
of array programming, recursion is not often necessary, and can thus be avoided.

The logical connection between polarity and common subexpression elimination has also
been explored by Miller and Wu [23].

5.2 Array Programming

Shaikhha et al. [37] present a differentiable programming language which is an extension of
the lambda calculus. For array computations, they use an approach based on higher-order
functions. It directly represents the duality of functions and arrays through built-in functions
build for creating an array from a function and get for turning an array into a function.
The fact that get is a left inverse of build leads to the equivalence get (build n e) i ≡ e i,
which can be used for optimization. Another strand of research makes use of the standard
technique of rewriting strategies to optimize functional array programs [13, 4], suggesting the
viability of standard techniques from term rewriting for optimizing array programs. Liu et
al. [20] present a framework that can express a variety of optimizations through formally
verified term rewriting, achieving competitive performance; however, CSE is not addressed.
Their representation is first-order and features an array generation construct similar to the
one in Polara. Optimization in Polara is not based on rewriting, but instead uses partial
evaluation.

Feldspar [3] is a DSL for array computations in Haskell. It features a parallel construct
similar to our for constructor, as well as while loops. Feldspar is compiled to C and performs
standard optimizations like fusion, as well as copy propagation and loop unrolling. Feldspar’s
backend uses a dataflow graph and an imperative intermediate representation, whereas our
intermediate representation is functional and specifically designed to support optimizations
on array programs.

SaC [35] is a functional first-order array language. Array computations are expressed
using with-loops, which consist of at least one generator and one operator. Each generator
consists of an index range and an expression giving the value of the output array at a given
index in the range. The operator can provide default values for indices not included in any
generator, a base array that should be modified by the generators, or it can describe an
aggregation. More recently, SaC has added support for tensor comprehensions [36], which
drop the operator part and add pattern matching on indices as well as bound and shape
inference, making the notation more lightweight. Similar to our approach, their tensor
comprehensions do not support summation, which is added in the form of a built-in function.
SaC’s optimizations are not based on a logical foundation, but consist of a pipeline of
optimization algorithms. In Polara we derive our syntax form for pattern matching on
arrays from polarization type theory, enabling additional commuting conversions and thus
grounding our optimization algorithm on a logical foundation.

ECOOP 2024

33:22 Compiling with Arrays

6 Conclusion

This paper introduced AiNF, a novel intermediate representation for array computations,
and Polara, a surface array language. The proposed optimization algorithm for AiNF,
based on typed partial evaluation and common subexpression elimination, simplifies program
optimization by interpreting arrays as positively polarized types. This approach avoids com-
plexities associated with optimization schedules for conventional ANF. We formalized AiNF
and Polara. We proved sound the translation from Polara to AiNF and optimization.

For future work, we are working on extending the language with automatic differentiation
and probabilistic primitives, and proving these extensions correct as well. We are inter-
ested in applying our optimization to redundancies generated by automatic differentiation.
Further, given that AiNF, based on ANF, is related to monadic notation, it would be
interesting to investigate whether Applicative notation [21, 33], Arrow notation [16], and
Comonad Notation [27] provide similar insights for normalization by evaluation approach to
optimization.

References
1 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput.,

2(3):297–347, 1992. doi:10.1093/LOGCOM/2.3.297.
2 Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
3 Emil Axelsson, Koen Claessen, Gergely Dévai, Zoltán Horváth, Karin Keijzer, Bo Lyckegård,

Anders Persson, Mary Sheeran, Josef Svenningsson, and András Vajda. Feldspar: A domain
specific language for digital signal processing algorithms. In 8th ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEMOCODE 2010), Grenoble,
France, 26-28 July 2010, pages 169–178. IEEE Computer Society, 2010. doi:10.1109/MEMCOD.
2010.5558637.

4 Timon Böhler, David Richter, and Mira Mezini. Using rewrite strategies for efficient functional
automatic differentiation. In Aaron Tomb, editor, Proceedings of the 25th ACM International
Workshop on Formal Techniques for Java-like Programs, FTfJP 2023, Seattle, WA, USA, 18
July 2023, pages 51–57. ACM, 2023. doi:10.1145/3605156.3606456.

5 Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In James
Hook and Peter Thiemann, editors, Proceeding of the 13th ACM SIGPLAN international
conference on Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28,
2008, pages 143–156. ACM, 2008. doi:10.1145/1411204.1411226.

6 Youyou Cong, Leo Osvald, Grégory M. Essertel, and Tiark Rompf. Compiling with con-
tinuations, or without? whatever. Proceedings of the ACM on Programming Languages,
3(ICFP):79:1–79:28, 2019. doi:10.1145/3341643.

7 Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming
language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28
- 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021,
Proceedings, volume 12699 of Lecture Notes in Computer Science, pages 625–635. Springer,
2021. doi:10.1007/978-3-030-79876-5_37.

8 Paul Downen and Zena M. Ariola. The duality of construction. In Zhong Shao, editor,
Programming Languages and Systems - 23rd European Symposium on Programming, ESOP
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes
in Computer Science, pages 249–269. Springer, 2014. doi:10.1007/978-3-642-54833-8_14.

9 Paul Downen and Zena M. Ariola. Compiling with classical connectives. Log. Methods Comput.
Sci., 16(3), 2020. URL: https://lmcs.episciences.org/6740.

10 Paul Downen and Zena M. Ariola. Duality in action (invited talk). In Naoki Kobayashi,
editor, 6th International Conference on Formal Structures for Computation and Deduction,
FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference), volume 195
of LIPIcs, pages 1:1–1:32. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPICS.FSCD.2021.1.

https://doi.org/10.1093/LOGCOM/2.3.297
https://doi.org/10.1109/MEMCOD.2010.5558637
https://doi.org/10.1109/MEMCOD.2010.5558637
https://doi.org/10.1145/3605156.3606456
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/3341643
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-642-54833-8_14
https://lmcs.episciences.org/6740
https://doi.org/10.4230/LIPICS.FSCD.2021.1
https://doi.org/10.4230/LIPICS.FSCD.2021.1

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 33:23

11 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling
with continuations. In Robert Cartwright, editor, Proceedings of the ACM SIGPLAN’93
Conference on Programming Language Design and Implementation (PLDI), Albuquerque, New
Mexico, USA, June 23-25, 1993, pages 237–247. ACM, 1993. doi:10.1145/155090.155113.

12 Jeremy Gibbons. APLicative programming with Naperian functors. In Hongseok Yang, editor,
Programming Languages and Systems - 26th European Symposium on Programming, ESOP
2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10201 of Lecture Notes
in Computer Science, pages 556–583. Springer, 2017. doi:10.1007/978-3-662-54434-1_21.

13 Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying Qin, Sergei Gorlatch, and
Michel Steuwer. Achieving high performance the functional way: Expressing high-performance
optimizations as rewrite strategies. Commun. ACM, 66(3):89–97, 2023. doi:10.1145/3580371.

14 Charles R. Harris, K. Jarrod Millman, Stéfan van der Walt, Ralf Gommers, Pauli Virta-
nen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett,
Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nat., 585:357–362, 2020.
doi:10.1038/S41586-020-2649-2.

15 Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E. Oancea.
Futhark: purely functional GPU-programming with nested parallelism and in-place array
updates. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, pages 556–571. ACM, 2017. doi:10.1145/3062341.
3062354.

16 John Hughes. Generalising monads to arrows. Science of Computer Programming, 37(1-3):67–
111, 2000. doi:10.1016/S0167-6423(99)00023-4.

17 Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and automatic
program generation. Prentice Hall international series in computer science. Prentice Hall, 1993.

18 Andrew Kennedy. Compiling with continuations, continued. In Ralf Hinze and Norman Ramsey,
editors, Proceedings of the 12th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007, pages 177–190. ACM, 2007.
doi:10.1145/1291151.1291179.

19 Neelakantan R. Krishnaswami. Focusing on pattern matching. In Zhong Shao and Benjamin C.
Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages
366–378. ACM, 2009. doi:10.1145/1480881.1480927.

20 Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley. Verified
tensor-program optimization via high-level scheduling rewrites. Proc. ACM Program. Lang.,
6(POPL):1–28, 2022. doi:10.1145/3498717.

21 Simon Marlow, Simon Peyton Jones, Edward Kmett, and Andrey Mokhov. Desugaring
Haskell’s do-notation into applicative operations. In Geoffrey Mainland, editor, Proceedings of
the 9th International Symposium on Haskell, Haskell 2016, Nara, Japan, September 22-23,
2016, pages 92–104. ACM, 2016. doi:10.1145/2976002.2976007.

22 Luke Maurer, Paul Downen, Zena M. Ariola, and Simon L. Peyton Jones. Compiling without
continuations. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, pages 482–494. ACM, 2017. doi:10.1145/3062341.
3062380.

23 Dale Miller and Jui-Hsuan Wu. A positive perspective on term representation (invited talk). In
Bartek Klin and Elaine Pimentel, editors, 31st EACSL Annual Conference on Computer Science
Logic, CSL 2023, February 13-16, 2023, Warsaw, Poland, volume 252 of LIPIcs, pages 3:1–3:21.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.CSL.2023.3.

ECOOP 2024

https://doi.org/10.1145/155090.155113
https://doi.org/10.1007/978-3-662-54434-1_21
https://doi.org/10.1145/3580371
https://doi.org/10.1038/S41586-020-2649-2
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1145/1480881.1480927
https://doi.org/10.1145/3498717
https://doi.org/10.1145/2976002.2976007
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.4230/LIPICS.CSL.2023.3

33:24 Compiling with Arrays

24 Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth
Annual Symposium on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA,
June 5-8, 1989, pages 14–23. IEEE Computer Society, 1989. doi:10.1109/LICS.1989.39155.

25 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
ACM Trans. Comput. Log., 9(3):23:1–23:49, 2008. doi:10.1145/1352582.1352591.

26 nLab authors. function type. https://ncatlab.org/nlab/show/function+type, January
2024. Revision 33.

27 Dominic A. Orchard and Alan Mycroft. A notation for comonads. In Ralf Hinze, editor,
Implementation and Application of Functional Languages - 24th International Symposium,
IFL 2012, Oxford, UK, August 30 - September 1, 2012, Revised Selected Papers, volume
8241 of Lecture Notes in Computer Science, pages 1–17. Springer, 2012. doi:10.1007/
978-3-642-41582-1_1.

28 Adam Paszke, Daniel D. Johnson, David Duvenaud, Dimitrios Vytiniotis, Alexey Radul,
Matthew J. Johnson, Jonathan Ragan-Kelley, and Dougal Maclaurin. Getting to the point:
index sets and parallelism-preserving autodiff for pointful array programming. Proc. ACM
Program. Lang., 5(ICFP):1–29, 2021. doi:10.1145/3473593.

29 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Richard L. Wexelblat,
editor, Proceedings of the ACM SIGPLAN’88 Conference on Programming Language Design
and Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988, pages 199–208. ACM,
1988. doi:10.1145/53990.54010.

30 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

31 Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes, Sylvain Paris,
Marc Levoy, Saman P. Amarasinghe, and Frédo Durand. Halide: decoupling algorithms
from schedules for high-performance image processing. Commun. ACM, 61(1):106–115, 2018.
doi:10.1145/3150211.

32 David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini. stg-tud/ainf-compiling-
with-arrays. Software, swhId: swh:1:dir:8e0e755d11e4e3e91fb05bf8df1a5c8bec0f553a (vis-
ited on 2024-09-02). URL: https://github.com/stg-tud/ainf-compiling-with-arrays.

33 David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini. A direct-style effect
notation for sequential and parallel programs. In Karim Ali and Guido Salvaneschi, editors,
37th European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023,
Seattle, Washington, United States, volume 263 of LIPIcs, pages 25:1–25:22. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.ECOOP.2023.25.

34 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.
LISP Symb. Comput., 6(3-4):289–360, 1993.

35 Sven-Bodo Scholz. Single Assignment C: efficient support for high-level array opera-
tions in a functional setting. J. Funct. Program., 13(6):1005–1059, 2003. doi:10.1017/
S0956796802004458.

36 Sven-Bodo Scholz and Artjoms Sinkarovs. Tensor comprehensions in SaC. In Jurriën
Stutterheim and Wei-Ngan Chin, editors, IFL ’19: Implementation and Application of
Functional Languages, Singapore, September 25-27, 2019, pages 15:1–15:13. ACM, 2019.
doi:10.1145/3412932.3412947.

37 Amir Shaikhha, Andrew W. Fitzgibbon, Dimitrios Vytiniotis, and Simon Peyton Jones.
Efficient differentiable programming in a functional array-processing language. Proc. ACM
Program. Lang., 3(ICFP):97:1–97:30, 2019. doi:10.1145/3341701.

38 Guy L. Steele. Rabbit: A compiler for Scheme. Technical report, Massachusetts Institute of
Technology, USA, 1978.

39 Noam Zeilberger. On the unity of duality. Ann. Pure Appl. Log., 153(1-3):66–96, 2008.
doi:10.1016/J.APAL.2008.01.001.

40 Noam Zeilberger. The logical basis of evaluation order and pattern-matching. PhD thesis,
Carnegie Mellon University, USA, 2009. AAI3358066.

https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1145/1352582.1352591
https://ncatlab.org/nlab/show/function+type
https://ncatlab.org/nlab/revision/function+type/33
https://doi.org/10.1007/978-3-642-41582-1_1
https://doi.org/10.1007/978-3-642-41582-1_1
https://doi.org/10.1145/3473593
https://doi.org/10.1145/53990.54010
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/3150211
https://archive.softwareheritage.org/swh:1:dir:8e0e755d11e4e3e91fb05bf8df1a5c8bec0f553a;origin=https://github.com/stg-tud/ainf-compiling-with-arrays;visit=swh:1:snp:e92b86a1a72b7e96bb4c6207f6d6a157de14195f;anchor=swh:1:rev:a8a88bca53396f58df5ae5d1da0755f1b02b01b8
https://github.com/stg-tud/ainf-compiling-with-arrays
https://doi.org/10.4230/LIPICS.ECOOP.2023.25
https://doi.org/10.1017/S0956796802004458
https://doi.org/10.1017/S0956796802004458
https://doi.org/10.1145/3412932.3412947
https://doi.org/10.1145/3341701
https://doi.org/10.1016/J.APAL.2008.01.001

Pipit on the Post: Proving Pre- and
Post-Conditions of Reactive Systems
Amos Robinson #

Sydney, Australia

Alex Potanin #

Australian National University, Canberra, Australia

Abstract
Synchronous languages such as Lustre and Scade are used to implement safety-critical control
systems; proving such programs correct and having the proved properties apply to the compiled
code is therefore equally critical. We introduce Pipit, a small synchronous language embedded
in F⋆, designed for verifying control systems and executing them in real-time. Pipit includes a
verified translation to transition systems; by reusing F⋆’s existing proof automation, certain safety
properties can be automatically proved by k-induction on the transition system. Pipit can also
generate executable code in a subset of F⋆ which is suitable for compilation and real-time execution
on embedded devices. The executable code is deterministic and total and preserves the semantics of
the original program.

2012 ACM Subject Classification Computer systems organization → Real-time languages; Theory
of computation → Program verification; Software and its engineering → Specialized application
languages

Keywords and phrases Lustre, streaming, reactive, verification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.34

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.19
Software (source code and mechanised proofs): https://github.com/songlarknet/pipit

archived at swh:1:dir:8839600ca8830ab20681ed03760f642bf877b77e

1 Introduction

Safety-critical control systems, such as the anti-lock braking systems that are present in
most cars today, need to be correct and execute in real-time. One approach, favoured by
parts of the aerospace industry, is to implement the controllers in a high-level language
such as Lustre [10] or Scade [13], and verify that the implementations satisfy the high-level
specification using a model-checker, such as Kind2 [11]. These model-checkers can prove
many interesting safety properties automatically, but do not provide many options for manual
proofs when the automated proof techniques fail. Additionally, the semantics used by the
model-checker may not match the semantics of the compiled code, in which case properties
proved do not necessarily hold on the real system. This mismatch may occur even when the
compiler has been verified to be correct, as in the case of Vélus [5]. For example, in Vélus,
integer division rounds towards zero, matching the semantics of C; however, integer division
in Kind2 rounds to negative infinity, matching SMT-lib [2, 25].

To be confident that our proofs hold on the real system, we need a single shared semantics
for the compiler and the prover. In this paper we introduce Pipit1, an embedded domain-
specific language for implementing and verifying controllers in F⋆. Pipit aims to provide a

1 Implementation available at https://github.com/songlarknet/pipit

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Amos Robinson and Alex Potanin;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 34; pp. 34:1–34:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amos@songlark.net
https://orcid.org/0009-0004-4837-4981
mailto:alex.potanin@anu.edu.au
https://orcid.org/0000-0002-4242-2725
https://doi.org/10.4230/LIPIcs.ECOOP.2024.34
https://doi.org/10.4230/DARTS.10.2.19
https://doi.org/10.4230/DARTS.10.2.19
https://github.com/songlarknet/pipit
https://archive.softwareheritage.org/swh:1:dir:8839600ca8830ab20681ed03760f642bf877b77e;origin=https://github.com/songlarknet/pipit;visit=swh:1:snp:2ea5f2e7754dca34989ad7d07c6d2ba6fb9626f0;anchor=swh:1:rev:305bf5a39996269dfecce598aa7aac42ba893a88
https://github.com/songlarknet/pipit
https://doi.org/10.4230/DARTS.10.2.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

high-level language based on Lustre, while reusing F⋆’s proof automation and manual proofs
for verifying controllers [31], and using Low⋆’s C-code generation for real-time execution [34].
To verify programs, Pipit translates its expression language to a transition system for k-
inductive proofs, which is verified to be an abstraction of the original semantics. To execute
programs, Pipit can generate executable code, which is total and semantics-preserving.

In this paper, we make the following contributions:
we motivate the need to combine manual and automated proofs of reactive systems with
a strong specification language (Section 2);
we introduce Pipit, a minimal synchronous language that supports rely-guarantee contracts
and properties; crucially, proof obligations are annotated with a status – valid or deferred
– allowing proofs to be delayed until more is known of the program context (Section 3);
we describe a checked semantics for Pipit; after checking deferred properties, programs
are blessed, which marks their properties as valid (Subsection 3.2);
we describe an encoding of transition systems that can express under-specified rely-
guarantee contracts as functions rather than relations; composing functions results in
simpler transition systems (Section 4);
we identify the invariants and lemmas required to prove that the abstract transition
system is an abstraction of the original semantics (Subsection 3.3, Subsection 4.3);
similarly, we offer a mechanised proof that the executable transition system preserves the
original semantics (Section 5);
finally, we evaluate Pipit by implementing the high-level logic of a Time-Triggered
Controller Area Network (TTCAN) bus driver and verifying an abstract model of a key
component (Section 6).

2 Pipit for time-triggered networks

To introduce Pipit, we consider a time-triggered network driver, which has a static schedule
dictating the network traffic, and which all nodes on the network must adhere to. This
driver is a simplification of the Time-Triggered Controller Area Network (TTCAN) bus
specification [15] which we will discuss further in Section 6.

At a high level, the network schedule is described by a system matrix which consists of
rows of basic cycles. Each basic cycle consists of a sequence of actions to be performed at
specific time-marks. Actions in the schedule may not be relevant to all nodes; the node’s node
matrix contains only the relevant actions. The node matrix is represented in memory by a
triggers array containing triggers sorted by their time-marks; trigger actions include sending
and receiving application-specific messages, sending reference messages, and triggering “watch”
alerts. Reference messages start a new basic cycle; a subset of nodes, designated as leaders,
send reference messages to synchronise the network. Watch alerts are generally placed after
an expected reference message to signal an error if no reference message is received.

Figure 1 (left) shows an example node matrix for a non-leader node. The matrix consists
of two basic cycles C0 and C1 with messages sent at time-marks 0, 1 and 2. The node
expects to receive a reference message at time-mark 7; the watch at time-mark 9 allows a
grace period before triggering an error if the reference message is not received. Figure 1
(right) shows the corresponding triggers array.

The network has strict timing requirements which prohibit the driver from looping through
the entire triggers array at each time-mark. Instead, the driver maintains an index that
refers to the current trigger. At each time-mark, the driver checks if the current trigger has
expired or is inactive, and if so, it increments the index.

A. Robinson and A. Potanin 34:3

TM0 TM1 TM2 · · · TM9
C0 SEND A SEND B - · · · WATCH
C1 SEND A - SEND C · · · WATCH

0:{ time = 0; enabled = {C0,C1}; action = SEND(A); }
1:{ time = 1; enabled = {C0}; action = SEND(B); }
2:{ time = 2; enabled = {C1}; action = SEND(C); }
3:{ time = 9; enabled = {C0,C1}; action = WATCH; }

Figure 1 Left: node matrix; right: corresponding triggers array configuration.

2.1 Deferring and proving properties
We implement a streaming function count_when to maintain the index into the triggers
array; the function takes a constant natural number max and a stream of booleans inc. At
each step, count_when checks whether the current increment flag is true; if so, it increments
the previous counter, saturating at the maximum; otherwise, it leaves the counter as-is.

let count_when (max: N) (inc: stream B): stream N =
rec count.

check□? (0 ≤ count ≤ max);
let count’ = (0 fby count) + (if inc then 1 else 0) in
if count’ ≥ max then max else count’

The implementation of count_when first defines a recursive stream, count, which states
an invariant about the count before defining the incremented stream count’. Inside count’,
the syntax 0 fby count is read as “the initial value of zero followed by the previous count”.

The syntax check□? (0 ≤ count ≤ max) asserts that the count is within the range [0, max].
The subscript □? on the check is the property status, which in this case denotes that the
assertion has been stated, but it is not yet known whether it holds. A property status of
□✓ , on the other hand, denotes that a property has been proved to hold. These property
statuses are used to defer checking properties until enough is known about the environment,
and to avoid rechecking properties that have already been proven. In practice, the user
does not explicitly specify property statuses in the source language. The stated property
(0 ≤ count ≤ max) is a stream of booleans which must always be true. Non-streaming
operations such as ≤ are implicitly lifted to streaming operations, and non-streaming values
such as 0 and max are implicitly lifted to constant streams.

We defer the proof of the property here because, at the point of stating the property
inside the rec combinator, we don’t yet have a concrete definition for the count variable.
In this case, we could have instead deferred the statement of the property by introducing
a let-binding for the recursive count and putting the check outside of the rec combinator.
However, it is not always possible to defer property statements: for example, when calling
other streaming functions that have their own preconditions, it may not be possible to move
the function call outside of its enclosing rec.

Pipit is an embedded domain-specific language. The program above is really syntactic
sugar for an F⋆ program that takes a natural number and constructs a Pipit core expression
with a free boolean variable. We will discuss the details of the core language in Section 3,
but for now we focus on the source program with some minor embedding details omitted.

To actually prove the property above, we use the meta-language F⋆’s tactics to translate
the program into a transition system and prove the property inductively on the system.
Finally, we bless the expression, which marks the properties as valid ([□? := □✓]). Blessing is
an intensional operation that traverses the expression and updates the internal metadata,
but does not affect the runtime semantics.

let count_when□✓ (max: N): stream B → stream N =
let system = System.translate1(count_when max) in
assert (System.inductive_check system) by (pipit_simplify ());
bless1 (count_when max)

ECOOP 2024

34:4 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

The subscript 1 in the translation to transition system and blessing operations refers
to the fact that the stream function has one stream parameter. The pipit_simplify tactic
in the assertion performs normalisation-by-evaluation to simplify away the translation to a
first-order transition system; F⋆’s proof-by-SMT can then solve the inductive check directly.

Callers of count_when can now use the validated variant without needing to re-prove
the count-range property. In a dedicated model-checker such as Kind2 [11] or Lesar [35],
this kind of bookkeeping would all be performed under-the-hood. By embedding Pipit in a
general-purpose theorem prover, we move some of the bookkeeping burden onto the user;
however, we have increased confidence that the compiled code matches the verified code and,
as we shall see, we also have access to a rich specification language.

2.2 Restrictions on the triggers array
Our driver may fall behind when trying to execute certain schedules, as the driver only
processes one trigger per time-mark. To ensure that the schedule can be executed on time,
the triggers array must allow sufficient time for the driver to skip over any disabled triggers
before the next enabled trigger starts.

Recall our concrete triggers array from Figure 1, which contained trigger 1 (SEND B at
time-mark 1 on cycle C0), and trigger 2 (SEND C at time-mark 2 on cycle C1). We could
postpone trigger 1 to send B at time-mark 2, as the corresponding cell in the node matrix
is empty. However, we cannot bring the trigger at index 2 forward to send message C at
time-mark 1, as it takes two steps to reach trigger 2 from the start of the array.

We impose three restrictions on valid triggers arrays: the time-marks must be sorted;
there must be an adequate time-gap between any two triggers that are enabled on the same
cycle index; and each trigger’s time-mark must be greater-than-or-equal to its index, so that
it is reachable in time from the start of the array.

With these restrictions in place, we prove a lemma lemma_can_reach_next, which states
that for all valid cycle indices and trigger indices, if the current trigger is enabled in the
current cycle and there is another enabled trigger scheduled to occur somewhere in the array
after the current one, then there is an adequate time-gap to allow the driver to skip over any
disabled triggers in-between. These properties are straightforward in a theorem prover, but
are difficult to state in a model-checker with a limited specification language.

2.3 Instantiating lemmas and defining contracts
We can now implement the trigger-fetch logic, which keeps track of the current trigger. We
use the count_when streaming function to define the index of the current trigger; we tell
count_when to increment the index whenever the previous index has expired or is inactive
in the current basic cycle. We simplify our presentation here and only consider a constant
cycle: the real system presented in Section 6 has some extra complexity such as resetting the
index, incrementing the cycle index at the start of a new cycle, and using machine integers.

let trigger_fetch (cycle: N) (time: stream N): stream N =
rec index.

let inc = false fby ((time_mark index) ≤ time ∨ ¬(enabled index cycle)) in
let index = count_when□✓ trigger_count inc in
pose (lemma_can_reach_next cycle index);
check□? (can_reach_next_active cycle time index);
index

A. Robinson and A. Potanin 34:5

The trigger_fetch function takes a static cycle index and a stream denoting the current
time. The increment flag and the index are mutually dependent – the increment flag depends
on the previous value of the index, while the index depends on the current value of the
increment flag – so we introduce a recursive stream for the index. We allow the index to go
one past the end of the array to denote that there are no more triggers.

We use the pose helper function to lift the lemma_can_reach_next lemma to a streaming
context and instantiate it. We then state an invariant as a deferred property. Informally, the
invariant states that, either the current active trigger is not late, or the next active trigger
after the current index is in the future and we can reach it in time.

With the explicitly instantiated lemma, we can prove the streaming invariant by straight-
forward induction on the transition system. To help compose this function with the rest of
the system, we also abstract over the details of the trigger-fetch mechanism by introducing a
rely-guarantee contract for trigger_fetch. The contract we state is that if we are called once
per time-mark then we guarantee that we never encounter a late trigger.

let trigger_fetch□✓ (cycle: N): stream N → stream N =
let contract = Contract.contract_of_stream1 {

rely = (λtime. time = 0 fby (time + 1));
guar = (λtime index. (index_valid index ∧ enabled index cycle)

=⇒ (time_mark index) ≥ time);
body = (λtime. trigger_fetch cycle time);

} in
assert (Contract.inductive_check contract) by (pipit_simplify ());
Contract.stream_of_contract1 contract

In the implementation of the validated variant of trigger_fetch, we first construct the
contract from streaming functions. The Contract.contract_of_stream1 combinator describes
a contract with one input (the time stream), and takes stream transformers for each of the
rely, guarantee and body. The combinator transforms the surface syntax into core expressions.
The assertion (Contract.inductive_check contract) then translates the expressions into a
transition system, and checks that if the rely always holds then the guarantee always holds,
and that the as-yet-unchecked subproperties hold. Finally, Contract.stream_of_contract1
blesses the core expression and converts it back to a stream transformer, so it can be easily
used by other parts of the program.

The key distinction between our streaming rely-guarantee contracts and imperative
pre-post contracts is that the rely and guarantee are both streams of booleans, rather than
instantaneous predicates. In this case, the rely (time = 0 fby (time + 1)) checks that the
current time is exactly one time-mark after the time at the previous tick of computation.
Expressing such a rely in an imperative setting would require extra encoding, as preconditions
in imperative languages do not generally have an innate notion of the previous value with
respect to a global shared clock.

When trigger_fetch is used in other parts of the program, the caller must ensure that
the environment satisfies the rely clause. In the core language, this is tracked by another
deferred property status attached to the contract; we will discuss this further in Section 3.

3 Pipit core language

We now introduce the core Pipit language. Note that this form differs slightly from the
surface syntax presented earlier in Section 2, which used the syntax of the metalanguage F⋆,
as well as including proofs in F⋆ itself.

ECOOP 2024

34:6 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

F* embedded
source

Core Pipit
(Section 3)

Executable System
(Section 5)

Abstract System
(Section 4)

Low* C

⊆ ⊢
= =

Figure 2 Architecture of Pipit. The gray boxes and solid arrows are defined in this paper. The
white boxes and dashed arrows are trusted components. The labels denote verified properties of the
translation: abstraction (⊆), entailment of proof obligations (⊢), and equivalence (=).

e, e′ := v | x | p(e) (values, variables and operations)
| v fby e | rec x. e[x] (delayed and recursive streams)
| let x = e in e′[x] (let-expressions)
| checkπ eprop (checked properties)
| contractπ {erely} ebody {x. eguar[x]} (rely-guarantee contracts)

v := n ∈ N | b ∈ B | r ∈ R | . . . (values)
p := (+) | (−) | (×) | if-then-else | . . . (primitives)

π := □✓ | □? (property statuses: valid or unknown)

V := · | V ; v (streams of values)
σ := {x 7→ v} (heaps)
Σ := · | Σ; σ (streaming history environments)
τ, τ ′ := N | B | τ × τ | . . . (value types)
Γ := · | x : τ, Γ (type environments)

Figure 3 Core grammar: expressions e, values v, primitive operations p, and property statuses π.

Figure 2 shows the high-level architecture of Pipit. On the left-hand-side, the surface
syntax embedded in F⋆ is shown; this includes some Pipit-specific syntactic sugar. The
translation from the surface syntax to the core language is trusted. There are two targets
from the core language: abstract transition systems for verification, and executable transition
systems for extraction to C. The translation to abstract systems is verified to be an abstraction
according to the dynamic semantics (Subsection 3.1). The translation to abstract systems
also generates proof obligations, which are verified to correspond to the proof obligations
on the original program. The translation to executable transition systems is proven to be
semantics-preserving, as is the subsequent translation to Low⋆. The translation from Low⋆

to C is external to this paper and forms part of our trusted computing base.
Figure 3 defines the grammar of Pipit. The expression form e includes standard syntax for

values (v), variables (x) and primitive applications (p(e)). Most of the expression forms were
introduced informally in Section 2 and correspond to the clock-free expressions of Lustre [10].

The expression syntax for delayed streams (v fby e) denotes the previous value of the
stream e, with an initial value of v when there is no previous value.

A. Robinson and A. Potanin 34:7

Recursive streams are defined using the fixpoint operator (rec x. e[x]); the syntax e[x]
means that the variable x can occur in e. As in Lustre, recursive streams can only refer to
their previous values and must be guarded by a delay: the stream (rec x. 0 fby (x + 1)) is
well-defined and counts from zero up, but the stream (rec x. x + 1) is invalid and has no
computational interpretation. This form of recursion differs slightly from standard Lustre,
which uses a set of mutually-recursive bindings. Although we cannot express mutually-
recursive bindings in the core syntax here, we can express them as a notation on the surface
syntax by combining the bindings together into a record or tuple.

Checked properties and contracts are annotated with their property status π, which can
either be valid (□✓) or unknown (□?). For checked properies checkπ e, the property status
denotes whether the property has been proved to be valid.

Contracts contractπ {erely} ebody {x. eguar[x]} allow modular reasoning by replacing the
implementation with an abstract specification. Contracts involve two verification conditions.
Firstly, when a contract is defined, the definer must prove that the body satisfies the contract:
roughly, if erely is always true, then eguar[x := ebody] is always true. Secondly, when a contract
is instantiated, the caller must prove that the environment satisfies the precondition: that is,
erely is always true. Conceptually, then, a contract could have two property statuses: one for
the definition and one for the instantiation. However, in practice, it is not useful to defer the
proof of a contract definition – one could achieve a similar effect by replacing the contract
with its implementation. For this reason, we only annotate contracts with one property
status, which denotes whether the instantiation has been proved to satisfy the precondition.

For example, the core expression (rec sum. (0 fby sum) + ints) computes the sum of
values from a stream of integers ints by defining a recursive stream sum, which is delayed
and given an initial value of zero. If we were to use this sum in a context that required a
strictly positive integer, we could give it a contract that states that if the input stream is
always positive, then the resulting sum is also positive:

contract□? {ints > 0} (rec sum. (0 fby sum) + ints) {sum. sum > 0}

To be considered a valid program, we must prove that the contract definition itself holds, as
with our earlier contract (Subsection 2.3). The unknown property status here allows us to
defer the caller’s proof that the input stream is always positive until the contract is used.

The remaining grammatical constructs of Figure 3 describe streams, value environments,
types and type environments. Streams V are represented as a sequence of values; streaming
history environments Σ are streams of heaps. Types τ and type environments Γ are standard.
For the presentation of the formal grammar here, we consider only a fixed set of values and
primitives; in practice, the implementation is parameterised by a primitive table which we
extend with immutable array operations for the TTCAN driver logic in Section 6.

We define the typing judgments for Pipit in Figure 4. Most of the typing rules are standard
for an unclocked Lustre. The typing judgment Γ ⊢ e : τ denotes that, in an environment
of streams Γ, expression e denotes a stream of type τ . This core typing judgment differs
from the surface syntax used in Section 2, which used an explicit stream type; for the core
language, we instead assume that everything is a stream.

We use an auxiliary function prim-value-type(v) = τ to denote that value v has type τ ;
for primitives prim-type(p) = (τ1 × · · · . . . × τn) → τ ′ denotes that p takes arguments of type
τi and returns a result of type τ ′. Primitives are pure, non-streaming functions.

Rules TValue, TVar, TPrim and TLet are standard.
Rule TFby states that expression v fby e requires both v and e to have equal types.
Rule TRec states that a recursive stream rec x. e has the recursive stream bound inside e.

The recursion must also be guarded, in that any recursive references to x are delayed, but
this requirement is performed as a separate syntactic check described in Subsection 3.3.

ECOOP 2024

34:8 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

Γ ⊢ e : τ

prim-value-type(v) = τ

Γ ⊢ v : τ
(TValue)

Γ, x : τ, Γ′ ⊢ x : τ
(TVar)

prim-type(p) = (τ1 × · · · × τn) → τ ′ Γ ⊢ e1 : τ1 . . . Γ ⊢ en : τn

Γ ⊢ p(e) : τ ′ (TPrim)

prim-value-type(v) = τ Γ ⊢ e′ : τ

Γ ⊢ v fby e′ : τ
(TFby) Γ, x : τ ⊢ e : τ

Γ ⊢ rec x. e[x] : τ
(TRec)

Γ ⊢ e : τ Γ, x : τ ⊢ e′ : τ ′

Γ ⊢ let x = e in e′[x] : τ ′ (TLet) Γ ⊢ e : B
Γ ⊢ checkπ e : unit

(TCheck)

Γ ⊢ erely : B Γ ⊢ ebody : τ Γ, x : τ ⊢ eguar : B
Γ ⊢ contractπ {erely} ebody {x. eguar[x]} : τ

(TContract)

Figure 4 Typing rules for Pipit; the judgment Γ ⊢ e : τ denotes that expression e describes a
stream of values of type τ . Auxiliary functions are used for values and primitive operations.

Rule TCheck states that checked properties checkπ e require a boolean property e.
Finally, rule TContract applies for a contract contractπ {erely} ebody {x. eguar[x]}

with a body expression of type τ . The overall expression has result type τ . Both rely and
guarantee must be boolean expressions, and the guarantee can refer to the result as x.

3.1 Dynamic semantics
The dynamic semantics of Pipit are defined in Figure 5. We present our semantics in a
big-step form. This differs somewhat from traditional reactive semantics of Lustre [10]. Our
big-step semantics emphasises the equational nature of Pipit, as it is substitution-based and
syntax-directed, while the reactive semantics emphasises the finite-state streaming execution
of the system. We use transition systems for reasoning about the finite-state execution
(Section 4), which is fairly standard [9, 11, 35]. Previous work on the W-calculus [17] for
linear digital-signal-processing filters makes a similar distinction and provides a non-streaming
semantics for reasoning about programs and a streaming semantics for executing programs.

The judgment form Σ ⊢ e ⇓ v denotes that expression e evaluates to value v under
streaming history Σ. The streaming history is a stream of heaps; in practice, we only evaluate
expressions with a non-empty streaming history.

At a high level, evaluation unfolds recursive streams to determine a value. For example,
to evaluate the earlier sum example with input ints = [1; 2], we start with the judgment:

{ints 7→ 1}; {ints 7→ 2} ⊢ (rec sum. (0 fby sum) + ints) ⇓ v

First, we unfold the recursive stream one step to get (0 fby (rec sum. (0 fby sum) +
ints)) + ints. Evaluation of primitives is standard. To evaluate variables, we look for the
variable in the current (rightmost) heap:

{ints 7→ 1}; {ints 7→ 2} ⊢ ints ⇓ 2 (Var)

A. Robinson and A. Potanin 34:9

Σ ⊢ e ⇓ v

Σ; σ ⊢ x ⇓ σ(x) (Var) Σ ⊢ v ⇓ v
(Value) Σ ⊢ e′[x := e] ⇓ v

Σ ⊢ let x = e in e′[x] ⇓ v
(Let)

Σ ⊢ e1 ⇓ v1 . . . Σ ⊢ en ⇓ vn

Σ ⊢ p(e) ⇓ prim-sem(p, v) (Prim)

σ ⊢ v fby e′ ⇓ v
(Fby1) length(Σ) > 0 Σ ⊢ e′ ⇓ v′

Σ; σ ⊢ v fby e′ ⇓ v′ (FbyS)

Σ ⊢ e[x := rec x. e] ⇓ v

Σ ⊢ rec x. e[x] ⇓ v
(Rec) Σ ⊢ checkπ e ⇓ () (Check)

Σ ⊢ ebody ⇓ v

Σ ⊢ contractπ {erely} ebody {x. eguar[x]} ⇓ v
(Contract)

Σ ⊢ e ⇓∗ V Σ ⊢ e ⇓2 ⊤

· ⊢ e ⇓∗ ·
(Steps0) Σ ⊢ e ⇓ V Σ; σ ⊢ e ⇓ v

Σ; σ ⊢ e ⇓ V ; v
(StepsS)

Σ ⊢ e ⇓∗ ⊤; . . .

Σ ⊢ e ⇓2 ⊤
(Always)

Figure 5 Dynamic semantics for Pipit; the judgment form Σ ⊢ e ⇓ v denotes that evaluating
expression e under streaming history Σ results in value v.

For delays, we discard the current heap and continue evaluation with the history prefix:

{ints 7→ 1} ⊢ (rec sum. (0 fby sum) + ints) ⇓ 1
{ints 7→ 1}; {ints 7→ 2} ⊢ 0 fby (rec sum. (0 fby sum) + ints) ⇓ 1 (FbyS)

Returning to Figure 5, rule Var evalutes a variable x under some non-empty stream
history Σ; σ, where σ is the most recent heap. Rules Value and Let are standard. Rule Prim
evaluates a primitive p applied to many arguments e1 to en by evaluating each argument
separately; we then apply the primitive with prim-sem metafunction.

For delay expressions v fby e, we have two cases depending on whether there is a previous
value. When there is no previous value – the streaming history only contains the current
heap – rule Fby1 evaluates to the default value v. Otherwise, rule FbyS applies; we evaluate
the previous value of e by discarding the most recent entry from the streaming history.

Rule Rec evaluates a recursive stream rec x. e by unfolding the recursion one step. For
causal expressions (Subsection 3.3), where each recursive occurrence of x is guarded by a
followed-by, this unfolding eventually terminates as each followed-by shortens the history.

Rule Check ignores the property when evaluating check expressions. We do not dynam-
ically check the property here; this is done in the checked semantics (Subsection 3.2).

Similarly, rule Contract ignores preconditions and postconditions when evaluating
contracts. From an abstraction perspective, it would be valid to return an arbitrary value that
satisfies the contract. However, such an abstraction would make evaluation non-deterministic
and, for contracts with unsatisfiable postconditions, non-total. The deterministic and total
nature of evaluation is key to our proofs and metatheory.

ECOOP 2024

34:10 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

We also define two auxiliary judgment forms: Σ ⊢ e ⇓∗ V and Σ ⊢ e ⇓2 ⊤.
Judgment form Σ ⊢ e ⇓∗ V denotes that, under history Σ, expression e evaluates to the

stream V . This judgment performs iterated application of single-value evaluation.
Judgment form Σ ⊢ e ⇓2 ⊤ denotes that a boolean expression e evaluates to the stream

of trues under history Σ. Informally, it can be read as “e is always true in history Σ”.

3.2 Checked semantics
In addition to the big-step semantics above, we also define a judgment form for checking
that the properties and contracts of a program hold for a particular streaming history. We
call these the checked semantics; they are comparable to checking runtime assertions.

The checked semantics have the judgment form Σ ⊢π e valid, which denotes that under
streaming history Σ, the properties and contracts of e with status π hold. The property
status dictates which properties should be checked and which should be ignored.

We consider a program to be valid if its checks hold for all histories (∀Σ. Σ ⊢□✓ e valid).
The checked semantics are a specification describing what it means to be a valid program. We
do not generally verify programs directly using the checked semantics; instead, we translate
to an abstract transition system and construct the proofs there (Section 4).

To check a property (checkπ e) in history Σ, we check that e is always true (Σ ⊢ e ⇓2 ⊤).
Checking contracts is more involved. For whole-program correctness, it would suffice to

check that a contract’s rely and guarantee both hold. However, the purpose of contracts is to
enable modular reasoning about parts of the program: we need to be able to check contracts
independently of their context. Conceptually, then, contracts involve two kinds of checks:
one for the definition and one for the call-site. To check a contract definition, we check that
the body satisfies the guarantee for all valid contexts – that is, those where the rely holds.
Then, to check a contract instance, we just need to check that the call-site satisfies the rely.

For example, recall our earlier contract that the sum of strictly positive integers is positive:

let sum i = contract□? {i > 0} (rec sum. (0 fby sum) + i) {sum. sum > 0}

To check the contract definition on a concrete input i = [1; 2], we first evaluate the body:

{i 7→ 1}; {i 7→ 2} ⊢ (rec sum. (0 fby sum) + i) ⇓∗ [1; 3]

We then check that, assuming all inputs are positive, then all results are positive:

{i 7→ 1}; {i 7→ 2} ⊢ i > 0 ⇓2 ⊤ =⇒ {i 7→ 1, sum 7→ 1}; {i 7→ 2, sum 7→ 3} ⊢ sum > 0 ⇓2 ⊤

It is critical that the rely is true at all points in the stream. Consider if we had instead
used the input stream i = [−10; 1]; the rely is false at the first step, but is instantaneously
true at the second step. In this case, the sum is −10 at the first step, and −9 at the second
step. At both steps the output is negative and the guarantee is false, even though the
rely becomes true at the second step. The contract itself remains valid, however, as the
assumption is invalid: the input did not satisfy the rely at all steps.

The checked semantics of Pipit is defined in Figure 6.
Rules ChkValue and ChkVar state that values and variables are always valid.
Rule ChkPrim checks a primitive application by descending into the subexpressions.

Similarly, rule ChkFby descends into followed-by expressions.
Rule ChkRec checks a recursive-expression rec x. e by evaluating the overall expression

to a stream of values V . The rule then extends the streaming environment Σ with x bound to
the values from V ; this extended environment is used to descend into the recursive expression.

A. Robinson and A. Potanin 34:11

Σ ⊢π e valid

Σ ⊢π v valid (ChkValue) Σ ⊢π x valid (ChkVar)

Σ ⊢π e1 valid . . . Σ ⊢π en valid
Σ ⊢π p(e) valid (ChkPrim) Σ ⊢π e′ valid

Σ ⊢π v fby e′ valid
(ChkFby)

Σ ⊢ rec x. e ⇓∗ V Σ[x 7→ V] ⊢π e valid
Σ ⊢π rec x. e[x] valid (ChkRec)

Σ ⊢π e valid Σ ⊢ e ⇓∗ V Σ[x 7→ V] ⊢π e′ valid
Σ ⊢π let x = e in e′[x] valid

(ChkLet)

(π = π′ =⇒ Σ ⊢ e ⇓2 ⊤) Σ ⊢π e valid
Σ ⊢π checkπ′ e valid (ChkCheck)

Σ ⊢ ebody ⇓∗ V

(π = π′ =⇒ Σ ⊢ erely ⇓2 ⊤)
(π = □✓ =⇒ Σ ⊢ erely ⇓2 ⊤ =⇒ Σ[x 7→ V] ⊢ eguar ⇓2 ⊤)

Σ ⊢π erely valid
(Σ ⊢ erely ⇓2 ⊤ =⇒ Σ ⊢π ebody valid ∧ Σ[x 7→ V] ⊢π eguar valid)

Σ ⊢π contractπ′ {erely} ebody {x. eguar[x]} valid
(ChkContract)

Figure 6 Checked semantics for Pipit; the judgment form Σ ⊢π e valid denotes that evaluating
expression e under streaming history Σ satisfies the checks and rely-guarantee contract requirements
that are labelled with property status π.

Rule ChkLet checks a let-expression let x = e in e′ descends into both sub-expressions.
To check the body e′, the rule first evaluates e and extends the streaming environment.

Finally, the heavy lifting is performed by rules ChkCheck and ChkContract.

Rule ChkCheck checks the properties marked π in an expression checkπ′ e. If the
check-expression has the same status as what we are checking (π = π′), then we evaluate
the expression e and require it to be true at all steps. We then unconditionally descend into
the subexpression to check any nested properties. Such nested properties are unlikely to be
written directly by the user, but might occur after inlining.

Rule ChkContract applies when checking property status π of a contract with expression
contractπ′ {erely} ebody {x. eguar[x]}. This rule checks both the contract definition and the
call-site. We evaluate the body to a stream V ; these values are used to check that the body
satisfies guarantee. Although the contract only has one property status, conceptually there
are two distinct properties: one for the caller (π′) and one for the definition (assumed to
be □✓). To check the caller property when π = π′, we evaluate the rely erely and require it
to hold. To check the definition property when π = □✓ , we assume that the rely holds, and
check that the body satisfies the guarantee. We also descend into the subexpressions to check
them; when checking the body and guarantee, we can assume that the rely holds.

ECOOP 2024

34:12 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

3.2.1 Blessing expressions and contracts
Blessing is a meta-operation that replaces the property statuses in an expression so that all
checks and contracts are marked as valid (□✓). Blessing an expression requires a proof that,
for all input streams, assuming the valid checks hold, then the unknown checks hold:

∀Σ. Σ ⊢□✓ e valid =⇒ Σ ⊢□? e valid
bless e

(BlessExpression)

We generally prove the required properties by first translating the program to an abstract
transition system, as described in Section 4.

Blessing is different for contract definitions, as we need to separate the definition of the
contract from the instantiation. To check that a contract definition is valid, we show that if
the rely clause is always true for a particular input, then the body satisfies the guarantee for
the same inputs. We also assume that the valid properties in the rely, body and guarantee
hold, and show the corresponding unknown properties:

let contract_valid {erely} ebody {eguar} : prop =
∀Σ. (Σ ⊢□✓ (erely, ebody, eguar[x := ebody]) valid ∧ Σ ⊢ erely ⇓2 ⊤)
=⇒ (Σ ⊢□? (erely, ebody, eguar[x := ebody]) valid ∧ Σ ⊢ eguar[x := ebody] ⇓2 ⊤)

After proving that the contract is valid for all inputs, we can bless the contract definition.
Blessing the contract definition blesses the subexpressions for the rely, body and guarantee,
but leaves the contract’s instantiation property status as unknown:

contract_valid {erely} ebody {eguar}
bless_contract {erely} ebody {eguar}

(BlessContract)

3.3 Causality and metatheory
To ensure that recursive streams have a computational interpretation, we implement a
causality restriction, similar to standard Lustre [10]. This restriction checks that all recursive
streams are guarded by a followed-by delay. We implement this as a simple syntactic check:
each rec x. e can only mention x inside a followed-by. This check ensures productivity
of recursive streams, but can be too strict: for example, the expression rec x. (let x′ =
x + 1 in 0 fby x′) mentions the recursive stream x outside of the delay and is outlawed, but
after inlining the let, it would be causal. We hope to relax this restriction in future work.

The causality restriction gives us some important properties about the metatheory. The
most important property is that the dynamic semantics form a total function: given a
streaming history and a causal expression, we can evaluate the expression to a value. These
properties are mechanised in F⋆.

▶ Theorem 1 (bigstep-is-total). For any non-empty streaming history Σ and causal expression
e, there exists some value v such that e evaluates to v (Σ ⊢ e ⇓ v).

The relationship between substitution and the streaming history is also important. In
general, we have a substitution property that states that evaluating a substituted expression
e[x := e′] under some context Σ is equivalent to evaluating e′ and adding it to the context Σ:

▶ Theorem 2 (bigstep-substitute). For a streaming history Σ and causal expressions e

and e′, if e[x := e′] evaluates to a value v (Σ ⊢ e ⇓ v), then we can evaluate e′ to some
stream V (Σ ⊢ e′ ⇓∗ V) and extend the streaming history to evaluate e to the original value
(Σ[x 7→ V] ⊢ e ⇓ v). The converse is also true.

A. Robinson and A. Potanin 34:13

type system (input: Γ) (result: τ) = {
state: Γ;
free: Γ;
init: heap state;
step: heap input → heap free → heap state → step_result state result;

}

type step_result (state: Γ) (result: τ) = {
update: heap state;
value: result;
rely: prop;
guar: prop;

}

Figure 7 Abstract transition system type definitions.

The big-step semantics in Figure 5 for a recursive expression rec x. e performs one step of
recursion by substituting x for the recursive expression. An alternative non-syntax-directed
semantics would be to have the environment outside the semantics supply a stream V such
that if we extend the streaming history with x 7→ V , then e evaluates to V itself. The above
substitution theorem can be used to show that, for causal expressions, these two semantics
are equivalent. We can additionally show that, when evaluating e with x 7→ V , the most
recent value in V does not affect the result. This fact can be used to “seed” evaluation by
starting with an arbitrary value:

▶ Theorem 3 (bigstep-rec-causal). For a streaming history Σ; σ and a causal recursive
expression rec x. e, if (Σ; σ ⊢ e ⇓ v), then updating σ[x] with any value v′ results in the
same value: (Σ; σ[x 7→ v′] ⊢ e ⇓ v).

4 Abstract transition systems

To prove properties about Pipit programs, we translate to an abstract transition system,
so-called because it abstracts away the implementation details of contract instantiations. For
extraction we also translate to executable transition systems, which we discuss in Section 5.

Figure 7 shows the types of transition systems. A transition system is parameterised
by its input context and the result type. It also contains two internal contexts: firstly, the
state context describes the private state required to execute the machine; secondly, the free
context contains any extra input values that the transition system would like to existentially
quantify over. The free context is used to allow the system to ask for arbitrary values from
the environment, when it would not otherwise be able to return a concrete value.

For recursive streams and contract instantiations, which hide their implementation, the
natural translation to a transition system would involve existentially quantifying a result
that satisfies the specification. Unfortunately, using an existential quantifier requires a step
relation rather than a step function. Using a step relation complicates the resulting transition
system, as other operations such as primitive application must also introduce existential
quantifiers; such quantifiers block simplifications such as partial-evaluation and result in a
more complex transition system. Instead, the free context provides the step function with a
fresh unconstrained value of the desired type, which the step function can then constrain.

ECOOP 2024

34:14 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

Back to Figure 7, the step-result contains the updated state for the transition system, as
well as the result value. The step-result additionally contains two propositions; one for the
“rely”, or assumptions about the execution environment, and another for the “guarantee”, or
obligations that the transition system must show. For the transition system corresponding
to an expression e, these propositions are roughly analogous to the known checked semantics
Σ ⊢□✓ e valid and unknown checks Σ ⊢□? e valid respectively.

For example, recall again the sum contract:

let sum ints = contract□? {ints > 0} (rec sum. (0 fby sum) + ints) {sum. sum > 0}

To verify the contract definition, we first translate it to an abstract transition system
whose input environment contains an integer ints, and whose result type is also an integer.
The followed-by delay results in a local state variable called sum_fby, and we encode the
existentially-quantified recursive stream as a free context variable called sum:

let sum_def: system (ints: Z) Z = {
state = (sum_fby: Z);
free = (sum: Z);
init = { sum_fby = 0 };
step = λi f s. {

update = { sum_fby = f.sum };
value = f.sum;
rely = (f.sum = s.sum_fby + i.ints) ∧ i.ints > 0;
guar = f.sum > 0; } }

The initial state of 0 corresponds to the initial value of the followed-by. In the step
function, argument i refers to the input heap containing i.ints, f refers to the free heap
containing the recursive stream f.sum, and s refers to the state heap containing s.sum_fby.
In the rely of the step result, f.sum is constrained to be the translated body of the recursive
stream. The translated rely also includes the contract’s rely that the input integer is positive.
Finally, the translated guarantee includes the contract’s guarantee that the output is positive.

To verify the transition system, we prove inductively that if the rely always holds, then
the guarantee holds; we discuss proofs of system validity further in Subsection 4.2.

The translation for contract instantiations is similar, except that the contract body is
replaced by an arbitrary value from the free context. For example, we can use the sum
contract to implement the Fibonacci sequence with rec fib. sum (1 fby fib). This program
does not require any input values, so we leave the input context empty. The state context
includes an entry for the 1 fby fib followed-by expression, but does not include the followed-by
expressions inside the contract definition. Similarly, the free context includes an entry for
the recursive stream, and an entry for the abstract, underspecified value of the contract:

let fib_def: system () Z = {
state = (fib_fby: Z);
free = (fib: Z; sum_contract: Z);
init = { fib_fby = 1 };
step = λi f s. {

update = { fib_fby = f.fib };
value = f.fib;
rely = (f.fib = f.sum_contract)

∧ (s.fib_fby > 0 =⇒ f.sum_contract > 0);
guar = s.fib_fby > 0; } }

A. Robinson and A. Potanin 34:15

JvKstate = ·
JxKstate = ·

Jp(e)Kstate =
⋃

i
JeiKstate

Jv fby eKstate = xfby(e) : τ, JeKstate (fresh xfby(e))
Jrec x. eKstate = JeKstate

Jlet x = e in e′Kstate = JeKstate ∪ Je′Kstate

Jcheckπ eKstate = JeKstate

Jcontractπ {er} eb {x. eg}Kstate = JerKstate ∪ JebKstate

JvKfree = ·
JxKfree = ·

Jp(e)Kfree =
⋃

i
JeiKfree

Jv fby eKfree = JeKfree

Jrec x. eKfree = x : τ, JeKfree

Jlet x = e in e′Kfree = JeKfree ∪ Je′Kstate

Jcheckπ eKfree = JeKfree

Jcontractπ {er} eb {x. eg}Kfree = x : τ, JerKfree ∪ JebKstate

Figure 8 Transition system typing contexts of expressions; for an expression e, JeKstate : Γ and
JeKfree : Γ describe the heaps used to store the expression’s internal state and extra inputs.

As before, the translated rely includes the assumption that the recursive stream’s value
(f.fib) agrees with its body (f.sum_contract). Additionally, the rely includes the assumption
that the contract’s rely implies the guarantee: if sum’s input (s.fib_fby) is positive, then
its output (f.sum_contract) is positive too. Finally, the translated guarantee encodes the
obligation that the environment satisfies the contract’s rely – the input to sum is positive.

Note that the transition system requires the rely to hold at the current step, while the
“true” semantics of contracts requires the rely to hold at every step so far. This minor
optimisation is sound, as we define system validity to require all steps to satisfy the rely.

4.1 Translation
We now present the details of the translation. For causal expressions, the translated transition
system is verified to be an abstraction of the original expression’s dynamic semantics, and the
generated proof obligations imply that the original expression satisfies the checked semantics.

Figure 8 defines the internal state and free contexts required for an expression. For
most expression forms, the state and free contexts are defined by taking the union of the
contexts of subexpressions. Followed-by delays introduce a local state variable xfby(e) in
which to store the most recent stream value. We generate a fresh variable here, although the
implementation uses de Bruijn indices. Recursive streams and contracts both introduce new
bindings into the free context; we assume that their binders x are unique.

Figure 9 defines the translation for expressions. Values and variables have no internal
state. For variables, we look for the variable binding in either of the input or free heaps;
bindings are unique and cannot occur in both. We omit the rely and guarantee definitions
here; both are trivially true.

To translate primitives, we union together the initial states of the subexpressions; updating
the state is similar. For the rely and guarantee definitions, we take the conjunction: we can
assume that all subexpressions rely clauses hold, and must show that all guarantees hold.

ECOOP 2024

34:16 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

JvKinit = ()
JvKvalue(i, f, s) = v

JxKinit = ()
JxKvalue(i, f, s) = (i ∪ f).x

Jp(e)Kinit =
⋃

i
JeiKinit

Jp(e)Kvalue(i, f, s) = prim-sem(p, JeKvalue(i, f, s))
Jp(e)Kupdate(i, f, s) =

⋃
i
JeiKupdate(i, f, s)

Jp(e)Krely(i, f, s) =
∧

i
JeiKrely(i, f, s)

Jp(e)Kguar(i, f, s) =
∧

i
JeiKguar(i, f, s)

Jv fby eKinit = JeKinit ∪ {xfby(e) 7→ v}
Jv fby eKvalue(i, f, s) = s.xfby(e)
Jv fby eKupdate(i, f, s) = JeKupdate(i, f, s) ∪ {xfby(e) 7→ JeKvalue(i, f, s)}
Jv fby eKrely(i, f, s) = JeKrely(i, f, s)
Jv fby eKguar(i, f, s) = JeKguar(i, f, s)

Jrec x. eKinit = JeKinit
Jrec x. eKvalue(i, f, s) = f.x
Jrec x. eKupdate(i, f, s) = JeKupdate(i, f, s)
Jrec x. eKrely(i, f, s) = JeKrely(i, f, s)

∧ f.x = JeKvalue(i, f, s)
Jrec x. eKguar(i, f, s) = JeKguar(i, f, s)

Jlet x = e in e′Kinit = JeKinit ∪ Je′Kinit
Jlet x = e in e′Kvalue(i, f, s) = Je′Kvalue(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)
Jlet x = e in e′Kupdate(i, f, s) = Je′Kupdate(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)

∪ JeKupdate(i, f, s)
Jlet x = e in e′Krely(i, f, s) = Je′Krely(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)

∧ JeKrely(i, f, s)
Jlet x = e in e′Kguar(i, f, s) = Je′Kguar(i ∪ {x 7→ JeKvalue(i, f, s)}, f, s)

∧ JeKguar(i, f, s)

Jcheckπ eKinit = JeKinit
Jcheckπ eKvalue(i, f, s) = ()
Jcheckπ eKupdate(i, f, s) = JeKupdate(i, f, s)
Jcheckπ eKrely(i, f, s) = (π = □✓ =⇒ JeKvalue(i, f, s)) ∧ JeKrely(i, f, s)
Jcheckπ eKguar(i, f, s) = (π = □? =⇒ JeKvalue(i, f, s)) ∧ JeKguar(i, f, s)

Jcontractπ {er} eb {x. eg}Kinit = JerKinit ∪ JegKinit
Jcontractπ {er} eb {x. eg}Kvalue(i, f, s) = f.x
Jcontractπ {er} eb {x. eg}Kupdate(i, f, s) = JerKupdate(i, f, s) ∪ JegKupdate(i, f, s)
Jcontractπ {er} eb {x. eg}Krely(i, f, s) = (JerKvalue(i, f, s) =⇒ JegKvalue(i, f, s))

∧ (π = □✓ =⇒ JerKvalue(i, f, s))
∧ JerKrely(i, f, s)
∧ (JerKvalue(i, f, s) =⇒ JegKrely(i, f, s)

Jcontractπ {er} eb {x. eg}Kguar(i, f, s) = (π = □? =⇒ JerKvalue(i, f, s))
∧ JerKguar(i, f, s) ∧ JegKguar(i, f, s)

Figure 9 Transition system semantics; for an expression Γ ⊢ e : τ , JeKinit : heap JeKstate is
the initial state. For each field of the step-result type, we define a translation function that
takes the input, free and state heaps: for example, we define the value-result of a step with type
JeKvalue : heap Γ → heap JeKfree → heap JeKstate → τ .

A. Robinson and A. Potanin 34:17

To translate a followed-by v fby e, we initialise the followed-by’s unique binder xfby(e)
to the followed-by’s default value v. At each step, we return the value in the local state
before updating the local state to the subexpression’s new value.

To translate a recursive expression rec x. e of type τ , we require an arbitrary value
x : τ in the free heap. The rely proposition constrains the free variable x to be the result of
evaluating e with the binding for x passed along, thus closing the recursive loop.

To translate let-expressions let x = e in e′, we extend the input heap with the value of
e before evaluating e′. The presentation here duplicates the computation of the value of e,
but the actual implementation introduces a single binding.

To translate a check property, we inspect the property status. If the property is known to
be valid, then we can assume the property is true in the rely clause. Otherwise, we include
the property as an obligation in the guarantee clause. In either case, we also include the
subexpression’s rely and guarantee clauses.

Finally, to translate contract instantiations, we use the contract’s rely and guarantee and
ignore the body. As with recursive expressions, we require an arbitrary value x : τ in the
free heap. The translation’s rely allows us to assume that the contract definition holds: that
is, the contract’s rely implies the contract’s guarantee. If the contract instantiation is known
to be valid, we can also assume that the contract’s rely holds. Otherwise, we include the
contract’s rely as an obligation by putting it in the translation’s guarantee.

4.2 Proof obligations and induction
To verify that the translated system satisfies its proof obligations – that is, the checked
properties and contract relies hold – we can perform induction on the system’s sequence of
steps. A system satisfies its proof obligations if, for any sequence of steps that all satisfy its
rely or assumptions, the system’s guarantee also holds for all of the steps.

Inductive proofs on Lustre programs generally use a non-standard definition of induction,
as the property we wish to show is a function of the step result, rather than being a function
of the state. This means that the base case must take a single step from the initial state to
be able to state the property that, if the step result’s rely holds, then its guarantee holds:
let inductive_check_base (sys : system input τ) : prop =

∀(i : heap input)(f : heap sys.free).
let stp = sys.step i f sys.init in
stp.rely =⇒ stp.guar
For the inductive step case, we allow the system to take two steps from an arbitrary state,

assuming that both steps satisfy the rely and the first step satisfied the inductive property:
let inductive_check_step (sys : system input τ) : prop =

∀(i0 i1 : heap input)(f0 f1 : heap sys.free)(s0 : heap sys.state).
let stp1 = sys.step i0 f0 s0 in
let stp2 = sys.step i1 f1 stp1.state in
stp1.rely =⇒ stp1.guar =⇒ stp2.rely =⇒ stp2.guar
This inductive scheme also generalises to k-induction, which allows the inductive case to

assume the previous k steps satisfied the inductive property, rather than just assuming that
the one previous step holds. K-induction is a fairly standard invariant strengthening technique;
intuitively, it allows the proof to use more context of the history of execution [21, 11, 16].

To reason about system validity in general, we define a predicate system_holds_all that
formally defines a valid system as: for all sequences of inputs and their corresponding steps, if
all of the steps’ relies hold, then the guarantees also hold. Validity is implied by (k-)induction.

ECOOP 2024

34:18 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

Σ ⊢ e ∼ s

Σ ⊢ v ∼ s
(IValue) Σ ⊢ x ∼ s

(IVar)

Σ ⊢ e1 ∼ s . . . Σ ⊢ en ∼ s

Σ ⊢ p(e) ∼ s
(IPrim)

s.xfby(e′) = v · ⊢ e′ ∼ s

· ⊢ v fby e′ ∼ s
(IFby0)

Σ; σ ⊢ e′ ⇓ s.xfby(e′) Σ; σ ⊢ e′ ∼ s

Σ; σ ⊢ v fby e′ ∼ s
(IFbyS)

Σ ⊢ rec x. e ⇓∗ V Σ[x 7→ V] ⊢ e ∼ s

Σ ⊢ rec x. e[x] ∼ s
(IRec)

Σ ⊢ e ⇓∗ V Σ ⊢ e ∼ s Σ[x 7→ V] ⊢ e′ ∼ s

Σ ⊢ let x = e in e′[x] ∼ s
(ILet)

Σ ⊢ e ∼ s

Σ ⊢ checkπ e ∼ s
(ICheck)

Σ ⊢ ebody ⇓∗ V Σ ⊢ erely ∼ s Σ[x 7→ V] ⊢ eguar ∼ s

Σ ⊢ contractπ {erely} ebody {x. eguar[x]} ∼ s
(IContract)

Figure 10 Transition system state invariant.

4.3 Translation correctness proofs

We prove that the transition system is an abstraction of the dynamic semantics: that is, if
the expression evaluates to v under some context, then there exists some execution of the
transition system that also results in v. The transition system itself is deterministic, but the
free context provides the non-determinism which may occur from underspecified contracts;
our theorem statement existentially quantifies the free heap.

The results presented here rely heavily on the totality and substitution metaproperties
described in Subsection 3.3. Figure 10 defines the invariant for the abstraction proof; the
judgment form Σ ⊢ e ∼ s checks that s is a valid state heap. We use the invariant to state
that, if executing the transition system for e on the entire streaming history Σ results in
state heap s, then s is a valid state.

As most expressions do not modify the state heap, the invariant for most expressions
simply descends into the subexpressions. Where new bindings are added, we use the dynamic
semantics to extend the context with the new values. The invariant for followed-by expressions
asserts that the initial state of the followed-by is the default value; on subsequent steps, the
state corresponds to the dynamic semantics. With this invariant, we can prove abstraction:

▶ Theorem 4 (translation-abstraction). For a well-typed causal expression e and streaming
history Σ, if e evaluates to stream V (Σ ⊢ e ⇓∗ V), then there exists a sequence of free heaps
ΣF such that repeated application of the transition system’s step results in V .

Finally, we can show the main entailment result that if the proof obligations hold on the
system, then the original program is valid according to the checked semantics:

A. Robinson and A. Potanin 34:19

▶ Theorem 5 (translation-entailment). For a well-typed causal expression e and its translated
system s, if the system holds (system_holds_all s), and the checked properties in e hold
(∀Σ. Σ ⊢□✓ e valid), then the unknown properties in e also hold (∀Σ. Σ ⊢□? e valid)

The above theorem allows us to bless the expression and mark all properties as valid
(Subsubsection 3.2.1). Importantly, the assumption that the checked properties hold lets us
re-use previously-verified properties without re-proving them, allowing for modular proofs.

5 Extraction

Pipit can generate executable code which is suitable for real-time execution on embedded
devices. The code extraction uses a variation of the abstract transition system described in
Section 4, with two main differences to ensure that the result is executable without relying
on the environment to provide values for the free context. Contracts are straightforward to
execute by using the body of the contract rather than abstracting over the implementation.

To execute recursive expressions rec x. e : τ , we require an arbitrary value of type τ to
seed the fixpoint, as described in Subsection 3.3. We first call the step function to evaluate e

with x bound to ⊥τ . This step call returns the correct value, but the updated state is invalid,
as it may refer to the bottom value. To get the correct state, we call the step function again,
this time with x bound to the correct value, v.

For example, for the sum contract with body (rec sum. (0 fby sum) + ints), we generate
an executable system that takes an input context containing integer variable ints, with a
single state variable for the followed-by, and returning an integer:

let sum_def: system (ints: Z) Z = {
state = (sum_fby: Z);
init = { sum_fby = 0; };
step = λi s.

let (fby0, s0) = (s.sum_fby, s {sum_fby = ⊥Z}) in
let (sum0, s0) = (fby0 + i.ints, s0) in
let (fby1, s1) = (s.sum_fby, s {sum_fby = sum0}) in
let (sum1, s1) = (fby1 + i.ints, s1) in
(sum0, s1) }

Here, the step function takes heaps of the input and state contexts, and returns a pair
of the result value and the updated state. The first two bindings correspond to the seeded
evaluation with the recursive value for the sum set to ⊥Z; as such, the resulting state s0
is invalid. The last two bindings recompute the state, this time with the correct recursive
value sum0 used in the state. This duplication of work can often be removed by the partial
evaluation and dead-code-elimination which we perform during code extraction.

This translation to transition systems is verified to preserve the original semantics. The
invariant is very similar to that of Subsection 4.3, except that the invariant descends into the
implementations of contracts. For the abstract systems we only showed abstraction; to prove
that executable systems are equivalent to the original semantics, we use the fact that the
original semantics and transition systems are both deterministic and total (Subsection 3.3).

▶ Theorem 6 (execution-equivalence). For a well-typed causal expression e and streaming
history Σ, e evaluates to stream V (Σ ⊢ e ⇓∗ V) if-and-only-if repeated application of the
transition system’s step on Σ also results in V .

ECOOP 2024

34:20 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

To extract the program, we use a hybrid embedding as described in [23], which is similar
to staged-compilation. The hybrid embedding involves a deep embedding of the Pipit
core language, while the translation to executable transition systems produces a shallow
embedding. We use the F⋆ host language’s normalisation-by-evaluation and tactic support [31]
to partially-evaluate the application of the translation to a particular input program. This
partial-evaluation results in a concrete transition system that fits in the Low⋆ subset of F⋆,
which can then be extracted to statically-allocated C code [34].

The generated C code for sum2 includes a struct type to hold the state information, as
well as reset and step functions:

struct sum_state { uint32_t sum_fby; }
void sum_reset(struct sum_state* state);
int sum_step(struct sum_state* state, uint32_t ints);

The reset function takes the pointer to the state struct and sets it to its initial values.
The step function takes the pointer to the state struct and the inputs, and returns the result
integer. The state struct is updated in-place. The implementations of these functions avoid
dynamic (heap) allocation and are suitable for embedded systems. This interface is standard
for Lustre compilers [5, 19] and other synchronous languages.

Unfortunately, our current approach is unsuitable for generating imperative array code,
as our pure transition system only supports pure arrays. In the future, we intend to support
efficient array computations and fix the above work duplication by introducing an intermediate
imperative language such as Obc [3], a static object-based language suitable for synchronous
systems. Even with an added intermediate language, we believe that a variant of our current
translation and proof-of-correctness will remain useful as an intermediate semantics.

6 Evaluation

To evaluate Pipit, we have implemented the high-level logic of a Time-Triggered Controller
Area Network (TTCAN) bus driver [1], described earlier in Section 2. The CAN bus is
common in safety-critical automotive and industrial settings. The time-triggered network
architecture defines a static schedule of network traffic; by having all nodes on the network
adhere to the schedule, the reliability of periodic messages is significantly increased [15].

The TTCAN protocol can be implemented in two levels of increasing complexity. In the
first level, reference messages, which perform synchronisation between nodes, contain the
index of the newly-started cycle. In the second level, the reference messages also contain the
value of a global fractional clock and whether any gaps have occurred in the global clock,
which allows other nodes to calibrate their own clocks. We implement the first level as it is
more amenable to software implementation [22].

The implementation defines a streaming function that takes a stream describing the current
time, the state of the hardware, and any received messages. It returns a stream of commands
to be performed, such as sending a particular reference message. The implementation defines
a pure streaming function. To actually interact with the hardware we assume a small
hardware-interop layer that reads from the hardware registers and translates the commands
to hardware-register writes, but we have not yet implemented this. We package the driver’s
inputs into a record for convenience:

2 This interface is for a variant of the sum contract with 32-bit integers instead of unbounded integers.

A. Robinson and A. Potanin 34:21

type driver_input = {
local_time: network_time_unit;
mode_cmd: option mode;
tx_status: tx_status;
bus_status: bus_status;
rx_ref: option ref_message;
rx_app: option app_message_index;

}

Here, the local-time field denotes the time-since-boot in network time units, which are
based on the bitrate of the underlying network bus. The mode-command is an optional field
which indicates requests from the application to enter configuration or execution mode. The
transmission-status describes the status of the last transmission request and may be none,
success, or various error conditions. The bus-status describes whether the bus is currently
idle, busy, or in an error state. The two receive fields denote messages received from the bus;
for application-specific messages the time-triggered logic only needs the message identifier.

The driver-logic returns a stream of commands for the hardware-interop layer to perform:

type commands = {
enable_acks: bool;
tx_ref: option ref_message;
tx_app: option app_message_index;
tx_delay: network_time_unit;

}

The enable-acknowledgements field denotes whether the hardware should respond to
messages from other nodes with an acknowledgement bit; in the case of a severe error
acknowledgements are disabled, as the node must not write to the bus at all. The transmit
fields denote whether to send a reference message or an application-specific message. For
application-specific messages, the hardware-interop layer maintains the transmission buffers
containing the actual message payload. To meet the schedule as closely as possible, the driver
anticipates the next transmission and includes a transmission delay to tell the hardware
exactly when to send the next message.

6.1 Runtime
The implementation includes an extension of the trigger-fetch logic described in Section 2, as
well as state machines for tracking node synchronisation, master status and fault handling.
We generate real-time C code as described in Section 5. We evaluated the generated C code
by executing with randomised inputs and measuring the worst-case-execution-time on a
Raspberry Pi Pico (RP2040) microcontroller. The runtime of the driver logic is fairly stable:
over 5,000 executions, the measured worst-case execution time was 140µs, while the average
was 90µs with a standard deviation of 1.5µs. Earlier work on fault-tolerant TTCAN [41]
describes the required slot sizes – the minimum time between triggers – to achieve bus
utilisation at different bus rates. For a 125Kbit/s bus, a slot size of approximately 1,500µs

is required to achieve utilisation above 85 per cent. For the maximum CAN bus rate of
1Mbit/s, the required slot size is 184µs. Further evaluation is required to ensure that the
complete runtime including the hardware-interop layer is sufficient for full-speed CAN.

Our code generation can be improved in a few ways. A common optimisation in Lustre is
to fuse consecutive if-statements with the same condition [5]; such an optimisation seems
useful here, as our treatment of optional values introduces repeated unpacking and repacking.

ECOOP 2024

34:22 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

let rec next (i: int) (c: cycle):
Tot (option int)

(decreases (count - i)) =
if trigger_enabled i c

then Some i

else if i ≥ count − 1
then None
else next (i + 1) c

function next(index: int; c: cycle)
returns (result: int)

var next_array: int ^ COUNT;
let

next_array[i] =
if trigger_enabled(COUNT - 1 - i, c)
then COUNT - 1 - i
else if i <= 0
then NO_NEXT_TRIGGER
else next_array[i - 1];

result =
next_array[COUNT - 1 - index];

tel

Figure 11 Left: next-trigger logic in F⋆; right: Kind2 encoding as array scan. In F⋆, the Tot τ

(decreases . . .) syntax declares a total function with the given termination measure. In Kind2, the
intˆCOUNT syntax denotes the type of an array of integers of length COUNT, while the next_array[i]
declaration defines the elements of the array as a function of the index i.

Some form of array fusion [37] may also be useful for removing redundant array operations.
Our current extraction generates a transition-system with a step function which returns
a tuple of the updated state and result. Composing these step functions together results
in repeated boxing and unboxing of this tuple; we currently rely on the F⋆ normaliser to
remove this boxing. In the future, we plan to build on the current proofs to implement a
more-sophisticated encoding that introduces less overhead.

6.2 Verification

We have verified a simplified trigger-fetch mechanism, as presented earlier (Section 2). For
comparison, we implemented the same logic in the Kind2 model-checker [11]. The restrictions
placed on the triggers array – that triggers are sorted by time-mark, that there must be an
adequate time-gap between a trigger and its next-enabled, and that a trigger’s time-mark
must be greater-than-or-equal-to its index – are naturally expressed with quantifiers. The
Kind2 model-checker includes experimental array and quantifier support [26]. Due to the
experimental nature of these features, we had to work around some limitations: for example,
the use of arrays and quantifiers disables IC3-based invariant generation; quantified variables
cannot be used in function calls; and the use of top-level constant arrays caused runtime
errors that rendered most properties invalid [27].

We were able to express equivalent properties in Kind2 and in Pipit, aside from some
encoding issues. For example, the specification-only function that finds the next trigger
is naturally recursive. Kind2 does not support recursive functions, but we were able to
encode it by introducing a temporary array and using Kind2’s array comprehension syntax
for scanning over arrays. Additionally, while the recursive call increases the index, the array
scan can only depend on values with lower indices. Figure 11 illustrates this encoding with a
simplified version of the next-trigger logic.

We compare against two Kind2 implementations: one corresponds closely to the Pipit
development, while the other includes a critical simplification to modify the trigger-enabled
set to be a single cycle index. In TTCAN proper, the enabled set is implemented as a
cycle-offset and repeat-factor. Checking if a trigger is enabled in the current cycle requires

A. Robinson and A. Potanin 34:23

Kind2 Pipit
simple enable-set full enable-set

size wall-clock CPU time wall-clock CPU time wall-clock CPU time
1 1.48s 1.06s 1.57s 2.26s 5.25s 5.03s
2 1.51s 1.26s 1.71s 2.93s 5.25s 5.03s
4 1.57s 1.62s 2.08s 4.78s 5.25s 5.03s
8 1.76s 3.07s 4.21s 16.98s 5.25s 5.03s

16 3.36s 11.91s 13.82s 65.57s 5.25s 5.03s
32 12.15s 62.38s 269.14s 1230.05s 5.25s 5.03s
64 1701.01s 9096.99s (timeout) 5.25s 5.03s

128 (timeout) (timeout) 5.25s 5.03s

Figure 12 Verification time for trigger-fetch; simple enable-set uses a simplified version of the
enable-set, while full enable-set uses bitwise arithmetic as in the TTCAN specification. The wall-clock
time denotes the elapsed time that an engineer must spend waiting for the result; the CPU time
denotes the total time spent computing by all of the CPU cores. The verification time for Pipit is a
once-and-for-all proof that is parametric in the size of the array. The time limit was one hour.

nonlinear arithmetic, which is difficult for SMT solvers. In our Pipit development, we can
treat the definition of the cycle set abstractly. However, in the Kind2 development, quantified
formulas cannot contain function calls, which means that we cannot hide the implementation
of the enabled-set check by providing an abstract contract. This limitation also makes the
specification quite unwieldy, as we must manually inline any functions in quantified formulas.

Figure 12 shows the verification runtime for different sizes of arrays; the Pipit version
is parametric in the array size, and is thus verified for all sizes of arrays. We ran these
experiments in Docker on an Intel i5-12500 with 32GB of RAM. Both Kind2 and Pipit
developments of the trigger-fetch logic are roughly the same size, on the order of two-
hundred lines of code including comments. Ignoring whitespace and comments, the Pipit
implementation of trigger-fetch has 26 lines of actual executable code, while the Kind2 code
has 32. The majority of the remaining code comprises the definition of valid schedules (34 for
Pipit, 28 for Kind2), and the lemma statements and invariants (12 for Pipit, 31 for Kind2),
as well as contract statements and boilerplate.

We were able to verify the Kind2 implementation of the complete trigger-fetch mechanism
for up to 32 triggers; above that, our verification timed out after one hour. For the simplified
trigger-fetch mechanism, we were able to verify up to 64 triggers. For reference, hardware
implementations of TTCAN such as M_TTCAN support up to 64 triggers [36].

We plan to verify the remainder of the TTCAN implementation and publish it separately.
Prior work formalising TTCAN has variously modeled the protocol itself [39, 33, 30], instances
of the protocol [20], and abstract models of TTCAN implementations [29], but we are unaware
of any prior work that has verified an executable implementation of TTCAN.

Separately, Pipit has also been used to implement and verify a real-time controller for a
coffee machine reservoir control system [38]. The reservoir has a float switch to sense the
water level and a solenoid to allow the intake of water. The specification includes a simple
model of the water reservoir and shows that the reservoir does not exceed the maximum
level under different failure-mode assumptions.

ECOOP 2024

34:24 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

7 Related work

Using existing Lustre tools to verify and execute the time-triggered CAN driver from Section 2
is nontrivial. Compiling the triggers array with an unverified compiler such as Lustre V6 [24]
or Heptagon [19] is straightforward; however, the verified Lustre compiler Vélus [7] does not
support arrays, records, or a foreign-function interface. Recent work on translation validation
for LustreC [9] also does not yet support arrays.

Verifying the time-triggered CAN driver is trickier, as the restrictions placed on the
triggers array – that triggers are sorted by time-mark, there must be an adequate time-gap
between a trigger and its next-enabled, and a trigger’s time-mark must be greater-than-or-
equal-to its index – naturally require quantifiers. As described in Section 6, Kind2 does
include experimental array and quantifier support, but in our experiments was unable to
verify the full logic for arrays up to the 64 triggers, which is the size supported by hardware
implementations of TTCAN. Additionally, due to the limitations that require the constant
triggers array to be passed as an argument, compiling the program with Lustre V6 would
result in the entire triggers array being copied to the stack each iteration, which is unlikely
to result in acceptable performance.

Other model-checkers for Lustre such as Lesar [35], JKind [16] and the original Kind [21]
do not support quantifiers. It may be possible to encode the quantifiers as fixed-size loops
in those that support arrays, but ensuring that these loops do not affect the execution or
runtime complexity of the generated code does not appear to be straightforward.

These model-checkers have definite usability advantages over the general-purpose-prover
approach offered here: they can often generate concrete counterexamples and implement
counterexample-based invariant-generation techniques such as ICE [18] and PDR [8, 14].
However, even when the problem can be expressed, these model-checkers do not provide much
assurance that the semantics they use for proofs matches the compiled code. In the future, we
would like to investigate integrating Pipit with a model-checker via an unverified extraction:
such an extraction may allow some of the usability benefits such as counterexamples and
invariant generation. If this integration were used solely for debugging and suggesting
candidate invariants, then such a change would not necessarily expand the trusted computing
base – that is, we could augment our end-to-end verified workflow with unverified but validated
invariant generation.

Recent work has also introduced a form of refinement types for Lustre [12]. Rather
than using transition systems, this work generates self-contained verification conditions
based on the types of streams. Such a type-based approach promises to allow abstraction
of the implementation details. However, for general-purpose functions such as count_when
from Section 2, it is not clear how to give it a specification that actually abstracts the
implementation: a simple specification that the result is within some range would hide too
much and be insufficient for verifying the rest of the system. For such functions, the best
specification is likely to include a re-statement of the implementation itself.

The embedded language Copilot generates real-time C code for runtime monitoring [28].
Recent work has used translation validation to show that the generated C code matches
the high-level semantics [40]. Copilot supports model-checking via Kind2; however, the
model-checking has a limited specification language and does not support contracts.

Early work embedding a denotational semantics of Lucid Synchrone in an interactive
theorem prover focussed on the semantics itself, rather than proving programs [4]. There is
ongoing work to construct a denotational semantics of Vélus for program verification [6]. We
believe that the hybrid SMT approach of F⋆ will allow for a better mixture of automated

A. Robinson and A. Potanin 34:25

proofs with manual proofs. Compared to Vélus alone, the trusted computing base of Pipit is
larger: we depend on all of F⋆, Low⋆’s unverified C code extraction and the Z3 SMT solver;
in comparison, Vélus’ C code generation is verified and does not depend on any SMT solver.

The deferred aspect of our proofs is similar to the deferred proofs of verification conditions
for imperative programs, such as [32]. However, such verification conditions are syntactically
deferred so that the verification condition can be proved later; in our case, the verification
conditions are semantically deferred, so that more knowledge of the enclosing program
can be exploited in the proof. In imperative programs, this sort of extra knowledge is
generally provided explicitly as loop invariants, and non-looping statements have their
weakest precondition computed automatically. In Lustre-style synchronous languages such
as ours, programs tend to be composed of many nested recursive streams, which perform a
similar function to loops. Explicitly specifying an invariant for each recursive stream would
be cumbersome; deferring the proof allows such invariants to be implicit.

8 Conclusion

We have presented Pipit, a verified compiler and proof system for reactive systems. Our
implementation of the TTCAN driver logic shows that, by embedding pure F⋆ functions
for array operations, Pipit can express programs which are currently unsupported by other
verified Lustre compilers. Pipit can also verify high-level program properties which are
difficult to express and prove in existing Lustre model-checkers. Our development includes
verified translations to both abstract and executable transition systems; both are shown to
preserve the dynamic semantics. We also introduced a checked semantics, which describes
the semantics of checked properties and contracts; proof obligations generated by translation
to abstract transition system are verified to correspond to these semantics.

In the future, we intend to verify the remainder of the TTCAN driver logic. We also
intend to increase the expressivity of Pipit by adding clocks, which are used to describe
partially-defined streams [10]. Clocks are important for composing complex systems together
and avoiding unnecessary computation; they may be useful if it becomes necessary to optimise
the runtime of the TTCAN driver.

We are interested in further pursuing the intersection of model-checking with interactive
theorem proving. A smart-contract called Djed [42] currently uses a mixture of Kind2 [11]
and manual Isabelle/HOL proofs to show that the contract is well-behaved. In future work,
we would like to further investigate whether Pipit’s integration of streaming proofs with F⋆’s
automated proof system would be able to provide similar proofs, without introducing any
semantic gap between the two systems.

References
1 ISO/CD 11898-4. Road vehicles - Controller area network (CAN) - Part 4: Time triggered

communication. Standard, International Organization for Standardization, 2000.
2 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library

(SMT-LIB). www.SMT-LIB.org, 2016.
3 Dariusz Biernacki, Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. Clock-directed

modular code generation for synchronous data-flow languages. In Proceedings of the 2008
ACM SIGPLAN-SIGBED conference on Languages, compilers, and tools for embedded systems,
pages 121–130, 2008.

4 Sylvain Boulmé and Grégoire Hamon. A clocked denotational semantics for Lucid-Synchrone
in Coq. Rap. tech., LIP6, 2001.

ECOOP 2024

34:26 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

5 Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel
Rieg. A formally verified compiler for Lustre. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2017.

6 Timothy Bourke, Paul Jeanmaire, and Marc Pouzet. Towards a denotational semantics of
streams for a verified Lustre compiler, 2022. URL: https://types22.inria.fr/files/2022/
06/TYPES_2022_slides_28.pdf.

7 Timothy Bourke, Basile Pesin, and Marc Pouzet. Verified compilation of synchronous dataflow
with state machines. ACM Transactions on Embedded Computing Systems, 22(5s):1–26, 2023.

8 Aaron R Bradley. SAT-based model checking without unrolling. In Verification, Model
Checking, and Abstract Interpretation: 12th International Conference, VMCAI 2011, Austin,
TX, USA, January 23-25, 2011. Proceedings 12. Springer, 2011.

9 Lélio Brun, Christophe Garion, Pierre-Loïc Garoche, and Xavier Thirioux. Equation-directed
axiomatization of Lustre semantics to enable optimized code validation. ACM Transactions
on Embedded Computing Systems, 22(5s):1–24, 2023.

10 Paul Caspi and Marc Pouzet. A functional extension to Lustre. Intensional Programming I,
1995.

11 Adrian Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli. The Kind 2 model
checker. In Computer Aided Verification, 2016.

12 Jiawei Chen, José Luiz Vargas de Mendonça, Shayan Jalili, Bereket Ayele, Bereket Ngussie
Bekele, Zhemin Qu, Pranjal Sharma, Tigist Shiferaw, Yicheng Zhang, and Jean-Baptiste
Jeannin. Synchronous programming and refinement types in robotics: From verification to
implementation. In Proceedings of the 8th ACM SIGPLAN International Workshop on Formal
Techniques for Safety-Critical Systems, 2022.

13 Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. Scade 6: A formal language for embedded
critical software development. In 2017 International Symposium on Theoretical Aspects of
Software Engineering (TASE), pages 1–11. IEEE, 2017.

14 Niklas Eén, Alan Mishchenko, and Robert Brayton. Efficient implementation of property
directed reachability. In 2011 Formal Methods in Computer-Aided Design (FMCAD). IEEE,
2011.

15 Thomas Fuehrer, Bernd Mueller, Florian Hartwich, and Robert Hugel. Time triggered CAN
(TTCAN). SAE transactions, pages 143–149, 2001.

16 Andrew Gacek, John Backes, Mike Whalen, Lucas Wagner, and Elaheh Ghassabani. The
JKind model checker. In Computer Aided Verification: 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part II 30, pages 20–27. Springer, 2018.

17 Emilio Jesús Gallego Arias, Pierre Jouvelot, Sylvain Ribstein, and Dorian Desblancs. The
W-calculus: a synchronous framework for the verified modelling of digital signal processing
algorithms. In Proceedings of the 9th ACM SIGPLAN International Workshop on Functional
Art, Music, Modelling, and Design, pages 35–46, 2021.

18 Pranav Garg, Christof Löding, Parthasarathy Madhusudan, and Daniel Neider. ICE: A
robust framework for learning invariants. In Computer Aided Verification: 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings 26. Springer, 2014.

19 Léonard Gérard, Adrien Guatto, Cédric Pasteur, and Marc Pouzet. A modular memory
optimization for synchronous data-flow languages: application to arrays in a Lustre compiler.
ACM SIGPLAN Notices, 47(5), 2012.

20 Xiaoyun Guo, Toshiaki Aoki, and Hsin-Hung Lin. Model checking of in-vehicle networking
systems with CAN and FlexRay. Journal of Systems and Software, 161:110461, 2020.

21 George Hagen and Cesare Tinelli. Scaling up the formal verification of Lustre programs with
SMT-based techniques. In 2008 Formal Methods in Computer-Aided Design. IEEE, 2008.

22 Florian Hartwich, Thomas Führer, Bernd Müller, and Robert Hugel. Integration of time
triggered CAN (TTCAN_TC). SAE Transactions, pages 112–119, 2002.

https://types22.inria.fr/files/2022/06/TYPES_2022_slides_28.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_slides_28.pdf

A. Robinson and A. Potanin 34:27

23 Son Ho, Jonathan Protzenko, Abhishek Bichhawat, and Karthikeyan Bhargavan. Noise*: A
library of verified high-performance secure channel protocol implementations. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 107–124. IEEE, 2022.

24 Erwan Jahier, Pascal Raymond, and Nicolas Halbwachs. The Lustre V6 reference manual.
Verimag, Grenoble, Dec, 2016.

25 Kind2. Integer division rounds to negative infinite. Github issues, 2023. URL: https:
//github.com/kind2-mc/kind2/issues/978.

26 Kind2. Kind2 user documentation, 2.1.1 edition, 2023. URL: https://kind.cs.uiowa.edu/
kind2_user_doc/doc.pdf.

27 Kind2. Top-level array definition causes runtime failures. Github issues, 2024. URL: https:
//github.com/kind2-mc/kind2/issues/1043.

28 Jonathan Laurent, Alwyn Goodloe, and Lee Pike. Assuring the guardians. In Runtime
Verification: 6th International Conference, RV 2015, Vienna, Austria, September 22-25, 2015.
Proceedings. Springer, 2015.

29 Gabriel Leen and Donal Heffernan. Modeling and verification of a time-triggered networking
protocol. In International Conference on Networking, International Conference on Systems
and International Conference on Mobile Communications and Learning Technologies (IC-
NICONSMCL’06), pages 178–178. IEEE, 2006.

30 Xin Li, Jian Guo, Yongxin Zhao, and Xiaoran Zhu. Formal modeling and verifying the
TTCAN protocol from a probabilistic perspective. Journal of Circuits, Systems and Computers,
28(10):1950177, 2018.

31 Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel,
Cătălin Hriţcu, Monal Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan
Protzenko, et al. Meta-F⋆: Proof automation with SMT, tactics, and metaprograms. In
Programming Languages and Systems: 28th European Symposium on Programming, ESOP
2019, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6–11, 2019, Proceedings. Springer International
Publishing Cham, 2019.

32 Liam O’Connor. Deferring the details and deriving programs. In Proceedings of the 4th ACM
SIGPLAN International Workshop on Type-Driven Development, pages 27–39, 2019.

33 Can Pan, Jian Guo, Longfei Zhu, Jianqi Shi, Huibiao Zhu, and Xinyun Zhou. Modeling and
verification of CAN bus with application layer using UPPAAL. Electronic Notes in Theoretical
Computer Science, 309:31–49, 2014.

34 Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng
Wang, Santiago Zanella Béguelin, Antoine Delignat-Lavaud, Catalin Hritcu, Karthikeyan
Bhargavan, Cédric Fournet, et al. Verified low-level programming embedded in F⋆. Proc.
ACM program. lang., 1(ICFP), 2017.

35 Pascal Raymond. Synchronous program verification with Lustre/Lesar. Modeling and Verific-
ation of Real-Time Systems, 2008.

36 Robert Bosch GmbH. M_TTCAN Time-triggered Controller Area Network User’s Manual,
3.3.0 edition, 2019. URL: https://www.bosch-semiconductors.com/media/ip_modules/pdf_
2/m_can/mttcan_users_manual_v330.pdf.

37 Amos Robinson and Ben Lippmeier. Machine fusion: merging merges, more or less. In
Proceedings of the 19th International Symposium on Principles and Practice of Declarative
Programming, pages 139–150, 2017.

38 Amos Robinson and Alex Potanin. Pipit: Reactive systems in F⋆(extended abstract). In
Proceedings of the 8th ACM SIGPLAN International Workshop on Type-Driven Development,
2023.

39 Indranil Saha and Suman Roy. A finite state analysis of time-triggered CAN (TTCAN)
protocol using Spin. In 2007 International Conference on Computing: Theory and Applications
(ICCTA’07), pages 77–81. IEEE, 2007.

ECOOP 2024

https://github.com/kind2-mc/kind2/issues/978
https://github.com/kind2-mc/kind2/issues/978
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf
https://kind.cs.uiowa.edu/kind2_user_doc/doc.pdf
https://github.com/kind2-mc/kind2/issues/1043
https://github.com/kind2-mc/kind2/issues/1043
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/m_can/mttcan_users_manual_v330.pdf
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/m_can/mttcan_users_manual_v330.pdf

34:28 Pipit on the Post: Proving Pre- and Post-Conditions of Reactive Systems

40 Ryan G Scott, Mike Dodds, Ivan Perez, Alwyn E Goodloe, and Robert Dockins. Trust-
worthy runtime verification via bisimulation (experience report). Proceedings of the ACM on
Programming Languages, 7(ICFP):305–321, 2023.

41 Michael Short and Michael J Pont. Fault-tolerant time-triggered communication using CAN.
IEEE transactions on Industrial Informatics, 3(2):131–142, 2007.

42 Joachim Zahnentferner, Dmytro Kaidalov, Jean-Frédéric Etienne, and Javier Díaz. Djed: a
formally verified crypto-backed autonomous stablecoin protocol. In 2023 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), pages 1–9. IEEE, 2023.

Partial Redundancy Elimination
in Two Iterative Data Flow Analyses
Reshma Roy1 #

National Institute of Technology, Calicut, India

Sreekala S #

National Institute of Technology Calicut, India

Vineeth Paleri #

National Institute of Technology Calicut, India

Abstract
Partial Redundancy Elimination (PRE) is a powerful and well-known code optimization. The idea to
combine Common Subexpression Elimination and Loop Invariant Code Motion optimizations into a
single optimization was originally conceived by Morel and Renvoise. Their algorithm is bidirectional
in nature and was not complete and optimal. Later, Knoop et al. proposed the first complete and
optimal algorithm, Lazy Code Motion (LCM), which takes four unidirectional data flow analyses. In
a recent paper, Roy et al. proposed an algorithm for PRE that uses three iterative data flow analyses.
Here, we propose an efficient algorithm for PRE, which takes only two iterative data flow analyses
followed by two computation passes over the program. The algorithm is both computationally and
lifetime optimal. The proposed algorithm computes the information required for performing the
transformation in two passes over the program without considering safety. The two iterative data
flow analyses are required for making the transformation safe. The use of well-known data flow
analyses, i.e., available expressions analysis and anticipated expressions analysis, makes the algorithm
simple to understand and easy to prove its correctness. The proposed algorithm is more efficient
than the existing algorithms since it takes only two iterative data flow analyses. The efficiency of
the proposed algorithm is demonstrated by implementing it in LLVM Compiler Infrastructure and
comparing the time taken with other selected best-known algorithms.

2012 ACM Subject Classification Software and its engineering → Compilers

Keywords and phrases Static Analysis, Data Flow Analysis, Code Optimization, Partial Redundancy
Elimination

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.35

1 Introduction

Partial Redundancy Elimination (PRE) is a code optimization technique used in compiler
design to eliminate redundant computations in a program. It focuses on identifying and
eliminating computations that are partially redundant, i.e., the computations that occur
more than once in a path in the input program. PRE helps reduce the number of instructions
executed and can lead to significant performance improvements in a program. Partial
redundancy elimination involves the insertion and deletion of computations at appropriate
points in the program so that after the transformation, the program contains less than
or equal number of occurrences of the original computation in any path. To preserve the
semantics of the original program, the insertions of computations corresponding to the
transformation must be safe, i.e., the program must not introduce new computations along
any path in the original program.

1 corresponding author

© Reshma Roy , Sreekala S, and Vineeth Paleri;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 35; pp. 35:1–35:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:r.reshmaroy@gmail.com
https://orcid.org/0000-0003-3134-4079
mailto:sreekala.sks@gmail.com
https://orcid.org/0009-0007-0641-6399
mailto:vineethpaleri@gmail.com
https://orcid.org/0000-0002-3394-1558
https://doi.org/10.4230/LIPIcs.ECOOP.2024.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

PRE can be either lexical-based or value-based. Lexical-based PRE focuses on eliminating
lexically identical expressions on a path, while a value-based PRE eliminates expressions
with identical values on a path. In this work, we focus on lexical-based partial redundancy
elimination and anticipate that the insights from this work may find its application in the
value-based approach as well. Here, we propose an efficient algorithm for partial redundancy
elimination using two iterative data flow analyses followed by two computation passes
over the program. The data flow analyses used are the well-known classical analyses, i.e.,
available expressions analysis and anticipated expressions analysis. Unlike the existing works
[6, 9, 14, 16], the proposed algorithm requires only two iterative data flow analyses to perform
partial redundancy elimination resulting in a significant efficiency gain. The contributions of
our work are:
1. A new algorithm for lexical-based PRE, which takes only two iterative data flow analyses

compared to at least three analyses in the existing well-known algorithms [6, 9, 14, 16].
2. Correctness proof of the proposed algorithm.
3. An experimental comparison of the proposed algorithm with the selected existing al-

gorithms [9, 16] demonstrating its efficiency and precision.

1.1 Background
Morel and Renvoise, in their seminal work on partial redundancy elimination (PRE) [12],
observed that an algorithm for partial redundancy elimination could potentially address both
redundancy elimination and the loop invariant code motion simultaneously. Their approach
involved four bidirectional data flow analyses. Morel and Renvoise’s algorithm did not achieve
computational optimality, i.e., it could not eliminate all partially redundant expressions in a
program. Subsequently, Dhamdhere [5] improved upon Morel and Renvoise’s algorithm by
introducing the concept of edge placement, eliminating more partial redundancies. Another
challenge in Morel and Renvoise’s algorithm was the occurrence of redundant code motion,
an issue that Dhamdhere [5] and Drechsler et al. [7] tackled as they implemented various
improvements.

Knoop, Ruthing, and Steffen introduced the lazy code motion algorithm for partial
redundancy elimination (PRE) [9], incorporating four unidirectional data flow analyses. This
algorithm stands out for its computational and lifetime optimality, using a hoisting-followed-
by-sinking approach. Knoop et al. devised a method to identify the earliest and latest points
for performing the transformation. Another aspect of their algorithm is the preprocessing
step, which involves inserting dummy nodes at the edges of nodes with multiple predecessors.
Unfortunately, this step leads to unnecessary edge insertions, resulting in overhead. In
response to these considerations, Knoop et al. later refined the lazy code motion algorithm
to enhance its practical utility [10]. Additionally, Drechsler and Stadel [8] proposed a variant
of the lazy code motion algorithm with a primary focus on practical applicability.

In the realm of partial redundancy elimination (PRE), Paleri et al. presented an algorithm
utilizing classical data flow analyses, i.e., availability, anticipability, partial availability, and
partial anticipability [14]. Notably, the introduction of the path concept in their paper
enhances the algorithm’s comprehensibility. Furthermore, this algorithm is both computa-
tionally and lifetime optimal. Originally designed for nodes containing single statements,
Paleri et al. later modified their algorithm to nodes containing multiple instructions, such as
the standard basic block [15]. In a work akin to the approach by Paleri et al., Dhamdhere
introduced the concept of eliminatability paths to address the optimal placement of computa-
tions [6]. Like those of prior researchers, Dhamdhere’s approach relies on four unidirectional

R. Roy, S. S, and V. Paleri 35:3

analyses to eliminate partial redundancies. Recent work by Roy et al. [16] describes an
algorithm for PRE that is more efficient than the other computationally optimal algorithms
available in the literature since it takes only three iterative data flow analyses - anticipated
expressions, safe partially available expressions, and safe redundancy path - compared to four
analyses taken by the other algorithms.

One limitation of the presented PRE algorithm is its exclusive focus on lexically equivalent
expressions. In contrast, a value-based PRE approach can potentially uncover a greater
number of redundancies. The value-based method identifies equivalent expressions based on
their actual values rather than relying solely on lexical equivalence. This distinction makes it
a more powerful optimization technique for effectively eliminating redundant expressions,
reported in the literature [4, 11, 13, 17].

2 Notations and Definitions

We found the formal definitions and notations from [14] appropriate for the proposed
algorithm. In this section, we give an informal description of the terms used in the algorithm.

2.1 Control Flow graph

We represent a program as a Control Flow Graph (CFG) G = (N, E, entry, exit) where N

represents the set of nodes in the graph and E is the set of edges in the graph. We assume
that the CFG has two empty basic blocks, an entry node which represents the starting point
of the graph and an exit node to which all exits of the graph go. An entry is the unique
entry node with no predecessor nodes, and exit is the unique exit node without any successor
nodes. Each node in the CFG contains at most one statement in the three-address code
form. The assignment statement is of the form x = e, where x is a variable, and e is an
expression built of variables, constants, and operators. The edge from node i to node j is
represented as (i, j). The sets of immediate predecessors and immediate successors of a node
n are denoted as pred(n) and succ(n), respectively, where pred(n) = {m|(m, n) ∈ E} and
succ(n) = {m|(n, m) ∈ E}.

2.1.1 Annotated Control Flow Graph

An annotated control flow graph (ACFG) is a CFG annotated with the information obtained
from a data flow analysis at every program point in the CFG, i.e., the input and output
points of the basic blocks in the CFG.

2.2 Boolean Properties Associated with the Expressions

An expression e is said to be locally available from node i, i.e., available at the output point
of node i (AvLoci), if e appears in node i, and the statement in node i does not modify the
operands in e. An expression e is said to be locally anticipated from node i (AntLoci), i.e.,
anticipated at the input point of node i if e appears in node i. An expression e is said to be
transparent in node i (Transpi), if the execution of the statement in node i does not modify
the operands in e.

ECOOP 2024

35:4 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

An expression is available at a point if it has been computed along all paths reaching this
point with no changes to its operands since the computation. An expression is said to be
anticipated at a point if every path from this point has a computation of that expression
with no changes to its operands in between. An expression e is partially available at point
p if there is at least one path from entry to p which computes e, and after the last such
computation before reaching p there is no modification to its operands. An expression e,
occurring at a point p, is partially redundant if e is partially available at p. An expression e

is partially anticipated at p if there is at least one path from p to exit which computes e with
no changes to its operands in between p and the point of occurrence of e. A point is safe for
insertion of an expression e if the expression is either available or anticipated at that point.
An expression is safe partially available at a point p if the expression is partially available at p

and the path from point k to p is safe, where k is the point from which expression is partially
available at p. The path formed by connecting adjacent program points where the expression
is safe partially available is known as safe partially available path. An expression is said to
be safe partially anticipated at a point p if the expression is partially anticipated at p and
the path from point p to k is safe, where k is the point from which e is partially anticipated
at p. A path is said to be a safe redundancy path for an expression if the expression is both
safe partially available and safe partially anticipated at all points on the path.

The notations used for the properties defined in this section, corresponding to an expression
e are described below:

Notations Data flow properties

AvLoci : Locally Available at the output point of node i

AntLoci : Locally Anticipated at the input point of node i

Transpi : Transparent in node i

AvIni/AvOuti : Available at input/output point of node i

AntIni/AntOuti : Anticipated at input/output point of node i

SpavPathIni/SpavPathOuti : Input/output point of node i is on Safe Partially Available Path
SredPathIni/SredPathOuti : Input/output point of node i is on Safe Redundancy Path

The properties for all the nodes in the CFG are expressed in terms of Boolean equations.
We used the symbols summation/product (i.e.,

∑
/

∏
) for the confluence operator, + and .

for Boolean connectives or and and, and ¬ for Boolean negation.

3 Basic Concept

We build on the basic concepts from [14]. The basic idea in [14] is briefly outlined below.
Partial Redundancy Elimination consists of two stages: detection and elimination. An

expression e at a point p is said to be partially redundant if the expression is partially available
at p. Thus, to detect partially redundant expressions, we require only the information
regarding the partially available expressions. This information is obtained through partially
available expressions analysis. In order to eliminate the partially redundant expressions, we
require additional information on partially anticipated expressions, which is obtained through
partially anticipated expressions analysis.

The fundamental idea behind partial redundancy elimination is to find redundancy
paths. To identify the redundancy paths, we first mark all the program points where the
expression under consideration is both partially available and partially anticipated. Now,
we identify the redundancy paths by connecting the adjacent program points which are
marked. Partial redundancy elimination is done by insertions and replacements of expressions

R. Roy, S. S, and V. Paleri 35:5

1 2

3

4

1 2

3

4

1 2

3

4

1 2

3

4

a = x+ y

b = x+ y

a = x+ y

b = x+ y

a = x+ y

b = x+ y b = h

h = x+ y
a = h

h = x+ y

Insert

Replace

Insert

Replace

(a) Partially Available path and
Partially Anticipated path

(b) Redundancy path

(c) The points of insertions
and replacements

(d) After transformation

Partially Anticipated path
Partially Available path
Redundancy path

Figure 1 An example for partial redundancy elimination.

at appropriate points in the program [See Fig. 1(c)]. As the initial transformation step,
all partially redundant expressions are made totally redundant by inserting the statement
h = e, where e is the expression of interest, at the edges that enter the junction nodes on
the redundancy paths. Now, we insert the statement h = e at the starting points of the
redundancy paths. The next step involves the elimination of all the redundant expressions
through replacements. The replacement involves the redundant expressions being replaced
by the temporary variable h.

We consider the same example in [16] to explain the basic concept. In Fig. 1(a), the
purple line represents the path where the expression is partially available at all points on the
path. Similarly, the orange line denotes the path where the expression is partially anticipated
at all points on the path. The redundancy path is marked in the red line in Fig. 1(b). The
insertion points are the input point of node 1 and the edge (2, 3), and the replacement points
are nodes 1 and 4, as shown in Fig. 1(c) based on the basic idea explained above. The CFG
after the transformation is given in Fig. 1(d).

3.1 The New Approach
As stated above, redundancy path is the basic idea behind PRE. We observe an important
characteristic of a redundancy path corresponding to an expression e. In a redundancy path,
the first and last nodes contain the expression e [See Fig. 1(c)]. To identify this redundancy
path for e, we need to visit the nodes in the CFG in a systematic fashion such that e must
be partially available and partially anticipated in the nodes.

A partially available path for an expression e starts at a node (say s) containing e in the
CFG and moves in the forward direction. We propagate the partially available information
of e from the node s forward until e is killed or the exit node of the CFG is reached. A
partially anticipated path for an expression e starts at a node (say t) containing e and moves

ECOOP 2024

35:6 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

in the backward direction. We propagate partially anticipated information of e from the node
t along the partially available path computed earlier until e is no longer partially available.
The path from s to t along which the expression e is both partially available and partially
anticipated forms the redundancy path. Thus, the redundancy path is obtained using just two
computations – not two iterative data flow analyses.

To preserve the semantics of the original program, the insertions of computations cor-
responding to the transformation done during the PRE algorithm must be safe. We use
the notion of safety to preserve the semantics of the transformed program. A point p is
safe for insertion of an expression e if e is available or anticipated at p. Hence, instead of a
simple redundancy path, we identify a safe redundancy path in the proposed algorithm. The
information required to compute safety is obtained using two classical data flow analyses:
available expressions analysis and anticipated expressions analysis. After computing safety
information, safe redundancy paths are computed the same way as the computation of
redundancy paths where propagation must additionally satisfy the safety property. Thus, the
safe redundancy path is identified using just two computations: safe partially available path
computation and safe redundancy path computation, which are detailed in Section 4.

Overall, the algorithm takes two iterative data flow analyses followed by two computation
passes over the program.

4 The Proposed Algorithm for PRE

The proposed algorithm consists of two phases: a data flow analysis phase and a computation
phase. The first phase has two classical unidirectional data flow analyses: available expression
analysis and anticipated expression analysis. The second phase contains the computations
for safe partially available path and safe redundancy path. The algorithm is presented for a
single arbitrary expression e. However, an independent combination of all the expressions in
a program will result in a global algorithm for partial redundancy elimination.

A detailed description of the data flow analyses and computations is presented in this
section.

4.1 Data Flow Analysis Phase

4.1.1 Available Expression analysis

The available expression analysis (definition provided in Section 2.2) is done in the forward
direction of the control flow graph. To solve the forward available expression analysis, we
need to initialize AvOutentry with the value False because the expression is not available
at the output point of the entry node. Note that an entry node is the first node of a CFG
with no instructions in it. We initialize AvOuti = Top (Top is denoted by ⊤) for all
other nodes, as this value will allow the iterative algorithm to converge to the desired value.
Note that for a value x, x ∧ ⊤ = x. The iterative data flow analysis to compute available
expression information is given in Algorithm 1.

R. Roy, S. S, and V. Paleri 35:7

Algorithm 1 Iterative data flow analysis to compute available expression information.

Input : Control Flow Graph(CFG), a program expression e.
Output : Input CFG annotated with availability information at all points for the

expression e.
1 Procedure AvailExpr(CFG, e)
2 AvOutentry = False
3 for each node i ̸= entry do
4 AvOuti = ⊤
5 end
6 while changes to any AvOut occur do
7 for each node i ̸= entry do
8 AvIni =

∏
p∈pred(i) AvOutp

9 AvOuti = AvLoci + AvIni.Transpi

10 end
11 end
12 end

4.1.2 Anticipated Expression analysis

The anticipated expression analysis (definition provided in Section 2.2) is carried out in the
backward direction of the control flow graph. To solve the backward anticipated expression
analysis, we need to initialize AntInexit with the value False because the expression is not
anticipated at the input point of the exit node. We initialize AntIni = ⊤ for all other nodes,
as this value will allow the iterative algorithm to converge to the desired value. The iterative
data flow analysis to compute anticipated expression information is given in Algorithm 2.

Algorithm 2 Iterative data flow analysis to compute anticipated expression information.

Input : Control Flow Graph(CFG), a program expression e.
Output : Input CFG annotated with anticipated information at all points for the

expression e.
1 Procedure AntExpr(CFG, e)
2 AntInexit = False
3 for each node i ̸= exit do
4 AntIni = ⊤
5 end
6 while changes to any AntIn occur do
7 for each node i ̸= exit do
8 AntOuti =

∏
s∈succ(i) AntIns

9 AntIni = AntLoci + AntOuti.Transpi

10 end
11 end
12 end

ECOOP 2024

35:8 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

4.2 Computation Phase

The second phase in the proposed algorithm consists of computations for safe partially
available path and safe redundancy path. During this phase, the necessary information is
computed by propagating data from specific points along predefined paths. It is important
to note that the paths for data propagation are different for the two distinct computations.
The worklist method is used to compute both computations.

4.2.1 Worklist

The basic idea of a work list is to maintain a list of nodes to be processed until the list
becomes empty. There are three stages in the use of the worklist in the algorithm:

Initialization: The WorkList is initialized with a set of nodes in the CFG containing
the expression of interest.
Processing WorkList:

GetNode: The node n to be processed next is taken out from the WorkList.
Process: Perform the computations on the node n.
Update: If there is a change in the value computed for the node n in the processing
step, successor or predecessor nodes of n − for safe partially available path and safe
redundancy path computations respectively − are added to the WorkList.

Termination: The algorithm terminates when the WorkList becomes empty, indicating
that all the required nodes are processed.

This worklist algorithm propagates the property, i.e., safe partially available path or safe
redundancy path, from specific nodes, with which the worklist is initialized, through the nodes
in the control flow graph until the property becomes False. The algorithm is designed in
such a way that each point in the CFG is processed only once.

The computations are detailed in the following sections.

4.2.2 Safe Partially Available Path Computation

In the initialization step of the safe partially available path computation, the nodes containing
the expression of interest are collected and arranged in the reverse post-order sequence of
their appearance within the CFG. This order facilitates efficient computation of information
in the forward direction, commencing from each expression found within the CFG.

The basic idea is to compute safe partially available path for an expression by traversing
a safe path in the forward direction and marking the points where the expression is also
partially available. We get a safe path by connecting all the adjacent program points that
are safe. Note that a point p is safe for insertion of an expression e if e is either available or
anticipated at p.

The information required to compute safety is obtained during the first phase of the
algorithm. After collecting available expression and anticipated expression information in
the first phase, instead of computing safety as an independent computation, we integrate
safety within the safe partially available path computation for efficiency. The computation
of safe partially available path begins from a node with the expression of interest e and
continues forward along the safe path until partial availability becomes False. Note that
partial availability becomes False when expression e is killed.

R. Roy, S. S, and V. Paleri 35:9

Algorithm 3 Computation of safe partially available path for an expression e.

Input : Control Flow Graph annotated with available and anticipated information
for e.

Output : Input CFG annotated with safe partially available path information for e.
1 Procedure SafeParAvailExpr(ACFG)
2 Create empty WorkList;
3 for each node i do // The order of traversal is reverse post order
4 SpavPathIni = False
5 SpavPathOuti = False
6 VisitedIni = False
7 VisitedOuti = False
8 if node i contains expression e then
9 WorkList.add(i)

10 end
11 while !WorkList.isEmpty() do
12 i = WorkList.remove()
13 if !VisitedOuti then
14 SpavPathOuti = AvLoci+ SpavPathIni. Transpi

1

15 VisitedOuti= True
16 if change to SpavPathOuti occur then
17 for each node s ∈ succ(i) do
18 if !VisitedIns then
19 if SafeIns then // SafeIns = AvIns + AntIns

20 SpavPathIns = True
21 VisitedIns = True
22 WorkList.add(s)
23 end
24 end
25 end

4.2.3 Safe Redundancy Path Computation

In the initialization phase of the computation for safe redundancy path, the nodes containing
the expression of interest are stored in the post-order sequence of their appearance within the
CFG. This arrangement facilitates the efficient computation of information in a backward
direction, commencing from each expression found within the CFG.

The basic idea is to compute safe redundancy path for an expression e by traversing a
safe partially available path in the backward direction and marking the points where the
expression is also partially anticipated. After computing safe partially available path, the safe
redundancy path computation begins from a node in the initialized work list, and it progresses
in a backward direction along the safe partially available path until the partially anticipated
property becomes False. Note that partially anticipated property becomes False when
expression e is killed.

1 AvLoci =⇒ SafeOuti and SpavPathIni. Transpi =⇒ SafeOuti

ECOOP 2024

35:10 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

Algorithm 4 Computation of safe redundancy path for an expression e.

Input : Control Flow Graph annotated with safe partially available path
information for e.

Output : Input CFG annotated with safe redundancy path information for e.
1 Procedure SafeRedPath(ACFG)
2 Create empty WorkList;
3 for each node i do // The order of traversal is post order
4 SredPathIni = False
5 SredPathOuti = False
6 VisitedIni = False
7 VisitedOuti = False
8 if node i contains expression e then
9 WorkList.add(i)

10 end
11 while !WorkList.isEmpty() do
12 i = WorkList.remove()
13 if !VisitedIni then
14 SredPathIni = SpavIni. (AntLoci + SredPathOuti. Transpi)

VisitedIni = True
15 if change to SredPathIni occur then
16 for each node p ∈ pred(i) do
17 if !VisitedOutp then
18 if SpavPathOutp then
19 SredPathOutp = True
20 VisitedOutp = True
21 WorkList.add(p)
22 end
23 end
24 end

4.3 The Main Algorithm
The main algorithm for PRE is given in this section. After computing the required information
from the two phases of the algorithm given in sections 4.1 and 4.2, the points of transformation
are identified. We can divide the conceptual idea behind the algorithm into three stages:
1. Identification of partially redundant computations.
2. Conversion of partially redundant computations into totally redundant computations

through insertions of expressions at program points identified. During insertions, we
insert an assignment of the form h = expr, where h is a new temporary variable.

3. Elimination of all the redundant expressions through replacements at the identified
program points. During replacements, we replace some of the original computations of
expr by h.

We denote the insertion at the entry of node i by Inserti, insertion on edge (i, j) by
Insert(i,j), and replacement in node i by Replacei. These terms compute Boolean values,
and we use this information to detect the places of insertions and replacements. The proposed
algorithm for partial redundancy elimination is given as Algorithm 5. The Transform()
function in Algorithm 5 does the necessary transformation using the information computed
earlier in the algorithm.

R. Roy, S. S, and V. Paleri 35:11

Algorithm 5 Algorithm for Partial Redundancy Elimination.

Input : Control Flow Graph(CFG), a program expression e

Output : The input CFG with the partial redundancies of e eliminated.
1 Procedure PRE (CFG, e)
2 AvailExpr(CFG, e)
3 AntExpr(CFG, e)
4 SafeParAvailPath(ACFG)2 // A computation using work list

algorithm
5 SafeRedPath(ACFG)3 // A computation using work list algorithm
6 for each node i in the CFG do
7 Inserti = ¬ SredPathIni . SredPathOuti

8 Replacei = AvLoci.SredPathOuti + AntLoci.SredPathIni

9 end
10 for each edge (i,j) in CFG do
11 Insert(i,j) = ¬ SredPathOuti

12 .
13 SredPathInj

14 end
15 Transform(CFG, Insert1...n, Insert(1...n, 1...n), Replace1...n) /* n

represents the number of nodes in the CFG */
16 end

4.4 Example

In Fig. 2, we present an example [14] to illustrate the operation of the proposed algorithm.
In Fig. 2(a), the blue line represents the anticipated path. In Fig. 2(b), the orange line
shows the available path. The adjacent points which are either blue or orange are joined to
form the safe path. The red dotted line in Fig. 2(b) represents safe path. The red line in
Fig. 2(c) signifies the safe partially available paths. The brown line in Fig. 2(d) represents
the safe redundancy path, which is computed by traversing the safe partially available path
in a backward direction and identifying the points where the expression is also partially
anticipated. The transformed CFG with insertions and replacements is shown in Fig. 3. The
data flow analysis and the transformation information are given in Table 1.

5 Proof of Correctness and Optimality

In this section, we prove the correctness of the analyses performed in the proposed PRE
algorithm. In the algorithm, two well-known classical analyses are presented. Therefore,
we only provide proof of the correctness of the algorithms for computations in the PRE
algorithm. For the proof, as in the algorithm, we consider only one expression e in the input
program. Also, our CFG nodes have only a single statement. We assume that a statement of
the form x = x + 1 is transformed into two statements, t = x + 1 and x = t, where t is a
unique temporary variable.

2 ACFG with available and anticipated information for the expression e
3 ACFG with safe partially available path information for the expression e

ECOOP 2024

35:12 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

1

2

3 4

5 6

7

8

9

a =

= a + b

= a + b

= a + b

= a + b

Exit

Entry

(a) Anticipated Path.

1

2

3 4

5 6

7

8

9

a =

= a + b

= a + b

= a + b

= a + b

Exit

Entry

(b) Anticipated, Available, and Safe Path.

1

2

3 4

5 6

7

8

9

a =

= a + b

= a + b

= a + b

= a + b

Exit

Entry

(c) Safe Partially Available Path.

1

2

3 4

5 6

7

8

9

a =

= a + b

= a + b

= a + b

= a + b

Exit

Entry

(d) Safe Redundancy Path.

Figure 2 An Example demonstrating PRE by the proposed algorithm.

R. Roy, S. S, and V. Paleri 35:13

Table 1 Boolean Properties and Transformations.

Local Boolean Properties Global Boolean Properties Insertions and Replacements

AvLoci = {6, 7, 8, 9} AntIni = {3, 5, 6, 7, 8, 9} Inserti = {6}
AntLoci = {6, 7, 8, 9} AntOuti = {3, 4, 5, 6, 7} Insert(i,j) = {(3, 5), (4, 8)}

AvIni = {9} Replacei = {6, 7, 8, 9}
AvOuti = {6, 7, 8, 9}
SafeIni = {3, 5, 6, 7, 8, 9}
SafeOuti = {3, 4, 5, 6, 7, 8, 9}
SpavPathIni = {5, 7, 8, 9}
SpavPathOuti = {5, 6, 7, 8, 9}
SredPathIni = {5, 7, 8, 9}
SredPathOuti = {5, 6, 7, 8}

1

2

3 4

5 6

7

8

9

a =

= h

= h

= h

Entry

Exit

h = a + b

h = a + b

h = a + b

= h

Figure 3 CFG after transformation.

5.1 Correctness of Safe Partially Available Path computation

▶ Theorem 1 (Correctness). The computation of the safe partially available path is done
correctly.

Proof. We have to show that every point computed as safe partially available by the safe
partially available path computation (Algo.3) is correct. Let N represent the set of nodes in
the input CFG.

Axiom 1. {∀ i: i ∈ N: (SpavPathIni = False) Λ (SpavPathOuti = False)} at the
beginning.

[From initialisation in lines 4-5]

ECOOP 2024

35:14 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

Axiom 2. For an expression e, the input point of node i is on a safe partially available path
if the input point of i is safe and the output point of at least one predecessor of node i is on
the safe partially available path.
i.e., SpavPathIni = SafeIni. (

∑
p∈pred(i) SpavPathOutp) [By definition, Section 2.2]

Axiom 3. In the algorithm, SpavPathIni is set to True for a node i iff
{∃ p: p ∈ pred(i): SpavPathOutp.SafeIni} [Lines 16, 19-20]

▶ Lemma 2. The computation of the safe partially available path at the input point of node
i, i.e., SpavPathIni, is done correctly.

Proof. Proof is as follows:
Axiom 2 and Axiom 3 ⇒ SpavPathIni is set to True at the input point of node i

if and only if safe partial availability is true – (1)
(1) and Axiom 1 ⇒ The input point of node i which is not safe partially availa-

ble remains False – (2)
(1) and (2) ⇒ Lemma 2 ◀

Axiom 4. For an expression e, the output point of node i is on a safe partially available
path, if e is locally available or the input point of node i is on safe partially available path
and e is transparent in i. i.e., SpavPathOuti = Avloci + SpavPathIni.Transpi. [By
definition, Section 2.2]

▶ Lemma 3. The computation of the safe partially available path at the output point of node
i, i.e.,SpavPathOuti, is done correctly.

Proof. SpavPathOuti is changed only for the nodes that are added to the work list.
Therefore, we consider the nodes that are added to the work list. If a node i is added to the
work list, then either of the following cases holds.
Case 1. Node i contains expression e. [Line 9]

⇒ AvLoci – (3)
[Note that in our CFG, a block has only one instruction. Also, an instr-
uction of the form x = x + 1 is transformed into two statements,
t = x + 1 and x = t.]

⇒ SpavPathOuti [By Axiom 4] – (4)

Case 2. Node i does not contain the expression e (i.e. AvLoci is False) and SpavPathIni

is True. [Lines 20, 22] – (5)
We need to prove that, under the condition (5), SpavPathOuti is set to True if and only
if Transpi is True (as given in line 14).

SpavPathOuti ≡ AvLoci + SpavPathIni.Transpi

[By Axiom 4]
≡ False + SpavPathIni.Transpi

[AvLoci = False, From (5)]
≡ SpavPathIni.Transpi

[False + p ≡ p]
≡ True.Transpi

[SpavPathIni = True, From (5)]
≡ Transpi

[True . p ≡ p]
i.e., SpavPathOuti is True iff node i is transparent.
Hence, SpavPathOuti is set to True correctly in case 2. – (6)

R. Roy, S. S, and V. Paleri 35:15

(4) and (6) ⇒ SpavPathOuti is set to True at the output point of node i

if and only if safe partial availability is true. – (7)
(7) and Axiom 1 ⇒ The output point of node i which is not safe partially available

remains False. – (8)
(7) and (8) ⇒ Lemma 3 ◀

Lemma 2 and Lemma 3 => Theorem 1 ◀

▶ Theorem 4 (Completeness). The computation of the safe partially available path identifies
all points that are safe partially available.

Proof. We take three stages in the computation to prove the completeness:
Starting node of a safe partially available path: A safe partially available path begins
at the output point of a node containing the expression e. A node i containing the
expression e is added to the work list in lines 8-9. The node i is then taken out from the
work list (line 12) and safe partial availability information at the output point of node i

is computed correctly in line 14.
Propagation of information: The safe partial availability information at the output point
of node i is then propagated to the input point of each of the successor nodes, say j, if
the input point of node j is safe (lines 17-20), and those successor nodes are added to the
work list (line 22). Each of these successor nodes is later taken out from the work list
(line 12), and the information is further propagated from the input point to the output
point of node j if node j is transparent (line 14).
End node of a safe partially available path: The propagation ends under two conditions:

(i) The propagation from the input point to the output point of node i ends if e is killed
in i.

(ii) The propagation from the output point of node i to the input point of its successor
node j ends if input point of node j is not safe.

Hence, all possible safe partially available paths starting from a node i are computed
correctly during this process.

This process of propagation of safe partial availability information is performed from each
node containing e in the given input program. Hence, the computation identifies all points
on the safe partially available path. ◀

▶ Theorem 5 (Termination). Safe partially available path computation terminates.

Proof. The algorithm terminates when the work list is empty (line 11). Initially, the work
list contains nodes with the expression e from the input program (lines 8-9). After that,
a node i is added to the work list if there is a change of value in SpavPathOutp where
p ∈ pred(i) (lines 16, 22). The value in SpavPathOuti of a node i can change from the
initialized value False (line 5) to True at most once (line 14), owing to the fact that once
the value becomes True, it remains True. Hence, the number of nodes added to the work
list after initialization equals the number of value changes for SpavPathOut. If the total
number of nodes in the CFG is N , then there can be at most N number of value changes.
Since the nodes from the work list are removed (line 12) for computing SpavPathOut, and
the number of node additions is at most N , eventually the work list becomes empty. Hence,
the algorithm terminates. ◀

ECOOP 2024

35:16 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

5.2 Correctness of Safe Redundancy Path computation
▶ Theorem 6 (Correctness and Completeness). The computation of the safe redundancy path
is correct and complete.

The line of reasoning is similar to the reasoning given for safe partially available path, except
for the fact that the propagation in this case is in the backward direction and necessary
changes accordingly. Hence, the formal proof is avoided here.

5.3 Optimality of Transformation
▶ Theorem 7. The transformation in the proposed PRE algorithm is computationally and
lifetime optimal.

The proposed algorithm is based on the idea of the safe redundancy path in [14]. The
transformation done on the safe redundancy path is proved to be both computationally and
lifetime optimal in [14].

6 Experimental Results

In this section, we perform an experimental evaluation to compare the proposed algorithm
with existing ones. For comparison, we consider two aspects: the number of redundancies
detected (i.e., precision) and the running time of the algorithms. We have selected two of
the existing algorithms which are computationally and lifetime optimal for comparison. The
algorithms chosen for this comparison are: LCM [9], the well-known PRE algorithm which
takes four analyses, and PRE-3 [16], which takes three analyses.

In the proposed work, the algorithm is designed for an arbitrary expression e. For
implementation, we employ bit-vector representation to extend the algorithm to all the
n expressions within the program. At a program point in the CFG, each property (e.g.,
SpavPathOuti in Algo. 3) is represented by a bit vector. Each bit in the bit vector
corresponds to an expression where True means the property is true for the expression,
while False means the property is false.

To illustrate how a bit vector facilitates parallel computation of all n expressions within
the program, let’s examine the computation SpavPathOuti = AvLoci + SpavPathIni.
Transpi in Algorithm 3. Consider the computation SpavPathIni. Transpi, where
SpavPathIni and Transpi are bit-vectors representing the information for n expressions.
An AND operation between the bit-vectors SpavPathIni and Transpi results in the bit-
vector representing the property SpavPathOuti for all the n expressions at the output
point of node i.

We used LLVM compiler infrastructure [1, 2] for our implementation. The results were
obtained on a machine with a 1.8 GHz Intel Core i5 processor having 8 GB RAM for selected
programs from the SPEC CPU2006 benchmark suite [3]. The analyses are intraprocedural.
The algorithm is implemented for demonstrating its completeness and efficiency. Accordingly,
we have decided to consider a subset of instructions i.e., instructions involving signed and
unsigned integer arithmetic operators (+, -, ∗, ÷, %) to simplify the implementations. The
LLVM IR instructions considered are add, sub, mul, udiv, sdiv, urem and srem as well as the
load and store instructions of normal variables which includes both local and global variables.
For other instructions, we made conservative assumptions. For example, consider a statement
with pointer assignment, ∗p = This statement may change the value of normal variables
of the program. So, we made a conservative assumption that all the variables are killed at
the output point of such an instruction.

R. Roy, S. S, and V. Paleri 35:17

For our experiment, we begin with some preprocessing steps. We employ the -instnamer
pass in LLVM to assign names to any unnamed values within the LLVM IR code. This is
necessary as these values are not accessible through the getName() method we have used. We
wanted only the instructions that can be reached from the entry node. To achieve this, we
execute the -unreachableblockelim pass provided by LLVM. For Algorithm 3 and Algorithm 4,
the worklist is implemented with the InstructionWorkList in llvm. This InstructionWorkList
is implemented using a stack in llvm.

6.1 Efficiency

In this section, we compare the execution time of the proposed algorithm against the other
two chosen algorithms: the LCM algorithm developed by Knoop et al. and PRE-3 by Roy
et al. The algorithms were implemented as passes in the LLVM compiler and were run
on selected programs from the SPEC CPU2006 benchmark suite [3] using the -time-pass
optimizer tool of LLVM to measure execution time. The time taken for analyses by the
CPU is measured where the reported time is the sum of the CPU time in user mode and the
CPU time in system mode. We execute each benchmark program ten times, employing the
time-pass functionality. We then calculate the average time from these ten runs. The time
taken for analysis by each algorithm is then presented in seconds.

In Table 2, the second column displays the overall count of LLVM IR instructions
within each benchmark program. The third column provides the total count of expressions
considered, adhering to our conservative assumptions. The subsequent columns provide
the time taken by each algorithm under consideration. The final row of the table presents
the average time taken by each algorithm, taking into account all the selected benchmark
programs.

The proposed algorithm performs better since it takes only two iterative data flow analyses
compared to four by LCM and three by PRE-3. The proposed algorithm achieves 51% and
21% reduction in time over LCM and PRE-3, respectively, for the selected set of benchmark
programs. The experimental results demonstrate that the proposed algorithm is more efficient
in terms of the time taken for analysis compared to the other algorithms.

6.2 Precision

This section looks at the precision of the chosen algorithms, specifically focusing on their
completeness in identifying redundant expressions. For the LCM algorithm, we record the
count of insertions identified at nodes, the count of insertions specifically at the dummy nodes
generated during preprocessing, replacement counts, and the total number of redundant
expressions identified. In the case of PRE-3 and the proposed algorithm, we present the
count of node insertions, edge insertions, replacements, and the total number of redundant
expressions identified. Table 3 provides the information computed during the process. The
total number of node insertions for LCM is displayed in column 2, which includes dummy
nodes. Column 3 displays the number of dummy nodes created by the algorithm for LCM
and used for insertions. Dummy node insertions in LCM are the edge insertions in PRE-3
and the Proposed Algorithm. The table demonstrates that the proposed algorithm detects
the same number of redundancies as LCM and PRE-3, affirming the completeness of the
algorithm. Moreover, upon examining the data in the table, it becomes evident that the
identified points of insertions, replacements, and edge insertions are the same for all three
algorithms.

ECOOP 2024

35:18 Partial Redundancy Elimination in Two Iterative Data Flow Analyses

Table 2 Comparison of Efficiency.

Benchmark
Programs

No.of
instru-
ctions

Expressions
considered Time (Seconds)

LCM PRE-3 Proposed
Algorithm

astar 11887 260 1.06 0.69 0.63
bzip2 27346 694 33.99 24.87 21.62
gcc 339578 1511 450.52 222.95 170.30
gromacs 185285 3605 40.56 27.71 23.96
h264ref 188827 6302 285.44 218.84 161.06
hmmer 90070 2077 19.47 13.22 11.60
lbm 6155 1131 0.24 0.21 0.14
mcf 3917 90 0.24 0.18 0.16
povray 232142 2049 54.67 36.73 31.87
sjeng 32215 1460 22.60 13.51 12.79
soplex 133448 996 12.81 10.13 9.68
sphinx 47367 824 6.47 4.68 4.13
Average
running time 77.33 47.81 37.32

Table 3 Comparison of Precision.

Benchmark
Programs LCM PRE-3 Proposed Algorithm

Insertions
(nodes in original CFG

+
dummy nodes added)

Insertions
(dummy nodes)

Replace
ments

Redundant
expressions

detected

Insertions
(node)

Insertions
(edge)

Replace
ments

Redundant
expressions

detected

Insertions
(node)

Insertions
(edge)

Replace
ments

Redundant
expressions

detected

astar 13 3 34 24 10 3 34 24 10 3 34 24
bzip2 39 3 82 46 36 3 82 46 36 3 82 46
gcc 61 16 135 90 45 16 135 90 45 16 135 90
gromacs 262 98 532 368 164 98 532 368 164 98 532 368
h264ref 686 99 2057 1470 587 99 2057 1470 587 99 2057 1470
hmmer 220 51 580 411 169 51 580 411 169 51 580 411
lbm 132 0 919 787 132 0 919 787 132 0 919 787
mcf 10 1 45 36 9 1 45 36 9 1 45 36
povray 136 32 317 213 104 32 317 213 104 32 317 213
sjeng 161 13 363 215 148 13 363 215 148 13 363 215
soplex 48 14 70 36 34 14 70 36 34 14 70 36
sphinx 38 10 66 38 28 10 66 38 28 10 66 38

7 Conclusion

In this paper, we presented a novel algorithm for lexical-based partial redundancy elimination.
The proposed algorithm takes two iterative data flow analyses followed by two computation
passes over the program to perform the transformation. The use of well-known data flow
analyses, i.e., available expressions analysis and anticipated expressions analysis, makes
it easy to comprehend the algorithm and prove its correctness. We have provided the
proof for the correctness of the algorithm. The algorithm is more efficient compared to
other computationally and lifetime optimal algorithms in the literature, as it takes only
two iterative data flow analyses, in contrast to at least three analyses required by other
methods. The algorithm is both computationally and lifetime optimal. To substantiate
these claims, we implemented the algorithm using the LLVM Compiler Infrastructure and
compared the number of redundant expressions detected and the time taken for analyses
against the existing algorithms. The results from the experiments conducted demonstrate

R. Roy, S. S, and V. Paleri 35:19

that the proposed algorithm detects the same number of redundant expressions and performs
significantly better compared to the existing well-known algorithms considered. Although
our algorithm is lexical-based, we believe that its fundamental principles hold significant
potential for guiding the transition to a value-based approach, which could ultimately result
in an efficient value-based PRE.

References
1 The LLVM Compiler Infrastructure Project. http://llvm.org/. Accessed on 03/07/2021.
2 LLVM programmer’s manual. https://llvm.org/docs/ProgrammersManual.html. Accessed

on 20-08-2021.
3 The SPEC CPU2006 benchmark suit. https://www.spec.org/cpu2006/, 2006. Accessed on

10-01-2022.
4 Rastisalv Bodík and Sadun Anik. Path-sensitive value-flow analysis. In Proceedings of

the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’98, pages 237–251, New York, NY, USA, 1998. Association for Computing Machinery.
doi:10.1145/268946.268966.

5 D. M. Dhamdhere. A fast algorithm for code movement optimisation. ACM SIGPLAN Not.,
23(10):172–180, October 1988. doi:10.1145/51607.51621.

6 Dhananjay M. Dhamdhere. E_path−PRE: Partial redundancy elimination made easy. ACM
SIGPLAN Not., 37(8):53–65, August 2002. doi:10.1145/596992.597004.

7 KarlHeinz Drechsler and Manfred P. Stadel. A solution to a problem with Morel and Renvoise’s
global optimization by suppression of partial redundancies. ACM Trans. Program. Lang. Syst.,
10(4):635–640, October 1988. doi:10.1145/48022.214509.

8 Karl-Heinz Drechsler and Manfred P. Stadel. A variation of Knoop, Rüthing, and Steffen’s lazy
code motion. ACM SIGPLAN Not., 28(5):29–38, May 1993. doi:10.1145/152819.152823.

9 Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Lazy code motion. ACM SIGPLAN Not.,
27(7):224–234, July 1992. doi:10.1145/143103.143136.

10 Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Optimal code motion: Theory and practice.
ACM Trans. Program. Lang. Syst., 16(4):1117–1155, July 1994. doi:10.1145/183432.183443.

11 Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Expansion-based removal of semantic
partial redundancies. In Stefan Jähnichen, editor, Compiler Construction, pages 91–106, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

12 E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies.
Commun. ACM, 22(2):96–103, February 1979. doi:10.1145/359060.359069.

13 Rei Odaira and Kei Hiraki. Partial value number redundancy elimination. In Rudolf Eigenmann,
Zhiyuan Li, and Samuel P. Midkiff, editors, Languages and Compilers for High Performance
Computing, pages 409–423, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

14 Vineeth Kumar Paleri, Y. N. Srikant, and Priti Shankar. A simple algorithm for partial
redundancy elimination. ACM SIGPLAN Not., 33(12):35–43, December 1998. doi:10.1145/
307824.307851.

15 Vineeth Kumar Paleri, Y. N. Srikant, and Priti Shankar. Partial redundancy elimination: a
simple, pragmatic, and provably correct algorithm. Sci. Comput. Program., 48(1):1–20, 2003.
doi:10.1016/S0167-6423(02)00083-7.

16 Reshma Roy and Vineeth Paleri. Lexical-based partial redundancy elimination: An optimal
algorithm with improved efficiency. Journal of Computer Languages, 75:101204, 2023. doi:
10.1016/j.cola.2023.101204.

17 Thomas VanDrunen and Antony L. Hosking. Value-based partial redundancy elimination. In
Evelyn Duesterwald, editor, Compiler Construction, pages 167–184, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

ECOOP 2024

http://llvm.org/
https://llvm.org/docs/ProgrammersManual.html
https://www.spec.org/cpu2006/
https://doi.org/10.1145/268946.268966
https://doi.org/10.1145/51607.51621
https://doi.org/10.1145/596992.597004
https://doi.org/10.1145/48022.214509
https://doi.org/10.1145/152819.152823
https://doi.org/10.1145/143103.143136
https://doi.org/10.1145/183432.183443
https://doi.org/10.1145/359060.359069
https://doi.org/10.1145/307824.307851
https://doi.org/10.1145/307824.307851
https://doi.org/10.1016/S0167-6423(02)00083-7
https://doi.org/10.1016/j.cola.2023.101204
https://doi.org/10.1016/j.cola.2023.101204

Scaling Interprocedural Static Data-Flow Analysis
to Large C/C++ Applications
An Experience Report

Fabian Schiebel #

Fraunhofer Institute for Mechatronic Systems Design IEM, Paderborn, Germany

Florian Sattler #

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Philipp Dominik Schubert #

Heinz Nixdorf Institute, Paderborn, Germany

Sven Apel #

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Eric Bodden #

Paderborn University, Department of Computer Science, Heinz Nixdorf Institute, Germany
Fraunhofer IEM, Paderborn, Germany

Abstract

Interprocedural data-flow analysis is important for computing precise information on whole programs.
In theory, the popular algorithmic framework interprocedural distributive environments (IDE)
provides a tool to solve distributive interprocedural data-flow problems efficiently. Yet, unfortunately,
available state-of-the-art implementations of the IDE framework start to run into scalability issues
for programs with several thousands of lines of code, depending on the static analysis domain.
Since the IDE framework is a basic building block for many static program analyses, this presents
a serious limitation. In this paper, we report on our experience with making the IDE algorithm
scale to C/C++ applications with up to 500 000 lines of code. We analyze the IDE algorithm and
its state-of-the-art implementations to identify their weaknesses related to scalability at both a
conceptual and implementation level. Based on this analysis, we propose several optimizations to
overcome these weaknesses, aiming at a sweet spot between reducing running time and memory
consumption. As a result, we provide an improved IDE solver that implements our optimizations
within the PhASAR static analysis framework. Our evaluation on real-world C/C++ applications
shows that applying the optimizations speeds up the analysis on average by up to 7×, while also
reducing memory consumption by 7× on average as well. For the first time, these optimizations allow
us to analyze programs with several hundreds of thousands of lines of LLVM-IR code in reasonable
time and space.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases Interprocedural data-flow analysis, IDE, LLVM, C/C++

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.36

Supplementary Material Software (Source Code + Experiment Results): https://doi.org/10.5281/
zenodo.13137082

Funding This work was partially supported by the Fraunhofer Internal Programs under Grant No.
PREPARE 840 231, and by the German Research Foundation under Grant No. AP 206/11-2, and
within the Collaborative Research Center TRR 248 under Grant No. 389792660.

© Fabian Schiebel, Florian Sattler, Philipp Dominik Schubert, Sven Apel, and Eric Bodden;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 36; pp. 36:1–36:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabian.schiebel@iem.fraunhofer.de
https://orcid.org/0009-0008-6867-9802
mailto:sattlerf@cs.uni-saarland.de
https://orcid.org/0000-0003-2523-1158
mailto:philipp.schubert@upb.de
https://orcid.org/0000-0002-8674-1859
mailto:apel@cs.uni-saarland.de
https://orcid.org/0000-0003-3687-2233
mailto:eric.bodden@upb.de
https://orcid.org/0000-0003-3470-3647
https://doi.org/10.4230/LIPIcs.ECOOP.2024.36
https://doi.org/10.5281/zenodo.13137082
https://doi.org/10.5281/zenodo.13137082
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Scaling Interprocedural Data-Flow Analysis

1 Introduction

Over the recent years static program analysis has become an important tool for finding
bugs and security vulnerabilities [7, 11,16,26–28,30]. To produce results that actually help
developers in these tasks, static analyses are ideally both sound (or at least soundy [14]) and
precise, i.e., they report only true findings without missing any real bugs and vulnerabilities.
The analyses need to obtain a complete picture about the program under analysis and
therefore have to be interprocedural, i.e., following procedure calls. But it is a major
challenge to develop sound and precise inter-procedural analyses that scale well with large
real-world target programs [6, 19,31,32].

The interprocedural distributive environments (IDE) framework [20] operates on data-flow
problems whose flow functions distribute over the analysis’ merge operator. Following the
functional approach to interprocedural analysis [24], for such distributive data-flow problems
IDE constructs fine-grained, per-fact, procedure summaries that can be reapplied in each
subsequent calling context of a given procedure. This allows IDE to scale to larger programs
relatively well even though its time complexity is O(|N | · |D|3), where N is the set of nodes
of the target program’s interprocedural control-flow graph and D is the symbol domain of
the data-flow analysis.

Common static analysis frameworks such as Heros [5] and PhASAR [22] provide generic
and parameterizable IDE solver implementations; they even implement the simpler IFDS [17]
algorithm in terms of IDE. For an analysis problem on the desired target program to be
solved in an automated manner, users of these frameworks merely have to specify its flow
(and edge) functions and provide this specification to the IDE implementation. Current IDE
implementations, also known as solvers, aim at analyzing real-world target programs in a
fully flow and context-sensitive manner, computing precise and informative results depending
on the quality of the flow (and edge) functions’ specification. Nonetheless, the authors of
this paper can tell from many years of experience in program analysis that all publicly
available IDE implementations run into severe scalability issues for larger target programs –
a major problem. This effectively impedes or even prevents the analysis of many real-world
programs, or forces analysis developers to resort to simpler analysis domains, which reduces
the precision and usefulness of the analysis results. Sattler et al., for instance, present a novel
concept to combine program analysis and repository mining that addresses numerous relevant
software engineering problems [21]. This approach, however, requires one to run an exhaustive
IDE-based taint analysis that needs to generate and propagate all program variables, which,
in turn, produces millions of data flows. In this vein, we use PhASAR’s current IDE
implementation to demonstrate that sound and precise analyses that produce more than
100 million data flow edges cannot be completed using ordinary consumer hardware. Such a
huge number of data flows can easily arise already when analyzing programs that comprise
fewer than 100 000 instructions in LLVM’s [13] intermediate representation (IR). The number
of IR instructions is relevant, since PhASAR performs its analyses on the LLVM-IR level,
and even seemingly small C/C++ programs can lead to a large number of IR instructions.
Still, using an IR enables analysis writers to develop analyses for programs originating from
complex languages, such as C++, that would otherwise add drastic implementation overhead.
Further, we can support analyzing programs from multiple different source languages (in
our case C and C++) with just one analysis implementation, whereas a source-level analysis
would need different implementations per language. Therefore, we prefer analyzing LLVM
IR and handle the program size from within the solver.

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:3

In this work, we report on our experiences analyzing real-world programs with the IDE
framework, identifying two critical optimization levers when implementing a generic state-of-
the art IDE solver. Specifically, using 31 real-world C and C++ target programs, we evaluate
PhASAR’s state-of-the-art IDE solver implementation with regard to runtime and memory
consumption. Based on insights gained from these experiments, we propose and evaluate two
optimizations that we have devised to improve the performance of the IDE implementation.
One optimization chooses an optimized data layout for storing required data, while the other
one extends the garbage collection procedure from Arzt [1].

The improved IDE solver, which incorporates the abovementioned optimizations and
insights, reduces analysis running times as well as memory consumption by up to 7× on
average, depending on the client-analysis problem that should be solved. The experiments
show that this allows one to conduct sound and precise inter-procedural data-flow analyses
on interesting target programs such as FastDownward, a domain-independent planning
system, in reasonable time and space.

In summary, we make the following contributions:
We analyze the IDE algorithm as described in the literature and its state-of-the-art,
openly-available implementations with regard to runtime and memory consumption.
Based on the analysis, we propose optimizations that overcome these weaknesses.
We report on an empirical study on our optimized IDE solver, showing that it improves
runtime and memory usage of IDE-based analysis by up to 7× on average.
We provide an open-source implementation of the IDE algorithm that incorporates our
optimizations within PhASAR [22] and make it available as supplementary material1.

The remainder of this paper is structured as follows: Section 2 gives an introduction to
the IDE algorithm and Section 3 analyzes the state-of-the-art in IDE-based analysis and
describes the problems that we identify. Section 4 presents our optimizations to IDE to
mitigate these problems and Section 5 describes the highlights of our implementation. In
Section 6, we detail on our empirical evaluation on real-world C/C++ programs and Section 8
concludes this paper.

2 Background on IDE

In this section, we introduce the conceptual Interprocedural Distributive Environments
(IDE) [20] algorithm. IDE solves a data-flow problem by constructing an exploded supergraph
(ESG). By construction, a data-flow fact d holds at instruction n, if a node (n, d) in the ESG is
reachable from a special, tautological node (n0,Λ) for an entry point statement n0. The ESG
is constructed by replacing each node in the target program’s interprocedural control-flow
graph (ICFG) with a bipartite graph representation of the respective flow functions. IDE
requires all flow-functions to distribute over the merge operator (usually set union). Such
distributive flow functions can be represented as bipartite graphs without loss of precision.
The common flow functions identity, gen (generate), and kill (remove) are distributive and
thus, all gen/kill data-flow problems can be encoded in IDE.

To enable a context-sensitive, interprocedural analysis, IDE follows the summary-based
approach [24] to inter-procedural static data-flow analysis: It constructs per-fact summaries
for sequences of instructions by composing their flow functions. The composition h = g ◦ f
of two flow functions f and g, called jump function, can be produced by merging the nodes

1 Supplementary Material: https://zenodo.org/doi/10.5281/zenodo.13137081

ECOOP 2024

https://zenodo.org/doi/10.5281/zenodo.13137081

36:4 Scaling Interprocedural Data-Flow Analysis

of g with the corresponding nodes of the domain of f . A jump function ranging from a given
procedure p’s starting point to its exit point builds up a summary ψ of p. Once summary ψ
has been constructed for procedure p, it can be re-applied in any other context in which the
procedure p is called. The runtime complexity of IDE is O(|N | · |D|3), where N is the set of
nodes of the target program’s ICFG and D is the data-flow domain of the analysis.

In addition, IDE allows to annotate the ESG’s edges with lambda functions – so-called
edge functions f ∈ J – which operate on a separate value domain V and encode an additional
value-computation problem. The value-computation problem specified using the ESG edges
is solved when performing a reachability check. This way, IDE is able to effectively encode
problems with infinite domains such as linear-constant propagation with D = V, where V
is the set of program variables and V = Z⊤

⊥. In this setup, IDE would propagate constant
variables through the program and compute their constant values using the edge functions.
An exemplary ESG for a linear-constant propagation encoded in the aforementioned manner
is shown in Figure 1. The ESG nodes are visualized in a matrix structure where the rows
represent the program statements n1, . . . , n4 and the columns represent the data-flow facts
a, b, p and the special Λ fact. This way, Figure 1 also shows the bipartite nature of the
encoded flow functions.

The jump functions constructed by the IDE algorithm describe data flows (and corres-
ponding value computations). They comprise quadruples ⟨d1, n, d2, f⟩, where d1 ∈ D is the
data-flow fact that holds at the source instruction (or node in the ICFG) sp ∈ N , n ∈ N

is the target instruction, d2 ∈ D is the data-flow fact at the target instruction, and f ∈ J

is a function that describes the respective value computation. The source instruction sp is
implicit – it is the first instruction of the procedure that is being analyzed. In Figure 1,
the jump function that describes that the data-flow fact a holds at ICFG node (n4) in the
program shown thus is: ⟨Λ, n4, a, λℓ.ℓ ◦λℓ.ℓ+ 2 ◦λℓ.1⟩ ≡ ⟨Λ, n4, a, λℓ.3⟩. Its evaluation yields
that variable a carries the constant value 3 at ICFG node (n4).

If an ESG node (n, d) is reachable along multiple program paths, the edge functions
associated with the respective jump functions are combined using a join operation. Similar to
flow functions, edge functions must distribute over the join operation. Hence, edge functions
must be evaluable functions supporting regular function composition as well as the binary
join operation and an equality relation. These operations – and the implementations for the
flow and edge functions – need to be specified by analysis writers for the specific data-flow
problem at hand.

The number of edges in an ESG is in O(|N | · |D|2). Even though D must be finite, D can
be very large. Constructing the full ESG can easily lead to a graph containing millions of
nodes and edges even for moderately-sized programs. Nearly all open-source state-of-the-art
IDE implementations therefore construct only the valid paths reachable from the entry point
(smain,Λ) in an on-the-fly manner, as proposed by Naeem et al. [15].

Naeem’s on-the-fly algorithm requires the following essential structures to solve an analysis
problem:

JumpFn (D × N × D → J): Jump functions ⟨d1, n, d2, f⟩ tabulated by the IDE algorithm
that describe the data-flow facts reachable from (smain,Λ).
Incoming (N × D → N × D): A set that records nodes ⟨sp, d⟩ that the analysis has
observed to be reachable and predecessors of ⟨sp, d⟩, where sp ∈ N a start point of
procedure p. Using this set avoids the need to compute inverse flow functions, which
might not be possible for all analysis problems.
EndSummary (N ×D → N ×D×J): A table that stores jump functions that summarize
the effect of a complete procedure p: ⟨sp, d1, ep, d2, f⟩, where ep ∈ N an exit point of p.

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:5

Λ pa b

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4) foo(b);

𝜆ℓ. 1

𝜆ℓ. ℓ + 2

𝜆ℓ. ℓ ⋅ 5

Figure 1 An example exploded supergraph for a linear constant analysis encoded in IDE [17].
The solid edges represent the individual flow functions, whereas the jump functions are denoted by
the colored dashed edges. All (solid) flow edges are annotated with their edge functions; identity
edge functions have been omitted to avoid cluttering. By following the flow edges in backwards
direction, we can see that at (n4) variable a is reachable from Λ and thus holds as data-flow fact.
This information is also encoded as green dashed jump function from (n1, Λ) to (n4, a). Composing
the annotated edge functions, we can see that at (n4), variable a has the constant value 3.

These per-fact procedure summaries are reapplied in each subsequent context p is called.

2.1 IDE Algorithm Overview
The IDE algorithm works in two phases: (I) Constructing the relevant part of the ESG and
(II) computing the values associated to the node-data-flow-fact pairs (n, d) by evaluating all
edge functions f annotated to the jump functions in the ESG. We provide a copy of the
original IDE algorithm as part of our supplementary website for this paper2.

Phase I works as fixed point iteration starting from initial ESG nodes, called seeds. Based
on the ICFG and the set of flow- and edge functions, the procedure ForwardComputeJump-
FunctionsSLRPs (see algorithm Phase I) incrementally extends the ESG by adding new edges
or updating the annotated edge functions of existing edges. This extending and updating
of the ESG is performed by the Propagate (see algorithm Propagate) procedure, which gets
iteratively called by the solver until a fixed point is reached. The final ESG for the example
code snippet in Figure 1 is shown in the same figure (excluding the content of function foo).

Phase II (see algorithm Phase II) works in two steps: value propagation and value
computation. First, in the value propagation phase, the initial edge values are propagated
iteratively through the ESG from the seeds to the beginning of all analyzed procedures. After
that, in the value computation phase, the edge functions of all remaining jump functions are
evaluated with the values previously aggregated at the beginning of the respective procedure.

For example, consider the code snippet in Figure 1. Assuming that it is part of a function
that gets called with p = 4, the value propagation will create the relation (n1, p) 7→ 4. If the
code snippet is called with multiple different values for p, the relation gets updated using the
lattice join of the value domain. Further, to aggregate the starting values for all procedures,
the value propagation computes the relevant edge values for the call-site, in this case for b
at n4. It computes b = (λℓ.ℓ · 5)(4) = 20 and iteratively propagates it into foo. After the
value-propagation phase has finished, all remaining result relations can be computed, which
leads to (n2, a) 7→ 1, (n2, p) 7→ 4, (n3, a) 7→ 3, etc.

2 Supplementary website: https://secure-software-engineering.github.io/paper-idesolverxx/

ECOOP 2024

https://secure-software-engineering.github.io/paper-idesolverxx/algorithm#phase-i
https://secure-software-engineering.github.io/paper-idesolverxx/algorithm#propagate
https://secure-software-engineering.github.io/paper-idesolverxx/algorithm#phase-ii
https://secure-software-engineering.github.io/paper-idesolverxx/

36:6 Scaling Interprocedural Data-Flow Analysis

3 The State of the Art

In many years of developing static data-flow analyses, we have found that state-of-the art
analysis implementations, many of them implementing IDE (or a subset of it), do not scale to
large programs comprising several hundreds of thousands to millions of lines of code. In the
following, we report on the problems with current IDE implementations, with the example of
PhASAR, that has lead us to define the optimizations to IDE that we present in Section 4.

To show the performance of a current state-of-the-art IDE implementation, we use the
current IDESolver from PhASAR3 in version v2403, which is the most recent stable version
of the open-source framework at the time. To assess the state-of-the-art, we have applied the
IDESolver to 31 real-world C and C++ programs4 denoted in Table 1 and solved a typestate
analysis (TSA), a linear constant analysis (LCA), and an instruction-interaction analysis
(IIA) [21]. In Table 1 the columns with the analysis problems are sorted in ascending order
by analysis complexity.

Measuring runtime and memory usage of the analysis runs, as Table 1 shows, we observed
that, with increased analysis complexity, the number of recorded timeout (t/o) and out-of-
memory (OOM) events grows. While the IDESolver was able to complete the LCA and TSA
on almost all target programs, the solver performed worse on the IIA: In fact, we observed
that six out of 31 could not be run on an ordinary developer machine, seven others ran
out-of-memory while four others timed out.

The current situation, as illustrated by Table 1, that many interesting data-flow analyses
cannot be solved on medium-sized to large target programs is inacceptable. While long
runtimes can be tackled by running the analysis less often (e.g., in a CI/CD pipeline) or
by increasing the time budget, the high memory requirements are often impossible to solve
due to hardware limits; more memory might be integrated which then—depending on the
system—would incur high procurement- and operating costs.

As some state-of-the-art IDE implementations, such as PhASAR and Heros, are open-
source, we are able to analyze them to gain insights where the performance bottlenecks are
and propose optimizations (cf. Section 4) for lowering the time- and memory requirements
of IDE.

4 Optimizations

To mitigate the scalability issues of IDE identified in Section 3, we reviewed state-of-the art
literature regarding IDE implementations, profiled the IDE solver implementation within the
PhASAR framework, and identified two aspects that suggest to offer potential for effective
optimizations in terms of both runtime and memory consumption. Although the IDE
algorithm works in two phases (see Subsection 2.1), we can tell from our experience that
IDE spends the majority of its time during phase I—the part that IFDS and IDE have in
common. Thus, we aim to optimize phase I.

First, while computing the target analysis’ fixed point, an IDE implementation must
efficiently store the set of jump functions. This corresponds to the JumpFn map [20] in
the original algorithm. The jump-functions table stores all ESG edges that are computed
by the IDE solver. That is, it stores quadruples drawn from (D × N × D) → J . The
size of the jump-functions table is therefore bound by O(|N | · |D|2). As it is unlikely to

3 PhASAR: https://github.com/secure-software-engineering/phasar/tree/v2403
4 Subsection 6.2 provides details on how the results were obtained and how the analyses were configured.

https://github.com/secure-software-engineering/phasar/tree/v2403

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:7

Table 1 On the left, we see all evaluation targets with additional information, such as the revision
we analyzed and the amount of LLVM-IR code. The IR code size is important because PhASAR’s
IDE solver works at the IR level. In addition, we report the number of procedures (Proc), the
number of globals (Glob), and the number of call-sites (Calls) in the IR, which may influence the
performance of the analysis. The three rightmost columns show time [s] and memory consumption
[MiB] of the benchmarked analyses utilizing the IDESolver from PhASAR. Orange cells indicate
that the memory of a common consumer machine (32 GiB) was exceeded. Dark orange cells indicate
that even a compute cluster with 128 GiB would be insufficient. Red cells indicate the analysis
ran out-of-memory with a memory limit of 250 GiB, and blue cells represent timeout (t/o) events
exceeding four hours of analysis time.

Typestate LCA IIA

Revision Domain LOC Proc Global Calls Time Mem Time Mem Time Mem

FastDownward 641d70b3 Planning 849k 35k 5k 176k 20 1 407 81 7 709 - OOM
asterisk a0946200 Signal processing 626k 8k 15k 85k 72 4 131 t/o - - OOM
bison 849ba01b Parser 123k 1k 1k 13k 38 1 974 82 8 885 - OOM
bitlbee fb774da0 Chat client 91k 1k 2k 12k 1 203 17 2 126 - OOM
brotli 9801a2c5 Compression 103k 978 173 10k 2 315 9 1 640 505 43 220
bzip2 1ea1ac18 Compression 29k 154 182 1k 3 166 20 1 829 842 34 006
cat 1913bfcf UNIX utils 6k 223 139 736 <1 45 1 243 40 1 986
cp 1913bfcf UNIX utils 23k 524 373 3k <1 86 4 577 288 12 398
dd 1913bfcf UNIX utils 19k 319 287 2k <1 69 11 1 214 497 16 014
file e94d5264 UNIX utils 1k 66 170 314 <1 39 <1 53 3 413
fold 1913bfcf UNIX utils 6k 210 130 715 <1 52 2 245 41 1 943
grep cb15dfa4 UNIX utils 79k 808 424 6k 1 207 25 3 208 545 44 827
gzip 23a870d1 Compression 17k 251 351 1k <1 67 7 1 049 91 9 364
htop bc22bee6 UNIX utils 58k 917 1k 7k 19 290 12 1 647 1 680 102 431
hypre f69f8ef4 Solver 713k 3k 3k 71k 86 6 461 1 259 77 313 t/o -
join 1913bfcf UNIX utils 10k 267 184 1k <1 66 2 324 55 3 098
kill 1913bfcf UNIX utils 5k 196 135 663 <1 43 1 215 39 1 689
lepton 429fe880 Compression 139k 3k 889 24k 3 331 35 4 062 2 902 87 637
libjpeg_turbo 2cad2169 File format 142k 582 184 7k 1 242 161 9 172 - OOM
libsigrok 68321f73 Signal processing 148k 1k 4k 16k 2 338 8 1 257 t/o -
libzmq ec6f3b1d C++ Library 162k 5k 1k 26k 29 2 120 9 901 t/o -
ls 1913bfcf UNIX utils 31k 646 515 3k <1 111 14 1 642 301 21 901
lz4 4a555363 Compression 35k 445 424 4k 12 221 5 847 749 23 597
openvpn cec4353b Security 187k 3k 4k 24k 10 540 74 8 135 t/o -
opus bce1f392 Codec 131k 851 472 10k 1 233 38 5 160 3 851 143 264
poppler 315ab300 Rendering 546k 15k 15k 87k 207 3 573 125 11 788 - OOM
uniq 1913bfcf UNIX utils 7k 242 181 939 <1 54 2 260 44 2 316
wc 1913bfcf UNIX utils 10k 272 187 1k <1 61 2 338 52 3 056
whoami 1913bfcf UNIX utils 5k 180 113 539 <1 42 1 209 36 1 489
x264 e067ab0b Codec 500k 2k 2k 33k 48 3 151 203 19 605 - OOM
xz e7da44d5 Compression 10k 252 455 1k <1 57 2 327 31 4 740

reduce this worst case bound, we propose in Subsection 4.1 to lower the constant factors of
these bounds by optimizing the memory layout of the jump-functions table, which enables
practical performance gains. Second, most jump functions computed by IDE are just needed
temporarily to craft the procedure summaries ψ. Once a summary has been created, the
corresponding intermediate jump functions are no longer needed. Hence, to reduce IDE’s
memory footprint, we propose in Subsection 4.2 to remove such intermediate entries from
the jump-functions table. In fact, we extend the work from Arzt [1] by designing a garbage
collector for jump functions that—in contrast to the one proposed by Arzt—is applicable to
arbitrary IDE problems.

It is important to note that our optimizations do not target just one particular implemen-
tation; our optimizations are generally applicable.

4.1 Data Structures for the Exploded Supergraph
While solving an IDE data-flow analysis problem, the solver incrementally creates jump
functions (see Section 2) that need to be stored in memory. To solve the analysis problem
efficiently, the jump functions need to be stored efficiently, allowing for short lookup and
insertion times as well as for a small memory footprint.

ECOOP 2024

36:8 Scaling Interprocedural Data-Flow Analysis

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4);

Λ p a b

Λ, n1, Λ ↦ 𝜆ℓ. ℓ

p, n1, p ↦ 𝜆ℓ. ℓ

Λ, n2, Λ ↦ 𝜆ℓ. ℓ

p, n2, p ↦ 𝜆ℓ. ℓ

Λ, n2, a ↦ 𝜆ℓ. 1

Λ, n3, Λ ↦ 𝜆ℓ. ℓ

p, n3, p ↦ 𝜆ℓ. ℓ

Λ, n3, a ↦ 𝜆ℓ. 3

Λ, n4, Λ ↦ 𝜆ℓ. ℓ

p, n4, p ↦ 𝜆ℓ. ℓ

Λ, n4, a ↦ 𝜆ℓ. 3

p, n4, b ↦ 𝜆ℓ. ℓ ⋅ 5

(𝒅𝟏, 𝒏, 𝒅𝟐) ↦ 𝒇

Figure 2a. The jump-functions table similar to
the FastSolver of FlowDroid. Without nesting,
the whole jump functions ⟨d1, n, d2, f⟩ of the ESG
for Figure 1 are stored in one level which may lead
some of d1, d2, and n being stored redundantly.

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4);

Λ p a b

n1

n2

n3

n4

Λ

p

Λ

p

Λ

p

Λ

p

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 1

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 3

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 3

b ↦ 𝜆ℓ. ℓ ⋅ 5

𝒏 𝒅𝟏 𝒅𝟐 ↦ 𝒇

Figure 2b. The main jump-functions table from
PhASAR and Heros. For each jump function
⟨d1, n, d2, f⟩, it maps the nodes n to inner maps,
which map the source data-flow facts d1 to the
respective target facts d2 and edge functions f .
This avoids some nodes n and source facts d1 to
be stored multiple times, as they would be in Fig-
ure 2a, but adds extra cost for the inner mappings.

Figure 2 Different jump-functions table layouts currently used by open-source IDE implementa-
tions.

4.1.1 Jump Functions Table Analysis

Existing IDE solver implementations such as Heros [5], PhASAR [22] and FlowDroid [4]
use different representations to store jump functions, each of which comes with different
performance properties. PhASAR and Heros use nested mappings N → (D → (D → J))
that map a target node n ∈ N to a map of source data-flow fact d1 ∈ D to a map of target
fact d2 ∈ D to the associated edge function f ∈ J . Yet, to speed up algorithm-specific
lookup and insert tasks, Heros and PhASAR store each jump function redundantly in two
additional maps, effectively modeling a multi-index table. In what follows, when referring
to the jump-functions table structure used by PhASAR and Heros, we focus on the nested
mapping described above, but keep in mind that the multi-index may have a drastic impact
on the overall memory consumption of the solving process.

FlowDroid uses a flat (N ×D ×D) → D representation to map a full jump function
(n, d1, d2) ∈ N × D × D to the same target fact d2. As FlowDroid only implements
IFDS, which is a subset of IDE where all edge functions are implicity the identity function
λx.x, it does not need to store edge functions f ∈ J . It stores the target fact twice for
implementation-specific support for path-tracking. As path tracking is out of scope for this
work, we concentrate on the (N ×D ×D) part of the data structure.

Both data structures (nested and flat) have their advantages and drawbacks. Consider
the example in Figure 1. Having no nested mappings, as shown in Figure 2a, makes lookup
and insertion fast, since they only consist of a single hash-map operation. In contrast, the
nested approach, as shown in Figure 2b, requires three hash-map operations for each lookup
or insert as for each of n, d1 and d2 in a jump-function entry a separate hash-map lookup or
insertion is required.

In both designs, the noticeable duplication of the edge functions f could be solved
by storing them in a separate cache. PhASAR, in fact, supports such a cache already.
However, even with caching edge functions, nodes n and source facts d1 may be stored
redundantly in memory. This is, because it is likely that there are multiple jump functions

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:9

that lead to the same target node, which corresponds to the existence of the jump functions
(d1,1, n, d2,1), . . . , (d1,k, n, d2,m) for n ∈ N , {d1,1, . . . , d1,k, d2,1, . . . d2,m} ⊆ D and k,m ∈ N.
Such jump functions may store the target node n multiple times in a flat structure, such as
Figure 2a, but store n only once in a nested representation such as Figure 2b.

In the same vein, when generating data-flow facts, it is also likely that there are multiple
target facts for the same source-fact and target node, for example, jump functions of the form
(d1, n, d2,1), . . . , (d1, n, d2,m) for n ∈ N, {d1, d2,1, . . . , d2,m} ⊆ D and m ∈ N. For instance,
the jump functions (Λ, n2,Λ, λℓ.ℓ) and (Λ, n2, a, λℓ.1) from Figure 1 fall in that category.
In a flat representation such as of Figure 2a, jump functions store both source fact d1 and
target node n redundantly, but avoid the redundant storage in a nested representation as
shown in Figure 2b.

In summary, nested mappings store less data from the jump functions redundantly and
therefore are likely to expose a lower memory usage than a shallow representation. Conversely,
common operations such as lookup and insertion of jump functions in the table are likely
to be faster in the flat representation as there are fewer indirections and fewer hashing
operations. Furthermore, map data structures themselves have implementation-specific
memory overhead. Therefore, a nested representation is more memory efficient than a
flat one only if the additionally introduced maps grow beyond an implementation-specific
threshold to compensate the overhead of these maps.

4.1.2 Optimized Jump Functions Table
Given the analysis in Subsubsection 4.1.1, we propose a compromise between nested and flat
data structure representations that harnesses the advantages of both to drastically improve
both the memory usage as well as the runtime of the IDE algorithm. We acknowledge
that a nested mapping is necessary to avoid duplicate storage of nodes and data-flow facts.
However, to keep lookup times low and to keep the individual maps sufficiently large, we
aim at reducing the nesting depth as well. Specifically, we propose a two-level nested map
as a compromise between fast lookup times and low memory usage. For a design with two
levels of nesting, there are six possible mappings to store jump functions:

1. (n, d1) 7→ (d2 7→ f)
2. (n, d2) 7→ (d1 7→ f)
3. (d1, d2) 7→ (n 7→ f)

4. n 7→ (d1, d2) 7→ f

5. d1 7→ (n, d2) 7→ f

6. d2 7→ (n, d1) 7→ f

To reduce the number of candidate representations, we consider one more optimization:
As we limit ourselves to two-level nested maps, each jump functions access requires at
least two indirections. However, with intelligent batch-processing, the effective number
of indirections can be reduced. We observe that during ESG construction in the IDE
algorithm(cf. Subsection 2.1), the only direct access to the jump-functions table is inside the
Propagate function depicted on the left side of Algorithm 1. Here, the expression JumpFn(e)
performs the jump-functions table access where e represents a complete jump edge consisting
of the target node n and the source- and target data-flow facts d1 and d2. We further observe
that in the original algorithm Propagate is always called from within a loop where parts of n,
d1, or d2 are loop-invariant.

So, if we design the jump-functions table accordingly, we can optimize the Propagate
procedure (shown on the right side of Algorithm 1), by batching the access to the outer
map for multiple jump functions accesses together. Here, Propagate receives an additional
parameter j that denotes a view into the jump-functions table where the loop-invariant parts

ECOOP 2024

36:10 Scaling Interprocedural Data-Flow Analysis

Algorithm 1 The modifications in the Propagate procedure that support batch processing.
An exemplary use of Propagate for the case in which the target node n is loop-invariant is
shown in Lines 8-11. To highlight changes compared to the original algorithm from Sagiv et
al. [20], additions are shown in green and removals are shown in red.

1 Procedure Propagate(e, f)
2 let f ′ = f ⊓ JumpFn(e);
3 if f ′ ̸= JumpFn(e) then
4 JumpFn(e) = f ′;
5 Insert e into PathWorkList;
6 end
7 end

// Example use:
8

9 for . . . do
10 Propagate(⟨sp, d1⟩ → ⟨n, d2⟩, f);
11 end

Procedure Propagate(j, e, f)
let f ′ = f ⊓ j(e);
if f ′ ̸= j(e) then

j(e) = f ′;
Insert e into PathWorkList;

end
end
// Example use:
j = JumpFn(⟨∗, ∗⟩ → ⟨n, ∗⟩);
for . . . do

Propagate(j, ⟨sp, d1⟩ → ⟨n, d2⟩, f);
end

Table 2 Access patterns of the jump-functions table with their number of occurrences within the
original IDE algorithm [20] (cf. Subsection 2.1).

Invariant parts # Occurrences

n 1 (call-flow)
n, d1 2 (call-to-return-flow, summary-flow)
n, d2 1 (return-flow)
d1 1 (normal-flow)

are already fixed. In the example, j only contains jump functions where the target node is
a previously fixed n. It is important that the extraction of j happens outside of the loop
that calls Propagate. Using the smaller map j for accessing the jump functions instead of
the complete table JumpFn may improve the performance of Propagate. In fact, if j is one
of the inner maps of our two-level nested jump-functions representation, using j effectively
reduces the nesting depth of the table within Propagate, which in turn reduces the runtime
cost of accessing individual jump functions.

Efficiently extracting the view j from the jump-functions table requires that the jump-
functions table is laid out in a way that supports this operation. This can be achieved by
placing the loop-invariant parts as keys into the outer map and the loop-variant parts into
the inner maps. To decide which view j is best suited to achieve maximum performance
improvement, we have to analyze which parts, n, d1, or d2, of a jump function are most
frequently loop-invariant.

Based on careful analysis of the original algorithm [20], we identify four different access
patterns, as depicted in Table 2. Although n is not strictly invariant in the normal-flow
case, it may still be beneficial to consider n as invariant for the purpose of selecting a
jump-functions representation, as most intraprocedural control-flow nodes mostly have only
one (statement-sequence) or two (conditional branch) successors. Furthermore, to propagate
all normal flows, the algorithm needs to iterate over all relevant n, d2 pairs which is usually
implemented as nested loop, effectively making n or d2 temporarily loop-invariant. This
consideration has no influence on the algorithmic correctness, but on the effectiveness of
batch-processing jump functions accesses in the table.

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:11

Based on these observations, we conclude that it is beneficial to store the target fact d2 in
the inner map and n in the outer map. This enables us to filter out most of the six possible
mappings presented above, leaving only

1. (n, d1) 7→ (d2 7→ f) 4. n 7→ (d1, d2) 7→ f

as possible candidates, which we call JFND and JFN , respectively, denoting the domain used
in the outer map.

Furthermore, we also conjecture that a multi-index representation of the jump-functions
table is not necessary. With any of JFND or JFN we can efficiently model all access patterns
that occur in the IDE algorithm. Hence, we introduce a third jump-functions representation,
JFold, that uses the deep nesting from PhASAR and Heros (n 7→ d1 7→ d2 7→ f), but avoids
the multi-index.

Our theoretical analysis also yields that, with JFND, we already have efficient access to
the procedure summaries, eliminating the need for an extra EndSummary table that was
proposed by Naeem et al. [15]. To access a summary5 of procedure p, we can directly lookup
the necessary jump functions at p’s exit statements. With JFN , to find matching summaries
without the EndSummary table, one requires a linear search over the inner maps at p’s exit
statements. Depending on the size of these inner maps, this linear search may still be fast, so
we split JFN into two candidates: JFN and JFNE where JFNE uses the explicit EndSummary
table while JFN omits it.

4.1.3 Discussion
From the observations in Subsubsection 4.1.2, one could conclude that JFND is superior to
JFN because, in three out of the five Propagate calls, d1 is loop-invariant. However, in JFND
(depicted in Figure 3a) the outer map is larger than in JFN (depicted in Figure 3b) as its key
space is larger: |N | ≤ |N ×D|. Therefore, JFND needs to store more inner maps than JFN

although, in the end, both store the exact same number of jump functions. Furthermore,
the inner maps in JFND are smaller than the inner maps in JFN , as there are more of them
and depending on the concrete implementation-specific overhead of a single inner map, the
memory cost of the inner maps might outweigh their potential benefit. Hence, from a sole
theoretical analysis, we cannot conclude which jump-functions representation performs better
in practice; we need to perform an empirical evaluation to draw a final conclusion (Section 6).

4.2 Garbage Collection of Jump Functions
As discussed in Subsection 4.1, the jump-functions table has a great influence on the overall
memory consumption of the IDE algorithm. Arzt [1] has shown that it is possible to remove
entries in the jump-functions table without preventing the algorithm from reaching a fixed
point. They present a garbage collector (GC) that runs concurrently to the actual IDE
implementation, improving both memory usage and runtime of the underlying analysis. The
GC removes jump functions when they are no longer needed. This applies when the complete
data flow represented by a jump function has already been composed to a summary.

One limitation of the approach of Arzt [1] is that it only applies to an IFDS analysis
and therefore does not need to deal with edge functions. In IDE, the value computation
problem on data-flow edges can only be performed if the corresponding jump functions are

5 Processing summaries as described in line 15.2 by Naeem et al. [15].

ECOOP 2024

36:12 Scaling Interprocedural Data-Flow Analysis

Λ p a b

(n1, Λ) Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ(n1, p)

(n2, Λ)

(n2, p)

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 1

(n3, Λ)

(n3, p)

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 3

b ↦ 𝜆ℓ. ℓ ⋅ 5

(n4, Λ)

(n4, p)

Λ ↦ 𝜆ℓ. ℓ

p ↦ 𝜆ℓ. ℓ

a ↦ 𝜆ℓ. 3

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4);

(𝒏, 𝒅𝟏) 𝒅𝟐 ↦ 𝒇

Figure 3a. jump-functions representation JFND
for the example shown in Figure 1. The outer
map has a two-dimensional key space consisting
of the target node n and the source fact d1, which
reduces the size of the inner maps, containing only
the target fact d2 and the edge function f .

(𝑛1) int a = 1;

(𝑛2) a = a + 2;

(𝑛3) int b = p * 5;

(𝑛4);

Λ p a b

n1

n2

n3

n4

Λ, Λ ↦ 𝜆ℓ. ℓ

p, p ↦ 𝜆ℓ. ℓ

Λ, Λ ↦ 𝜆ℓ. ℓ

p, p ↦ 𝜆ℓ. ℓ

Λ, a ↦ 𝜆ℓ. 1

Λ, Λ ↦ 𝜆ℓ. ℓ

p, p ↦ 𝜆ℓ. ℓ

Λ, a ↦ 𝜆ℓ. 3

Λ, Λ ↦ 𝜆ℓ. ℓ
p, p ↦ 𝜆ℓ. ℓ

Λ, a ↦ 𝜆ℓ. 3

p, b ↦ 𝜆ℓ. ℓ ⋅ 5

𝒏 (𝒅𝟏, 𝒅𝟐) ↦ 𝒇

Figure 3b. jump-functions representation JFN for
the example shown in Figure 1. The outer map has
a one-dimensional key space only consisting of the
target node n, whereas the inner maps have a two
dimensional key space containing the source- and
target facts d1 and d2 as well as the associated edge
functions f . Compared to JFND, JFN contains
fewer inner maps which in turn grow larger.

Figure 3 Exemplary jump-functions tables using the proposed representations JFND and JFN .

present. This makes garbage collecting jump functions more complicated in a general IDE
setting with associated edge functions. Although Arzt describes a possible extension of the
GC to IDE as trivial, we recognize that the correct handling of corner cases makes it less
obvious than it seems on the first glance. Especially, we need to ensure that subsequent
result queries can still evaluate the edge-functions correctly that are annotated to the jump
functions. Secondly, the garbage collection by Arzt [1] exploits multithreading at the level
of the data-flow analysis solver. This requires the complete analysis toolchain to be thread
safe. While some IDE implementations do satisfy this requirement and make use of multiple
cores to speedup the solving process, other implementations are only single-threaded and do
not provide thread-safe data structures. Specifically, PhASAR’s analyses are not thread-safe
and even LLVM—which PhASAR builds upon—is not generally thread-safe. Additionally,
since we conduct a comprehensive study evaluating the runtime and memory consumption of
IDE, we need to ensure that external factors, such as OS scheduling do not influence our
evaluation results. Hence, we prefer using only a single thread, which eliminates many of
these issues by removing non-determinism from the implementation.

In the following, we describe how we mitigate both limitations, the restriction to a subset
of IDE and the enforced multi-threading.

4.2.1 Single-Threaded Garbage Collection

To keep the GC scalable, Arzt designed it to work on a procedure-level. That is, all jump
functions corresponding to procedure p can be erased once there is no longer any worklist
item that contains a node from inside p or from any procedure that can be transitively
called by p [1]. We call this the GC Condition. Unfortunately, the order in which the
ESG is constructed is not specified by the underlying algorithm [20], which is why one
cannot precisely predict these points. If the garbage collector runs concurrently to the

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:13

actual analysis-solving thread, it can be invoked periodically based on a timer. Additional
computations that the GC needs to perform to determine for which procedures the jump
functions can be erased do not necessarily pause the analysis. However, as explained above,
we decided to aim for a single-threaded solution here. The GC thus needs to be called
explicitly at suitable points within the IDE algorithm and will pause the data-flow analysis
for the garbage collection.

We observe that a procedure p can only become a candidate for garbage collection once
the analysis within p has reached an exit statement. In theory, it is possible to invoke the
GC after exiting any procedure, yet this has a non-negligible overhead that would render the
analysis unscalable. Hence, we aim for finding a point in the IDE algorithm to place the GC,
such that it gets called frequently enough to keep it effective, but not too frequent to keep it
scalable. This means, that the GC should be invoked, once a sufficient amount of procedures
have computed their summary.

There are several ways of deciding when the GC should be invoked, each with different
characteristics and implications. One approach is to increment a counter, whenever a
procedure has computed a new summary, and invoke the GC when the counter reaches a
certain threshold. This approach has the advantage that it is easy to implement. On the
downside, it does not decide to invoke the GC based on concrete information on the internal
solver state, such as the content of the worklist or the jump-functions table. Therefore, many
candidate procedures may actually fail the GC Condition and are not eligible for garbage
collection yet. Hence, its performance may not be predictable and requires a decent amount
of tuning. An alternative is to take the contents of the solver’s worklist into account when
deciding on when to invoke the GC. Since the GC Condition is based on the content of the
worklist, we can invoke the GC when it is guaranteed that the candidate procedures will
pass the GC Condition. In our implementation, we opted for this more informed procedure.

For deciding, when to invoke the GC, we split IDE’s worklist into two separate worklists:
One PathWorkList for top-down propagations, which stores jump functions in D×N×D×J

to be processed, and another worklist, RetWorklist, for bottom-up summary applications
that stores entries of the form (d1, p) ∈ D × P , where P is the domain of callable procedures
in the target program. On a high level, the fixed-point iteration uses the PathWorkList, but
also fills the RetWorklist on-the-fly when a procedure has reached its exit point. Once the
PathWorkList becomes empty, the algorithm handles the work-items from the RetWorklist,
which may fill the PathWorkList again. Although the data-flow propagations have stayed
the same, using two worklists we now have structured the fixed-point iteration into stages (a
stage ends, whenever the PathWorkList becomes empty) that allow placing a call to the GC.

For the two worklists to function properly, we modify the IDE algorithm as sketched
in Algorithm 2. The pseudo code for handling procedure exit points that we removed in
Line 9 of Algorithm 2 has moved to a new outer loop depicted in Algorithm 3. As applying
procedure summaries may lead to new intra-procedural propagations at their return sites,
the whole process runs in a loop until both worklists are empty, as shown in Algorithm 3.

Note that in subsequent iterations, the ForwardComputeJumpFunctionsSLRPs procedure
must skip its initialization phase to not over-write the already computed results. Apart from
that, we did not change the original IDE algorithm, as we describe in Paragraph 4.2.1.1.

Using two worklists, the garbage collection condition now slightly changes. The jump
functions of a procedure p can only be collected if none of the PathWorkList and the
RetWorklist contain a node from inside p or its transitive callees. This is, because when
processing the worklist items (d1, p) from the RetWorklist, the callers of p may be added to
the PathWorkList again preventing garbage collection for p. Whenever the PathWorkList is

ECOOP 2024

36:14 Scaling Interprocedural Data-Flow Analysis

Algorithm 2 Modification in the ForwardComputeJumpFunctionsSLRPs procedure from
the original IDE algorithm [20].

1 Procedure ForwardComputeJumpFunctionsSLRPs(. . .)
2 . . . ;
3 while PathWorkList ̸= ∅ do
4 Select and remove an item ⟨sp, d1⟩ → ⟨n, d2⟩ from PathWorkList;
5 . . . ;
6 switch n do
7 . . . ;
8 case n is the exit node of p do
9 Insert (d1, p) into RetWorklist;

10 end
11 . . . ;
12 end
13 end
14 end

Algorithm 3 High-level overview of the two-step fixed point computation with garbage
collection. The foreach loop in Line 5 denotes the content from ForwardComputeJumpFunc-
tionsSLRPs [20] that we have removed from Algorithm 2. The function RunGarbageCollector
behaves exactly as described by Arzt [1].

1 while PathWorkList ̸= ∅ do
2 ForwardComputeJumpFunctionsSLRPs(. . .);
3 while RetWorklist ̸= ∅ do
4 Remove (d1, p) from RetWorklist;
5 foreach call node c that calls p with corresponding return-site r do
6 . . . ;
7 end
8 end
9 RunGarbageCollector();

10 end

empty, we have the guarantee that for all currently analyzed procedures (and their transitive
callees), the analysis has reached their exit points, making them candidates for garbage
collection. Hence, we now have a structure that precisely defines points for placing the GC.

In particular, we now have two candidate locations to place the garbage collection in
Algorithm 3: Line 3: Right after the returning from ForwardComputeJumpFunctionsSLRPs
(i.e., when the PathWorkList becomes empty) or Line 9: After the RetWorklist becomes
empty. In Line 3, the RetWorklist is potentially non-empty as it may contain procedures p
that have computed a new summary for the propagation of a source data-flow fact d1 that
needs to be propagated back to all callers of p. In Line 9, though, the RetWorklist is empty,
whereas the PathWorkList may be filled with return flows again.

Both insertion points at Line 3 and Line 9 are very similar, however, Line 9 has one small
benefit: Having a jump function from a procedure p in the RetWorklist prevents all caller
procedures of p from being garbage collected. After processing the RetWorklist items, only
those callers of p have jump functions in the PathWorkList for which the new information

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:15

from p requires further propagation. All other caller procedures can still be garbage collected
(unless there are other callees that prevent the collection). This leads to our preference to
place the garbage collection at Line 9. Note, although the worklists are processed until
completion in one iteration of the outer loop, there are still potentially many iterations such
that the garbage collector is run many times as well.

4.2.1.1 Correctness

Our modifications to the IDE algorithm and the integration of the garbage collection do not
violate the correctness and complexity of the IDE algorithm. Splitting the worklist into two
smaller worklists, as we have done in Algorithm 2 and Algorithm 3, does not create new
worklist items that would not be created in the original, and also does not drop worklist
items that would be processed in the original. Only the order, in which the worklist items
are processed, may change. This is, because (1) the processing of exit nodes (cf. Line 9)
gets delayed through the RetWorklist to Algorithm 3 without modifying the corresponding
worklist items, and (2) since the processing order of the worklist items is not defined in the
algorithm [20], any modification on the processing order has no influence on the correctness
or complexity of the algorithm.

In addition, we use the same RunGarbageCollector function from Arzt without modification.
Only the garbage collection condition, has slightly changed: Whereas in the original GC,
a procedure p’s jump functions can be erased, if the worklist does not contain a node
from inside p or its transitive callees, in our extension, this requirement holds for both the
PathWorkList and the RetWorklist. Since we argue above that both PathWorkList and
RetWorklist in combination express the same worklist items as the original worklist, the
correctness argumentation from Arzt still holds.

4.2.2 Generalizing Garbage Collection for IDE
When a procedure p gets evicted by the original GC from Arzt, all jump functions corres-
ponding to that procedure are removed. However, when performing an analysis that uses
IDE’s edge functions, one needs to ensure that the value computation (cf. Subsection 2.1)
can still be performed correctly. To solve the value computation problem for an ESG node
(n, d) ∈ N ×D, the edge functions annotated to all jump functions that lead to node (n, d)
have to be evaluated and thus need to be present. For example, removing the intermediate
jump function ⟨Λ, n3, a, λℓ.3⟩ in Figure 1 would prevent that the analysis computes the result
relation (n3, a) 7→ 3. This makes garbage collection for IDE’s jump functions impossible
when the values for all ESG nodes must be computed. Fortunately, many analyses can
define for which ICFG nodes ni ∈ N analysis-result queries may be raised before starting
the solving process. For example, in a typestate analysis, only the API call nodes that are
relevant for the analyzed usage pattern may be queried. We call those nodes ni interesting.
At interesting nodes, we erase no jump functions in the GC to ensure that at those nodes
the complete analysis results including edge values will be present.

However, we have to retain additional jump functions: The value-propagation phase (cf.
Subsection 2.1) first propagates initial edge values from the entry points to the starting nodes
of all reachable procedures. This is done by iteratively querying and evaluating the jump
functions at all call sites to map the initial values to the start of all reachable procedures.
This initial value-propagation is necessary for the other jump functions to be evaluated, as it
determines the input values for these jump functions. Therefore, for the value propagation
to work properly, one must also retain the jump functions at all call sites, even if they are

ECOOP 2024

36:16 Scaling Interprocedural Data-Flow Analysis

not considered interesting, such that the value propagation to the starting points of all
procedures can succeed. Hence, when using IDE’s edge functions, the garbage collection must
retain more jump functions than just the ones corresponding to interesting nodes, making it
potentially less effective.

In the evaluation, we demonstrate that the garbage collection is still effective in a real
world setting, even in a single-threaded environment and when using IDE without restrictions.

5 Implementation

We implemented the IDE algorithm including the optimizations proposed in Section 4 on
top of the PhASAR framework [22]. PhASAR is able to analyze LLVM IR [13] in a fully
automated manner and already provides an implementation of IDE, called IDESolver [22,23].
The IDESolver is parametrizable with an user-defined description of an IDE analysis problem
that shall be solved. After solving the analysis problem, the IDESolver can answer queries
about which data-flow facts hold at a given ICFG node and which edge value has been
computed for a given node–data-flow fact pair (n, d) ∈ N ×D. We chose to provide the same
interface in the new solver such that it can be used as a drop-in replacement. Note that the
determination of interesting nodes for the garbage collector is completely opt-in, so only IDE
analyses that use both the garbage collector and edge functions may need to implement it.
We call our new solver IDESolver++.

The existing solver provides several configuration options that influence how the analysis
problem should be solved (e.g., whether the value computation in IDE Phase II should
be performed). Our new implementation is configurable as well, but we chose to lift the
configuration from runtime to compile-time. This allows to specialize the solver for the
selected configuration such that the algorithms and data structures can be selected precisely
for the requested needs. For example, if the implementation detects at compile-time that the
to-be-solved analysis problem does not need edge functions, the jump functions table will
replace its inner map by a set, eliding the storage for associated edge functions that would
otherwise all default to the identity function λx.x.

In Section 4, we have shown different representations of the table storing the jump
functions, and we concluded that this representation is critical for optimal performance of
the overall solving process. Therefore, we chose to use open-addressing6 hash maps to store
the concrete mappings of the structures JFND and JFN , as well as JFold. Open-addressing
hash maps are particularly performant because of their cache efficiency and small number of
dynamic memory allocations. However, their performance degrades with increasing size of
the entries to store. The domains N and D are user defined for both solvers (the current
IDESolver and our IDESolver++) making them generic over the program representation to
analyze and the type of data-flow facts. Therefore, we do not use these types directly as
keys and values in the hash maps to guarantee predictable performance. Instead, we chose
to introduce an intermediate layer that maps each used node and data-flow fact to 32-bit
integers in the contiguous ranges [0, . . . , |N | − 1] and [0, . . . , |D| − 1]. These integers are then
used as keys/values in the actual jump-functions table. The sizes of the intermediate maps
are negligible compared to the size of the jump-functions table. We reasonably assume that
both N and D do not grow larger than 232 − 1, since these domains are bound by the size of
the input program. For the JFN (and JFNE) approach, the intermediate layer enables one
more optimization: The outer map can be replaced by a plain array to further reduce the
memory footprint and to improve lookup performance.

6 Open-addressing hash tables store all buckets in a contiguous block of memory, using probing for collison
resolution.

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:17

Since the inner maps are very small in many cases, we chose to use llvm::SmallDense-
Map<K,V,4> for the inner maps to optimize for the case in which these maps do not exceed a
capacity of 4. This optimization is critical, especially for JFND and JFold, because they store
a large number of small inner maps, where their sizes mostly do not exceed the initial capacity
(48 entries) of a regular llvm::DenseMap. Independent from the selected jump-functions
representation, the corresponding outer hash map is pre-allocated with a reasonable size that
scales linearly with the size of the input program. Together with the small-size optimization,
this pre-allocation reduces the total number of potentially expensive (re-)allocations.

Our implementation is openly available in the supplementary material of this paper and
we are already in contact with the maintainers of PhASAR for rapid integration into the
open source framework.

6 Empirical Study

To empirically evaluate the optimizations proposed in Section 4, we use our IDE implemen-
tation (see Section 5) to analyze 31 real-world C/C++ programs. We start with defining our
research questions.

6.1 Research Questions
Jump-Functions Table Structure

In Subsection 4.1, we have argued that the structure of the jump-functions table directly
influences the performance of the analysis, especially regarding memory consumption. Hence,
we ask:

RQ1 What is the influence of choosing one of the proposed data structures, JFND,
JFN , and JFNE , in terms of runtime and memory consumption when analyzing
real-world C/C++ programs?

Jump-Functions Garbage Collection

Arzt [1] has shown that a garbage collector for jump functions not only significantly reduces
memory usage of the underlying analysis, but reduces runtime as well. As we have applied
significant changes (cf. Subsection 4.2) to the garbage collection by extending it to general
IDE problems and mitigating its restriction to multi-threaded analyses, we ask:

RQ2 How effective is the jump functions garbage collector in reducing memory usage
and running time when analyzing real-world C/C++ applications without the
restrictions to a subset of IDE and a multi-threaded implementation?

6.2 Experiment Setup
To ensure that our experiments are easily reproducible and comprehensible, we detail on
our setup in the following. In Subsubsection 6.2.1, we define what kind of analyses we
consider during the evaluation, and in Subsubsection 6.2.3 we present how we perform our
measurements as well as the required actions to answer the research questions.

6.2.1 Analysis Problems
To test our solver implementation, we choose to evaluate it using three commonly used
analysis problems that put a different amount of load to the solver:

ECOOP 2024

36:18 Scaling Interprocedural Data-Flow Analysis

TSA: Typestate analysis, configured to find invalid usage patterns of libc’s file-IO API
LCA: Linear constant analysis
IIA: Instruction-interaction analysis, to generate git-blame reports [21].

These analysis problems are available within PhASAR, and we use them unchanged. The
typestate analysis is expected to put low load on the solver as many programs use libc’s
file-IO only in few small regions of their code. The linear constant analysis should put
medium load on the solver, as it needs to propagate all potentially constant integer values;
however, the implementation in PhASAR currently is not alias aware, so the load on the
solver is still less than for the instruction-interaction analysis, which propagates all potential
aliases of the generated data-flow facts. Finally, the instruction-interaction analysis puts
an extreme load on the solver as it needs to exhaustively track all of the target program’s
variables and capture their interactions with the program’s instructions [21]. This way, the
size of the data-flow domain D approaches |N | allowing us to approximate the worst-case
scenario for field-insensitive analyses.

6.2.2 Target Programs
To ensure that our evaluation results reflect real-world analysis usage as closely as possible,
we carefully select the set of 31 target programs shown in Table 1. We select the target
programs out of 12 different domains to achieve broad coverage. Further, we choose the
target programs in various sizes in the range from 1 676 to 849 623 lines of code in LLVM IR
to test the IDE solver with different loads. The target programs have varying properties,
such as the number of procedures (66 to 35 134), the number of address-taken functions (0 to
2 696), the number of globals (113 to 15 108), the number of call-sites (314 to 176 350), the
number of indirect call-sites (0 to 2 155), and the number of basic-blocks (266 to 111 521).

We include the benchmarked programs from the initial PhASAR paper [22] excluding
PhASAR itself, because it has grown significantly since 2019, such that expensive analyses,
e.g., the IIA, do not work on that large programs anymore. Still, our evaluation results cannot
be compared to the results from Schubert et al. [22], since we use different client analysis
problems; the taint analysis used by Schubert et al. is of less interest for our work, since it
does not require IDE to be solved efficiently. We also include programs from the evaluation of
Sattler et al. [21] as they explicitly report performance problems of PhASAR’s IDE solver on
their benchmark. In contrast to the PhASAR benchmark, the time and memory results for
the programs analyzed by Sattler et al. can be compared to our evaluation results, because
the implementation and configuration of the IIA has not changed.

6.2.3 Measurement Setup
Each individual experiment is performed separately for each analysis problem. As analysis
targets we use 31 real-world C/C++ programs, which we compile to LLVM 14 IR using
WLLVM7, so that PhASAR’s analyses can consume them. To reduce measurement bias,
we run each experiment (solver configuration × analysis problem × analysis target) three
times and report average values. To validate that our experiments indeed show low variance,
we compute the standard deviation of the runtime measurements of the three repetitions.
We observe an average standard deviation of 2.2s to 8.3s depending on the jump-functions
representation. Normalizing that by the total runtime, the average standard deviation lays

7 WLLVM: https://github.com/travitch/whole-program-llvm

https://github.com/travitch/whole-program-llvm

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:19

between 0.99% and 1.5% of the measured runtime. As we expect running times in the area
of hours instead of seconds, the impact of measurement bias, as well as the variance between
repetition is expected to be negligible and therefore, we consider the relative small number
of repetitions k = 3 as sufficient to achieve reliable results.

We use the UNIX time utility to measure the total runtime and peak memory usage for
all experiments. We compute speedups for runtime and memory consumption (maximum
resident set size) by comparing the statistics of the to-be-evaluated configuration of the
IDESolver++ to the statistics of the respective baseline. Given runtime measurement samples
MN = {mn1 , . . . ,mnk

} and baseline-measurements MB = {mb1 , . . . ,mbk
} with the number

of samples k = 3, the speedup is defined as

S = 1
k2

∑
(mn,mb)∈(MN ×MB)

mb

mn

For memory measurements, we use the inverse 1
S of the above formular to compute the

relative memory usage in percent. We compare each combination of mn and mb, as these
samples are unordered. This prevents potential biases due to sample ordering. Note that
in contrast to Arzt [1] we can make use of the external tool time for measuring memory
consumption, because our experiments do not run in the JVM that makes external memory
measurements unreliable.

We conducted our evaluation on a compute cluster in an isolated and controlled environ-
ment to ensure that our measurements are not influenced by external factors. Each compute
node is equipped with an AMD EPYC 72F3 8-Core processor and 250GiB of RAM, running
a minimal Debian 10.

In addition, to increase the reproducibility of our results, we automate the evaluation
process with the VaRA Tool-Suite8.

Baseline. We also evaluate the existing state-of-the-art IDESolver that is openly available
in PhASAR as shown in Section 3. As a baseline for our further experiments, we use the
IDESolver++ with the deeply nested jump-functions representation JFold, which the IDESol-
ver uses as well. In addition, we compare the both solvers in terms of runtime and memory
consumption to assess the influence of our implementation in comparison with the current
state-of-the art, when not applying the optimizations proposed in Section 4. Note that we do
not implement the multi-index table for storing jump functions since the IDESolver++ does
not need it, as discussed in Subsubsection 4.1.2. To achieve a fair comparison, we need to
configure the IDESolver. We set the configuration option recordEdges to false to avoid
storing the ESG edges in a path sensitive way. We record runtime and memory usage, as
well as out-of-memory (OOM) and timeout events of both solvers, providing a baseline to
compare against in the evaluations of our research questions.

RQ1. We evaluate four configurations of our IDESolver++, one using JFND, JFN , JFNE ,
and JFold as jump-functions table respectively. JFold serves as a baseline for the others.
To judge which jump-functions table structure performs best on our target programs, we
compute the speedups compared to the baseline and consider the configuration with the
highest speedup as best. To verify whether the best configuration is significantly best, we
perform a t-test with significance level α = 0.05. The garbage collector is turned off.

8 VaRA Tool-Suite: https://vara.readthedocs.io/en/vara-dev/

ECOOP 2024

https://vara.readthedocs.io/en/vara-dev/

36:20 Scaling Interprocedural Data-Flow Analysis

RQ2. We configure the IDESolver++ as follows: turning the GC on or off and using JFND
or JFN . The IDESolver++ with GC turned off is used as baseline. We exclude JFNE here,
because it stores the jump functions in exactly the same way as JFN , just with one additional
table that only contains jump functions which cannot be evicted by the GC at all. So, in
total, we have four configurations for this experiment. For the typestate analysis all state
transition instructions are considered interesting, whereas for the linear constant analysis, all
branch conditions are considered interesting, which is useful when eliminating dead code, for
example. All jump functions at those interesting instructions are ignored by the garbage
collector. We exclude the instruction-interaction analysis for RQ2 as its post-processing needs
the results at all instructions [21] rendering the garbage collection useless. To examine the
influence of the jump functions garbage collector on the analysis, we compute the speedups
of the IDESolver++ compared to its corresponding versions without GC. We consider the
configuration with the highest speedup to perform best.

6.3 Results
We have conducted our experiments on the 31 real-world C/C++ programs listed in Table 1.
Although we have already argued on the correctness of our optimizations, we ran an additional,
non-measured analysis batch to confirm that the new IDESolver++ indeed computes the
same results as the IDESolver. In what follows, we detail on the results of our experiments
and answer the before defined research questions.

6.3.1 Baseline
Our evaluation of the baseline shows that in almost all measured configurations the IDE-
Solver++ is faster and consumes less memory than the IDESolver. We measured runtime
speedups ranging from 1.16× to 7.2× on average and memory savings from 0.96× to 4.8×
compared to the IDESolver as shown in Table 3. Due to the variance, the benefits of
using our IDESolver++ may be program dependent. Note that sometimes the IDESolver++
consumes more memory in the typestate analysis than the IDESolver. This is because the
IDESolver++ allocates large buffers in advance to lower the number of re-allocations (cf.
Section 5); in addition, the typestate analysis is very sparse; it propagates only a very small
number of data-flow facts and therefore does not fill out the pre-allocated buffers which we
do not consider as a problem since the total memory usage is negligible.

In contrast to the IDESolver, the IDESolver++ ran out-of-memory very rarely, as is
apparent in Figure 4. However, the figure also shows that the number of timeouts is higher
for the IDESolver++ than for the IDESolver. That is because analyses that ran out-of-
memory in the IDESolver were able to run long enough to exceed the given time budget
in the IDESolver++. All of the experiments that completed with the IDESolver were also
completed with the IDESolver++, showing that the performance does not degrade. In fact,
out of the 7 experiments that exceeded the time limit of four hours, three were solved in time
with the new solver; out of the five experiments that ran out of memory, one can now be
completed within the memory limit of 250GiB. Furthermore, all 7 experiments that required
up to 143GiB of RAM can now be solved on an consumer hardware with only 32GiB RAM.

There are several aspects that contribute to the improvements in this baseline experiment.
The most notable ones are: The elision of the multi-index storage for jump functions (see
Section 4.1.2), the batch-processing (see Algorithm 1) of data-flow fact propagations, and
the switch from the std::unordered_map to llvm::SmallDenseMap (see Section 5).

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:21

Table 3 The average speedups/memory savings of
the IDESolver++ with JFold compared to PhASAR’s
IDESolver together with their standard deviations

Analysis Memory Runtime

IIA 4.811 ±1.192 7.227 ±2.042
LCA 1.729 ±0.365 4.683 ±2.150
Typestate 0.968 ±0.050 1.162 ±0.143

Old Timeout - 7

Old OOM - 5
Old ≥ 128GiB - 1
Old ≥ 32GiB - 6

Old < 32GiB - 74

New Timeout - 7

New OOM - 2
New ≥ 32GiB - 3

New < 32GiB - 81

Event Flow

Figure 4 A sankey-plot showing
how the number of (target program ×
analysis type) that finish with out-of-
memory (OOM), timeout, or completed
changes when switching from PhASAR’s
IDESolver (Old) to our IDESolver++
(New) with JFold keeping the time-limit
of four hours and the memory limit of
250GiB.

Table 4 Results of our per-analysis comparision between the jump-function representations
within our IDESolver++. We report the mean speedup and its standard deviation for both runtime
and memory. Cells highlighted with green background indicate the JF with highest runtime speedup
or memory savings for that analysis. In case, the highest speedup is <1 or the difference to the
other jump-functions representations is not significant, we omit the highlight.

JF1 JF2 JF3
Memory Runtime Memory Runtime Memory Runtime

IIA 1.270 ±0.231 0.927 ±0.059 1.382 ±0.230 0.949 ±0.071 1.371 ±0.221 0.957 ±0.096
LCA 1.126 ±0.097 0.939 ±0.102 1.406 ±0.267 1.064 ±0.061 1.400 ±0.261 1.063 ±0.061
Typestate 1.059 ±0.053 0.996 ±0.023 1.057 ±0.042 1.013 ±0.035 1.057 ±0.042 1.005 ±0.022

Hence, we can already conclude that based on the high speedups for both runtime and
memory as well as avoiding out-of-memory events, it is crucial to implement IDE in a
performance-oriented way and just changing the implementation of the same underlying IDE
algorithm can enable analyses that were not feasible before.

6.3.2 RQ1: Jump-Functions Table Structure

We evaluated all three data structures JFND, JFN , and JFNE . We found that they behave
differently depending on the target program and analysis. As expected, the instruction-
interaction analysis puts a high load onto the solver, whereas the typestate analysis is very
sparse and therefore completes within seconds.

Figure 5 shows both the runtime speedups and the memory savings of the different
jump-functions representations compared to the deeply nested jump-functions representation
JFold. Both the runtime speedups and memory savings differ depending on the client analysis
and have high variance over the target programs. In the (left) runtime speedup plot we can

ECOOP 2024

36:22 Scaling Interprocedural Data-Flow Analysis

fil
e

wh
oa

m
i

kil
l

fol
dca
t

un
iq

joi
nxzwcgz
ipddcp

bz
ip
2 lslz4ht

op
gr

ep
bi
tlb

ee
br

ot
li

bi
so

n
op

us
lep

to
n

lib
jp
eg

_t
ur

bo
lib

sig
ro

k
lib

zm
q

op
en

vp
n

x2
64

po
pp

ler
as

te
ris

k
hy

pr
e

Fa
stD

ow
nw

ar
d

Target Program

0.50

0.75

1.00

1.25

1.50
R

un
ti
m

e
Sp

ee
du

p

IIA
LCA
TSA

fil
e

wh
oa

m
i

kil
l

fol
dca
t

un
iq

joi
nxzwcgz
ipddcp

bz
ip
2 lslz4ht

op
gr

ep
bi
tlb

ee
br

ot
li

bi
so

n
op

us
lep

to
n

lib
jp
eg

_t
ur

bo
lib

sig
ro

k
lib

zm
q

op
en

vp
n

x2
64

po
pp

ler
as

te
ris

k
hy

pr
e

Fa
stD

ow
nw

ar
d

Target Program

50%

75%

100%

R
el

at
iv

e
M

em
or

y
U

sa
ge

JFND

JFN

JFNE

faster

slower

Figure 5 Scatter plots showing the IDESolver++ with the proposed jump-functions representations
compared to the IDESolver++ using the nested representation inherited from PhASAR’s current
IDESolver. The left plot shows the runtime speedup (higher is better), whereas the right plot shows
the relative memory usage (smaller is better). The target programs are sorted in ascending order
based on their number of LLVM-IR instructions. The IDESolver++ was configured to use JFND
(blue), JFN (orange), and JFNE (green). The both horizontal lines are set at 1 meaning no speedup.
We use a log-scale to account for the non-linear distribution of speedups.

see that the speedups of the analyses are approximately centered around 1 with a small
advantage of JFN and JFNE over JFND for the LCA. In the (right) relative memory usage
plot, it becomes visible that the IIA and LCA consume less memory with any of the proposed
jump-functions representations than with JFold. However, the variance across the analyzed
target programs is high. For the TSA, the relative memory consumption is close to 94% for
all jump-functions representations. The target programs in the plots of Figure 5 are sorted
in ascending order by their number of LLVM-IR instructions. We provide variants of these
plots with different program orderings on our supplementary website (see visualizations).
Still, the orderings did not show observable correlations between the speedups and any of
the tested program characteristics.

So, there is no clear overall “best” jump-functions table structure, and project- and
analysis specific tradeoffs have to be made. However, by taking an analysis-centric view, we
can determine the “best” jump-functions representation per analysis as shown in Table 4.
For the IIA, JFN has highest average memory improvement with 1.382×(consuming 72% of
the memory from JFold), but the significance test shows that the difference to JFND and
JFNE is not significant, so in terms of memory, they share the first place. In terms of running
time, JFold performed significantly best. For the LCA, JFN is best in terms of both runtime
and memory improvements, consuming only 71% of the memory from JFold while being 6.4%
faster; the difference to JFNE is not significant, so we consider both JFN and JFNE best for
the LCA. While for memory improvement, JFND is with using 97% of the memory slightly,
but significantly better than JFold, for runtime speedup, the difference between JFND and
JFold is insignificant. Finally, for the typestate analysis, the jump-functions representations
performed similarly; yet the memory improvement of JFND, JFN , and JFNE over JFold is
significant, consuming around 94% of the memory from JFold.

https://secure-software-engineering.github.io/paper-idesolverxx/plots

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:23

LCA TSA
Analysis

0.625

0.750

0.875

1.000

1.250

1.500
R

un
ti
m

e
Sp

ee
du

p
/w

 G
C

JFND

JFN

faster

slower

Figure 6a. A violin plot showing the runtime
speedups of the IDESolver++ with garbage collection
compared to their versions without GC. The solver
was configured to use JFND (blue) and JFN (orange).
Note, that the y-axis is in log-scale to account for the
non-linear distribution of speedups <1 (slowdowns).

LCA TSA
Analysis

50.0%

62.5%

75.0%

87.5%

100.0%

R
el

at
iv

e
M

em
or

y
U

sa
ge

 /
w

 G
C

JFND

JFN

Figure 6b. A violin plot showing the relative
memory usage of the IDESolver++ with GC com-
pared to its versions without GC. The solver was
configured to use JFND (blue) and JFN (orange).
We use a log-scale for the relative memory usages
here.

Figure 6 Violin plots showing the impact of enabling garbage collection on runtime and memory
usage of the IDESolver++.

To answer RQ1: The performance of the jump-functions representations highly depends
on the performed analysis. However, JFN and JFNE have shown significantly best
memory usage for the LCA and perform well for the IIA and TSA; this makes them
a generally reasonable default choice. We also conclude that picking the right data
structure oftentimes is no tradeoff between runtime speedup and memory savings; the
same data structure can improve runtime and memory usage at the same time.

6.3.3 RQ2: Jump-Functions Garbage Collection

The results of evaluating the jump functions garbage collector with JFN are shown in
Figure 6a and Figure 6b. For the LCA we see memory savings, where the analysis consumed,
on average, 12% less memory (±10%). Furthermore, Figure 6b shows higher memory savings
with JFND than with JFN . For the TSA, the analysis with GC saved around 0.4% memory,
which is significant, but we consider it negligible in most cases. This is expected because
the TSA is very sparse and therefore does not have much to erase during garbage collection.
Some analysis runs consumed even more memory than with disabled garbage collection.
This is because of the additional book keeping meta-data that the garbage collector requires.
In summary, the generalization to IDE indeed makes the GC less effective, but still it can
drastically reduce the memory footprint of IDE analyses.

As expected, enabling jump functions garbage collection has non-negligible runtime-
performance impact. The reason for this is that – in contrast to the experiments of Arzt [1] –
the GC runs in the same thread as the analysis and therefore blocks the analysis process
while performing the garbage collection. However, the mean speedup is close to 1 with 96.6%
(±8.6%) for LCA and 98.3% (±6.3%) for TSA. Hence, the average runtime cost is still low.

Enabling the GC in single-threaded mode is a tradeoff between runtime and memory, as
the GC reduces the memory consumption of IDE at the cost of increased runtime.

ECOOP 2024

36:24 Scaling Interprocedural Data-Flow Analysis

To answer RQ2: Constraining the jump functions garbage collector to work in a single-
threaded scenario results in a reduction of the memory consumption of the linear constant
analysis of 12%, with only minimal runtime overhead. However, the effectiveness of the
GC compared to the original GC from Arzt [1] is reduced, making it impractical for
smaller analyses, and for those that do not propagate many data-flow facts.

6.4 Threads to Validity
Internal Validity

Runtime measurement on modern computing systems is a challenging task due to automatic
clock boost and throttling as well as context switches enforced by the operating system. This
makes reliable runtime measurements hard. We therefore ran our experiments three times
and report averages to compensate for this noise. In addition, we ran each experiment in
isolation on equivalent machines, ensuring that no other task is running in parallel. Our
experiments each utilize only one thread to minimize the influence of the OS scheduler on
the measurements.

We evaluated our experiments on a fixed set of target programs, on which we verified
that the IDESolver++ produces the same results as the IDESolver. We cannot rule out
that there are programs where the solvers produce different results because of bugs in the
implementations of either of them. To mitigate this risk, we performed our evaluation on a
large set of real-world programs and configured the IDE solvers with three different client
analysis problems.

External Validity

The performance of the analysis solvers may be different depending on the target program,
that is, there may be programs that we did not benchmark where the analysis solvers behave
differently. To mitigate this threat, we selected a diverse set of target programs from various
domains and with different sizes and complexities. Furthermore, we configured the analysis
solvers with three differently complex analysis problems to have greatest possible variation.
This gives us for the first time a comprehensive study on a substantial number of real-world
C/C++ programs.

6.5 Discussion
In Section 6, we presented the results of our evaluation, some of them require interpretation.

We have observed that JFN in many cases has a lower memory consumption than JFND.
This can be explained by the distribution of jump functions: For many analyses an extra
experiment run with statistics instrumentation shows that the average size of the inner maps
in JFND is < 4, but still with a high number of total jump functions. Hence, JFND pays
the memory overhead of a hash map for the majority of jump functions, whereas JFN and
JFNE oftentimes store more than 1000 elements in their inner maps which can lead to more
efficient use of the provided memory.

On the other hand, depending on the access patterns of the jump-functions table, JFND
can lead to faster jump functions access. For the IIA, we see drastic performance benefits of
JFND and JFold compared to JFN and JFNE when analyzing bison. This can be explained by
the handling of aliasing in the IIA. All aliases of a data-flow fact are propagated individually

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:25

in the IIA. Therefore, for memory-indirection statements, such as store a to b, for all
aliases of the stored pointer a all aliases of the target pointer b must be generated, which are
independent from each other. This leads to the same jump functions to be accessed multiple
times, which may be faster if the inner maps do not incur memory indirections because they
are small enough for small-size optimization.

Combining the measurements from our baseline (cf. Figure 3) with our specific optimiza-
tions from Section 4, we achieve the following overall mean speedups in the IDESolver++
compared to PhASAR’s current IDESolver: Memory improvements of 6.9× for IIA, and
2.7× for LCA; runtime speedups of 6.9× for IIA, and 4.9× for LCA. For the typestate
analysis, there is no overall mean speedup, but also no mean slowdown.

7 Related Work

Performance problems of IDE implementations are a known issue. He et al. [9] perform
sparsification on the ESG by propagating data-flow facts not along ICFG edges, but on their
corresponding def-use chains. Arzt and Bodden [3] automatically generate IDE summaries
for libraries, which prevents re-analyzing commonly used libraries and lowers the size of the
analyzed target programs. Arzt and Bodden [2] improve re-analysis of already analyzed
programs by incrementally analyzing only the changes compared to the previously analyzed
version. These approaches let any existing implementation of IDE scale better in the
circumstances that they optimize. Nonetheless, they can still further profit from an improved
solver that scales better in the first place.

Weiss et al. [29] use a database system to store their internal data structures partially
on disk effectively increasing the amount of available memory. However, they focus on the
specific problem of error-code propagation and do not generalize to arbitrary IDE analyses.
Hsu et al. [10] propose a modified IFDS algorithm that no longer needs to store the ESG
explicitly and computes the reachability based on Depth-First Tree Intervals instead. While
this approach works well for IFDS problems, it cannot be applied to IDE problems directly
as composing edge functions requires to store the jump functions in some way.

He et al. [8] improve the garbage collection presented by Arzt [1] by increasing the GC’s
granularity from method-level to data-flow fact level. However, it suffers from the same
restrictions of required multi-threading and also only applies to the same subset of IDE as
the original garbage collector [1] that we generalize in this paper.

Apart from IDE, there are other approaches to precise interprocedural static data-flow
analysis, such as weighted pushdown systems (WPDS) [12, 18]. As WPDS has the same
runtime- and memory complexities as IDE, similar optimizations as the ones presented in
this paper may be possible for WPDS as well. Other approaches, such as Boomerang [25]
reduce their resource requirements by conducting demand-driven analyses, only computing
the data-flow information for specific program locations. While demand-driven analyses
work well for pointer analysis where a client analysis requests the demand, exhaustive taint
analyses, e.g., a use-after-free analysis would need to issue a demand for each potential sink
statement effectively degenerating the demand-driven analysis to a whole-program analysis
with similar performance issues.

Yu et al. [31] tackle the performance problem by bringing data-flow analysis to the GPU
and optimizing the algorithm, as well as the data-layout for GPU processing. As the CPU
and GPU are particularly different hardware components, optimizations for GPU programs
usually do not apply to CPU programs, and vice versa.

ECOOP 2024

36:26 Scaling Interprocedural Data-Flow Analysis

8 Conclusion

Current state-of-the-art IDE implementations do not scale well to large programs preventing
the analysis of many interesting data-flow problems that can be used for bug- and vulner-
ability detection, as well as other important fields in software engineering. Based on years
of experience with implementing and using IDE-based program analyses, we identified two
different optimizations of the IDE algorithm. We found that choosing an efficient repres-
entation for the jump-functions table structure within the solver implementation has great
influence on the performance of the algorithm. Still, it requires further research to select the
right data structure for an analysis, or to even automate this process. Yet, we learned that
an implementation of IDE has to be designed with performance in mind from the beginning
to achieve a scalable implementation. Furthermore, we extended the jump functions garbage
collection from Arzt to general IDE problems and removed the restriction to a multi-threaded
solver implementation. We evaluated that it still reduces the memory footprint of the IDE
analyses, though being less effective than the original.

Our experiments on 31 real-world C/C++ programs show runtime and memory speedups
of up to 7× on average compared to the existing IDE implementation in PhASAR and enable
the analysis of more target programs than before. We found that especially extremely heavy
analyses such as the instruction interaction analysis presented by Sattler et al. [21] can now
be run on medium-to large programs that was not possible previously, even with larger server
hardware. Still, some analyses require too much memory for being executed on an ordinary
developer machine.

References
1 Steven Arzt. Sustainable Solving: Reducing The Memory Footprint of IFDS-Based Data

Flow Analyses Using Intelligent Garbage Collection. In Proc. Int. Conf. Software Engineering
(ICSE), pages 1098–1110. IEEE, 2021.

2 Steven Arzt and Eric Bodden. Reviser: Efficiently Updating IDE-/IFDS-Based Data-Flow Ana-
lyses in Response to Incremental Program Changes. In Proc. Int. Conf. Software Engineering
(ICSE), pages 288–298. ACM, 2014.

3 Steven Arzt and Eric Bodden. StubDroid: Automatic Inference of Precise Data-Flow Summaries
for the Android Framework. In Proc. Int. Conf. Software Engineering (ICSE), pages 725–735.
ACM, 2016.

4 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. FlowDroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps. In Proc. Conf.
Programming Language Design and Implementation (PLDI), pages 259–269. ACM, 2014.

5 Eric Bodden. Inter-Procedural Data-Flow Analysis with IFDS/IDE and Soot. In Proc. Int.
Workshop on State Of the Art in Java Program Analysis (SOAP), pages 3–8. ACM, 2012.

6 Eric Bodden. The secret sauce in efficient and precise static analysis: the beauty of distributive,
summary-based static analyses (and how to master them). In Comp. Proc. ISSTA/ECOOP
Workshops, pages 85–93. ACM, 2018.

7 Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. Practical memory leak detec-
tion using guarded value-flow analysis. In Proc. Conf. Programming Language Design and
Implementation (PLDI), pages 480–491. ACM, 2007.

8 Dongjie He, Yujiang Gui, Yaoqing Gao, and Jingling Xue. Reducing the Memory Footprint of
IFDS-Based Data-Flow Analyses using Fine-Grained Garbage Collection. In Proc. Int. Symp.
Software Testing and Analysis (ISSTA), pages 101–113. ACM, 2023.

9 Dongjie He, Haofeng Li, Lei Wang, Haining Meng, Hengjie Zheng, Jie Liu, Shuangwei Hu,
Lian Li, and Jingling Xue. Performance-Boosting Sparsification of the IFDS Algorithm with
Applications to Taint Analysis. In Proc. Int. Conf. Automated Software Engineering (ASE),
pages 267–279. IEEE, 2020.

F. Schiebel, F. Sattler, P. D. Schubert, S. Apel, and E. Bodden 36:27

10 Min-Yih Hsu, Felicitas Hetzelt, and Michael Franz. DFI: An Interprocedural Value-Flow Ana-
lysis Framework that Scales to Large Codebases. Comput. Research Repository, abs/2209.02638,
2022.

11 Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. Model checking for weakly
consistent libraries. In Proc. Conf. Programming Language Design and Implementation (PLDI),
pages 96–110. ACM, 2019.

12 Akash Lal, Thomas Reps, and Gogul Balakrishnan. Extended Weighted Pushdown Systems.
In Proc. Int. Conf. Computer Aided Verification (CAV), pages 434–448. Springer-Verlag, 2005.

13 Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proc. Int. Symp. Code Generation and Optimization (CGO),
pages 75–88. IEEE, 2004.

14 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nelson Amaral,
Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dimitrios
Vardoulakis. In Defense of Soundiness: A Manifesto. Commun. ACM, 58(2):44–46, 2015.

15 Nomair A Naeem, Ondřej Lhoták, and Jonathan Rodriguez. Practical Extensions to the IFDS
Algorithm. In Proc. Int. Conf. on Compiler Construction (CC), pages 124–144. Springer-Verlag,
2010.

16 Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymptotic performance bugs
in collection traversals. In Proc. Conf. Programming Language Design and Implementation
(PLDI), pages 369–378. ACM, 2015.

17 Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise Interprocedural Dataflow Analysis
via Graph Reachability. In Proc. Symp. Principles of Programming Languages (POPL), pages
49–61. ACM, 1995.

18 Thomas Reps, Stefan Schwoon, and Somesh Jha. Weighted Pushdown Systems and Their
Application to Interprocedural Dataflow Analysis. In Proc. Int. Symp. Static Analysis (SAS),
pages 189–213. Springer-Verlag, 2003.

19 Atanas Rountev, Mariana Sharp, and Guoqing Xu. IDE Dataflow Analysis in the Presence of
Large Object-Oriented Libraries. In Proc. Int. Conf. on Compiler Construction (CC), pages
53–68. Springer-Verlag, 2008.

20 Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise Interprocedural Dataflow Analysis
with Applications to Constant Propagation. Theor. Comput. Sci., 167(1-2):131–170, 1996.

21 Florian Sattler, Sebastian Böhm, Philipp Dominik Schubert, Norbert Siegmund, and Sven
Apel. SEAL: Integrating Program Analysis and Repository Mining. ACM Trans. Softw. Eng.
Methodol., 32(5):121:1–121:34, 2023.

22 Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. PhASAR: An Inter-procedural
Static Analysis Framework for C/C++. In Proc. Int. Conf. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 393–410. Springer-Verlag, 2019.

23 Philipp Dominik Schubert, Richard Leer, Ben Hermann, and Eric Bodden. Know your analysis:
How instrumentation aids understanding static analysis. In Proc. Int. Workshop on State Of
the Art in Program Analysis (SOAP), pages 8–13. ACM, 2019.

24 M Sharir and A Pnueli. Two approaches to interprocedural data flow analysis. New York Univ.
Comput. Sci. Dept., 1978.

25 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang: Demand-
Driven Flow- and Context-Sensitive Pointer Analysis for Java. In Proc. Europ. Conf. Object-
Oriented Programming (ECOOP), pages 22:1–22:26. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016.

26 Yulei Sui, Ding Ye, and Jingling Xue. Static memory leak detection using full-sparse value-flow
analysis. In Proc. Int. Symp. Software Testing and Analysis (ISSTA), pages 254–264. ACM,
2012.

27 Yulei Sui, Ding Ye, and Jingling Xue. Detecting Memory Leaks Statically with Full-Sparse
Value-Flow Analysis. IEEE Trans. Software Eng., 40(2):107–122, 2014.

ECOOP 2024

36:28 Scaling Interprocedural Data-Flow Analysis

28 Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. DangSan: Scalable Use-after-free
Detection. In Proc. Europ. Conf. Computer Systems (EuroSys), pages 405–419. ACM, 2017.

29 Cathrin Weiss, Cindy Rubio-González, and Ben Liblit. Database-backed program analysis for
scalable error propagation. In Proc. Int. Conf. Software Engineering (ICSE), pages 586–597.
IEEE, 2015.

30 Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. Spatio-temporal context reduction: a
pointer-analysis-based static approach for detecting use-after-free vulnerabilities. In Proc. Int.
Conf. Software Engineering (ICSE), pages 327–337. ACM, 2018.

31 Xiaodong Yu, Fengguo Wei, Xinming Ou, Michela Becchi, Tekin Bicer, and Danfeng Daphne
Yao. GPU-Based Static Data-Flow Analysis for Fast and Scalable Android App Vetting. In
Int. Symp. Parallel and Distributed Processing (IPDPS), pages 274–284. IEEE, 2020.

32 Zhiqiang Zuo, Yiyu Zhang, Qiuhong Pan, Shenming Lu, Yue Li, Linzhang Wang, Xuandong
Li, and Guoqing Harry Xu. Chianina: an evolving graph system for flow- and context-
sensitive analyses of million lines of C code. In Proc. Conf. Programming Language Design
and Implementation (PLDI), pages 914–929. ACM, 2021.

Java Bytecode Normalization for Code Similarity
Analysis
Stefan Schott #

Paderborn University, Germany

Serena Elisa Ponta #

SAP Security Research, Mougins, France

Wolfram Fischer #

SAP Security Research, Mougins, France

Jonas Klauke #

Paderborn University, Germany

Eric Bodden #

Paderborn University, Germany
Fraunhofer IEM, Paderborn, Germany

Abstract
Analyzing the similarity of two code fragments has many applications, including code clone, vulner-
ability and plagiarism detection. Most existing approaches for similarity analysis work on source
code. However, in scenarios like plagiarism detection, copyright violation detection or Software
Bill of Materials creation source code is often not available and thus similarity analysis has to be
performed on binary formats. Java bytecode is a binary format executable by the Java Virtual
Machine and obtained from the compilation of Java source code. Performing similarity detection on
bytecode is challenging because different compilers can compile the same source code to syntactically
vastly different bytecode.

In this work we assess to what extent one can nonetheless enable similarity detection by bytecode
normalization, a procedure to transform Java bytecode into a representation that is identical
for the same original source code, irrespective of the Java compiler and Java version used during
compilation. Our manual study revealed 16 classes of compilation differences that various compilation
environments may induce. Based on these findings, we implemented bytecode normalization in a
tool jNorm. It uses Jimple as intermediate representation, applies common code optimizations and
transforms all classes of compilation difference to a normalized form, thus achieving a representation
of the bytecode that is identical despite different compilation environments.

Our evaluation, performed on more than 300 popular Java projects, shows that solely the act
of incrementing a compiler version may cause differences in 46% of all resulting bytecode files. By
applying bytecode normalization, one can remove more than 99% of these differences, thus acting as
a crucial enabler for subsequent applications of bytecode similarity analysis.

2012 ACM Subject Classification Software and its engineering → Compilers

Keywords and phrases Bytecode, Java Compiler, Code Similarity Analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.37

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.20

Funding This work was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Centre ”On-The-Fly Computing“ (GZ: SFB 901/3) under the project
number 160364472.

V1.1

A
rt
ifa

cts Available

ECOOP

© Stefan Schott, Serena Elisa Ponta, Wolfram Fischer, Jonas Klauke, and Eric Bodden;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 37; pp. 37:1–37:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefan.schott@upb.de
https://orcid.org/0000-0002-0644-3297
mailto:serena.ponta@sap.com
https://orcid.org/0000-0002-6208-4743
mailto:wolfram.fischer@sap.com
https://orcid.org/0000-0001-8127-8837
mailto:jonas.klauke@upb.de
https://orcid.org/0000-0001-9160-9636
mailto:eric.bodden@upb.de
https://orcid.org/0000-0003-3470-3647
https://doi.org/10.4230/LIPIcs.ECOOP.2024.37
https://doi.org/10.4230/DARTS.10.2.20
https://doi.org/10.4230/DARTS.10.2.20
https://doi.org/10.4230/DARTS.10.2.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Java Bytecode Normalization for Code Similarity Analysis

1 Introduction

In the past, researchers have developed many approaches for code similarity analysis on Java
applications [50, 35, 52, 31, 60, 47]. These techniques target a wide variety of applications,
like code clone detection, plagiarism detection, copyright infringement investigation, program
comprehension, vulnerability detection and many more [49, 37]. Most developed techniques
operate on source code. However, an application’s source code is not always available,
since applications are typically distributed in binary form. Especially in scenarios where
external dependencies are included into a software product, often only the binary form is
included without the corresponding source code. In case of Java, applications are distributed
as JAR-archives that contain the bytecode of the application. Instead of compiling the
source code directly to executable machine code, Java compilers generate an intermediate
representation called bytecode, which is translated into machine code during execution time by
the Just-in-time (JIT) compiler within the Java Virtual Machine (JVM). With the European
Union’s Cyber Resilience Act [11] coming into force soon and the US’s Executive Order on
Improving the Nation’s Cybersecurity [6] already being effective, the creation of Software Bill
of Materials (SBOM) has become mandatory. However, creating a faithful SBOM for Java
applications is a difficult undertaking due to current tool’s reliance on metadata [5, 13]. To
reliably create such SBOMs an approach needs to be established that is able to find all used
components based on the similarity of bytecode, since source code is generally not available.

There are only few approaches that have been developed for similarity analysis based on
bytecode [4, 36, 58]. This may be due to the increased complexity when trying to compare
bytecode instead of source code. As Dann et al. [12] and Kononenko et al. [38] have shown,
the comparison of bytecode is more complex than the comparison of source code, since equal
source code is compiled into different bytecode, depending on the compiler, version and
configuration used. While the generated bytecode is semantically equivalent, its syntactic
structure may vastly differ. To overcome this difficulty we investigate the utility of bytecode
normalization to create a representation that is independent of the environment that has been
used for compilation. This independent representation can subsequently be used by bytecode-
based code clone, plagiarism or vulnerability detectors without the need for consideration
of compilation environments, significantly simplifying their task. Our approach to achieve
bytecode normalization, which builds upon Dann et al.’s approach [12], is a procedure that
1. translates the bytecode into Jimple, the primary intermediate representation of the

Soot [55] bytecode optimization framework, which reduces the more than 200 available
bytecode-instructions to only 15 different Jimple instructions,

2. as a baseline first applies common optimizations like constant propagation, dead code re-
moval and unconditional branch folding to further reduce differences, and then specifically,
and lastly

3. transforms compilation differences induced by different compilation environments.
We uncovered the set of compilation differences by systematically comparing bytecode of
popular Java libraries generated by different vendors, versions and configurations of Oracle’s
Java Development Kit’s (JDK) and OpenJDK’s compiler (javac). During this initial study,
we found a total of 16 classes of compilation differences.

We implemented bytecode normalization in a tool jNorm, and evaluated it on more than
300 of the most popular Java projects on GitHub by compiling the same source code within
various compilation environments with different compiler vendors, versions and target levels.
The evaluation shows that even a single increase of the compiler version may result in up to
46% of all generated bytecode files containing compilation differences. By applying jNorm’s

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:3

bytecode normalization one can reduce these differences by more than 99%. Thus, bytecode
normalization can function as an important enabler for bytecode similarity analysis in all
cases in which source code is not available.

To summarize, this paper makes the following original contributions:
It investigates the usage of different Java compilers and settings in real-world projects.
It presents a comprehensive set of 16 classes of compilation differences that are induced
when using different vendors, versions or target level configurations of the JDK’s and
OpenJDK’s Java compiler.
It presents an approach to bytecode normalization, implemented in a tool jNorm, to
virtually completely remove the differences introduced by compiling the same source code
within different compilation environments.
It evaluates jNorm on a large set of real-world Java applications collected from GitHub.

The remainder of this paper is structured as following. Section 2 introduces terms and
concepts related to similarity analysis, Java compilation and normalization. Afterwards,
Section 3 presents the concept of Java bytecode normalization implemented in jNorm and
an overview of the uncovered compilation difference classes. Section 4 presents an evaluation
of jNorm on a a set of real-world Java projects. Related work is presented in Section 5. We
discuss possible threats to validity in Section 6 and conclude in Section 7.

jNorm, its source code, more detailed evaluation results and a study on the usage of
Java compilers and target levels are publicly available at:

https://doi.org/10.5281/zenodo.12625104

2 Background

This section introduces concepts that are related to code similarity analysis and the compila-
tion of Java applications.

2.1 Code Similarity Analysis
Code similarity analysis is a technique that seeks to determine the similarity of two or more
code fragments. The calculation of the similarity of code fragments has a large number of uses,
like code clone, plagiarism, licensing violation, malware or vulnerability detection [49, 37].

Depending on the desired application area different techniques are employed. Text- [50, 4]
or token-based [35, 52] techniques try to find similarities within the textual information
of the code fragments. Tree-based techniques [31] try to additionally leverage syntactic
information of the code for the similarity analysis. Some techniques even try to find semantic
similarities within code fragments [39]. These techniques are typically graph-based and offer
low potential for scalability [49]. Recently machine learning based approaches [60, 51], which
typically train a classifier that decides how similar code fragments are, have become popular.
In terms of efficiency and scalability, text- and token-based techniques, which can solely
focus on syntactic features, are much preferred.

Typically the similarity analysis is performed on a source code level. However, the source
code of a compiled binary is not always available or trustworthy. In such scenarios, e.g.
plagiarism detection or SBOM generation, the similarity analysis has to be performed on the
binary itself. However, the resulting binary code is highly dependent on the environment
it has been compiled in, i.e. different compiler versions or settings produce different code,
even when compiling the same source code [12]. This characteristic makes binary similarity
analysis a much more complex task.

ECOOP 2024

https://doi.org/10.5281/zenodo.12625104

37:4 Java Bytecode Normalization for Code Similarity Analysis

2.2 Java compilers
In contrast to other compiled programming languages like C or Go, Java applications are
not directly compiled into machine-executable code, but into Java bytecode. This bytecode is
executed by the Java virtual machine (JVM), which comes with a just-in-time (JIT) compiler
that compiles the bytecode into executable machine code at runtime. Because of this, the
Java bytecode has the following characteristics:
1. Platform independence: The JVM architecture aims at platform independence. The

generated bytecode is independent from the platform it is intended to run on [46].
2. Unoptimized bytecode: Optimizations are performed during runtime by the JIT

compiler, therefore compiled bytecode is typically not optimized [24].
Because of these characteristics, the amount of variance across generated bytecode is not as
high, when compared to machine-code, since there are no different optimization levels or
differences due to the targeted platform.

There exist multiple different Java compilers like e.g. Oracle’s JDK or OpenJDK’s
compiler [45], Eclipse’s JDT core compiler [28], IBM’s Jikes compiler [32], or the GNU
Compiler for Java (GCJ) [19]. The JDK’s and OpenJDK’s compilers can be invoked
programmatically or through the command-line application javac that comes pre-shipped
with each JDK. Given the same source code as input, in many cases these compilers produce
different Java bytecode.

In general, Java compilers support source codes that adhere to different versions of the
language specification and can generate bytecode for different JVM versions lower than the
compiler’s version. This backwards compatibility can be used by setting the compiler’s target
level. For example, bytecode compiled with a JDK11 compiler with target level set to 8 can
be executed by a JVM only supporting up to Java 8. The set of available target levels for a
compiler is usually limited to a subset of earlier versions.

2.3 Jimple
Jimple is an intermediate representation (IR) of Java bytecode that was designed for providing
a format that allows for simplified analysis, optimization and code transformations. Jimple
maps the more than 200 Java bytecode instructions to only 15 different Jimple instructions
in a three-address based representation. Three-address based representation means, that
each instruction generally contains at most three different operands, e.g., one used for the
left-hand side of an assignment and two used for binary operations on the right-hand side.
This restriction greatly simplifies the processing of individual IR statements, which is why
three-address IRs are nowadays commonplace. During the transformation Jimple retains all
the type information present in the bytecode.

Jimple is the primary IR of the most popular Java bytecode optimization and analysis
framework Soot [55]. Alongside various code optimization options, Soot provides an API to
conveniently transform Jimple instructions. Soot can automatically convert Java bytecode
to Jimple (and vice-versa).

3 Java Bytecode Normalization

As we show next, Java bytecode normalization allows for the removal of differences in Java
bytecode that are solely introduced by the usage of different compilation environments. In
the following we describe how we detected the compilation differences in the first place, as
well as the details of our bytecode normalization approach and its implementation in jNorm.

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:5

Java project

Compilation
Env. 1

Compilation
Env. 2

Jimple Parsing +
Optimizations

Textual
Comparison

Compilation
differences

Jimple Parsing +
Optimizations

Figure 1 Setup to determine compilation differences.

3.1 Investigation of Compilation Differences
Before the development of our bytecode normalization approach jNorm, we performed a study
to investigate the differences induced by different compilation environments. Figure 1 shows
the setup we used to determine compilation differences. For each comparison, we supplied
the source code of various versions of the popular Java libraries Apache commons-io, Apache
commons-lang, Jackson-databind, SLF4J and Google Guava, to two different environments
for compilation. Afterwards, we converted the resulting bytecodes to Jimple and applied
code optimizations, provided by the Soot framework, to reduce dissimilarities. Finally,
we performed a textual comparison on the optimized Jimple representations to determine
the remaining compilation differences. Two files were considered different, and manually
inspected by the authors, as soon as one character differed in the textual comparison.

Our compilation environments included the javac compilers shipped with JDKs 5–8, 11,
and 17. Moreover, this version-range covers all Long-Term-Support (LTS) versions of the
Java ecosystem until August 2023. A usage study of Java compilers and target levels in
Java projects, which revealed these to be the by far most relevant compilers and versions, is
available within an electronic appendix in our provided artifact.

We consider three types of parameters, JDK vendor, JDK version, and Java target level.
We used Oracle’s JDK, as well as OpenJDKs distributed by Amazon Corretto and Eclipse
Adoptium.

In total, our setup revealed 16 compilation difference classes, present in the investigated
projects, which are listed in Tables 1a and 1b. Table 1a shows the difference classes produced
by changing the JDK version, while Table 1b shows the difference classes produced when
adjusting the Java target level. We did not find any vendor-related difference classes in our
initial experiments.

Furthermore, we inspected the official JDK release notes [27] related to newly released
compiler versions. However, this inspection did not reveal any so far uncovered difference
classes. Our evaluation performed on more than 300 of the most popular Java projects (see
Sections 4.3 and 4.4) also revealed no additional difference classes.

In the following we describe jNorm’s approach to bytecode normalization and how it
transforms the identified compilation difference classes into a representation that is common
across all investigated compilation environments.

3.2 Overview of jNorm
Figure 2 depicts an overview of jNorm. First, jNorm parses a Java bytecode file (.class file)
into Jimple format, which is specifically designed for efficient optimizations and transforma-
tions. Note that jNorm also has the capability to process multiple bytecode files at once,
and therefore full Java projects, but because each file is normalized independently of others
we will explain bytecode normalization of single files. To reduce the initial set of differences
for the following steps of the normalization process, jNorm applies different types of common

ECOOP 2024

37:6 Java Bytecode Normalization for Code Similarity Analysis

Table 1 Difference classes on JDK version and Target level change.

(a) JDK version change.

ID JDK Compilation Difference Class

N1 5 → 6 &
7 → 8

Synthetically generated methods

N2 5 → 6 Arithmetic
N3 6 → 7 CharSequence toString invocation
N4 7 → 8 Empty try-catch-finally block
N5 7 → 8 String constant concatenation
N6 8 → 11 Method reference operator
N7 8 → 11 Buffer method invocation
N8 8 → 11 Try-with-resources
N9 8 → 11 Duplicate checkcasts
N10 11 → 17 Enums

(b) Target level change.

ID Target Compilation Difference Class
N11 6 → 7 Outer class object creation
N12 8 → 11 Dynamic string concatenation
N13 8 → 11 Nest-based access control
N14 8 → 11 Invocation of private methods
N15 8 → 11 Inner class instantiation
N16 multiplea Insertion or removal of typechecks

a This compilation difference class occurs across mul-
tiple JDK and target level changes.

Java Bytecode
File Jimple Parser Optimization Comp. Diff.

Transformation Standardization Jimple File

jNorm

Figure 2 Overview of jNorm.

optimizations to the Jimple representation of the input bytecode file. Afterwards, in the
Compilation Difference Transformation step (see Figure 2), jNorm handles the remaining
set of compilation differences by performing certain transformations on the optimized Jimple
representation. These transformations are targeted towards specific constructs that we found
to be compiled differently based on the used compilation environment. jNorm detects these
constructs within the target program and transforms them into a normalized representation.
The applied transformations interfere with the naming scheme of local variables inside the
target programs, which cause the introduction of new dissimilarities. jNorm handles these
dissimilarities by standardizing (see Figure 2) the order and naming scheme of variables. After
the normalization process is finished, jNorm outputs the normalized Jimple representation.

3.3 Jimple Parsing and Optimization
The first step of Java bytecode normalization consists of parsing the targeted bytecode file
into a Jimple representation. This allows for a convenient application of common program
optimizations provided by Soot. We apply the following optimizations to each method [54]:

Copy Propagation: Usages of variables in statements are replaced by their values, e.g.
in a statement like x = y + 3, the reference to variable y is replaced by the value stored
in y.
Constant Propagation and Folding: Expressions that entirely consist of compile-time
constants (e.g. 2 * 3) are replaced by the constant result.
Dead Assignment Elimination: Assignment statements to local variables, whose value
is not subsequently used, are removed.
Conditional Branch Folding: The expressions inside if-conditions are statically eval-
uated. If the expressions evaluate to constants, the unreachable conditional branch
statements are removed.

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:7

Unconditional Branch Folding: Unnecessary goto statements are removed.
Unreachable Code Elimination: Unreachable code is removed.
Null Check Elimination: Null-check statements, where the checked variable is known
not to be null, are removed.
Unused Local Elimination: Unused local variables within a method are removed.

These optimizations already contribute to a decrease of dissimilarities introduced during
compilation [12]. However, after applying the optimizations, many important compilation
differences still remain, which are targeted in the next step.

3.4 Compilation Difference Transformation
Through our investigation (see Section 3.1) we identified 16 compilation difference classes
summarized in Tables 1a and 1b. In the following we describe the identified classes and the
transformations applied by jNorm in detail.

The transformations that jNorm performs are not arbitrarily chosen. Each transformation
produces a version that is generated by at least one compiler within our dataset. Furthermore,
the decision whether to transform a compilation difference class to the older or the newer
version is also not arbitrary. Typically one of the two versions contains more information
than the other (e.g. a more specific return type in the newer version or the amount of
string concatenation calls before their combination into a single call). As we cannot simply
add information that is unavailable when only having access to the bytecode, we have to
transform the difference class to the version that contains less information, therefore stripping
some information from the generated bytecode. However, this information cannot be used for
similarity analysis, since, based on the used compilation environment, it is not guaranteed to
be present in the bytecode.

Note that we do not aim at generating an executable version of the bytecode with all
semantics preserved, but at preserving information that is possibly important for a similarity
analysis. Similarity analysis approaches that additionally require an executable version of
the analyzed application, can use the original bytecode that has not been normalized, in
addition to the normalized version.

N1: Synthetically generated methods
In many cases the JDK compiler synthetically generates methods into classes. Often this is
used to generate bridge-methods that enable access to private members. Such synthetically
generated methods are marked by the compiler with a specific synthetic flag [34]. Depending
on the used JDK, these methods are not always generated in certain cases, e.g. whenever a
method of a class uses a Comparator to create a specific ordering of objects, starting from
JDK6 the compiler automatically generates a corresponding sort method into the class.
Thus, such synthetic methods introduce differences and cannot be reliably used for a code
comparison.
Transformation: jNorm removes such synthetic methods from the Jimple representation, as
they cannot be modified within the source code anyway.

N2: Arithmetic
In some cases, integer subtractions are replaced with additions of negative numbers inside the
bytecode produced by JDK6 and higher. A statement like i1 = i1 - 5, generated by JDK5,
is replaced by a conversion of the positive number to a negative one (i1 = (int) -5) and a
subsequent addition with the negative number like i2 = i2 + i1, by JDK6 and higher.

ECOOP 2024

37:8 Java Bytecode Normalization for Code Similarity Analysis

Listing 1 toString() invocation (Jimple)
1 java.lang.CharSequence r1;
2 java.lang.String r2;
3
4 // JDK6:
5 r2 = virtualinvoke r1.<java.lang.Object: java.lang.String toString()>();
6
7 // JDK7:
8 r2 = interfaceinvoke r1.<java.lang.CharSequence: java.lang.String toString()>();

Transformation: Whenever jNorm identifies an addition involving negative integers, it
converts it into a subtraction.

N3: CharSequence toString invocation
The JDK7 compiler changed the way the toString method is handled in the bytecode when
invoked on an object of type CharSequence. As it can be observed in Listing 1 (subtle
differences are highlighted within the listings), the invoke type interfaceinvoke replaced
virtualinvoke, and the more specific type java.lang.CharSequence replaced the method
return type java.lang.Object.
Transformation: Whenever jNorm identifies a call to a toString method with a
java.lang.CharSequence return type, it converts the method call to its previous, more
generic, version.

N4: Empty try-catch-finally block
In most cases a try-catch-finally block comes with one or more catch blocks that react to some
types of thrown exceptions. However, catch blocks can be empty or even missing completely.
A try-catch-finally block with empty (or even missing) catch blocks is a syntactically valid
Java construct, used to execute some instructions, no matter what happens in the try block.
Prior to JDK8, the JDK compiler produces a redundant exception catching block1 in the
bytecode, if a catch block is empty or missing.
Transformation: If jNorm identifies such redundant exception catching blocks, it removes
them from the Jimple representation of the bytecode.

N5: String constant concatenation
When using the JDK8 or higher compiler, string concatenation optimizations are introduced.
Whenever multiple string constants are concatenated, compilers prior to JDK8 would use
multiple calls to the StringBuilder.append method. A simple concatenation like

String helloWorld = "Hello " + "World!";

would result in two calls to the StringBuilder.append method, one receiving “Hello” and
the other receiving “World!” as argument. However, as of JDK8, the compiler concatenates
these two strings at compile time and produces a single call to StringBuilder.append. This
holds true only for subsequent string constants: whenever a substring assigned to a variable
is involved in the concatenation, multiple StringBuilder.append calls are used.

1 In bytecode and Jimple there exists no notion of catch blocks. We use this terminology in synonym
with exception traps.

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:9

Listing 2 Method reference operator usage (Jimple)
1 org.apache.commons.io.IOFileFilter r0;
2
3 // JDK8:
4 virtualinvoke r0.<java.lang.Object: java.lang.Class getClass()>();
5
6 // JDK11:
7 staticinvoke <java.util.Objects:
8 java.lang.Object requireNonNull(java.lang.Object)>(r0);

Listing 3 Buffer method invocation (Jimple)
1 java.nio.ByteBuffer r0;
2
3 // JDK8:
4 virtualinvoke r0.<java.nio.ByteBuffer: java.nio.Buffer flip()>();
5
6 // JDK11:
7 virtualinvoke r0.<java.nio.ByteBuffer: java.nio.ByteBuffer flip()>();

Transformation: When jNorm identifies subsequent calls to the StringBuilder.append
method with string constants as arguments that are not referenced by variables, it combines
them into a single call.

N6: Method reference operator

With the release of JDK8, the method reference operator (::) was introduced to the Java
programming language. It allows one to refer to a method with the help of its declaring class
or object name and is especially useful in combination with streams. Listing 2 shows how
the operator usage is handled during compilation. Before performing the actual method call,
if the operator is referring to a method of an object, a null check is performed at runtime.
This is done to ensure that the object, the referred method belongs to, actually exists and is
not null. The usual way to perform null checks in JDK8 and lower is to call the method
getClass on the object to check. This mechanism was replaced in newer JDKs by invoking
the static requireNonNull method.
Transformation: For normalization, jNorm transforms all occurrences back to the old
null-checking mechanism.

N7: Buffer method invocation

Starting from JDK11, the return type of all subclasses of java.nio.Buffer was further
specified. Instead of returning the type java.nio.Buffer (cf. Listing 3), newer JDKs further
specify the return type. Listing 3 shows that methods of the class java.nio.ByteBuffer,
compiled with JDK11, return ByteBuffer instead of Buffer. This holds true for every
subclass of java.nio.Buffer and any method returning a Buffer object.
Transformation: When jNorm finds the invocation of a method of a java.nio.Buffer
subclass with Buffer as return type, it transforms the return type to the more specific type.

ECOOP 2024

37:10 Java Bytecode Normalization for Code Similarity Analysis

N8: Try-with-resources
The try-with-resources statement allows to declare resources that are used within the
statement, which are guaranteed to be closed at the end, no matter if an exception is thrown.

Whenever a try-with-resources statement is used in the source code, the JDK compiler
produces multiple exception handlers that wrap each other in the bytecode, since the bytecode
does not provide a separate instruction for such a statement. In some cases, prior to JDK11,
these wrapped exception handlers are redundant, since they do not cover any application
code but only automatically generated exception handling code. These redundant exception
handlers are not created as of JDK11.
Transformation: Whenever jNorm identifies an exception handler that only covers auto-
matically generated exception handling code, it removes the exception handler and its
corresponding code from the declaring function.

N9: Duplicate checkcasts
Due to a bug [18] fixed in JDK11, earlier JDK compilers may insert the same checkcast
instruction twice, one after the other.
Transformation: jNorm removes redundant typechecks for normalization, if it identifies
such duplicates.

N10: Enums
Enums in Java are special types that can only take on certain predefined values. When an
enum is created, the JDK compiler creates a separate class for each enum and defines the
possible values inside the clinit function, which acts as a static initializer. In contrast to a
constructor, which is called when an object of a class is initialized, the clinit function is
called when the class itself is initialized. Prior to JDK17, the initialization of the possible
enum values is performed directly inside the clinit method, while in JDK17 the definition
is moved to its own function, which is called from clinit.
Transformation: If jNorm detects that the enum values are initialized within the clinit
method, it moves the initializations into its separate method and calls this method from
clinit.

N11: Outer class object creation
Changing the target level from Java 6 to Java 7 changes the generated bytecode, when an
inner class creates an object of another sibling inner class within their shared outer class as
shown in the following listing:

SiblingInnerClass sic = getOuterClass().new SiblingInnerClass();

In this case the method getOuterClass returns a reference to the outer class shared by
both inner classes, the one that contains the above statement and the one that is created by
the statement. Whenever this is the case, the compiler inserts a check to verify, that the
method getOuterClass does not return null. This is done in the same way, as described
for difference class N6, where the previous way of performing a null-check via the getClass
method is replaced by a call to the requireNonNull method.
Transformation: jNorm transforms all occurrences back to the old null-checking mechanism,
as it does for difference class N6.

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:11

Listing 4 String concatenation (Jimple)
1 int i0;
2 java.lang.StringBuilder $r0, $r1, $r2, $r3;
3 java.lang.String[] r5;
4
5 // Target Level 8:
6 $r0 = new java.lang.StringBuilder;
7 specialinvoke $r0.<StringBuilder: void <init>()>();
8 $r1 = virtualinvoke $r0.<StringBuilder:
9 StringBuilder append(java.lang.String)>("Amount: ");

10 $r2 = virtualinvoke $r1.<StringBuilder:
11 StringBuilder append(int)>(i0);
12 $r3 = virtualinvoke $r2.<StringBuilder:
13 StringBuilder append(java.lang.String)>(" Pieces");
14 virtualinvoke $r3.<StringBuilder: java.lang.String toString()>();
15
16 // Target Level 11:
17 dynamicinvoke "makeConcatWithConstants" <java.lang.String (int)>(i0)
18 <java.lang.invoke.StringConcatFactory:
19 java.lang.invoke.CallSite makeConcatWithConstants(
20 java.lang.invoke.MethodHandles$Lookup,
21 java.lang.String, java.lang.invoke.MethodType,
22 java.lang.String, java.lang.Object[]
23)>("Amount: \u0001 Pieces");

N12: Dynamic string concatenation
In Java 11 and higher the old string concatenation approach of repeatedly calling the
StringBuilder.append method (see N5), is replaced by a single invokedynamic instruction,
which defers the resolution of a method call to runtime. This change was introduced to
optimize the performance of string concatenations [25]. Listing 4 showcases the differences
of string concatenation compiled for target levels 8 and 11. Previously, for each part of the
string concatenation, one call of the StringBuilder.append method was required. However,
in the new version, a dynamic approach that looks similar to template-based string building
is generated. A single dynamic call of the makeConcatWithConstants method is performed,
where string constants are concatenated into a single constant, while dynamic values are
expressed by placeholders (see \u0001 in line 23 in Listing 4) which are replaced by the
resolved value during runtime.
Transformation: jNorm transforms the old string concatenation procedure into a template-
based concatenation using invokedynamic.

N13: Nest-based access control
With the release of Java 11, a new concept for accessing members of inner classes, called
nest-based access control [43], was introduced to the language specification. When inner
classes are defined within a class, the JDK compiler compiles each inner class into its own
file. The JVM treats each class as a separate entity and therefore disallows access to private
members from methods outside of the class. However, the Java language specification does
allow such access to private members of inner classes if they are originating from the outer
class and vice versa. Prior to the release of Java 11, such access was handled by the compiler
generating public bridge methods in the inner class for each private member, that the outer
class can use to circumvent calling a private method. Starting from Java version 11, this

ECOOP 2024

37:12 Java Bytecode Normalization for Code Similarity Analysis

indirect access via generated bridge methods is not necessary anymore. A new property has
been introduced that marks inner classes as nestmates of their outer class, which tells the
JVM that access to private members is explicitly allowed between the marked classes. The
JVM then automatically puts appropriate access-control checks into place. This change was
introduced due to transparency, simplicity and security reasons.
Transformation: If jNorm finds classes that use bridge-methods to access private members
of their respective inner classes, it transforms them to the nest-based access pattern created
when specifying target level 11.

N14: Invocation of private methods
On top of adding nest-based access control, Java 11 comes with a new way to invoke private
methods, even within the same class. Prior to Java 11, all private methods were invoked
via the invokespecial instruction. With Java 11, to be consistent with the rules of the
nest-based access control specification, certain private-method invocations were changed to
use invokevirtual instructions [43].
Transformation: jNorm transforms private method invocations to use invokevirtual
instead of invokespecial.

N15: Inner class instantiation
Going from Java 8 to Java 11, the instantiation of inner classes was changed. In some cases,
in Java 8 and earlier, when an inner class is instantiated within the outer class, the JDK
compiler generates an additional anonymous class that is empty. This behavior serves no
apparent purpose and was removed in Java 11.
Transformation: If jNorm finds empty anonymous classes, it removes them.

N16: Insertion or removal of typechecks (aggressive transformation)
To check the type of an object, the bytecode instruction checkcast is used. Among other
things, it is used when the developer performs a typecast on an object, so that the JVM
can verify whether the specified type is suitable for the object. However, when changing
the JDK version or target level, the compiler’s behavior regarding typechecks changes. In
contrast to the other compilation difference classes, this difference class cannot be isolated to
a single version change, as it happens to different extents at various JDK version or target
level changes. In some cases the compiler inserts checkcast instructions even though the
developer did not write a typecast, or it does not place a checkcast instruction for typecasts
placed by the developer. Whether the compiler places a checkcast instruction or not often
depends on the used compilation environment.
Transformation: By default jNorm does not transform such typechecks, as we were not able
to detect a pattern that indicates whether a typecheck should be removed or inserted, by
just having access to the bytecode. Still, jNorm offers an aggressive normalization mode
where it removes all checkcast instructions from the normalized Jimple representation of the
bytecode. Such transformation removes information that can be used for similarity analysis
and possibly changes the application’s semantics rather than just adopting a format produced
in a different compilation environment. In some cases, e.g. when the change between two
bytecode fragments only consists of typecheck insertions or removals, this loss of information
makes the normalized fragments indistinguishable.

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:13

1 i1 = i1 - 1;
2 i2 = i1 + 10;

(a) JDK5 (not normalized)

1 i1 = (int) -1;
2 i2 = i2 + i1;
3 i3 = i2 + 10;

(b) JDK6 (not normalized)

1 i1 = i1 - 1;
2 i3 = i1 + 10;

(c) JDK6 (normalized)

Figure 3 Application of standardization (Jimple).

We leave a more thorough investigation of the patterns that indicate typecheck placements
in the bytecode as future work.

3.5 Standardization

Since the names of local variables are removed by default after compiling Java source code
into bytecode (bytecode uses an operand stack instead of local variables), all local variables
within the Jimple representation are named by concatenating their inferred type with an
ascending integer number. After applying transformations that create, remove, or reorder
local variables, such as the Arithmetic or Try-with-resources transformations, the ordering of
local variable definitions and their naming scheme might become inconsistent. Because of
this, we remove unused local variables and reorder definitions of used local variables based
on their usage order, which stays consistent during all optimizations and transformations.
Afterwards, we rename the local variables based on their types and usage order. This ensures
a standardized naming scheme across all methods, even after applying transformations.

Figure 3 shows why standardization is necessary in some cases. Listing 3a shows sub-
traction generated by the JDK5 compiler, while Listing 3b shows subtraction output by the
JDK6 compiler. After applying normalization to the code fragment in Listing 3b (see N2:
Arithmetic), we obtain the code shown in Listing 3c. Since we removed the intermediate
variable i2, the logical naming following the variable deletion does not match up anymore to
the version that did not require any normalization. Therefore we need to apply standardiza-
tion and rename every following variable usage, to achieve a representation that is equal to
the code fragment that did not require normalization.

4 Evaluation

In the following we evaluate jNorm’s normalization performance. To do so, we answer the
following research questions.
RQ1: Does the JDK vendor influence the bytecode generation?
RQ2: How does jNorm perform on changing JDK versions?
RQ3: How does jNorm perform on changing Java target levels?
RQ4: To which degree can bytecode normalization support similarity analysis tools?
RQ5: How prevalent are the individual compilation difference transformations of jNorm?
The first three research questions focus on jNorm’s normalization performance within
different compilation environments. Research question 4 investigates to which extent jNorm
can support similarity analysis tools. The final research question gives an overview about
the most common compilation difference classes. We used similar experimental setups for
each of the research questions.

ECOOP 2024

37:14 Java Bytecode Normalization for Code Similarity Analysis

Java project

Compiler
environment 1

Compiler
environment n

Bytecode
extraction

jNorm (only
optimization)

jNorm
(normalization)

jNorm
(aggressive

normalization)

Textual
comparisons

...

Jimple
extraction

Processing step Artifact

Normalized
Levenshtein Dist.

comparisons

NiCad similarity
detection

Bytecode
as text

Jimple

Optimized
Jimple

Normalized
Jimple

Aggressively
normalized

Jimple 1
n

Figure 4 Overview of our experimental setup.

4.1 Experimental Setup
To evaluate jNorm’s normalization performance, we use the approach depicted in Figure 4.

We selected real-world Java projects based on the following process: At first, we used
the GitHub search API to obtain the 1,000 projects with the most stars that have Java
listed as their main language as of August 2023. We excluded two projects that, alongside
Java files, also contained other JVM-based programming languages like Groovy or Clojure,
as the compiled classes would interfere with further evaluation steps. Then we filtered out
every project that does not use Maven as build tool, as Maven’s static configuration files
in XML format, unlike Gradle, allow for an automated change of the compilation setup
without knowing the project’s build structure in detail. After this step we were left with
322 Maven projects. Finally, we excluded two projects that, when compiled twice within the
same environment, would produce different results, because of code generation at compilation
time. This is typically due to files being generated for testing purposes or due to parser code
being generated from a grammar, which in some cases produces random identifiers. This left
us with a set of 320 Java projects, including tutorial projects, popular libraries, frameworks
and real-world applications.

We cloned each project’s git repository. As automatic compilation is a known problem
for Java projects [22], to increase the chances of a successful compilation in the next step,
we then moved to the latest release tag (if available). As depicted in Figure 4, we compiled
each of the projects within different compilation environments. We chose the compilation
environments based on the setting we were interested in for the respective research questions.

To evaluate the normalization performance of jNorm, we applied different procedures
to the compiled projects, as shown in Figure 4. The “Bytecode extraction” component
in the figure uses ASM 9.3 [3] to extract the textual representation of the bytecode from
the compiled class files (omitting all debug information). Furthermore, we additionally
extracted the plain Jimple representation of the compiled classes in textual form without
applying any optimizations or transformations. The plain bytecode and Jimple can be
used as a baseline to establish the amount of differences induced by different compilation
environments. To establish how the different normalization steps of jNorm contribute to
the removal of compilation differences, we let jNorm run in different modes. “jNorm (only
optimization)” only applies the Jimple parsing and optimizations described in Section 3.3.
“jNorm (normalization)” applies all the steps described in Section 3 with transformations

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:15

Table 2 JDKs considered in our evaluation.

JDK Version Oracle JDK AC OpenJDK EA OpenJDK
7 1.7.0_80 – –
8 1.8.0_333 8.342.07.4 8u352-b08
11 11.0.16 11.0.16.9.1 11.0.17+8
17 17.0.4.1 17.0.5.8.1 17.0.5+8

N1–N15, but keeps all typechecks in place (default normalization mode). “jNorm (aggressive
normalization)” differs from the previous as it also removes all typechecks from the resulting
Jimple representation. Applying all procedures, we obtain five sets of files per compilation
environment and project:

Extracted bytecode as text
Extracted Jimple
Optimized Jimple
Normalized Jimple
Aggressively normalized Jimple

We apply different comparisons to each of the resulting file sets generated within different
compilation environments, resulting in multiple comparisons per project. At first we perform
a textual head-to-head comparison on the file-, as well as method-level. To do so we compare
files with the same fully qualified name and methods with the same signature to each other
that were produced within different compilation environments. As soon as there is a single
textual difference between the compared files or methods, they are classified as being different.
If a method is present in one file, but not the other, it is classified as disjunct.

In addition to textual head-to-head comparisons, which only allow for a yes/no detection of
equality, we calculate the normalized Levenshtein Distance (NLD) [59] between the compared
files and methods. The NLD is a measure that is used to calculate the similarity of two text
sequences. The Levenshtein Distance counts the number of required character insertions,
deletions or substitutions to transform one text sequence into the other. The normalized
Levenshtein Distance additionally takes the length of the text sequences into account and
produces a similarity value between 0% and 100%, with 100% indicating that every single
character needs to be changed and 0% indicating that both text sequences are identical.
Lastly, we include the similarity analysis tool NiCad [50] into our comparison process to
evaluate to which degree the prior application of bytecode normalization can improve the
performance of similarity analysis tools. We use NiCad for our experiment, as it is one of
the most popular similarity analysis tools.

Table 2 shows the JDKs considered in our evaluation. We considered all Java Long-Term-
Support versions up to August 2023. According to a 2022 survey on the state of the Java
ecosystem [44], our JDK selection covers more than 97% of JDK versions used in projects.
This gives us an indication for the representativeness of our version selection. Furthermore,
we considered the three most popular JDK vendors according to the survey, which include
Oracle’s JDK, Amazon Corretto’s (AC) OpenJDK and Eclipse Adoptium’s (EA) OpenJDK,
in our evaluation. Note that AC and EA do not distribute OpenJDK versions prior to
version 8. Moreover, only a single project within our dataset can be compiled using Oracle’s
JDK5 and JDK6, thus we do not consider these two no longer supported JDKs in our
evaluation [26].

We executed the compilations and normalizations on a Debian 10 system, configured to
use four cores of an Intel Xeon E5-2695 v3 (2.30 GHz) CPU and 32GB of main memory. We
used Maven 3.8.6 for the invocation of builds.

ECOOP 2024

37:16 Java Bytecode Normalization for Code Similarity Analysis

4.2 RQ1: Does the JDK vendor influence the bytecode generation?
Before assessing the differences introduced when using different JDK or Java versions, we
evaluate if different JDK vendors induce differences in the bytecode. Even though most
vendors build upon the same OpenJDK source code, there are still some adjustments in
regards to e.g. security fixes or performance improvements [1]. This research question aims
at determining whether these changes may affect the generated bytecode. To do so, we
compiled our full dataset of Java projects using the compilers of the JDK’s listed in Table 2.
Subsequently we compared all bytecode files generated by the compilers of the investigated
vendors, using the same Java and JDK version, against each other.

None of the generated bytecode files contain any difference related to the vendor of the
JDK used for compilation. These results indicate that changing the JDK vendor does
not influence the bytecode generation of the JDK’s compiler.

Based on this result, we consider a single JDK vendor (Oracle) in the remaining research
questions.

4.3 RQ2: How does jNorm perform on changing JDK versions?
To investigate jNorm’s normalization performance on different JDK versions, we kept all
compilation settings at the project’s configured default values and only varied the used JDK
version within our experimental setup (see Section 4.1). For this experiment we considered
versions 7, 8, 11, and 17 of Oracle’s JDK.

Table 3 shows the results of our comparisons. The first column shows the pair of JDK
versions used to generate the different artifacts we consider (see Section 4.1), e.g., in the
first row (sets of) artifacts generated with JDK7 have been compared to (sets of) artifacts
obtained from JDK8. The number inside the parentheses indicates the amount of projects we
were able to compile with the respective JDKs. As we were not able to compile every project
with all JDKs in our experimental setup, the number of compared projects varies based on
the successful builds for each JDK. Notice that only few projects could be compiled using
JDK7. This is due to features introduced in Java 8 being very popular in modern projects,
e.g., default interface functions, streams and lambda expressions. To isolate differences
introduced by incremental version increases, we decided to compare a JDK version with the
next higher version in our experimental setup. To confirm that we do not miss differences
by only comparing incremental version increases, we initially performed a comparison of
projects compiled with JDK7 and JDK17 and compared the resulting set to the union of all
incremental comparisons. In total we were able to compile ten projects using each version
of Oracle’s JDK in our experimental setup, comprising 4,621 bytecode files. This analysis
showed that the set of differences obtained when comparing JDK7 to JDK17 is equal to the
union of the sets of differences obtained when comparing each incremental version increase,
i.e., D7→8 ∪ D8→11 ∪ D11→17 = D7→17 with Di→j representing the set of files containing
compilation differences when comparing bytecode files yielded by the JDK i and JDK j

compilers. This comparison holds true for all five processed sets of artifacts (bytecode, plain,
optimized, normalized and aggressively normalized Jimple), showing that a comparison of
incremental version increases does not miss compilation differences.

Columns two and three show the accumulated results of the textual comparison on a
file-level granularity. The remaining columns show the accumulated comparison results
on a method-level granularity. Columns “Files” and “Methods” show the total amount of
files and methods we managed to compile with the respective JDKs. The “Diffs” columns

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:17

Table 3 Normalization results for different JDK versions2. Percentage in brackets indicates the
share of files/methods with compilation differences.

Files Diffs Methods Diffs NLD Disj.
JDK7 – JDK8 (29)

Bytecode 8,060 1,058 (13.13%) 48,052 113 (0.24%) 4.02% 4
Jimple 8,069 93 (1.15%) 48,068 113 (0.24%) 5.78% 4
Optimized 8,069 93 (1.15%) 48,068 113 (0.24%) 5.90% 4
Normalized 8,069 24 (0.30%) 45,654 32 (0.07%) 8.13% 0
Aggressive 8,069 24 (0.30%) 45,654 32 (0.07%) 7.46% 0

JDK8 – JDK11 (98)
Bytecode 45,625 8,068 (17.68%) 417,906 10,253 (2.45%) 9.00% 2,834
Jimple 60,265 2,959 (4.90%) 461,594 5,594 (1.21%) 9.31% 2,832
Optimized 60,265 2,852 (4.89%) 461,594 5,459 (1.18%) 8.28% 2,832
Normalized 60,265 995 (1.65%) 408,250 1,309 (0.32%) 4.80% 8
Aggressive 60,265 392 (0.65%) 408,250 426 (0.10%) 3.16% 8

JDK11 – JDK17 (91)
Bytecode 58,623 13,936 (23.77%) 469,536 3,146 (0.67%) 18.94% 2,510
Jimple 80,584 2,566 (3.18%) 535,184 3,033 (0.57%) 17.30% 2,501
Optimized 80,584 2,553 (3.17%) 535,184 3,016 (0.56%) 17.06% 2,501
Normalized 80,584 120 (0.15%) 487,280 141 (0.03%) 4.24% 0
Aggressive 80,584 82 (0.10%) 487,280 95 (0.02%) 3.51% 0

show the total amount of files or methods that contained differences within the textual
head-to-head comparison and their respective shares. The “NLD” column shows the average
NLD of methods that contain differences, indicating the degree of dissimilarity induced by
the compilation into individual methods. Note that only methods that are considered as
not equal by the textual comparison are considered for the calculation of the NLD. The
“Disj.” (disjunct) column represents the amount of methods that are present within the file
generated by one JDK, but not within the file generated by the other JDK, e.g. synthetically
generated bridge-methods. Therefore a direct comparison of such methods is not possible.
Note that the transformation of bytecode to Jimple in some cases splits classes into multiple
files, thus the number of bytecode files may differ from the number of Jimple files. In cases
when dynamically invoked features like e.g. lambda functions are used, they are split into a
separate file. We considered the by Soot additionally generated files in our comparison.

One thing that is immediately noticeable is the high amount of differences in bytecode
files when considering the file-level granularity, whereas the share of differences is considerably
lower at method-level granularity. A detailed investigation into the differing bytecode files
revealed this to be due to the presence of nested class information, which in bytecode is
contained inside the class, but outside of methods. Depending on the used JDK, different
modifiers are used or the order of these definitions varies. One can also observe that by
simply converting the bytecode to Jimple, the amount of differences at file-level granularity
considerably decreases. Nested class information, in contrast to the bytecode representation,
is stored implicitly in the Jimple representation, which causes the disappearance of many
dissimilarities. At method-level granularity, the amount of differences between bytecode
and Jimple stays fairly similar. This indicates that besides removing some information

2 Individual project results are available on https://doi.org/10.5281/zenodo.12625104

ECOOP 2024

https://doi.org/10.5281/zenodo.12625104

37:18 Java Bytecode Normalization for Code Similarity Analysis

at class level, the plain conversion to Jimple itself does not significantly contribute to the
normalization of method-level bytecode. Additionally it can be seen that the optimization step
does not significantly contribute to the normalization by itself either. On the contrary, when
looking at the results for the normalized file set, the amount of dissimilarities and disjunct
methods heavily decreases. The remaining dissimilarities decrease even further when applying
an aggressive normalization. Depending on the considered JDKs, the amount of compilation
differences at file-level granularity decreases by up to 99% from the textual comparison
of plain bytecode to the aggressively normalized Jimple. At method-level granularity the
dissimilarity amount decreases by up to 97%.

We investigated the remaining differences in more detail to determine whether we missed
other compilation difference classes. We found that the remaining differences are mostly due
to more complex cases of compilation difference classes N4 and N8, which target try-catch
blocks. Sometimes when such try-catch blocks are nested in specific ways, jNorm fails to
apply the corresponding transformation correctly. Other differences are due to incorrect
optimizations applied by the Soot framework or an incorrect renaming of local variables.

Since we considered a small set of Java projects to establish the compilation difference
classes in the first place and the evaluation across a large dataset of real-world Java projects
only revealed a small set of edge cases of the already known difference classes not yet handled
by jNorm, we believe that our normalization addresses the most common difference classes
appearing within projects compiled with the investigated JDK versions. We will address the
transformations incorrectly applied by jNorm in future work.

jNorm can remove up to 99% of the file-level differences and up to 97% of the method-
level differences, which are induced when compiling the same source code with different
versions of the JDK compiler.

4.4 RQ3: How does jNorm perform on changing Java target levels?
The target level that has been used to compile a specific Java class is typically included in the
compiled class in form of a major version identifier [33]. While in some cases this information
can be used to compile the source code to the version specified within the bytecode files,
this is not possible when one wants to directly compare two already compiled bytecode files.
Thus it is also important to assess jNorm’s performance on differing target levels.

To evaluate jNorm’s normalization performance on different Java target levels, we fixed
the used JDK version and adjusted the target level in each project’s build configuration,
within our experimental setup (see Section 4.1). All other build settings have been kept at
each project’s provided configuration. We consistently used Oracle’s JDK11 in our experiment,
as it is the most used JDK version in 2022 [44], which also offers backwards compatibility
down to target level 6. To adjust the project’s target level we scanned each project of our
dataset for build files (pom.xml). Inside each of the detected build files, we adjusted the
target, release, or java.version properties, which are used to declare the desired Java target
level [9, 8], to compile the project to our desired target levels. To validate that all projects
were compiled with the intended target level, we verified the target level indicator [33] within
the resulting bytecode files and removed it subsequently to not interfere with the comparison.

Table 4 shows the results of our experiment. The table has the same structure as Table 3,
besides the first column now representing Java target levels instead of JDK versions. As in
the previous experiment, we compare one target level to the next higher target level within
our experimental setup, to best isolate compilation differences. To confirm that we do not
miss differences by only comparing incremental version increases, we perform a comparison

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:19

Table 4 Normalization results for different target levels of the JDK11 compiler3. Percentage in
brackets indicates the share of files/methods with compilation differences.

Files Diffs Methods Diffs NLD Disj.
T6 – T7 (25)

Bytecode 13,774 29 (0.21%) 76,102 55 (0.07%) 2.38% 0
Jimple 14,411 29 (0.20%) 77,833 55 (0.07%) 2.36% 0
Optimized 14,411 29 (0.20%) 77,833 55 (0.07%) 2.32% 0
Normalized 14,411 8 (0.06%) 73,102 20 (0.03%) 0.56% 0
Aggressive 14,411 8 (0.06%) 73,102 20 (0.03%) 0.95% 0

T7 – T8 (31)
Bytecode 4,100 70 (1.71%) 33,109 89 (0.27%) 1.90% 2
Jimple 4,127 33 (0.80%) 33,190 37 (0.11%) 5.05% 2
Optimized 4,127 33 (0.80%) 33,190 37 (0.11%) 4.67% 2
Normalized 4,127 32 (0.78%) 31,338 37 (0.12%) 4.67% 0
Aggressive 4,127 4 (0.10%) 31,338 4 (0.01%) 4.10% 0

T8 – T11 (80)
Bytecode 28,709 13,260 (46.19%) 293,804 25,301 (8.61%) 18.39% 3,677
Jimple 42,690 9,654 (22.61%) 335,700 25,294 (7.53%) 17.74% 3,677
Optimized 42,690 9,654 (22.61%) 335,700 25,294 (7.53%) 17.58% 3,677
Normalized 42,690 110 (0.26%) 297,541 140 (0.47%) 2.76% 0
Aggressive 42,690 88 (0.21%) 297,541 115 (0.39%) 2.40% 0

of the maximum possible target level distance. Again, the following equation holds for the
twelve projects (1,245 bytecode files) that can be compiled to each target level within our
experimental setup, when using JDK11 D11.6→11.7 ∪ D11.7→11.8 ∪ D11.8→11.11 = D11.6→11.11
with D11.i→11.j representing the set of files containing differences when comparing bytecode
files yielded by JDK11 set to target levels i and j.

The number within the parentheses inside the first column indicates the amount of
projects we were able to compile using JDK11 configured with the respective Java target
levels. The total amount of successful builds is lower than the one we obtained in our
previous experiment. This is due to the change in the provided build configuration that this
experiment requires, which often leads to projects not being able to compile anymore.

One thing that is immediately noticeable in Table 4 is the low amount of compilation
differences throughout target levels 6, 7 and 8. Many of these are removed by the (aggressive)
normalization. We investigated the remaining differing files and discovered that all remaining
differences are due to wrong type inference and incorrect renaming of local variables performed
by the Soot framework. The picture changes when considering a target level change from
Java 8 to Java 11, as visible in the third row of Table 4. Almost half of the compared files
show differences in a textual head-to-head comparison. This value decreases to around 10%
when considering method-level granularity. Furthermore, the NLD is very high, indicating
that the compiled methods are significantly dissimilar. This large amount of differences is
due to many highly used features being affected by the target level increase. From Java
target level 8 to 11 the way that string concatenation, private method calls, and inner classes
are handled has been changed. These are features that are frequently used within Java

3 Individual project results are available on https://doi.org/10.5281/zenodo.12625104

ECOOP 2024

https://doi.org/10.5281/zenodo.12625104

37:20 Java Bytecode Normalization for Code Similarity Analysis

projects. The conversion to Jimple removes around half of the differences at file-level, but
removes only few differences on method-level. The subsequent optimization does not remove
any differences in the textual comparison. The normalization, instead, heavily decreases
the dissimilarities. After aggressive normalization the amount of dissimilarities decreases by
more than 99.3% from the textual comparison of plain bytecode to aggressively normalized
Jimple. On a method-level granularity the dissimilarity amount even decreases by 99.6%.

Again we performed a manual inspection of the remaining differing files and methods
to uncover possibly missed compilation difference classes. The inspection showed that the
remaining differences can mostly be attributed to incorrect optimizations by the Soot
framework and incorrect transformations of dynamic string concatenation and nest-based
access control applied by jNorm in specific scenarios (e.g. boolean variables being handled
as integer values in the string concatenation). Again, we leave addressing of incorrectly
applied transformations by jNorm for future work.

As we already stated in the previous research questions, the absence of previously not
uncovered compilation difference classes leads us to believe that we uncovered the most
frequent compilation difference classes for projects compiled to the investigated Java target
levels. Furthermore, we additionally investigated compilation environments in which we
compared changes to the JDK version and target level, however, again we did not uncover
any further difference classes.

jNorm can remove up to 99.3% of the file-level differences and up to 99.6% of the
method-level differences, which are induced when compiling the same source code with
different configured Java target levels.

4.5 RQ4: To which degree can bytecode normalization support
similarity analysis tools?

In this research question we investigate whether existing similarity analysis tools are already
capable of handling compilation differences on their own, without the need of a previous
normalization by jNorm. To do so, we used our dataset from the previous research questions,
but instead of performing a textual head-to-head comparison, we used the code clone detector
NiCad 6.2 [50] to determine its performance without and with normalization applied. NiCad
is a flexible and extensible code clone detector that is frequently used in similarity analysis
studies. While there are other Java similarity analysis tools available, e.g. CCFinder [35],
SourcererCC [52] or JPLAG [47], we decided on NiCad due to it being the most popular
similarity analysis tool and its simple extensibility. It supports detection on block- or
function-level granularities and different languages (e.g. Java, Rust, C) and applies its own
pretty-printing and code normalizations before the similarity analysis. NiCad offers a wide
array of possible applications like code clone or plagiarism detection and therefore provides
many configurations. We employed NiCad set to function-level granularity with three different
configurations (Plagiarism-1, Plagiarism-2 and Default) in our evaluation setup (described in
Section 4.1). NiCad does not support Java bytecode nor Jimple out-of-the-box. To perform
our experiment, we extended NiCad with the capability to handle Jimple inputs by adjusting
and extending the provided Java grammar and normalization/transformation rules. Due
to Jimple’s syntactic similarity to Java source code, the only adjustments we performed
on NiCad consisted of adding Jimple-exclusive statements (identity, invoke, goto, monitor),
adjusting try-catch definitions and adjusting if-statements to their Jimple structure.

We decided to perform a plagiarism detection experiment since this is a typical scenario
where only bytecode originating from an unknown compilation environment is available, but
the corresponding source code is not. To perform the experiment we selected a method pair

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:21

Table 5 NiCad performance on method pairs with compilation differences. Percentage indicates
the share of method pairs correctly identified as clones.

(a) JDK version comparison.

Plag-1 Plag-2 Default
J7 – J8 (104)

Jimple 12.5% 75.0% 99.0%
Optimized 14.4% 66.3% 99.0%
Normalized 78.9% 85.6% 99.0%
Agg. Normalized 81.7% 87.5% 100%

J8 – J11 (4,967)
Jimple 35.2% 57.1% 90.2%
Optimized 38.6% 59.3% 92.1%
Normalized 82.9% 94.0% 99.9%
Agg. Normalized 97.4% 98.6% 99.9%

J11 – J17 (2,858)
Jimple 6.4% 9.8% 26.1%
Optimized 6.9% 10.0% 25.9%
Normalized 96.7% 99.3% 99.7%
Agg. Normalized 98.0% 99.4% 99.9%

(b) Target level comparison.

Plag-1 Plag-2 Default
T6 – T7 (53)

Jimple 88.7% 94.3% 100%
Optimized 88.7% 94.3% 100%
Normalized 92.5% 98.1% 100%
Agg. Normalized 92.5% 98.1% 100%

T7 – T8 (37)
Jimple 10.8% 86.5% 100%
Optimized 13.5% 83.8% 100%
Normalized 16.2% 83.8% 100%
Agg. Normalized 91.9% 100% 100%

T8 – T11 (24,095)
Jimple 24.7% 28.3% 70.8%
Optimized 25.7% 28.0% 70.4%
Normalized 99.7% 99.9% 100%
Agg. Normalized 99.8% 99.9% 100%

that originated from the same source code, but was compiled within different compilation
environments, and gave it to NiCad running with different configurations and checked whether
it reported the pair as matching or not. Since each method pair originates from the exact
same source code, NiCad should report it as plagiarism. We considered all methods that
were not equal in the textual comparison within our Jimple dataset (see RQ2 4.3 & RQ3 4.4).
We executed NiCad on the same set of methods across all other representations (optimized,
normalized and aggressively normalized Jimple).

Tables 5a and 5b report the results of our experiment with NiCad. The first column of
each table shows the compilation environments that the compared files originated from (J
stands for JDK version and T stands for target level) and indicate which normalization steps
have been applied before being forwarded to NiCad. The number in parentheses indicates
the number of method pairs compared by NiCad. Note that, since NiCad was not able to
analyze some pairs, the number is slightly lower than the differing methods reported in
RQ2 and RQ3. The remaining columns show the detection recall of NiCad using different
configurations. The Plagiarism-1 and Plagiarism-2 configurations are explicitly targeting
plagiarism detection. The allowed degree of dissimilarity after applying pretty-printing and
its own normalizations is specified at 10%. The Plagiarism-2 configuration additionally
applies the blind renaming scheme, which removes identifier names. The provided Default
configuration of NiCad does not target a plagiarism detection scenario but an aggressive code
clone detection that allows a dissimilarity of up to 30%. It also applies the additional blind-
renaming. Note that we test NiCad in a best-case scenario: First, we provide it with Jimple
code, which in contrast to bytecode already contains fewer compilation differences. Second,
we evaluate NiCad’s performance on small configuration changes only (e.g. comparing JDK7
to JDK8) and do not combine multiple configuration changes, which would result in even
more compilation differences. Finally, as most similarity analysis studies [52] we do not take
potential false positives into account. Especially with its aggressive Default configuration,
which only requires 70% similarity for a match, NiCad would incorrectly classify method
pairs as plagiarism cases, which actually do not originate from the same source code.

ECOOP 2024

37:22 Java Bytecode Normalization for Code Similarity Analysis

N1

47.9%

N12

22.7%

N14

17.6% N10

3.7% N15
3.0%

Others
5.7%

(a) Normalization.

N16

76.4%

N1

11.2% N12

5.3% N14
4.3% Others
2.8%

(b) Aggressive Normalization.

Figure 5 Average prevalence of the individual compilation difference classes.

One can observe that before applying normalization the Plagiarism-1 configuration
performs poorly for most JDKs. However, after normalization is applied the performance
drastically increases. A similar effect, although not as drastic, can be observed for Plagiarism-
2. The aggressive Default configuration of NiCad performs well for compilation environments
that do not contain a high degree of dissimilarity. However, for environment changes that
actually induce significant differences in methods (J11 - J17 and T8 - T11), indicated by a
high NLD between method pairs (see Tables 3 and 4), NiCad continues to perform poorly
before normalization, but offers a significantly increased performance when normalizations
are applied first via jNorm. Recall, that the Default configuration allows for up to 30%
dissimilarity and is still not able to reliably classify method pairs as matching. Note that the
provided code did not contain any intentional modifications, e.g. obfuscations, as the removal
of such intentional modifications in not part of jNorm’s scope. Even without intentional
obfuscations, NiCad was not able to detect many of the clones.

NiCad, one of the most popular code clone detectors, is not capable of handling all
differences induced by different compilation environments on its own. However, when
applying normalization via jNorm first, NiCad’s performance increases significantly.

4.6 RQ5: How prevalent are the individual compilation difference
transformations of jNorm?

To investigate the prevalence of the compilation difference classes and their individual contri-
bution to the normalization, we tracked each applied transformation within the normalization
process of our dataset used throughout RQ2 – RQ4.

Figure 5 shows the average amount of transformations across each JDK and Java version
setting. On average jNorm applies 888 transformations during normalization per project.
One can see that a few of the established compilation difference classes make up the biggest
share of the transformations. For plain normalization, transformation N1, which handles
synthetically generated methods, makes up almost half of all transformations. This is due
to the large amount of bridge-methods generated for each private method within nested
classes. This transformation is followed by transformations N12, which normalizes string
concatenations, and N14, which normalizes the invocation of private methods. Both of these
are frequently used features within Java applications. The remaining transformations are
only sparsely required. For aggressive normalization, transformation N16, which removes
all typechecks, makes up by far the biggest share of all transformations. This is due to

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:23

the compiler frequently placing typechecks into the bytecode. This is further enhanced by
our aggressive approach of removing all occurrences of typechecks. Since jNorm applies
transformation N16 after all other transformations, the prevalence of the other compilation
difference classes is the same as for plain normalization. During aggressive normalization
4,134 transformations are applied on average per project.

Transformations N16 (Insertion or removal of typechecks), N1 (Synthetically generated
methods), N12 (Dynamic String concatenation) and N14 (Invocation of private methods)
make up 97.2% of all applied transformations and are thus the most prevalent during
normalization.

5 Related Work

Many similarity analysis approaches have been proposed, targeting source code, bytecode, or
binary code, which typically come with their own set of normalizations.

Bytecode level. Only few approaches have been developed for bytecode similarity analysis.
However, there are various scenarios in which Java source code is not available. Whenever
this is the case, the comparison has to be performed on the bytecode. SeByte [36] is a
similarity detector targeting Java bytecode. It divides the bytecode into tokens and separates
them based on their types to employ the Jaccard similarity measure for matching. Baker
and Manber [4] leverage a combination of the similarity comparison tools Diff, Siff and Dup
to determine the degree of similarity of Java bytecode files. Yu et al. [58] use the Smith-
Waterman algorithm to determine the similarity of two bytecode snippets. They extract
instruction and method-call sequences from the bytecode and apply the Smith-Waterman
algorithm to align the extracted sequences. Ji et al. [30] propose an approach to perform a
plagiarism detection on bytecode. They divide the bytecode into sequences and utilize the
adaptive local alignment to find potential plagiarisms. Davis and Godfrey [17] propose an
approach to find clones that works on Assembler and bytecode. Their approach implements
a greedy matching of instruction types and arguments by using an internal weight measure.
Chen et al. [7] present an approach that aims at detecting application clones on Android
markets. They utilize control flow graphs, to compare apps to each other and find clones in
the Dalvik bytecode.

The above mentioned approaches do not explicitly mention how the differences in bytecode
resulting from different compilation environments.

Source code level. For source code level similarity analysis many approaches have been
developed. NiCad [50, 10] is a textual based code clone detector that targets a variety of
programming languages. It uses different means of normalization and is designed to be easily
extensible. CCFinder [35] transforms the input source code into a set of tokens and performs
the comparisons on this set of tokens. SourcererCC [52] uses a similar token-based detection
approach. However, SourcererCC specifically aims at high scalability and is optimized
towards a usage on large software repositories. JPlag [47] divides the source code into
token strings and applies a greedy string tiling algorithm to find plagiarisms within sets
of applications. DECKARD [31] leverages the Abstract Syntax Tree representation of an
application’s source code to perform the similarity analysis. StoneDetector [2] uses a more
specialized code-representation called dominator trees, a concept often used in compilers, to
detect structural clones, which use different syntactical constructs to implement the same

ECOOP 2024

37:24 Java Bytecode Normalization for Code Similarity Analysis

control flow. DeepSim [60] uses a deep learning model to find semantic similarities within
code snippets that are syntactically different. Oreo [51] is another code clone detection tool
that leverages deep learning. It uses a pre-trained model that utilizes several code metrics to
decide whether two code snippets are clones of each other, even if their syntactical similarity
is below 70%.

Source code based similarity analysis approaches have become much more permissive to
syntactic differences over the years. This allows some tools to perform a similarity analysis
across intermediate representations that are syntactically similar to the targeted source code.
Selim et al. [53] investigated how the additional supplementation of the Jimple intermediate
representation, alongside the source code, of a Java application can help in code clone
detection tasks. To do so, they applied the clone detection tools CCFinder and Simian to
Jimple code, which is syntactically similar to Java source code.

Ragkhitwetsagul et al. [49] evaluate and compare 30 different code similarity detection
techniques, including code clone detectors, plagiarism detectors and compression tools, within
different similarity analysis scenarios.

Binary level. As machine code is usually at the hardware level and there is a lot of variety
in compilation environments and optimization levels, binary similarity analysis is a complex
problem. David et al. [14, 15, 16] propose multiple approaches that decompose the assembly
code of the binary into strands, which encode specific semantic behaviors in small units.
Before comparing the units, in a similar way as jNorm and SootDiff do to achieve a
more normalized representation, they transform the units to LLVM-IR and apply some
optimizations and transformations to them, which are specific to LLVM-IR. Luo et al. [40]
model the semantics of binaries with a set of symbolic formulas that represent input-output
relations and use a theorem solver to determine their similarity. Hemel et al. [23] created
the Binary Analysis Tool which uses different comparison strategies, like string matching,
compression and a binary delta check to find software license violations within binaries. Many
approaches like SAFE [42] and Xu et al.’s approach [57] use machine learning to determine the
similarity of binaries. Marcelli et al. [41] investigate and compare multiple machine learning
based approaches that try to classify the similarity of binaries. Haq and Caballerto [21]
present a survey of binary code similarity in which they analyze and systemically categorize
70 different binary similarity analysis approaches developed since 1999.

While most binary similarity analysis techniques cannot be directly applied towards
bytecode similarity analysis, they can theoretically at least be adapted to it.

Compiler influence There are few works that investigate the relation of compilers to
similarity analysis. Kononenko et al. [38] investigate a compilation’s degree of influence on
code clone detection. To do so, they compare the detected code clones within Java source code
and bytecode compiled from the same source code which results in different sets of detected
clones. Ragkhitwetsagul and Krinke [48] investigate how compilation and decompilation
can influence the clone detection performance within Java code bases. They suggest that
decompilation can aid as a complementary measure to source code based clone detection, but
is not sufficient on its own. Dann et al. [12] investigate the impact that different compilation
environments have on the resulting bytecode. They propose the bytecode comparison tool
SootDiff, which employs an approach similar to jNorm, however only support one of the
transformations we defined (string constant concatenation) and only considers Java versions
5 to 8. Xiong et al [56] investigate sources of non-determinism in the Java build process
that hinder builds from being reproducible. They uncover 14 patterns that may introduce

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:25

non-equivalences in the build and present corresponding mitigation strategies. In the context
of jNorm many of these sources of non-determinism are addressed by the conversion of
bytecode to Jimple.

6 Threats to Validity

For our evaluation of jNorm we exclusively relied on projects that use Maven as build
tool. While other Java build tools such as Gradle [20] exist, Maven is the most popular [29].
Furthermore, we limited our experiments to Java versions 5–8, 11 and 17. Although this
version range covers all LTS-versions (up to August 2023) and are also the by far most
frequently used Java versions in projects (see electronic appendix), other versions may yield
different evaluation results and cause unidentified compilation differences. While we included
a large number of Java projects in our evaluation, there may be some rare instances of
differences induced by different compilation environments, which we did not uncover across
our data set. Moreover, we tried to isolate the detected compilation difference classes to
the specific configuration change they are caused by. There may also be other configuration
changes that cause the same differences. However, as jNorm does not know the used
configuration anyway, the differences will still be normalized.

Even though jNorm, in its default mode, only transforms constructs from the version
produced within one compilation environment to the version produced in another environment,
there still may be semantic changes created by the applied transformation. Furthermore,
in few cases there are incorrect analyses, transformations and optimizations applied by the
Soot framework before the application of jNorm’s transformations.

7 Conclusion

In this paper we presented the concept of bytecode normalization for code similarity analysis.
Bytecode normalization addresses the problem of comparing the bytecode of Java applications
that are compiled in different compilation environments. This is especially necessary when
the source code is not available, like in plagiarism, copyright or vulnerability detection and
SBOM creation scenarios. By converting bytecode into the intermediate representation
Jimple, applying common optimizations, transforming remaining compilation differences
and applying naming standardization, we create a representation that is always the same
no matter the JDK and Java (LTS) version used to compile the source code. To do so, we
identified and presented 16 compilation difference classes, which are induced in the bytecode
when using different JDK and Java versions.

Based on the concept of bytecode normalization we implemented jNorm. Our evaluation
on a large set of popular real-world Java projects showed that compiling equal Java source
code within different compilation environments leads up to 46% of all generated bytecode
files containing differences for single incremental version increases. By using jNorm we can
reduce the number of compilation differences by more than 99%, for most of the investigated
compilation environments. Furthermore, our evaluation of the similarity analyzer NiCad
showed that the tool was not able to handle all compilation differences on its own, yet an
application of bytecode normalization via jNorm prior to the similarity analysis significantly
improved the tool’s performance, showcasing the effectiveness of bytecode normalization.

jNorm creates a code representation that is independent of the environment the Java
source code has been compiled in and thus lowers the required complexity for subsequent
similarity analysis. This could potentially pave the way for further research in the field of
bytecode similarity analysis, bringing it closer to the wide range of tools and techniques
currently available for analyzing source code similarity.

ECOOP 2024

37:26 Java Bytecode Normalization for Code Similarity Analysis

References
1 Amazon Corretto 8. Accessed 2023-03-31. URL: https://docs.aws.amazon.com/corretto/

latest/corretto-8-ug/what-is-corretto-8.html.
2 Wolfram Amme, Thomas S. Heinze, and André Schäfer. You look so different: Finding

structural clones and subclones in java source code. In IEEE International Conference on
Software Maintenance and Evolution, ICSME 2021, Luxembourg, September 27 - October 1,
2021, pages 70–80. IEEE, 2021.

3 ASM: Java bytecode manipulation and analysis framework. Accessed 2022-10-24. URL:
https://asm.ow2.io/.

4 Brenda S. Baker and Udi Manber. Deducing similarities in java sources from bytecodes. In
1998 USENIX Annual Technical Conference, New Orleans, Louisiana, USA, June 15-19, 1998.
USENIX Association, 1998.

5 Musard Balliu, Benoit Baudry, Sofia Bobadilla, Mathias Ekstedt, Martin Monperrus, Javier
Ron, Aman Sharma, Gabriel Skoglund, César Soto-Valero, and Martin Wittlinger. Challenges
of producing software bill of materials for java. IEEE Security & Privacy, pages 2–13, 2023.

6 Executive Order on Improving the Nation’s Cybersecurity. Accessed 2023-09-12.
URL: https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/
executive-order-on-improving-the-nations-cybersecurity.

7 Kai Chen, Peng Liu, and Yingjun Zhang. Achieving accuracy and scalability simultaneously in
detecting application clones on android markets. In 36th International Conference on Software
Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, pages 175–186. ACM,
2014.

8 Apache Maven Compiler Plugin - Setting the –release of the Java Compiler. Accessed
2023-04-03. URL: https://maven.apache.org/plugins/maven-compiler-plugin/examples/
set-compiler-release.html.

9 Apache Maven Compiler Plugin - Setting the -source and -target of the Java Compiler.
Accessed 2023-04-03. URL: https://maven.apache.org/plugins/maven-compiler-plugin/
examples/set-compiler-source-and-target.html.

10 James R. Cordy and Chanchal K. Roy. The nicad clone detector. In The 19th IEEE
International Conference on Program Comprehension, ICPC 2011, Kingston, ON, Canada,
June 22-24, 2011, pages 219–220. IEEE Computer Society, 2011.

11 Cyber Resilience Act. Accessed 2023-09-12. URL: https://digital-strategy.ec.europa.
eu/en/library/cyber-resilience-act.

12 Andreas Dann, Ben Hermann, and Eric Bodden. Sootdiff: bytecode comparison across different
java compilers. In Proceedings of the 8th ACM SIGPLAN International Workshop on State Of
the Art in Program Analysis, SOAP@PLDI 2019, Phoenix, AZ, USA, June 22, 2019, pages
14–19. ACM, 2019.

13 Andreas Dann, Henrik Plate, Ben Hermann, Serena Elisa Ponta, and Eric Bodden. Identifying
challenges for oss vulnerability scanners-a study & test suite. IEEE Transactions on Software
Engineering, 48(9):3613–3625, 2021.

14 Yaniv David, Nimrod Partush, and Eran Yahav. Statistical similarity of binaries. Acm Sigplan
Notices, 51(6):266–280, 2016.

15 Yaniv David, Nimrod Partush, and Eran Yahav. Similarity of binaries through re-optimization.
In Proceedings of the 38th ACM SIGPLAN conference on programming language design and
implementation, pages 79–94, 2017.

16 Yaniv David, Nimrod Partush, and Eran Yahav. Firmup: Precise static detection of common
vulnerabilities in firmware. ACM SIGPLAN Notices, 53(2):392–404, 2018.

17 Ian J. Davis and Michael W. Godfrey. From whence it came: Detecting source code clones
by analyzing assembler. In 17th Working Conference on Reverse Engineering, WCRE 2010,
13-16 October 2010, Beverly, MA, USA, pages 242–246. IEEE Computer Society, 2010.

18 JDK-6246854 : Unnecessary checkcast in generated code. Accessed 2022-10-28. URL: https:
//bugs.java.com/bugdatabase/view_bug.do?bug_id=6246854.

https://docs.aws.amazon.com/corretto/latest/corretto-8-ug/what-is-corretto-8.html
https://docs.aws.amazon.com/corretto/latest/corretto-8-ug/what-is-corretto-8.html
https://asm.ow2.io/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity
https://maven.apache.org/plugins/maven-compiler-plugin/examples/set-compiler-release.html
https://maven.apache.org/plugins/maven-compiler-plugin/examples/set-compiler-release.html
https://maven.apache.org/plugins/maven-compiler-plugin/examples/set-compiler-source-and-target.html
https://maven.apache.org/plugins/maven-compiler-plugin/examples/set-compiler-source-and-target.html
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=6246854
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=6246854

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:27

19 GNU Compiler for Java (GCJ). Accessed 2022-10-17. URL: https://gcc.gnu.org/wiki/GCJ.
20 Gradle Build Tool. Accessed 2022-11-07. URL: https://gradle.org/.
21 Irfan Ul Haq and Juan Caballero. A survey of binary code similarity. ACM Comput. Surv.,

54(3):51:1–51:38, 2022.
22 Foyzul Hassan, Shaikh Mostafa, Edmund S. L. Lam, and Xiaoyin Wang. Automatic building

of java projects in software repositories: A study on feasibility and challenges. In 2017
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
ESEM 2017, Toronto, ON, Canada, November 9-10, 2017, pages 38–47. IEEE Computer
Society, 2017.

23 Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Dolstra. Finding software
license violations through binary code clone detection. In Proceedings of the 8th Working
Conference on Mining Software Repositories, pages 63–72, 2011.

24 The Java HotSpot Performance Engine Architecture. Accessed 2022-10-14. URL: https:
//www.oracle.com/java/technologies/whitepaper.html.

25 JEP 280: Indify String Concatenation. Accessed 2022-10-27. URL: https://openjdk.org/
jeps/280.

26 Oracle Java SE 6 and JRockit End of Support. Accessed 2022-12-12. URL: https://support.
oracle.com/knowledge/Middleware/2244851_1.html.

27 JDK Release Notes. Accessed 2023-03-30. URL: https://www.oracle.com/java/
technologies/javase/jdk-relnotes-index.html.

28 Eclipse Java development tools (JDT). Accessed 2022-10-17. URL: https://www.eclipse.
org/jdt/core/.

29 The State of Developer Ecosystem 2023. Accessed 2023-12-15. URL: https://www.jetbrains.
com/lp/devecosystem-2023/java/.

30 Jeong-Hoon Ji, Gyun Woo, and Hwan-Gue Cho. A plagiarism detection technique for java
program using bytecode analysis. In 2008 third international conference on convergence and
hybrid information technology, volume 1, pages 1092–1098. IEEE, 2008.

31 Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stéphane Glondu. DECKARD: scalable
and accurate tree-based detection of code clones. In 29th International Conference on Software
Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007, pages 96–105. IEEE
Computer Society, 2007.

32 IBM Jikes Compiler for the Java Language. Accessed 2022-10-17. URL: https://sourceforge.
net/projects/jikes/.

33 The ClassFile Structure. Accessed 2023-12-12. URL: https://docs.oracle.com/javase/
specs/jvms/se8/html/jvms-4.html#jvms-4.1.

34 Oracle JVM Specification - Chapter 4. The class File Format. Accessed 2023-04-03. URL:
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7.8.

35 Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: A multilinguistic token-
based code clone detection system for large scale source code. IEEE Trans. Software Eng.,
28(7):654–670, 2002.

36 Iman Keivanloo, Chanchal Kumar Roy, and Juergen Rilling. Sebyte: Scalable clone and
similarity search for bytecode. Sci. Comput. Program., 95:426–444, 2014.

37 Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. VUDDY: A scalable approach for
vulnerable code clone discovery. In 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, pages 595–614. IEEE Computer Society, 2017.

38 Oleksii Kononenko, Cheng Zhang, and Michael W. Godfrey. Compiling clones: What happens?
In 30th IEEE International Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, September 29 - October 3, 2014, pages 481–485. IEEE Computer Society, 2014.

39 Jens Krinke. Identifying similar code with program dependence graphs. In Proceedings of the
Eighth Working Conference on Reverse Engineering, WCRE’01, Stuttgart, Germany, October
2-5, 2001, pages 301–309. IEEE Computer Society, 2001.

ECOOP 2024

https://gcc.gnu.org/wiki/GCJ
https://gradle.org/
https://www.oracle.com/java/technologies/whitepaper.html
https://www.oracle.com/java/technologies/whitepaper.html
https://openjdk.org/jeps/280
https://openjdk.org/jeps/280
https://support.oracle.com/knowledge/Middleware/2244851_1.html
https://support.oracle.com/knowledge/Middleware/2244851_1.html
https://www.oracle.com/java/technologies/javase/jdk-relnotes-index.html
https://www.oracle.com/java/technologies/javase/jdk-relnotes-index.html
https://www.eclipse.org/jdt/core/
https://www.eclipse.org/jdt/core/
https://www.jetbrains.com/lp/devecosystem-2023/java/
https://www.jetbrains.com/lp/devecosystem-2023/java/
https://sourceforge.net/projects/jikes/
https://sourceforge.net/projects/jikes/
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.7.8

37:28 Java Bytecode Normalization for Code Similarity Analysis

40 Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. Semantics-based
obfuscation-resilient binary code similarity comparison with applications to software pla-
giarism detection. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 389–400, 2014.

41 Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratantonio, Mohamad
Mansouri, and Davide Balzarotti. How machine learning is solving the binary function similarity
problem. In 31st USENIX Security Symposium (USENIX Security 22), pages 2099–2116, 2022.

42 Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto Baldoni, and Leonardo
Querzoni. Safe: Self-attentive function embeddings for binary similarity. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pages
309–329. Springer, 2019.

43 JEP 181: Nest-Based Access Control. Accessed 2022-10-28. URL: https://openjdk.org/
jeps/181.

44 2022 State of the Java Ecosystem Report. Accessed 2022-10-24. URL: https://newrelic.
com/resources/report/2022-state-of-java-ecosystem.

45 The Java programming language Compiler Group. Accessed 2022-10-17. URL: https://
openjdk.org/groups/compiler/.

46 The Java Language Environment - Chapter 4: Architecture Neutral, Portable, and
Robust. Accessed 2022-10-17. URL: https://www.oracle.com/java/technologies/
architecture-neutral-portable-robust.html.

47 Lutz Prechelt, Guido Malpohl, Michael Philippsen, et al. Finding plagiarisms among a set of
programs with jplag. J. Univers. Comput. Sci., 8(11):1016, 2002.

48 Chaiyong Ragkhitwetsagul and Jens Krinke. Using compilation/decompilation to enhance
clone detection. In 2017 IEEE 11th International Workshop on Software Clones (IWSC),
pages 1–7. IEEE, 2017.

49 Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. A comparison of code similarity
analysers. Empir. Softw. Eng., 23(4):2464–2519, 2018.

50 Chanchal Kumar Roy and James R. Cordy. NICAD: accurate detection of near-miss intentional
clones using flexible pretty-printing and code normalization. In The 16th IEEE International
Conference on Program Comprehension, ICPC 2008, Amsterdam, The Netherlands, June
10-13, 2008, pages 172–181. IEEE Computer Society, 2008.

51 Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V. Lopes.
Oreo: detection of clones in the twilight zone. In Proceedings of the 2018 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018,
pages 354–365. ACM, 2018.

52 Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V. Lopes.
Sourcerercc: scaling code clone detection to big-code. In Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages
1157–1168. ACM, 2016.

53 Gehan M. K. Selim, King Chun Foo, and Ying Zou. Enhancing source-based clone detection
using intermediate representation. In 17th Working Conference on Reverse Engineering,
WCRE 2010, 13-16 October 2010, Beverly, MA, USA, pages 227–236. IEEE Computer Society,
2010.

54 Soot Options and Phases. Accessed 2022-10-17. URL: https://soot-oss.github.io/soot/
docs/4.3.0/options/soot_options.html.

55 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and Vijay
Sundaresan. Soot – A java bytecode optimization framework. In Proceedings of the 1999
conference of the Centre for Advanced Studies on Collaborative Research, November 8-11, 1999,
Mississauga, Ontario, Canada, page 13. IBM, 1999.

https://openjdk.org/jeps/181
https://openjdk.org/jeps/181
https://newrelic.com/resources/report/2022-state-of-java-ecosystem
https://newrelic.com/resources/report/2022-state-of-java-ecosystem
https://openjdk.org/groups/compiler/
https://openjdk.org/groups/compiler/
https://www.oracle.com/java/technologies/architecture-neutral-portable-robust.html
https://www.oracle.com/java/technologies/architecture-neutral-portable-robust.html
https://soot-oss.github.io/soot/docs/4.3.0/options/soot_options.html
https://soot-oss.github.io/soot/docs/4.3.0/options/soot_options.html

S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden 37:29

56 Jiawen Xiong, Yong Shi, Boyuan Chen, Filipe R Cogo, and Zhen Ming Jiang. Towards build
verifiability for java-based systems. In Proceedings of the 44th International Conference on
Software Engineering: Software Engineering in Practice, pages 297–306, 2022.

57 Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neural network-based
graph embedding for cross-platform binary code similarity detection. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages 363–376,
2017.

58 Dongjin Yu, Jiazha Yang, Xin Chen, and Jie Chen. Detecting java code clones based on
bytecode sequence alignment. IEEE Access, 7:22421–22433, 2019.

59 Li Yujian and Liu Bo. A normalized levenshtein distance metric. IEEE transactions on pattern
analysis and machine intelligence, 29(6):1091–1095, 2007.

60 Gang Zhao and Jeff Huang. Deepsim: deep learning code functional similarity. In Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista,
FL, USA, November 04-09, 2018, pages 141–151. ACM, 2018.

ECOOP 2024

Optimizing Layout of Recursive Datatypes with
Marmoset
Or, Algorithms + Data Layouts = Efficient Programs

Vidush Singhal #

Purdue University, West Lafayette, IN, USA
Chaitanya Koparkar #

Indiana University, Bloomington, IN, USA

Joseph Zullo #

Purdue University, West Lafayette, IN, USA
Artem Pelenitsyn #

Purdue University, West Lafayette, IN, USA

Michael Vollmer #

University of Kent, UK
Mike Rainey #

Carnegie Mellon University, Pittsburgh, PA, USA

Ryan Newton #

Purdue University, West Lafayette, IN, USA
Milind Kulkarni #

Purdue University, West Lafayette, IN, USA

Abstract
While programmers know that memory representation of data structures can have significant effects
on performance, compiler support to optimize the layout of those structures is an under-explored
field. Prior work has optimized the layout of individual, non-recursive structures without considering
how collections of those objects in linked or recursive data structures are laid out.

This work introduces Marmoset, a compiler that optimizes the layouts of algebraic datatypes,
with a special focus on producing highly optimized, packed data layouts where recursive structures
can be traversed with minimal pointer chasing. Marmoset performs an analysis of how a recursive
ADT is used across functions to choose a global layout that promotes simple, strided access for that
ADT in memory. It does so by building and solving a constraint system to minimize an abstract cost
model, yielding a predicted efficient layout for the ADT. Marmoset then builds on top of Gibbon,
a prior compiler for packed, mostly-serial representations, to synthesize optimized ADTs. We show
experimentally that Marmoset is able to choose optimal layouts across a series of microbenchmarks
and case studies, outperforming both Gibbon’s baseline approach, as well as MLton, a Standard
ML compiler that uses traditional pointer-heavy representations.

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its
engineering → Software performance; Information systems → Data layout

Keywords and phrases Tree traversals, Compilers, Data layout optimization, Dense data layout

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.38

Related Version Full Version: https://arxiv.org/abs/2405.17590 [22]

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.21

Funding This work was supported in part by NSF CCF-1908504, CCF-1919197, CCF-2216978,
CCF-2119352, CCF-1909862 and EPSRC EP/X021173/1.

1 Introduction

Recursive data structures are readily available in most programming languages. Linked
lists, search trees, tries and others provide efficient and flexible solutions to a wide class
of problems – both in low-level languages with direct memory access (C, C++, Rust, Zig)
as well as high-level ones (Java, C , Python). Additionally, in the purely functional (or
persistent [20]) setting, recursive, tree-like data structures largely replace array-based ones.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Vidush Singhal, Chaitanya Koparkar, Joseph Zullo, Artem Pelenitsyn,
Michael Vollmer, Mike Rainey, Ryan Newton, and Milind Kulkarni;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 38; pp. 38:1–38:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:singhav@purdue.edu
https://orcid.org/0000-0001-6912-3840
mailto:ckoparka@indiana.edu
https://orcid.org/0000-0002-4515-8499
mailto:jzullo@purdue.edu
https://orcid.org/0000-0002-3908-9853
mailto:apelenit@purdue.edu
https://orcid.org/0000-0001-8334-8106
mailto:M.Vollmer@kent.ac.uk
https://orcid.org/0000-0002-0496-8268
mailto:me@mike-rainey.site
https://orcid.org/0009-0002-9659-1636
mailto:rrnewton@purdue.edu
https://orcid.org/0000-0003-3934-9165
mailto:milind@purdue.edu
https://orcid.org/0000-0001-6827-345X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.38
https://arxiv.org/abs/2405.17590
https://doi.org/10.4230/DARTS.10.2.21
https://doi.org/10.4230/DARTS.10.2.21
https://doi.org/10.4230/DARTS.10.2.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Optimizing Layout of Recursive Datatypes with Marmoset

Implementation details of recursive data structures are not necessarily known to application
programmers, who can only hope that the library authors and the compiler achieve good
performance. Sadly, recursive data structures are a hard optimization target.

High-level languages represent recursive structures with pointers to small objects allocated
sparsely on the heap. An algorithm traversing such a boxed representation spends much time
in pointer chasing, which is a painful operation for modern hardware architectures. Optimizing
compilers for these languages and architectures have many strengths but optimizing memory
representation of user-defined data structures is not among them. One alternative is resorting
to manual memory management to achieve maximum performance, but it has the obvious
drawback of leaving convenience and safety behind.

A radically different approach is representing recursive datatypes as dense structures
(basically, arrays) with the help of a library or compiler. The Gibbon compiler tries to
improve the performance of recursive data structures by embracing dense representations by
default [25]. This choice has practical benefits for programmers: they no longer need to take
control of low-level data representation and allocation to serialize linked structures; and rather
than employing error-prone index arithmetic to access data, they let Gibbon automatically
translate idiomatic data structure accesses into operations on the dense representation.

Dense representations are not a panacea, though. They can suffer a complementary
problem due to their inflexibility. A particular serialization decision for a data structure made
by the compiler can misalign with the behavior of functions accessing that data. Consider a
tree laid out in left-to-right pre-order with a program that accesses that tree right-to-left.
Rather than scanning straightforwardly through the structure, the program would have to
jump back and forth through the buffer to access the necessary data.

One way to counter the inflexibility of dense representations is to introduce some pointers.
For instance, Gibbon inserts shortcut pointers to allow random access to recursive struc-
tures [24]. But this defeats the purpose of a dense representation: not only are accesses no
longer nicely strided through memory, but the pointers and pointer chasing of boxed data
are back. Indeed, when Gibbon is presented with a program whose access patterns do not
match the chosen data layout, the generated code can be significantly slower than a program
with favorable access patterns.

Are we stuck with pointer chasing when processing recursive data structures? We present
Marmoset as a counter example. Marmoset is our program analysis and transformation
approach that spots misalignments of algorithms and data layouts and fixes them where
possible. Thus, our slogan is:

Algorithms + Data Layouts = Efficient Programs

Marmoset analyzes the data access patterns of a program and synthesizes a data layout
that corresponds to that behavior. It then rewrites the datatype and code to produce more
efficient code that operates on a dense data representation in a way that matches access
patterns. This co-optimization of datatype and code results in improved locality and, in the
context of Gibbon, avoidance of shortcut pointers as much as possible.

We implement Marmoset as an extension to Gibbon– a compiler based on dense
representations of datatypes. That way, Marmoset can be either a transparent compiler
optimization, or semi-automated tool for exploring different layouts during the programmer’s
optimization work. Our approach has general applicability because of the minimal and
common nature of the core language: the core language of Marmoset is a simple first-order,
monomorphic, strict, purely functional language. Thanks to the succinct core language, we
manage to isolate Marmoset from Gibbon-specific, complicated (backend) mechanics of
converting a program to operate on dense rather than boxed data.

V. Singhal et al. 38:3

Overall, in this paper:
We provide a static analysis capturing the temporal access patterns of a function towards
a datatype it processes. As a result of the analysis, we generate a field access graph that
summarizes these patterns.
We define a cost model that, together with the field access graph, enables formulating
the field-ordering optimization problem as an integer linear program. We apply a linear
solver to the problem and obtain optimal positions of fields in the datatype definition
relative to the cost model.
We extend the Gibbon compiler to synthesize new datatypes based on the solution to
the optimization problem, and transform the program to use these new, optimized types,
adjusting the code where necessary.
Using a series of benchmarks, we show that our implementation, Marmoset, can provide
speedups of 1.14 to 54 times over the best prior work on dense representations, Gibbon.
Marmoset outperforms MLton on these same benchmarks by a factor of 1.6 to 38.

2 Dense Representation: The Good, The Bad, and The Pointers

This section gives a refresher on dense representations of algebraic datatypes (Section 2.1)
and, using an example, illustrates the performance challenges of picking a layout for a
datatype’s dense representation (Section 2.2).

2.1 Overview
Algebraic datatypes (ADTs) are a powerful language-based technology. ADTs can express
many complex data structures while, nevertheless, providing a pleasantly high level of
abstraction for application programmers. The high-level specification of ADTs leaves space
to experiment with low-level implementation strategies. Hence, we use ADTs and a purely
functional setting for our exploration of performance implications of data layout.

In a conventional implementation of algebraic datatypes, accessing a value of a given
ADT requires dereferencing a pointer to a heap object, then reading the header word, to get
to the payload. Accessing the desired data may require multiple further pointer dereferences,
as objects may contain pointers to other objects, requiring the unraveling of multiple layers
of nesting. The whole process is often described as pointer chasing, a fitting name, especially
when the work per payload element is low.

In a dense representation of ADTs, as implemented in Gibbon, the data constructor
stores one byte for the constructor’s tag, followed immediately by its fields, in the hope of
avoiding pointer chasing. Wherever possible, the tag value occurs inline in a bytestream
that hosts multiple values. As a result, values tend to reside compactly in the heap using
contiguous blocks of memory. This representation avoids or reduces pointer chasing and
admits efficient linear traversals favored by modern hardware via prefetching and caching.

2.2 Running Example
The efficiency of traversals on dense representations of data structures largely depends
on how well access patterns and layout match each other. Consider a datatype (already
monomorphized) describing a sequence of posts in a blog1:

1 Throughout the paper we use a subset of Haskell syntax, which corresponds to the input language of
the Gibbon compiler.

ECOOP 2024

38:4 Optimizing Layout of Recursive Datatypes with Marmoset

emphKeyword :: String → BlogList → BlogList
emphKeyword keyword blogs = case blogs of

Nil → Nil
Blog content hashTags blogs ' →

case search keyword hashTags of
True → let content ' = emphContent content keyword

blogs '' = emphKeyword keyword blogs '
in Blog content ' hashTags blogs ''

False → let blogs '' = emphKeyword keyword blogs '
in Blog content hashTags blogs ''

Figure 1 Blog traversal motivating example.

data BlogList = Nil | Blog Content HashTags BlogList

A non-empty blog value stores a content field (a string representing the body of the blog
post), a list of hash tags summarizing keywords of the blog post, and a pointer to the rest
of the list.2 The datatype has one point of recursion and several variable-length fields in
the definition. To extend on this, Section 5.3 contains an example of tree-shaped data (two
points of recursion, in particular) with a fixed-length field. The most general case of multiple
points of recursion and variable-length fields is also handled by Marmoset.

The most favorable traversal for the Blog datatype is the same as the order in which
the fields appear in the datatype definition. In this case, Gibbon can assign the dense
and pointer-free layout as shown in Figure 2a. Solid blue arrows connecting adjacent fields
represent unconditional sequential accesses – i.e., reading a range of bytes in a buffer, and
then reading the next consecutive range. Such a traversal will reap the benefits of locality.

On the other hand, consider a traversal with less efficient access patterns (Figure 1). The
algorithm scans blog entries for a given keyword in HashTags. If the hash tags of a particular
blog entry contain the keyword, the algorithm puts an emphasis on every occurrence of
the keyword in the content field. In terms of access patterns, if we found a match in the
hash tags field, subsequent accesses to the fields happen in order, as depicted in Figure 2b.
Otherwise, the traversal skips over the content field, as depicted in Figure 2c.

Here we use red lines to represent accesses that must skip over some data between the
current position in the buffer and the target data. Data may be constructed recursively and
will not necessarily have a statically-known size, so finding the end of a piece of unneeded
data requires scanning through that data in order to reach the target data. This extra
traversal (parsing data just to find the end of it) requires an arbitrarily large amount of work
because the content field has a variable, dynamically-allocated size.

Extra traversals that perform useful no work, like skipping over the content field above,
can degrade the asymptotic efficiency of programs. One way to avoid such traversals is to
use pointers. For instance, when Gibbon detects that it has to skip over intervening data,
it changes the definition of the constructor by inserting shortcut pointers, which provide
an exact memory address to skip to in constant time. For our example program, Gibbon
introduces one shortcut pointer for the HashTags field, and another one for the tail of the list.

2 In practice, you may want to reuse a standard list type, e.g.:
type BlogList = [Blog]
data Blog = Blog Content HashTags

but a typical compiler (including Gibbon) would specialize the parametric list type with the Blog type to
arrive at an equivalent of the definition shown in the main text above.

V. Singhal et al. 38:5

ContentBlog HashTags BlogList

1

2

3

(a) Ideal access patterns.

ContentBlog HashTags BlogList

1

2

3

(b) True case extra traversals.

ContentBlog HashTags BlogList

1

2

(c) False case extra traversals.

Figure 2 Showing a dense pointer-free layout with ideal accesses on top. Numbers represent the
access order. Out of order accesses (red), incur costly extra traversals over fields in the middle.

The pointers provide direct accesses to the respective fields when needed and restore
the constant-time asymptotic complexity for certain operations. This results in the access
patterns shown in Figure 3a and 3c. Red dashed lines represent pointer-based constant-time
field accesses. Otherwise, the access patterns are similar to what we had before.

The pointer-based approach in our example has two weaknesses. First, this approach
is susceptible to the usual problems with pointer chasing. Second, just like with the initial
solution, we access fields in an order that does not match the layout: the hash tags field is
always accessed first but lives next to the content field.

Marmoset, described in the following section, automates finding the weaknesses of
the pointer-based approach and improving data layout and code accordingly. For instance,
performance in our example can be improved by swapping the ordering between the Content
and HashTags fields. Given this reordering, the hash tags are available directly at the start of
the value, which lines up with the algorithm better, as the algorithm always accesses this
field first. Additionally, our program’s True case (the keyword gets a hit within the hash
tags) is more efficient because after traversing the content to highlight the keyword it stops
at the next blog entry ready for the algorithm to make the recursive call. This improved
data layout results in the more-streamlined access patterns shown in Figures 3b and 3d.

3 Design

Marmoset infers efficient layouts for dense representations of recursive datatypes. Mar-
moset’s key idea is that the best data layout should match the way a program accesses
these data. Section 2 shows how this idea reduces to finding an ordering of fields in data
constructors. The ordering must align with the order a function accesses those fields, in
which case the optimization improves performance of the function.

To find a better layout for a datatype in the single-function case, Marmoset first analyzes
possible executions of the function and their potential for field accesses. In particular,
Marmoset takes into account (a) the various paths through a function, each of which may
access fields in a different order, and (b) dependencies between operations in the function,
as in the absence of dependencies, the function can be rewritten to access fields in the

ECOOP 2024

38:6 Optimizing Layout of Recursive Datatypes with Marmoset

ContentBlog HashTags BlogList

2

*

1

*

3

(a) True case unoptimized.

HashTagsBlog Content BlogList

1

2

*
3

*

(b) True case optimized.

ContentBlog HashTags BlogList*

1

*
2

(c) False case unoptimized.

HashTagsBlog Content BlogList

1

*
2

*

(d) False case optimized.

Figure 3 Showing the unoptimized representation with pointers to allow random access and the
optimized layout with favorable access patterns.

original order, and that order will work best. Marmoset thus constructs a control-flow
graph (Section 3.2) and collects data-flow information (Section 3.3) to build a field access
graph, a representation of the various possible orders in which a function might access fields
(Section 3.4 and Section 3.5).

Once data accesses in a function are summarized in the field access graph, Marmoset
proceeds with synthesizing a data layout. Marmoset incorporates knowledge about the
benefits of sequential, strided access and the drawbacks of pointer chasing and backtracking
to define an abstract cost model. The cost model allows to formulate an integer linear
program whose optimal solution corresponds to a layout that minimizes the cost according
to that model (Section 3.6).

The remainder of this section walks through this design in detail, and discusses how to
extend the system to handle multiple functions that use a datatype (Section 3.7).

3.1 MARMOSET’s Language

Marmoset operates on the language λM shown in our extended version [22]. λM is a
first-order, monomorphic, call-by-value functional language with algebraic datatypes and
pattern matching. Programs consist of a series of datatype definitions, function definitions,
and a main expression. λM ’s expressions use A-normal form [12]. The notation x denotes a
vector [x1, . . . , xn] and xi the item at position i. λM is an intermediate representation (IR)
used towards the front end in the Gibbon compiler. The monomorphizer and specializer
lower a program written in a polymorphic, higher-order subset of Haskell3 to λM , and then
location inference is used to convert it to the location calculus (LoCal) code next [24]. It
is easier to update the layout of types in λM compared to LoCal, as in λM the layout is
implicitly determined by the ordering of fields, whereas the later LoCal IR makes the layout
explicit using locations and regions (essentially, buffers and pointer arithmetic).

3 With strict evaluation semantics using -XStrict.

V. Singhal et al. 38:7

3.2 Control-Flow Analysis

Algorithm 1 Control-Flow Graph Psuedocode.

1: Input
2: exp: An expression in subset of λM

3: weight: The likelyhood of exp executing (i.e., exp’s inbound edge)
4: Output
5: A tuple of list of cfg nodes and the node id.
6: function ControlFlowGraph(exp, weight)
7: let nodeId = genFreshId()
8: switch exp do
9: case LetE (v, ty, rhs) bod

10: let (nodes, succId) = ControlFlowGraph(bod, weight)
11: let newNode = (nodeId, (LetRHS (v, ty, rhs), weight), [succId])
12: return (nodes ++ newNode, nodeId)
13: end case
14: case CaseE scrt cases
15: let (nodes, successors) = CfgCase(weight/length(cases), cases)
16: let newNode = (nodeId, (scrt, weight), successors)
17: return (nodes ++ [newNode], nodeId)
18: end case
19: case VarE v
20: let newNode = (nodeId, (v, weight), [])
21: return ([newNode], nodeId)
22: end case
23: end switch
24: end function

We construct a control-flow graph with sub-expressions, and let-bound RHS’s (right hand
sides) of λM as the nodes. Algorithm 1 shows the psuedocode for generating the control-flow
graph. Because the syntax is flattened into A-normal form, there is no need to traverse within
the RHS of a let expression. Edges between the nodes represent paths between expressions.
The edges consist of weights (Line 11) that represent the likelihood of a particular path being
taken. An edge between two nodes indicates the order of the evaluation of the program. A
node corresponding to a let-binding (Line 9) contains the bound expression and has one
outgoing edge to a node corresponding to the body expression. A case expression (Line 14)
splits the control flow n-ways, where n is the number of pattern matches. Outgoing edges
of a node for a case expression have weights associated with them that correspond to the
likelihood of taking a particular branch in the program. Control flow terminates on a leaf
λM expression: a variable reference, a data constructor or a function application.

Figure 4a shows the control-flow graph for the running example (Figure 1). Each node
corresponds to a sub-expression of the function emphKeyword. The first case expression splits
the control flow into two branches, corresponding to whether the input list of blogs is empty
or not. The branch corresponding to the empty input list is assigned a probability α, and the
other branch is assigned a probability 1−α. The next node corresponds to the pattern match
Blog content hashTags blogs'. Another two-way branch follows, corresponding to whether
keyword occurs in the content of this blog or not. We assign the probabilities σ and 1 − σ

to these branches respectively. Note that as a result, the corresponding edges in the CFG
have weights (1 − α) ∗ σ and (1 − α) ∗ (1 − σ), as the likelihood of reaching that condition
is (1 − α). Each of these branches terminate by creating a new blog entry with its content
potentially updated. In the current model, α and σ are 0.5: they are uniformly distributed.

ECOOP 2024

38:8 Optimizing Layout of Recursive Datatypes with Marmoset

<latexit sha1_base64="0niB2/QmyNb9HWFxfgL8ku+D080=">AAAQ0XicfVdbbxvHFWbctE2Y2JVbJC95mdQQLAMrgaQt145AII4c1wLcNIXlxIApGLO7h+SAe8vMrCiGIFL0Nb8wf6C/o9+ZmaV4UxcQNZj5zmXOfeIqU8Z2Or99cOt3H/7+D3/86OP2J5/evvOnvbt//sGUtU7oTVJmpX4bS0OZKuiNVTajt5UmmccZ/RhPTvn8x0vSRpXFuZ1VdJHLUaGGKpEWW+/v3v5lkNIQxI7VPJGF1LM4q2kxf3n+j1eLee9p9/GL40V7DZZKPRlpoqJBdTqPH3U6O1CVKiYN6PR5p3P6fAM00nIWWOlRDE5HD6PO0TH+Hu5Aes0CsBf5v8c7gJrSJe444HobuESr3JSFg3oNnz7tdLauobQy4/XbPnnWefTNjtteqjIju+QGkzzHLfANMmMN2XlbiFgmsF1ZF6mj6w88+XSsLC0iwd++SMZlaUjYMa3ghUOeiFlZi7w2Vsg0FYPaUAWIHNHcnS9Eqdd2r/z2iTDjss6YS05CGpFJZqFHdU6FbbNUlWKF4EC82FlGjWpsoMhpblQSTgyMV1mjfqaBtUOZq2zmdQcb1ppPRDl062FZWIOVZHEkoFqKPe3OkjIlZo2YnUjrjGCgOPWHMjMUWDbfvoANjVBDIWtb5gjhxFOa5m5lkc3EWFYVFQLirvk1MjhPzE7m6zKuBTCFp1XFCGwSWXHqVKXpx7tZrLBxV/QEh6BQvBC2FHFpwR/cZFxeUkCYiar6hz2R52xtuIkdE+ytrMG1aLCZNBEHi0cKB3WOJAOWpAoDj/bnB18t5l89WEQbCsKMHElTCVKoxMH0Sp7TWzFVdqwKPtSNfzzDZCx1f/6lCwYIubJUpJTyrulbXW+7K2MbsBD4XBSwwbPXp2dngilkYhFmJy4QnhzGuJ+gAtJgZOPcGIm0JAMquLHUE6eVeHP+4vCJkz5UCNKizmPS/S6SdssV8ICV2nr/EZCkXc3zjNwu03lmWubUtzf7c5/Ng6jwSISxy8eVAN4XE6LKhdpOW4glRHiQgIUtTBixbYZ15gzBABgAZ5yJXl0kEcsQB4gfo2LEd0EEXRAJdV4gljO6wjY9gBYTmsFWqY+Z+bvuxWCrrC9LTMAuo2aDtrekva6SzvEbuIcNbqX+7cI9anAr5dThMlmMatSp/ktpJpRlO3zgS0oDbMpKsHxeampkuTufFTDqi6yUlrOjgvpIu0sy29jexSuSw0h8B06ReF3D/8/SNBLf/hSJV4Sfv/PPd/zzrMD+P3UkwP0cfTRI8MtvSlxbFjjM0bN9a3WZmUoroWdhEBGJLfUOHR5eMCgSCcqxieB5RG2RgOl0TBr/uGkzL8NVm2mXht3m9ejiHHZ1On57Vemgo1+yjn516vSRqmD7wEBoEyjILIdZpgQPrjC9VsjrGdQK6g5VhjT2WjrlScP4ngciu4AhIpHLim26WDaIjcrj4ct7IcfK3Hl4BLcVS79DOZ/vpo9SckP5BnenIfOtausDB7l+GEhPREgjEpcS+WBcSzrwDDMaQnutRmP7wOV0IKKqf1zZXQL3xbiciqHUW4Ic3+VNllUinPqiblUxC1mRz7imu6Bx7ZMBvmUqs94xV4U4lrrOaG2UiDO4dKXcO4NzHUVLinxH5ip26NDwzkzExDW5GBF3UC8h9NXQC0B96Ni6miUO6Gh0tOxQ4sCls2C7P/CGQzuehmK4u9d6SFMLCSPqzPsNdZYrYIXSrZI6g2VRaXHVBKEO7ykr0DC1RmMz4r4TYzX3DMfo/rXwld0tFfY9T9cDggbhnoHMNaAlLyvjm0eGcBHGbDL5v1fx3C1VoYf1dsZzEw1UwUd2yla203ItBo7E2RBmuW9ENxIkk9DbpirL2K8eRSnkBb1WR7tmVG6agoeAA7JaZisTBd8PI90NaorlwIOJWNaZbfCchr1gY8+Hnyh9HocLbqQ325OjVGXkUCj4vOaemWQ1Rg7fw5mLKpDl/E6C2icCPiqF1bNm5nLllGTqWgZLhg5XnOU55l5V9HvI6mYIc9NX2IgpQwjxRreybZ7gBzGBYA6JQdiizdONwGPL8OzVF22nviGp4YKmuY6lGZ/LkWkPMCqtUTff+717naOO+8T2ohsW91rh+/793VtPB2mZuKndVeF33U5lL+YuyjLCq+R69n+HJVvQXDRvg/1lLeGp3L8oVinmMjdmlsdAYvwdm80z3tx19q62wycXc+cOzHFeEI81CABuDiJVmhKL6SVVEiMFT9bXY+CalGAis9iIizPv/FAEPeYwELW3n0HtHW+g9T0Xlut7yIdqrJKr9V1TxyGgFjvt0V7bRWxdlrBhRBY9Ny43mDEFH5j17TGMpDUNt8GufmzobjiCZzpd3+UpF5mbr+9OcaehciGHYOtuhtb24ofeUffx0fG/eve+Pghh91Hri9ZfWwetbutvra9bL1vft960ktv/vfPpnc/ufL73em+29++9/3jorQ8CzV9aa9/er/8DHFGUmg==</latexit>

let present =
search keyword hashTags

<latexit sha1_base64="NM2XnqT2ztJuZvauATn6YE1wtu0=">AAAQ1HicfVdbbxvHFWbcpknY2JGblxR9mdYQLAMrgaQtx45AII4cxwKcNEVkx4ApGLO7h+SAe+vMrCiG4UuLvvb/9Sf0X/Q7M7MUb+oCohZnvnOZc9+4ypSxnc5/Prj1m99++LuPPv6k/ftPb9/5bO/uH96YstYJvU7KrNRvY2koUwW9tspm9LbSJPM4o5/jySmf/3xJ2qiyOLezii5yOSrUUCXSgvT+7u1/DFIagtmJmieykHoWZzUt5i/Pv3+1mPeedh+/OF6012Cp1JORJioaVKfz+FGnswNVqWLSgE6fdzqnzzdAIy1nQZQexZB09DDqHB3j7+EOpLcsAHuR/3u8A6gpXeKOA663gUu0yk1ZOKi38OnTTmfrGkorM16/7ZNnnUff7LjtpSozsktpcMlz3ALPIDPWkJ23hYhlAt+VdZE6vv7As0/HytIiEvzsi2RcloaEHdMKXjjkiZiVtchrY4VMUzGoDVWAyBHN3flClHqNeuXJJ8KMyzpjKTkJaUQmWYQe1TkVts1aVYo3JAfyxc4yakxjB0XOcqOScGLgvMoa9QsNrB3KXGUzbzvEsNV8Isqhex+WhTV4k6yOBExLQdPuLClTYtHI2Ym0zgkGhlN/KDNDQWTz7Av40Ag1FLK2ZY4UTjynae5WFtlMjGVVUSGg7lpeo4PrxOwUvq7jWgFzeF5VjCAmkRWXTlWafrxbxIoYd0XPcAgOxS/CliIuLeRDmozLSwoIM1FV/7An8py9jTBxYIK/lTW4Fg02iybiZPFI4aAukGQgklRhENH+/OCrxfyrB4tow0C4kTNpKsEKkziZXslzeiumyo5VwYe6iY8XmIyl7s//7JIBSq4sFSmlTDV9q+vtcGXsA1aCmIsCPnj20+nZmWAOmVik2YlLhCeHMe4nqIA2ONm4MEYiLcmAC2Es9cRZJV6fvzh84rQPFZK0qPOYdL+Lot0KBSJgpbY+fgQkadfzvCBHZT4vTMuc+vbmeO6ze5AVHok0dvW4ksD7YkJUuVTb6QuxhAgPEvCwhQsj9s2wzpwjGAAH4Iwr0ZuLImId4gD5Y1SM/C6IYAsyoc4L5HJGVyDTA1gxoRl8lfqcmb/rXgy22vqyxQTsMms2eHtL3usu6QK/gXvY4Fb63y7cowa30k4dLpPFqEaf6r+UZkJZtiMGvqU0wKatBM/npaZGl7vzWQGnvshKabk6KpiPsrsks43tXbwiOYzED5AUiZ9qxP9Zmkbi279H4hXh5zv++YF/nhWg/1VHAtLPMUeDBv/6TYlrywKHOWa2H62uMlNpJewsDDIisaXeYcPDCwZFIkE7NhEij6wtEgidjknjHw9tlmW4azPv0rHbsh5dnMOvzsZvryodbPSvbKN/O3X2SFWwf+AgjAk0ZNbDIlNCBFeEXhvk7QxmBXOHKkMZeyud8aThfC8DmV3AEZHIZcU+XSwHxEbn8fDlvVBjZe4iPELYimXcYZyvd9NHK7mhfUO6s5DlVrX1iYNaPwysJyKUEYlLiXowbiQdeIEZDWG9VqOxfeBqOjBR1T+u7C6F+2JcTsVQ6i1FTu7yJssuEU59U7eqmIWqyGfc013SuPHJAD8ylVmfmKtKnEhdZ7S2SsQZQrrS7p3DuY9iJEV+InMXO3RoRGcmYuKeXIyIJ6jXEOZqmAXgPnRiXc8SB3Q0OlpOKHHgylmw3x94x2EcT0Mz3D1rPaTphYQVdebjhj7LHbBC61ZJncGz6LS4aoJUR/SUFRiYWmOwGXHfqbGaZ4YTdP9a+Qp1y4R9L9PNgGBBuGdgcwNoKcvK+OaVIVyEMZtC/u9VvHRLVZhhvZ353GQDVYiRnbKX7bRcy4EjcTaEW+4b0Y0EySTMtqnKMo6rR1EKfcGu1dWuWZWboeAhkICqltnKRsH3w0p3g5liufBgI5Z1Zhs8l2Ev+NjL4U+UPq/DBQ/Sm/3JWaoycig0fH7nmZlkNVYOP8NZiipQ5fydBLNPBGJUCqtnzc7l2inJ1I0M1gwbrrjKc+y9quj3UNXNEua2r0CIKUMKMaFb2TZv8IOYwDCHxqBs0UbT4t6OJcjeF33RZuspr8anntacNX2tPcC2tCaged7v3escddwjtl+64eVeKzw/vr976+kgLRO3uLtG/K7bqezF3CVaRvgwuV7/3+GVnWgums+D/WU74cXcf1Sscsxlbswsj4HEBjw2m2dM3HX2rrbDJxdzFxGscl4RbzbIAZ4PIlWaEosFJlUSWwUv19eb4JqW4CKz2EiNMx//0Ac95jAwtbe/hNo7PoPWaS4z12koiWqskqt1qqnjkFOLnf5or1GRXpclfBiRxdiNyw1hzMEHZp08hpO0puE22LWQDdsNJ/FMp+tUXnRRvPk6dYo7DZVLOSRbdzO1tl/e9I66j4+O/9a79/VBSLuPW39q/aV10Oq2vmx93XrZ+rH1upXc/u+dz+58ceePe2/2ft37596/PPTWB4Hn89bas/fv/wFe5JZw</latexit>

let content ’ =
emphContent content keyword

<latexit sha1_base64="YuRCrZrrFyR9LjfTTG5RhdnzXCs=">AAAQx3icfVdbbxvHFWbcW8rErtw89mVaQ7AMUAJJW44dgUAcOa4FuGmKyIkBUzBmdw/JAXd3tjOzoliCD/2ZBfpj+p2ZWYo3dQFRg7Pfucy5b1Llyrpu9z+f3fvVr3/z2999/vv2F1/ef/CHg4d//Nnq2qT0PtW5Nh8SaSlXJb13yuX0oTIkiySnX5LpOb//5ZqMVbq8dPOKrgo5LtVIpdKB9Onh/XqY0QjMXtQilaU08ySvabl4e/m3d8tF/2Xv+ZvTZXsDlkkzHRuiskF1u8+fdbt7UJUqpw3o/HW3e/56CzQ2ch5FmXECSSdPO92TU/w93YMMlkVgvxP+nu8BGspWuNOI62/hUqMKq0sPDRa+fNnt7lxDGWUnm7d98ar77Ls9t71WOie3kgaXvMYt8Axz6yy5RVuIRKbwna7LzPMNhoF9NlGOlh3Bz6FIJ1pbEm5Ca3jhkWdirmtR1NYJmWViWFuqAJFjWvj3S6HNBvUmkM+Eneg6ZykFCWlFLlmEGdcFla7NWlWGE5ID+eLmOTWmsYM63nKr0vjGwnmVs+pfNHRuJAuVz4PtEMNW8xuhR/480qWzOElWRwKmZaAZ/y7VGbFo5OxUOu8EC8NpMJK5pSiyeQ4FfGiFGglZO10ghdPAaZu76TKfi4msKioF1N3Ka3Rwndi9wjd13CpgjsCryjHEpLLi0qm0HST7RayJ8VcMDMfgUHwQTotEO8iHNJnoa4oIO1XV4LgvioK9jTBxYKK/lbO4Fg23i6bDyRKQwkN9IMlCJKnSIqKDxdE3y8U3T5adLQPhRs6kmQQrTOJkeicv6YOYKTdRJb80TXyCwHQizWDxZ58MUHLjqMwoY6odOFPvhitnH7ASxFyU8MGrn84vLgRzyNQhzc58Irw4TnA/QSW0wcnWh7EjMk0WXAijNlNvlXh/+eb4hdc+UkjSsi4SMoMeinYnFIiAk8aF+BGQZHzPC4I8lfmCMCMLGri743nI7kFWBCTS2NfjWgIfiilR5VNtry/ECiICSMDDDi7ssG9Gde4dwQA4AO+4EoO5KCLWIY6QP1YlyO+SCLYgE+qiRC7ndAMyPYEVU5rDV1nImcXH3tVwp62vWkzErrJmi7e/4r3tkj7wW7inDW6t/+3DPWtwa+3U43JZjmv0qcFbaaeU53tiEFpKA2zaSvR8oQ01uvydL0o49U2upePqqGA+yu6a7C62f/WO5KgjfoCkjvipRvxfZVlHfP/PjnhH+Pkr//zAP69K0P9uOgLSLzFHo4Zw/E7j2rLEywIzO4xWUHM99vWZSSdhbWmRF6nTZo8lT68Y1BEpmrLtIP7I3TKF6NmEDP7x6GZZlns3867cuyvr2dUlvOst/f6mMtHScGRLw+nc2yNVyV6CmzAs0JZZD4vMCHFcE3prULAzmhXNHakcxRys9MaTQQiCDOR36d1RyIo9u1yNia3+E+Cre6HSdOHjPEbwylX0YVyoejtAQ7mjiUO6t5DlVrUL6YOKP46sZyIWE4lriaqwfjAdBYE5jWC9UeOJe+IrOzJRNTit3D6Fh2KiZ2IkzY4iL3d1k1WviG9Da3eqnMfaKObc2X3S+CHKgDA4ld2cm+tKvEhT57SxUCQ5QrrW9L3DuZtiMHXCXOZeduzRiM5cJMSduRwTz9GgIU7XOBHAfezF+s4ljuhkfLKaU+LIF7Vgvz8JjsNQnsWWuH/iBkjTEQmL6jzEDd2W+2CFBq7SOodn0W9x1RSpjugpJzA2jcF4s+KxV+MMTw4v6PGt8jXqjgmHQaafBNGCeM/I5sfQSpaTyd2LQ7wIY7aF/N+rBOmOqjjJ+nvzuckGqhAjN2Mvu5neyIETcTGCWx5b0esIkmmccDOV5xzXgKIM+qJd6wteszA3oyFAIAFVLfO1vYLvh8XuDjPFau3BXizr3DV4LsN+9HGQwx8qA16KSx6nd/uTs1Tl5FFo+3zmyZnmNRaPMMlZiipR5fy1BLPPBGKkhTPzZvPy7ZRk5gcHa4YNN1zlBbZfVQ76qOpmFfM7WCQklCOFmNCrXJv3+GFCYFhAY1S2bHOX5+bueAObSDu5lAh6AirycIgFaQPdPJ8OHnVPuv4Ru4dePDxqxefHTw/vvRxmOvW7uu+6H3vdyl0tfFblhG+R243/I47sMXvVfBEcrnoH7+LhO2KdYyELa+dFAiSW3ondfsfEfe8+1m704mrh3Y/tLSjiZQYB52EgMmUoddhZMiWxSPA+fbv8bWiJLrLLrTy4CMGOTS9gjiNTe/fjp73ny2eT5tNwk4b8ryYqvdmk2jqJCbTc64/2BhW5dK3hww45zNhEbwljDn5hN8kTOMkYGu2Cfb/Yst1yxs5Ntknl3RaVWmxSZ7jTSPmUQ7L1tlNr9/Bz/6T3/OT0H/1H3x7FtPu89afWX1pHrV7r69a3rbetH1vvW+n9/z649+CLB18eXBzog+uDmwC991nk+aq18Rz8+38bEpG7</latexit>

Blog content hashTags blogs ’
<latexit sha1_base64="Xn8D1zrbnELGo6ZebVWNjo9ws/w=">AAAQs3icfVdbbxvHFWbctE3ZqpHbx75MagiWAUogacu1IxCII8e1ADdNETkxIArG7O4hOdDspTOzohiC/y9/oX+ir+1jvzMzS/GmLiBqcPY7lzn3TSqtrOt2//XJg198+stf/fqz37R/+7u933++//APP9iyNim9T0tdmg+JtKRVQe+dcpo+VIZknmj6Mbk+4/c/3pCxqiwu3Kyiq1yOCzVSqXQgfXy4J4cZjcDsRc1TWUgzS3RNi/nbi7+9W8z7L3vP35ws2muwTJrrsSEqGlS3+/xZt7sDVaniugGdve52z15vgMZGzqIoM04g6fhpp3t8gr+nO5DBsgjsd8Lf8x1AQ9kSdxJx/Q1calRuy8JDg4UvX3a7W9dQRtnJ+m1fvOo++3rHbW9UqcktpcElr3ELPENtnSU3bwuRyBS+K+si83yDYWCfTpSjRUfwcyDSSVlaEm5CK3jhkadiVtYir60TMsvEsLZUASLHNPfvF6I0a9TbQD4VdlLWmqXkJKQVWrIIM65zKlybtaoMJyQH8sXNNDWmsYM63nKr0vjGwnmVs+onGjo3krnSs2A7xLDV/EaUI38elYWzOElWRwKmZaAZ/y4tM2LRyNlr6bwTLAynwUhqS1Fk8xwI+NAKNRKydmWOFE4Dp23uVhZ6JiayqqgQUHcnr9HBdWJ3Cl/XcaeAOQKvKsYQk8qKS6cq7SDZLWJFjL9iYDgCh+KDcKVISgf5kCaT8oYiwl6ranDUF3nO3kaYODDR38pZXIuGm0XT4WQJSOGhPpBkIZJUYRHRwfzwy8X8yyeLzoaBcCNn0lSCFSZxMr2TF/RBTJWbqIJfmiY+QWA6kWYw/8InA5TcOioyyphqB87U2+HS7ANWgpiLAj549f3Z+blgDpk6pNmpT4QXRwnuJ6iANjjZ+jB2RFaSBRfCWJprb5V4f/Hm6IXXPlJI0qLOEzKDHop2KxSIgJPGhfgRkGR8zwuCPJX5gjAjcxq4++N5wO5BVgQk0tjX40oCH4hrosqn2k5fiCVEBJCAhx1c2GHfjGrtHcEAOADvuBKDuSgi1iEOkT9WJcjvggi2IBPqvEAua7oFmZ7AimuawVdZyJn5Ze9quNXWly0mYpdZs8HbX/LedUkf+A3c0wa30v924Z41uJV26nFaFuMafWrwVtpr0npHDEJLaYBNW4mez0tDjS5/5/MCTn2jS+m4OiqYj7K7IbuN7V+9IznqiG8hqSO+rxH/V1nWEd/8syPeEX7+yj/f8s+rAvS/m46A9AvM0aghHL8ucW1Z4GWOmR1GK6i6HINbaV+kmXQSJhcWyZG60uww5+kVgzoiRWe2HSQBErhIIX86IYN/PL9ZluUGzrxLH2/LenZ1ARd7c7+5rUw0NxzZ3HA68/ZIVbCr4CtMDPRm1sMiM0IwV4TeGRTsjGZFc0dKo6KDld54MohDkIEkL7xPclmxexfLWbHRhAJ8eS+UW5n7YI8RwWKZAjAulL4doKvc08kh3VvIcqvahRxC2R9F1lMRK4rEjURpWD+dDoNATSNYb9R44p748o5MVA1OKrdL4YGYlFMxkmZLkZe7vMmyYcS3ob87VcxigeQzbu8+afwkZUCYnsquD89VJV6kqTWtbRWJRkhXOr93OLdUTKdOGM7c0I48GtGZiYS4PRdj4mEaNMQRG8cCuI+8WN++xCEdj4+Xw0oc+soW7PcnwXGYzNPYF3eP3QBp2iJhW52FuKHlcjOs0MVVWmt4Fk0XV02R6oiecgKz0xjMOCseezXO8Pjwgh7fKV+hbplwEGT6cRAtiPeMbH4WLWU5mdy/PcSLMGZTyP+9SpDuqIrjrL8zn5tsoAoxclP2spuWazlwLM5HcMtjK3odQTKNY26qtOa4BhRl0BftWt3ymq25mQ8BAgmoaqlXlgu+H7a7e8wUy90Hy7GstWvwXIb96OMgh79WBrwZFzxT7/cnZ6nS5FHo/Xzm8ZnqGttHGOcsRRWocv5kgtmnAjEqhTOzZv3y7ZRk5qcHa4YNt1zlOVZgVQz6qOpmH/OLWCQkpJFCTOhVrs3L/DAhMMyhMSpbtNHk20MsQ2vE5vm4/6h73PWP2D704uFRKz7ffXz44OUwK1O/l/vmetnrVu5q7pNHE7477rb7SxzZMfaq2f4Pli2C9+7wzbDKMZe5tbM8ARIL7sRuvmPirneXtRu9uJp7L2NTC4p4cUFcueeLTBlKHfaTTEksDbw73y16a1qii+xiI9znIaaxtwXMUWRqb3/otHd85azTfLat05Dm1USlt+tUWycxTxY7/dFeoyJlbkr4sEMOozQpN4QxB7+w6+QJnGQMjbbBvi1s2G45MWcmW6fyHouCzNepU9xppHzKIdl6m6m1ffihf9x7fnzyj/6jrw5j2n3W+lPrz63DVq/1l9ZXrbet71rvW+nez3v/3vvP3n/3T/Yv95P9LEAffBJ5/thae/bz/wEGOIwy</latexit>

Nil

<latexit sha1_base64="Xn8D1zrbnELGo6ZebVWNjo9ws/w=">AAAQs3icfVdbbxvHFWbctE3ZqpHbx75MagiWAUogacu1IxCII8e1ADdNETkxIArG7O4hOdDspTOzohiC/y9/oX+ir+1jvzMzS/GmLiBqcPY7lzn3TSqtrOt2//XJg198+stf/fqz37R/+7u933++//APP9iyNim9T0tdmg+JtKRVQe+dcpo+VIZknmj6Mbk+4/c/3pCxqiwu3Kyiq1yOCzVSqXQgfXy4J4cZjcDsRc1TWUgzS3RNi/nbi7+9W8z7L3vP35ws2muwTJrrsSEqGlS3+/xZt7sDVaniugGdve52z15vgMZGzqIoM04g6fhpp3t8gr+nO5DBsgjsd8Lf8x1AQ9kSdxJx/Q1calRuy8JDg4UvX3a7W9dQRtnJ+m1fvOo++3rHbW9UqcktpcElr3ELPENtnSU3bwuRyBS+K+si83yDYWCfTpSjRUfwcyDSSVlaEm5CK3jhkadiVtYir60TMsvEsLZUASLHNPfvF6I0a9TbQD4VdlLWmqXkJKQVWrIIM65zKlybtaoMJyQH8sXNNDWmsYM63nKr0vjGwnmVs+onGjo3krnSs2A7xLDV/EaUI38elYWzOElWRwKmZaAZ/y4tM2LRyNlr6bwTLAynwUhqS1Fk8xwI+NAKNRKydmWOFE4Dp23uVhZ6JiayqqgQUHcnr9HBdWJ3Cl/XcaeAOQKvKsYQk8qKS6cq7SDZLWJFjL9iYDgCh+KDcKVISgf5kCaT8oYiwl6ranDUF3nO3kaYODDR38pZXIuGm0XT4WQJSOGhPpBkIZJUYRHRwfzwy8X8yyeLzoaBcCNn0lSCFSZxMr2TF/RBTJWbqIJfmiY+QWA6kWYw/8InA5TcOioyyphqB87U2+HS7ANWgpiLAj549f3Z+blgDpk6pNmpT4QXRwnuJ6iANjjZ+jB2RFaSBRfCWJprb5V4f/Hm6IXXPlJI0qLOEzKDHop2KxSIgJPGhfgRkGR8zwuCPJX5gjAjcxq4++N5wO5BVgQk0tjX40oCH4hrosqn2k5fiCVEBJCAhx1c2GHfjGrtHcEAOADvuBKDuSgi1iEOkT9WJcjvggi2IBPqvEAua7oFmZ7AimuawVdZyJn5Ze9quNXWly0mYpdZs8HbX/LedUkf+A3c0wa30v924Z41uJV26nFaFuMafWrwVtpr0npHDEJLaYBNW4mez0tDjS5/5/MCTn2jS+m4OiqYj7K7IbuN7V+9IznqiG8hqSO+rxH/V1nWEd/8syPeEX7+yj/f8s+rAvS/m46A9AvM0aghHL8ucW1Z4GWOmR1GK6i6HINbaV+kmXQSJhcWyZG60uww5+kVgzoiRWe2HSQBErhIIX86IYN/PL9ZluUGzrxLH2/LenZ1ARd7c7+5rUw0NxzZ3HA68/ZIVbCr4CtMDPRm1sMiM0IwV4TeGRTsjGZFc0dKo6KDld54MohDkIEkL7xPclmxexfLWbHRhAJ8eS+UW5n7YI8RwWKZAjAulL4doKvc08kh3VvIcqvahRxC2R9F1lMRK4rEjURpWD+dDoNATSNYb9R44p748o5MVA1OKrdL4YGYlFMxkmZLkZe7vMmyYcS3ob87VcxigeQzbu8+afwkZUCYnsquD89VJV6kqTWtbRWJRkhXOr93OLdUTKdOGM7c0I48GtGZiYS4PRdj4mEaNMQRG8cCuI+8WN++xCEdj4+Xw0oc+soW7PcnwXGYzNPYF3eP3QBp2iJhW52FuKHlcjOs0MVVWmt4Fk0XV02R6oiecgKz0xjMOCseezXO8Pjwgh7fKV+hbplwEGT6cRAtiPeMbH4WLWU5mdy/PcSLMGZTyP+9SpDuqIrjrL8zn5tsoAoxclP2spuWazlwLM5HcMtjK3odQTKNY26qtOa4BhRl0BftWt3ymq25mQ8BAgmoaqlXlgu+H7a7e8wUy90Hy7GstWvwXIb96OMgh79WBrwZFzxT7/cnZ6nS5FHo/Xzm8ZnqGttHGOcsRRWocv5kgtmnAjEqhTOzZv3y7ZRk5qcHa4YNt1zlOVZgVQz6qOpmH/OLWCQkpJFCTOhVrs3L/DAhMMyhMSpbtNHk20MsQ2vE5vm4/6h73PWP2D704uFRKz7ffXz44OUwK1O/l/vmetnrVu5q7pNHE7477rb7SxzZMfaq2f4Pli2C9+7wzbDKMZe5tbM8ARIL7sRuvmPirneXtRu9uJp7L2NTC4p4cUFcueeLTBlKHfaTTEksDbw73y16a1qii+xiI9znIaaxtwXMUWRqb3/otHd85azTfLat05Dm1USlt+tUWycxTxY7/dFeoyJlbkr4sEMOozQpN4QxB7+w6+QJnGQMjbbBvi1s2G45MWcmW6fyHouCzNepU9xppHzKIdl6m6m1ffihf9x7fnzyj/6jrw5j2n3W+lPrz63DVq/1l9ZXrbet71rvW+nez3v/3vvP3n/3T/Yv95P9LEAffBJ5/thae/bz/wEGOIwy</latexit>

Nil

<latexit sha1_base64="aMjGLYaV6Ihc2vSQzCCRvusPaWQ=">AAAQznicfVdbbxvHFWbcW8LWjpw89mVaQ5AMUAJJW64dgUAcOa4FuKmLyIkBUzBmdw/JgWYvnZkVxbJEX/sX+9w/0u/MzFK8qQuIGpz9zmXOfZNKK+u63f98du8Xv/zVr3/z+Rft3/7u/oMv9x5+9ZMta5PS+7TUpfmQSEtaFfTeKafpQ2VI5ommn5OrM37/8zUZq8riws0quszluFAjlUoH0qeH9/85zGgEZi9qnspCmlmia1rM31z85e1i3n/Re/b6ZNFeg2XSXI0NUdGgut1nT7vdHahKFVcN6OxVt3v2agM0NnIWRZlxAknHTzrd4xP8PdmBDJZFYL8T/p7tABrKlriTiOtv4FKjclsWHhosfPGi2926hjLKTtZv+/xl9+l3O257rUpNbikNLnmFW+AZaussuXlbiESm8F1ZF5nnGwwD+3SiHC06gp99kU7K0pJwE1rBC488FbOyFnltnZBZJoa1pQoQOaa5f78QpVmj3gTyqbCTstYsJSchrdCSRZhxnVPh2qxVZTghOZAvbqapMY0d1PGWW5XGNxbOq5xV/6ChcyOZKz0LtkMMW81vRDny51FZOIuTZHUkYFoGmvHv0jIjFo2cvZLOO8HCcBqMpLYURTbPvoAPrVAjIWtX5kjhNHDa5m5loWdiIquKCgF1t/IaHVwndqfwdR23Cpgj8KpiDDGprLh0qtIOkt0iVsT4KwaGI3AoPghXiqR0kA9pMimvKSLslaoGR32R5+xthIkDE/2tnMW1aLhZNB1OloAUHuoDSRYiSRUWER3MD79ZzL95vOhsGAg3ciZNJVhhEifTW3lBH8RUuYkq+KVp4hMEphNpBvM/+GSAkhtHRUYZU+3AmXo7XJp9wEoQc1HABy9/PDs/F8whU4c0O/WJ8Pwowf0EFdAGJ1sfxo7ISrLgQhhLc+WtEu8vXh8999pHCkla1HlCZtBD0W6FAhFw0rgQPwKSjO95QZCnMl8QZmROA3d3PPfZPciKgEQa+3pcSeB9cUVU+VTb6QuxhIgAEvCwgws77JtRrb0jGAAH4B1XYjAXRcQ6xCHyx6oE+V0QwRZkQp0XyGVNNyDTY1hxRTP4Kgs5M//YuxxutfVli4nYZdZs8PaXvLdd0gd+A/ekwa30v124pw1upZ16nJbFuEafGryR9oq03hGD0FIaYNNWoufz0lCjy9/5vIBTX+tSOq6OCuaj7K7JbmP7l29JjjriB0jqiB9rxP9llnXE93/viLeEnz/zzw/887IA/a+mIyD9AnM0agjH70pcWxZ4mWNmh9EKqi7H4FbaF2kmnYTJhUVypK40O8x5csmgjkjRmW0HSYAELlLIn07I4B/Pb5ZluYEz79LH27KeXl7Axd7c728qE80NRzY3nM68PVIV7Cr4ChMDvZn1sMiMEMwVobcGBTujWdHckdKo6GClN54M4hBkIMkL75NcVuzexXJWbDShAF/eC+VW5j7YY0SwWKYAjAulbwfoKnd0ckj3FrLcqnYhh1D2R5H1VMSKInEtURrWT6fDIFDTCNYbNZ64x768IxNVg5PK7VK4LyblVIyk2VLk5S5vsmwY8W3o704Vs1gg+Yzbu08aP0kZEKansuvDc1WJF2lqTWtbRaIR0pXO7x3OLRXTqROGMze0I49GdGYiIW7PxZh4mAYNccTGsQDuIy/Wty9xSMfj4+WwEoe+sgX7/XFwHCbzNPbF3WM3QJq2SNhWZyFuaLncDCt0cZXWGp5F08VVU6Q6oqecwOw0BjPOigOvxhkeH17Qwa3yFeqWCftBph8H0YJ4z8jmZ9FSlpPJ3dtDvAhjNoX836sE6Y6qOM76O/O5yQaqECM3ZS+7abmWA8fifAS3HFjR6wiSaRxzU6U1xzWgKIO+aNfqltdszc18CBBIQFVLvbJc8P2w3d1hpljuPliOZa1dg+cy7EcfBzn8tTLgzbjgmXq3PzlLlSaPQu/nM4/PVNfYPsI4ZymqQJXzJxPMPhWIUSmcmTXrl2+nJDM/PVgzbLjhKs+xAqti0EdVN/uYX8QiISGNFGJCr3JtXuaHCYFhDo1R2aLNrZ6bOxYid4D9004uJKKegGwPDtpD7Elr+Ob5tPeoe9z1j9g+9OLhUSs+7z49vPdimJWpX9l93/3Y61bucu7zShM+SW4X/484ss/sZfNhsL/sHrySh8+JVY65zK2d5QmQ2H0ndvMdE3e9+1i70fPLuQ8AlrigiHcahJzHgciUodRhdcmUxD7Ba/XtDrimJbrILjYy4TyEO7a9gDmKTO3tb6D2jg+gdZpPxHUaKqCaqPRmnWrrJKbQYqc/2mtUZNN1CR92yGHKJuWGMObgF3adPIGTjKHRNth3jA3bLefszGTrVF5xUav5OnWKO42UTzkkW28ztbYPP/WPe8+OT/7Wf/TtYUy7z1u/b/2xddjqtf7U+rb1pvWu9b6V3v/vgy8efPXg6713e9d7i71/Bei9zyLP1621Z+/f/wOu15O+</latexit>

Blog content ’ hashTags blogs ’’

<latexit sha1_base64="aKeX89tWWpfRXpoeNo30Dgk9Mx4=">AAAQzXicfVdbbxvHFWbcm8vWrpw89mVaQ5AMUAJJW64dgUAcOa4FuEmKyIkBUzBmdw/JgWYvmZkVxbLsa39jX/tL+p2ZWYo3dQFRg7Pfucy5b1JpZV23+5/P7v3il7/69W/u/7b9u98/ePiHvUef/2jL2qT0Pi11aT4k0pJWBb13ymn6UBmSeaLpp+TqjN//dE3GqrK4cLOKLnM5LtRIpdKB9OnRg/kwoxGYvah5KgtpZomuaTF/e/G3d4t5/2Xv+ZuTRXsNlklzNTZERYPqdp8/63Z3oCpVXDWgs9fd7tnrDdDYyFkUZcYJJB0/7XSPT/D3dAcyWBaB/U74e74DaChb4k4irr+BS43KbVl4aLDw5ctud+sayig7Wb/ti1fdZ1/vuO21KjW5pTS45DVugWeorbPk5m0hEpnCd2VdZJ5vMAzs04lytOgIfvZFOilLS8JNaAUvPPJUzMpa5LV1QmaZGNaWKkDkmOb+/UKUZo16E8inwk7KWrOUnIS0QksWYcZ1ToVrs1aV4YTkQL64mabGNHZQx1tuVRrfWDivclb9g4bOjWSu9CzYDjFsNb8R5cifR2XhLE6S1ZGAaRloxr9Ly4xYNHL2SjrvBAvDaTCS2lIU2Tz7Aj60Qo2ErF2ZI4XTwGmbu5WFnomJrCoqBNTdymt0cJ3YncLXddwqYI7Aq4oxxKSy4tKpSjtIdotYEeOvGBiOwKH4IFwpktJBPqTJpLymiLBXqhoc9UWes7cRJg5M9LdyFtei4WbRdDhZAlJ4qA8kWYgkVVhEdDA//HIx//LJorNhINzImTSVYIVJnEzv5AV9EFPlJqrgl6aJTxCYTqQZzP/kkwFKbhwVGWVMtQNn6u1wafYBK0HMRQEfvPrh7PxcMIdMHdLs1CfCi6ME9xNUQBucbH0YOyIryYILYSzNlbdKvL94c/TCax8pJGlR5wmZQQ9FuxUKRMBJ40L8CEgyvucFQZ7KfEGYkTkN3N3x3Gf3ICsCEmns63ElgffFFVHlU22nL8QSIgJIwMMOLuywb0a19o5gAByAd1yJwVwUEesQh8gfqxLkd0EEW5AJdV4glzXdgExPYMUVzeCrLOTM/GPvcrjV1pctJmKXWbPB21/y3nZJH/gN3NMGt9L/duGeNbiVdupxWhbjGn1q8FbaK9J6RwxCS2mATVuJns9LQ40uf+fzAk59o0vpuDoqmI+yuya7je1fviM56ohvIakjfqgR/1dZ1hHf/NwR7wg/f+Wfb/nnVQH6d6YjIP0CczRqCMevS1xbFniZY2aH0QqqLsfgVtoXaSadhMmFRXKkrjQ7zHl6yaCOSNGZbQdJgAQuUsifTsjgH89vlmW5gTPv0sfbsp5dXsDF3txvbioTzQ1HNjeczrw9UhXsKvgKEwO9mfWwyIwQzBWhtwYFO6NZ0dyR0qjoYKU3ngziEGQgyQvvk1xW7N7FclZsNKEAX94L5VbmPthjRLBYpgCMC6VvB+gqd3RySPcWstyqdiGHUPZHkfVUxIoicS1RGtZPp8MgUNMI1hs1nrgnvrwjE1WDk8rtUrgvJuVUjKTZUuTlLm+ybBjxbejvThWzWCD5jNu7Txo/SRkQpqey68NzVYkXaWpNa1tFohHSlc7vHc4tFdOpE4YzN7Qjj0Z0ZiIhbs/FmHiYBg1xxMaxAO4jL9a3L3FIx+Pj5bASh76yBfv9SXAcJvM09sXdYzdAmrZI2FZnIW5oudwMK3RxldYankXTxVVTpDqip5zA7DQGM86KA6/GGR4fXtDBrfIV6pYJ+0GmHwfRgnjPyOZn0VKWk8nd20O8CGM2hfzfqwTpjqo4zvo787nJBqoQIzdlL7tpuZYDx+J8BLccWNHrCJJpHHNTpTXHNaAog75o1+qW12zNzXwIEEhAVUu9slzw/bDd3WGmWO4+WI5lrV2D5zLsRx8HOfy1MuDNuOCZerc/OUuVJo9C7+czj89U19g+wjhnKapAlfMnE8w+FYhRKZyZNeuXb6ckMz89WDNsuOEqz7ECq2LQR1U3+5hfxCIhIY0UYkKvcm1e5ocJgWEOjVHZos2tnpu74zVsIu3kQiLoCaj24KA9xJq0Bm+eT3uPu8dd/4jtQy8eHrfi8/2nR/deDrMy9Ru7b7sfe93KXc59WmnCF8nt3v8RR3aZvWy+C/aXzYM38vA1scoxl7m1szwBEqvvxG6+Y+Kudx9rN3pxOff+xw4XFPFKg4jzNBCZMpQ6bC6ZklgneKu+XQHXtEQX2cVGIpyHaMeuFzBHkam9/QnU3vH9s07zebhOQwFUE5XerFNtncQMWuz0R3uNimS6LuHDDjkM2aTcEMYc/MKukydwkjE02gb7hrFhu+WUnZlsncobLko1X6dOcaeR8imHZOttptb24cf+ce/58cnf+4+/Ooxpd7/1x9afW4etXusvra9ab1vft9630gf/fXj/4aOHn+99t1fv/XPvXwF677PI80Vr7dn79/8AkY6TjQ==</latexit>

Blog content hashTags blogs ’’

Begin

End

End

<latexit sha1_base64="6V/9S3vcdHWFJFjdwJpBiGD4cag=">AAAB7XicbZDLSgMxFIYz9VbHW9Wlm2ARXJUZwctGLLpxWcFeoB3KmTTTxmYyIckIZeg7uHGhiBsXPop7N+LbmF4W2vpD4OP/zyHnnFBypo3nfTu5hcWl5ZX8qru2vrG5VdjeqekkVYRWScIT1QhBU84ErRpmOG1IRSEOOa2H/atRXr+nSrNE3JqBpEEMXcEiRsBYq9YCLnvQLhS9kjcWngd/CsWLD/dcvn25lXbhs9VJSBpTYQgHrZu+J02QgTKMcDp0W6mmEkgfurRpUUBMdZCNpx3iA+t0cJQo+4TBY/d3Rwax1oM4tJUxmJ6ezUbmf1kzNdFZkDEhU0MFmXwUpRybBI9Wxx2mKDF8YAGIYnZWTHqggBh7INcewZ9deR5qRyX/pHR84xXLl2iiPNpD++gQ+egUldE1qqAqIugOPaAn9OwkzqPz4rxOSnPOtGcX/ZHz/gPuSJJf</latexit>↵
<latexit sha1_base64="oH6vYkNMKSIeuur2gly2qdlzLd8=">AAAB73icbVDJSgNBEO2JWxK3qEcvjUHwYpgRXI5BLx4jmAWTIdR0epImPT1td48YhvyEFxFFvHryX7z5NdpZDpr4oODxXhVV9QLJmTau++VkFhaXlleyufzq2vrGZmFru6bjRBFaJTGPVSMATTkTtGqY4bQhFYUo4LQe9C9Gfv2OKs1icW0GkvoRdAULGQFjpYZ32AIue9AuFN2SOwaeJ96UFMs5+XTzcf9daRc+W52YJBEVhnDQuum50vgpKMMIp8N8K9FUAulDlzYtFRBR7afje4d43yodHMbKljB4rP6eSCHSehAFtjMC09Oz3kj8z2smJjzzUyZkYqggk0VhwrGJ8eh53GGKEsMHlgBRzN6KSQ8UEGMjytsQvNmX50ntqOSdlI6vbBrnaIIs2kV76AB56BSV0SWqoCoiiKMH9IxenFvn0Xl13iatGWc6s4P+wHn/AYi+k2I=</latexit>

1� ↵

<latexit sha1_base64="M61t5cRb3hTOqA+kt7qhnRR5tF8=">AAAB/HicbVDJSgNBEO2JW4zbaI5emgQhKoYZweUY9OIxglkgM4SaTk/SpGehu0cYhvgV3r14UMSrH+Itf2NnOWjig4LHe1VU1fNizqSyrLGRW1ldW9/Ibxa2tnd298z9g6aMEkFog0Q8Em0PJOUspA3FFKftWFAIPE5b3vB24rceqZAsCh9UGlM3gH7IfEZAaalrFiv2mQM8HsAxPsGOZP0AumbZqlpT4GViz0m5VnJOn8e1tN41v51eRJKAhopwkLJjW7FyMxCKEU5HBSeRNAYyhD7taBpCQKWbTY8f4SOt9LAfCV2hwlP190QGgZRp4OnOANRALnoT8T+vkyj/2s1YGCeKhmS2yE84VhGeJIF7TFCieKoJEMH0rZgMQABROq+CDsFefHmZNM+r9mX14l6ncYNmyKNDVEIVZKMrVEN3qI4aiKAUvaA39G48Ga/Gh/E5a80Z85ki+gPj6weE95Zm</latexit>

(1� ↵) ⇤ �
<latexit sha1_base64="dChfvg7oDHHCj3iIZ3TVWWOmqi4=">AAACAnicbVDJSgNBEO2JW4zbqCfx0iQIiZIwI7gcg148RjALZIZQ0+kkTXoWunuEYQhe/AR/wYsHRbz6Fd7yN3aWg0YfFDzeq6KqnhdxJpVljY3M0vLK6lp2PbexubW9Y+7uNWQYC0LrJOShaHkgKWcBrSumOG1FgoLvcdr0htcTv3lPhWRhcKeSiLo+9APWYwSUljrmQdEuO8CjAZTwMS7auIwdyfo+lDpmwapYU+C/xJ6TQjXvnDyNq0mtY3453ZDEPg0U4SBl27Yi5aYgFCOcjnJOLGkEZAh92tY0AJ9KN52+MMJHWuniXih0BQpP1Z8TKfhSJr6nO31QA7noTcT/vHasepduyoIoVjQgs0W9mGMV4kkeuMsEJYonmgARTN+KyQAEEKVTy+kQ7MWX/5LGacU+r5zd6jSu0AxZdIjyqIhsdIGq6AbVUB0R9ICe0St6Mx6NF+Pd+Ji1Zoz5zD76BePzG+yyl5E=</latexit>

(1� ↵) ⇤ (1� �)

1

2

3

4

5

6

7

8

9

10

11

True False

<latexit sha1_base64="n0+BidlgQkxfIGH0XptQKIE0tpM=">AAAB7XicbVDJSgNBEK2JW4xb1KOXxiB4CjPikmPAi8cIZoFkCD2dnqRNL0N3jxCG/IMXD4p49X+8+Td2kjlo4oOCx3tVVNWLEs6M9f1vr7C2vrG5Vdwu7ezu7R+UD49aRqWa0CZRXOlOhA3lTNKmZZbTTqIpFhGn7Wh8O/PbT1QbpuSDnSQ0FHgoWcwItk5q9QwbCtwvV/yqPwdaJUFOKpCj0S9/9QaKpIJKSzg2phv4iQ0zrC0jnE5LvdTQBJMxHtKuoxILasJsfu0UnTllgGKlXUmL5urviQwLYyYicp0C25FZ9mbif143tXEtzJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSD6+rV/WWlXsvjKMIJnMI5BHADdbiDBjSBwCM8wyu8ecp78d69j0VrwctnjuEPvM8fnJ2PIw==</latexit>�
<latexit sha1_base64="OnPshsWfkyuU7CoSU0FEHi72/b4=">AAAB8XicbVDLSgMxFL3xWeur6tJNsAhuLDPio8uCG5cV7APboWTSTBuaZIYkI5Shf+HGhSJu/Rt3/o1pOwttPXDhcM693HtPmAhurOd9o5XVtfWNzcJWcXtnd2+/dHDYNHGqKWvQWMS6HRLDBFesYbkVrJ1oRmQoWCsc3U791hPThsfqwY4TFkgyUDzilFgnPfr4HHcNH0jSK5W9ijcDXiZ+TsqQo94rfXX7MU0lU5YKYkzH9xIbZERbTgWbFLupYQmhIzJgHUcVkcwE2eziCT51Sh9HsXalLJ6pvycyIo0Zy9B1SmKHZtGbiv95ndRG1SDjKkktU3S+KEoFtjGevo/7XDNqxdgRQjV3t2I6JJpQ60IquhD8xZeXSfOi4l9Xru4vy7VqHkcBjuEEzsCHG6jBHdShARQUPMMrvCGDXtA7+pi3rqB85gj+AH3+ACSrj+k=</latexit>

1� �
<latexit sha1_base64="93v+Lx7bVhi2W8iMkeo95dLMqIo=">AAAQsXicfVdbbxvHFWbcS1KmauT0sS/TGIJlYCWQlOXaEQjEkeNagJumiJw4MAVndveQHHBvnZkVxRD8e/kP+Q95bZ/7nZlZijd1AVGDme9c5twnrjJlbKfzywf3fvPb3/3+w4/+0P74j3t/+mT//qffmbLWCb1JyqzUb2NpKFMFvbHKZvS20iTzOKPv48k5n39/Tdqosri0s4qucjkq1FAl0mLr/f2994OUhiB2rOaJLKSexVlNi/mry3+8Xsx7z7pPXp4u2muwVOrJSBMVDarTefK409mBqlQxaUDnLzqd8xcboJGWs8BKj2JwOj6JOsen+DvZgfSaBWAv8n9PdgA1pUvcacD1NnCJVrkpCwf1Gj571ulsXUNpZcbrt336vPP4yx23vVZlRnbJDSZ5gVvgG2TGGrLzthCxTGC7si5SR9cfePLpWFlaRIK/A5GMy9KQsGNawQuHPBOzshZ5bayQaSoGtaEKEDmiuTtfiFKv7d747TNhxmWdMZechDQik8xCj+qcCttmqSrFCsGBeLGzjBrV2ECR09yoJJwYGK+yRv1EA2uHMlfZzOsONqw1n4hy6NbDsrAGK8niSEC1FHvanSVlSswaMTuR1hnBQHHqD2VmKLBsvgMBGxqhhkLWtswRwomnNM3dyiKbibGsKioExN3ya2RwnpidzNdl3ApgCk+rihHYJLLi1KlK0493s1hh467oCY5AoXghbCni0oI/uMm4vKaAMBNV9Y96Is/Z2nATOybYW1mDa9FgM2kiDhaPFA7qHEkGLEkVBh7tzw8/X8w/f7SINhSEGTmSphKkUImD6bW8pLdiquxYFXyoG/94hslY6v78ry4YIOTGUpFSyrumb3W97a6MbcBC4HNRwAbPvz2/uBBMIROLMDtzgfD0KMb9BBWQBiMb58ZIpCUZUMGNpZ44rcSby5dHT530oUKQFnUek+53kbRbroAHrNTW+4+AJO1qnmfkdpnOM9Myp769258HbB5EhUcijF0+rgTwgZgQVS7UdtpCLCHCgwQsbGHCiG0zrDNnCAbAADjjTPTqIolYhjhE/BgVI74LIuiCSKjzArGc0Q226RG0mNAMtkp9zMzfda8GW2V9WWICdhk1G7S9Je1tlXSO38CdNLiV+rcL97jBrZRTh8tkMapRp/qvpJlQlu3wgS8pDbApK8HyeampkeXufFHAqC+zUlrOjgrqI+2uyWxje1evSQ4j8TU4ReLbGv5/nqaR+OrfkXhN+Pk7/3zNP88L7P9TRwLcL9FHgwS//LLEtWWBwxw927dWl5mptBJ6FgYRkdhS79Dh5IpBkUhQjk0EzyNqiwRMp2PS+MdNm3kZrtpMuzTsNq/HV5ewq9Pxq5tKBx39knX0q3Onj1QF2wcGQptAQWY5zDIleHCF6a1CXs+gVlB3qDKksdfSKU8axvc8ENkFDBGJXFZs08WyQWxUHg9f3gs5VubOwyO4rVj6Hcr5fDd9lJI7yje4Ow2Zb1VbHzjI9aNAeiZCGpG4lsgH41rSoWeY0RDaazUa20cupwMRVf3Tyu4SeCDG5VQMpd4S5Pgub7KsEuHUF3WrilnIinzGNd0FjWufDPAtU5n1jrkqxLHUdUZro0ScwaUr5d4ZnOsoWlLkOzJXsSOHhndmIiauycWIuIN6CaGvhl4A6iPH1tUscUjHo+NlhxKHLp0F2/2RNxza8TQUw9291kOaWkgYUWfeb6izXAErlG6V1Bksi0qLqyYIdXhPWYGGqTUamxEPnRiruWc4Rg9vha/sbqlw4Hm6HhA0CPcMZK4BLXlZGd89MoSLMGaTyf+9iuduqQo9rLcznptooAo+slO2sp2WazFwLC6GMMtDI7qRIJmE3jZVWcZ+9ShKIS/otTraNaNy0xQ8BByQ1TJbmSj4fhjp7lBTLAceTMSyzmyD5zTsBRt7PvxE6fM4XHAjvdueHKUqI4dCwec198wkqzFy+B7OXFSBLOd3EtQ+E/BRKayeNTOXK6ckU9cyWDJ0uOEszzH3qqLfQ1Y3Q5ibvsJGTBlCiDe6lW3zBD+ICQRzSAzCFu0Ezy6Bx5bh8XmAUWjttPne7z/oHHfcJ7YX3bB40ArfN+/v33s2SMvETeWuyr7rdip7NXdRlBFeHbez/Tss2ULmqpn9D5a1gqdu/2JYpZjL3JhZHgOJ8XZsNs94c9fZu9oOn17Nnbkxp3lBPLbAwVz8Rao0JRbTSaokRgaenG/HvDUpwURmseH3C+/cUOQ85igQtbefOe0db5z1PRd263uI92qskpv1XVPHIWAWO+3RXttF7FyXsGFEFj01LjeYMQUfmPXtMYykNQ23wa4+bOhuOEJnOl3f5SkWmZmv705xp6FyIYdg626G1vbiu95x98nx6b96D744DGH3Uesvrc9ah61u62+tL1qvWt+03rSSvZ/3ft37z95/90/2f9j/cT/20HsfBJo/t9a+/cn/ABxQjHk=</latexit>

case present

<latexit sha1_base64="nvieKGOBoid4sRdktxoYQVR8SsE=">AAAQ2nicfVdbbxu5Fdamt63apE6LPhVo2QaGHUA2JCVOkzUEbNbZNEbT7Rbr7AaIjIAzcyQR5lxKciyrgl761KKv/XP9Ff0L/Q7JkXVzB7BMkN+58NyZVFpZ1+3+55N73/v+D374o09/3P7JT+8/+Nnew59/a8vapPQuLXVp3ifSklYFvXPKaXpfGZJ5oum75OqMz7+7JmNVWVy4WUWXuRwXaqRS6bD18eH9fwwzGoHYs5qnspBmluiaFvM3F396u5j3X/SevT5ZtNdgmTRXY0NUNKhu99nTbncHqlLFVQM6e9Xtnr3aAI2NnEVWZpyA0/GTTvf4BH9PdiCDZhHY74S/ZzuAhrIl7iTi+hu41KjcloWHBg1fvOh2t66hjLKT9ds+f9l9+sWO216rUpNbcoNJXuEW+IbaOktu3hYikSlsV9ZF5ukGw0A+nShHi47gb1+kk7K0JNyEVvDCI0/FrKxFXlsnZJaJYW2pAkSOae7PF6I0a7s3YftU2ElZa+aSk5BWaMkszLjOqXBtlqoyrBAciBc309SoxgbqeM2tSuOJhfEqZ9XfaOjcSOZKz4LuYMNa84koR349KgtnsZIsjgRUy7Bn/FlaZsSsEbNX0nkjWChOg5HUliLL5tsXsKEVaiRk7cocIZwGStvcrSz0TExkVVEhIO6WXyOD88TuZL4u41YAUwRaVYzBJpUVp05V2kGym8UKG3/FQHAECsUL4UqRlA78wU0m5TVFhL1S1eCoL/KcrQ03sWOivZWzuBYNN5Omw8ESkMJDvSPJgiWpwsKjg/nhZ4v5Z48XnQ0FYUaOpKkEKVTiYHorL+i9mCo3UQUfmsY/gWE6kWYw/60PBgi5cVRklPGuHThTb7tLsw1YCHwuCtjg5Tdn5+eCKWTqEGanPhCeHyW4n6AC0mBk693YEVlJFlRwY2muvFbi3cXro+de+kghSIs6T8gMekjaLVfAA04aF/xHQJLxNS8w8rtMF5gZmdPA3e3PfTYPoiIgEcY+H1cCeF9cEVU+1HbaQiwhIoAELOxgwg7bZlRrbwgGwAA440wM6iKJWIY4RPxYlSC+CyLogkio8wKxrOkG2/QYWlzRDLbKQszMP/Quh1tlfVliInYZNRu0/SXtbZX0jt/APWlwK/VvF+5pg1sppx6nZTGuUacGb6S9Iq13+CCUlAbYlJVo+bw01Mjydz4vYNTXupSOs6OC+ki7a7Lb2P7lW5KjjvgKnDrimxr+f5llHfHlXzviLeHnD/zzFf+8LLD/Z9MR4H6BPholhOUXJa4tCxzm6NmhtWJXl2NQK+2TNJNOQuXCIjhSV5od6jy5ZFBHpKjMtoMgQAAXKfhPJ2Twj/s387JcwJl2aeNtXk8vL2Bir+6XN5WJ6oYlqxtWZ14fqQo2FWyFjoHazHKYZUZw5grTW4WCnlGtqO5IaWR00NIrTwZ+CDwQ5IW3SS4rNu9i2Ss2ilCAL++FdCtz7+wxPFgsQwDKhdS3A1SVOyo5uHsNmW9VuxBDSPujSHoqYkaRuJZIDeu702FgqGkE7Y0aT9xjn96RiKrBSeV2CdwXk3IqRtJsCfJ8lzdZFox4Guq7U8UsJkg+4/Lug8Z3UgaE7qnsevNcFeJZmlrT2lSRaLh0pfJ7g3NJRXfqhObMBe3Io+GdmUiIy3MxJm6mQUJssbEtgPrIs/XlSxzS8fh42azEoc9swXZ/HAyHzjyNdXF32w2QpiwSptVZ8BtKLhfDClVcpbWGZVF0cdUUoQ7vKSfQO41Bj7PiwItxhtuHZ3RwK3xld0uF/cDTt4OoQbxnJPO9aMnLyeTu6SFehDGbTP7vVQJ3R1VsZ/2d8dxEA1XwkZuyld20XIuBY3E+glkOrOh1BMk0trmp0pr9GlCUQV7Ua3XKa6bmpj8ECDggq6VeGS74fpju7lBTLGcfDMey1q7Bcxr2o40DH36tDHgyLrin3m1PjlKlyaNQ+3nN7TPVNaaP0M6ZiyqQ5fxkgtqnAj4qhTOzZvzy5ZRk5rsHS4YON5zlOUZgVQz6yOpmHvODWNxISCOEeKNXuTYP88OEQDCHxChs0UbREgnKvT04EAMel/Jq8sfYX5s+G87bQ8xMa7TN93HvUfe46z+xvejFxaNW/L7++PDei2FWpn589zX4Q69bucu5jzFNeJ7cPgI+YMn2s5fNI2F/WUl4PA9Pi1WKucytneUJkJiDJ3bzjDd3nX2o3ej55dw7AwNdEMTzDdzPrUFkylDqMMZkSmK24BH7dh5ckxJNZBcbUXEeXB9LYMAcRaL29nuoveMxtL7ng3J9D9lQTVR6s75r6ySG02KnPdpru4is6xI27JBDx03KDWZMwQd2fXsCIxlDo22wrx4buluO35nJ1nd53EXe5uu7U9xppHzIIdh6m6G1vfi2f9x7dnzyl/6jzw9j2H3a+lXrd63DVq/1+9bnrTetr1vvWun9/z745YNfP/jN3nDv73v/3PtXgN77JNL8orX27f37f3jPmBs=</latexit>

let blogs ’’ =
emphKeyword keyword blogs ’

<latexit sha1_base64="nvieKGOBoid4sRdktxoYQVR8SsE=">AAAQ2nicfVdbbxu5Fdamt63apE6LPhVo2QaGHUA2JCVOkzUEbNbZNEbT7Rbr7AaIjIAzcyQR5lxKciyrgl761KKv/XP9Ff0L/Q7JkXVzB7BMkN+58NyZVFpZ1+3+55N73/v+D374o09/3P7JT+8/+Nnew59/a8vapPQuLXVp3ifSklYFvXPKaXpfGZJ5oum75OqMz7+7JmNVWVy4WUWXuRwXaqRS6bD18eH9fwwzGoHYs5qnspBmluiaFvM3F396u5j3X/SevT5ZtNdgmTRXY0NUNKhu99nTbncHqlLFVQM6e9Xtnr3aAI2NnEVWZpyA0/GTTvf4BH9PdiCDZhHY74S/ZzuAhrIl7iTi+hu41KjcloWHBg1fvOh2t66hjLKT9ds+f9l9+sWO216rUpNbcoNJXuEW+IbaOktu3hYikSlsV9ZF5ukGw0A+nShHi47gb1+kk7K0JNyEVvDCI0/FrKxFXlsnZJaJYW2pAkSOae7PF6I0a7s3YftU2ElZa+aSk5BWaMkszLjOqXBtlqoyrBAciBc309SoxgbqeM2tSuOJhfEqZ9XfaOjcSOZKz4LuYMNa84koR349KgtnsZIsjgRUy7Bn/FlaZsSsEbNX0nkjWChOg5HUliLL5tsXsKEVaiRk7cocIZwGStvcrSz0TExkVVEhIO6WXyOD88TuZL4u41YAUwRaVYzBJpUVp05V2kGym8UKG3/FQHAECsUL4UqRlA78wU0m5TVFhL1S1eCoL/KcrQ03sWOivZWzuBYNN5Omw8ESkMJDvSPJgiWpwsKjg/nhZ4v5Z48XnQ0FYUaOpKkEKVTiYHorL+i9mCo3UQUfmsY/gWE6kWYw/60PBgi5cVRklPGuHThTb7tLsw1YCHwuCtjg5Tdn5+eCKWTqEGanPhCeHyW4n6AC0mBk693YEVlJFlRwY2muvFbi3cXro+de+kghSIs6T8gMekjaLVfAA04aF/xHQJLxNS8w8rtMF5gZmdPA3e3PfTYPoiIgEcY+H1cCeF9cEVU+1HbaQiwhIoAELOxgwg7bZlRrbwgGwAA440wM6iKJWIY4RPxYlSC+CyLogkio8wKxrOkG2/QYWlzRDLbKQszMP/Quh1tlfVliInYZNRu0/SXtbZX0jt/APWlwK/VvF+5pg1sppx6nZTGuUacGb6S9Iq13+CCUlAbYlJVo+bw01Mjydz4vYNTXupSOs6OC+ki7a7Lb2P7lW5KjjvgKnDrimxr+f5llHfHlXzviLeHnD/zzFf+8LLD/Z9MR4H6BPholhOUXJa4tCxzm6NmhtWJXl2NQK+2TNJNOQuXCIjhSV5od6jy5ZFBHpKjMtoMgQAAXKfhPJ2Twj/s387JcwJl2aeNtXk8vL2Bir+6XN5WJ6oYlqxtWZ14fqQo2FWyFjoHazHKYZUZw5grTW4WCnlGtqO5IaWR00NIrTwZ+CDwQ5IW3SS4rNu9i2Ss2ilCAL++FdCtz7+wxPFgsQwDKhdS3A1SVOyo5uHsNmW9VuxBDSPujSHoqYkaRuJZIDeu702FgqGkE7Y0aT9xjn96RiKrBSeV2CdwXk3IqRtJsCfJ8lzdZFox4Guq7U8UsJkg+4/Lug8Z3UgaE7qnsevNcFeJZmlrT2lSRaLh0pfJ7g3NJRXfqhObMBe3Io+GdmUiIy3MxJm6mQUJssbEtgPrIs/XlSxzS8fh42azEoc9swXZ/HAyHzjyNdXF32w2QpiwSptVZ8BtKLhfDClVcpbWGZVF0cdUUoQ7vKSfQO41Bj7PiwItxhtuHZ3RwK3xld0uF/cDTt4OoQbxnJPO9aMnLyeTu6SFehDGbTP7vVQJ3R1VsZ/2d8dxEA1XwkZuyld20XIuBY3E+glkOrOh1BMk0trmp0pr9GlCUQV7Ua3XKa6bmpj8ECDggq6VeGS74fpju7lBTLGcfDMey1q7Bcxr2o40DH36tDHgyLrin3m1PjlKlyaNQ+3nN7TPVNaaP0M6ZiyqQ5fxkgtqnAj4qhTOzZvzy5ZRk5rsHS4YON5zlOUZgVQz6yOpmHvODWNxISCOEeKNXuTYP88OEQDCHxChs0UbREgnKvT04EAMel/Jq8sfYX5s+G87bQ8xMa7TN93HvUfe46z+xvejFxaNW/L7++PDei2FWpn589zX4Q69bucu5jzFNeJ7cPgI+YMn2s5fNI2F/WUl4PA9Pi1WKucytneUJkJiDJ3bzjDd3nX2o3ej55dw7AwNdEMTzDdzPrUFkylDqMMZkSmK24BH7dh5ckxJNZBcbUXEeXB9LYMAcRaL29nuoveMxtL7ng3J9D9lQTVR6s75r6ySG02KnPdpru4is6xI27JBDx03KDWZMwQd2fXsCIxlDo22wrx4buluO35nJ1nd53EXe5uu7U9xppHzIIdh6m6G1vfi2f9x7dnzyl/6jzw9j2H3a+lXrd63DVq/1+9bnrTetr1vvWun9/z745YNfP/jN3nDv73v/3PtXgN77JNL8orX27f37f3jPmBs=</latexit>

let blogs ’’ =
emphKeyword keyword blogs ’

<latexit sha1_base64="T8LVCCgE7DZ9q9RXhdUcFLO4fLk=">AAAQs3icfVdbbxvHFWbcJE3ZKJHbx75MagiWgZVA0pZrRyAQR45rAc4NkRMDomDM7h6SA+6tM7OiGIL/L3+hf6Kv7WO/MzNL8aYMIGow853LnPvGVaaM7XT+/cG9P3z40cd//ORP7T9/uvfZ5/v3//KzKWud0NukzEr9LpaGMlXQW6tsRu8qTTKPM/olnpzx/S/XpI0qiws7q+gql6NCDVUiLY7e39+Tg5SGIHas5okspJ7FWU2L+euLb98s5r3n3aevThbtNVgq9WSkiYoG1ek8fdLp7EBVqpg0oLOXnc7Zyw3QSMtZYKVHMTgdP446xyf4e7wD6TULwF7k/57uAGpKl7iTgOtt4BKtclMWDuo1fP6809l6htLKjNdf++xF58nXO157rcqM7JIbTPISr8AaZMYasvO2ELFMYLuyLlJH1x948ulYWVpEgteBSMZlaUjYMa3ghUOeillZi7w2Vsg0FYPaUAWIHNHc3S9EqddOb/zxqTDjss6YS05CGpFJZqFHdU6FbbNUlWKH4EC82FlGjWpsoMhpblQSbgyMV1mjfqWBtUOZq2zmdQcb1ppvRDl0+2FZWIOdZHEkoFqKM+3ukjIlZo2YnUjrjGCgOPWHMjMUWDbrQMCGRqihkLUtc4Rw4ilN87ayyGZiLKuKCgFxt/waGZwnZifzdRm3ApjC06piBDaJrDh1qtL0490sVti4J3qCI1Ao3ghbiri04A9uMi6vKSDMRFX9o57Ic7Y23MSOCfZW1uBZNNhMmoiDxSOFgzpHkgFLUoWBR/vzwy8X8y8fLaINBWFGjqSpBClU4mB6Iy/onZgqO1YFX+rGP55hMpa6P//CBQOE3FgqUkr51PStrrfdlbENWAh8LgrY4MVPZ+fngilkYhFmpy4Qnh3FeJ+gAtJgZOPcGIm0JAMquLHUE6eVeHvx6uiZkz5UCNKizmPS/S6SdssV8ICV2nr/EZCkXc3zjNwp03lmWubUt3f784DNg6jwSISxy8eVAD4QE6LKhdpOW4glRHiQgIUtTBixbYZ15gzBABgAd5yJXl0kEcsQh4gfo2LEd0EEXRAJdV4gljO6wTE9ghYTmsFWqY+Z+WX3arBV1pclJmCXUbNB21vS3lZJ5/gN3OMGt1L/duGeNLiVcupwmSxGNepU/7U0E8qyHT7wJaUBNmUlWD4vNTWy3JvPCxj1VVZKy9lRQX2k3TWZbWzv6g3JYSS+A6dI/FTD/y/SNBLf/CsSbwg//+Sf7/jnRYHz73UkwP0CfTRI8NuvSzxbFrjM0bN9a3WZmUoroWdhEBGJLfUOHR5fMSgSCcqxieB5RG2RgOl0TBr/uGkzL8NVm2mXht3m9eTqAnZ1On5zU+mgo9+yjn535vSRqmD7wEBoEyjILIdZpgQPrjC9VcjrGdQK6g5VhjT2WjrlScP4ngciu4AhIpHLim26WDaIjcrj4ct3IcfK3Hl4BLcVS79DOZ/vpo9Sckf5BnenIfOtausDB7l+FEhPRUgjEtcS+WBcSzr0DDMaQnutRmP7yOV0IKKqf1LZXQIPxLiciqHUW4Ic3+VLllUi3PqiblUxC1mRz7imu6Bx7ZMBvmUqs94xV4U4lrrOaG2UiDO4dKXcO4NzHUVLinxH5ip25NDwzkzExDW5GBF3UC8h9NXQC0B95Ni6miUO6Xh0vOxQ4tCls2C7P/KGQzuehmK4u9d6SFMLCSPqzPsNdZYrYIXSrZI6g2VRafHUBKEO7ykr0DC1RmMz4qETYzX3DMfo4a3wldMtFQ48T9cDggbhnYHMNaAlLyvju0eG8BDGbDL53ad47paq0MN6O+O5iQaq4CM7ZSvbabkWA8fifAizPDSiGwmSSehtU5Vl7FePohTygl6ro10zKjdNwUPAAVkts5WJgt+Hke4ONcVy4MFELOvMNnhOw16wsefDnyh9HocLbqR325OjVGXkUCj4vOeemWQ1Rg7fw5mLKpDl/J0EtU8FfFQKq2fNzOXKKcnUtQyWDB1uOMtzzL2q6PeQ1c0Q5qavcBBThhDig25l2zzBD2ICwRwSg7BFm7VN8Okl4qwcmfYAw9DafbPe7z/oHHfcEtubbtg8aIX1w/v7954P0jJxc7mrs5fdTmWv5i6OMsJ3x+10f4kt28hcNdP/wbJa8NztvxlWKeYyN2aWx0BiwB2bzTs+3HV3Wdvhs6u5MzgmNS+IBxe4mMu/SJWmxGI+SZXE0MCz8+2gtyYlmMgsNjx/7t0bypzHHAWi9vaHTnvHV876mQu89TNEfDVWyc36qanjEDKLnfZor50ieq5L2DAii64alxvMmIIvzPrxGEbSmobbYFchNnQ3HKMzna6f8hyL3MzXT6d401C5kEOwdTdDa3vzc++4+/T45Mfeg68OQ9h90vpb6++tw1a39Y/WV63XrR9ab1vJ3m97/9n7797/9k/2L/fj/dRD730QaP7aWlv7+f8BEnaMIw==</latexit>

case blogs

(a) CFG with probability of executing along each path.

Content

HashTags

BlogList

<latexit sha1_base64="M61t5cRb3hTOqA+kt7qhnRR5tF8=">AAAB/HicbVDJSgNBEO2JW4zbaI5emgQhKoYZweUY9OIxglkgM4SaTk/SpGehu0cYhvgV3r14UMSrH+Itf2NnOWjig4LHe1VU1fNizqSyrLGRW1ldW9/Ibxa2tnd298z9g6aMEkFog0Q8Em0PJOUspA3FFKftWFAIPE5b3vB24rceqZAsCh9UGlM3gH7IfEZAaalrFiv2mQM8HsAxPsGOZP0AumbZqlpT4GViz0m5VnJOn8e1tN41v51eRJKAhopwkLJjW7FyMxCKEU5HBSeRNAYyhD7taBpCQKWbTY8f4SOt9LAfCV2hwlP190QGgZRp4OnOANRALnoT8T+vkyj/2s1YGCeKhmS2yE84VhGeJIF7TFCieKoJEMH0rZgMQABROq+CDsFefHmZNM+r9mX14l6ncYNmyKNDVEIVZKMrVEN3qI4aiKAUvaA39G48Ga/Gh/E5a80Z85ki+gPj6weE95Zm</latexit>

(1� ↵) ⇤ �
<latexit sha1_base64="dChfvg7oDHHCj3iIZ3TVWWOmqi4=">AAACAnicbVDJSgNBEO2JW4zbqCfx0iQIiZIwI7gcg148RjALZIZQ0+kkTXoWunuEYQhe/AR/wYsHRbz6Fd7yN3aWg0YfFDzeq6KqnhdxJpVljY3M0vLK6lp2PbexubW9Y+7uNWQYC0LrJOShaHkgKWcBrSumOG1FgoLvcdr0htcTv3lPhWRhcKeSiLo+9APWYwSUljrmQdEuO8CjAZTwMS7auIwdyfo+lDpmwapYU+C/xJ6TQjXvnDyNq0mtY3453ZDEPg0U4SBl27Yi5aYgFCOcjnJOLGkEZAh92tY0AJ9KN52+MMJHWuniXih0BQpP1Z8TKfhSJr6nO31QA7noTcT/vHasepduyoIoVjQgs0W9mGMV4kkeuMsEJYonmgARTN+KyQAEEKVTy+kQ7MWX/5LGacU+r5zd6jSu0AxZdIjyqIhsdIGq6AbVUB0R9ICe0St6Mx6NF+Pd+Ji1Zoz5zD76BePzG+yyl5E=</latexit>

(1� ↵) ⇤ (1� �)

<latexit sha1_base64="M61t5cRb3hTOqA+kt7qhnRR5tF8=">AAAB/HicbVDJSgNBEO2JW4zbaI5emgQhKoYZweUY9OIxglkgM4SaTk/SpGehu0cYhvgV3r14UMSrH+Itf2NnOWjig4LHe1VU1fNizqSyrLGRW1ldW9/Ibxa2tnd298z9g6aMEkFog0Q8Em0PJOUspA3FFKftWFAIPE5b3vB24rceqZAsCh9UGlM3gH7IfEZAaalrFiv2mQM8HsAxPsGOZP0AumbZqlpT4GViz0m5VnJOn8e1tN41v51eRJKAhopwkLJjW7FyMxCKEU5HBSeRNAYyhD7taBpCQKWbTY8f4SOt9LAfCV2hwlP190QGgZRp4OnOANRALnoT8T+vkyj/2s1YGCeKhmS2yE84VhGeJIF7TFCieKoJEMH0rZgMQABROq+CDsFefHmZNM+r9mX14l6ncYNmyKNDVEIVZKMrVEN3qI4aiKAUvaA39G48Ga/Gh/E5a80Z85ki+gPj6weE95Zm</latexit>

(1� ↵) ⇤ �

Data Flow edge

Control Flow Edge

(b) Field-access graph G gener-
ated from control-flow graph.
Here we use field types to
uniquely name them, since
Haskell record syntax was not
used in this example to give
each field a name.

Figure 4 Control-flow and corresponding field access graphs generated for the running example.

One intuition for why realistic branch weights are not essential to Marmoset’s opti-
mization is that accurate weights only matter if there is a trade off between control-flow
paths that are best served by different layouts. The base cases (e.g. empty list) typically
contribute no ordering constraints, and in our experience, traversals tend to have a preferred
order per function, rather than tradeoffs intra-function, which would reward having accurate,
profile-driven branch probabilities. Hence, for now, we use uniform weights even when looking
at the intra-function optimization.

3.3 Data Flow Analysis
We implement a straightforward analysis (use-def chain, and def-use chain) for let expressions
to capture dependencies between let expressions. We use this dependence information to
form dataflow edges in the field access graph (Section 3.5) and to subsequently optimize the
layout and code of the traversal for performance. For independent let expressions in the
function we are optimizing, we can transform the function body to have these let expressions
in a different order. (Independent implies that there are no data dependencies between
such let expressions. Changing the order of independent let expressions will not affect the

V. Singhal et al. 38:9

foo :: List → List
foo lst = case lst of

Nil → Nil
Cons x rst →

let x' = x ^ 100
rst ' = foo rst

in Cons x' rst '

(a) Function foo with List.

foo ' :: List ' → List '
foo ' lst = case lst of

Nil ' → Nil '
Cons ' rst x →

let rst ' = foo ' rst
x' = x ^ 100

in Cons ' rst ' x'

(b) Function foo' with List'.

Figure 5 Two different traversals on a list.

correctness of code, modulo exceptions.) However, we do such a transformation only when
we deem it to be more cost efficient. In order to determine when re-ordering let expressions
is more cost efficient, we classify fields based on specific attributes next.

3.4 Field Attributes For Code Motion

When trying to find the best layout, we may treat the code as immutable, but allowing
ourselves to move the code around (i.e. change the order of accesses to the fields) unlocks more
possibilities for optimizing layout. Not all code motions are valid due to data dependencies
in the traversal. For instance, in a sequence of two let binders, the second one may reference
the binding introduced in the first one: in this case, the two binders cannot be reordered.

To decide which code motions are allowed, we classify each field with one or more of the
attributes: recursive, scalar, self-recursive, or inlineable. Some of these attributes are derived
from the ADT definition and some from the code using the ADT. A scalar field refers to a
datatype only made up of either other primitive types, such as Int. A recursive field refers
to a datatype defined recursively. A self-recursive field is a recursive field that directly refers
back to the datatype being defined (such as a List directly referencing itself). Finally, we
call a field inlineable if the function being optimized makes a recursive call into this field (i.e.
taking the field value as an argument). Hence, an inlineable field is necessarily a recursive
field. As we show in the example below, the inlineable attribute is especially important when
choosing whether or not to do code motion.

A single field can have multiple attributes. For instance, a function traverse doing a
pre-order traversal on a Tree makes recursive calls on both the left and right children. The left
and right children are recursive and self-recursive. Therefore, when looking at the scope of
traverse, the left and right children have the attributes recursive, self-recursive and inlineable.

Example. Consider the example of a list traversal shown in Figure 5a. Here the function foo
does some work on the Int field (it raises the Int to the power of 100) and then recurs on the
tail of the list. Since Marmoset compiles to dense representations, a List’s representation
in memory stores the Cons tag (one byte) followed by the Int (8 bytes) followed by the next
Cons tag and so on. Hence, the Cons tag and the Int field are interleaved together in memory.
The function foo becomes a stream processor that consumes one stream in memory and
produces a dense output buffer of the same type.

Alternatively, another layout of a list follows from the following definition:
data List ' = Nil ' | Cons ' List ' Int

In memory, the list has all Cons' tags next to each other (a unary encoding of array length!)
and the Int elements all next to each other. In such a scenario, the performance of our
traversal foo on the List' can improve traversal performance due to locality when accessing

ECOOP 2024

38:10 Optimizing Layout of Recursive Datatypes with Marmoset

elements stored side-by-side4. However, this only works if we can subsequently change
the function that traverses the list to do recursion on the tail of the list first and then
call the exponentiation function on the Int field after the recursive call. If there are no
data dependencies between the recursive call and the exponentiation function, then this is
straightforward. We show foo' with the required code motion transformation to function
foo accompanied with the change in the data representation from List to List' as shown in
Figure 5b.

To optimize the layout, the tail of the list is assigned the attribute of inlineable. This
attribute is used by the solver to determine a least-cost ordering to the List datatype in
the scope of function foo. Whenever such code motion is possible, Marmoset will place
the inlineable field first and use code-motion to change the body of the function to perform
recursion first if data flow dependencies allow such a transformation.

Structure of arrays. The transformation of List/foo to List'/foo' is similar to changing
the representation of the List datatype to a structure of arrays, which causes the same types
of values to be next to each other in memory. In particular, we switch from alternating
constructor tags and integer values in memory to an array of constructor tags followed by an
array of integers.

Note that the traversals foo and foo' have access patterns that are completely aligned with
the data layout of List and List' respectively. The resulting speedup is solely a consequence
of the structure of arrays effect. This is an added benefit to the runtime in addition to
ensuring that the access patterns of a traversal are aligned with the data layout of the
datatype it traverses.

3.5 Field Access Pattern Analysis
After constructing the CFG and DFG for a function definition, we utilize them to inspect
the type of each of the function’s input parameters – one data constructor at a time – and
construct a field-access graph for it. Algorithm 2 shows the psuedocode for generating the
field-access graph. This graph represents the temporal ordering of accesses among its fields.

The fields of the data constructor form the nodes of this graph. A directed edge from field
fi to field fj is added if fi is accessed immediately before fj . Lines 13 to 24 in Algorithm 2
show how we keep track of the last accessed field and form an edge if possible. A directed
edge can be of two different types. In addition, each edge has a associated weight which
indicates the likelihood of accessing fi before fj , which is computed using the CFG. An edge
can either be a data-flow edge or a control-flow edge (Lines 18 and 20). In Figure 4b, the
red edge is a data flow edge and the blue edge is a control flow edge.

Data-Flow Edge indicates an access resulting from a data flow dependence between the
fields fi and fj . In our source language, a data flow edge is induced by a case expression.
A data flow edge implies that the code that represents the access is rigid in structure and
changing it can make our transformation invalid.

Control-Flow Edge indicates an access that is not data-flow dependent. It is caused by
the control flow of the program. Such an edge does not induce strict constraints on the code
that induces the edge. The code is malleable in case of such accesses. This gives way to an

4 However, this effect can disappear if the elements are very large or the amount of work done per element
becomes high, such that the percent of time loading the data is amortized.

V. Singhal et al. 38:11

Algorithm 2 Recursive function for generating the field access graph.

1: Input
2: cur: current CFG node from which to start processing
3: dcon: data constructor for which we are searching the best layout
4: edges: field-access graph built so far
5: lastAccessedVar: last accessed variable name, initially None
6: dfgMap: set of data-flow edges between variables
7: Output
8: Field access graph represented as a list of edges
9: function FieldAccessGraph(cur, dcon, edges, lastAccessedVar, dfgMap)

10: let ((expr, weight), successors) = cur
11: let mutable lastAccessedVarMut = lastAccessedVar
12: let mutable edges'= edges
13: for var : OrderedFreeVariables(expr) do
14: if !BoundInPatternMatchOnDcon(var, dcon) then
15: continue
16: end if
17: if lastAccessedVarMut != None then
18: mutate edges'= addEdge(edges', ((lastAccessedVar, var), weight), ControlFlowTag)
19: if lookup((lastAccessedVar, var), dfgMap) then
20: mutate edges'= addEdge(edges', ((lastAccessedVar, var), weight), DataFlowTag)
21: end if
22: end if
23: mutate lastAccessedVarMut = var
24: end for
25: for succ : successors do
26: let edges''= FieldAccessGraph(succ, dcon, edges', lastAccessedVarMut, dfgMap)
27: mutate edges'= merge(edges', edges'')
28: end for
29: return edges'
30: end function

optimization search space via code motion of let expressions. The optimization search space
involves transformation of the source code, i.e, changing the access patterns at the source
code level.

The field-access graph G is a directed graph, which consists of edges of the two types
between fields of a datatype and can have cycles. The directed nature of the edges enforces
a temporal relation between the corresponding fields. More concretely, assume that an edge
e that connects two vertices representing fields fea (source of e) and feb (target of e). We
interpret e as an evidence that field fea is accessed before field feb. The weight w for the edge
e is the probability that this access will happen based on statically analyzing a function.

In our analysis, for a unique path through the traversal, we only account for the first
access to any two fields. If two fields are accessed in a different order later on, the assumption
is that the start address of the fields is likely to be in cache and hence it does not incur
an expensive fetch call to memory. In fact, we tested our hypothesis by artificially making
an example where say field fa is accessed first, field fb is accessed after fa after which we
constructed multiple artificial access edges from fb to fa, which might seem to suggest placing
fb before fa. However, once the cache got warmed up and the start addresses of fa and
fb are already in cache, the layout did not matter as much. This suggests that prioritizing
for the first access edge between two unique fields along a unique path is sufficient for our
analysis.

ECOOP 2024

38:12 Optimizing Layout of Recursive Datatypes with Marmoset

Two fields can be accessed in a different order along different paths through a traversal.
This results in two edges between the fields. (The edges are in reversed order.) We allow at
most two edges between any two vertices with the constraint that they have to be in the
opposite direction and come from different paths in the traversal. If two fields are accessed
in the same order along different paths in the traversal, we simply add the probabilities and
merge the edges since they are in the same direction.

In order to construct G, we topologically sort the control-flow graph of a function and
traverse it in the depth-first fashion via recursion on the successors of the current cfg node
(Lines 25 to 28). As shown in line 14, we check if a variable is an alias to a field in the data
constructor for which we are constructing the field-access graph G. As we process each node
(i.e. a primitive expression such as a single function call), we update the graph for any direct
or indirect references to input fields that we can detect. We ignore new variable bindings that
refer to newly allocated rather than input data – they are not tracked in the access graph.
We traverse the control-flow graph once, but we maintain the last-accessed information at
each CFG node, so when we process a field access at an expression, we consult what was
previously-accessed at the unique precedecessor of the current CFG node. Figure 4b shows
the generated access graph from the control-flow graph in Figure 4a. It also shows the
probability along each edge obtained from the control-flow graph.

As we are traversing the nodes of the control-flow graph and generating directed edges in
G, we use the likelihood of accessing that cfg node as the weight parameter (Line 10).

3.6 Finding a Layout

We use the field-access graph G to encode the problem of finding a better layout as an Integer
Linear Program (ILP). Solving the problem yields a cost-optimal field order for the given
pair of a data constructor and a function.

3.6.1 ILP Constraints

In our encoding, each field in the data constructor is represented by a variable, f0, f1, . . . As
a part of the result, each variable will be assigned a unique integer in the interval [0, n − 1],
where n is the number of fields. Intuitively, each variable represents an index in the sequence
of fields.

The ILP uses several forms of constraints, including two forms of hard constraints:

∀0≤i<n 0 ⩽ fi < n (1)
∀0≤i<j<n fi ̸= fj (2)

The constraints of form 1 ensure that each field is mapped to a valid index, while the
constraints of form 2 ensure that each field has a unique index. Constraints of either form
must hold because each field must be in a valid location.

Hard constraints define valid field orderings but not all such reorderings improve efficiency,
Marmoset’s main goal. To fulfil the goal, beside the hard constraints we introduce soft ones.
Soft constraints come from the field access analysis. For example, assume that based on the
access pattern of a function, we would prefer that field a goes before field b. We turn such a
wish into a constraint. If the constraint cannot be satisfied, it will not break the correctness.
In other words, such constraints can be broken, and that is why we call them soft.

V. Singhal et al. 38:13

3.6.2 Cost Model
Marmoset encodes these soft constraints in the form of an abstract cost model that assigns
a cost to a given layout (assignment of fields to positions) based on how efficient it is expected
to be given the field-access graph.

To understand the intuition behind the cost model, note that the existence of an edge
from field fi to field fj in the field-access graph means that there exists at least one path in
the control-flow graph where fi is accessed and fj is the next field of the data constructor
that is accessed. In other words, the existence of such an edge implies a preference for
that control-flow path for field fi to be immediately before field fj in the layout so that the
program can continue a linear scan through the packed buffer. Failing that, it would be
preferable for fj to be “ahead” of fi in the layout so the program does not have to backtrack
in the buffer. We can thus consider the costs of the different layout possibilities of fi and fj :

Csucc (fj immediately after fi): This is the best case scenario: the program traverses fi and
then uses fj .

Cafter (fj after fi in the buffer): If fj is after fi, but not immediately after, then the code can
proceed without backtracking through the buffer, but the intervening data means that
either a shortcut pointer or a extra traversal must be used to reach fj , adding overhead.

Cpred (fj immediately before fi): Here, fj is earlier than fi in the buffer. Thus, the program
will have already skipped past fj , and some backtracking will be necessary to reach
it. This incurs two sources of overhead: skipping past fj in the first place, and then
backtracking to reach it again.

Cbefore (fj before fi in the buffer): If, instead, fj is farther back in the buffer than fi,
then the cost of skipping back and forth is greater: in addition to the costs of pointer
dereferencing, because the fields are far apart in the buffer, it is less likely fj will have
remained in cache (due to poorer spatial locality).

We note a few things. First, the exact values of each of these costs are hard to predict.
The exact penalty a program would pay for jumping ahead or backtracking depends on a
variety of factors such as cache sizes, number of registers, cache line sizes, etc.

However, we use our best intuition to statically predict these costs based on the previously
generated access graph. Note the existence of two types of edges in our access graph. An
edge can either be a data-flow edge or a control-flow edge. For a data flow edge, the code is
rigid. Hence the only axis we have available for transformation is the datatype itself. For a
data flow edge, the costs are showed in Eq 3. Here, we must respect the access patterns in
the original code which lead to the costs in Eq 3.

Csucc < Cafter < Cpred < Cbefore (3)

Note that a control-flow edge signifies that the direction of access for an edge is trans-
formable. We could reverse the access in the code without breaking the correctness of the
code. We need to make a more fine-grained choice. This choice involves looking at the
attributes of the fields and making a judgement about the costs given we know the attributes
of the fields. As shown in Sec 3.4 we would like to have the field with an inlineable attribute
placed first. Hence, in our cost model, if fi is inlineable, then we follow the same costs in
Eq 3. However, if fj is inlineable and fi is not, we would like fj to be placed before fi. For
such a layout to endure, the costs should change to Eq 4. For other permutations of the
attributes, we use costs that prioritize placing the inlineable field/s first.

Cpred < Cbefore < Csucc < Cafter (4)

ECOOP 2024

38:14 Optimizing Layout of Recursive Datatypes with Marmoset

3.6.3 Assigning Costs to Edges
Marmoset uses the field-access graph and the cost model to construct an objective function
for the ILP problem. Each edge in the access graph represents one pair of field accesses with
a preferred order. Thus, for each edge e = (i, j), Marmoset can use the indices of the fields
fi and fj to assign a cost, ce, to that pair of accesses following the rules below.

If fj is right after fi, then assign cost Csucc, i.e.: (fj − fi) = 1 =⇒ ce = Csucc.
If fj is farther ahead of fi, then assign cost Cafter , i.e.: (fj − fi) > 1 =⇒ ce = Cafter .
If fj is immediately before fi, then assign cost Cpred , i.e.: (fj − fi) = −1 =⇒ ce = Cpred .
And if fj is farther before fi, then assign cost Cbefore, i.e.: (fj − fi) < −1 =⇒ ce = Cbefore.

The cost of each edge, ce must be multiplied by the likelihood of that edge being exercised,
pe, which is also captured by edge weights in the field-access graph. Combining these gives
us a total estimated cost for any particular field layout:

C =
∑
e∈E

ce · pe (5)

This is the cost that our ILP attempts to minimize, subject to the hard constraints 1 and 2.

3.6.4 Greedy layout ordering
Finding an optimal layout using an external solver hurts compile times. To solve this tradeoff,
we propose a simple algorithm that traverses the field access graph in a greedy fashion. The
algorithm starts from the root node of the graph, which corresponds to the field accessed
first in the function, and greedily visits the child nodes based on the edge weights. We fix
the edge order for a control-flow edge as the original order and do not look at field attributes.
However, after the greedy algorithm picks a layout we match the let expressions to the layout
order to make sure the code matches the layout order. The greedy algorithm is potentially
sub-optimal when it comes to finding the best performing layout; however, the compile time
is fast.

3.7 Finding a global layout
A data constructor can be used across multiple functions, therefore, we need to find a layout
order that is optimal globally. To do so, we take constraints for each function and data
constructor pair and combine them uniformly, that is, a uniform weight for each function.
We then feed the combined constraints to the solver to get a globally optimal layout for
that data constructor. The global optimization finds a globally optimal layout for all data
constructors in the program. Once the new global layout is chosen for a data constructor,
we re-write the entire program such that each data constructor uses the optimized order of
fields. In the evaluation, we use the global optimization. However, we only show the data
constructor that constitutes the major part of the program.

3.8 Finding a layout for functions with conflicting access patterns
Consider the datatype definition D with two fields A, B:

data D = D A B
If two functions, f1 and f2, access the fields of D in the opposite orders, we get conflicting
access patterns for D. For instance, assume f1 accesses A first and then B, while f2 accesses

V. Singhal et al. 38:15

CFG DFG

Generate Field
Access Graphs

Generate Solver
Constraints

<latexit sha1_base64="Tn/GAK4Hz3l0BQivOo0nJi96zfs=">AAACAnicbVDLSsNAFJ34rPUVdSVugkVwVRLxtSy6cSNUsA9oQphMbtuhk0mYmQglBDf+ihsXirj1K9z5N07aLLT1wMDhnHuYe0+QMCqVbX8bC4tLyyurlbXq+sbm1ra5s9uWcSoItEjMYtENsARGObQUVQy6iQAcBQw6wei68DsPICSN+b0aJ+BFeMBpnxKstOSb+y5wmQqIsBpmLtPBEPvZbZ5XfbNm1+0JrHnilKSGSjR988sNY5JGwBVhWMqeYyfKy7BQlDDIq24qIcFkhAfQ05TjCKSXTU7IrSOthFY/FvpxZU3U34kMR1KOo0BPFqvKWa8Q//N6qepfehnlSaqAk+lH/ZRZKraKPqyQCiCKjTXBRFC9q0WGWGCidGtFCc7syfOkfVJ3zutnd6e1xlVZRwUdoEN0jBx0gRroBjVRCxH0iJ7RK3oznowX4934mI4uGGVmD/2B8fkDwbGXqg==</latexit>

�M

Greedy Heuristic

 DOCPLEX New
Layout

Gibbon

Gibbon

Executable

Choose
Backend

Solver Greedy

Marmoset

<latexit sha1_base64="uo1Z57Y/XjV5pa82c5qFKc/eAL8=">AAACEXicbVDLSsNAFJ3UV62vqks3wSJ0VRLxBW6KbtwIFewDmlImk9t26GQSZm7EEvILbvwVNy4UcevOnX/j9LHQ6oGBwzn33rn3+LHgGh3ny8otLC4tr+RXC2vrG5tbxe2dho4SxaDOIhGplk81CC6hjhwFtGIFNPQFNP3h5dhv3oHSPJK3OIqhE9K+5D3OKBqpWyx7IHWiIKQ4SD2Ee0zrcUARgsw794QZFNBuep1l3WLJqTgT2H+JOyMlMkOtW/z0goglIUhkgmrddp0YOylVyJmArOAlGmLKhrQPbUMlDUF30slFmX1glMDuRco8ifZE/dmR0lDrUeibyvHmet4bi/957QR7Z52UyzhBkGz6US8RNkb2OB474AoYipEhlCludrXZgCrK0IRYMCG48yf/JY3DintSOb45KlUvZnHkyR7ZJ2XiklNSJVekRuqEkQfyRF7Iq/VoPVtv1vu0NGfNenbJL1gf33Vqnq0=</latexit>

Updated �M

Figure 6 The overall pipeline of Marmoset.

B first and then A. After combining edges across the two functions, we get two edges in
opposition to each other. Since we use uniform weights for all functions, the edges will also
have a uniform weight. As a result, placing A before B or vice versa are equally good in our
cost model, and Marmoset defers to the solver to get one of the two layouts.

With the two equally good layouts, Marmoset’s solver (the default mode) chooses the
layout favoring the function it picked first. For instance, if f1 is defined earlier in the program,
the order favoring f1 will be picked. In the greedy mode, since both A and B are root nodes,
Marmoset will pick the first root node in the list of root nodes, which is, again, dependent
on the ordering of functions in the source code.

4 Implementation

We implement Marmoset in the open-source Gibbon compiler5. Figure 6 gives an overview
of the overall pipeline. Gibbon is a whole-program micropass compiler that compiles a
polymorphic, higher-order subset of (strict) Haskell.

The Gibbon front-end uses standard whole-program compilation and monomorphization
techniques [7] to lower input programs into a first-order, monomorphic IR (λM). Gibbon
performs location inference on this IR to convert it into a LoCal program, which has regions
and locations, essentially, buffers and pointer arithmetic. Then a big middle section of the
compiler is a series of LoCal → LoCal compiler passes that perform various transformations.
Finally, it generates C code. Our extension operates towards the front-end of the compiler, on
λM . We closely follow the design described in Section 3 to construct the control-flow graph
and field-access graph, and use the standard Haskell graph library6 in our implementation.

To solve the constraints, we use IBM’s DOCPLEX (Decision Optimization CPLEX),
because its API allows high level modelling such as logical expressions like implications,
negations, logical AND etc. with relatively low overhead. Unfortunately, there isn’t a readily
available Haskell library that can interface with DOCPLEX. Thus, we use it via its library
bindings available for Python. Specifically, we generate a Python program that feeds the
constraints to DOCPLEX and outputs an optimum field ordering to the standard output,
which Marmoset reads and parses, and then reorders the fields accordingly.

5 https://github.com/iu-parfunc/gibbon/
6 https://hackage.haskell.org/package/containers

ECOOP 2024

https://github.com/iu-parfunc/gibbon/
https://hackage.haskell.org/package/containers

38:16 Optimizing Layout of Recursive Datatypes with Marmoset

5 Evaluation

We evaluate Marmoset on three applications. First is a pair of microbenchmarks (Section 5.2)
– a list length function and a logical expression evaluator – that help us explore performance
penalties imposed by a sub-optimal data layout. Second is a small library of operations
with binary trees (Section 5.3). Third is a blog management software based on the BlogList
example from the Sections 2–3 (Section 5.4). Besides the run times, we take a closer look
at how Marmoset affects cache behavior (Section 5.5) and compile times (Section 5.6).
Finally, we discuss evaluation and its scale (Section 5.7).

We detail the impact of various datatype layouts on the performance. As the baseline,
we use Gibbon, the most closely related prior work. We also compare Marmoset with
MLton (Section 5.4.2). For each benchmark, we run 99 iterations and report the run-time
mean and the 95% confidence interval.

5.1 Experimental Setup
We run our benchmarks on a server-class machine with 64 CPUs, each with two threads.
The CPU model is AMD Ryzen Threadripper 3990X with 2.2 GHz clock speed. The L1
cache size is 32 KB, L2 cache size is 512 KB and L3 cache size is 16 MB. We use Gibbon’s
default C backend and call GCC 10.2.0 with -O3 to generate binaries.

5.2 Micro Benchmarks
ListLength. This benchmark computes the length of a linked-list and demonstrates the cost

of de-referencing memory addresses that are not present in the cache. It uses the linked
list datatype:

data List = Nil | Cons Content List

If each element of the list is constructed using Cons, the traversal has to de-reference a
pointer – to jump over the content – each time to access the tail of the list. This is an
expensive operation, especially if the target memory address is not present in the cache.
In contrast, if the Content and List fields were swapped, then to compute the length, the
program only has to traverse n bytes for a list of length n – one byte per Cons tag – which
is extremely efficient. Essentially, Marmoset transforms program to use the following
datatype, while preserving its behavior:

data List ' = Nil ' | Cons ' List ' Content

In our experiment, the linked list is made of 3M elements and each element contains an
instance of the Pandoc Inline datatype that occupies roughly 5KB. As seen in table 17,
the performance of the list constructed using the original List is ∼42× worse than the
performance with the Marmoset-optimized, flipped layout. Not only does List have
poor data locality and cache behavior, but it also has to execute more instructions to
de-reference the pointer. Both Mgreedy and Msolver choose the flipped layout List'.

LogicEval. This microbenchmark implements a short-circuiting logical expressions evaluator
and runts it over synthetically generated, balanced syntax-trees with the height of 30.
The intermediate nodes can be one of Not, Or, or And, selected at random, and the leaves
hold boolean values. The syntax-tree datatype is defined as follows:

data Exp = Val Bool | Not Exp | Or Exp Exp | And Exp Exp

7 The performance of List' layout compiled with Gibbon differs from Marmoset as code motion to
reorder let expressions results in different code. In addition to a noisy server.

V. Singhal et al. 38:17

Table 1 Run-time mean and 95% confidence interval (ub, lb) for different layouts (seconds). The
last two columns show the run time for the layouts chosen by Mgreedy and Msolver . The numbers
in blue correspond to the lowest running time and the numbers in red correspond to the highest
running time. Legend: l – left subtree, r – right subtree of the tree.

Benchmark
name

Gibbon Marmoset

List List’ Mgreedy Msolver

ListLength 62.34
(62.26, 62.41)

1.51
(1.44, 1.59)

1.49
(1.41, 1.56)

1.50
(1.42, 1.58)

lr rl Mgreedy Msolver

LogicEval 4.45
(4.42, 4.48)

6.60
(6.59, 6.61)

3.56
(3.53, 3.58)

3.55
(3.55, 3.55)

Rightmost 384.4
(368.4, 400.3)

314.5
(303.7, 325.3)

306.9
(295.6, 318.2)

303.1
(292.6, 313.6)

N N L 1 L 2 L 3* *

N

N

31 2 N N L 1L2L 3* *

N
N *

N *

Figure 7 Rightmost: access patterns for, left-to-right (top) and right-to-left (bottom) serializa-
tions.

We measure the performance of the evaluator for differeent orders of the left and right
subtrees. Since the short circuiting evaluates from left to right order of the Exp, changing
the order of the left and right subtrees would affect the performance of the traversal. As
can be seen in Table 1, the layout where the left subtree is serialized before the right
subtree results in better performance compared to the tree where the right subtree is
serialized before the left one. This is as expected since in the latter case, the traversal
has to jump over the right subtree serialized before the left one in order to evaluate it
first and then depending on the result of the left subtree possibly jump back to evaluate
the right subtree. This results in poor spatial locality and hence worse performance.
Mgreedy and Msolver are able to identify the layout transformations that would give the
best performance, which matches the case where the left subtree is serialized before the
right subtree (Table 18).

5.3 Binary Tree Benchmarks
We evaluate Marmoset on a few binary tree benchmarks: adding one to all values in a tree,
exponentiation on integers stored in internal nodes, copying a tree and getting the right-most
leaf value in the tree. For the first three benchmarks, the tree representation we use is:

data Tree = Leaf | Node Int Tree Tree

8 The layout chosen by Mgreedy and Msolver is same as lr, the performance differs from the lr layout
compiled with Gibbon as Marmoset does code motion which results in different code.

ECOOP 2024

38:18 Optimizing Layout of Recursive Datatypes with Marmoset

Table 2 Run-time mean and 95% confidence interval (ub, lb) for different layouts and traversal
orders in the binary tree benchmarks (seconds). Misalgnpre – post-order traversal on the pre-order
layout of the tree. Misalgnpost – pre-order traversal on the post-order layout of the tree. Algnpre –
pre-order traversal on the pre-order layout of the tree. Algnin – in-order traversal on an in-order
layout of the tree. Algnpost – post-order traversal on the post-order layout of the tree.

Benchmark
name

Gibbon Marmoset

Misalgnpre Misalgnpost Algnpre Algnin Algnpost Mgreedy Msolver

AddOneTree 45.51
(45.35, 45.66)

memory
error

1.29
(1.29, 1.29)

1.30
(1.30, 1.30)

1.29
(1.29, 1.29)

1.29
(1.29, 1.29)

1.28
(1.28, 1.28)

ExpTree 45.52
(45.34, 45.70)

memory
error

1.31
(1.31, 1.31)

1.31
(1.31, 1.31)

1.29
(1.29, 1.29)

1.31
(1.31, 1.31)

1.29
(1.29, 1.29)

CopyTree 45.52
(45.37, 45.67)

memory
error

1.29
(1.29, 1.29)

1.30
(1.30, 1.30)

1.28
(1.28, 1.28)

1.29
(1.29, 1.29)

1.28
(1.28, 1.28)

For right-most, the tree representation we use is:
data Tree = Leaf Int | Node Tree Tree

AddOneTree. This benchmark takes a full binary tree and increments the values stored in
the internal nodes of the tree. We show the performance of an aligned preorder, inorder
and postorder traversal in addition to a misaligned preorder and postorder traversal of
the tree. Aligned traversals are ones where the data representation exactly matches the
traversal order, for instance, a preorder traversal on a preorder representation of the tree.
A misaligned traversal order is where the access patterns of the traversal don’t match the
data layout of the tree. For instance, a postorder traversal on a tree serialized in preorder.
Table 2 shows the performance numbers. Msolver picks the aligned postorder traversal
order which is best performing. It makes the recursive calls to the left and right children
of the tree first and increments the values stored in the internal nodes once the recursive
calls return. The tree representation is also changed to a postorder representation with
the Int placed after the left and right children of the tree. This is in part due to the
structure of arrays effect, as the Int are placed closer to each other. Mgreedy on the other
hand picks the aligned preorder traversal because of its greedy strategy which prioritizes
placing the Int before the left and right subtree. The tree depth is set to 27. At this
input size, the Misalgnpost traversal failed due to memory errors, and Misalgnpre runs
∼35× slower than aligned versions because of the skewed access patterns of the traversal.

ExpTree. This traversal does exponentiation on the values stored in the internal nodes of
the tree. It is more computationally intensive than incrementing the value. We raise the
Int to a power of 10 on a tree of depth 27. Table 2 shows the performance of the different
layout and traversal orders. Msolver picks the Algnpost representation which is the best
performing, whereas Mgreedy picks the Algnpre representation.

CopyTree. Copy-tree takes a full binary tree and makes a fresh copy of the tree in a new
memory location. We use a tree of depth 27 in our evaluation. Table 2 shows the
performance of different layout and traversal orders. We see that Algnpost traversal
performs the best. Indeed, Msolver picks the Algnpost representation, whereas, Mgreedy
chooses the Algnpre representation.

Rightmost. This traversal does recursion on the right child of the tree and returns the Int
value stored in the right-most leaf of the tree. Figure 7 shows an example of a tree
with two different serializations of the tree: left-to-right (top) and right-to-left (bottom).

V. Singhal et al. 38:19

Table 3 Run-time mean and 95% confidence interval (ub, lb) for different layouts in the blog
software benchmarks (seconds). Several possible permutations of layout are shown. Layout names
abbreviations: h – Header, t – HashTags, b – Blogs, i – TagID, c – Content, a – Author, d – Date.

Bench.
name

Gibbon Marmoset

hiadctb ctbhiad tbchiad tcbhiad btchiad bchiadt cbiadht Mgreedy Msolver

FilterBlogs
0.22

(0.22, 0.22)
0.22

(0.22, 0.22)
0.08

(0.08, 0.08)
0.27

(0.26, 0.27)
0.28

(0.28, 0.28)
0.29

(0.29, 0.30)
0.21

(0.21, 0.21)
0.07

(0.07, 0.07)
0.06

(0.06, 0.06)

EmphContent
0.67

(0.67, 0.67)
0.65

(0.65, 0.65)
1.60

(1.60, 1.60)
0.66

(0.66, 0.66)
1.63

(1.63, 1.63)
1.61

(1.61, 1.61)
0.47

(0.47, 0.47)
0.47

(0.47, 0.47)
0.64

(0.64, 0.64)

TagSearch
1.99

(1.99, 1.99)
1.98

(1.98, 1.98)
3.29

(3.29, 3.30)
1.68

(1.68, 1.68)
3.31

(3.31, 3.31)
3.30

(3.30, 3.30)
1.82

(1.82, 1.82)
1.76

(1.76, 1.76)
1.74

(1.74, 1.74)

The right-to-left serialization is more efficient because the constant-step movements
(blue arrows) are usually more favorable than variable-step ones (red arrows) on modern
hardware. Both Msolver and Mgreedy pick the right-to-left serialization, and Table 1 shows
that this choice performs better in the benchmark.

5.4 Blog Software Case Study
The Blog software case study serves as an example of a realistic benchmark, representing a
sample of components from a blog management web service. The main data structure is a
linked list of blogs where each blog contains fields such as header, ID, author information,
content, hashtags and date. The fields are a mix of recursive and non-recursive datatypes.
For instance, Content is a recursive type (the Pandoc Block type), but Author is a single string
wrapped in a data constructor.9 One possible permutation of fields in the blog is:

data Blogs = Empty | HIADCTB Header Id Author Date Content HashTags Blogs

We evaluate Marmoset’s performance using three different traversals over a list of blogs.
Overall, the traversals accept a keyword and a list of blogs; in the blogs, the traversals inspect
either of the three fields: Content, HashTags, and the tail of the linked-list, Blogs. (Since Blogs,
Content, and HashTags are recursive fields, changing their layout should represent greater
differences in performance.) The fields used by an individual traversal are referred as active
fields and the rest are referred as passive fields, and we specify these per-traversal below.

In Table 3, we report the performance of the six possible layouts obtained by permuting
the order of the three recursive fields, and two additional layouts (Columns 1 and 2). The
column names indicate the order of fields used; for example, the column hiadctb reports
numbers for the layout with fields ordered as: Header, Id, Author, Date, Content, HashTags, and
Blogs. All run times are gathered with Gibbon, and last two columns show the run times
for code compiled using Marmoset’s greedy and solver-based optimization, respectively.

9 At times, we have to wrap scalars in data constructors to make them packed fields. Gibbon does not
always support mixing scalar and packed fields due to compiler bugs.

ECOOP 2024

38:20 Optimizing Layout of Recursive Datatypes with Marmoset

FilterBlogs filters the list of blogs and only retains those which contain the given keyword in
the HashTags field. The active fields for this traveral are HashTags and Blogs. Theoretically,
the performance of this traversal is optimized when the HashTags field is serialized before
Blogs on account of the first access to HashTags in the traversal. This is confirmed in
practice with the layout tbchiad being the fastest. Marmoset chooses the layout with
HashTags serialized first and followed by Blogs; the order of other fields remains unchanged
compared to the source program, but this has no effect on performance since they are
passive fields. Table 3 also shows that layout chosen by Marmoset performs similar to
the layout tbchiad. Both Msolver and Mgreedy pick the layout tbhiadc when compiled
from the initial layout hiadctb.

EmphContent searches the content of each blog for the keyword and emphasizes all its
occurrences there (if any). The active fields in this traversal are Content and Blogs.
Based on the access pattern (Content accessed before Blogs), the layout with the best
performance should place Content first followed by Blogs. In practice, the layout with
the best performance is cbiadht. In contrast, Msolver prioritizes the placement of Blogs
before Content, but it also changes the traversal to recurse on the blogs first and then
emphasize content. The passive fields are placed afterwards. The layout chosen by Msolver
is bchiadt, whereas the layout chosen by Mgreedy is cbhiadt when compiled from the
initial layout hiadctb. The performance of Mgreedy and Msolver differ because datatypes
other than Blogs differ in their layout choices.

TagSearch looks for the presence of the keyword in the HashTags field, and if the keyword is
present, the traversal emphasizes the keyword in the Content. The layout with the best
performance is tcbhiad because of the access pattern, which inspects HashTags followed
by Content followed by Blogs. Msolver chooses the layout tbchiad – which places HashTags
followed by Blogs followed by Content – and changes the traversal to recurse on Blogs
first and later emphasize Content in the then branch. On the other hand, Mgreedy chooses
tcbhiad when compiled from the initial layout hiadctb.

5.4.1 Globally optimizing multiple functions

We use Marmoset to globally optimize the three blog traversals we discussed above such
that we pick one layout for all traversals that minimizes the overall runtime. Table 4 shows
the runtime for a layout we compiled using Gibbon (hiadctb), Msolver (tbchiad) and
Mgreedy (tbchiad). We see that Mgreedy and Msolver do a good job in reducing the traversal
time globally. All the three traversals are run in a pipelined fashion sequentially. Although,
Msolver does worse with TagSearch when run in a pipelined manner, it is actually better
performing with Msolver when run alone as seen in table 3. Note that Msolver changes
more that one data constructor based on the inlineable attribute that Mgreedy does not.
For instance, Msolver uses a packed Inline list in the Content with the tail serialized before
Inline. Whereas, Mgreedy uses a conventional packed list. In a pipelined execution of the
traversals, although this helps reduce the runtime in the case of the content search traversal,
it inadvertently increases the runtime in case of the tag search traversal due to a cache effect
that can benefit from runtime information.

5.4.2 Comparison of MARMOSET against MLTON

We compare Marmoset’s performance to MLton, which compiles programs written in
Standard ML, a strict language, to executables that are small with fast runtime performance.

V. Singhal et al. 38:21

Table 4 Run-time mean and 95% confidence interval (ub, lb) for the blog software benchmarks
when Marmoset optimizes the data layout globally (seconds). The input parameters are different
from the single-function optimization case.

Benchmark
name

Gibbon Marmoset

hiadctb Mgreedy Msolver

FilterBlogs 2.23
(2.23, 2.23)

0.11
(0.11, 0.11)

0.10
(0.09, 0.10)

EmphContent 1.57
(1.57, 1.58)

1.38
(1.38, 1.38)

1.32
(1.32, 1.32)

TagSearch 2.20
(2.20, 2.20)

1.83
(1.83, 1.83)

2.35
(2.35, 2.35)

Table 5 PAPI performance counter statistics (average of 99 runs) for different blog traversals.

Benchmark
name or metric

Gibbon Marmoset

hiadctb ctbhiad tbchiad tcbhiad btchiad bchiadt cbiadht Mgreedy Msolver

FilterBlogs
Ins 5.83e8 5.82e8 5.83e8 5.81e8 5.79e8 5.78e8 5.86e8 5.83e8 5.83e8
Cycles 9.89e8 9.60e8 2.85e8 1.05e9 1.20e9 1.25e9 8.78e8 2.79e8 2.89e8
L2 DCM 1.12e7 1.15e7 9.38e5 1.33e7 1.29e7 1.31e7 7.79e6 8.90e5 8.75e5

EmphContent
Ins 5.85e9 5.83e9 6.78e9 5.84e9 6.78e9 6.78e9 5.84e9 5.84e9 5.84e9
Cycles 2.89e9 2.74e9 4.27e9 2.84e9 4.34e9 4.29e9 2.06e9 2.06e9 2.81e9
L2 DCM 1.28e7 1.08e7 2.03e7 1.33e7 2.05e7 2.10e7 7.73e6 7.66e6 1.07e7

TagSearch
Ins 2.25e10 2.25e10 2.30e10 2.25e10 2.30e10 2.30e10 2.25e10 2.25e10 2.25e10
Cycles 8.59e9 8.59e9 9.61e9 7.29e9 9.61e9 9.75e9 7.88e9 7.61e9 7.57e9
L2 DCM 2.02e7 2.06e7 4.00e7 1.06e7 2.86e7 2.65e7 1.64e7 1.29e7 1.28e7

Figure 8 shows the the speedup of Marmoset over MLton. As shown, the performance
of Marmoset is better than MLton by significant margins for all the layouts and traversals.
Since ADTs in MLton are boxed – even though native integers or native arrays are unboxed
– such a behavior is expected because it adds more instructions (pointer de-referencing) and
results in worse spatial locality.

5.5 Cache behavior
The results from earlier sections demonstrate that Marmoset’s layout choices improve run-
time performance. This section investigates why performance improves. The basic premise of
Marmoset’s approach to layout optimization is to concentrate on minimizing how often
a traversal needs to backtrack or skip ahead while processing a buffer. By minimizing this
jumping around, we expect to see improvements from two possible sources. First, we expect
to see an improvement in instruction counts, as an optimized layout should do less pointer

ECOOP 2024

38:22 Optimizing Layout of Recursive Datatypes with Marmoset

FilterBlogs

hia
dct

b
ctb

hia
d
tbc

hia
d
tcb

hia
d
btc

hia
d
bch

iad
t
cbi

adh
t

Layout Name

0
1
2
3
4
5
6
7

S
p
e
e
d
u
p

(0.76,4.21) (0.76,4.34)
(0.76,3.6)

(0.76,2.26)
(0.76,1.84) (0.76,1.86)

(0.76,1.32)

EmphContent

hia
dct

b
ctb

hia
d
tbc

hia
d
tcb

hia
d
btc

hia
d
bch

iad
t
cbi

adh
t

Layout Name

0

2

4

6

8

10

S
p
e
e
d
u
p

(1.11,3.0) (1.11,3.11)

(1.11,9.92)

(1.11,3.09)
(1.11,1.82)(1.11,1.84)

(1.11,3.57)

TagSearch

hia
dct

b
ctb

hia
d
tbc

hia
d
tcb

hia
d
btc

hia
d
bch

iad
t
cbi

adh
t

Layout Name

0

10

20

30

40

S
p
e
e
d
u
p (1.73,57.93)(1.73,58.63)

(1.73,51.51)
(1.73,58.43)

(1.73,66.31)(1.73,66.28)(1.73,63.55)

Figure 8 Performance comparison of Msolver with
MLton. The pair of numbers on top of each bar shows
the median runtime in seconds of Msolver followed by
the corresponding layout when compiled with MLton.

gibbon

marmoset (solver + IO)
solver + IO

marmoset greedy
–

FilterBlogs

hia
dct

b
ctb

hia
d
tbc

hia
d
tcb

hia
d
btc

hia
d
bch

iad
t
cbi

adh
t

Layout Name

0

1

2

3

Ti
m

e
 (

s)

EmphContent

hia
dct

b
ctb

hia
d
tbc

hia
d
tcb

hia
d
btc

hia
d
bch

iad
t
cbi

adh
t

Layout Name

0

2

4

6

8

T
im

e
 (

s)
TagSearch

hia
dct

b
ctb

hia
d
tbc

hia
d
tcb

hia
d
btc

hia
d
bch

iad
t
cbi

adh
t

Layout Name

0

2

4

6

8

T
im

e
 (

s)

Figure 9 Average compile times (99 runs)
in seconds for different layouts and traversal
combinations when compiled with Gibbon
and when optimized by Mgreedy and Msolver .

chasing. Second, we expect to see an improvement in L2 and L3 cache utilization: both
fewer misses (due to improved spatial locality and prefetching) and fewer accesses (due to
improved locality in higher level caches).

Table 5 shows that our main hypothesis is borne out and the optimal layout has fewer
L2 data cache misses10: a better layout promotes better locality. Interestingly, we do not
observe a similar effect for instruction count. While different layouts differ in instruction
counts, the difference is slight. We suspect this light effect of a better layout may be due to
Gibbon’s current implementation, which often dereferences pointers even if a direct access
in the buffer would suffice.

5.6 Tradeoffs between MARMOSET’s solver and greedy optimization
To understand the difference between the layout chosen by Msolver and Mgreedy we now take
a closer look at the tag search traversal shown in Table 3. Here, both versions choose two
different layouts with different performance implications. Msolver chooses the layout tbchiad

10 Since PAPI, the processor counters framework, does not completely support latest AMD processors yet,
we were unable to obtain L3 cache misses, only the L2 DCM counter was available.

V. Singhal et al. 38:23

whereas Mgreedy chooses the layout tcbhiad. The mechanics of why can be explained using
our running example (Figure 1) which is essentially a simplified version of the traversal
shown in the evaluation. Figure 4b shows the access graph for this traversal. Msolver
generates constraints outlined in Section 3.6 that lead to the layout tbchiad. On the other
hand, Mgreedy starts at the root node of the graph and greedily chooses the next child to
traverse. The order in which nodes of the graph are visited fixes the order of fields in the
data constructor. In this case, the root node is HashTags which makes it the first field in the
greedy layout, next, the greedy heuristic picks the Content field making it the second field
and finally followed by the BlogList field.

In Figure 9 (p. 22), we show the compile times for different layout and traversal com-
binations when compiled with Gibbon, Mgreedy and Msolver respectively as a measure of
relative costs. The compile times for Msolver include the time to generate the control flow
graph, the field access graph, the solver time and the time to re-order the datatype in the
code. The solver times are in the order of the number of fields in a data constructor and not
the program size. Hence, the solver adds relatively low overhead. Since the compiler does
an IO call to the python solver, there is room for improvement in the future to lower these
times. For instance, we could directly perform FFI calls to the CPLEX solver by lowering
the constraints to C code. This would be faster and safer than the current implementation.
In addition, during the global optimization, we call the solver on each data constructor as of
the moment, we could further optimize this by sending constraints for all data constructors
at once and doing just one solver call.

Although the cost of Marmoset’s solver based optimization is higher than the greedy
approach, it is a complementary approach which may help the user find a better layout at
the cost of compile time. On the other hand, if the user wishes to optimize for the compile
time, they should use the greedy heuristic.

5.7 Discussion: Scale of Evaluation

Marmoset’s approach for finding the best layout for densely presented data is language
agnostic, but the evaluation has to be language specific. Hence, we implemented the approach
inside a most-developed (to our knowledge) compiler supporting dense representations of
recursive datatypes, the Gibbon compiler. Our evaluation is heavily influenced by this.

At the time of writing, the scale of evaluation is limited by a number of Gibbon-related
restrictions. Gibbon is meant as a tree traversal accelerator [25] and its original suite of
benchmarks served as a basis and inspiration for evaluation of Marmoset. “Big” end-to-end
projects (e.g. compilers, web servers, etc.) have not been implemented in Gibbon and,
therefore, are out of reach for us. If someone attempted to implement such a project using
Gibbon, they would have to extend the compiler to support many realistic features: modules,
FFI, general I/O, networking. Alternatively, one could integrate Gibbon into an existing
realistic compiler as an optimization pass or a plugin. For instance, the Gibbon repository
has some preliminary work for integrating as a GHC plugin11, but it is far from completion.
In any case, the corresponding effort is simply too big. Overall, the current Marmoset
evaluation shows that our approach is viable.

11 https://github.com/iu-parfunc/gibbon/tree/24c41c012a9c33bff160e54865e83a5d0d7867dd/
gibbon-ghc-integration

ECOOP 2024

https://github.com/iu-parfunc/gibbon/tree/24c41c012a9c33bff160e54865e83a5d0d7867dd/gibbon-ghc-integration
https://github.com/iu-parfunc/gibbon/tree/24c41c012a9c33bff160e54865e83a5d0d7867dd/gibbon-ghc-integration

38:24 Optimizing Layout of Recursive Datatypes with Marmoset

6 Future Work

Marmoset could allow the user to provide optional constraints on the layout (either relative
or absolute) through pragmas. A relative constraint would allow the user to specify if a field
A comes immediately after field B. An absolute constraint would specify an exact index in the
layout for a field. Such pragmas may be useful if the user requires a specific configuration of
a data type for external reasons or has information about performance bottlenecks.

Although the performance optimization is currently statically driven, there are many
avenues for future improvement. For instance, we can get better edges weights for the access
graphs using dynamic profiling techniques. The profiling can be quite detailed, for instance,
which branch in a function is more likely, which function takes the most time overall in a
global setting (the optimization would bias the layout towards that function), how does a
particular global layout affect the performance in case of a pipeline of functions.

We could also look at a scenario where we optimize each function locally and use “shim”
functions that copy one layout to another (the one required by the next function in the
pipeline). Although the cost of copying may be high, it warrants further investigation. Areas
of improvement purely on the implementation side include optimizing whether Marmoset
dereferences a pointer to get to a field or uses the end-witness information as mentioned in
section 2. Lesser pointer dereferencing can lower instruction counts and impact performance
positively. We would also like to optimize the solver times as mentioned in 5.6.

We envision that the structure of arrays effect that we discovered may help with opti-
mizations such as vectorization, where the performance can benefit significantly if the same
datatype is close together in memory. Regardless, through the case studies, we see that
Marmoset shows promise in optimizing the layout of datatypes and may open up the
optimization space for other complex optimizations such as vectorization.

7 Related Work

7.1 Cache-conscious data
Chilimbi and Larus [6] base on an object-oriented language with a generational garbage
collector, which they extend with a heuristic for copying objects to the TO space. Their
heuristic uses a special-purpose graph data structure, the object affinity graph, to identify
when groups of objects are accessed by the program close together in time. When a given
group of objects have high affinity in the object affinity graph, the collector is more likely
to place them close together in the TO space. As such, a goal of their work and ours is
to achieve higher data-access locality by carefully grouping together objects in the heap.
However, a key difference from our work is that their approach bases its placement decisions
on an object-affinity graph that is generated from profiling data, which is typically collected
online by some compiler-inserted instrumentation. The placement decisions made by our
approach are based on data collected by static analysis of the program. Such an approach
has the advantage of not depending on the output of dynamic profiling, and therefore avoids
the implementation challenges of dynamic profiling. A disadvantage of not using dynamic
profiling is that the approach cannot adapt to changing access patterns that are highly input
specific. We leave open for future work the possibility of getting the best of both approaches.

Chilimbi et al. [4] introduce the idea of hot/cold splitting of a data structure, where ele-
ments are categorized as being “hot” if accessed frequently and “cold” if accessed inferquently.
This information is obtained by profiling the program. Cold fields are placed into a new
object via an indirection and hot fields remain unchanged. In their approach, at runtime,
there is a cache-concious garbage collector [6] that co-locates the modified object instances.

V. Singhal et al. 38:25

This paper also suggests placing fields with high temporal affinity within the same cache
block. For this they recommend bbcache, a field recommender for a data structure. bbcache
forms a field affinity graph which combines static information about the source location of
structure field accesses with dynamic information about the temporal ordering of accesses
and their access frequency.

Chilimbi et al. [5] propose two techniques to solve the problem of poor reference locality.
ccmorph. This works on tree-like data structures, and it relies on the programmer making

a calculated guess about the safety of the operation on the tree-like data structure. It
performs two major optimizations: clustering and coloring. Clustering take a the tree like
data structure and attempts to pack likely to be accessed elements in the structure within
the same cache block. There are various ways to pack a subtree, including clustering
k nodes in a subtree together, depth first clustering, etc. Coloring attempts to map
simultaneously accessed data elements to non-conflicting regions of the cache.

ccmalloc. This is a memory allocator similar to malloc which takes an additional parameter
that points to an existing data structure element which is likely accessed simultaneously.
This requires programmer knowledge and effort in recognizing and then modifying the
code with such a data element. ccmalloc tries to allocate the new data element as close
to the existing data as possible, with the initial attempt being to allocate in the same
cache block. It tries to put likely accessed elements on the same page in an attempt to
improve TLB performance.

Franco et al. [13, 14] suggest that the layout of a data structure should be defined once
at the point of initialization, and all further code that interacts with the structure should
be “layout agnostic”. Ideally, this means that performance improvements involving layout
changes can be made without requiring changes to program logic. To achieve this, classes
are extended to support different layouts, and types carry layout information – code that
operates on objects may be polymorphic over the layout details.

7.2 Data layout description and binary formats
Chen et al. [3] propose a data layout description framework Dargent, which allows program-
mers to specify the data layout of an ADT. It is built on top of the Cogent language [19],
which is a first order polymorphic functional programming language. Dargent targets C code
and provides proofs of formal correctness of the compiled C code with respect to the layout
descriptions. Rather than having a compiler attempting to determine an efficient layout,
their focus is on allowing the programmer to specify a particular layout they want and have
confidence in the resulting C code.

Significant prior work went into generation of verified efficient code for interacting with
binary data formats (parsing and validating). For example, EverParse [21] is a framework
for generating verified parsers and formatters for binary data formats, and it has been used
to formally verify zero-copy parsers for authenticated message formats. With Narcissus [9],
encoders and decoders for binary formats could be verified and extracted, allowing researchers
to certify the packet processing for a full internet protocol stack. Other work [23] has also
explored the automatic generation of verified parsers and pretty printers given a specification
of a binary data format, as well as the formal verification of a compiler for a subset of the
Procotol Buffer serialization format [26].

Back [1] demonstrates how a domain-specific language for describing binary data formats
could be useful for generating validators and for easier scripting and manipulation of the
data from a high-level language like Java. [18] introduce Packet Types for programming with
network protocol messages and provide language-level support for features commonly found
in protocol formats like variable-sized and optional fields.

ECOOP 2024

38:26 Optimizing Layout of Recursive Datatypes with Marmoset

Hawkins et al. [15] introduce RELC, a framework for synthesizing low-level C++ code
from a high-level relational representation of the code. The user describes and writes code
that represents data at a high level as relations. Using a decomposition of the data that
outlines memory representation, RELC synthesizes correct and efficient low-level code.

Baudon et al. [2] introduce the Ribbit DSL, which allows programmers to describe the
layout of ADTs that are monomorphic and immutable. Ribbit provides a dual view on
ADTs that allows both a high-level description of the ADT that the client code follows
and a user-defined memory representation of the ADT for a fine-grained encoding of the
layout. Precise control over memory layout allows Ribbit authors to develop optimization
algorithms over the ADTs, such as struct packing, bit stealing, pointer tagging, unboxing,
etc. Although this approach enables improvements to layout of ADTs, it is different from
Marmoset’s: Ribbit focuses on manually defining low-level memory representation of the
ADT whereas Marmoset automatically optimizes the high-level layout (ordering of fields
in the definition ADT) relying on Gibbon for efficient packing of the fields. While Ribbit
invites the programmer to encode their best guess about the optimal layout, Marmoset
comes up with such layout by analysing access patterns in the source code.

7.3 Memory layouts
Early work on specifications of memory layouts was explored in various studies of PADS, a
language for describing ad hoc data-file formats [10, 11, 17].

Lattner and Adve [16] introduce a technique for improving the memory layout of the heap
of a given C program. Their approach is to use the results of a custom static analysis to enable
pool allocation of heap objects. Such automatic pool allocation bears some resemblance to our
approach, where we use region-based allocation in tandem with region inference, and thanks
to static analysis can group fields of a given struct into the same pool, thereby improving
locality in certain circumstances.

Floorplan [8] is a declarative language for specifying high-level memory layouts, imple-
mented as a compiler which generates Rust code. The language has forms for specifying
sizes, alignments, and other features of chunks of memory in the heap, with the idea that any
correct state of the heap can be derived from the Floorplan specification. It was successfully
used to eliminate 55 out of 63 unsafe lines of code (all of the unsafe code relating to memory
safety) of the immix garbage collector.

8 Conclusions

This paper introduces Marmoset, which builds on Gibbon to generate efficient orders for
algebraic datatypes. We show that a straightforward control-flow and data-flow analysis
allows Marmoset to identify opportunities to place fields of a data constructor near each
other in memory to promote efficient consecutive access to those fields. Because a given
function might use many fields in many different ways, Marmoset adopts an approach of
formulating the data layout problem as an ILP, with a cost model that assigns an abstract
cost to a chosen layout. Armed with the ILP problem formulation, an off-the-shelf ILP
solver allows Marmoset to generate minimal-(abstract)-cost layout for algebraic datatypes.
Marmoset then uses the best layout to synthesize a new ADT and the Gibbon compiler
toolchain to lower the code into an efficient program that operates over packed datatypes
with minimal pointer chasing.

We show, across a number of benchmarks, that Marmoset is able to effectively and
consistently find the optimal data layout for a given combination of traversal function and
ADT. In our experiments, Marmoset-optimized layouts outperform not only Gibbon’s
default layouts but also the popular SML compiler MLton.

V. Singhal et al. 38:27

References
1 Godmar Back. Datascript – A specification and scripting language for binary data. In

Proceedings of the 1st ACM SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering, GPCE ’02, pages 66–77, Berlin, Heidelberg, 2002. Springer-Verlag.

2 Thaïs Baudon, Gabriel Radanne, and Laure Gonnord. Bit-stealing made legal: Compilation for
custom memory representations of algebraic data types. Proc. ACM Program. Lang., 7(ICFP),
August 2023. doi:10.1145/3607858.

3 Zilin Chen, Ambroise Lafont, Liam O’Connor, Gabriele Keller, Craig McLaughlin, Vincent
Jackson, and Christine Rizkallah. Dargent: A silver bullet for verified data layout refinement.
Proc. ACM Program. Lang., 7(POPL), January 2023. doi:10.1145/3571240.

4 Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious structure definition.
In Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design
and Implementation, PLDI ’99, pages 13–24, New York, NY, USA, 1999. Association for
Computing Machinery. doi:10.1145/301618.301635.

5 Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure layout. In
Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design and
Implementation, PLDI ’99, pages 1–12, New York, NY, USA, 1999. Association for Computing
Machinery. doi:10.1145/301618.301633.

6 Trishul M. Chilimbi and James R. Larus. Using generational garbage collection to implement
cache-conscious data placement. In Proceedings of the 1st International Symposium on Memory
Management, ISMM ’98, pages 37–48, New York, NY, USA, 1998. Association for Computing
Machinery. doi:10.1145/286860.286865.

7 Adam Chlipala. An optimizing compiler for a purely functional web-application language. In
Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2015, pages 10–21, New York, NY, USA, 2015. ACM. doi:10.1145/2784731.2784741.

8 Karl Cronburg and Samuel Z. Guyer. Floorplan: Spatial layout in memory management
systems. In Proceedings of the 18th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, GPCE 2019, pages 81–93, New York, NY, USA,
2019. Association for Computing Machinery. doi:10.1145/3357765.3359519.

9 Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel, Qianchuan Ye, and Adam
Chlipala. Narcissus: Correct-by-construction derivation of decoders and encoders from binary
formats. Proc. ACM Program. Lang., 3(ICFP), July 2019. doi:10.1145/3341686.

10 Kathleen Fisher and Robert Gruber. Pads: A domain-specific language for processing ad
hoc data. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, pages 295–304, New York, NY, USA, 2005. Association
for Computing Machinery. doi:10.1145/1065010.1065046.

11 Kathleen Fisher and David Walker. The pads project: An overview. In Proceedings of the
14th International Conference on Database Theory, ICDT ’11, pages 11–17, New York, NY,
USA, 2011. Association for Computing Machinery. doi:10.1145/1938551.1938556.

12 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling
with continuations. In Proceedings of the ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation, PLDI ’93, pages 237–247, New York, NY, USA, 1993.
Association for Computing Machinery. doi:10.1145/155090.155113.

13 Juliana Franco, Martin Hagelin, Tobias Wrigstad, Sophia Drossopoulou, and Susan Eisenbach.
You can have it all: Abstraction and good cache performance. In Proceedings of the 2017
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! 2017, pages 148–167, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3133850.3133861.

14 Juliana Franco, Alexandros Tasos, Sophia Drossopoulou, Tobias Wrigstad, and Susan Eisenbach.
Safely abstracting memory layouts, 2019. doi:10.48550/arXiv.1901.08006.

15 Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv. Concurrent
data representation synthesis. In Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12, pages 417–428, New York, NY,
USA, 2012. Association for Computing Machinery. doi:10.1145/2254064.2254114.

ECOOP 2024

https://doi.org/10.1145/3607858
https://doi.org/10.1145/3571240
https://doi.org/10.1145/301618.301635
https://doi.org/10.1145/301618.301633
https://doi.org/10.1145/286860.286865
https://doi.org/10.1145/2784731.2784741
https://doi.org/10.1145/3357765.3359519
https://doi.org/10.1145/3341686
https://doi.org/10.1145/1065010.1065046
https://doi.org/10.1145/1938551.1938556
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/3133850.3133861
https://doi.org/10.48550/arXiv.1901.08006
https://doi.org/10.1145/2254064.2254114

38:28 Optimizing Layout of Recursive Datatypes with Marmoset

16 Chris Lattner and Vikram Adve. Automatic pool allocation for disjoint data structures. In
Proceedings of the 2002 Workshop on Memory System Performance, MSP ’02, pages 13–24, New
York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/773146.773041.

17 Yitzhak Mandelbaum, Kathleen Fisher, David Walker, Mary Fernandez, and Artem Gleyzer.
Pads/ml: A functional data description language. In Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’07, pages
77–83, New York, NY, USA, 2007. Association for Computing Machinery. doi:10.1145/
1190216.1190231.

18 Peter J. McCann and Satish Chandra. Packet types: Abstract specification of network protocol
messages. In Proceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM ’00, pages 321–333, New York, NY, USA,
2000. Association for Computing Machinery. doi:10.1145/347059.347563.

19 Liam O’Connor, Christine Rizkallah, Zilin Chen, Sidney Amani, Japheth Lim, Yutaka Na-
gashima, Thomas Sewell, Alex Hixon, Gabriele Keller, Toby Murray, et al. Cogent: certified
compilation for a functional systems language. arXiv preprint arXiv:1601.05520, 2016.

20 Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.
21 Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil Swamy, Tej Chajed,

Nadim Kobeissi, and Jonathan Protzenko. Everparse: Verified secure zero-copy parsers for
authenticated message formats. In Proceedings of the 28th USENIX Conference on Security
Symposium, SEC’19, pages 1465–1482, USA, 2019. USENIX Association.

22 Vidush Singhal, Chaitanya Koparkar, Joseph Zullo, Artem Pelenitsyn, Michael Vollmer, Mike
Rainey, Ryan Newton, and Milind Kulkarni. Optimizing layout of recursive datatypes with
marmoset, 2024. arXiv:2405.17590.

23 Marcell van Geest and Wouter Swierstra. Generic packet descriptions: Verified parsing and
pretty printing of low-level data. In Proceedings of the 2nd ACM SIGPLAN International
Workshop on Type-Driven Development, TyDe 2017, pages 30–40, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3122975.3122979.

24 Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, Milind Kulkarni, and
Ryan R. Newton. Local: A language for programs operating on serialized data. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, pages 48–62, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3314221.3314631.

25 Michael Vollmer, Sarah Spall, Buddhika Chamith, Laith Sakka, Chaitanya Koparkar, Milind
Kulkarni, Sam Tobin-Hochstadt, and Ryan R. Newton. Compiling Tree Transforms to Operate
on Packed Representations. In Peter Müller, editor, 31st European Conference on Object-
Oriented Programming (ECOOP 2017), volume 74 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 26:1–26:29, Dagstuhl, Germany, 2017. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2017.26.

26 Qianchuan Ye and Benjamin Delaware. A verified protocol buffer compiler. In Proceedings
of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2019, pages 222–233, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3293880.3294105.

https://doi.org/10.1145/773146.773041
https://doi.org/10.1145/1190216.1190231
https://doi.org/10.1145/1190216.1190231
https://doi.org/10.1145/347059.347563
https://arxiv.org/abs/2405.17590
https://doi.org/10.1145/3122975.3122979
https://doi.org/10.1145/3314221.3314631
https://doi.org/10.4230/LIPIcs.ECOOP.2017.26
https://doi.org/10.1145/3293880.3294105

Formalizing, Mechanizing, and Verifying
Class-Based Refinement Types
Ke Sun #

Key Lab of HCST (PKU), MOE, School of Computer Science, Peking University, Beijing, China

Di Wang1 #

Key Lab of HCST (PKU), MOE, School of Computer Science, Peking University, Beijing, China

Sheng Chen #

The Center for Advanced Computer Studies, University of Louisiana, Lafayette, LA, USA

Meng Wang #

University of Bristol, UK

Dan Hao #

Key Lab of HCST (PKU), MOE, School of Computer Science, Peking University, Beijing, China

Abstract
Refinement types have been extensively used in class-based languages to specify and verify fine-
grained logical specifications. Despite the advances in practical aspects such as applicability and
usability, two fundamental issues persist. First, the soundness of existing class-based refinement
type systems is inadequately explored, casting doubts on their reliability. Second, the expressiveness
of existing systems is limited, restricting the depiction of semantic properties related to object-
oriented constructs. This work tackles these issues through a systematic framework. We formalize a
declarative class-based refinement type calculus (named RFJ), that is expressive and concise. We
rigorously develop the soundness meta-theory of this calculus, followed by its mechanization in Coq.
Finally, to ensure the calculus’s verifiability, we propose an algorithmic verification approach based
on a fragment of first-order logic (named LFJ), and implement this approach as a type checker.

2012 ACM Subject Classification Theory of computation → Type structures; Software and its
engineering → Formal software verification

Keywords and phrases Refinement Types, Program Verification, Object-oriented Programming

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.39

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.22

Funding This work is sponsored by National Natural Science Foundation of China Grant No.
62232001, NSF Grant 1750886, and EPSRC Grant EP/T008911/1.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Refinement types have been widely used in class-based languages [47, 67, 10, 56, 26, 33, 36]
to enhance the capabilities of traditional type systems, allowing for more precise safety
guarantees. These types extend basic data types (e.g., integer type, boolean type, and class
types) with logical constraints that specify detailed conditions on the data. For example,
{ν : C|ν.f > 0} characterizes instances of type C with the property that their f field exceeds
zero. The logical constraint (e.g., ν.f > 0) is often called the refinement of the type.

1 Corresponding author

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 39; pp. 39:1–39:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sunke@stu.pku.edu.cn
https://orcid.org/0000-0002-2966-9889
mailto:wangdi95@pku.edu.cn
https://orcid.org/0000-0002-2418-7987
mailto:sheng.chen@louisiana.edu
https://orcid.org/0000-0003-1735-0704
mailto:meng.wang@bristol.ac.uk
https://orcid.org/0000-0001-7780-630X
mailto:haodan@pku.edu.cn
https://orcid.org/0000-0001-8295-303X
https://doi.org/10.4230/LIPIcs.ECOOP.2024.39
https://doi.org/10.4230/DARTS.10.2.22
https://doi.org/10.4230/DARTS.10.2.22
https://doi.org/10.4230/DARTS.10.2.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Despite the advancements in various practical aspects (briefly surveyed in Section 8),
a comprehensive examination of the fundamental aspects of class-based refinement types
remains elusive. The primary reason stems from the intricate logical interpretation associated
with refinements, which determines their meanings. In existing class-based refinement type
systems, the logical interpretations are often defined via the Satisfiability Modulo Theories
(SMT) relation [9, 35], since they are typically analyzed algorithmically via SMT solvers.
Although this interpretation is closer to the actual algorithmic interpretation, it brings
two crucial problems. Firstly, the soundness of the type system is difficult to define and
argue formally, since it depends on the SMT relation, which is both complex and intricate
to define properly. This complexity has led to a paucity of mechanized soundness proofs
in previous systems, putting their reliability in doubt. Secondly, the expressiveness of
the refinement types is limited by the need to adhere to decidable theory combinations
(e.g., QF-EUFLIA [9]), which impedes the representation of semantic properties relevant to
user-defined classes and methods.

To address those fundamental issues, this work makes three consecutive contributions.

1. Formalization. To formalize a foundational calculus, this paper introduces Refinement
Featherweight Java (RFJ), an FJ-like [30] calculus with expressive refinements capable
of stating arbitrary properties about user-defined elements. Our basic methodology is
to construct a declarative, SMT-independent logical interpretation within the language,
which greatly increases the expressiveness and benefits the meta-theoretical development.
Apart from that, RFJ is equipped with several features important for refinement-type-based
verification, yet mostly absent from previous systems, such as interfaces for decomposing proof
obligations among subclasses (c.f., Section 2.2), general selfification – a typing mechanism [66,
51] (detailed in Section 2.1) that seamlessly integrates accurate term information into
refinements, and flexible method overriding through co/contra-variance [11]. Besides those
critical features, RFJ closely mirrors FJ, avoiding the usage of non-standard judgments (e.g.,
object constraint systems [47, 67]) and non-standard constructs (e.g., ANF [10], existential
types [67]). Thus, we believe RFJ can be an ideal base to explore further extensions.

2. Mechanization. The soundness properties of RFJ are rigorously established and mech-
anized in Coq. Although leveraging an in-language logical interpretation reduces the proof
difficulty, the proof is still challenging and requires non-standard techniques. For example, we
make a novel use of big-step semantics to obtain a convenient induction principle for proving
the preservation lemma under arbitrary type substitution. We introduce a novel approach
to establish the logical soundness property (one major soundness property of RFJ), as the
standard logical relation technique [62] is ineffective for first-order languages like RFJ [55].

3. Verification. The expressive refinements provided by RFJ fall out of the scope of existing
SMT theories, casting ambiguity on the system’s algorithmic verifiability. We address this
concern by proposing an algorithmic verification approach based on a fragment of order-sorted
first-order logic (OS-FOL) [57]. We name this fragment as LFJ, and define a type-directed
translation from RFJ to the LFJ. We define an intended model of LFJ and map the RFJ
refinement subtyping problem to the LFJ validity problem under this model. We devise
an axiomatization of the intended model covering the semantics of RFJ programs. The
axiomatization can be used by SMT solvers to perform algorithmic verification. Thus, the
expressive refinements of RFJ are not only meta-theoretical constructs: they are amenable
to algorithmic analysis within SMT solvers. Additionally, we develop a refinement type

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:3

checker that leverages Z3 [19] for checking the validity of LFJ formulas. The type checker is
evaluated against a small yet representative benchmark derived from a Java textbook [23]
and prior systems [65].

In the remainder of this paper, we detail our contributions. Section 2 provides an overview.
Sections 3, 4, and 5 each describe one of the three contributions. Section 6 discusses the
mechanization and implementation. Sections 7, 8, and 9 review related work and conclude.

The accompanying code of this paper, including the meta-theory mechanization and type
checker implementation, is available as the supplementary material of this paper.

2 Overview

This section serves as an overview of the whole paper. We start with an example program to
demonstrate the expressiveness and features of RFJ. Then, we discuss the actual verification
through LFJ. Finally, we turn back to the meta-theory of RFJ and the challenges of developing
the meta-theory. The sequence of discussion – starting with verification before addressing
meta-theoretical concerns – is intentionally chosen to contrast with the presentation order
in subsequent sections, aiming to enhance comprehension by familiarizing readers with the
system through its verification aspects first.

2.1 RFJ by Example

1 class Pizza{
2 {v:int|v>0} price(){return 1;}
3 Pizza remA(){return new Pizza();}
4 Pizza sell (this.price()>5){return this;}}
5 class Crust extends Pizza{
6 {v:int|v>0} price(){return 1;}
7 Pizza remA(){return new Crust();}
8 Pizza sell (){return this;}}
9 class Cheese extends Pizza{

10 p:Pizza
11 {v:int|v>0} price(){return let pp = this.p.price() in pp + 1;}
12 Pizza remA(){return new Cheese(this.p.remA());}}
13 class Anchovy extends Pizza{
14 p:Pizza
15 {v:int|v>0 && v>=this.p.price()} price(){return let pp = this.p.price() in pp;}
16 Pizza remA(){return this.p.remA();}}
17 class MagicAnchovy extends Anchovy{
18 {v:int|v>0 && v>this.p.price()} price(){return let pp = this.p.price() in pp + 1;}}
19 class Main{
20 int assertSingleCheesePizza(x: {v:Pizza|v = new Cheese(new Crust())}{
21 return 0; }
22 int testRemA(){
23 return let p1 = new Anchovy(new Cheese(new Crust())) in
24 this.assertSingleCheesePizza(p1.remA());}}

Figure 1 An example RFJ program. In refinements, v stands for ν.

In this section, we illustrate RFJ using a program extended from a textbook example [23]
(we add some methods to make it more interesting). The program models various pizzas and
three operations on them: computing the price of a pizza (the price method), removing all
anchovies from a pizza (the remA method), and selling a pizza (the sell method).

Simple Verification. Our initial focus is a basic property: the price of any pizza must
be positive. To enforce this property, we refine the return types of price methods with a
refinement ν > 0, where ν denotes the value being refined. RFJ’s refinement subtyping
mechanism guarantees that the price methods indeed return positive values. Pick Pizza.price
for an example, RFJ enforces the following subtyping constraint for the return type:

ECOOP 2024

39:4 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

this : {ν : Pizza|true} ⊢ {ν : int|ν = 1} <: {ν : int|ν > 0} (1)

In refinement type systems like RFJ, such subtyping constraints have logical interpreta-
tions. In particular, Constraint (1) requires all ν satisfying ν = 1 must also satisfy ν > 0,
which holds under RFJ logical interpretation (formally defined in Section 3.3). Note that the
subtyping constraint is checked within a specific type environment this : {ν : Pizza|true},
which contains the types of all visible variables. Those variables may be referred to by the
refinement types, as demonstrated in the following example.

Method Override. RFJ supports overriding methods in subclasses. For example,
Cheese.price overrides Pizza.price to provide a different price computation. To preserve the
logical property, the return type must still be validated, yielding the following constraint:

this : {ν : Cheese|true}, pp : {ν : int|ν > 0} ⊢ {ν : int|ν = pp + 1} <: {ν : int|ν > 0} (2)

The pp item in the environment is introduced by the let binding. Since pp is bound to
this.p.price(), RFJ sets its type as the type of this.p.price(), which is {ν : int|ν > 0}.

Refinement for this and Override with Co/contra-variance. In RFJ, every method has
an implicit this parameter with the same type as the enclosing class of this method (e.g., in
Cheese.price(), this has Cheese type). We have seen this appearing in previous subtyping
constraints, but with a trivial refinement true. this can also be given a non-trivial refinement
to ensure that methods are invoked on objects satisfying specific criteria. For instance,
Pizza.sell includes a refinement of this (marked cyan), specifying that only the pizza whose
price is greater than 5 can be sold.

Meanwhile, suppose that a Crust can also be sold regardless of its price. This can be
achieved by overriding the method sell in Crust, as the example shows. In the overriding
method, the refinement of this is true and thus omitted, making it a supertype of the
previous refinement this.price > 5, obeying contra-variance of parameter types2.

Now, consider a property for Anchovy.price(): the price is not only positive, but also not
less than that of this.p. This extra property is marked olive in the program. The property
makes the new return type a subtype of the old, obeying return type co-variance.

General selfification. Checking Anchovy.price()’s return type yields this constraint:

this : Anchovy, pp : {int|ν > 0} ⊢ {int|ν = pp} <: {int|ν > 0&&ν ≥ this.p.price()} (3)

Here, we omit the refinement binder ν and the refinement when it is trivial (i.e., true).
However, this constraint can not be proved currently, essentially due to the loss of the
this.p.price() term information in the type of pp. Luckily, RFJ’s general selfification3

mechanism addresses this by ensuring the persistence of such information. In a nutshell, it
works by equating the term being typed to the refinement of its type, giving this.p.price() :
{ν : int|ν > 0&&ν = this.p.price()}, which is also the type of pp. The strengthened type
of pp lets the constraint be proved. With the same technique, we can prove the validity of
MagicAnchovy.price, which further overrides Anchovy.price.

2 Strictly speaking, for the type of this, we use co-variance for the base type and contra-variance for the
refinement, c.f. Section 3.1.

3 We name it general to distinguish from the cases like [34], where selfification is only used for variables.

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:5

Referring to Methods. Next, we turn to the remA methods for removing all anchovies
from a pizza. Consider the method testRemA, where we assess the correctness of the remA
implementations. For the assertion in Line 24, RFJ enforces the subtyping constraint below:

p1 : {An|ν = An(Ch(Cr()))} ⊢ {Pi|ν = p1.remA()} <: {Pi|ν = Ch(Cr())} (4)

We omit this from the type environment, which does not affect the meaning of this
subtyping constraint. Meanwhile, we abbreviate class names to their initial two letters
(e.g., Ch represents Cheese), and omit the new keyword (e.g., An(Ch(Cr())) represents
new An(new Ch(new Cr()))), in order to save space. Proving Constraint (4) demands
intricate reasoning about the program’s semantics, particularly the semantics of the remA
methods. This contrasts with the previous example, where no specific knowledge about the
price methods is required. In our meta-theoretical calculus, since the logical interpretation
is built upon the program semantics, Constraint (4) does not pose a significant challenge.
Nevertheless, facilitating its efficient handling within SMT solvers requires a theory about
RFJ program semantics, which is discussed in detail in Section 2.2.

Proving with Interfaces. Finally, we consider a more interesting property concerning price
and remA: the price of a pizza should not increase after removing all anchovies. We can express
this by appending the following method to Pizza: {bool|this.price()>=this.remA().price()}
remA_noinc_price(){return true;}, yielding the subtyping constraint below:

this : Pizza ⊢ {bool|ν = true} <: {bool|this.price() ≥ this.remA().price()} (5)

This property holds in our meta-theoretical calculus. However, it breaks the proof
modularity and is not verifiable in the algorithmic verification, even with the theory extended
with RFJ program semantics. The mitigation of this challenge is facilitated by another key
feature of RFJ: interfaces. We discuss that in detail in the following section.

2.2 Algorithmic Verification

In conventional refinement type systems, subtyping constraints are typically discharged by
SMT solvers, which facilitate automated reasoning and significantly reduce implementation
efforts. We adapt this methodology by providing a logical encoding of RFJ into a dedicated
order-sorted first-order logic, named LFJ. A detailed exposition of LFJ is provided in Section 5.
Here, we offer a concise overview of it, drawing upon the examples discussed in Section 2.1.

EUFLIA. After being encoded into LFJ, the subtyping constraints (1), (2), and (3) fall into
the theory of Equality, Uninterpreted Functions, and Linear Integer Arithmetic (EUFLIA), a
domain widely supported by contemporary SMT solvers [9, 4, 19]. LFJ incorporates EUFLIA
for verifying those constraints.

Reasoning about Program Semantics. We have illustrated in Section 2.1 that the veri-
fication of Constraint (4) requires knowledge about program semantics. We encode the
knowledge with several axioms, which are discussed formally in Section 5.3. Currently, We
illustrate them utilizing Constraint (4), which is translated to the LFJ formula shown below:

∀p1 : An, ν : Pi. p1 = Ancr(Chcr(Crcr())) ∧ ν = AnremA(p1) ⇒ ν = Chcr(Crcr())

ECOOP 2024

39:6 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Here, the Ancr, Chcr, Crcr functions represent the constructors for the classes An, Ch,
and Cr, respectively. AnremA represents the conditional function composed of the possible
implementations of Anchovy.remA. The characterization of Anchovy.remA is shown below:

AnremA(this) =
{

PiremA(Anp(this)) if this = Ancr(...)
PiremA(Anp(this)) if this = Macr(...)

This characterization redirects the function application to the implementation, depending
on the class of this (although the implementations are the same). Since the two classes
both use Anchovy.remA, all the implementations are the logic translation of the method body
of Anchovy.remA. Here, Anp denotes the access function of the field p of the class An, while
PiremA is the conditional function for Pizza.remA.

Because we know p1 is Ancr(Chcr(Crcr())), we choose the first branch and deduce
ν = PiremA(Anp(Ancr(Chcr(Crcr())))), which can be then handled by an axiom for Anp:

∀p : Pi. Anp(Ancr(p)) = p

With this axiom, we can deduce ν = PiremA(Chcr(Crcr())). This time, we need to utilize
the semantics of PiremA, and choose the branch for this = Chcr(...), i.e., PiremA(this) =
Chcr(PiremA(Chp(this))), which lets us deduce ν = Chcr(PiremA(Chp((Chcr(Crcr()))))).
Following the routine we just outlined, we can deduce ν = Chcr(Crcr()) eventually.

Verifying with Interfaces. Even with the knowledge of program semantics, Constraint (5)
still can not be verified. In particular, it would be translated to ∀this : Pi. P iprice(this) ≥
Piprice(PiremA(this)), whose verification requires induction. In several previous refinement
type systems for functional languages [66], induction is supported but is based on pattern
matching and recursive functions. In object-oriented languages, pattern-matching constructs
are typically not included. Thus, in this paper, we propose to utilize interface, a feature that
is included in most object-oriented languages, to perform induction. To use interface-based
induction in our case, we reimplement Pizza as an interface, which decomposes the proof
obligation into subclasses implementing Pizza. To illustrate, we pick the proof of Constraint
(5) for Anchovy as an example, shown in Figure 2.

The first thing to note is that, the method body of Anchovy.remA_noinc_price is not
trivial (e.g., return true). This means that an SMT solver would not prove this property
automatically. Before we explain the method body, we first give a brief informal proof to help
understanding. The assumptions to facilitate the proof are listed below. Once the assumptions
are within the proof context, the formula we want (this.price() ≥ this.remA().price()) can
be easily deduced within EUFLIA.

this.price() ≥ this.p.price() (p1) : a property of Anchovy.price

this.p.price() ≥ this.p.remA().price() (p2) : the induction hypothesis of this.p

this.remA() = this.p.remA() (p3) : a property of Anchovy.remA

The first assumption (property) is about Anchovy.price, and we have proved it in Sec-
tion 2.1, so we can just refer to it as a lemma. In principle, even if we have not proved
it, the solver can still automatically prove the property with the given program semantics
and use it to prove the formula we want. However, leaving such a property to the solver
often increases the searching time for proving the formula. Thus, we prove it as a separate
property and introduce it (p1 in the body of remA_noinc_price()) to the proof context so
that the solver can use it directly. The second property is the induction hypothesis of this.p

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:7

25 interface Pizza{
26 {int|v>0} price()
27 Pizza remA()
28 Pizza sell (this.price()>5)
29 {v:bool|this.price()>=this.remA().price()} remA_noinc_price() }
30 class Anchovy implements Pizza{
31 p:Pizza
32 {v:int|v>0 && v>=this.p.price()} price(){return let pp = this.p.price() in pp;}
33 Pizza remA(){return this.p.remA();}
34 {v:bool|this.price()>=this.remA().price()} remA_noinc_price(){
35 return let p1 = this.price() in
36 let p2 = this.p.remA_noinc_price() in true;}}

Figure 2 Proving remA_noinc_price for Anchovy.

(this.p.price() ≥ this.p.remA().price()), and we can utilize it by referring to the method
remA_noinc_price of this.p. The third property asserts that for every this:Anchovy, it holds
that this.remA()=this.p.remA(). This is obvious since no matter whether this is an Anchovy
or a MagicAnchovy, calling remA on it would resolve to the same method implementation. Like
p1, this property is also automatically derivable, so we can leave it to the SMT solver, or
explicitly prove it like we do for p1. In particular, p3 represents a special case where we can
add an axiom to the solver, to spare the efforts of automatic search and manual proof. As a
result, it is not included in the method body. We will discuss this further in Section 5.3.

We need not prove the same property for MagicAnchovy, since it inherits the property
from Anchovy. Similarly, we can prove other properties such as the fact that no Anchovy exists
after remA, as well as the idempotence of remA; all have been included in our test suite.

2.3 Meta-theoretical Arguments

As we have seen in the previous sections: the design of RFJ aims at expressiveness and ease
of use. At the same time, this very desirable combination leads to a tricky meta-theory. One
major contribution of this paper is to establish the meta-theory rigorously (i.e., in Coq). The
detailed development of the meta-theory is given in Section 4. In this section, we briefly
overview the soundness theorems, and several challenges in proving them.

2.3.1 Soundness Theorems

Type Soundness. The type system should be able to preclude evaluation from being stuck.
Formally, if a closed expression is well-typed (∅ ⊢ e : t), then it would never be stuck
in a state where it can not be evaluated and is not a value yet. Since type soundness is
typically guaranteed by the base type system (in our case, the FJ type system) already, the
core of proving that in refinement type systems is to ensure the additional refinement type
mechanisms (e.g., general selfification) do not break the promise of the base type system.

Logical Soundness. The type system should infer only true refinements. Formally, if a
typing judgment (Γ ⊢ e : {w|p}) is made by the type system, the refinement formula p

must be true whenever the conditions stipulated by Γ are fulfilled. Logical soundness serves
as a complement to type soundness, going beyond the guarantee that the evaluations of
well-typed programs would never get stuck by also ensuring that the evaluations of such
programs adhere to the logical constraints specified by type refinements.

ECOOP 2024

39:8 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

2.3.2 Challenges
Logical Interpretation. Refinements are logical formulas and should be interpreted logically.
For example, the subtyping relation between two refinement types (Γ ⊢ {w|p} <: {w|q})
is defined as the truth of the implication p ⇒ q under the assumption set Γ. While our
approach to algorithmic verification leverages a translation of RFJ into first-order logic (c.f.,
Section 2.2), employing this logic directly for defining the logical interpretation can prove
both intricate and unwieldy. Rather, we choose to define it inside the language, allowing
the algorithmic verification approach to serve as an external algorithm that scrutinizes the
intrinsic logical interpretation. Nevertheless, articulating a precise logical interpretation is
still challenging due to complex typing mechanisms like interfaces and nominal subtyping.

Type Substitution and General Selfification. Different from previous class-based refinement
type calculus, RFJ uses type substitution instead of ANF [32] or existential types [34]. This
increases the generality and usability (detailed in Section 7). However, this also increases
its meta-theoretical complexity, and several nonstandard lemmas about type substitution
and typing have to be proved. Similarly, although general selfification increases the precision
of the verification by recording term information in refinements, it affects substitution
and preservation lemmas intricately and several non-standard properties (e.g., exactness,
Γ ⊢ e : t then Γ ⊢ e : self(t, e)) of it have to be proved for proving those lemmas.

First Order Functions. The logical relation technique [62] is frequently employed in prior
research [8, 29] to establish the logical soundness theorem. However, this technique can not be
applied to RFJ, since RFJ is a first-order language without explicit function abstraction but
with recursive method definition. Thus, we do not have a strong enough induction principle
about methods when performing induction on typing. This challenge is not unique to us
and has been encountered in previous studies [64, 55]. However, the workaround adopted by
these studies, which essentially inlines methods at call-sites, is incompatible with RFJ, since
that requires particular type structures supporting the strong normalisation of derivation
reduction, a property that RFJ lacks.

3 Declarative Calculus: RFJ

This section outlines the syntax, semantics, and typing rules of RFJ, built upon the classical
calculus FJ extended with primitive data types (integers and booleans) and let bindings. The
FJ parts follow closely the classical textbook presentation [52]. To delineate the extensions
unique to RFJ, we highlight the extended features in gray background .

3.1 Syntax and Lookup Functions
The syntax of RFJ is depicted on the left side of Figure 3. The metavariables C, D, and
E range over class names; f and g range over field names; m ranges over method names;
x ranges over parameter names; ν ranges over refinement binder names. We also use n to
range over integers, and b to range over booleans (i.e., true and false). In a nutshell, RFJ
extends FJ by refinement types, interfaces, and the ⊤ type, each highlighted in dark gray to
distinguish the enhancements. We have discussed refinement types and interfaces extensively.
For the ⊤ type, it is introduced mainly to characterize the equality between any two values,
not just values of the same type. Compared to strictly monomorphic equality which demands
type uniformity for comparands, ⊤-typed equality is closer to the actual Java equality [28]
and the equality used in order-sorted logics [57].

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:9

Syntax

C ::= class definitions:

class C extends D implements I {t f ; K M}

I ::= interface I{Q} interface Defs.

K ::= C(t f) {super(f); this.f = f ; }

Q ::= t m(p, t x) method Decs.

M ::= Q{return e; } method Defs.

e, p, q ::= terms:
x variable

e.f field access

e.m(e) method invocation

new C(e) instance creation

n integer

b boolean

¬ e unary operation

e ⊕ e binary operation

let x = e in e let binding

⊕ ::= = | ∨ | ∧ binary operators

v ::= n | b | new C(v) values

N ::= C | I nominal types

w, u ::= ⊤ | int | bool | N base types

s, t, r ::= {ν : w|p} refinement types

Sub-nominal Base-subtyping Subtyping
N1 <:n N2 w <:b u Γ ⊢ s <: t

N <:n N

N1 <:n N2 N2 <:n N

N1 <:n N

CT (C) = class C extends D ...{...}
C <:n D

CT (C) = class C ... implements I{...}

C <:n Ii

w <:b ⊤

int <:b int

bool <:b bool

N1 <:n N2

N1 <:b N2

w <:b u Γ, ν : w ⊨ p ⇒ q

Γ ⊢ {ν : w|p} <: {ν : u|q}
(R-Subtyping)

Figure 3 Syntax and subtyping.

Besides the extension, RFJ simplifies FJ in two aspects, widely adopted in prior studies [55,
10, 42, 27]. First, casts are not included since they complicate the calculus and are orthogonal
with refinement types, the focus of this work. Second, a single parameter is used instead of
an arbitrary number of parameters. However, this does not impact the expressiveness of RFJ,
because empty parameters can be modeled by a single parameter that is not referred to in
the method body, while multiple parameters can be modeled by declaring a class containing
those parameters and using it as a single parameter.

Finally, we introduce several remarkable notations. Firstly, note that we use e, p, and q

to range over RFJ terms. The latter symbols (p and q) are used to range over RFJ terms
that have bool type (also called formulas). Secondly, we use two shorthands for refinement
types: we omit the binders declaration in {ν : w|p} when the binder is just ν (a reserved
name), and we short {w|p} as w when p is true.

Subtyping. The right half of Figure 3 explicates RFJ’s subtyping relations, featuring
sub-nominal (<:n), subtyping amongst base types (<:b), and refinement subtyping (<:).
The sub-nominal relation is a straightforward extension of FJ’s subclassing to account for
interface types. The base subtyping relation is also standard. Refinment subtyping combines
base subtyping and logical implication (defined in Section 3.3). It is parameterized by type
environments with the usual construction, which is used for logical implication. Note that

ECOOP 2024

39:10 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

when checking logical implication, we use the type of the sub-base-type (w) instead of the
super-base-type (u) for ν, to make refinement subtyping transitive. In the remaining of this
paper, we short refinement subtyping as subtyping when there is no ambiguity.

Field lookup fields(C) = t f

fields(Object) = •

CT (C) = class C exds D imps I{t f ; K M}
fields(D) = s g

fields(C) = s g, t f

C-method-type mtype(m, C) = p → x : t → r

CT (C) = class C exds D imps I{t f ; K M}
r m (p, t x) {return e; } ∈ M

mtype(m, C) = p → x : t → r

CT (C) = class C exds D imps I{t f ; K M}
m is not defined in M

mtype(m, C) = mtype(m, D)

C-method-body mbody(m, C) = (x, e)

CT (C) = class C exds D imps I{t f ; K M}
r m (p, t x) {return e; } ∈ M

mbody(m, C) = (x, e)

CT (C) = class C exds D imps I{t f ; K M}
m is not defined in M

mbody(m, C) = mbody(m, D)

Override override(m, C, D, p → x : t → r)
mtype(m, D) = q → x : t′ → r′

=⇒ (∅ ⊢ {C|q} <: {C|p}

∅, this : {C|q} ⊢ t′ <: t

∅, this : {C|q}, x : t′ ⊢ r <: r′)

override(m, C, D, p → x : t → r)

I-method-type mtypei(m, I) = p → x : t → r

IT (I) = interface I{Q}

r m (p, t x) ∈ Q

mtypei(m, I) = p → x : t → r

Implement implement(m, C, I, p → x : t → r)
mtype(m, C) = q → x : t′ → r′

∅ ⊢ {C|p} <: {C|q}

∅, this : {C|p} ⊢ t <: t′

∅, this : {C|p}, x : t ⊢ r′ <: r

implement(m, C, I, p → x : t → r)

Interface implemented C ▷ I

IT (I) = interface I{r m(p, t x)}

implement(m, C, I, p → x : t → r)

C ▷ I

Figure 4 Auxiliary definitions.

Auxiliary Definitions. The lookup functions, override relation, and interface implemented
relation are shown in Figure 4. The lookup functions should be pretty self-explanatory, only
to note that although we use → in mtype and mtypei, it is not arrow type constructor, but
an intuitive type signature representation, as in original FJ [11]. We explain the override
and interface implemented relations subsequently.

In RFJ, the criterion for valid method override differs from FJ’s strict type match-
ing, utilizing co/contra-variance instead. This is encapsulated by the override relation
(override(m, C, D, p → x : t → r)), which ensures the class C properly overrides the method
m of the class D (if m does exists in D), encoding three constraints:
1. For this, we have co-variance in the base type (the base type is C, which is a subtype of

D) and contra-variance in the refinement (as the ∅ ⊢ {C|q} <: {C|p} states). Using co-
variance for the base type is widely known as a seminal work [11] on method overriding has
pointed out: the parameters that determine the selection must be co-variantly overridden
(i.e., have a lesser type). However, since method selection relies solely on the base type
(note that mbody considers the class but disregards refinement), we must require the
refinement to be more general (contra-variant) to ensure compatibility.

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:11

2. The contra-variance on the parameter type and co-variance on the return type (ignore
the subtyping context for now) follow the function subtyping principle [52].

3. Since the parameter type refinement may refer to this, while the return type refinement
may refer to this and the parameter, their co/contra-variance must be assessed under a
type environment with those variables, as the definition shows. Here, note that we opt
for “narrower” subtype contexts: we assess contra-variance (t′ <: t) within the context of
{C|q} rather than {C|p}, and likewise for co-variance (r <: r′), within {C|q} and t′. This
decision renders the overriding rule more permissive: subtyping in a narrower context is
easier to satisfy, as the narrowing property of subtyping shows (c.f., Section 4.3.1).

Finally, note that we simplify the presentation by assuming identical parameter names (x);
otherwise, they should be renamed to a fresh variable for checking return type co-variance.

For valid interface implementations, C ▷ I confirms that a class properly implements all
methods declared in the interface. The implementation relation (implement(m, C, I, p →
x : t → r) is a dual of the override relation, ensuring that the method m of interface I with
type signature p → x : t → r, is overridden in the class C. Note that the formalization is
different from override in that, override only requires the subtyping constraints to hold if
the method m exist, while implement requires the method m does exist, and satisfies the
subtyping constraints.

3.2 Operational Semantics

Evaluation e⇝ e′

fields(C) = t f

(new C(v)).fi ⇝ vi

mbody(m, C) = (x, e0)
(new C(v)).m(v)

⇝ [this 7→ (new C(v)); x 7→ v]e0

e0 ⇝ e′
0

e0.f ⇝ e′
0.f

e0 ⇝ e′
0

e0.m(e)⇝ e′
0.m(e)

e⇝ e′

v0.m(e)⇝ v0.m(e′)

ei ⇝ e′
i

new C(v, ei, e)
⇝ new C(v, e′

i, e)

e⇝ e′

¬e⇝ ¬e′

¬b⇝ ¬p(b)
e0 ⇝ e′

0

e0 ⊕ e⇝ e′
0 ⊕ e

e⇝ e′

v0 ⊕ e⇝ v0 ⊕ e′

⊕ ok v0 v1

v0 ⊕ v1 ⇝ ⊕p(v0, v1)
e0 ⇝ e′

0

let x = e0 in e⇝ let x = e′
0 in e

let x = v0 in e⇝ [x 7→ v0]e
Valid binary operation ⊕ ok v0 v1

∧ ok b0 b1

∨ ok b0 b1

= ok v0 v1

Figure 5 Small-step semantics of RFJ.

ECOOP 2024

39:12 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Now, we present the operational semantics of RFJ. We first present the small-step
semantics, defined in Figure 5. The semantics aligns with that of FJ4, diverging only to
accommodate the integration of new constructs – specifically, primitive operations and let
bindings. The standard semantics of the boolean operations – including negation, conjunction,
and disjunction, are preserved. The only thing worth noting is the equality operation, which
is defined for every pair of values. RFJ equality is defined as the syntactic equality (i.e., we
view values as finite term trees [22]: two values are equal iff their corresponding trees are
identical).

Multi-step and Big-step Semantics. We define the multi-step semantics (e⇝∗ e′) as the
transitive closure of the small-step semantics, used for type soundness and logical truth later.

Despite being directly derivable from small-step semantics, multi-step semantics do not
provide a convenient induction principle, which makes the related proof intricate. To mitigate
this, we introduce big-step semantics and prove its coincidence with the multi-step semantics
terminating with a value (i.e., e ⇓ v iff e⇝∗ v). The big-step semantics mirrors the small-step
semantics, and we omit its formal definition from this paper. We defer its comprehensive
exposition to the accompanying Coq development.

3.3 Logical Interpretation
Figure 6 defines the logical notations, which are used in the refinement subtyping relation
and logical soundness theorem. The definitions make use of closing substitutions, i.e., partial
mappings from variables to values. The application of a closing substitution θ to a term e is
defined as the function θ(e), which simply substitutes each variable-value pair sequentially.
We also lift θ(·) to refinement types: θ({ν : w|p}) = {ν : w|θ(p)}.

Logical Truth and Entailment. The core of our logical interpretation is the logical truth
relation, which means that the logical formula evaluates to true under the given interpretation
(i.e., RFJ operational semantics). Note that this relation is defined only for closed formulas
(i.e., sentences), and a closing substitution is applied whenever this relation is checked.

With the logical truth relation in hand, we can define the logical entailment relation
(Γ ⊨ p), which signifies the truth of a formula p under the type and logical constraints
encoded within Γ. It requires that for every closing substitution that satisfies Γ (formally
defined later), the closing substitution must also satisfy the formula p (i.e., make it a truth).
Similarly, we define the logical implication relation (Γ ⊨ p ⇒ q), by requiring all closing
substitution that satisfies Γ and p also satisfies q.

The logical implication relation is used for defining the subtyping relation (c.f., Section 3.1).
To illustrate, we revisit the subtype constraint (4) presented in Section 2.1, which imposes
the following constraint by the definition of subtyping and logical implication:

∀θ ∈ [[Γ]]. if ⊨ θ(ν = p1.remA()) then ⊨ θ(ν = new Ch(new Cr()))

where Γ = p1 : {An|ν = new An(new Ch(new Cr()))}, ν : Pi. There are infinite closing
substitutions satisfying Γ. In particular, p1 can only be new An(new Ch(new Cr())), but ν

can be any Pizza, since any Pizza v satisfies v ∈ [[Pi]]. However, there is only one closing
substitution that also satisfies the if condition (⊨ θ(ν = p1.remA())), i.e., the one whose
ν is new Ch(new Cr()). This closing substitution also satisfies the then condition. Thus,
Constraint (4) holds under the logical interpretation.

4 To be specific, we align with the semantics in the textbook presentation [52], which diverges from the
nondeterministic beta-reduction semantics in the original paper [30].

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:13

θ ::= θ, x : v| ∅
Closing Substitution

∅(e) = e

(θ, x : v)(e) = [x 7→ v]θ(e)

Logical Truth ⊨ p

p⇝∗ true

⊨ p

Logical Entailment Γ ⊨ p

∀θ ∈ [[Γ]]. ⊨ θ(p)
Γ ⊨ p

Logical Implication Γ ⊨ p ⇒ q

∀θ ∈ [[Γ]].if ⊨ θ(p) then ⊨ θ(q)
Γ ⊨ p ⇒ q

Environment Denotation θ ∈ [[Γ]]

∅ ∈ [[∅]]

v ∈ [[θ(t)]] θ ∈ [[Γ]]
θ, x : v ∈ [[Γ, x : t]]

Type Denotation v ∈ [[t]]

⊨ [ν 7→ n]p
n ∈ [[{ν : int|p}]]

(DenInt)

⊨ [ν 7→ b]p
b ∈ [[{ν : bool|p}]]

(DenBool)

⊨ [ν 7→ new C(v)]p
fields(C) = t f v ∈ [[[this 7→ new C(v)]t]]

new C(v) ∈ [[{ν : C|p}]]
(DenClass)

w <:b u v ∈ [[{ν : w|p}]]
v ∈ [[{ν : u|p}]]

(Upcast)

Figure 6 Logical interpretation of RFJ.

Type and Environment Denotation. Now, we formally define what is meant by “a substi-
tution satisfies a type environment.” This relation is defined by the environment denotation
relation θ ∈ [[Γ]], which is a natural lift of the type denotation relation (v ∈ [[t]]), determining
if a value is denoted by a type. Type denotation is defined by casing on the structure of the
value, with an additional upcast rule for upcasting the base type. Basically, type denotation
relation (v ∈ [[{u|p}]]) encapsulates two facets: the value v belongs to the base type u, and it
satisfies the refinement p. DenClass additionally requires the denotation for the fields of
the class, to justify the nominal nature of class types.

3.4 Typing
In this section, we define the typing relations in RFJ, as shown in Figure 7. We first define
the term typing, depending on the type well-formedness relation, which in turn depends
on the FJ term typing. After the term typing is defined, we define the method typing
(M ok in C), class typing (C ok), and interface typing (I ok).

Well-formedness. For a refinement type {ν : w|p} to be deemed well-formed under en-
vironment Γ, denoted as Γ ⊢w {ν : w|p}, the refinement p must have bool type under the
type environment. In the definition, ⊢F is the FJ term typing relation, which is used to
check if the refinement does have bool type. Note that we can not use the RFJ term typing
here, since it depends on the type well-formedness relation. We do not define the FJ term
typing separately. It is a standard textbook relation [52] and can be obtained by removing

ECOOP 2024

39:14 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Type well-formedness Γ ⊢w t

⌊Γ⌋, ν : w ⊢F p : bool

Γ ⊢w {ν : w|p}

RFJ Typing Γ ⊢ e : t

self({ν : w|p}, e) = {ν : w|p ∧ ν = e}

x : t ∈ Γ Γ ⊢w t

Γ ⊢ x : self(t, x)
(T-Var)

Γ ⊢ n : { int |ν = n}
(T-Int)

Γ ⊢ b : { bool |ν = b}
(T-Bool)

Γ ⊢ e0 : { C0 |p} fields(C0) = t f

Γ ⊢ e0.fi : self([this 7→ e0] ti, e0.fi)
(T-Field)

mtype(m, C0) = q → x : t → r

Γ ⊢ e0 : { C0 |p} Γ ⊢ {C0|p} <: {C0|q}
Γ ⊢ e : s Γ ⊢ s <: [this 7→ e0] t

Γ ⊢ e0.m(e) : self([this 7→ e0; x 7→ e] r, e0.m(e))
(T-Invok)

mtypei(m, I0) = q → x : t → r

Γ ⊢ e0 : {I0|p} Γ ⊢ {I0|p} <: {I0|q}
Γ ⊢ e : s Γ ⊢ s <: [this 7→ e0]t

Γ ⊢ e0.m(e) : self([this 7→ e0; x 7→ e]r, e0.m(e))
(T-InvokI)

fields(C) = t f

Γ ⊢ e : s Γ ⊢ s <: [this 7→ new C(e)] t

Γ ⊢ new C(e) : self(C, new C(e))
(T-New)

Γ ⊢ e0 : s0 Γ, x : s0 ⊢ e : t Γ ⊢w t

Γ ⊢ let x = e0 in e : self(t, let x = e0 in e)
(T-Let)

Γ ⊢ e0 : s0
¬t

.= x : t0 → r Γ ⊢ s0 <: t0

Γ ⊢ ¬e0 : [x 7→ e0] r
(T-Unop)

⊕t
.= x : t0 → y : t → r

Γ ⊢ e0 : s0 Γ ⊢ s0 <: t0

Γ ⊢ e : s Γ ⊢ s <: [x 7→ e0] t

Γ ⊢ e0 ⊕ e : [x 7→ e0; y 7→ e] r

(T-Binop)
Γ ⊢ e : s Γ ⊢ s <: t Γ ⊢w t

Γ ⊢ e : t
(T-Sub)

method typing M ok in C

CT (C) = class C exds D imps I{...}
this : {C|p}, x : t ⊢ e0 : r

override(m, C, D, p → x : t → r)
∅ ⊢w {C|p} this : {C|p} ⊢w t

this : {C|p}, x : t ⊢w r

r m(p, t x){return e0; } ok in C

class typing C ok

K = C(s g, t f){super(g); this.f = f ; }
fields(D) = s g M ok in C

∅, this : C ⊢w t C ▷ I

class C exds D imps I{t f ; K M} ok

interface method typing Q ok in I

∅ ⊢w {I|p} this : {I|p} ⊢w t

this : {I|p}, x : t ⊢w r

r m(p, t x) ok in I

interface ok I ok

Q ok in I

interface I{Q} ok

Figure 7 Typing relations of RFJ.

the gray parts of RFJ typing. Since the FJ term typing is only defined for base types
and base type environments, we must use an erase function (⌊·⌋) to convert refinement type
environments to base type environments. The erase function is naturally lifted from the
erase function of refinement types (i.e., ⌊{ν : w|p}⌋ = w).

Based on the type well-formedness, we define the well-formedness of type environment:

(1) ⊢w ∅ (2) ⊢w Γ , Γ ⊢w t , x /∈ Γ =⇒ ⊢w Γ, x : t

which simply asserts that all types are well-formed and all variables are unique.

Term Typing. RFJ term typing is an extension of FJ term typing, replacing base types with
refinement types and using refinement subtyping for subtyping. Notably, RFJ term typing
utilizes an explicit subsumption rule (T-Sub), which deviates from the implicit algorithmic
subtyping commonly attributed to FJ. This deviation is not borne from necessity but is
rather a methodological choice, aimed at simplifying the meta-theoretical development.

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:15

The types of primitive operations (used in T-Unop and T-Binop) follow their semantics:

¬t
.= x : bool → {bool|v = ¬x}

∧t
.= x : bool → y : bool → {bool|v = x ∧ y}

∨t
.= x : bool → y : bool → {bool|v = x ∨ y}

=t
.= x : ⊤ → y : ⊤ → {bool|v = x = y}

RFJ typing utilizes several mechanisms absent in FJ typing, i.e., well-formedness checking,
type substitution, and general selfification. We briefly discuss those non-standard mechanisms.
1. Well-formedness checking. Three rules (T-Var, T-Let, and T-Sub) include type well-

formedness checking in their premises, guaranteeing the inference of only well-formed
types, which is required to establish various lemmas (e.g., the structural properties).

2. Type substitution. Refinement types can refer to visible variables. For example, the type
of a field f can be {ν : int|ν = this.h}, specifying it equal to the h field of the object. For
those refinements to refer to proper variables, we must substitute these references with
actual terms during typing. Continuing the example, suppose we are typing a.f , the type
should be updated to {ν : int|ν = a.h}, by substituting this to a, as T-Field rule shows.

3. General selfification. Each rule except the subsumption rule and the rules for primitives
(T-Int, T-Bool, T-Unop and T-Binop) is companioned with a selfification operation
(self), ensuring the terms are always recorded in their types. selfification is not required
for subsumption, as it is performed in prior derivations, and primitive rules inherently
equate terms in their types (e.g., T-Int assigns {int|ν = 2} to 2).

Method, Class Typing and Interface Typing. The method, class, and interface typings
are relations to identifying valid methods, classes, and interfaces. RFJ’s approach to these
typings closely mirrors that of FJ, with the addition of well-formedness checks for method
and field types. Additionally, the class typing judgment is extended with a checking C ▷ I

that ensures the interfaces are properly implemented.

Termination. Finally, we address one tricky issue in typing: termination. As a Turing-
complete language, the well-typedness of RFJ terms does not ensure the termination of
its evaluation. However, non-terminating evaluations can lead to unsound refinements.
For instance, ∅ ⊢ new C().m() : {bool|0 = 1} is derivable, where C.m is defined as bool
m(){return this.m()};. Consequently, our logical soundness theorem is strictly applicable to
terms that are both well-typed and terminating (defined below). In practice, a termination
checker should be equipped to ensure the termination where logical soundness is concerned.

∀θ ∈ [[Γ]].θ(e)⇝∗ v

Γ ↓ e
terminating

Main Theorems. The following theorems link typing to semantics and logical entailment.

▶ Theorem 1 (Type Soundness). If ∅ ⊢ e : t and e⇝∗ e′, then e′ is a value or ∃e′′.e′ ⇝ e′′.

▶ Theorem 2 (Logical Soundness). If Γ ⊢ e : {ν : w|p}, ⊢w Γ, and Γ ↓ e , then Γ ⊨ [ν 7→ e]p.

The major steps to establish those theorems are given in the next section.

ECOOP 2024

39:16 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

4 Meta-theoretical Results

We argue the proposed system possesses type soundness and logical soundness. The proof
of type soundness follows the “Type Soundness = Preservation + Progress” approach [70].
The approach to logical soundness is different from that of previous refinement type systems,
as their approach does not apply to RFJ (c.f., Section 2.3). Our proof approach can
be summarized as “Logical Soundness = Preservation + Typing Denotation + Closing
Substitution.” We give an overview of the critical lemmas and theorems used in the proof
and the dependency relation in Figure 8. In the remainder of this section, we provide a brief
overview of the proof. For a detailed exposition, please refer to the Coq development.

Basic Properties

Typing Lemmas

Logical Lemmas

Progress Preservation Clo. Sub.

Substitution

Weakening

Narrowing

Type Soundness Logical Soundness

Typ. Den. Den. Typ.
Type-sub. Inv.

Eva. Inv. Exactness

Exact. Eva.

Figure 8 Proof Overview. Arrows signify the dependencies among lemmas and theorems.

4.1 Basic Properties
▶ Lemma 3 (Evaluation Invariant). If e⇝ e′, then [x 7→ e]p⇝∗ v ⇔ [x 7→ e′]p⇝∗ v.

This lemma asserts that evaluation remains unaffected by the substitution with pre-or-post-
evaluation terms, as the next lemma shows. Since the multi-step evaluation (⇝∗) does not
give a very useful induction principle, we first prove this lemma using the big-step semantics,
then link the lemma back to multi-step semantics via the correspondence between big-step
and multi-step semantics (i.e., e ⇓ v ⇔ e⇝∗ v).

▶ Lemma 4 (Type-substitution Invariant). If e ⇝ e′, then Γ ⊢ [x 7→ e]t <: [x 7→ e′]t and
Γ ⊢ [x 7→ e′]t <: [x 7→ e]t.

This lemma states the coherence of types under substitution with pre-or-post-evaluation
terms. This lemma is important to prove the preservation lemma. Since subtyping relies
eventually on evaluation, the primary challenge of proving this lemma hinges on Lemma 3.

▶ Lemma 5 (Exactness). If Γ ⊢ e : t then Γ ⊢ e : self(t, e).

This lemma states what we mean by “term information is always recorded”: for any well-typed
term e, we can always construct a typing where the term is selfified (recorded in the type).
Apart from being used for Lemma 6, this lemma is important for the substitution lemma
(Lemma 10).

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:17

▶ Lemma 6 (Exactness Evaluation). If e⇝ e′ and Γ ⊢ e′ : t then Γ ⊢ e′ : self(t, e).

This lemma ensures the term after evaluation (e′) can have the type selfified with the term
before evaluation (e), which is often needed to prove the preservation of typing throughout
evaluation steps. This lemma requires the exactness lemma, as shown above.

4.2 Logical Lemmas
▶ Lemma 7 (Typing Denotation). If Γ ⊢ v : t, then ∀θ ∈ JΓK.v ∈ [[θ(t)]].

This lemma states that typing implies denotation. It can be proved by induction on the
typing judgment. This lemma is important for the substitution lemma (Lemma 10) and is a
milestone for logical soundness, as we discuss in Section 4.5.

▶ Lemma 8 (Denotation Typing). If v ∈ [[t]] and ∅ ⊢w t, then ∅ ⊢ v : t.

This lemma states that denotation implies typing, which is crucial for Lemma 14. The basic
proof idea is to first construct a “ground type” for v: ∅ ⊢ v : {ν : w|ν = v}, where w is the
inherent base type of the value (int for n, bool for b, and C for new C(...)), and then link
the “ground type” to t by ∅ ⊢ {ν : w|ν = v} <: t, which holds due to v ∈ [[t]].

4.3 Typing Lemmas
4.3.1 Structural Lemmas for Typing
As usual, we establish structural properties (weakening, narrowing and substitution) for RFJ
typing. Since typing relies on subtyping which in turn, relies on logical implication, we need
those structural properties for subtyping and logical implication, too.

▶ Lemma 9 (Narrowing). for any variable x not in Γ and Γ′:
1. If Γ, x : r, Γ′ ⊢ p ⇒ q and Γ ⊢ r′ <: r, then Γ, x : r′, Γ′ ⊢ p ⇒ q.
2. If Γ, x : r, Γ′ ⊢ s <: t and Γ ⊢ r′ <: r, then Γ, x : r′, Γ′ ⊢ s <: t.
3. If Γ, x : r, Γ′ ⊢ e : t and Γ ⊢ r′ <: r, then Γ, x : r′, Γ′ ⊢ e : t.
The first narrowing lemma can be proved by observing that a denotation θ′ of Γ, x : r′, Γ′ is
always a denotation of Γ, x : r, Γ′. Using the first lemma, the remaining two are easy.

▶ Lemma 10 (Substitution). for any distinct variables x and y not in Γ and Γ′:
1. If Γ, x : rx, y : ry, Γ′ ⊨ p ⇒ q and Γ ⊢ vx : rx, Γ ⊢ vy : [x 7→ vx]ry, then Γ, [x 7→ vx; y 7→

vy]Γ′ ⊨ [x 7→ vx; y 7→ vy]p ⇒ [x 7→ vx; y 7→ vy]q.
2. If Γ, x : r, y : ry, Γ′ ⊢ s <: t and Γ ⊢ vx : rx, Γ ⊢ vy : [x 7→ vx]ry, then Γ, [x 7→ vx; y 7→

vy]Γ′ ⊢ [x 7→ vx; y 7→ vy]s <: [x 7→ vx; y 7→ vy]t.
3. If Γ, x : r, y : ry, Γ′ ⊢ e : t and Γ ⊢ vx : rx, Γ ⊢ vy : [x 7→ vx]ry, then Γ, [x 7→ vx; y 7→

vy]Γ′ ⊢ [x 7→ vx; y 7→ vy]e : [x 7→ vx; y 7→ vy]t.
Since RFJ has double substitution operations in method invocation (we must substitute for
this and the parameter), we need double substitution lemmas. The first substitution lemma
follows from the observation that a denotation of Γ, x : rx, y : ry, Γ′ can be constructed from
a denotation of Γ, [x 7→ vx; y 7→ vy]Γ′ by adding x : vx and y : vy. The core step of this
construction is to prove that vx is indeed a denotation of rx and vy is indeed a denotation of
[x 7→ vx]ry, utilizing Lemma 7. Using the first lemma, the second lemma is easy. The third
lemma can be proved by induction on typing. The T-Var case requires the exactness lemma
(Lemma 5) and weakening lemma (shown below). The other cases are easy.

ECOOP 2024

39:18 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

▶ Lemma 11 (Weakening). for any variable x not in Γ, Γ′, p, q, s and t:
1. If Γ, Γ′ ⊨ p ⇒ q, then Γ, x : r, Γ′ ⊨ p ⇒ q.
2. If Γ, Γ′ ⊢ s <: t, then Γ, x : r, Γ′ ⊢ s <: t.
3. If Γ, Γ′ ⊢ e : t, then Γ, x : r, Γ′ ⊢ e : t.
The first weakening lemma can be proved by observing that we can always construct a
denotation θ′ of Γ, Γ′ from a denotation θ of Γ, x : t, Γ′, by removing the x entry from θ.
Since x is fresh, removing it from θ does not impact the validity of this implication. With
the first weakening lemma in hand, the remaining two are straightforward.

4.3.2 Progress & Preservation
▶ Lemma 12 (Progress). If ∅ ⊢ e : t then e is a value or ∃e′.e⇝ e′.

The proof is done by induction on typing, following the standard approach of FJ.

▶ Lemma 13 (Preservation). If ∅ ⊢ e : t and e⇝ e′, then ∅ ⊢ e′ : t.

The proof is done by induction on the typing judgment and using the structural lemmas
for substitutions and environment narrowings. To argue the preservation in the presence of
general selfification and type substitution, Lemma 6 and Lemma 4 must also be utilized.

4.3.3 Closing Substitution
▶ Lemma 14 (Closing Substitution). If Γ ⊢ e : t, then ∀θ ∈ JΓK.∅ ⊢ θ(e) : θ(t).

The closing substitution lemma bears a similarity with the substitution lemma (Lemma 10).
They both concern the invariance of typing under substitution. The closing substitution
lemma can be proved by induction on typing. Most of the cases are standard, except for the
variable case, which requires proving ∅ ⊢ θ(x) : θ(t) under Γ ⊢ x : t. Since θ is a denotation
of Γ, we know that x must be in θ and θ(x) ∈ [[θ(t)]]. Thus, Lemma 8 can be applied to
construct the expected typing judgment.

4.4 Type Soundness
To improve the readability, we reproduce Type Soundness (Theorem 1) below:

▶ Corollary 15 (Type Soundness). If ∅ ⊢ e : t and e⇝∗ e′, then e′ is a value or ∃e′′.e′ ⇝ e′′.

Type soundness is an easy corollary of progress and preservation [70].

4.5 Logical Soundness
To improve readability, we reproduce the Logical Soundness (Theorem 2) below:

▶ Corollary 16 (Logical Soundness). If Γ ⊢ e : {ν : w|p}, ⊢w Γ, and Γ ↓ e , then Γ ⊨ [ν 7→ e]p.

The key to proving logical soundness is to observe that it can be reduced to closed logical
soundness (shown below) if we can derive a corresponding closed typing judgment given any
typing judgment. This is facilitated by the closing substitution lemma (Lemma 14).

▶ Theorem 17 (Closed Logical Soundness). If ∅ ⊢ e : {ν : w|p} and ↓ e, then ⊨ [ν 7→ e]p.

Closed logical soundness is a natural consequence of preservation and typing denotation.
Supposing e evaluates to v, the proof skeleton is that:
1. Due to the preservation lemma, ∅ ⊢ v : {ν : w|p}.
2. Due to the typing denotation lemma, v ∈ [[{ν : w|p}]], thus ⊨ [ν 7→ v]p.
3. Lastly, we can apply the evaluation invariant lemma to get ⊨ [ν 7→ e]p.

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:19

5 Logical Encoding: LFJ

Following the standard procedure as outlined in, e.g., [6], we convert RFJ to an algorithmic
bidirectional type system. The only judgment whose algorithmic property was unexplored
was the class-based refinement subtyping. In this section, we present an encoding of RFJ
to an order-sorted first-order logic [57], named LFJ, which gives a convenient axiomatic
approach to determine RFJ refinement subtyping by invoking logical decision procedures.

5.1 Language
Figure 9 presents the syntax of LFJ. The constant symbols (c) are for RFJ values. We
assume each RFJ value has a corresponding LFJ constant symbol. The function symbols (g)
are for methods (Nm), field selectors (Cf), class constructors (Ccr), and primitive operations
in RFJ. We associate methods with nominal names and field selectors with class names, for
attributing more precise semantics (detailed later). Note that interfaces have no fields. The
terms in LFJ do not contain quantification: they are viewed as implicitly quantified and a
universal quantification would be added to the outermost to close them. Sorts in LFJ consist
of ⊤, Int, Bool, and N . The sorts have an apparent correspondence with RFJ base types.
We denote |w| as the translation of a base type w to its sort, and |t| as the translation from
a refinement type t to its sort. The subsort relation ⊑ is straightforwardly translated from
the base-subtyping relation. The signatures of functions are also translated from their RFJ
type definitions, e.g., the signature of Cm is C → |t| → |r| if mtype(m, C) = p → x : t → r.

Syntax

e, p ::= terms:
x variable

c constant

g(e) apply

let x = e in e let binding

g ::= Nm | Cf | Ccr | ¬ | ⊕ functions

Sorts

s ::= ⊤ | Int | Bool | N sorts

|w| = match w with base translation

|⊤ ⇒ ⊤|int ⇒ Int|bool ⇒ Bool|N ⇒ N

|t| =|⌊t⌋| type translation

⊑ .= | <:b | subsort

Term Translation

|x| =x

|v| =cv

|¬e0| =¬(|e0|)
|e0 ⊕ e1| = ⊕ (|e0|, |e1|)

|new C(e)| =Ccr(|e|)
|e0.m(e1)| =δ(e0)m(|e0|, |e1|)

|e0.f | =δ(e0)f (|e0|)
|let x = e0 in e| =let x = |e0| in |e|

Environment Translation

|∅| =true

|Γ, x : {ν : u|p}| =|Γ| ∧ |[ν 7→ x]p|

Figure 9 LFJ syntax and translation.

Translation. The translation from RFJ terms and type environments to LFJ terms is mostly
straightforward. The only thing to note is the association of type information during the
translation of method invocations and field accesses, marked brown in Figure 9. This is
facilitated by the typeof function: δ(e) is the static type of expression e. δ can be constructed
during type checking. The association of type information is important for two purposes (we
take method invocations as an example, but the argument also applies to field accesses):

ECOOP 2024

39:20 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Disambiguation. Suppose the method m is defined by two classes C and D, which share no
common superclass except Object. If methods are not associated with nominal types, the
LFJ function representation of m would necessitate an assumed domain of Object for its
first parameter, rendering the model for the function inherently partial, because not all
Object has an m implementation. Incorporating type information ensures model totality
for the first parameter by guaranteeing the existence of at least one implementation of
m; such existence is verified by static type checking. This totality guarantee plays an
important role in the intended model (c.f., Section 5.2).
Axiomatization. The aim of LFJ is to provide an axiomatization of its intended model
(c.f., Section 5.3). By associating type information, the axiomatization can be crafted
with greater specificity and accuracy.

5.2 Intended Model

Domain:

GI =G⊤ = ∅

GC ={C(ds)| ds ∈ D|t|}, fs(C) = t f

GInt =Z
GBool ={T, F }

Ds ={d|d ∈ Gs′ ∧ s′ ⊑ s}

Functions:

¬, ∧, ∨ = normal

Ccr(d) =C(d)

Cfi (C′(d)) =di, C′ ⊑ C and fs(C) = t f

Nm(this, x) =

{
[[mb(m, C)]](this, x) if this = C(d)
... proceeds for all C ⊑ N

Figure 10 The intended model of LFJ. fs is short for fields.

In this section, we delineate the construction of an intended model A for LFJ, given in
Figure 10. This model bears similarities with several denotational semantics of class-based
languages [58, 12], especially in the usage of conditional functions as models of method
invocations, whereas we work with order-sorted logic, different from those semantics.

Domains. Each sort s is associated with a dynamic domain Gs and a static domain Ds.
The dynamic domain of a sort is a set containing all values inherently belonging to the sort.
The dynamic domains of ⊤ and I (i.e., interfaces) are both ∅. GInt and GBool are standard.
GC is the finite term trees [22] generated in a sort-correct manner (i.e., each field is drawn
from the static domain of the corresponding sort). The static domain (or simply, domain)
for a sort s aggregates the dynamic domains of its subsorts, as in standard OS-FOL [57].

Functions. The model adopts conventional interpretations for equality and boolean operat-
ors. The intended functions for constructors and fields are the constructing and destructing
functions for term trees. The intended function of Nm is just a conditional function composed
of the denotations of the implementation functions conditioned by the first parameter (i.e.,
the receiving object). We do not detail the denotations in this paper: because we require
termination for well-typed RFJ programs, those denotations are total on their domains and
can be constructed using standard fixed-point techniques as shown in, e.g, [46].

Algorithmic Subtyping. With the intended model A in hand, we now define the algorithmic
subtyping relation:

w <:b u A ⊨L ∀x.|Γ| ∧ |p| ⇒ |q|
Γ ⊢ {ν : w|p} <:L {ν : u|q}

A-Subtyping

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:21

where ⊨L is the normal semantics of OS-FOL [57]. We assume all variables in Γ are distinct
and are not ν. We use a universal quantification ∀x to close the formula, where x is the
variables used in Γ, p and q.

We establish the soundness of the algorithmic subtyping with respect to the refinement
subtyping, which is a corollary of the semantic equivalence and translation-substitution
distributivity. Semantic equivalence states the true sentences in RFJ logical interpretation
are also true in A, and vice versa. Translation-substitution distributivity states it does not
matter whether we apply a closing substitution prior to or after the translation.

▶ Proposition 18 (Semantic Equivalence). A ⊨L |p| ⇔ ⊨ p

▶ Proposition 19 (Translation-substitution Distributivity). A ⊨L |θ|(|p|) ⇔ A ⊨L |θ(p)|

▶ Corollary 20. If Γ ⊢ s <:L t, then Γ ⊢ s <: t.

Proof. We give a brief proof sketch of Corollary 20 here. Suppose s is {ν : w|p} and t is
{ν : u|q}. To prove Γ ⊢ {ν : w|p} <: {ν : u|q}, we need to prove ∀θ ∈ [[Γ, ν : w]]. if ⊨
θ(p) then ⊨ θ(q). By Γ ⊢ s <:L t, we have A ⊨L ∀x.|Γ| ∧ |p| ⇒ |q|, which gives us
∀σ.A ⊨L σ(|Γ| ∧ |p|) ⇒ A ⊨L σ(|q|) (by the semantics of OS-FOL). Pick σ as |θ|, due to
Propositions 18 and 19, we have A ⊨L |θ|(|Γ| ∧ |p|), which let us deduce A ⊨L |θ|(|q|). Using
Propositions 18 and 19 again, but in the reverse direction, we have ⊨ θ(q). ◀

5.3 Theory
To utilize the capability of deductive reasoning for checking subtyping algorithmically, we
axiomatize the intended model A by a theory TJ . TJ includes the usual theory of Equality,
Uninterpreted Functions, and Linear Integer Arithmetic (EUFLIA) [1]. Besides, it is equipped
with axioms for Nm, Cf , and Ccr. We specify and explain them in this section.

(1) generate :↠↠↠ ∀x : N.
∨

C⊑N

∃y : |fs(C)t|.x = C(y)

(2) inject :↠↠↠ ∀x : |fs(C)t|, y : |t|. Ccr(x) = Ccr(y) ⇒ x = y

(3) discriminate : C ̸= D ↠↠↠ ∀x : |fs(C)t|, y : |fs(D)t|. Ccr(x) ̸= Dcr(y)
(4) access : fs(C) = f t, C ′ ⊑ C ↠↠↠ ∀x : |fs(C ′)t|. Cfi

(C ′
cr(x)) = xi

(5) invoke : mt(m, N)x = tx, C ⊑ N, mb(m, C) = (x, e)↠↠↠
∀o : N, x : |tx|, d : |fs(C)t|. o = C(d) ⇒ Nm(o, x) = |e|

The above listing gives five axiom schemata. The symbol ↠↠↠ means “instantiate”: if the
condition on the left is satisfied, one can instantiate an axiom following the schema on the
right. The symbols fs, mb, fst, and mtx short for fields, mbody, the type part of fields,
and the parameter part of mtype (or mtypei for interfaces), respectively.

The axiom schemata are straightforward given the intended model A. However, they may
not be as efficient as we want. To address this, we add two derivable properties as axioms, to
speed up deductive reasoning. The first covers cases where the branches of a method direct to
the same implementation. We have seen such a case in our example: Anchovy.remA has two
branches that direct to the same implementation. We call these methods like Anchovy.remA

final methods. Final methods have the same implementation on all branches, and there is no
need to actually do the branching. We axiomatize their semantics using the axiom schema
(6) shown below. An instantiation of (6) gives the property p3 we discussed in Section 2.2.
The second covers cases where a method is called on a subclass of the declared type. For

ECOOP 2024

39:22 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

example, suppose we have ν = PiremA(x) and x : An, and we want to prove ν = AnremA(x).
With basic axioms (1) through (5) above, we have to first deduce the fact that x can only be
An(...) or Ma(...), then analyze the semantics of PiremA and AnremA for those two cases,
and finally deduce that the equality holds for both cases. However, this is mostly redundant:
PiremA and AnremA are the same function if the first argument is known to be an An. We
axiomatize this fact using schema (7) shown below. For certain cases involving comparing
method-call results, axiom schema (7) can speed up reasoning significantly.
(6) final : mt(m, C)x = tx, C.m final, mb(m, C) = (x, e), ↠↠↠ ∀o : C, x : |tx|. Cm(o, x) = |e|
(7) override : N ′ ⊑ N, mt(m, N ′)x = tx ↠↠↠ ∀o : N ′, x : |tx|. Nm(o, x) = N ′

m(o, x)

Encoding into Many-sorted Logic. The aforementioned axioms are defined in OS-FOL and
should be used in order-sorted deductive reasoning. Unfortunately, we are not aware of any
SMT solver that supports order-sortedness. Thus, we translate the axioms into many-sorted
logic following the strategy suggested by Leino [38]. The translation of primitive data types
is straightforward. For objects, a unified sort Object is designated. We then introduce a sort
Nominal to encompass all nominal entities, i.e., classes and interfaces in the targeting RFJ
program. We also declare the sub-nominal relation between those entities. The association
of nominal information with objects is facilitated through the Tag function, which relates
objects with their nominal identifiers. The sort requirements become sub-nominal checkings
on tags, e.g., instead of ∀x : C. p(x), we use ∀x : Object. sub-nominal(Tag(x), C) ⇒ p(x).

The direct encoding of the sort ⊤ into many-sorted logic is beyond our current scope,
primarily influencing the polymorphic nature of equality. Nevertheless, given the uniform
Object sort for all object values, object equality is still ⊤-typed essentially, circumventing
potential limitations posed by the absence of a direct ⊤ sort.

6 Mechanization and Implementation

6.1 Coq Mechanization
We mechanize the meta-theory of RFJ in Coq. There are two major technical challenges
around the mechanization. (1) Binders. Handling binders is cumbersome and complex [3],
especially considering the number of binder structures present in RFJ (e.g., methods, let-
bindings, and refinement types). To address this issue, we adopt the locally nameless
representation [13]. Although the locally nameless representation has been widely used in
mechanizing functional languages [8, 29, 13], to the best of our knowledge, ours is the first
mechanization of a class-based language that utilizes this technique. (2) Nested Inductive
Types. The presence of nested inductive types within our definitions poses a significant
challenge; that is, the default induction principles generated by Coq fell short when proving
the most critical properties. To mitigate this issue, we specify the custom induction principles
for a range of inductive definitions (e.g., terms, typing judgments, and big-step semantics),
following the classical methodology [15].

We briefly overview the structure of the mechanization, which contains about 15K lines
of Coq code:
1. Definitions (3K): language definitions as presented in Section 3.
2. Lemmas (11K):

a. Basic Lemmas (5K): miscellaneous lemmas concerning basic operations, semantics,
and class/interface definitions (some of which are listed in Section 4.1).

b. Logical Lemmas (2K): lemmas concerning the logical interpretation (c.f., Section 4.2).
c. Typing Lemmas (4K): basic, structural, and crucial lemmas of typing (c.f., Section 4.3).

3. Theorems (1K): type and logical soundness theorems (c.f., Sections 4.4 and 4.5).

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:23

6.2 Python Implementation
We implement a refinement type checker for RFJ. The implementation is written in roughly
2,000 lines of Python code, with Z3 [19] as the SMT backend. In addition to all features of
RFJ, the type checker also supports a form of if-then-else following the standard practice [32],
to increase the scope of the evaluation. The concrete syntax supported in the implementation
is a subset of Python with static types. We opt for Python just to reuse its parser and editor
supports. RFJ can be implemented for any other class-based language.

To test the type checker, we handcraft a test suite, including all the major examples that
do not use type-test/downcast or imperative features from a Java textbook [23], as well as
some interesting examples inspired by previous work [65]. Each example is paired with some
non-trivial properties. In total, there are 14 examples with about 1,500 LOC, covering all
important features of RFJ. We list several representative examples in Table 1.

Table 1 Several representative examples.

Name Features LOC Properties
pizza classes, overrides 135 remA_noinc_price, remA_idempotent
pizza visitor visitors, upcasts 110 noObj_after_rem, noObj_after_effective_sub
tree visitor interfaces 152 height_ge_root
geometry factory methods 184 origin_in_shape
list data structures 125 contains_weakening, inserts_preserve_sortedness
λ calculus data structures 71 size_positive, substitution_nodec_size
stlc meta-theories 307 map_extend_included, typing_weakening

Type-checking each example took under 5 seconds, on an Apple M1 machine.

7 Discussion

In this section, we discuss specific designs of RFJ in greater detail.

Type Substitution vs ANF and Existential types. In the realm of refinement type systems,
the conventional strategy often involves leveraging ANF [32, 37] or existential types [47, 34, 8]
to maintain the logic of refinements within a decidable framework, such as EUFLIA [9].
Our approach, however, consciously eschews these mechanisms and sticks to simple type
substitution for three compelling reasons. (1) From the theoretical perspective. We want to
argue the soundness of our system within a broader, more generalized framework: all RFJ
programs expressed in ANF are inherently valid within our system, while the converse does
not hold. Thus, our results perfectly apply to the condition where ANF is required (e.g., a
particular implementation may perform ANF transformation before type checking). (2) From
the algorithmic perspective. Recent advances [41, 44] have shown a complete algorithm for
formula validity under a user-specified theory exists, which is exactly what we need to perform
algorithmic subtyping checking. The fact that all our examples are checked costing only a
little time also evidences that a reasonably efficient algorithm exists even if the logic falls
outside the familiar decidable fragment. (3) From the pragmatical perspective. Eliminating
ANF and existential types significantly lowers the barrier between the programmer’s intent
and the underlying type system, simplifying the debugging process. To further lower the
barrier, our typing rules are carefully formulated without using any implicit environment
extension (e.g., the Field and Invoke rules in [47]). The only cases that would extend the
typing and subtyping environment are Let and method typing, thereby maintaining a clear
correspondence between the code and its type-level representation.

ECOOP 2024

39:24 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Axiomatization vs. Reflection. As pointed out by prior work [66], there are two kinds of
methodologies to support user-defined functions in refinement type systems: axiomatization
and reflection. Axiomatization articulates the semantics of user-defined functions through
logical axioms, an approach we adopt and have elaborated on in Section 5.3. In contrast,
reflection directly incorporates the function definition into the return type’s refinement (e.g.,
the return type of Anchovy.remA can be declared as {ν : Pizza|ν = this.p.remA()} to reflect
its definition). In our system, programmers can utilize reflection by manually specifying the
method return type (reflection annotation could also be provided to automate this process).
Those reflections are always valid thanks to general reflection, which ensures that terms are
always recorded in refinements. Notably, reflection offers an alternative to the final constraint
of the invoke axiom schema (c.f. Section 5.3): one can reflect the definition of an overriding
method and the overridden method simultaneously, as long as the return types of those
methods obey the co-variance principle.

The major difference between reflection and axiomatization resides in the instantiation
strategy of method definitions. With reflection, instantiations of the reflected functions are
performed within the type system, either by the programmer or an algorithm (e.g., PLE
in [66]). With axiomatization, instantiation is delegated to the SMT solver, although special
mechanisms such as trigger/fuel [2, 40] are needed to keep the process in control. Currently,
no special algorithm or mechanism for reflection or axiomatization is employed in RFJ.
However, we identify the comparison of these two methodologies in RFJ, especially in the
context of a reflection instantiation algorithm and more advanced type system features (e.g.,
occurrence typing and union/intersection types) as important future work.

8 Related Work

This work intersects three research topics: class-based refinement type systems, mechanization
of refinement types and class-based languages, and SMT-based reasoning in program verifiers.

Class-based Refinement Type Systems. Class is an important and time-honored abstraction
in object-oriented programming [16, 59, 25, 31], with numerous pieces of literature devoted [69,
60, 5, 55] to its extensions. In particular, many works have focused on class-based refinement
type systems. For example, Nystrom et al. [47] formalize core X10 as a refinement type system.
However, they focus only on the functional aspects. Vekris et al. [67] introduce a refinement
type calculus that not only conducts immutability analysis but also integrates union and
intersection types, with the caveat that only immutable fields are subject to refinement.
Campos et al. [10] combine refinement types with class-based linear types, further increasing
the support for imperative features. Kuncak et al. [56] present qualified type, a form of
refinement type, and offer an in-depth discussion on qualifier inference. Gamboa et al. [26]
address the practical challenges of incorporating refinement types into existing class-based
systems by proposing a design approach to usability.

All the aforementioned work limits their refinements to well-established decidable SMT
theories (e.g., EUFLIA), and thus have significant issues concerning soundness and ex-
pressiveness, as we have explained before. Meanwhile, although there are systems [33, 63]
exploring the support for more expressive refinements, their approach is mainly pragmatic
(i.e., they both rely on external verification tools to support the expressive refinements),
which complicates the analysis of their meta-theoretical properties further.

This work addresses the expressiveness and soundness issues in a fundamental way, by
providing an expressive and mechanized calculus grounded in Featherweight Java. We
anticipate that extensions such as generics and imperative features could be seamlessly
integrated into our framework, prospects we reserve for future exploration.

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:25

Mechanization of Refinement Types and Class-based Languages. Several pieces of recent
work have been dedicated to the mechanization of refinement types. Lehmann et al. [37]
formalize a refinement type system in Coq. Their logical interpretation is axiomatized via a
few basic requirements. This interpretation, however, leaves the semantics of logical formulas
nebulous. Meanwhile, their proof focuses solely on the closed logical soundness, rather than
general logical soundness. Wang et al. [68] mechanize in Coq a calculus that uses refinement
types for complexity analysis, defining logical interpretations through denotational semantics
that link refinements to Coq definitions. This method restricts the scope of terms that can be
utilized as refinements due to the limitation of denotational semantics. Borkowski et al. [8]
mechanizes a polymorphic refinement type system in Coq. They use an axiomatized logical
interpretation for type soundness, and an operational-semantics-based logical interpretation
for logical soundness. Hamza et al. [29] formalize a polymorphic refinement type system
in Coq. They also employ an operational-semantics-based logical interpretation (named
reduciblity in the original paper). Our work draws inspiration from the two works on
using operational-semantics-based logical interpretations, yet our proof diverges notably,
especially given the inapplicability of logical relation techniques in our context. Moreover,
our framework includes several special mechanisms such as general selfification and nominal
subtyping, extending beyond the capabilities of the systems devised by those authors. Chen’s
work [14] in Agda takes a unique route by integrating Agda to define a denotational semantics
for refinements. However, the algorithmic properties are complicated, due to the reliance
on Agda’s logic. Ghalayini et al. [26] opt for a categorical-theoretical perspective for logical
interpretation in their mechanized refinement type system in Lean [18], contrasting with the
semantic logical interpretation in our work.

Apart from the abovementioned differences, our research sets itself apart by focusing on
a class-based calculus. This foundation renders our model particularly adept at mirroring
object-oriented programming paradigms, a facet not directly addressed by the aforementioned
mechanizations. There are also several mechanizations of class-based languages [42, 20, 17].
However, neither of them supports refinement types.

SMT-based Deductive Reasoning in Program Verifiers. Since its inception, SMT solvers
have played a pivotal role in the automated verification of functional properties. Simplify [21]
and ESC/Java [24] are among the earliest examples. Subsequently, a wave of advanced
program verifiers like Dafny [39], Leon/Stainless [7, 29], F* [61] and Liquid Haskell [65, 66]
have garnered attention in both academia and industry. Among those systems, Dafny
and Leon/Stainless all support some object-oriented constructs. However, they lack RFJ’s
support for nominal subtyping and method inheritance. Recent scholarly work has delved
into the foundational aspects of SMT-based deductive reasoning, focusing especially on the
completeness problem [44, 41, 45]. However, the arguments of those papers are all set upon
many-sorted logic, diverging from the order-sorted logic in our study.

On the other hand, SMT solvers have also been extensively used in verifying heap
properties. The modeling and verification of those properties (typically in separation
logic [48, 49]) are, in general, beyond the ability of vanilla SMT theories [43]. Despite
these challenges, research has successfully identified certain significant fragments yielding
effective decision procedures falling into the SMT realm [43, 54, 53]. Currently, RFJ is a
purely functional calculus. However, we believe that it is promising to incorporate those
advancements to support the reasoning of heaps, considering imperative features are ambitious
in class-based object-oriented languages [50].

ECOOP 2024

39:26 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

9 Conclusion and Future Work

This paper introduces Refinement Featherweight Java (RFJ), advancing class-based refinement
types with expressive refinements for comprehensive logical constraints. We mechanize RFJ
in Coq, proving its soundness rigorously. We bridge the declarative calculus and algorithmic
verification via a specified fragment in OS-FOL, making RFJ’s refinements accessible for
SMT reasoning. The deliberate choice of FJ and OS-FOL for our fundamental framework
facilitates important future extensions, such as polymorphic and imperative features, and a
thorough exploration of algorithmic properties.

References
1 Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt,

and Mattias Ulbrich, editors. Deductive software verification – the KeY book – from theory
to practice, volume 10001 of Lecture Notes in Computer Science. Springer, 2016. doi:
10.1007/978-3-319-49812-6.

2 Nada Amin, K. Rustan M. Leino, and Tiark Rompf. Computing with an SMT solver. In
Martina Seidl and Nikolai Tillmann, editors, Tests and Proofs – 8th International Conference,
TAP@STAF 2014, York, UK, July 24-25, 2014. Proceedings, volume 8570 of Lecture Notes in
Computer Science, pages 20–35. Springer, 2014. doi:10.1007/978-3-319-09099-3_2.

3 Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C.
Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve
Zdancewic. Mechanized metatheory for the masses: The poplmark challenge. In Joe Hurd
and Thomas F. Melham, editors, Theorem Proving in Higher Order Logics, 18th International
Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings, volume 3603 of
Lecture Notes in Computer Science, pages 50–65. Springer, 2005. doi:10.1007/11541868_4.

4 Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Computer Aided Verification – 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in
Computer Science, pages 171–177. Springer, 2011. doi:10.1007/978-3-642-22110-1_14.

5 Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti
Venneri. Java & lambda: a featherweight story. Log. Methods Comput. Sci., 14(3), 2018.
doi:10.23638/LMCS-14(3:17)2018.

6 Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu, and David E. Langworthy. Semantic
subtyping with an SMT solver. J. Funct. Program., 22(1):31–105, 2012. doi:10.1017/
S0956796812000032.

7 Régis Blanc, Viktor Kuncak, Etienne Kneuss, and Philippe Suter. An overview of the leon
verification system: verification by translation to recursive functions. In Proceedings of the 4th
Workshop on Scala, SCALA@ECOOP 2013, Montpellier, France, July 2, 2013, pages 1:1–1:10.
ACM, 2013. doi:10.1145/2489837.2489838.

8 Michael Borkowski, Niki Vazou, and Ranjit Jhala. Mechanizing refinement types. Proc. ACM
Program. Lang., 8(POPL):2099–2128, 2024. doi:10.1145/3632912.

9 Aaron R. Bradley and Zohar Manna. The calculus of computation – decision procedures with
applications to verification. Springer, 2007. doi:10.1007/978-3-540-74113-8.

10 Joana Campos and Vasco T. Vasconcelos. Dependent types for class-based mutable objects.
In Todd D. Millstein, editor, 32nd European Conference on Object-Oriented Programming,
ECOOP 2018, July 16-21, 2018, Amsterdam, The Netherlands, volume 109 of LIPIcs, pages
13:1–13:28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.
ECOOP.2018.13.

11 Giuseppe Castagna. Covariance and contravariance: Conflict without a cause. ACM Trans.
Program. Lang. Syst., 17(3):431–447, 1995. doi:10.1145/203095.203096.

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-09099-3_2
https://doi.org/10.1007/11541868_4
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.23638/LMCS-14(3:17)2018
https://doi.org/10.1017/S0956796812000032
https://doi.org/10.1017/S0956796812000032
https://doi.org/10.1145/2489837.2489838
https://doi.org/10.1145/3632912
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.4230/LIPICS.ECOOP.2018.13
https://doi.org/10.4230/LIPICS.ECOOP.2018.13
https://doi.org/10.1145/203095.203096

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:27

12 Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A semantics for lambda&-early: A
calculus with overloading and early binding. In Marc Bezem and Jan Friso Groote, editors,
Typed Lambda Calculi and Applications, International Conference on Typed Lambda Calculi
and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993, Proceedings,
volume 664 of Lecture Notes in Computer Science, pages 107–123. Springer, 1993. doi:
10.1007/BFB0037101.

13 Arthur Charguéraud. The locally nameless representation. J. Autom. Reason., 49(3):363–408,
2012. doi:10.1007/S10817-011-9225-2.

14 Zilin Chen. A hoare logic style refinement types formalisation. In TyDe ’22: 7th ACM
SIGPLAN International Workshop on Type-Driven Development, Ljubljana, Slovenia, 11
September 2022, pages 1–14. ACM, 2022. doi:10.1145/3546196.3550162.

15 Adam Chlipala. Certified programming with dependent types – a pragmatic introduction
to the Coq Proof Assistant. MIT Press, 2013. URL: http://mitpress.mit.edu/books/
certified-programming-dependent-types.

16 William R. Cook. On understanding data abstraction, revisited. In Shail Arora and Gary T.
Leavens, editors, Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009, October 25-29,
2009, Orlando, Florida, USA, pages 557–572. ACM, 2009. doi:10.1145/1640089.1640133.

17 Samuel da Silva Feitosa, Rodrigo Geraldo Ribeiro, and André Rauber Du Bois. Towards
an extrinsic formalization of featherweight java in agda. CLEI Electron. J., 24(3), 2021.
doi:10.19153/CLEIEJ.24.3.3.

18 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction – CADE 28
– 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021,
Proceedings, volume 12699 of Lecture Notes in Computer Science, pages 625–635. Springer,
2021. doi:10.1007/978-3-030-79876-5_37.

19 Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

20 Benjamin Delaware, William R. Cook, and Don S. Batory. Product lines of theorems. In
Cristina Videira Lopes and Kathleen Fisher, editors, Proceedings of the 26th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, pages
595–608. ACM, 2011. doi:10.1145/2048066.2048113.

21 David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365–473, 2005. doi:10.1145/1066100.1066102.

22 Khalil Djelloul, Thi-Bich-Hanh Dao, and Thom W. Frühwirth. Theory of finite or infinite trees
revisited. Theory Pract. Log. Program., 8(4):431–489, 2008. doi:10.1017/S1471068407003171.

23 Matthias Felleisen and Daniel P. Friedman. A little Java, a few patterns. MIT Press, 1996.
24 Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and

Raymie Stata. Extended static checking for java. In Jens Knoop and Laurie J. Hendren,
editors, Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Berlin, Germany, June 17-19, 2002, pages 234–245. ACM, 2002.
doi:10.1145/512529.512558.

25 Maurizio Gabbrielli, Simone Martini, and Saverio Giallorenzo. Programming languages:
principles and paradigms, Second Edition. Undergraduate Topics in Computer Science. Springer,
2023. doi:10.1007/978-3-031-34144-1.

26 Catarina Gamboa, Paulo Canelas, Christopher Steven Timperley, and Alcides Fonseca.
Usability-oriented design of liquid types for java. In 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, pages 1520–1532.
IEEE, 2023. doi:10.1109/ICSE48619.2023.00132.

ECOOP 2024

https://doi.org/10.1007/BFB0037101
https://doi.org/10.1007/BFB0037101
https://doi.org/10.1007/S10817-011-9225-2
https://doi.org/10.1145/3546196.3550162
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.19153/CLEIEJ.24.3.3
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2048066.2048113
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1017/S1471068407003171
https://doi.org/10.1145/512529.512558
https://doi.org/10.1007/978-3-031-34144-1
https://doi.org/10.1109/ICSE48619.2023.00132

39:28 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

27 Simon J. Gay, Nils Gesbert, António Ravara, and Vasco Thudichum Vasconcelos. Modular
session types for objects. Log. Methods Comput. Sci., 11(4), 2015. doi:10.2168/LMCS-11(4:
12)2015.

28 James Gosling, William N. Joy, and Guy L. Steele Jr. The Java Language Specification.
Addison-Wesley, 1996.

29 Jad Hamza, Nicolas Voirol, and Viktor Kuncak. System FR: formalized foundations for
the stainless verifier. Proc. ACM Program. Lang., 3(OOPSLA):166:1–166:30, 2019. doi:
10.1145/3360592.

30 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: a minimal
core calculus for java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
doi:10.1145/503502.503505.

31 Bart Jacobs. Objects and classes, co-algebraically. In Burkhard Freitag, Cliff B. Jones,
Christian Lengauer, and Hans-Jörg Schek, editors, Object Orientation with Parallelism and
Persistence (the book grow out of a Dagstuhl Seminar in April 1995), pages 83–103. Kluwer
Academic Publishers, 1995.

32 Ranjit Jhala and Niki Vazou. Refinement types: A tutorial. Found. Trends Program. Lang.,
6(3-4):159–317, 2021. doi:10.1561/2500000032.

33 Milod Kazerounian, Niki Vazou, Austin Bourgerie, Jeffrey S. Foster, and Emina Torlak.
Refinement types for ruby. In Isil Dillig and Jens Palsberg, editors, Verification, Model
Checking, and Abstract Interpretation – 19th International Conference, VMCAI 2018, Los
Angeles, CA, USA, January 7-9, 2018, Proceedings, volume 10747 of Lecture Notes in Computer
Science, pages 269–290. Springer, 2018. doi:10.1007/978-3-319-73721-8_13.

34 Kenneth L. Knowles and Cormac Flanagan. Compositional reasoning and decidable checking for
dependent contract types. In Thorsten Altenkirch and Todd D. Millstein, editors, Proceedings
of the 3rd ACM Workshop Programming Languages meets Program Verification, PLPV 2009,
Savannah, GA, USA, January 20, 2009, pages 27–38. ACM, 2009. doi:10.1145/1481848.
1481853.

35 Daniel Kroening and Ofer Strichman. Decision procedures – an algorithmic point of view.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2008. doi:10.1007/
978-3-540-74105-3.

36 Florian Lanzinger, Alexander Weigl, Mattias Ulbrich, and Werner Dietl. Scalability and
precision by combining expressive type systems and deductive verification. Proc. ACM
Program. Lang., 5(OOPSLA):1–29, 2021. doi:10.1145/3485520.

37 Nico Lehmann and Éric Tanter. Formalizing simple refinement types in coq. In 2nd Interna-
tional Workshop on Coq for Programming Languages (CoqPL’16), St. Petersburg, FL, USA,
2016.

38 K Rustan M Leino. This is boogie 2. manuscript KRML, 178(131):9, 2008.
39 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In

Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning – 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May
1, 2010, Revised Selected Papers, volume 6355 of Lecture Notes in Computer Science, pages
348–370. Springer, 2010. doi:10.1007/978-3-642-17511-4_20.

40 K. Rustan M. Leino and Clément Pit-Claudel. Trigger selection strategies to stabilize program
verifiers. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification – 28th
International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part I, volume 9779 of Lecture Notes in Computer Science, pages 361–381. Springer, 2016.
doi:10.1007/978-3-319-41528-4_20.

41 Christof Löding, P. Madhusudan, and Lucas Peña. Foundations for natural proofs and quantifier
instantiation. Proc. ACM Program. Lang., 2(POPL):10:1–10:30, 2018. doi:10.1145/3158098.

42 Julian Mackay, Hannes Mehnert, Alex Potanin, Lindsay Groves, and Nicholas Cameron.
Encoding featherweight java with assignment and immutability using the coq proof assistant.
In Wei-Ngan Chin and Aquinas Hobor, editors, Proceedings of the 14th Workshop on Formal
Techniques for Java-like Programs, FTfJP 2012, Beijing, China, June 12, 2012, pages 11–19.
ACM, 2012. doi:10.1145/2318202.2318206.

https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1145/503502.503505
https://doi.org/10.1561/2500000032
https://doi.org/10.1007/978-3-319-73721-8_13
https://doi.org/10.1145/1481848.1481853
https://doi.org/10.1145/1481848.1481853
https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.1145/3485520
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1145/3158098
https://doi.org/10.1145/2318202.2318206

K. Sun, D. Wang, S. Chen, M. Wang, and D. Hao 39:29

43 P. Madhusudan, Gennaro Parlato, and Xiaokang Qiu. Decidable logics combining heap
structures and data. In Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, pages 611–622. ACM, 2011. doi:10.1145/1926385.1926455.

44 Adithya Murali, Lucas Peña, Ranjit Jhala, and P. Madhusudan. Complete first-order reasoning
for properties of functional programs. Proc. ACM Program. Lang., 7(OOPSLA2):1063–1092,
2023. doi:10.1145/3622835.

45 Adithya Murali, Lucas Peña, Christof Löding, and P. Madhusudan. A first-order logic with
frames. ACM Trans. Program. Lang. Syst., 45(2):7:1–7:44, 2023. doi:10.1145/3583057.

46 Hanne Riis Nielson and Flemming Nielson. Semantics with applications, volume 104. Springer,
1992.

47 Nathaniel Nystrom, Vijay A. Saraswat, Jens Palsberg, and Christian Grothoff. Constrained
types for object-oriented languages. In Gail E. Harris, editor, Proceedings of the 23rd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA, pages 457–474. ACM,
2008. doi:10.1145/1449764.1449800.

48 Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007. doi:10.1016/J.TCS.2006.12.035.

49 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs that
alter data structures. In Laurent Fribourg, editor, Computer Science Logic, 15th International
Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September 10-13,
2001, Proceedings, volume 2142 of Lecture Notes in Computer Science, pages 1–19. Springer,
2001. doi:10.1007/3-540-44802-0_1.

50 Johan Östlund and Tobias Wrigstad. Welterweight java. In Jan Vitek, editor, Objects, Models,
Components, Patterns, 48th International Conference, TOOLS 2010, Málaga, Spain, June 28
- July 2, 2010. Proceedings, volume 6141 of Lecture Notes in Computer Science, pages 97–116.
Springer, 2010. doi:10.1007/978-3-642-13953-6_6.

51 Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic typing with
dependent types. In Jean-Jacques Lévy, Ernst W. Mayr, and John C. Mitchell, editors,
Exploring New Frontiers of Theoretical Informatics, IFIP 18th World Computer Congress,
TC1 3rd International Conference on Theoretical Computer Science (TCS2004), 22-27 August
2004, Toulouse, France, volume 155 of IFIP, pages 437–450. Kluwer/Springer, 2004. doi:
10.1007/1-4020-8141-3_34.

52 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
53 Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation logic with trees

and data. In Armin Biere and Roderick Bloem, editors, Computer Aided Verification – 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer
Science, pages 711–728. Springer, 2014. doi:10.1007/978-3-319-08867-9_47.

54 Andrew Reynolds, Radu Iosif, Cristina Serban, and Tim King. A decision procedure for
separation logic in SMT. In Cyrille Artho, Axel Legay, and Doron Peled, editors, Automated
Technology for Verification and Analysis – 14th International Symposium, ATVA 2016, Chiba,
Japan, October 17-20, 2016, Proceedings, volume 9938 of Lecture Notes in Computer Science,
pages 244–261, 2016. doi:10.1007/978-3-319-46520-3_16.

55 Reuben N. S. Rowe and Steffen van Bakel. Semantic types and approximation for featherweight
java. Theor. Comput. Sci., 517:34–74, 2014. doi:10.1016/J.TCS.2013.08.017.

56 Georg Stefan Schmid and Viktor Kuncak. Smt-based checking of predicate-qualified types
for scala. In Aggelos Biboudis, Manohar Jonnalagedda, Sandro Stucki, and Vlad Ureche,
editors, Proceedings of the 7th ACM SIGPLAN Symposium on Scala, SCALA@SPLASH
2016, Amsterdam, Netherlands, October 30 - November 4, 2016, pages 31–40. ACM, 2016.
doi:10.1145/2998392.2998398.

ECOOP 2024

https://doi.org/10.1145/1926385.1926455
https://doi.org/10.1145/3622835
https://doi.org/10.1145/3583057
https://doi.org/10.1145/1449764.1449800
https://doi.org/10.1016/J.TCS.2006.12.035
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-13953-6_6
https://doi.org/10.1007/1-4020-8141-3_34
https://doi.org/10.1007/1-4020-8141-3_34
https://doi.org/10.1007/978-3-319-08867-9_47
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1016/J.TCS.2013.08.017
https://doi.org/10.1145/2998392.2998398

39:30 Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

57 Peter H. Schmitt and Mattias Ulbrich. Axiomatization of typed first-order logic. In Nikolaj S.
Bjørner and Frank S. de Boer, editors, FM 2015: Formal Methods – 20th International
Symposium, Oslo, Norway, June 24-26, 2015, Proceedings, volume 9109 of Lecture Notes in
Computer Science, pages 470–486. Springer, 2015. doi:10.1007/978-3-319-19249-9_29.

58 Thomas Studer. Constructive foundations for featherweight java. In Reinhard Kahle, Peter
Schroeder-Heister, and Robert F. Stärk, editors, Proof Theory in Computer Science, In-
ternational Seminar, PTCS 2001, Dagstuhl Castle, Germany, October 7-12, 2001, Proceed-
ings, volume 2183 of Lecture Notes in Computer Science, pages 202–238. Springer, 2001.
doi:10.1007/3-540-45504-3_13.

59 Ke Sun, Sheng Chen, Meng Wang, and Dan Hao. What types are needed for typing dynamic
objects? A python-based empirical study. In Chung-Kil Hur, editor, Programming Languages
and Systems – 21st Asian Symposium, APLAS 2023, Taipei, Taiwan, November 26-29, 2023,
Proceedings, volume 14405 of Lecture Notes in Computer Science, pages 24–45. Springer, 2023.
doi:10.1007/978-981-99-8311-7_2.

60 Ke Sun, Yifan Zhao, Dan Hao, and Lu Zhang. Static type recommendation for python. In
37th IEEE/ACM International Conference on Automated Software Engineering, ASE 2022,
Rochester, MI, USA, October 10-14, 2022, pages 98:1–98:13. ACM, 2022. doi:10.1145/
3551349.3561150.

61 Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,
Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
Jean Karim Zinzindohoue, and Santiago Zanella Béguelin. Dependent types and multi-
monadic effects in F. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 256–270. ACM, 2016.
doi:10.1145/2837614.2837655.

62 William W. Tait. Intensional interpretations of functionals of finite type I. J. Symb. Log.,
32(2):198–212, 1967. doi:10.2307/2271658.

63 Emina Torlak and Rastislav Bodík. Growing solver-aided languages with rosette. In Antony L.
Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM Symposium on New Ideas
in Programming and Reflections on Software, Onward! 2013, part of SPLASH ’13, Indianapolis,
IN, USA, October 26-31, 2013, pages 135–152. ACM, 2013. doi:10.1145/2509578.2509586.

64 Steffen van Bakel and Maribel Fernández. Normalization, approximation, and semantics
for combinator systems. Theor. Comput. Sci., 290(1):975–1019, 2003. doi:10.1016/
S0304-3975(02)00548-0.

65 Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones.
Refinement types for haskell. In Johan Jeuring and Manuel M. T. Chakravarty, editors,
Proceedings of the 19th ACM SIGPLAN international conference on Functional programming,
Gothenburg, Sweden, September 1-3, 2014, pages 269–282. ACM, 2014. doi:10.1145/2628136.
2628161.

66 Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip
Wadler, and Ranjit Jhala. Refinement reflection: complete verification with SMT. Proc. ACM
Program. Lang., 2(POPL):53:1–53:31, 2018. doi:10.1145/3158141.

67 Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement types for typescript.
In Chandra Krintz and Emery D. Berger, editors, Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara,
CA, USA, June 13-17, 2016, pages 310–325. ACM, 2016. doi:10.1145/2908080.2908110.

68 Peng Wang, Di Wang, and Adam Chlipala. Timl: a functional language for practical complexity
analysis with invariants. Proc. ACM Program. Lang., 1(OOPSLA):79:1–79:26, 2017. doi:
10.1145/3133903.

69 Stefan Wehr, Ralf Lämmel, and Peter Thiemann. Javagi : Generalized interfaces for java. In
Erik Ernst, editor, ECOOP 2007 – Object-Oriented Programming, 21st European Conference,
Berlin, Germany, July 30 – August 3, 2007, Proceedings, volume 4609 of Lecture Notes in
Computer Science, pages 347–372. Springer, 2007. doi:10.1007/978-3-540-73589-2_17.

70 Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, 1994. doi:10.1006/INCO.1994.1093.

https://doi.org/10.1007/978-3-319-19249-9_29
https://doi.org/10.1007/3-540-45504-3_13
https://doi.org/10.1007/978-981-99-8311-7_2
https://doi.org/10.1145/3551349.3561150
https://doi.org/10.1145/3551349.3561150
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.2307/2271658
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1016/S0304-3975(02)00548-0
https://doi.org/10.1016/S0304-3975(02)00548-0
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/2908080.2908110
https://doi.org/10.1145/3133903
https://doi.org/10.1145/3133903
https://doi.org/10.1007/978-3-540-73589-2_17
https://doi.org/10.1006/INCO.1994.1093

Information Flow Control in Cyclic Process
Networks
Bas van den Heuvel #

HKA Karlsruhe, Germany
University of Freiburg, Germany
University of Groningen, The Netherlands

Farzaneh Derakhshan #

Illinois Institutie of Technology, Chicago, IL, USA

Stephanie Balzer #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Protection of confidential data is an important security consideration of today’s applications. Of
particular concern is to guard against unintentional leakage to a (malicious) observer, who may
interact with the program and draw inference from made observations. Information flow control
(IFC) type systems address this concern by statically ruling out such leakage. This paper contributes
an IFC type system for message-passing concurrent programs, the computational model of choice
for many of today’s applications such as cloud computing and IoT applications. Such applications
typically either implicitly or explicitly codify protocols according to which message exchange must
happen, and to statically ensure protocol safety, behavioral type systems such as session types can
be used. This paper marries IFC with session typing and contributes over prior work in the following
regards: (1) support of realistic cyclic process networks as opposed to the restriction to tree-shaped
networks, (2) more permissive, yet entirely secure, IFC control, exploiting cyclic process networks,
and (3) considering deadlocks as another form of side channel, and asserting deadlock-sensitive
noninterference (DSNI) for well-typed programs. To prove DSNI, the paper develops a novel logical
relation that accounts for cyclic process networks. The logical relation is rooted in linear logic, but
drops the tree-topology restriction imposed by prior work.

2012 ACM Subject Classification Theory of computation → Linear logic; Security and privacy →
Logic and verification; Theory of computation → Process calculi; Theory of computation → Type
theory

Keywords and phrases Cyclic process networks, linear session types, logical relations, deadlock-
sensitive noninterference

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.40

Related Version Extended Version: https://arxiv.org/abs/2407.02304 [27]

Funding Bas van den Heuvel: Supported in part by the Dutch Research Council (NWO) under
project No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software).
Stephanie Balzer : Supported in part by the Air Force Office of Scientific Research under award number
FA9550-21-1-0385 (Tristan Nguyen, program manager). Any opinions, findings and conclusions or
recommendations expressed here are those of the author(s) and do not necessarily reflect the views
of the U.S. Department of Defense.

1 Introduction

Many of today’s emerging applications and systems such as cloud computing and IoT
applications are inherently concurrent and message passing. Message passing also enjoys
popularity in mainstream languages such as Erlang, Go, and Rust. Similar to functional
languages with the λ-calculus as their theoretical model, the model of message-passing

© Bas van den Heuvel, Farzaneh Derakhshan, and Stephanie Balzer;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 40; pp. 40:1–40:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vdheuvel@informatik.uni-freiburg.de
https://orcid.org/0000-0002-8264-7371
mailto:fderakhshan@iit.edu
https://orcid.org/0000-0002-2156-2606
mailto:balzers@cs.cmu.edu
https://orcid.org/0000-0002-8347-3529
https://doi.org/10.4230/LIPIcs.ECOOP.2024.40
https://arxiv.org/abs/2407.02304
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Information Flow Control in Cyclic Process Networks

concurrent languages is the process calculus [31, 47, 48]. A program in this setting amounts
to a number of processes connected by channels, which compute by exchanging messages along
these channels, rather than by β-reductions or writing to and reading from shared memory.
Messages may even include channels themselves, a feature supported in the π-calculus [49, 59]
and referred to as higher-order message passing.

Originally untyped [49], the π-calculus has gradually been enriched with types to prescribe
the kinds of messages that can be exchanged over a channel [59] and to assert correctness
properties, such as deadlock freedom and data-race freedom [40, 38, 39, 42]. Following in
these footsteps, session types [32, 33] were conceived to additionally express the protocols
underlying the exchange. Session types rely on a linear treatment of channels to model the
state transitions induced by a protocol, which was even substantiated by a Curry-Howard
correspondence between the session-typed π-calculus and linear logic [9, 66, 67, 64, 45, 10, 46].
Session types based on linear logic enjoy strong properties, comprising not only race and
deadlock freedom but also protocol fidelity.

Security is another correctness consideration arising from today’s applications and systems.
One security concern in particular is the protection of confidential information, by preventing
unintentional leakage to a (malicious) observer, who may interact with the program and draw
inference from made observations. Type systems for information flow control (IFC) rule out
such leakage by type checking [65, 60, 57], given a lattice over security levels and the labeling
of observables (e.g., output, locations, channels) with these levels. Well-typed programs then
prevent “flows from high to low” and guarantee noninterference, i.e., that an observer cannot
infer any secrets from made observations. To guarantee noninterference, advanced proof
methods such as logical relations [54, 2, 22, 50, 37, 63] and bisimulations [44, 62, 61, 58]
are used. If side channels [57], such as the termination channel, are present, then the
literature distinguishes progress-sensitive noninterference (PSNI) from progress-insensitive
noninterference (PINI), where the former only equates a divergent program run with another
diverging one, whereas the latter equates a divergent program run with any other run [24].

Whereas the development of IFC type systems has been an active research field for decades
for imperative and predominantly sequential languages, their exploration in a concurrent,
message-passing setting has been more confined to typed process calculi [34, 35, 17, 25, 41,
68, 55] and multiparty session types [13, 11, 14, 12]. Only recently, IFC has been adopted
for session types based on linear logic [20, 5]. The resulting type systems exploit the strong
guarantees arising from linear logic, which in particular curtail the network of processes
arising at runtime to a tree structure. However, many real-world application scenarios are
precluded from an insistence on a tree structure, instead requiring support of cyclic process
networks. Session type systems [6, 7, 19, 29, 30] that allow for cyclic process networks increase
expressivity while remaining rooted in linear logic.

This paper scales IFC to cyclic process networks and contributes an IFC type system for
an asynchronous π-calculus with linear session types. To prove that well-typed processes
in the resulting language enjoy noninterference, we develop a novel logical relation. Our
development was challenged by the possibility of deadlocks that can arise in cyclic process
networks and that constitute another form of side channel. To rule out side-channel attacks
due to deadlocks, we introduce the notion of deadlock-sensitive noninterference (DSNI), which
only equates a deadlocking program with another deadlocking one. Using our logical relation
we prove that well-typed processes in our language enjoy DSNI (fundamental theorem).

Cyclic process networks also turn out to be beneficial for IFC, as they permit secure
programs that are rejected by existing IFC type systems for linear session types [20, 5]. These
are programs that exploit the possibility of setting up several channels – rather than just one
channel – between two processes, to separate low-security from high-security communication.

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:3

Contributions. Our contributions are threefold:
1. An IFC session type system for an asynchronous π-calculus with support for cyclic process

networks (Sec. 3), that satisfies protocol fidelity and communication safety (Thm. 3.12).
2. A logical relation that induces an equivalence between typed processes (Sec. 4), defining

our notion of DSNI (Def. 4.9).
3. The main result that well typedness implies DSNI (Thm. 5.1 in Sec. 5), following from

the fundamental theorem (Thm. 5.7).

Outline. In addition to the above contributions, Sec. 2 gently introduces the key ideas
behind the developments in this paper, Sec. 6 discusses related work, and Sec. 7 concludes
the paper. Important proofs are detailed in part; remaining details, proofs, and auxiliary
definitions are given in the extended version of this paper [27].

2 Key Ideas

In this section, we discuss the key ideas behind our contributions.

2.1 Cyclic Process Networks Afford Flexible Information Flow Control

We motivate our developments through a high-level example, focusing on how cyclicity in
process networks improves over prior works by increasing the flexibility of information flow
control to support more realistic scenarios.

Collaborating governments. Consider two governments that want to collaborate on sci-
entific and intelligence efforts. Clearly, the interactions between a government and an
intelligence agency is confidential, whereas interactions between a government and the scien-
tific community is not; intelligence may not leak to the scientific community, where there
may be spies.

We make this more precise by establishing that information can be of H igh or Low
confidentiality, and that communication channels can be of H igh or Low security. Clearly,
information of Low confidentiality can be transmitted over H igh-security channels, but
not vice versa. We identify our two governments as X ∈ {A, B}, each with departments
(processes) GovX, IntX, ScienceX. We consider three scenarios, each of which connects these
processes to form different process networks.

Scenario 1: No cyclicity. In Fig. 1a, the governments have only one channel to communicate
on. Lines between departments denote communication channels, and their annotations
indicate security levels. In this scenario, no processes are cyclically connected.

Notice that the channel connecting the two governments does not have a security level
assigned. If we insist on intelligence exchange (i.e., on exchanging H igh-confidentiality
information), this channel must be of H igh security. However, this inhibits scientific exchange:
when a government receives information on a H igh-security channel, it cannot guarantee that
the information is of Low confidentiality, so it cannot share it with its scientific department
over a Low-security channel. Hence, the single channel of communication between the
governments is unrealistic.

ECOOP 2024

40:4 Information Flow Control in Cyclic Process Networks

GovA
IntA

ScienceA
GovB

IntB

ScienceB

?H

L

H

L

(a) Scenario 1: No cyclicity.

GovA
IntA

ScienceA
GovB

IntB

ScienceB

H

L

H

L

H

L

(b) Scenario 2: Doubly connected governments.

GovH
A

GovL
A

IntA

ScienceA

GovH
B

GovL
B

IntB

ScienceB

L L

H

L

H

L

H

L

(c) Scenario 3: Extended cyclicity for more flexible IFC.

Figure 1 Collaborating governments: three scenarios.

Scenario 2: Doubly-connected governments. In Fig. 1b, we attempt to remedy this
problem by adding a second channel of Low security between the governments. Since the
governments are connected on two separate channels, they are cyclically connected.

Now the governments can exchange scientific information and share this with their
intelligence agencies. However, it is conceivable that a government makes decisions about
which scientific information to share based on intelligence information. A clever spy may
then be able to infer intelligence information from scientific information, indirectly. Hence,
once a government receives intelligence information, it should refrain from sharing scientific
information. Clearly, this scenario is still not realistic.

Scenario 3: Extended cyclicity for more flexible IFC. In Fig. 1c, we split our governments
into H igh- and Low-confidentiality departments. The H igh-confidentiality departments
share intelligence information, and the Low-confidentiality departments share scientific
information. Crucially, the Low-confidentiality department can share information with the
H igh-confidentiality department, but not vice versa.

2.2 Threats to Noninterference due to Deadlocks

When process networks contain cyclic connections, there is a risk of deadlocked communication.
For example, consider again the process network in Fig. 1b. Let us refer to the H igh-security
channel between the governments as h, and the Low-security channel between the governments
as l. Suppose the two governments are implemented as follows (in pseudocode):

GovA := receive on h; send on l GovB := receive on l; send on h

The communication between the governments is deadlocked: each government is waiting to
receive from the other, but the corresponding sends are blocked.

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:5

In process networks without cyclicity, this kind of deadlock does not occur. There are
ways to prevent them through typing (cf., e.g., [19, 30, 7]), but the possible occurrence of
deadlock introduced by cyclicity is realistic and a possible threat to noninterference. To
see how, consider another pseudocode implementation, where sA refers to the Low-security
channel between GovA and ScienceA:

GovA := receive x on h; if x == true then send on sA else deadlock (1)

In this scenario, a spy monitoring the information exchanged on sA is indirectly able to infer
H igh-confidentiality information: if information is sent on sA, then the spy knows for sure
that the value of x is true. This is why we are after IFC for noninterference that is deadlock
sensitive.

2.3 IFC Type System in a Nutshell
In this paper, we implement IFC similarly as in previous works: by enriching a session type
system with IFC annotations and requirements. We build on the session-typed asynchronous
variant of the π-calculus of Van den Heuvel and Pérez [29, 30] (stripped from the “priority”
mechanisms that rule out deadlock).

As anticipated in Sec. 2.1, channels are appointed maximum-secrecy levels (secrecy levels,
for short), indicating the maximum secrecy of messages that can be sent on channels securely.
For example, in Fig. 1b, the channel between IntA and GovA has a secrecy level of H igh,
while the channel between ScienceA and GovA has a secrecy level of Low. This indicates that
a spy with low-level security clearance can observe the messages sent on channels of secrecy
level Low but not H igh. A partial order on these secrecy levels forms a secrecy lattice; for
example, L ⊑ H (Low is lower than H igh).

As processes receive messages on channels, they learn “secrets”, possibly influencing the
information sent in future messages (referred to in the literature as flow sensitivity [57]). Key
in our IFC is thus that it is forbidden to send messages on a channel if the level of secrecy
learned so far exceeds the secrecy level of the channel. To ensure this, our type system assigns
to each process a running secrecy that increases as the process receives higher-secrecy-level
information. As processes evolve, the secrecy levels of their channels do not change, whereas
their running secrecies do.

For example, in Fig. 1b, suppose GovA starts with a Low running secrecy, thus being
able to send messages to both IntA and ScienceA. After receiving a message from IntA, the
running secrecy of GovA becomes H igh: the secrecy level of the channel between them is
H igh. Hence, after this message, GovA can no longer send messages to ScienceA.

Finally, we need to address how our IFC handles deadlock sensitivity, as introduced in
Sec. 2.2. It turns out that it is sufficient to rely on running secrecies and their dynamics as
described above. To see how, consider again the implementation of GovA in (1). Assuming
it starts with Low running secrecy, the process receives on a H igh-security channel, so its
running secrecy becomes H igh. Our IFC then disallows the process from sending on the Low
security channel. Hence, this example would be considered ill typed in our type system.

2.4 Logical Relation for DSNI in a Nutshell
Let us be more precise in what we mean by DSNI. A process may have a number of
“unconnected” channels. By connecting these channels to other processes, we create a context
in which to run the process. We refer to the channels connecting the process to its context
as the interface. For example, in Fig. 1b, GovA can be considered as a standalone process,
with the rest of the processes being a potential context for it. The interface is then the four
channels connecting GovA to the other processes.

ECOOP 2024

40:6 Information Flow Control in Cyclic Process Networks

With DSNI, we assume the existence of an “attacker”, a more precise definition of the
“spy” mentioned in Sec. 2.1. This attacker knows the specification of our process, and has
the ability to observe messages from and to the process over observable channels: channels
in the interface that have secrecy levels up to a given secrecy level ξ. Moreover, the attacker
cannot measure time but can observe the relative order in which messages are sent through
different channels. By running our process in different contexts and observing the messages on
observable channels, the attacker may be able to use its knowledge of the process’ specification
to infer information about messages on unobservable channels. As such, noninterference
means that the attacker is not able to do so; in our case, we are after DSNI, because we do
not want the attacker to infer information from deadlocks either.

In this paper, we define DSNI as an equivalence between the behavior on observable
channels of the same process in different contexts. This equivalence is defined by means of
a logical relation. The relation scrutinizes messages from and to the process on observable
channels, and “ignores” messages on unobservable channels. Our main result is that well
typedness implies DSNI (Thm. 5.1).

2.5 Technical Challenges
The subsequent sections first introduce our process language and then develop an IFC type
system for that language and state and prove DSNI using a logical relation. These sections
are naturally quite technical. To bridge the divide, we briefly survey here the main challenges
our development had to overcome.

Asynchronous communication. Our process language is an asynchronous π-calculus with
linear session types, based on Van den Heuvel and Pérez’s Asynchronous Priority-based
Classical Processes (APCP) [29, 30], but without recursion and “priority” mechanisms (which
prevent deadlocks). As in the asynchronous π-calculus, outputs in our calculus do not have
any continuations but are atomic processes composed in parallel with other processes. To
model session sequencing, a process must adopt a continuation-passing style, in the sense
that an output not only comprises a message but also a continuation channel.

When continuation channels are part of messages exchanged over an observable channel
in the interface between a process and its context, the question comes up whether the
continuation channel becomes observable as well. The natural impulse might be to consider
them observable too. For sure this is the right choice in linear session-typed process calculi
that confine process networks to trees [20, 5], guaranteeing that the continuation channel sent
as part of the message resides within the sending process itself. However, due to the possibility
of cycles in our setting, a continuation channel sent as part of a message may actually reside
within the context outside the sending process. As a result, the logical relation has to
consider the binding structure of the process and the context when determining observability
of continuation channels. We detail this case analysis in Sec. 4 when we introduce the logical
relation, with a pictorial illustration in Fig. 7.

Observable deadlocks. Deadlock-sensitive noninterference (DSNI) provides a very strong
notion of noninterference in that it equates a deadlocking process only with another deadlock-
ing one (as opposed to an arbitrary one). As a result, it prevents leakage through deadlocks,
a side channel similar to the termination channel. DSNI is asserted by the definition of the
logical relation and challenges the proof of Thm. 5.1, stating that well typedness implies
DSNI. Thm. 5.1 is proved a generalized fundamental theorem (Thm. 5.7), which asserts that
all executions of a process, if well typed, are related by the logical relation, up to the secrecy

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:7

level ξ of the observer. Because this theorem relates two different processes, but with the
same observable behavior (where deadlocks are observable), the proof must maintain a tight
correspondence between the two processes. This correspondence is achieved by employing the
notion of relevant nodes (Def. 5.5), which are the parts of a process that can have observable
outcomes either directly (by sending a message over the interface) or indirectly (by initiating
a chain of messages ending with an observable one), and asserting that the relevant nodes of
both processes are indistinguishable (up to structural congruence). Our notion of relevant
nodes is inspired by Derakhshan et al. [20], but accounts for cyclic process networks.

Structural congruence and alpha equivalence. Our logical relation makes use of structural
congruence to single out the action in a process producing an observable message. Because
structural congruence permits alpha renaming, process relatedness must account for alpha-
equivalence classes. As usual, proofs require a careful treatment of alpha renaming, which
additionally becomes more nuanced by the existence of binders for observable names in
contexts. This treatment becomes especially apparent in the so-called catch-up lemma
(Lem. 5.10), a lemma used in the proof of the fundamental theorem to assert that two
observably equivalent processes can “catch up” on each other’s unobservable reductions.

3 Linear Session Types for Information Flow Control

In this section, we define our information flow control (IFC) type system. We first introduce
our process language (an asynchronous π-calculus) along with a linear session-type system
in Sec. 3.1. Then, we enrich the type system with IFC in Sec. 3.2. In Sec. 3.3, we prove
that well-typed processes enjoy communication safety and protocol fidelity as corollaries of a
type-preservation result. As we will see in Sec. 5, well typedness in the resulting IFC type
system implies noninterference.

3.1 Process Language: Syntax, Semantics, and Types
Our process language is an asynchronous π-calculus, where parallel subprocesses communicate
on connected channels. To be precise, we adapt the non-recursive fragment of Van den
Heuvel and Pérez’s Asynchronous Priority-based Classical Processes (APCP) [29, 30] by
removing their “priority” mechanisms that prevent deadlock and adding our IFC.

Syntax. The syntactic elements of our language are typeset in a black and non-italic font.
In our language, channels have two distinct endpoints, denoted a, b, c, . . . , x, y, z and further
referred to as names. By design, all names are used linearly, meaning that they are used for
a communication exactly once.

▶ Definition 3.1 (Syntax). Processes P, Q, R, . . . are defined by the following syntax:

P, Q, R, . . . ::= 0 | (P | Q) | (νxy)P | x[] | x(); P | x[b] ◁ j | x(z) ▷ {i : Pi}i∈I | x[a, b] | x(y, z); P

We write P{x/y} to denote the capture-avoiding substitution of y for x in P. Process 0
denotes inaction. In (P | Q), processes P and Q run in parallel; we often omit the parentheses.
Restriction (νxy)P binds x and y in P to form a channel, enabling communication.

Process x[] closes the channel to which x belongs, and x(); P waits for the channel to close
before continuing as P. Selection x[b] ◁ j sends the label j over x along with a name b; we
refer to b as the selection’s continuation, as it provides a means to continue communicating
after the selection. Branch x(z) ▷ {i : Pi}i∈I waits to receive on x a label j ∈ I along with

ECOOP 2024

40:8 Information Flow Control in Cyclic Process Networks

a continuation b before continuing as Pj{b/z}; this binds z in each Pi. Send x[a, b] sends
names a and b over x; we typically refer to a and b as the send’s payload and continuation,
respectively, but there is no technical distinction between them. Receive x(y, z); P waits to
receive on x two names a and b before continuing as P{a/y, b/z}; this binds y and z in P.
All names in a process are free unless bound as described above; we write fn(P) to denote
the set of free names of P.

▶ Example 3.2. To illustrate process syntax, we further develop the example introduced in
Sec. 2.1. We develop two simple accounts of GovA: one where information flow is secure,
and one where it is not.

In the first scenario, GovL
A passes a research outcome (oc) to GovH

A , which determines a
command for IntA:

GovL
A := (νa1′

H a1
H)(aH [a1′

H] ◁ oc2 | a1
H [])

GovH
A := aL(a1

L) ▷

{
oc1 : (νa1′

I a1
I)(aI[a1′

I] ◁ act | a1
L(); a1

I []),
oc2 : (νa1′

I a1
I)(aI[a1′

I] ◁ wait | a1
L(); a1

I [])

}
IntA := iA(i1A) ▷ {act : i1A(); 0, wait : i1A(); 0}

Asecure := (νaH aL)(νaIiA)(GovL
A | GovH

A | IntA)

In the second scenario, GovH
A receives intelligence (int) from IntA and shares the infor-

mation (inf) with GovL
A:

IntA := (νi1
′

A i1A)(iA[i1A] ◁ int1 | i1A[])

GovH
A := aI(a1

I) ▷

{
int1 : (νa1′

L a1
L)(aL[a1′

L] ◁ inf1 | a1
I (); a1

L[]),
int2 : (νa1′

L a1
L)(aL[a1′

L] ◁ inf2 | a1
I (); a1

L[])

}
GovL

A := aH (a1
H) ▷ {inf1 : a1

H (); 0, inf2 : a1
H (); 0}

Ainsecure := (νaH aL)(νaIiA)(GovL
A | GovH

A | IntA)

Variants of the π-calculus often include the forwarder process [x ↔ y] which forwards any
communications between x and y by fusing x and y. Here, we choose to omit forwarders
for a smoother definition of our logical relation; they can be added as syntactic sugar using
identity expansion (cf. the extended paper).

Semantics. The dynamics of our language is defined in terms of a reduction semantics,
where each step represents the synchronization of complementary communications on the two
endpoints of a channel. As usual, reduction relies on structural congruence, which restructures
processes without affecting channel connections and the order of communications.

▶ Definition 3.3 (Reduction Semantics). Structural congruence is the least congruence on the
syntax of processes (i.e., closed under arbitrary process contexts), denoted P ≡ Q, induced by
the axioms in Fig. 2 (top).

Reduction is a binary relation on processes, denoted P −→ Q, defined by the rules in
Fig. 2 (bottom). We write P−̸→ to denote that there is no Q such that P −→ Q.

Rule [sc-alpha] allows alpha conversion, i.e., renaming bound names. Rule [sc-par-nil]
defines 0 as the unit of parallel composition, and Rules [sc-par-symm] and [sc-par-assoc]
define parallel composition as symmetric and associative, respectively. Rules [sc-res-symm]
and [sc-res-assoc] define symmetry and associativity of restriction, respectively. Rule [sc-
res-comm] defines commutativity of restriction, as long as this does not capture or free any
names; this is often referred to as scope extrusion.

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:9

Structural congruence (P ≡ Q):

[sc-alpha]
P ≡α Q
P ≡ Q

[sc-par-nil]

P | 0 ≡ P
[sc-par-symm]

P | Q ≡ Q | P
[sc-par-assoc]

(P | Q) | R ≡ P | (Q | R)
[sc-res-symm]

(νxy)P ≡ (νyx)P

[sc-res-assoc]

(νxy)(νzw)P ≡ (νzw)(νxy)P

[sc-res-comm]
x, y /∈ fn(Q)

(νxy)(P | Q) ≡ (νxy)P | Q

Reduction (P −→ Q):

[red-close-wait]

(νxy)(x[] | y(); P) −→ P

[red-sel-bra]
j ∈ I

(νxy)(x[b] ◁ j | y(w) ▷ {i : Qi}i∈I) −→ Qj{b/w}

[red-send-recv]

(νxy)(x[a, b] | y(z, w); Q) −→ Q{a/z, b/w}

[red-sc]
P ≡ P′ P′ −→ Q′ Q′ ≡ Q

P −→ Q

[red-par]
P −→ P′

P | Q −→ P′ | Q

[red-res]
P −→ P′

(νxy)P −→ (νxy)P′

Figure 2 Structural congruence (top) and reduction (bottom); cf. Def. 3.3.

Rules [red-close-wait], [red-sel-bra], and [red-send-recv] define synchronizations
of complementary communications on names connected by restriction; these rules formalize
the behavior described below Def. 3.1. Rules [red-sc], [red-par], and [red-res] close
reduction under structural congruence, parallel composition, and restriction, respectively.

▶ Example 3.4. We illustrate process semantics on Asecure defined in Example 3.2. We have

Asecure = (νaH aL)(νaIiA)(GovL
A | GovH

A | IntA)

≡ (νaIiA)((νa1′

H a1
H)((νaH aL)(aH [a1′

H] ◁ oc2 | aL(a1
L) ▷ {. . .}) | a1

H []) | IntA)

−→ (νaIiA)((νa1′

H a1
H)((νa1′

I a1
I)(aI[a1′

I] ◁ wait | a1′

H (); a1
I []) | a1

H []) | IntA),

from where asynchronous communication enables further communication between a1′

H and
a1

H or between aI and iA; for example,

−→ (νaIiA)((νa1′

I a1
I)(aI[a1′

I] ◁ wait | a1
I []) | IntA).

Types. We use linear session types to “tame” our processes. The system we use is derived
from classical linear logic, so types are expressed as linear-logic propositions1; they are
typeset in a blue and sans-serif font.

▶ Definition 3.5 (Types). Types A, B, C, . . . are defined by the following syntax:

A, B, C, . . . ::= 1 | ⊥ | ⊕{i : A}i∈I | &{i : A}i∈I | A ⊗ B | A

&

B

1 This choice is usually motivated as it comes with deadlock freedom, but we have two different reasons:
(1) it allows for direct compatibility with session-type systems for deadlock freedom, and (2) a logical
basis gives us a very clean and well-behaved linear session type system, which we can carefully extend
to serve our goals (here, guaranteeing noninterference by typing).

ECOOP 2024

40:10 Information Flow Control in Cyclic Process Networks

[typ-inact]

Ω ⊢ 0 @ d :: ∅

[typ-par]
Ω ⊩ d ⊑ d ′

1 ⊓ d ′
2 Ω ⊢ P @ d ′

1 :: Γ Ω ⊢ Q @ d ′
2 :: ∆

Ω ⊢ P | Q @ d :: Γ, ∆

[typ-res]
Ω ⊢ P @ d :: Γ, x : A[c], y : A⊥[c]

Ω ⊢ (νxy)P @ d :: Γ

[typ-close]
Ω ⊩ d ⊑ c

Ω ⊢ x[] @ d :: x : 1[c]

[typ-wait]
Ω ⊩ d ′ = d ⊔ c Ω ⊢ P @ d ′ :: Γ

Ω ⊢ x(); P @ d :: Γ, x : ⊥[c]

[typ-sel]
Ω ⊩ d ⊑ c j ∈ I

Ω ⊢ x[b] ◁ j @ d :: x : ⊕{i : Ai}i∈I[c], b : A⊥
j [c]

[typ-bra]
Ω ⊩ d ′ = d ⊔ c ∀i ∈ I. Ω ⊢ Pi @ d ′ :: Γ, z : Ai[c]
Ω ⊢ x(z) ▷ {i : Pi}i∈I @ d :: Γ, x : &{i : Ai}i∈I[c]

[typ-send]
Ω ⊩ d ⊑ c

Ω ⊢ x[a, b] @ d :: x : A ⊗ B[c], a : A⊥[c], b : B⊥[c]

[typ-recv]
Ω ⊩ d ′ = d ⊔ c Ω ⊢ P @ d ′ :: Γ, y : A[c], z : B[c]

Ω ⊢ x(y, z); P @ d :: Γ, x : A

&

B[c]

Figure 3 Typing rules; cf. Def. 3.6.

Duality is a unary operation on types, denoted A⊥, defined as follows:

1⊥ := ⊥ ⊕{i : Ai}⊥
i∈I := &{i : A⊥

i }i∈I A ⊗ B⊥ := A⊥ &

B⊥

⊥⊥ := 1 &{i : Ai}⊥
i∈I := ⊕{i : A⊥

i }i∈I A
&

B⊥ := A⊥ ⊗ B⊥

Type 1 is associated with names that close channels, and ⊥ with names that wait for
channels to close. Types ⊕{i : Ai}i∈I and &{i : Ai}i∈I are associated with names that make
and expect labeled selections, respectively; given j ∈ I, Aj is the type of the continuation after
j has been selected/received. Types A ⊗ B and A

&

B are associated with names that send
and receive, respectively; A and B are the types of the payload and continuation afterwards.

Duality is a key component of session types, as it defines precisely what is meant by
complementary behavior; for example, 1⊥ = ⊥ is complementary to 1. Clearly, duality is an
involution (i.e., (A⊥)⊥ = A).

Our type system is defined as a sequent calculus. In the following, ignore the annotations
in red and italic; these annotations are for IFC, explained in Sec. 3.2.

▶ Definition 3.6 (Type System). Typing contexts Γ, ∆, . . . are defined by the following syntax:

Γ, ∆, . . . ::= ∅ | Γ, x : A[c]

Typing judgments are denoted Ω ⊢ P @ d :: Γ. They are derived using the rules in Fig. 3.

Typing contexts are thus sets of types assigned to names; the type system allows implicitly
reordering these assignments in typing contexts. Whenever we write Γ, ∆, we assume that
the sets of names appearing in Γ and ∆ are disjoint.

Rule [typ-inact] types inaction under empty context. Rule [typ-par] types parallel
composition by splitting the typing context into disjoint parts, one for each parallel process.
Rule [typ-res] types restriction by requiring the connected names to be dually typed.
Rule [typ-close] types a close with only its subject in the context. Dually, Rule [typ-wait]

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:11

types a wait by removing its subject from the context of the continuation. Rule [typ-sel]
types a selection; note that the continuation is typed dually to the continuation type of
the selection itself, as this name will be received by a corresponding branch and used for
further communications there. Dually, Rule [typ-bra] types a branch; it requires every
continuation to be typed with the same context besides the type of the continuation name.
Rule [typ-send] types a send; the payload and continuation are typed dually, similar to the
continuation in Rule [typ-sel]. Dually, Rule [typ-recv] types a receive.

▶ Example 3.7. To illustrate process typing, we type the secure variant of GovH
A introduced

in Example 3.2 as follows. We omit the red and italic IFC annotations entirely, as well as
the typing of the oc2 branch which is analogous to the oc1 branch.

[typ-sel]
⊢ aI[a1′

I] ◁ act
:: aI : ⊕{act : 1, wait : 1}, a1′

I : ⊥

[typ-close]
⊢ a1

I [] :: a1
I : 1

[typ-wait]
⊢ a1

L(); a1
I []

:: a1
L : ⊥, a1

I : 1
[typ-par]

⊢ aI[a1′

I] ◁ act | a1
L(); a1

I []
:: a1

L : ⊥, aI : ⊕{act : 1, wait : 1}, a1′

I : ⊥, a1
I : 1

[typ-res]
⊢ (νa1′

I a1
I)(aI[a1′

I] ◁ act | a1
L(); a1

I [])
:: a1

L : ⊥, aI : ⊕{act : 1, wait : 1}

...

[typ-bra]

⊢ aL(a1
L) ▷

{
oc1 : (νa1′

I a1
I)(aI[a1′

I] ◁ act | a1
L(); a1

I []),
oc2 : (νa1′

I a1
I)(aI[a1′

I] ◁ wait | a1
L(); a1

I [])

}
:: aL : &{oc1 : ⊥, oc2 : ⊥},

aI : ⊕{act : 1, wait : 1}

3.2 Information Flow Control
We now enrich the type system presented thus far with IFC, such that well typedness
guarantees noninterference (Sec. 5). That is, we introduce and explain the annotations in
red and italic in Fig. 3, and formalize the intuititions given in Sec. 2.3.

We use c, d, . . . to denote secrecy levels. The relation between secrecy levels is de-
noted c ⊑ d (c is at most as secret as d), forming a lattice Ω. We write Ω ⊩ ϕ to denote that
the relation ϕ between secrecies holds within Ω. The least upper bound (join) and greatest
lower bound (meet) are denoted c ⊔ d and c ⊓ d, respectively.

Every name is assigned a secrecy level, denoted in typing contexts using square brackets
after the name’s type, as in x : A[c]. To remember the level of secrecy of the messages
received by a process, we annotate the process in typing judgments with a running secrecy,
denoted P @ d. Given the running secrecy d of the process before an input and the secrecy
level c of the input’s subject, the input updates the running secrecy to the join d ⊔ c. When
a process then performs an output, to make sure that the name is secured for handling the
secrecy level of the outgoing message, our IFC requires that its running secrecy is not higher
than that of the output’s subject name.

We make these intuitions precise by discussing the IFC annotations on each typing rule
in Fig. 3. Since Rule [typ-inact] does not involve communication, no secrecy checks are
necessary. Rule [typ-close] types an output, so it requires that the running secrecy d of
the close is at most the secrecy level c of the closed name (d ⊑ c): the information received
so far (the running secrecy) is not more secret than the closed name. Rules [typ-sel]
and [typ-send] also type outputs, so their checks are similar. Rule [typ-wait] types an
input, so it sets the running secrecy d ′ of the continuation of the wait to the least upper
bound of the running secrecy d before the wait and the secrecy level c of the name of the wait
(d ′ = d ⊔ c; i.e., to the least secrecy level that is at least as high as both involved secrecies).

ECOOP 2024

40:12 Information Flow Control in Cyclic Process Networks

Rules [typ-bra] and [typ-recv] also type inputs, so they update running secrecies similarly.
Rule [typ-par] combines the running secrecies d ′

1 and d ′
2 of the parallel processes by taking

a secrecy level d that is at most the greatest lower bound of d ′
1 and d ′

2 (d ⊑ d ′
1 ⊓ d ′

2); this
way, the parallel composition has a running secrecy of at most the least common secrecy
level of its components, ensuring that each process in the composition has at least as much
information as the parallel composition itself. Rule [typ-res] requires that the secrecies of
the connected names coincide, ensuring that secrecy checks are consistent on both names
of the created channel. Note that channels in typing contexts may have different secrecy
levels. However, typing rules enforce that the channels in the same session (e.g., a send and
its continuation) have the same secrecy levels. For example, Rule [typ-sel] ensures that
channel x and its continuation b are both of the same secrecy level c.

▶ Example 3.8. To illustrate IFC in our type system, we consider again the typing of GovH
A

from Examples 3.2 and 3.7. We repeat the typing derivation and include IFC annotations,
but omit processes and types to save space. Let Ω be the lattice with the only relation
L ⊏ H .

L ⊑ H
[typ-sel]

Ω ⊢ @ L :: aI : [H], a1′

I : [H]

L ⊑ H
[typ-close]

Ω ⊢ @ L ⊔ L = L :: a1
I : [H]

[typ-wait]
Ω ⊢ @ L :: a1

L : [L], a1
I : [H]

[typ-par]
Ω ⊢ @ L :: a1

L : [L], aI : [H], a1′

I : [H], a1
I : [H]

[typ-res]
Ω ⊢ @ L ⊔ L = L :: a1

L : [L], aI : [H]
...

[typ-bra]
Ω ⊢ @ L :: aL : [L], aI : [H]

Hence, GovH
A is considered secure in our type system, and as we will show in Sec. 5 this

means that noninterference holds for this process.
However, the initial assignment of maximum secrecies to endpoints is chosen by the

user. Well typedness and thus noninterference depends on this initial choice. To illustrate,
reconsider the derivation above but now swapping the initial maximum secrecies:

H ̸⊑ L
[typ-sel]

Ω ⊢ @ H :: aI : [L], a1′

I : [L]

H ̸⊑ L
[typ-close]

Ω ⊢ @ H ⊔ H = H :: a1
I : [L]

[typ-wait]
Ω ⊢ @ H :: a1

L : [H], a1
I : [L]

[typ-par]
Ω ⊢ @ H :: a1

L : [H], aI : [L], a1′

I : [L], a1
I : [L]

[typ-res]
Ω ⊢ @ L ⊔ H = H :: a1

L : [H], aI : [L]
...

[typ-bra]
Ω ⊢ @ L :: aL : [H], aI : [L]

This time, GovH
A is not well typed: the IFC requirements of Rules [typ-sel] and [typ-close]

do not hold.

3.3 Type Preservation
Our type system guarantees by well typedness the usual correctness properties: session
fidelity and communication safety. The former states that a process correctly implements
the session types assigned to its names, and the latter that no communication mismatches
take place (such as simultaneous outputs on both names of a channel).

Both these properties follow directly from type preservation: well typedness is pre-
served across structural congruences (subject congruence; Thm. 3.11) and reduction (subject
reduction; Thm. 3.12). These results rely on two lemmas:

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:13

Lem. 3.9 states that names that are not free in a process are not assigned in the typing
of the process.
Lem. 3.10 states that substitution in a process is reflected in its typing.

▶ Lemma 3.9. Given Ω ⊢ P @ d :: Γ, if x /∈ fn(P), then x /∈ dom(Γ).

▶ Lemma 3.10 (Substitution). Given Ω ⊢ P @ d :: Γ, x : A[c], we have

Ω ⊢ P{y/x} @ d :: Γ, y : A[c].

▶ Theorem 3.11 (Subject Congruence). If Ω ⊢ P @ d :: Γ and P ≡ Q for some Q, then
Ω ⊢ Q @ d :: Γ.

Proof. By induction on the derivation of P ≡ Q. The inductive cases correspond to closure
under arbitrary process contexts in Def. 3.1; these cases follow from the IH straightforwardly.
The base cases correspond to the seven rules in Fig. 2 (top). In each case, we apply inversion on
the typing of P to derive the typing of Q, and vice versa, with straightforward reasoning about
running secrecies. The only interesting case is Rule [sc-par-assoc] ((P | Q) | R ≡ P | (Q | R)),
where we derive the running secrecy of Q | R from that of P | Q, and vice versa. The full
proof is in the extended paper. ◀

The following theorem states that (i) reduction preserves the well typedness of processes,
and (ii) the running secrecy of processes may either stay the same or increase during reduction.
This implies that a process never forgets the secrets it has learned, but it may learn more
secrets as it reduces.

▶ Theorem 3.12 (Subject Reduction). If Ω ⊢ P @ d :: Γ and P −→ Q for some Q, then
Ω ⊢ Q @ d ′ :: Γ for some d ′ such that Ω ⊩ d ⊑ d ′.

Proof. By induction on the derivation of P −→ Q. The cases correspond to the reduction
rules in Fig. 2 (bottom). In each case, we apply inversion on the typing of P to derive the
typing of Q. The full proof is in the extended paper; here, we show the interesting case of
Rule [red-send-recv]: (νxy)(x[a, b] | y(z, w); P) −→ P{a/z, b/w}. Given

Ω ⊩ d ⊑ d ′
1 ⊓ d ′

2 , (2)
Ω ⊩ d ′

1 ⊑ c
[typ-send]

Ω ⊢ x[a, b] @ d ′
1 :: x : A ⊗ B[c], a : A⊥[c], b : B⊥[c] , (3)

Ω ⊩ d ′′
2 = d ′

2 ⊔ c, (4)

we have

(2) (3)
(4) Ω ⊢ P @ d ′′

2 :: Γ, z : A⊥[c], w : B⊥[c]
[typ-recv]

Ω ⊢ y(z, w); P @ d ′
2 :: Γ, y : A⊥ &

B⊥[c]
[typ-par]

Ω ⊢ x[a, b] | y(z, w); P @ d :: Γ, x : A ⊗ B[c], y : A⊥ &

B⊥[c], a : A⊥[c], b : B⊥[c]
[typ-res]

Ω ⊢ (νxy)(x[a, b] | y(z, w); P) @ d :: Γ, a : A⊥[c], b : B⊥[c]

⇒
Lem. 3.10 twice

Ω ⊢ P{a/z, b/w} @ d ′′
2 :: Γ, a : A⊥[c], b : B⊥[c]

By assumption and by definition, Ω ⊩ d ′′
2 ⊒ d ′

2 . Also, by definition, Ω ⊩ d ′
2 ⊒ d ′

1 ⊓ d ′
2 , so,

by assumption, Ω ⊩ d ′
2 ⊒ d. Hence, Ω ⊩ d ′′

2 ⊒ d. ◀

ECOOP 2024

40:14 Information Flow Control in Cyclic Process Networks

Liveness / Progress. Liveness / Progress properties specify the conditions under which
processes can reduce. The progress property of APCP states that reduction takes place for a
syntactic notion of “live” processes [30]. Since this result does not rely on APCP’s priority
mechanisms, it applies to our process language as well.

4 Logical Relation

This section defines an equivalence on typed processes up to “observable messages” (Def. 4.9)
that we will use to state and prove DSNI in Sec. 5. We first give some preliminary definitions
in Sec. 4.1, before defining the logical relation that induces this equivalence in Sec. 4.2.

4.1 Preliminary Definitions
As anticipated in Sec. 2.4, we are interested in the behavior of a process when it runs in
different contexts. That is, we want to connect all the free names of the process in arbitrary
ways. To this end, we define evaluation contexts: processes with a hole inside which a process
may reduce (so under parallel composition and restriction). Evaluation contexts are typeset
using an orange and monospaced font.

▶ Definition 4.1 (Evaluation Context). Evaluation contexts (E) are defined as follows:

E ::= [·] | E | P | (νxy)E

We write E[P] to denote the process obtained by replacing the hole [·] in E by P.
Any definitions on processes before and after this definition are lifted to evaluation contexts,

without assigning any meaning to the hole. The exception is that alpha renaming does not
apply to names that are bound by restriction but not free inside the scope of the restriction.

▶ Example 4.2. The following is an evaluation context:

E := (νuw)(νxy)(νzv)(x(); u[] | z[] | [·])

Both u and w are bound in E. Since u appears free within the scope of the restriction as the
subject of a close, alpha renaming applies: E ≡α (νaw)(νxy)(νzv)(x(); a[] | z[] | [·]). However,
the same does not hold for w: E ̸≡α (νua)(νxy)(νzv)(x(); u[] | z[] | [·]).

We refer to the names that connect the process and its context as the interface. Our
logical relation focuses on messages between context and process, i.e., messages that must
pass through the interface. The following definition identifies outputs in process and context
that are not blocked by prefixes. In particular, aon(P) is the set of names along which P is
ready to output, and acon(E) is the set of names to which the context is ready to output.

▶ Definition 4.3 (Active Interface Names). We define the set of active output names of P,
denoted aon(P), as the subjects of non-blocked outputs in P:

aon(0) := ∅ aon(P | Q) := aon(P) ∪ aon(Q) aon((νxy)P) := aon(P) \{x, y}
aon(x[]) := {x} aon(x[a, b]) := {x} aon(x[b] ◁ j) := {x}

aon(x(); P) := ∅ aon(x(y, z); P) := ∅ aon(x(z) ▷ {i : Pi}i∈I) := ∅

We define the set of active context output names of E, denoted acon(E), as the names in
the interface of E that are connected to active output names of E through restriction:

acon(E) := {x | ∃y, E′.
(
E ≡ (νxy)E′ ∧ x /∈ fn(E′) ∧ y ∈ aon(E′)

)
}

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:15

We define the set of active interface names of E and P as the union of the active context
output names of E and the active output names of P:

ain(E, P) := acon(E) ∪ aon(P)

▶ Example 4.4. We illustrate the active interface names between P := y[] | w(); v(); 0 and E
from Example 4.2. It is easy to see that aon(P) = {y}. To determine acon(E) we search for
names in E that are bound by restriction to names used for output, but not used themselves.
That is, we look for names in the interface between the context and the containing process,
on which the containing process can expect to receive an output from the context. For
example, in E, name v is bound to z which is used for an output, while v itself is not used (it
appears in the interface). Since there are no further such names, we have acon(E) = {v}. As
such, ain(E, P) = {y, v}.

The interface is where an attacker (cf. Sec. 2.4) may observe the behavior of our process.
In this, we assume that the attacker can only observe messages up to a certain secrecy level ξ.
As such, our relation is only interested in the behavior of the process on observable channels.
To this end, we define a projection on typing contexts to filter out unobservable channels.
Also, we define when a process in context is well typed with respect to a given typing context
of observable channels.

▶ Definition 4.5 (Projection and Networks). Given a secrecy lattice Ω, a secrecy level
ξ ∈ dom(Ω), and a typing context Γ, we define the projection Γ ⇓Ω ξ as follows:

(Γ, x : A[c]) ⇓Ω ξ :=
{

(Γ ⇓Ω ξ), x : A[c] if Ω ⊩ c ⊑ ξ

Γ ⇓Ω ξ if Ω ⊩ c ̸⊑ ξ
∅ ⇓Ω ξ := ∅

We often omit Ω when it is clear from the context.
We say E and P form a network with interface Γ observable up to ξ under Ω, denoted

(E, P) ∈ NetΩ;ξ(Γ) if and only if there are d, d ′, Γ′ such that Γ = Γ′ ⇓Ω ξ, Ω ⊢ P @ d ′ :: Γ′,
and Ω ⊢ E[P] @ d :: ∅. By abuse of notation, we write (E1, P1; E2, P2) ∈ NetΩ;ξ(Γ) to denote
(E1, P1) ∈ NetΩ;ξ(Γ) and (E2, P2) ∈ NetΩ;ξ(Γ).

▶ Example 4.6. We anticipate illustrating noninterference on the secure running example
introduced in Example 3.2 on a Low secrecy channel, by considering the projection of its
typing context and an evaluation context to form a network. Recall the typing and IFC
annotations from Examples 3.7 and 3.8:

⊢ GovH
A @ L :: Γ′ = aL : &{oc1 : ⊥, oc2 : ⊥}[L], aI : ⊕{act : 1, wait : 1}[H].

We have Γ := Γ′ ⇓ L = aL : &{oc1 : ⊥, oc2 : ⊥}[L]. Let E := (νaH aL)(νaIiA)(GovL
A | [·] | IntA).

It is straightforward to confirm that ⊢ E[GovH
A] @ L :: ∅. Hence, (E, GovH

A) ∈ NetL(Γ).

In our relation, we want to exhaust reductions on unobservable channels, after which
we scrutinize behavior on observable names in the interface. To this end, we define unob-
servable reductions, which entail reductions internal to the process or the context, but also
communications between process and context on unobservable interface channels.

▶ Definition 4.7 (Unobservable Reduction). We define unobservable reduction as

E, P −→Ω;ξ;Γ E′, P′

if and only if (E, P) ∈ NetΩ;ξ(Γ), E[P] −→ E′[P′] and (E′, P′) ∈ NetΩ;ξ(Γ). We write
−→?

Ω;ξ;Γ (resp. −→∗
Ω;ξ;Γ) for the reflexive (resp. reflexive transitive) closure of −→Ω;ξ;Γ,

and E, P−̸→Ω;ξ;Γ to denote that there are no E′, P′ such that E, P −→Ω;ξ;Γ E′, P′.

ECOOP 2024

40:16 Information Flow Control in Cyclic Process Networks

(E1[P1]; E2[P2]) ∈ EΩ;ξJΓK ⇐⇒ (5)

∧ (E1, P1; E2, P2) ∈ NetΩ;ξ(Γ) (6)
∧ ∀E′

1, P′
1. E1, P1 −→∗

Ω;ξ;Γ E′
1, P′

1−̸→Ω;ξ;Γ (7)
=⇒ ∃E′

2, P′
2. E2, P2 −→∗

Ω;ξ;Γ E′
2, P′

2−̸→Ω;ξ;Γ

∧∀x ∈
(

ain(E′
1, P′

1) ∪ ain(E′
2, P′

2)
)

∩ dom(Γ). (E′
1, P′

1; E′
2, P′

2) ∈ VΩ;ξ
x JΓK

∧ aon(P′
1) ∩ dom(Γ) = aon(P′

2) ∩ dom(Γ)

(8)

Figure 4 Term interpretation.

Our relation often requires “zooming in” on specific parts of processes. To this end, we
define notions to deal with atomic parts of processes.

▶ Definition 4.8 (Nodes and Normal Forms). Given a process P, we say P is a node if
P ̸≡ Q | R, P ̸≡ (νxy)Q, and P ̸≡ 0.

We say a process Q = (νxiyi)i∈I
∏

j∈J Pj is in normal form if, for every j ∈ J, Pj is a node,
and Q is a normal form of P if P ≡ Q. Normal forms are closed under structural congruence:
every process induces an equivalence class of structurally congruent normal forms.

Given a process in normal form Q = (νxiyi)i∈I
∏

j∈J Pj, we define nodes(Q) := {Pj | j ∈ J}
and binders(Q) :=

{
{xi, yi} | i ∈ I

}
. By abuse of notation, given a process P not necessarily

in normal form, we write nodes(P) to denote nodes(Q) for an arbitrary normal form Q of P.

For example, let

P := (νuw)
(
(νxy)(z(); x[] | y(); u[]) | w(); 0

)
| 0 Q := (νuw)(νxy)(z(); x[] | y(); u[] | w(); 0).

Then Q is a normal form of P, with nodes(Q) = {z(); x[], y(); u[], w(); 0} and binders(Q) =
{{u, w}, {x, y}}.

4.2 The Relation
Having presented all its ingredients, we now introduce our logical relation. As usual, the
relation consists of two parts: a term interpretation and a value interpretation, defined by
mutual multiset induction on the interfaces of processes. The term interpretation is the main
part of the relation, and is responsible for calling on the value interpretation when a message
is ready to be communicated across the observable interface, as well as ensuring deadlock
sensitivity of our noninterference result. The value interpretation zooms in on the interface,
and ensures that the two runs of the process behave identically on observable messages that
are to be communicated across the interface.

Let us start by presenting our term interpretation, denoted EΩ;ξJΓK, in Fig. 4. It relates
pairs of processes, given a secrecy lattice Ω, a secrecy level ξ ∈ dom(Ω), and an interface Γ.
We break down its definition part by part. Part (5) implicitly requires each process to be
separable into a context Ei and a process Pi. Part (6) then requires the interface between Ei

and Pi to correspond to Γ up to observability ξ (cf. Def. 4.5). Part (7) exhausts unobservable
reductions for E1, P1 (cf. Def. 4.7) in every way possible, resulting in E′

1, P′
1. Part (8) first

requires E2, P2 to “catch up” through exhaustive unobservable reductions, resulting in E′
2, P′

2.
Then, Part (8) invokes the value interpretation, presented next, to scrutinize any messages
that are ready to be transferred across the observable part of the interface of either E′

i, P′
i (cf.

Def. 4.3). Finally, Part (8) ensures deadlock sensitivity by requiring the observable messages

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:17

1 (E1, P1; E2, P2) ∈ VΩ;ξ
x JΓ, x : 1[c]K ⇐⇒

(
(E1, P1; E2, P2) ∈ NetΩ;ξ(Γ, x : 1[c])

∧ P1 ≡ x[] | P′
1 ∧ P2 ≡ x[] | P′

2 ∧ (E1
[
x[] | P′

1
]
; E2

[
x[] | P′

2
]
) ∈ EΩ;ξJΓK

)
⊕ (E1, P1; E2, P2) ∈ VΩ;ξ

x JΓ, x : ⊕{i : Ai}i∈I[c]K ⇐⇒ (9)

(E1, P1; E2, P2) ∈ NetΩ;ξ(Γ, x : ⊕{i : Ai}i∈I[c]) (10)
∧ ∃j ∈ I. x[b1] ◁ j ∈ nodes(P1) ∧ x[b2] ◁ j ∈ nodes(P2) (11)
∧ b1 ∈ dom(Γ) =⇒ b1 = b2 ∧ P1 ≡ x[b1] ◁ j | P′

1 ∧ P2 ≡ x[b2] ◁ j | P′
2

∧ (E1
[
x[b1] ◁ j | P′

1
]
; E2

[
x[b2] ◁ j | P′

2
]
) ∈ EΩ;ξJΓ \ b1K

(12)

∧ b1 /∈ dom(Γ) =⇒
(
b2 /∈ dom(Γ) (13)

∧ P1 ≡ (νb1b′)(x[b1] ◁ j | P′
1) ∧ P2 ≡ (νb2b′)(x[b2] ◁ j | P′

2)
∧ (E1

[
(νb1b′)(x[b1] ◁ j | P′

1)
]
; E2

[
(νb2b′)(x[b2] ◁ j | P′

2)
]
) ∈ EΩ;ξJΓ, b′ : Aj[c]K

)
⊗ (E1, P1; E2, P2) ∈ VΩ;ξ

x JΓ, x : A ⊗ B[c]K ⇐⇒

(E1, P1; E2, P2) ∈ NetΩ;ξ(Γ, x : A ⊗ B[c])
∧ x[a1, b1] ∈ nodes(P1) ∧ x[a2, b2] ∈ nodes(P2)
∧ a1, b1 ∈ dom(Γ) =⇒ a1 = b1 ∧ a2 = b2 ∧ P1 ≡ x[a1, b1] | P′

1 ∧ P2 ≡ x[a2, b2] | P′
2

∧ (E1
[
x[a, b] | P′

1
]
; E2

[
x[a, b] | P′

2
]
) ∈ EΩ;ξJΓ \ a, bK

∧ (a1 ∈ dom(Γ) ∧ b1 /∈ dom(Γ)) =⇒
(
a1 = a2 ∧ b2 /∈ dom(Γ)

∧ P1 ≡ (νb1b′)(x[a1, b1] | P′
1) ∧ P2 ≡ (νb2b′)(x[a2, b2] | P′

2)
∧ (E1

[
(νb1b′)(x[a1, b1] | P′

1)
]
; E2

[
(νb2b′)(x[a2, b2] | P′

2)
]
) ∈ EΩ;ξJΓ, b′ : B[c] \ aK

)
∧ (a1 /∈ dom(Γ) ∧ b1 ∈ dom(Γ)) =⇒

(
a2 /∈ dom(Γ) ∧ b1 = b2

∧ P1 ≡ (νa1a′)(x[a1, b1] | P′
1) ∧ P2 ≡ (νa2a′)(x[a2, b2] | P′

2)
∧ (E1

[
(νa1a′)(x[a1, b1] | P′

1)
]
; E2

[
(νa2a′)(x[a2, b2] | P′

2)
]
) ∈ EΩ;ξJΓ, a′ : C[c] \ bK

)
∧ a1, b1 /∈ dom(Γ) =⇒

(
a2, b2 /∈ dom(Γ)

∧ P1 ≡ (νa1a′)(νb1b′)(x[a1, b1] | P′
1) ∧ P2 ≡ (νa2a′)(νb2b′)(x[a2, b2] | P′

2)
∧ (E1

[
(νa1a′)(νb1b′)(x[a1, b1] | P′

1)
]
;

E2
[
(νa2a′)(νb2b′)(x[a2, b2] | P′

2)
]
) ∈ EΩ;ξJΓ, a′ : A[c], b′ : B[c]K

)
Figure 5 Value interpretation, output cases (1, ⊕, ⊗).

of P′
1 and P′

2 to coincide. In particular, if P′
1 does not produce any observable messages

along a name in the interface due to a deadlock imposed by a secret, Part (8) guarantees
that P′

2 does not produce any observable messages on that name either.
We present our value interpretation, denoted VΩ;ξ

x JΓK, in Figs. 5 and 6. It relates pairs of
context-process tuples (E1, P1; E2, P2), given a secrecy lattice Ω, a secrecy level ξ ∈ dom(Ω),
an (observable) interface Γ, and a name x ∈ dom(Γ). The relation is defined by cases on
the type A assigned to x in Γ. If A is output-like (1, ⊕, ⊗; Fig. 5), the relation looks for a
corresponding output on x in the processes to (observably) move across the interface into the
contexts2; if A is input-like (⊥, &,

&

; Fig. 6), the relation looks for a corresponding output
on a name y connected by restriction to x in the contexts to (observably) move across the
interface into the processes. We detail the representative cases where A ∈ {⊕, &}.

When A = ⊕{i : Ai}i∈I (9), we first check well typedness as usual (10) (cf. Def. 4.5). We
then assert that both P1 and P2 have ready a selection on x, both on the same label j ∈ I (11).

2 In the rest of the paper, we often write Γ \ x to denote Γ′ given Γ = Γ′, x : A[c].

ECOOP 2024

40:18 Information Flow Control in Cyclic Process Networks

⊥ (E1, P1; E2, P2) ∈ VΩ;ξ
x JΓ, x : ⊥[c]K ⇐⇒

(
(E1, P1; E2, P2) ∈ NetΩ;ξ(Γ, x : ⊥[c])

∧
(
E1 ≡ (νyx)(y[] | E′

1) ∧ E2 ≡ (νyx)(y[] | E′
2)

)
=⇒ (E′

1

[
(νyx)(y[] | P1)

]
; E′

2

[
(νyx)(y[] | P2)

]
) ∈ EΩ;ξJΓK

)
& (E1, P1; E2, P2) ∈ VΩ;ξ

x JΓ, x : &{i : Ai}i∈I[c]K ⇐⇒ (14)

(E1, P1; E2, P2) ∈ NetΩ;ξ(Γ, x : &{i : Ai}i∈I[c]) (15)

∧
(
∃j ∈ I. E1 ≡ (νbb′)(νyx)(y[b] ◁ j | E′

1) ∧ E2 ≡ (νbb′)(νyx)(y[b] ◁ j | E′
2)

)
(16)

=⇒ ((νbb′)E′
1

[
(νyx)(y[b] ◁ j | P1)

]
;

(νbb′)E′
2

[
(νyx)(y[b] ◁ j | P2)

]
) ∈ EΩ;ξJΓ, b : Aj[c]K

(17)

&

(E1, P1; E2, P2) ∈ VΩ;ξ
x JΓ, x : A

&

B[c]K ⇐⇒

(E1, P1; E2, P2) ∈ NetΩ;ξ(Γ, x : A

&

B[c])

∧
(
E1 ≡ (νaa′)(νbb′)(νyx)(y[a, b] | E′

1) ∧ E2 ≡ (νaa′)(νbb′)(νyx)(y[a, b] | E′
2)

)
=⇒ ((νaa′)(νbb′)E′

1

[
(νyx)(y[a, b] | P1)

]
;

(νaa′)(νbb′)E′
2

[
(νyx)(y[a, b] | P2)

]
) ∈ EΩ;ξJΓ, a : A[c], b : B[c]K

Figure 6 Value interpretation, input cases (⊥, &,

&

).

We find that the selections carry continuations b1 and b2, respectively. Since we intend to
move the selections across the interface into the contexts, we need to inspect where these bi
are bound: in the context or in the process.

If b1 appears in the interface (12), it is bound in E1. We then assert that b1 and b2
actually represent the same name, and thus that b2 is bound in E2. Next, we use structural
congruence (Def. 3.3) to separate the selections from the rest of the processes. The case
ends with a call on the term interpretation, where the selections have been moved into
the contexts. Note that here we remove b1 (= b2) from the interface, as the processes
have relinquished control over this name to their respective contexts: we no longer need
to monitor behavior on b1. Fig. 7a illustrates this case.
If b1 does not appear in the interface (13), it is bound in P1. We first assert that b2
also does not appear in the interface, and thus is bound in P2. We then use structural
congruence to identify the names to which each bi is bound – since they are both bound,
we conveniently apply alpha conversion and use b′ in both cases – , and to separate the
selections from the rest of the processes. Finally, we call on the term interpretation,
where the selections along with the binders (νbib′) are moved into the contexts. Here,
we add b′ to the interface, as it must be used in the remainder of the processes, and thus
must be monitored. Fig. 7b shows this case.

When A = &{i : Ai}i∈I (14), the processes are expecting a selection from the contexts.
We again start with the usual well typedness check (15) (cf. Def. 4.5). The purpose of our
relation is to compare runs of the same process in different contexts, and so we cannot make
assertions about the readiness of the contexts to make the required selection, or that these
are selections of the same label. We therefore proceed only under the condition that indeed
the contexts are both ready to select the same label (16). This condition uses structural
congruence to identify the names in the contexts to which x is connected, conveniently
referred to as y in both contexts. It also identifies the continuations b of the selections and
the names b′ to which they are connected, as well as the remainder of the contexts. It then
calls on the term evaluation (17), where the selections along with the restrictions binding
x to y are moved into the processes. As such, x is no longer in the interface, but now the
continuations of the selections are: we add b to the interface. Fig. 7c illustrates this case.

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:19

Process

Context

x[b1] ◁ j

⇓

Process

Context x[b1] ◁ j

(a) Case ⊕, b1 in interface.

Process

Context

x[b1] ◁ j b′

⇓

Process

Context x[b1] ◁ j

b′

(b) Case ⊕, b1 not in interface.

Process

Context y[b] ◁ j

x

⇓

Process

Context

y[b] ◁ j x

(c) Case &.

Figure 7 Illustrations of the value interpretation on selections: the selection is moved to/from
the process, influencing name connections through the interface. Names in clouds represent parts of
the process where the name is used.

Finally, we use our logical relation to define equivalence up to observable messages. We say
two processes are equivalent up to secrecy level ξ if they agree on their observable interface
and they are related by the logical relation when placed inside any two arbitrary evaluation
contexts (cf. Def. 4.1). This ensures that, regardless of the context in which the processes
run, they will behave the same with respect to the observable interface.

▶ Definition 4.9 (Equivalence up to Observable Messages). The relation

(Ω ⊢ P1 @ d1 :: Γ1) ≡ξ (Ω ⊢ P2 @ d2 :: Γ2)

holds if and only if Γ1 ⇓ ξ = Γ2 ⇓ ξ = Γ, and for every E1, E2 such that Ω ⊢ E1[P1] @ d1 :: ∅
and Ω ⊢ E2[P2] @ d2 :: ∅, (E1[P1]; E2[P2]) ∈ EΩ;ξJΓK and (E2[P2]; E1[P1]) ∈ EΩ;ξJΓK.

▶ Example 4.10. Consider again the secure variant of GovH
A from Example 3.2. Anticipating

noninterference, it is straightforward to check that the continuations of the initial branch are
equivalent up to observable messages:

(⊢ (νa1′

I a1
I)(aI[a1′

I] ◁ act | a1
L(); a1

I []) @ L :: aI : ⊕{act : 1, wait : 1}[H], a1
L : ⊥[L])

≡L(⊢ (νa1′

I a1
I)(aI[a1′

I] ◁ wait | a1
L(); a1

I []) @ L :: aI : ⊕{act : 1, wait : 1}[H], a1
L : ⊥[L])

The crucial part is that the different selections on aI are unobservable.
On the other hand, consider also the insecure variant of GovH

A from Example 3.2. Even
though their typing contexts are equal (and, hence, so are the projections onto L), the
continuations of the initial branch are not equivalent up to observable messages:

(⊢ (νa1′

L a1
L)(aL[a1′

L] ◁ inf1 | a1
I (); a1

L[]) :: aL : ⊕{inf1 : 1, inf2 : 1}[L], a1
I : ⊥[H])

̸≡L(⊢ (νa1′

L a1
L)(aL[a1′

L] ◁ inf2 | a1
I (); a1

L[]) :: aL : ⊕{inf1 : 1, inf2 : 1}[L], a1
I : ⊥[H])

Here, the different selections on aL are observable.

5 Deadlock-Sensitive Noninterference (DSNI)

Our main result is that the observable behavior (up to a given secrecy level ξ) of any
well-typed process is the same when placed in different contexts. We formalize this using our
logical relation (Def. 4.9):

ECOOP 2024

40:20 Information Flow Control in Cyclic Process Networks

▶ Theorem 5.1 (DSNI). For all secrecy lattices Ω, secrecy levels ξ ∈ dom(Ω) and processes
Ω ⊢ P @ d :: Γ, we have (Ω ⊢ P @ d :: Γ) ≡ξ (Ω ⊢ P @ d :: Γ).

▶ Example 5.2. Following up on Example 4.10, we can conclude that DSNI holds for the
secure variant of GovH

A , but not for the insecure variant.

To prove this main result, we prove a more general result (the fundamental theorem;
Thm. 5.7) that relates two processes through Def. 4.9 given that they are observably equivalent.
We first define precisely what we mean with observable equivalence before presenting and
proving our fundamental theorem in Sec. 5.2.

5.1 Observable Equivalence
Towards defining observable equivalence, we want to identify the nodes (cf. Def. 4.8) of
processes that can contribute to messages on observable names in the interface, referred to
as relevant nodes. Nodes with running secrecy ̸⊑ ξ obviously cannot influence observable
interface names. However, nodes with running secrecy ⊑ ξ are not necessarily capable of
influencing observable interface names either. In particular, two types of nodes with running
secrecy ⊑ ξ cannot influence the observable interface:

Nodes that input on unobservable names increase their running secrecy after the input,
such that they no longer influence observable interface names.
Nodes that output on unobservable names can only influence nodes that input on
unobservable names (and thus cannot influence observable interface names indirectly via
the receiving node).

The following notion of quasi-running secrecy anticipates these scenarios by assigning a
secrecy level to a process based on the influence of its foremost prefix corresponding to the
subsequent input/output. It is defined as the join of the current running secrecy of the
process and the secrecy level of the name on which the next input/output occurs. If either of
the two levels is unobservable, the quasi-running secrecy will be unobservable. In such cases,
we know that the foremost prefix of the process cannot influence the observable interface.

▶ Definition 5.3 (Quasi-running Secrecy). Given a node typed Ω ⊢ P @ d :: Γ, we define the
quasi-running secrecy of P, denoted quasi(Ω ⊢ P @ d :: Γ) as follows:

quasi(Ω ⊢ P @ d :: Γ) :=

d ⊔ c if P = x[] and x : 1[c] ∈ Γ
d ⊔ c if P = x(); P′ and x : ⊥[c] ∈ Γ
d ⊔ c if P = x[b] ◁ j and x : ⊕{i : Ai}i∈I[c] ∈ Γ
d ⊔ c if P = x(z) ▷ {i : Pi}i∈I and x : &{i : Ai}i∈I[c] ∈ Γ
d ⊔ c if P = x[a, b] and x : A ⊗ B[c] ∈ Γ
d ⊔ c if P = x(y, z); P′ and x : A

&

B[c] ∈ Γ

To compute which nodes of a process are relevant, we start with nodes that have con-
nections to the interface (through free names). We then look at nodes that are connected
to these relevant nodes through restrictions. However, not all connections imply a possi-
ble influence on the observable interface. Consider a node x[a, b] that is connected to a
relevant node on a: the node does not define behavior on a but merely outputs the name,
and so a cannot influence the observable interface through this name. For example, in
(νxy)(νau)(x[a, b] | y(z, w); z(); . . . | u[]), the name a is not used for communication until it
has been received on y; hence, the close on u is not considered relevant even if the send on x
were relevant. We make this precise by defining free communication names: free names that
are used as the subjects of unblocked prefixes.

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:21

▶ Definition 5.4 (Free Communication Names). We define the free communication names
of P, denoted fcn(P), as follows:

fcn(0) := ∅
fcn(P | Q) := fcn(P) ∪ fcn(Q) fcn((νxy)P) := fcn(P) \ {x, y}

fcn(x[]) := {x} fcn(x(); P) := {x} ∪ fcn(P)
fcn(x[a, b]) := {x} fcn(x(y, z); P) := {x} ∪ fcn(P) \ {y, z}

fcn(x[b] ◁ j) := {x} fcn(x(z) ▷ {i : Pi}i∈I) := {x} ∪
⋃

i∈I fcn(Pi) \ {z}

We now have all the ingredients to determine the relevant nodes of a process. We define
the set of relevant nodes of a process inductively by following chains of nodes connected
through restriction (of which there are finitely many). We start with nodes connected to
the interface directly, and add them if their quasi-running secrecy is ⊑ ξ. We then keep
adding nodes that are connected to already relevant nodes on observable channels (names
with secrecy level ⊑ ξ) with quasi-running secrecy ⊑ ξ.

▶ Definition 5.5 (Relevant Nodes and Binders, and Relevant Form). Suppose given a pro-
cess in normal form P typed Ω ⊢ P @ d :: Γ. Suppose every node Q ∈ nodes(P) is typed
Ω ⊢ Q @ dQ :: ΓQ. Given a secrecy level ξ ∈ dom(Ω), we define the set of relevant nodes of
P, denoted N(P), by induction on the size of binders(P) as follows (N(P) := N| binders(P)|(P)):

N0(P) :={Q ∈ nodes(P) | ∃z ∈ fcn(Q). z ∈ dom(Γ ⇓ ξ) ∧ quasi(Ω ⊢ Q @ dQ :: ΓQ) ⊑ ξ}

Nn+1(P) := Nn(P) ∪

Q ∈ nodes(P)

∣∣∣∣∣∣
∃z ∈ fcn(Q). ∃Q′ ∈ Nn(P). ∃w : Aw[c] ∈ ΓQ′ .

(Ω ⊩ c ⊑ ξ ∧ {z, w} ∈ binders(P))
∧ quasi(Ω ⊢ Q @ dQ :: ΓQ) ⊑ ξ

∀0 ≤ n < | binders(P)|

We also define the set of relevant binders of P, denoted B(P), as the subset of binders(P)
used in the inductive step of the definition of N(P). We then define the relevant form of a
process in normal form P, denoted P ⇓ ξ, as (νxy){x,y}∈B(P)

∏
Q∈N(P) Q.

Processes are then observably equivalent if their relevant nodes and relevant binders are
indistinguishable (up to structural congruence).

▶ Definition 5.6 (Observable Equivalence). We say that two processes P and P′ are observably
equivalent, denoted P ≡ξ P′, if and only if there are normal forms Q, Q′ of P, P′ respectively
such that Q ⇓ ξ ≡ Q′ ⇓ ξ.

5.2 The Fundamental Theorem
We now state and prove our fundamental theorem, from which DSNI (Thm. 5.1) follows.

▶ Theorem 5.7 (Fundamental Theorem). For all secrecy lattices Ω, secrecy levels ξ ∈ dom(Ω)
and processes Ω ⊢ P1 @ d1 :: Γ1 and Ω ⊢ P2 @ d2 :: Γ2 with P1 ≡ξ P2 and Γ1 ⇓ ξ = Γ2 ⇓ ξ, we
have (Ω ⊢ P1 @ d1 :: Γ1) ≡ξ (Ω ⊢ P2 @ d2 :: Γ2).

We first give several auxiliary results and definitions, before proving Thm. 5.7 on Page 23:
Lem. 5.8 splits a process that reduces into an evaluation context (Def. 4.1) containing the
source of the reduction originating from one of the reduction axioms in Fig. 2 (bottom).
Lem. 5.9 splits unobservable reduction (Def. 4.7) into one of three cases: reduction internal
in the context, reduction internal in the process, and communication between context
and process on unobservable names.

ECOOP 2024

40:22 Information Flow Control in Cyclic Process Networks

Lem. 5.10 asserts that two observably equivalent (Def. 5.6) processes can “catch up”
on each other’s unobservable reductions (Def. 4.7). That is, if one process reduces
unobservably, then the other process can do zero or one unobservable reductions such
that the resulting processes are again observably equivalent.
Def. 5.11 defines a weight on types and typing context, which we use for induction in the
proof of Thm. 5.7 on Page 23.

Lems. 5.8 and 5.9 are proven in the extended paper.

▶ Lemma 5.8. Suppose given a process typed Ω ⊢ P @ d :: Γ. If P −→ P′, then there exists
an E for which either of the following holds:
1. P ≡ E[(νxy)(x[] | y(); Q)] and P′ ≡ E[Q];
2. P ≡ E[(νxy)(x[a, b] | y(z, w); Q)] and P′ ≡ E[Q{a/z, b/w}];
3. P ≡ E[(νxy)(x[b] ◁ j | y(w) ▷ {i : Qi}i∈I)] for j ∈ I and P′ ≡ E[Qj{b/w}].

▶ Lemma 5.9. Suppose (E, P) ∈ NetΩ;ξ(Γ) and E, P −→Ω;ξ;Γ E′, P′. Then E −→ E′ and
P = P′, or P −→ P′ and E = E′, or Lem. 5.8 applies, on names not in Γ.

▶ Lemma 5.10 (Catch Up). Suppose (E1, P1; E2, P2) ∈ NetΩ;ξ(Γ) such that P1 ≡ξ P2. If
E1, P1 −→Ω;ξ;Γ E′

1, P′
1, then there exists P′

2 such that E2, P2 −→?
Ω;ξ;Γ E2, P′

2 and P′
1 ≡ξ P′

2.

Proof. For a smoother proof, we consider a normal form Q1 of P1, and obtain from Q1 a
normal form Q2 of P2 such that Q1 ⇓ ξ = Q2 ⇓ ξ. By Def. 4.8, the thesis follows by proving
the thesis for these Q1, Q2.

By Lem. 5.9, we can distinguish three cases from which E1, Q1 −→Ω;ξ;Γ E′
1, Q′

1 follows.
(Internal in context: E1 −→ E′

1 and Q1 = Q′
1) The thesis holds directly with Q′

2 := Q2.
(Internal in process: Q1 −→ Q′

1 and E1 = E′
1) By Lem. 5.8, Q1’s reduction is due to

one of three possible synchronizations inside some evaluation context. Note that Lem. 5.8
may give us processes that are alpha variant to Q1 and Q′

1; in the following we implicitly
apply further alpha renaming to match the names in Q1 and Q′

1. For space considerations,
we sketch only the (Close-Wait) case; the other two cases are analogous. Full details
are in the extended paper.
We have Q1 ≡ F1[(νxy)(x[] | y(); R)] −→ F1[R] ≡ Q′

1. The analysis depends on whether
the close on x is a relevant node of Q1 or not.
If not, we derive that the wait on y is also not relevant. It follows by well typedness that
the continuation R will neither add relevant nodes nor influence relevancy of other nodes,
so Q1 ⇓ ξ = Q′

1 ⇓ ξ and the thesis follows with Q′
2 := Q2.

If the close is indeed a relevant node of Q1, we derive that the wait on y and the binder
between x and y are also relevant. By assumption, they are then also relevant in Q2, so
we can derive a similar reduction to Q′

2.
It remains to show that Q′

1 ⇓ ξ ≡ Q′
2 ⇓ ξ, which boils down to showing that these processes

have coinciding sets of relevant nodes and binders. Both directions of these set inclusions
are analogous, so we focus on one: from Q′

1 to Q′
2. The analysis is by induction on the

construction of the sets of relevant nodes and binders. In each case, we consider the
appearance of the node: in R or in F1. In both cases, a thorough analysis of how the
node was included as a relevant node – through a path of relevant binders and nodes that
were added before – reveals an analogous relevant node in Q′

2.
(Communication between context and process on names not in Γ) By definition,
the secrecy levels of the involved names are incomparable to ξ. Therefore, none of the
nodes involved are relevant or influence relevancy of any other nodes, so Q1 ⇓ ξ = Q′

1 ⇓ ξ

and the thesis holds with Q′
2 := Q2. ◀

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:23

▶ Definition 5.11 (Weight). The weight of a type A, denoted ϖ(A), is defined as follows:

ϖ(1) := 1 ϖ(A ⊗ B) := ϖ(A) + ϖ(B) + 1 ϖ(⊕{i : Ai}i∈I) := max
i∈I

(ϖ(Ai)) + 1

ϖ(⊥) := 1 ϖ(A

&

B) := ϖ(A) + ϖ(B) + 1 ϖ(&{i : Ai}i∈I) := max
i∈I

(ϖ(Ai)) + 1

The weight of a typing context ϖ(Γ) is the sum of the weights of its types.

▶ Theorem 5.7 (Fundamental Theorem). For all secrecy lattices Ω, secrecy levels ξ ∈ dom(Ω)
and processes Ω ⊢ P1 @ d1 :: Γ1 and Ω ⊢ P2 @ d2 :: Γ2 with P1 ≡ξ P2 and Γ1 ⇓ ξ = Γ2 ⇓ ξ, we
have (Ω ⊢ P1 @ d1 :: Γ1) ≡ξ (Ω ⊢ P2 @ d2 :: Γ2).

Proof. Let Γ := Γ1 ⇓ ξ = Γ2 ⇓ ξ. Take any E1, E2 such that Ω ⊢ E1[P1] @ d ′
1 :: ∅ and

Ω ⊢ E2[P2] @ d ′
2 :: ∅. We need to show that (E1[P1]; E2[P2]) ∈ EΩ;ξJΓK, which we do by

induction on ϖ(Γ).
The first condition is that (E1, P1; E2, P2) ∈ NetΩ;ξ(Γ); this holds by assumption.
Next, take any E′

1, P′
1 such that E1, P1 −→∗

Ω;ξ;Γ E′
1, P′

1−̸→Ω;ξ;Γ. A straightforward induction
on the length of these unobservable reductions shows that, by Def. 4.7 and Lem. 5.10, there are
E′

2, P′
2 such that E2, P2 −→∗

Ω;ξ;Γ E′
2, P′

2−̸→Ω;ξ;Γ, (E′
1, P′

1; E′
2, P′

2) ∈ NetΩ;ξ(Γ), and P′
1 ≡ξ P′

2.
Now, we need to show that, for every x ∈

(
ain(E′

1, P′
1) ∪ ain(E′

2, P′
2)

)
∩ dom(Γ),

(E′
1, P′

1; E′
2, P′

2) ∈ VΩ;ξ
x JΓK.

Take any such x. Either x ∈ ain(E′
1, P′

1) or x ∈ ain(E′
2, P′

2); w.l.o.g., assume the former. The
rest of the analysis depends on the type of x in Γ.

First, we discuss the output-like cases (1, ⊕, ⊗). In each case, by well typedness, x is the
subject of an output-like prefix in P′

1. Since x ∈ ain(E′
1, P′

1), this prefix is unguarded. Since
x ∈ dom(Γ) = dom(Γ1 ⇓ ξ), the node in which the prefix appears is relevant in P′

1. Therefore,
since P′

1 ≡ξ P′
2, there is also a relevant node in P′

2 where this prefix appears unguarded.
For space considerations, we only detail the case where x has type ⊕{i : Ai}[c]; the other

cases are discussed in the extended paper. There exists j ∈ I such that x[b1] ◁ j ∈ nodes(P′
1)

and x[b2] ◁ j ∈ nodes(P′
1). The analysis depends on whether b1 ∈ dom(Γ) or not.

(b1 ∈ dom(Γ)) By well typedness, b1 ∈ fn(P′
1) ∩ fn(P′

2). Since P′
1 ≡ξ P′

2, then b1 = b2.
Hence, P′

1 ≡ x[b1] ◁ j | P′′
1 and P′

2 ≡ x[b2] ◁ j | P′′
2 . Similar to the case above, and since

ϖ(Γ \ x) < ϖ(Γ), it follows from the IH that (E′
1
[
x[b1] ◁ j | P′′

1
]
; E′

2
[
x[b2] ◁ j | P′′

2
]
) ∈

EΩ;ξJΓ \ xK. This proves that (E′
1, P′

1; E′
2, P′

2) ∈ VΩ;ξ
x JΓK.

(b1 /∈ dom(Γ)) By well typedness, P′
1 ≡ (νb1b′)(x[b1] ◁ j | P′′

1). The selection on x
is a relevant node of P′

1. Since P′
1 ≡ξ P′

2, it is also a relevant node of P′
2. More-

over, b2 /∈ fn(P′
2): otherwise, b2 = b1, and then b1 ∈ fn(P′

1). Hence, P′
2 ≡

(νb2b′)(x[b2] ◁ j | P′′
2). Clearly, Ω ⊢ P′′

1 @ d ′′
1 :: Γ1 \ x, b′ and Ω ⊢ P′′

2 @ d ′′
2 :: Γ2 \ x, b′,

and Ω ⊢ E′
1
[
(νb1b′)(x[b1] ◁ j | P′′

1)
]

@ d ′′′
1 :: ∅ and Ω ⊢ E′

2
[
(νb2b′)(x[b2] ◁ j | P′′

2)
]

@ d ′′′
2 :: ∅.

Again, since P′
1 ≡ξ P′

2, the chain of nodes and binders that are relevant in P′
1 through the

binder (νb1b′) has an equivalent such chain in P′
2 through (νb2b′) and the selection on b2.

Hence, the effect on relevant nodes and binders by removing the binder and the selection on
x is the same on P′′

1 as it is on P′′
2 : P′′

1 ≡ξ P′′
2 . Clearly, Γ1 \ x, b′ ⇓ ξ = Γ2 \ x, b′ = Γ \ x, b′.

Also, ϖ(Aj) < ϖ(⊕{Ai}i∈I), so ϖ(Γ \ x, b′) < ϖ(Γ). It then follows from the IH that
(E′

1
[
(νb1b′)(x[b1] ◁ j | P′′

1)
]
; E′

2
[
(νb2b′)(x[b2] ◁ j | P′′

2)
]
) ∈ EΩ;ξJΓ \ x, b′K. This proves that

(E′
1, P′

1; E′
2, P′

2) ∈ VΩ;ξ
x JΓK.

ECOOP 2024

40:24 Information Flow Control in Cyclic Process Networks

Next, we discuss the negative cases (⊥, &,

&

). In each case, by well typedness, x is the
subject of an input-like prefix in P′

1. The context E′
1 binds x to some y by restriction, and

E′
1 contains a complementary output-like prefix on y. Following similar reasoning, the same

holds for E′
2. Since x ∈ ain(E′

1, P′
1), this output-like prefix appears unguarded in E′

1. To prove
the thesis, we assume that this prefix also appears unguarded in E′

2.
For space considerations, we only detail the case where x has type ⊥[c]; the other cases

require additional care in handling continuation endpoints and are discussed in the extended
paper. We have E′

1 ≡ (νyx)(y[] | E′′
1) and E′

2 ≡ (νyx)(y[] | E′′
2). Let P′′

1 := (νyx)(y[] | P′
1)

and P′′
2 := (νyx)(y[] | P′

2). Clearly, Ω ⊢ P′′
1 @ d ′′

1 :: Γ1 \ x and Ω ⊢ P′′
2 @ d ′′

2 :: Γ2 \ x, and
Ω ⊢ E′′

1 [P′′
1] @ d ′′′

1 :: ∅ and Ω ⊢ E′′
2 [P′′

2] @ d ′′′
2 :: ∅.

Let Q1, Q2 denote the nodes of P′
1, P′

2, respectively, in which x appears. To prove that
P′′

1 ≡ξ P′′
2 , it suffices to show that Q1 and any related binders are relevant in P′′

1 if and
only if Q2 and any related binders are relevant in P′′

2 ; any connected nodes/binders follow
similar reasoning. We detail only the left-to-right direction; the other direction is analogous.
Suppose Q1 is relevant in P′′

1 . Then quasi(Q1) ⊑ ξ, and thus Q1 is also relevant in P′
1 through

x in the interface. Then also Q2 is relevant in P′
2, where Q1 ≡ Q2 and quasi(Q2) ⊑ ξ. The

analysis depends on how Q1 is relevant in P′′
1 : (i) through the interface, or (ii) through a

restriction with another relevant node. In case (i), it follows straightforwardly that Q2 is
also relevant in P′

2. In case (ii), the connected node is also relevant in P′
1, and hence there

is a related node that is also relevant in P′
2. Since the two processes agree on observable

channels, the channel responsible for including Q1 as a relevant node of P′′
1 is also bound in

P′′
2 . Then we can conclude that Q2 is a relevant node of P′′

2 .
Since ϖ(Γ \ x) < ϖ(Γ), it then follows from the IH that (E′′

1 [P′′
1]; E′′

2 [P′′
2]) ∈ EΩ;ξJΓ \ xK.

This proves that (E′
1, P′

1; E′
2, P′

2) ∈ VΩ;ξ
x JΓK.

Finally, we show that aon(P′
1) ∩ dom(Γ) = aon(P′

2) ∩ dom(Γ). To prove this set equality,
we take any x ∈ aon(P′

1) ∩ dom(Γ) and prove that x ∈ aon(P′
2) ∩ dom(Γ); the other direction

is analogous. Clearly, x is the subject of an output-like prefix in P′
1. Since x ∈ dom(Γ), this

output-like prefix must appear unguarded in a node in P′
1. If the quasi-running secrecy of

this node is observable, this node is relevant in P′
1. Since P′

1 ≡ξ P′
2, P′

2 must also have a
relevant node in which the output-like prefix appears unguarded. Otherwise, the node is not
relevant in P′

1, and hence the node in which the output-like prefix appears in P′
2 is also not

relevant in P′
2. Hence, x ∈ aon(P′

2) ∩ dom(Γ). ◀

DSNI and deadlock freedom. As mentioned in Sec. 3.1, our process language is based on
the finite fragment of APCP with priority mechanisms removed. By enriching our process
language with APCP’s priority mechanisms, we restrict well typedness to deadlock-free
processes. As such, our results remain relevant if we only consider deadlock-free processes.

6 Related Work

Logical relations for session types. Existing logical relations for session types are primarily
unary, focusing on proving termination [52, 53, 21]. Binary logical relations have been
contributed for proving parametricity [8] and noninterference [20, 5]. All of these logical
relations are developed for intuitionistic linear session types, where process networks form
trees and, as a result, neither permit cyclic networks nor deadlocks. Whereas our logical
relation has its foundations in linear session types, it differs in that it is based on classical
linear logic and allows for cycles and deadlocks.

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:25

Our work is most similar to prior work by Derakhshan et al. [20] and Balzer et al. [5] on a
binary logical relation, in which the authors develop a flow-sensitive IFC type system and use
the logical relation to prove noninterference. Our IFC type system is also flow sensitive, but
it is designed for an adaptation of APCP (the background of which we discuss separately)
that allows for cyclic process networks and deadlocks. Our logical relation resembles the
one by the authors in that it employs an interface of names along which observations can
be made. In contrast to Derakhshan et al. [20] and Balzer et al. [5], our interface is a set
of names with types, rather than a sequent that singles out the providing name from the
names being used. The distinction becomes necessary in an intuitionistic linear logic setting,
whereas our work is grounded in classical linear logic. The contrast between the intuitionistic
and classical setting manifests itself in other aspects of our development, too. For example,
in prior intuitionistic IFC session type systems [20, 5], the offering channel always caps the
secrecy of the channels in the context and the running secrecy. In our setting, however,
the running secrecy of a process and the secrecy levels of its context are not necessarily
related. In particular, waiting for a channel to close may increase the running secrecy of
a process. Once the channel is closed, it disappears from the context, leaving the running
secrecy entirely unrelated to the secrecies of the remaining channels.

Like our language, Derakhshan et al. [20]’s language lacks any recursion construct. On the
other hand, the possibility of deadlocks introduces a side channel similar to non-termination,
which is present in the work by Balzer et al. [5] that supports general recursive session types
and thus possibly looping processes. Here, we decided to consider non-recursive processes to
focus on side channels through deadlocks only and not through non-termination. In future
work we would like to consider scaling our work to support general recursive session types
as well. We envision employing an observation index similar to Balzer et al. [5] to stratify
the logical relation in the number of observable messages exchanged over the interface. The
co-presence of both non-termination and deadlocks will need careful consideration.

Our idea of an observable interface is reminiscent of the free channels with visible
communications in prior work by Atkey [4]. Atkey establishes observational equivalence
for Wadler’s Classical Processes (CP) by defining a denotational semantics for CP and a
logical-relations argument. However, the logical relation in Atkey’s work does not relate two
processes of a certain type but rather identifies the possible observations for each type in
terms of the input/output behavior of its connectives.

Cyclic process networks. Traditionally, (typed) π-calculi permit cyclic process networks,
and as such do not guarantee deadlock freedom. However, since the discovery of Curry-
Howard correspondences between linear logic and session types [9, 67], the majority of
works on session types restrict their network shapes to trees, such that deadlock freedom
is guaranteed. The line of work including APCP (to which our process language is highly
related) [42, 51, 19, 29, 30] considers restrictions to session type systems that allow cyclic
process networks without deadlocks.

IFC type systems for multiparty session types. Capecchi et al. [13, 11] explore secure
information flow with controlled forms of declassification for multiparty sessions and prove
a noninterference result via a bisimulation. Our work differs in being flow sensitive and
using a binary rather than multiparty session type paradigm. Our use of a logical relation
to show noninterference, and our foundations in linear logic also set us apart. Follow-up
works by Castellani et al. [14, 12] also study run-time monitoring techniques to ensure secure
information flow control in multiparty sessions.

ECOOP 2024

40:26 Information Flow Control in Cyclic Process Networks

IFC type systems for process calculi. Several approaches have been explored for designing
IFC type systems that prevent the leakage of information through message passing in process
calculi [34, 35, 15, 16, 17, 36, 18, 26, 25, 41, 68, 55]. Some of these approaches include
associating a security label with types or channels [36], associating a security label with
actions [35], associating read and write policies with channels [26, 25], and associating a
security label with processes and capabilities with expressions [15]. Our approach differs from
previous work in having a dynamic running secrecy that makes our system flow sensitive,
using session types instead of process calculi, and the design of our novel logical relations for
establishing noninterference.

Logical relations for stateful languages. Kripke logical relations have been used to reason
about stateful programs [54]. The relation is indexed by a possible world that serves as a
semantic model for the heap. It establishes an invariant on the heap and ensures that the
invariant is preserved for all future worlds. When combined with step indexing [3, 1], Kripke
logical relations can address circularity that arises in higher-order stores [2, 22, 23]. Our
logical relation is similar to Kripke logical relations in being developed for a stateful language;
names, like locations, are subject to concurrent mutation. However, our session types are
rooted in linear logic and thus internalize Kripke’s logical worlds into the type system.

7 Conclusions

We have presented a new session type system with information flow control (IFC) for an
asynchronous π-calculus, and a notion of noninterference by means of a logical relation
between typed processes. Our development flexibly supports realistic cyclic process networks
that may deadlock. As such, our main result is that IFC well typedness implies deadlock-
sensitive noninterference (DSNI).

In future work, we plan to study the interplay between IFC / DSNI and several inter-
esting features of message-passing concurrency, such as recursion and non-determinism. As
commented on in the previous section, we expect the notion of an observation index [5] to
be applicable to circular process networks with recursive processes, although the interplay
between potential leakage through non-termination and deadlocks will need careful consid-
eration. Support of non-determinism may be more challenging, especially when combining
recursion with non-deterministic choice, which without further restriction permits loop guards
at mixed confidentiality level. We will consider focusing on more curtailed but logically
motivated notions of non-determinism, such as coexponentials [56], HCP−

ND [43], and linear
non-determinism [28]. We are also interested in exploring “name-sensitive” noninterference:
the choice of names in outputs is a possible source of information leakage outside the scope
of this paper.

References
1 Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types.

In 15th European Symposium on Programming (ESOP), volume 3924 of Lecture Notes in
Computer Science, pages 69–83. Springer, 2006. doi:10.1007/11693024_6.

2 Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation indepen-
dence. In 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 340–353. ACM, 2009. doi:10.1145/1480881.1480925.

3 Andrew W. Appel and David A. McAllester. An indexed model of recursive types for
foundational proof-carrying code. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(5):657–683, 2001. doi:10.1145/504709.504712.

https://doi.org/10.1007/11693024_6
https://doi.org/10.1145/1480881.1480925
https://doi.org/10.1145/504709.504712

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:27

4 Robert Atkey. Observed communication semantics for classical processes. In Programming
Languages and Systems: 26th European Symposium on Programming, ESOP 2017, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22–29, 2017, Proceedings 26, pages 56–82. Springer, 2017.

5 Stephanie Balzer, Farzaneh Derakhshan, Robert Harper, and Yue Yao. Logical relations for
session-typed concurrency. CoRR, abs/2309.00192, 2023. doi:10.48550/arXiv.2309.00192.

6 Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. Proceedings of the
ACM on Programming Languages, 1(ICFP):37:1–37:29, 2017. doi:10.1145/3110281.

7 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest deadlock-freedom
for shared session types. In 28th European Symposium on Programming (ESOP), vol-
ume 11423 of Lecture Notes in Computer Science, pages 611–639. Springer, 2019. doi:
10.1007/978-3-030-17184-1_22.

8 Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral polymor-
phism and parametricity in session-based communication. In 22nd European Symposium on
Programming (ESOP), pages 330–349, 2013. doi:10.1007/978-3-642-37036-6_19.

9 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In 21th
International Conference onf Concurrency Theory (CONCUR), volume 6269 of Lecture Notes
in Computer Science, pages 222–236. Springer, 2010. doi:10.1007/978-3-642-15375-4_16.

10 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session
types. Mathematical Structures in Computer Science, 26(3):367–423, 2016. doi:10.1017/
S0960129514000218.

11 Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Typing access control
and secure information flow in sessions. Information and Computation, 238:68–105, 2014.
doi:10.1016/j.ic.2014.07.005.

12 Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Information flow safety in
multiparty sessions. Mathematical Structures in Computer Science, 26(8):1352–1394, December
2016. doi:10.1017/S0960129514000619.

13 Sara Capecchi, Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Tamara Rezk. Session
types for access and information flow control. In 21th International Conference on Concurrency
Theory (CONCUR), pages 237–252, 2010. doi:10.1007/978-3-642-15375-4_17.

14 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Jorge A. Pérez. Self-adaptation and
secure information flow in multiparty communications. Formal Aspects of Computing, 28(4):669–
696, 2016. doi:10.1007/s00165-016-0381-3.

15 Silvia Crafa, Michele Bugliesi, and Giuseppe Castagna. Information flow security for boxed
ambients. Electronic Notes in Theoretical Computer Science, 66(3):76–97, 2002. doi:10.1016/
S1571-0661(04)80417-1.

16 Silvia Crafa and Sabina Rossi. A theory of noninterference for the π-calculus. In International
Symposium on Trustworthy Global Computing (TGC), volume 3705 of Lecture Notes in
Computer Science, pages 2–18. Springer, 2005. doi:10.1007/11580850_2.

17 Silvia Crafa and Sabina Rossi. P-congruences as non-interference for the pi-calculus. In ACM
Workshop on Formal Methods in Security Engineering (FMSE), pages 13–22. ACM, 2006.
doi:10.1145/1180337.1180339.

18 Silvia Crafa and Sabina Rossi. Controlling information release in the π-calculus. Information
and Computation, 205(8):1235–1273, August 2007. doi:10.1016/j.ic.2007.01.001.

19 Ornela Dardha and Simon J. Gay. A New Linear Logic for Deadlock-Free Session-Typed
Processes. In Christel Baier and Ugo Dal Lago, editors, Foundations of Software Science
and Computation Structures, Lecture Notes in Computer Science, pages 91–109. Springer
International Publishing, 2018. doi:10.1007/978-3-319-89366-2_5.

20 Farzaneh Derakhshan, Stephanie Balzer, and Limin Jia. Session logical relations for noninter-
ference. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1–14. IEEE Computer Society, 2021. doi:10.1109/LICS52264.2021.9470654.

ECOOP 2024

https://doi.org/10.48550/arXiv.2309.00192
https://doi.org/10.1145/3110281
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1016/j.ic.2014.07.005
https://doi.org/10.1017/S0960129514000619
https://doi.org/10.1007/978-3-642-15375-4_17
https://doi.org/10.1007/s00165-016-0381-3
https://doi.org/10.1016/S1571-0661(04)80417-1
https://doi.org/10.1016/S1571-0661(04)80417-1
https://doi.org/10.1007/11580850_2
https://doi.org/10.1145/1180337.1180339
https://doi.org/10.1016/j.ic.2007.01.001
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1109/LICS52264.2021.9470654

40:28 Information Flow Control in Cyclic Process Networks

21 Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. Semi-axiomatic sequent calculus. In
5th International Conference on Formal Structures for Computation and Deduction (FSCD),
volume 167 of LIPIcs, pages 29:1–29:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.FSCD.2020.29.

22 Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and control
effects on local relational reasoning. In 15th ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 143–156. ACM, 2010. doi:10.1145/1863543.1863566.

23 Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and control
effects on local relational reasoning. Journal of Functional Programming, 22(4-5):477–528,
2012. doi:10.1017/S095679681200024X.

24 Daniel Hedin and Andrei Sabelfeld. A Perspective on Information-Flow Control. In Software
Safety and Security, pages 319–347. IOS Press, 2012. doi:10.3233/978-1-61499-028-4-319.

25 Matthew Hennessy. The security pi-calculus and non-interference. The Journal of Logic and
Algebraic Programming, 63(1):3–34, April 2005. doi:10.1016/j.jlap.2004.01.003.

26 Matthew Hennessy and James Riely. Information flow vs. resource access in the asynchronous
pi-calculus. ACM Transactions on Programming Languages and Systems, 24(5):566–591,
September 2002. doi:10.1145/570886.570890.

27 Bas van den Heuvel, Farzaneh Derakhshan, and Stephanie Balzer. Information Flow Control
in Cyclic Process Networks, July 2024. doi:10.48550/arXiv.2407.02304.

28 Bas van den Heuvel, Joseph W. N. Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez.
Typed Non-determinism in Functional and Concurrent Calculi. In Chung-Kil Hur, editor,
Programming Languages and Systems, Lecture Notes in Computer Science, pages 112–132,
Singapore, 2023. Springer Nature. doi:10.1007/978-981-99-8311-7_6.

29 Bas van den Heuvel and Jorge A. Pérez. Deadlock freedom for asynchronous and cyclic process
networks. In Julien Lange, Anastasia Mavridou, Larisa Safina, and Alceste Scalas, editors,
Proceedings 14th Interaction and Concurrency Experience, Online, 18th June 2021, volume
347 of Electronic Proceedings in Theoretical Computer Science, pages 38–56. Open Publishing
Association, 2021. doi:10.4204/EPTCS.347.3.

30 Bas van den Heuvel and Jorge A. Pérez. A decentralized analysis of multiparty protocols.
Science of Computer Programming, page 102840, June 2022. doi:10.1016/j.scico.2022.
102840.

31 C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
32 Kohei Honda. Types for dyadic interaction. In 4th International Conference on Concurrency

Theory (CONCUR), volume 715 of Lecture Notes in Computer Science, pages 509–523. Springer,
1993. doi:10.1007/3-540-57208-2_35.

33 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In 7th European Symposium
on Programming (ESOP), volume 1381 of Lecture Notes in Computer Science, pages 122–138.
Springer, 1998. doi:10.1007/BFb0053567.

34 Kohei Honda, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Secure information
flow as typed process behaviour. In 9th European Symposium on Programming (ESOP),
volume 1782 of Lecture Notes in Computer Science, pages 180–199. Springer, 2000. doi:
10.1007/3-540-46425-5_12.

35 Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow. In
29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
81–92. ACM, 2002. doi:10.1145/503272.503281.

36 Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow.
ACM Transactions on Programming Languages and Systems (TOPLAS), 29(6):31, 2007.
doi:10.1145/1286821.1286822.

37 Chung-Kil Hur and Derek Dreyer. A kripke logical relation between ML and assembly. In
38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 133–146. ACM, 2011. doi:10.1145/1926385.1926402.

https://doi.org/10.4230/LIPIcs.FSCD.2020.29
https://doi.org/10.1145/1863543.1863566
https://doi.org/10.1017/S095679681200024X
https://doi.org/10.3233/978-1-61499-028-4-319
https://doi.org/10.1016/j.jlap.2004.01.003
https://doi.org/10.1145/570886.570890
https://doi.org/10.48550/arXiv.2407.02304
https://doi.org/10.1007/978-981-99-8311-7_6
https://doi.org/10.4204/EPTCS.347.3
https://doi.org/10.1016/j.scico.2022.102840
https://doi.org/10.1016/j.scico.2022.102840
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/3-540-46425-5_12
https://doi.org/10.1007/3-540-46425-5_12
https://doi.org/10.1145/503272.503281
https://doi.org/10.1145/1286821.1286822
https://doi.org/10.1145/1926385.1926402

B. van den Heuvel, F. Derakhshan, and S. Balzer 40:29

38 Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. In 8th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
128–141, 2001. doi:10.1145/360204.360215.

39 Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theoretical
Computer Science, 311(1-3):121–163, 2004. doi:10.1016/S0304-3975(03)00325-6.

40 Naoki Kobayashi. A partially deadlock-free typed process calculus. In 12th Annual IEEE
Symposium on Logic in Computer Science (LICS), pages 128–139. IEEE Computer Society,
1997. doi:10.1109/LICS.1997.614941.

41 Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Acta Informatica,
42(4-5):291–347, 2005. doi:10.1007/s00236-005-0179-x.

42 Naoki Kobayashi. A New Type System for Deadlock-Free Processes. In Christel Baier and
Holger Hermanns, editors, CONCUR 2006 – Concurrency Theory, Lecture Notes in Computer
Science, pages 233–247. Springer Berlin Heidelberg, 2006. doi:10.1007/11817949_16.

43 Wen Kokke, J. Garrett Morris, and Philip Wadler. Towards races in linear logic. Logical
Methods in Computer Science, 16(4), 2020. URL: https://lmcs.episciences.org/6979.

44 Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about higher-
order imperative programs. In 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 141–152. ACM, 2006. doi:10.1145/1111037.1111050.

45 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In 24th European
Symposium on Programming (ESOP), volume 9032 of Lecture Notes in Computer Science,
pages 560–584. Springer, 2015. doi:10.1007/978-3-662-46669-8_23.

46 Sam Lindley and J. Garrett Morris. Talking bananas: Structural recursion for session types.
In 21st ACM SIGPLAN International Conference on Functional Programming (ICFP), pages
434–447. ACM, 2016. doi:10.1145/2951913.2951921.

47 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

48 Robin Milner. Communication and Concurrency. PHI Series in Computer Science. Prentice
Hall, 1989.

49 Robin Milner. Communicating and Mobile Systems - the Pi-calculus. Cambridge University
Press, 1999.

50 Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parametricity. Journal of
Functional Programming, 21(4-5):497–562, 2011. doi:10.1017/S0956796811000165.

51 Luca Padovani. Deadlock and Lock Freedom in the Linear π-calculus. In Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-
LICS ’14, pages 72:1–72:10, New York, NY, USA, 2014. ACM. doi:10.1145/2603088.2603116.

52 Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations
for session-based concurrency. In 21st European Symposium on Programming (ESOP), volume
7211 of Lecture Notes in Computer Science, pages 539–558. Springer, 2012. doi:10.1007/
978-3-642-28869-2_27.

53 Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations
and observational equivalences for session-based concurrency. Information and Computation,
239:254–302, 2014. doi:10.1016/j.ic.2014.08.001.

54 Andrew M. Pitts and Ian Stark. Operational reasoning for functions with local state. Higher
Order Operational Techniques in Semantics (HOOTS), pages 227–273, 1998.

55 F. Pottier. A simple view of type-secure information flow in the π-calculus. In Proceedings
15th IEEE Computer Security Foundations Workshop (CSFW-15), pages 320–330, 2002.
doi:10.1109/CSFW.2002.1021826.

56 Zesen Qian, G. A. Kavvos, and Lars Birkedal. Client-server sessions in linear logic. Proceedings
of the ACM on Programming Languages, 5(ICFP):1–31, 2021. doi:10.1145/3473567.

ECOOP 2024

https://doi.org/10.1145/360204.360215
https://doi.org/10.1016/S0304-3975(03)00325-6
https://doi.org/10.1109/LICS.1997.614941
https://doi.org/10.1007/s00236-005-0179-x
https://doi.org/10.1007/11817949_16
https://lmcs.episciences.org/6979
https://doi.org/10.1145/1111037.1111050
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1017/S0956796811000165
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.1109/CSFW.2002.1021826
https://doi.org/10.1145/3473567

40:30 Information Flow Control in Cyclic Process Networks

57 Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE
Journal of Selected Areas in Communications, 21(1):5–19, 2003. doi:10.1109/JSAC.2002.
806121.

58 Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimulations for higher-
order languages. In 22nd Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 293–302. IEEE Computer Society, 2007. doi:10.1109/LICS.2007.17.

59 Davide Sangiorgi and David Walker. The Pi-Calculus - a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

60 Geoffrey Smith and Dennis M. Volpano. Secure information flow in a multi-threaded imperative
language. In 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 355–364. ACM, 1998. doi:10.1145/268946.268975.

61 Kristian Støvring and Søren B. Lassen. A complete, co-inductive syntactic theory of sequential
control and state. In 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 161–172. ACM, 2007. doi:10.1145/1190216.1190244.

62 Eijiro Sumii and Benjamin C. Pierce. A bisimulation for type abstraction and recursion.
Journal of the ACM, 54(5):26, 2007. doi:10.1145/1284320.1284325.

63 Jacob Thamsborg and Lars Birkedal. A kripke logical relation for effect-based program
transformations. In 16th ACM SIGPLAN International Conference on Functional Programming
(ICFP), pages 445–456. ACM, 2011. doi:10.1145/2034773.2034831.

64 Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions, and
sessions: A monadic integration. In 22nd European Symposium on Programming (ESOP),
volume 7792 of Lecture Notes in Computer Science, pages 350–369. Springer, 2013. doi:
10.1007/978-3-642-37036-6_20.

65 Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type system for
secure flow analysis. Journal of Computer Security, 4(2/3):167–188, 1996. doi:10.3233/
JCS-1996-42-304.

66 Philip Wadler. Propositions as sessions. In ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 273–286. ACM, 2012. doi:10.1145/2364527.2364568.

67 Philip Wadler. Propositions as sessions. Journal of Functional Programming, 24(2-3):384–418,
May 2014. doi:10.1017/S095679681400001X.

68 Steve Zdancewic and Andrew C. Myers. Observational determinism for concurrent program
security. In 16th IEEE Computer Security Foundations Workshop (CSFW-16 2003), 30
June - 2 July 2003, Pacific Grove, CA, USA, page 29. IEEE Computer Society, 2003. doi:
10.1109/CSFW.2003.1212703.

https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/LICS.2007.17
https://doi.org/10.1145/268946.268975
https://doi.org/10.1145/1190216.1190244
https://doi.org/10.1145/1284320.1284325
https://doi.org/10.1145/2034773.2034831
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1109/CSFW.2003.1212703
https://doi.org/10.1109/CSFW.2003.1212703

Refinements for Multiparty Message-Passing
Protocols
Specification-Agnostic Theory and Implementation

Martin Vassor #

University of Oxford, UK

Nobuko Yoshida #

University of Oxford, UK

Abstract
Multiparty message-passing protocols are notoriously difficult to design, due to interaction mismatches
that lead to errors such as deadlocks. Existing protocol specification formats have been developed to
prevent such errors (e.g. multiparty session types (MPST)). In order to further constrain protocols,
specifications can be extended with refinements, i.e. logical predicates to control the behaviour of
the protocol based on previous values exchanged. Unfortunately, existing refinement theories and
implementations are tightly coupled with specification formats.

This paper proposes a framework for multiparty message-passing protocols with refinements
and its implementation in Rust. Our work decouples correctness of refinements from the underlying
model of computation, which results in a specification-agnostic framework.

Our contributions are threefold. First, we introduce a trace system which characterises valid
refined traces, i.e. a sequence of sending and receiving actions correct with respect to refinements.
Second, we give a correct model of computation named refined communicating system (RCS), which
is an extension of communicating automata systems with refinements. We prove that RCS only
produce valid refined traces. We show how to generate RCS from mainstream protocol specification
formats, such as refined multiparty session types (RMPST) or refined choreography automata. Third,
we illustrate the flexibility of the framework by developing both a static analysis technique and
an improved model of computation for dynamic refinement evaluation. Finally, we provide a Rust
toolchain for decentralised RMPST, evaluate our implementation with a set of benchmarks from the
literature, and observe that refinement overhead is negligible.

2012 ACM Subject Classification Software and its engineering → Specification languages; Theory
of computation → Assertions; Theory of computation → Concurrency

Keywords and phrases Message-Passing Concurrency, Session Types, Specification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.41

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.23

Funding Work supported by: EPSRC EP/T00006544/2, EP/K011715/1, EP/K034413/1,
EP/L00058X/1, EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462, EP/X015955/1n
NCSS/EPSRC VeTSS, and Horizon EU TaRDIS 101093006.

Acknowledgements We thank B. Ekici, M. Giunti, P. Hou, A. Suresh, and F. Zhou.

1 Introduction

Message passing programming is a notoriously difficult task with new bugs arising with respect
to sequential programming, for instance deadlocks. To address this increased complexity,
various specifications have been introduced (e.g., message sequence charts [24], multiparty
session types [38, 19, 18], choreography automata [1]). In general, specifications are used to

V1.1

A
rt
ifa

cts Available

ECOOP

© Martin Vassor and Nobuko Yoshida;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 41; pp. 41:1–41:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin@vassor.org
https://orcid.org/0000-0002-2057-0495
mailto:nobuko.yoshida@cs.ox.ac.uk
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2024.41
https://doi.org/10.4230/DARTS.10.2.23
https://doi.org/10.4230/DARTS.10.2.23
https://doi.org/10.4230/DARTS.10.2.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Refinements for Multiparty Message-Passing Protocols

constrain messages, in order to prevent errors such as deadlocks (via message ordering) or
payload mismatch (by enforcing the sender and the receiver of a message to agree on the
datatype exchanged).

In this paper, we tackle an important and advanced aspect of protocol specification, logical
constraints (or contracts) on asynchronous message-passing communications. Contracts for
heterogeneous systems are predominant for correctly designing, implementing, and composing
software services, and have a long history in distributed software development as found
in Design-by-Contracts [28], Service Level Agreements, and Component-Based Software
Engineering. With contracts, software designers can define more precise (refined) and
verifiable specifications for distributed software components. Contracts have been investigated
from a variety of perspectives, using many different analysis techniques and formalisms.
Our goal is to distill an essence of those models for protocol refinements by answering the
following questions affirmatively:

(i) what does it mean for an execution of contracts for message-passing systems to be
correct;

(ii) how do we integrate a theory to a variety of models;
(iii) how do we analyse their correctness?; and
(iv) how do we implement correct systems in a programming language?

To explain our framework, consider a guessing game (from [41]) with three participants
where the first one (participant A) chooses a secret integer and sends it to the second
participant (B). Then, the third participant (C) tries to guess this number. Depending on
the guess, B replies with hints (more and less) until C succeeds in guessing the correct value.

The developer writing the specification for such protocol would like to ensure, in the
specification, that hints from B are consistent with the previous values exchanged. For
instance, if the secret is 5 and the guess is 10, the specification should constrain B to send
less. Figure 1 shows a communication diagram of the protocol with constraints (which we
call refinements) shown in light blue.

CBA
secret(n : int)

guess(x : int)

more

less

correct

or n < x

or n = x

choice n > x

Figure 1 Communication diagram for the guessing game protocol with refinements.

In this paper, we develop a formal framework for refinements, agnostic to any particular
specification formalism. Its core part is composed of a characterisation of refinement
correctness: Valid Refined Traces, and a model of computation: Refined Communicating
Systems (RCS), where communication is asynchronous and refinements are centrally and
dynamically evaluated. For illustration, we use Refined Multiparty Session Types as the main
specification format for multiparty protocols.

M. Vassor and N. Yoshida 41:3

In addition, we demonstrate the versatility of our framework with multiple extensions.
First, our framework can accommodate other protocol specification formats (e.g. choreography
automata [1]). Second, it is used as a baseline for improved refinement evaluation: we present
an optimised model of computation (decentralised refinement evaluation). Finally, it is also
used as a baseline for implementing static analysis techniques: we present a simple strategy
for statically removing redundant refinements.

Valid Refined Traces. The first building block is a common notion of correct executions
with respect to added refinements. We introduce valid refined traces which are consistent
traces with respect to refinements. This approach allows us to establish a general notion
of refinements, which is applicable to different logics for constraints, type theories, models
of computations, and programming languages. We consider asynchronous communications
(FIFOs), distinguishing sending and receiving actions in traces.

To illustrate our approach, consider the guessing game example shown above. Each
execution of that protocol is recorded in a trace, i.e. a sequence of the individual events that
take place during the execution (c.f. Section 2.2). For instance, a possible trace of the first
four events of the protocol is the following:

A!B⟨secret, ⟨n, 5⟩⟩ : ⊤ · A?B⟨secret, ⟨n, 5⟩⟩ : ⊤ · C!B⟨guess, ⟨x, 5⟩⟩ : ⊤ · C?B⟨guess, ⟨x, 5⟩⟩ : ⊤

This trace contains four actions, and each action records an event, i.e. a message emission
(denoted with a !) or reception (denoted with a ?). For instance, A!B⟨secret, ⟨n, 5⟩⟩ : ⊤
records A sending a message to B, the payload of this message is a variable n, which has value
5. In the first four actions, we do not need any constraint, therefore actions are guarded by
⊤ which denotes a tautology predicate. The next action following this trace would be for B
to send either more, correct, or less. Choosing more or less would be inconsistent with our
protocol, since C guessed the correct number. For instance, choosing more would add the
action B!C⟨more⟩ : n > x at the end of the queue: the refinement n > x would be violated,
since x = n = 5.

Valid Refined Traces characterise consistency based on the produced trace; and we aim to
provide a model of computation constrained in a way that prevents such inconsistent choices.

Refined Communicating Systems. The second building block of our framework is a model
of computation that only produces correct traces. Communicating Systems (CS) [5] are a
model of concurrent computation, where Communicating Finite State Machines communicate
asynchronously using unbounded FIFO queues. CS are often used to model and implement
MPST [12, 13, 7]. We adapt CS to accommodate refinements, which we call Refined
Communicating Systems (RCS). The semantics is modified in order to check refinements
at every step. For this, we introduce a shared map in order to keep track of variables and
their values that are exchanged in messages (e.g. the values of x and n in the guessing
game example). This record of values is used to evaluate refinements, preventing undesired
transitions. In this paper, we show that RCS only produce valid refined traces and we explain
how to generate an RCS from a RMPST.

Refined MPST. Working with CS is cumbersome, and, in practice, we would prefer to
adapt existing specification formats. We present in depth how to integrate refinements in
Multiparty Session Types (MPST) [38, 19, 18], which are a family of type systems that aims
to prevent communication bugs.

The following refined global type (G±) is a specification of the guessing game protocol
(Figure 1), with refinements: a participant A begins by sending a secret to B; the value of
the secret is stored in the variable n. Then, C tries to guess the value (stored in variable x),

ECOOP 2024

41:4 Refinements for Multiparty Message-Passing Protocols

and B replies with more, less (in which case the protocol loops and C can make another
guess: µT.G denotes the recursion) or correct, at which point the protocol terminates (end
denotes the termination). The refinements specify conditions upon which the more, less, and
correct branches are possible. For instance, the protocol can take the correct branch only if
the values in the secret and the guess messages are the same, i.e. if x = n.

G± =

A → B

secret(n : int |= ⊤).µT.C → B

guess(x : int |= ⊤).B → C

more(|= x < n).T,

less(|= x > n).T,

correct(|= x = n).end

Compared to standard MPST, Refined MPST (RMPST) contain variable names (n and x)
and refinements (denoted with |= r in the payloads, meaning that to send the message, r

must hold). We present those extensions as well as the relation between RMPST and RCS.

Applications and Extensions. To show the versatility of our framework, we extend it:
Decentralised Refinement Evaluation: The canonical semantics for RCS we present uses

a single shared map of variables to provide a simple way to reason about refinements.
Having this global map would not be suited for a distributed implementation. We extend
our framework with an alternative semantics where each participant of a protocol has a
local map of variables. We show that if variables are not duplicated, then this alternative
model also produces valid refined traces.

Static Elision of Redundant Refinements: At places where refinements are redundant (e.g.
where it is entailed by previous refinements), we could benefit from removing those
refinements. In order to show the versatility of our framework, we show how to develop a
simple static analysis technique to remove such redundant refinements.

Refined Choreography Automata: While we mostly use RMPST as an example of protocol
specification language, we sketch another specification by (informally) presenting how to
integrate refinements in choreography automata (in [35]).

Rust Implementation. The last objective of our work is to implement RMPST into Rust.
We choose Rust for several reasons: its affine type system makes it easy to avoid unwanted
reuse of values, which helps to prevent a participant from duplicating actions; and thanks to
its growing popularity, there are already a few existing toolchains for session types in Rust
[27, 6, 26, 25]. Among them, we choose Rumpsteak [7] since it already uses CS to implement
MPST participants inside its toolchain. We extend Rumpsteak with refinements using the
decentralised refinement evaluation approach. We finally measure the refinement overhead in
Rumpsteak.

Contributions and Outline. Our main contribution is to unify the different points presented
above in a single framework as presented in Figure 2. We introduce a uniform framework
which is agnostic to any particular specification formalism, model, semantics and language,
defining the correctness of refinements as validity of traces. We then prove the safety of the
framework (Theorem 18). We demonstrate the versatility of our framework by accommodating
multiple protocol specifications such as (refined) multiparty session types [38, 19, 18, 42] and
(refined) choreography automata [1, 16], multiple semantics such as (refined) communicating
automata [5] with centralised and decentralised semantics, and multiple analysis techniques
such as dynamic and static analyses. We provide an implementation of an instance of the
framework in Rust. Our framework is the first, to the best of our knowledge, to achieve such
versatility.

M. Vassor and N. Yoshida 41:5

③ Section 4

① Section 2

②
Se

ct
io

n
3

⑦
Se

ct
io

n
5

④

⑤

⑥ [35] (Example)

⑧ Section 6
Refined Communicating

System (RCS)

Refined
Configuration

Decentralised
Configuration

Refined Decentralised
Traces

Traces
of RCS

Valid Refined Traces

Refined Local Types

Refined Global Type Refined Choreography Automata

Static
Elision

Simulates
Theorem 31

Global
Semantics

Decentralised
SemanticsSubset of

Cor. of Theorem 31

Subset of (Theorem 18)

Instantiate (Definition 22)

Projection

Project
ion

Correctness (Theorem 35)

Figure 2 Overview of the framework for RMPST developed in this work. The coloured back-
grounds show the main steps of this paper.

The framework is composed of the following parts (circled numbers refer to Figure 2):
① Valid Refined Traces: We introduce valid refined traces which characterise valid execu-

tions with respect to refinements.
② Refined Communicating Systems (RCS): We extend Communicating Systems to accom-

modate refinements. From a configuration of RCS, we induce a set of possible traces.
One of our main results is Theorem 18 (④), which states that all traces produced by RCS
are valid refined traces, which in turn proves the correctness of the RCS.

③ Refined Multiparty Session Types (RMPST): In Section 4, we adapt MPST (which con-
sists of global types (which describe a multiparty protocol), local types (which describe
the behaviour of a single participant), and a projection from global to local types which
extracts the behaviour of a single participant) to accommodate for refinements. We show
how to generate a RCS from a set of local types with refinements (⑤). In addition, in
[35], we sketch how to accommodate refinements in choreography automata, to illustrate
the versatility of the framework (⑥).

⑦ and ⑧ Optimisations: In Section 5 (⑦), we propose a decentralised model as an alternative
for RCS. We show trace inclusion w.r.t. RCS, which ensures refinements are correctly
checked. In Section 7, we implement this improved model in Rust. In addition, in
Section 6, we demonstrate how to develop analysis techniques using the framework. We
show how redundant refinements can, under some conditions, be statically removed (⑧).

ECOOP 2024

41:6 Refinements for Multiparty Message-Passing Protocols

2 Refined Traces and their Validity

This section introduces refined traces which are sequences of messages actions. We then
define their validity, introducing two definitions on traces, well-queued and well-predicated
traces. We precede this (in Section 2.1) with preliminary definitions used throughout this
paper.

2.1 Preliminaries: Predicates Language and Semantics
This first subsection introduces the basic definitions we use in this paper.

Let V be a set of variables, ranged over by x, y, . . .; and a finite set C of values (in this
work, we take 32-bit integers: Z/232Z).

We use associative maps from variable names to values, noted M . dom(M) denotes the
domain of a map, that is the set of variables that appear in the map. Maps are equipped
with lookup (M(x)), update (M [x7→c]) and removal (M\x) operations. M1

⊎
M2 denotes

the union of M1 and M2 if their domains are disjoint (see [35] for the definition of all those
operators). Finally, M∅ denotes an empty map.

In order to keep our work general, we do not strictly specify the language of predicates,
nor their semantics rules. Instead, we suppose we are given a language to express refinements,
whose terms are produced by a rule R. In this paper, we intentionally leave the logic
underspecified so that it can be fine tuned by the end user. In practice, in our implementation
(Section 7), custom predicates can easily be added. In the following, we use a simple grammar
with arithmetic and relational operators as predicates. Let R be the set of refinement
expressions. We assume refinements can have free variables, and that there exist a function
fv : R → P(V) that gives the free variables of each refinement expression. We note RW be
the set of refinements of R whose set of free variables is W ⊆ V. We assume a variable
substitution function, R{vi/xi} that substitutes every free occurrence of each variable xi for
the value vi. For any refinement expression r, r{.../fv(r)} is a closed refinement. Since our
predicates are abstract, we do not explicitly specify their semantics, nor their well-formedness.
Instead, we assume each closed refinement formula evaluates to ⊤ or ⊥. We assume there
exists a function eval(r) that evaluates the refinement r, provided that r is closed1. Finally,
we assume the existence of a closed formula ⊤ that is a tautology, i.e. eval(⊤) = ⊤.

Given a map M and a refinement r, we note M |= r if and only if the refinement
r is closed under the map M : fv(r) ⊆ dom(M), and evaluates to ⊤ after substitution:
eval(r{M(fv(r))/fv(r)}) = ⊤.

In a protocol with multiple participants, let P be a set of participants ranged over by
A, B, . . . and p, q, . . . being meta-variables over participant names. In this work, messages
contain a label, a variable, and a value. Let L be a set of labels; ℓ and its decorated variants
range over labels in L. We define M = L× (V×C) for the set of messages (as a reminder: L
is the set of labels, V the set of variables, and C the set of values).

2.2 Traces
Let us denote e⃗ = e1::. . .::en (n ≥ 0) as a FIFO, i.e., a finite sequence of elements ei (messages
exchanged in this paper). We use ε for an empty FIFO (n = 0). We define: enq(e⃗, e) def= e::e⃗;
deq(e⃗::e) def= e⃗ (deq(ε) is undefined); and next(e⃗::e) def= e (next(ε) is undefined). Notice

1 We do not discuss the decidability of the actual chosen logic of refinements here. For undecidable logics,
providing such function is, of course, not possible; however this is not in the scope of this work.

M. Vassor and N. Yoshida 41:7

that deq(e⃗) is defined if and only if next(e⃗) is defined. In this paper, we consider one FIFO
channel per pair of participant. We call queues a map of all pairs of distinct participants to
their communication FIFO of a system. We note enq(p,q)(w, e), deq(p,q)(w), next(p,q)(w),
where the indices indicates which FIFO of the set is affected (see [35] for the formal definition).
We write w∅ for the empty queue, which is the queue where w(p,q) = ε for all p and q.

Actions are tuples consisting of a sending participant p, a direction of communication
† ∈ {!, ?} (! stands for sending, and ? stands for receiving), a receiving participant q, a message
m and a predicate r associated to the action (as a reminder: R is the set of refinements).
We require participants to be distinct (i.e. p ̸= q).

▶ Definition 1 (Action and Trace). An action is an element of A defined as follows: A =
P × {!, ?} × P × M × R. We write α = p†q⟨m⟩ : r (p ̸= q) when ⟨p, †, q, m, r⟩ ∈ A.

Traces (denoted by τ and its decorated variants) are finite sequences of actions, defined
inductively from the rule T ::= α · T | ϵ , where α is an action. We write A⋆ for
the set of traces.

▶ Example 2 (Trace). We presented a trace in Section 1.

We denote τ1 · τ2 for the concatenation of two traces. We assume an intuitive notion of the
size of trace, as well as lemmas that allow us to infer that, if the size is 0, then the trace is ϵ.

2.3 Properties of Refined Traces
In this subsection, we characterise the correctness of traces w.r.t. refinements.

There are two conditions valid traces should verify. First, the sending/reception of
messages should be consistent (as with normal MPST). Second, for every action of the trace,
predicates that guard the action should hold. We call traces that satisfy message consistency
well-queued traces, and the traces that satisfy the predicates well-predicated traces. In the
end, we consider traces that satisfy both conditions: we call those traces valid refined traces.

To start with well-queued traces, we first evaluate the impact of a trace on a queue, by
looking at the effect of each action on that queue (Definition 3).

▶ Definition 3 (Trace Ending Up with Queues, well-queued traces). A trace τ ends up with
the queue wf w.r.t. a queue wi if:
1. If τ = ϵ, wi = wf ; and
2. If τ = p!q⟨m⟩ : r · τ ′, then τ ′ ends up with wf w.r.t. enq(p,q)(wi, m); and
3. If τ = p?q⟨m⟩ : r · τ ′, then τ ′ ends up with wf w.r.t. deq(p,q)(wi) and next(p,q)(wi) = m.
A trace τ is well-queued with regards to the queue w if τ ends up with the empty queue w∅
with respect to an initial queue w.

A trace τ is valid if τ is well-queued with respect to the empty queue w∅.

▶ Remark 4. In Definition 3, we say wi is the initial queue.

Regarding well-predicated traces, the idea is to record the latest value of each variable in
a map; and to use that map to evaluate refinements (Definition 5).

▶ Definition 5 (Well-Predicated Traces). A trace τ is well-predicated under a map M , if
either

(i) τ = ϵ; or
(ii) τ = p†q⟨l, (x, c)⟩ : r · τ ′ and M [x7→c] |= r and τ ′ is well-predicated under M [x7→c].

ECOOP 2024

41:8 Refinements for Multiparty Message-Passing Protocols

▶ Example 6 (Well-Predicated Traces). In Section 1, we presented the trace τ :
A!B⟨secret, ⟨n, 5⟩⟩ : ⊤ · A?B⟨secret, ⟨n, 5⟩⟩ : ⊤ · C!B⟨guess, ⟨x, 5⟩⟩ : ⊤ · C?B⟨guess, ⟨x, 5⟩⟩ : ⊤

To illustrate Definition 5, we propose two actions after τ :
(i) τ1 = B!C⟨more, ⟨_, _⟩⟩ : x > n; and
(ii) τ2 = B!C⟨correct, ⟨_, _⟩⟩ : x = n.

We can investigate whether τ · τ1 (resp. τ · τ2) is a well-predicated trace under M∅. According
to Definition 5, we have to investigate whether τ1 (resp. τ2) is well predicated under
M = {⟨n, 5⟩, ⟨x, 5⟩}.

For τ1, according to Item ii in Definition 5, then x > n must hold under M , which is not
the case, therefore τ · τ1 is not well-predicated.

Regarding τ2, according to Item ii in Definition 5, then x = n must hold under M , which
is the case.

Finally, we consider traces that are both valid with respect to predicates and to messages.
We call those Valid Refined Traces. Our overall goal is to show that our framework only
produces such valid refined traces.

▶ Definition 7 (Valid Refined Traces). A refined trace τ is valid if
(i) τ is well-queued with respect to the empty queue w∅; and
(ii) τ is well-predicated under the empty map M∅.

3 Refined Communicating Automata

In this section, we model message-passing concurrent systems with refinements. We ensure
that this model only generates valid refined traces (c.f. Definition 7). Our model of
computation is an extension of communicating systems (CS) [5, 8], which are sets of Finite
State Machines communicating using queues. We introduce refined communicating systems
(RCS), a variant of CS which accounts for refinements and we show that all traces produced
by RCS are valid refined traces (Theorem 18).

Refined Communicating Finite State Machines. Communicating systems [5] are a con-
current model of computation composed of a set of communicating finite state machines
(CFSM) that interact with exchanges of messages. CFSM are standard finite state machines,
where labels represent actions (i.e. sending or receiving messages). Individual FSM are then
given a concurrent semantics, which performs messages exchanges. The state of the system is
called a configuration, which records the state of the individual CFSMs as well as the content
of the message queues. In this section, we adapt communicating systems for refinements.

First, we add refinements to the transitions of CFSM, which we call refined CFSM. This
appears in the additional R in Definition 8 (we recall R is the set of refinements).

▶ Definition 8 (Refined Communicating Finite State Machine (RCFSM)). An RCFSM is a
finite transition system given by M = ⟨Q, C, q0,M, δ⟩, where Q is a set of states; C = {pq ∈
P2 | p ̸= q} is a set of channels2; q0 ∈ Q is an initial state; M is a finite alphabet of messages;
and δ ⊆ Q × (C × {!, ?} × A × R) × Q is a finite set of transitions.

We write s
i†j⟨m⟩:r−−−−−→ s′ for ⟨s, ⟨ij, †, m, r⟩, s′⟩ ∈ δ. Refined communicating systems (RCS)

are analogous to their non-refined counterparts and simply consist of a tuple of RCFSM, with
one RCFSM per participant. For refined configurations, as with (non-refined) configurations,

2 The original definition uses channels, which we do not use. We keep them for the sake of consistency.

M. Vassor and N. Yoshida 41:9

B1 B2 B3 B4
A?B⟨secret, ⟨n, cn⟩⟩ : ⊤ C?B⟨guess, ⟨x, cx⟩⟩ : ⊤

B!C⟨more, ⟨_, _⟩⟩ : x < n

B!C⟨less, ⟨_, _⟩⟩ : x > n

B!C⟨correct, ⟨_, _⟩⟩ : x = n

Figure 3 RCFSM of B in the G± protocol.

we store the states of the individual CFSM and the content of queues. In addition, contrary
to non-refined configurations, refined configurations also contain a map in order to keep track
of the values of the variables in order to be able to evaluate refinements.

▶ Definition 9 (Refined Communicating System (RCS)). A refined communicating system is
a tuple R = ⟨Mp⟩p∈P of RCFSMs such that Mp = ⟨Qp, C, q0p,M, δp⟩.

An RCS uses one RCFSM per participant i ∈ P. A configuration represents the state of
such RCS, where each participant i is in a local state si.

▶ Definition 10 (Refined Configuration). A refined configuration of an RCS R is a tuple S

as follows: S
def= ⟨⟨s1, . . . , sn⟩, w, M⟩R where each si ∈ Qi, w is a queue of messages, and M

is a map from variables names to values. Let S be the set of refined configurations.

▶ Remark 11. Refined configurations are indexed by their RCS. This allows the configuration
to store the automaton of the participant. The semantics developed below uses those (local)
transitions to infer the global semantics. When the context is clear, we omit this index.

From that, we characterise initial and final configurations. We call a configuration initial
when it is a possible configuration where no actions have been taken yet. This means that
there is no pending messages (which would imply a previous send action), nor known variables
(which would imply a previous action initialised the variable). We say a configuration is final
when there are no pending messages (otherwise, we would expect a receive action to take
place). Notice that it does not mean the system cannot take action at all.

▶ Definition 12 (Initial and Final Refined Configuration). A refined configuration
⟨⟨s1, . . . , sn⟩, w, M⟩ ∈ S is initial if and only if

(i) w = w∅;
(ii) M = M∅; and
(iii) each si is initial in the RCFSM.

A refined configuration S = ⟨⟨s1, . . . , sn⟩, w, M⟩ ∈ S is final if and only if w = w∅.

▶ Example 13 (RCS). The RCFSM of participant B in the guessing game is shown in
Figure 3. See [35] for the RCFSM of A and C. Together, they form a RCS, which initial
configuration is ⟨⟨A1, B1, C1⟩, w∅, M∅⟩.

Refined Semantics. We now define the semantics of RCS in Definition 14 with two reduction
rules GRRec and GRSnd (the initial GR stands for global refined, to distinguish the rules
from variants in the following parts of this work), which are respectively used for receiving
and sending messages. To avoid confusion with RCFSM reductions, we use a double arrow
(=⇒) to represent reductions at the refined communicating system level.

ECOOP 2024

41:10 Refinements for Multiparty Message-Passing Protocols

Rule GRSnd specifies that, if a participant i reduces from state si to state s′
i while

sending a message m and if the refinement predicate r attached to the action holds, then the
transition is taken at the global level. In the resulting refined configuration, the message is
enqueued in the relevant queue and the map of known variables M is updated to take into
account the new value of the carried variable c.

Rule GRRec is similar, with the additional requirement that the message received must
be the next in the participant’s queue (the third premise).

Notice that the verification of refinements is dynamic, as it is performed by the corres-
ponding premise in each of the rules, i.e. at execution time.

▶ Definition 14 (Refined Global Semantics). Given a RCS R = ⟨Mp⟩p∈P, we define:

GRRec
t = si

j?i⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ s′
i ∈ δi M [x7→c] |= r next(j,i)(w) = ⟨ℓ, ⟨x, c⟩⟩

⟨⟨. . . , si, . . .⟩, w, M⟩R
t=⇒ ⟨⟨. . . , si

′, . . .⟩,deq(j,i)(w), M [x7→c]⟩R

GRSnd
t = si

i!j⟨ℓ,⟨x,c⟩⟩:r−−−−−−−→ s′
i ∈ δi M [x7→c] |= r

⟨⟨. . . , si, . . .⟩, w, M⟩R
t=⇒ ⟨⟨. . . , s′

i , . . .⟩, enq(i,j)(w, ⟨ℓ, ⟨x, c⟩⟩), M [x7→c]⟩R

▶ Remark 15. Global transitions are labelled with the underlying local transition. When the
local transition is not relevant, we do not show it.

▶ Example 16 (Transitions of a RCS). Considering the RCS of G± (Figure 3) in its initial
configuration Ci = ⟨⟨A1, B1, C1⟩, w∅, M∅⟩, we have that the automaton of A can fire a
transition A1

A!B⟨secret,⟨n,5⟩⟩:⊤−−−−−−−−−−−−→ A2, and M∅[n7→5] |= ⊤, by definition of ⊤. Therefore, Ci

can take a GRSnd transition and reduce to ⟨⟨A2, B1, C1⟩, w, {⟨n, 5⟩}⟩, where w contains a
single message ⟨secret, ⟨n, 5⟩⟩ in w(A,B).

If the RCS is in the configuration C = ⟨⟨A2, B3, C2⟩, w∅, M⟩ with M = {⟨x, 5⟩, ⟨n, 5⟩},
the RCFSM of participant B offers three possible transitions:

(i) B3
B!C⟨more,⟨_,_⟩⟩:x<n−−−−−−−−−−−−−−→ B2;

(ii) B3
B!C⟨less,⟨_,_⟩⟩:x>n−−−−−−−−−−−−−→ B2; and

(iii) B3
B!C⟨correct,⟨_,_⟩⟩:x=n−−−−−−−−−−−−−−−→ B4.

The predicates carried in first two do not hold under M : M ̸|= x < n (resp. for x > n).
Therefore, only B3

B!C⟨correct,⟨_,_⟩⟩:x=n−−−−−−−−−−−−−−−→ B4 is feasible as a GRSnd transition in the RCS.
As we will see below (Theorem 18), this semantics prevents invalid traces.

Trace of Refined Communicating Systems. In order to show that the semantics of RCS
captures the intuition of refinements, we study the traces formed by sequences of reductions
(see [35] for the formal definition of traces of RCS).

▶ Example 17 (Trace of an RCS). The trace τ · τ2 (Example 6) is a trace of the RCS of G±.

We conclude this section with our main result, which is that all traces produced by S(G)
are valid refined traces. A trace is initial (resp. final) if it is obtained from a run whose first
(resp. last) state is initial (resp. final).

▶ Theorem 18 (Traces of Refined Communicating Systems are Valid Refined Traces). For all
RCS R, for all initial and final traces τ of R, τ is a valid refined trace.

The proof is in [35].

M. Vassor and N. Yoshida 41:11

G ::= p → q{li(xi : S |= R).G}i∈I | µt.G communication, recursive type
| t | end type variable, termination

L ::= p⊕{li(xi : S |= R).L}i∈I | t | end internal choice, type variable, termination
| p&{li(xi : S |= R).L}i∈I | µt.L external choice, recursive type

S ::= int | . . . sort (payload types)

Figure 4 Syntax of Global (G) and Local (L) Types and Sorts (S).

4 Refined Multiparty Session Types (RMPST)

In the two previous sections, we introduced refinement validity and a variant of CS which is
correct with respect to our validity criterion. However, working with RCS is cumbersome, in
particular if we intend to prove additional properties (e.g. deadlock freedom). Fortunately,
various models for message-passing concurrent computation have been developed in the
literature, many of which can be encoded into CS. Multiparty session types (MPST) [38, 19, 18]
is an example of such model. We focus on MPST as they have proved successful for many
applications and the theory enjoy many useful properties (e.g. session fidelity, deadlock
freedom, liveness etc). However, MPST is not the only possible choice, and we sketch different
input models in [35]. In this section, we introduce refined multiparty session types (RMPST),
which are an extension of MPST annotated with refinement predicates and we show how one
can extend existing models to easily obtain refinements.

In Section 4.1, we first present the syntax of global and local refined multiparty session
types, adapted for refinements. In Section 4.2, we present how to obtain RCS from local
RMPST, extending a standard approach to implement MPST in CS [12] with refinements.

4.1 Syntax of RMPST
We define the syntax of RMPST. First we assume that messages carry different sorts of
payload. As a reminder, for simplicity, in our examples, we only consider int payloads.
Also, we recall the conventions from Section 2.1: P is the set of participants and L is the
set of labels. For recursion, we introduce type variables that range over {T, U, . . . }; t is a
meta-variable taken over the set of type variables. We assume all type variables appearing in
a type are distinct and we do not (syntactically) distinguish global and local type variables.
Finally, xi are meta-variables over payload variables taken from the set V.

We first define global refined multiparty session types, which are inductive data types
generated by the production G in Figure 4. The type A → B{li(xi : Si |= ri).Gi}i∈I describes
a protocol where A chooses a label li amongst possible I and sends a message to B. The
message contains a payload of type Si, which is bound to xi when sent. Refinement predicates
we introduce guard the communication they are attached to, meaning the system can select
a choice with predicate ri only if ri holds. In that case, the message is sent and the protocol
continues with its continuation of type Gi. µT.G binds T in G, and a bound type variable
T in a type denotes a protocol recursion. Let frv(G) denotes the free recursion variables
occuring in G. Finally end describes a terminated protocol. Let parts(G) be the set of
participants that appear in G (c.f. [35] for the definition of parts(G)). We write p ∈ G for
p ∈ parts(G).

▶ Example 19 (Refined Global Multiparty Session Type). The type G± presented in Section 1
is a refined global type; we have parts(G±) = {A, B, C}.

ECOOP 2024

41:12 Refinements for Multiparty Message-Passing Protocols

To characterise the behaviour of individual participants, we define refined local multiparty
session types, which are inductive datatypes generated by L in Figure 4. Recursion, type
variables and termination are similar in local and global types. Only the communication
specifications differs: in a local type p⊕{li(xi : Si |= ri).Li}i∈I describes an internal choice,
i.e. the participant chooses a label li and sends it to p. Conversely, p&{li(xi : Si |= ri).Li}i∈I

describes an external choice: p makes a choice amongst the possible li and the local participant
receives this choice.

Global and local MPST are related: we can project a global type onto the local types
of its participants. Below, we define a projection (partial) operator G↾p, which returns the
local type of p with respect to the global type G.

We define a projection with a merge (partial) operator, which merges multiple local types
of a participant into a single local type. This is used to merge the (possibly different) types
of the continuations present in the communication branches. The study of different variants
of merge operators is an active field (e.g. [32, Section 3]). For the sake of simplicity, in this
paper we use a naïve merge operator, which simply ensures that all types are the same.

▶ Definition 20 (Projection). Given p, q and r three distinct participants:

p → q{li(xi : Si |= Ri).Gi}i∈I↾p = q⊕{li(xi : Si |= Ri).Gi↾p}i∈I

q → p{li(xi : Si |= Ri).Gi}i∈I↾p = q&{li(xi : Si |= ⊤).Gi↾p}i∈I

q → r{li(xi : Si |= Ri).Gi}i∈I↾p = ⊓i∈I(Gi↾p)

µt.G′↾p =
{

µt.(G′↾p) if p ∈ G′ or frv(G′) ̸= ∅
end otherwise

t↾p = tend↾p = end

where a merge operator is defined as: ⊓i∈ILi
def= L if ∀i ∈ I · L = Li, undefined otherwise.

Notice that our local RMPST accept refinements on both receiving and sending, and the
semantics developed in Section 3 accept any position for verification. When projecting a
global type G = A → B {ℓ(x : int |= r).end} onto local types, we therefore have a choice to
project the refinement:

on the send side: G↾A = B⊕{ℓ(x : int |= r).end} and G↾B = A&{ℓ(x : int |= ⊤).end}
on the receive side: G↾A = B⊕{ℓ(x : int |= ⊤).end} and G↾B = A&{ℓ(x : int |= r).end}
or a combination of both3.

Our projection takes the first option, i.e. refinements are checked when the message is emitted,
but with any of these choices, our developments would not substantially change.

▶ Example 21 (Projection). We project G± (Section 1) onto participants A and B4:
G±↾A = B⊕{secret(n : int |= ⊤).end}
G±↾B =

A&

secret(n : int |= ⊤).µT.C&

guess(x : int |= ⊤).C⊕

more(|= x < n).T,

less(|= x > n).T,

correct(|= x = n).end

3 For instance, if we want to implement a centralised server that communicates with (isolated) clients, we

may want all refinements to be asserted by the server, independently of the direction.
4 The projection onto C is similar to the recursive part of the projection onto B, with ! and ? swapped.

M. Vassor and N. Yoshida 41:13

4.2 From Refined MPST to Refined Communicating System
In this subsection, we show how to generate an RCS from local RMPSTs. As shown in
Definition 20, local types are projected from global multiparty session types. Therefore, this
step allows us to complete the conversion from a global RMPST into an RCS. We adapt the
translation from local type to CFSMs presented in [13] to accommodate refinements in types.

The intuition behind the translation is to decompose a local type into the individual
steps it specifies. For this, we first need to retrieve all those steps. We define the set of types
that occur nested in another type: a type T ′ occurs in a type T (noted T ′ ∈ T) if it appears
in the continuations of T after one or multiple steps (see [35]).

Given this, we can proceed to the translation itself, in Definition 22. This definition says
that the states of the RCFSM of a local type T0 are composed of the (sub)types that appear
in T0, stripped of the leading µt. (the function strip removes the leading recursions variables;
this formalises [13, Item (2) in Definition 3.4]) and of recursive variables t. We define the set
of transitions of this RCFSM by taking the action each type (i.e. each state) can take, and
adding a transition with this action from the initial state to the continuation (stripped of
leading µt.). In the case that the continuation is a recursion variable t, we have to search in
the original type the continuation. Compared to [13, Item (2) in Definition 3.4], we simply
add the support for the refinements predicates, which appear both in the types (i.e. in the
states) and in the actions (i.e. in the transitions).

▶ Definition 22 (RCFSM of Refined Local Types (extends Definition 3.5 in [13])). Given a
global type G, the RCFSM of participant p (with local type T0 = G↾p) is the automaton
A(T0) = ⟨Q, C, strip(T0),M, δ⟩ where:

Q = {T ′ | T ′ ∈ T0 ∧ T ′ ̸= t ∧ T ′ ̸= µt.Tµ};
C = {pq | p, q ∈ G, p ̸= q}; and
δ is the smallest set of transitions such that: for all T ∈ T0 in Q, for all c ∈ C:

if T is q⊕{ℓi(xi : Si |= ri).Ti}i∈I , for all Ti:
∗ if Ti ̸= t, then ⟨T , p!q⟨ℓi , ⟨x, c⟩⟩ : r, strip(Ti)⟩ ∈ δ

∗ if Ti = t with µt.T ′ ∈ T0, then ⟨T , p!q⟨ℓi , ⟨x, c⟩⟩ : r, strip(T ′)⟩ ∈ δ

if T is q&{ℓi(xi : Si |= ri).Ti}i∈I , for all Ti:
∗ if Ti ̸= t, then ⟨T , q?p⟨ℓi , ⟨x, c⟩⟩ : r, strip(Ti)⟩ ∈ δ

∗ if Ti = t with µt.T ′ ∈ T0, then ⟨T , q?p⟨ℓi , ⟨x, c⟩⟩ : r, strip(T ′)⟩ ∈ δ

where strip(T) def= strip(T ′) if T = µt.T ′; and strip(T) def= T otherwise.

Finally, we define the RCS of a type.

▶ Definition 23 (Refined Communicating System of a Type). The RCS of a type G, noted
S(G), is a tuple composed of the RCFSM of all participants S(G) def= ⟨A(G↾p)⟩p∈parts(G).
We note C(G) the initial configuration of S(G).

▶ Example 24 (Refined Communicating System of G±). The communicating system of G± is
S(G±) = ⟨A(G±↾A), A(G±↾B), A(G±↾C)⟩.

The initial configuration C(G±) of this RCS S(G±) is ⟨⟨A1, B1, C1⟩, w∅, M∅⟩.

Theorem 18 applies to RCS obtained from RMPST: RCS generated from Definition 23
only produce valid refined traces, with the refined global semantics presented in Definition 14.
Notice also that, if refinements always hold, RMPST and their semantics coincide with the
semantics presented in [12].

ECOOP 2024

41:14 Refinements for Multiparty Message-Passing Protocols

5 Decentralised Refined Multiparty Session Types

In the previous section, we presented RCS and we showed that every trace of an RCS is
a valid refined trace. However, RCS are theoretical constructions and are not intended to
be implemented directly, as they use a global shared map of variables. In practice, a user
may want to develop more precise analysis techniques on specific classes of RCS to remove
this global map, which allows a decentralised verification of refinements, while keeping the
validity of refined traces.

The goal of this section is twofold: on the one hand, the decentralised semantics we
develop serves as a theoretical background for our implementation (Section 7). On the
other hand, it illustrates the modularity of our framework. We show that the decentralised
approach produces valid refined traces by showing refined configurations we developed in
Section 3 simulate decentralised systems. This approach is not specific to our variant: we
expect other optimisations presented in the literature could be integrated similarly.

This section is divided in the following steps: first, we define what we mean by decentralised
verification of the refinements, by adapting the semantics of RCS (Definitions 25 and 28). We
split the global map of variables’ values into local maps (one per participant). Then, we show
that despite being modified, the new variant still produces valid refined traces (Definition 7).
We justify this claim by proving that under some conditions, the original RCS simulates (c.f.
[30, Exercise 1.4.17, p. 26]) the decentralised variant (Theorem 31). Since trace equivalence
is coarser than simulation, this is sufficient to prove that decentralised configurations that
meet the said conditions produce valid refined traces.

The conditions we mentioned above are:
(i) variables should not be duplicated; and
(ii) when evaluating a predicate, the free variables of the predicate must be in the local

map.
Without the first condition, we can possibly have two distinct values assigned to the same
variable without being able to distinguish which is the most recent. The second condition
is required to verify the refinements locally (e.g. predicates that constraint an action of A
should be checked by A itself). To illustrate the importance of the first condition, consider the
type A → B {ℓ1 (x : int).C → D {ℓ2 (x : int).end}}. In the centralised approach, x is aliased,
while in the decentralised approach, the x exchanged between A and B is stored in a local
map, and the x exchanged between C and D is stored in another local map; both are not
aliased. To prevent different semantics, we need to prevent such difference, which is the goal
of the first condition.

Decentralised Configurations and Decentralised Semantics. First, we define decentralised
configurations in Definition 25. Compared to Definition 10, instead of a global map in the
tuple, we associate a local map to each automata state. Those maps store the variables each
participant has access to.

▶ Definition 25 (Decentralised Configuration). A Decentralised Configuration of an RCS
S(G) = ⟨⟨Qi, Ci, q0,i,A, δi⟩⟩i∈parts(G) is a tuple ⟨⟨⟨s1, M1⟩, . . . , ⟨sn, Mn⟩⟩, w⟩S(G) where each
si ∈ Qi, each M i is a local map of variables to values, and w is a queue of messages.

Let SD be the set of decentralised configurations. We note D(G) the initial decentralised
configuration of S(G).

Remark 11 also applies for decentralised configurations.

M. Vassor and N. Yoshida 41:15

▶ Example 26 (Initial decentralised configuration of G±). In Example 13, we presented the
refined communicating system of G± and its associated refined configuration. The initial
decentralised configuration of this system is ⟨⟨A1, M∅⟩, ⟨B1, M∅⟩, ⟨C1, M∅⟩, w∅⟩. In particular,
notice that it uses the same set of refined CFSM than the refined configuration.

The global reduction rules are adapted accordingly: in the rules DRec and DSnd (“D”
stands for “decentralised”), when a message is sent or received, the corresponding local map
is updated, instead of a global map as in GRRec and GRSnd.
▶ Remark 27. Contrary to Definition 14, when a variable is sent, it is removed from
the local map of variables. Intuitively, when a participant sends a variable, it erases its
knowledge of it, to prevent aliasing issues. A direct consequence of this is that, in the
centralised implementation, the global map of variables is a superset of the local maps in
the corresponding decentralised implementation. Indeed, while a variable is in transit, it
appears neither in the sender’s map, nor in the receiver’s one. This observation will be
proved together with the simulation proof (Theorem 31).

▶ Definition 28 (Decentralised Global Semantics). Given an RCS R = ⟨Mp⟩p∈P

DRec
t = si

j?i⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ s′
i ∈ δi next(j,i)(w) = ⟨ℓ, ⟨x, c⟩⟩ Mi[x7→c] |= r

⟨⟨. . . , ⟨si, M i⟩, . . .⟩, w⟩R
t=⇒ ⟨⟨. . . , ⟨si, Mi[x7→c]⟩, . . .⟩,deq(j,i)(w)⟩R

DSnd
t = si

i!j⟨ℓ,⟨x,c⟩⟩:r−−−−−−−→ s′
i ∈ δi Mi[x7→c] |= r

⟨⟨. . . , ⟨si, M i⟩, . . .⟩, w⟩R
t=⇒ ⟨⟨. . . , ⟨si, M i\x⟩, . . .⟩, enq(i,j)(w, ⟨ℓ, ⟨x, c⟩⟩)⟩R

Conditions for Decentralised Verification and Correctness Proofs. We now focus on
proving that this decentralised semantics produces valid refined traces. As we mentioned
above, this holds under two conditions, which we define first:

▶ Definition 29 (Conditions for Decentralised Verification Simulation). Given a decentralised
configuration ⟨⟨⟨si, Mi⟩, . . .⟩, w⟩, the conditions for simulation are:
1. No duplication:

a. if ∃Mi · x ∈ dom(Mi), then ∀i, j · x ̸∈ w(i,j) and ∀j ̸= i · x ̸∈ dom(Mj).
b. if ∃⟨i, j⟩ · x ∈ w(i,j), then ∀i · x ̸∈ dom(Mi) and ∀⟨i′, j′⟩ ̸= ⟨i, j⟩ · x ̸∈ w(i′,j′).

2. Free variables are in the map: ∀i · ∀si
′ · si

i†j⟨ℓ,⟨x,c⟩⟩:r−−−−−−−−→ s′
i · fv(r) ⊆ dom(Mi[x7→c])

▶ Definition 30 (Decentralisable Type). A type G is decentralisable if the two conditions
hold for all reachable decentralised configurations from D(G).

Notice that the second condition is redundant, as the condition Mi[x7→c] |= r (in the
premises of the reduction rules) already requires that fv(r) is a subset of the variables in
Mi[x7→c]. Even without making this condition explicit, the system would stall if a predicate
cannot be verified. For the sake of clarity, we keep it explicit in the two required conditions.

We now observe a correspondence between the (centralised) refined configuration and the
decentralised configuration of a global type G. To characterise the correspondence between
centralised and decentralised configuration, we establish a simulation relation between the two
(see [35] and [30]). Intuitively, a simulation captures the fact that one system (the centralised
configuration in our case) can mimic all transitions of another system (the decentralised one
here).

We can now prove the main result of this section, which is that the decentralised semantics
does not induce new (unwanted) behaviours, i.e. all decentralised transitions can be mimicked
by centralised transitions, i.e. the centralised approach simulates the decentralised one.

ECOOP 2024

41:16 Refinements for Multiparty Message-Passing Protocols

▶ Theorem 31 (Centralised simulates Decentralised). For all decentralisable RMPST G

(Definition 30), C(G) simulates D(G).

Proof. The proof is available in [35]. ◀

This result shows that any type that verifies the conditions stated in Definition 29 can be
verified in a decentralised way. The difficulty is that the conditions are about the execution:
we do not know whether a predicate will have a missing variable during the execution. With
a knowledge flow algorithm, we can infer (from the communication specifications in the
global type) which participant has access to which variables at any point in the execution
of the protocol, i.e. we can localise each variable throughout the execution of the protocol.
This algorithm (which we present in [35]) does not present major challenges.

Notice that the reverse simulation does not hold: D(G) does not simulate C(G). Indeed,
C(G) can verify a predicate whose variables are spread over different participants, i.e. where
variables would be spread across multiple Mi in the decentralised variant.

6 Static Elision of Redundant Refinements

In this section, we present a second optimisation, which is complimentary from the first
one. The main idea is to statically analyse a given protocol to find and remove redundant
refinements. Our approach is to consider a target transition, which we aim to remove the
refinement, if possible. Our optimisation can then be applied successively to different target
transitions one after each other. For instance, consider the following protocol Gs. We target
the second refinement, x < 10, which necessarily holds if the first one does (since x does not
change). Therefore it is redundant and can be removed.

Gs = A → B {ℓ1 (x : int |= x < 0).A → B {ℓ2 (y : int |= x < 10).end}}

However, removing refinements is not always trivial, since the communication semantics is
asynchronous. Consider for instance the following type:

A → C {ℓ1 (x : int |= x > 20).A → B {ℓ2 (x : int |= x < 0).C → B {ℓ3 (y : int |= x < 10).end}}}

A naïve approach would be to remove the refinement of the last communication (x < 10),
since the previous communication has a stronger guarantee (x < 0). However, due to the asyn-
chrony of communications, the second and third communications could be swapped at runtime,
but the refinement (x < 10) does not hold before the action A → B {ℓ2 (x : int |= x < 0).. . .}
occurs. Therefore, in this case, removing the last refinement is incorrect. The optimisation we
present takes into account those cases, by keeping track of causal relations between actions.

This section is independent of the previous one, although this second optimisation can
help to make some protocols localisable: for instance, Gs above is not localisable. Since
the second step A → B {ℓ2 (y : int |= x < 10).end} requires A to access x, which is at B.
However, once removed, the protocol becomes localisable, and can therefore be decentralised,
helping the first optimisation introduced in Section 5.

As with the previous section, the optimisation we present could easily be further improved.
Here, we focus on a simple case, as our goal is not to discuss the optimisation itself, but
rather to show the versatility of the framework.

We present this section in two steps: first, in Section 6.1, we focus on RCS, which form
the core of our framework; then, in Section 6.2, we apply the above result to RMPST.

M. Vassor and N. Yoshida 41:17

A1 A2 A3
A!B⟨ℓ1 , ⟨x, _⟩⟩ : x < 0 A!B⟨ℓ2 , ⟨y, _⟩⟩ : x < 10

(a) RCFSM of A in the protocol Gs (A(Gs↾A)).

B1 B2 B3
A?B⟨ℓ1 , ⟨x, _⟩⟩ : ⊤ A?B⟨ℓ2 , ⟨y, _⟩⟩ : ⊤

(b) RCFSM of B in the protocol Gs (A(Gs↾B)).

Figure 5 RCFSM of the RCS of Gs, the running example of Section 6.

6.1 Static Elision of Refinements in RCS
In a first step, we develop and prove the correctness of our analysis in RCS. The question is
therefore whether, given a RCS R with one CFSM containing a transition with refinement r,
this RCS R is equivalent (bisimilar) to an RCS where r is replaced with ⊤.

For the sake of simplicity, in this subsection, we’ll explain the static elision of refinements
in RCS using examples. Formal definitions, lemmas and their proofs are available in [35].
We use the RCS of Gs shown in Figure 5.

If we aim to i.e. transitions which payload modify variables that do not appear free in
the refinement of the considered transition.

▶ Example 32 (Independent transitions). In S(Gs), A2
A!B⟨ℓ2 ,⟨y,_⟩⟩:x<10−−−−−−−−−−−−→ A3 depends on

the variable x ∈ fv(x < 10). This transition is self-independent. Since the payload of
A1

A!B⟨ℓ1 ,⟨x,_⟩⟩:x<0−−−−−−−−−−−−→ A2 is x, the former transition depends on the later.

▶ Remark 33. We note Tx the set of transitions σ
†⟨_,⟨x,_⟩⟩:_−−−−−−−−−−→ σ′. Given a transition t

with refinement r, if x ∈ fv(r), then t depends on all transitions of Tx.
Essentially, when attempting to remove a refinement from a target transition t, we can

disregard all transitions t is independent of.
The second definition we will need is about transitions being well-defined. So far, nothing

prevents us to use refinements with undefined free variables, we simply consider the refinement
does not hold (c.f. Definition 14). In this section, we specifically focus on systems where free
variables of refinements are in the map when the refinement is evaluated. When it is the
case, we call transitions with such refinements well-defined.

▶ Example 34 (Well-defined transition). Considering the RCS in Figure 5. In the RCFSM
of A, the (local) state A2 is only accessible with a transition A1

A!B⟨ℓ1 ,⟨x,_⟩⟩:x<0−−−−−−−−−−−−→ A2.
Therefore, any global state ⟨⟨A2, B{1,2,3}⟩, _, M⟩ necessarily contains a preceding transition

A1
A!B⟨ℓ1 ,⟨x,_⟩⟩:x<0−−−−−−−−−−−−→ A2. Therefore, x is always in the map M of that state.
Therefore, the transition A2

A!B⟨ℓ2 ,⟨y,_⟩⟩:x<10−−−−−−−−−−−−→ A3 is well-defined.

We can now conclude our analysis technique: consider a target transition t with refinement
r that is self-independent (it does not modify the variables of its refinement) and well-define.
If all transitions that modify the free variables of r can guarantee (via their refinement) that
the modification they do is correct with respect to r, then we can safely remove r.

▶ Theorem 35 (Correctness of refinement elision). Given an RCS R containing an RCFSM
M = ⟨Q, C, q0,A, δ⟩, and t = si

p†q⟨m⟩:r−−−−−→ si
′ ∈ δ, a well-defined self-independent transition.

Let t′ = si
p†q⟨m⟩:⊤−−−−−−→ si

′; δ′ = δ \ {t} ∪ t′; M ′ = ⟨Q, C, q0,A, δ′⟩; and R′ be R where M is
replaced with M ′. If, for each transition tw = _ _!_⟨_⟩:rw−−−−−−−→ _ in

⋃
x∈fv(r) Tx, for all map M ,

M |= rw entails M |= r, then there exists a bisimulation relating the states of R′ and R.

ECOOP 2024

41:18 Refinements for Multiparty Message-Passing Protocols

Proof. Proving each direction of the bisimulation is direct (see the proof in [35]). ◀

▶ Example 36 (Application of Theorem 35). The following RCFSM, where x < 10 is removed,
is a valid replacement for A(Gs↾A) in S(Gs).

A1 A2 A3
A!B⟨ℓ1 , ⟨x, _⟩⟩ : x < 0 A!B⟨ℓ2 , ⟨y, _⟩⟩ : ⊤

6.2 Application to RMPST Protocols
The above subsection explains how to remove some redundant refinements in RCS. In this
subsection, we intend to do the same, focusing on RMPST instead of RCS.

Our goal is the following: we are given an RMPST G, and we would like to remove one
of its refinement (which we call the target refinement r). For the sake of simplicity, in this
section, we assume all labels are uniquely used. For the general case, we can simply uniquely
rename redundant labels. Overall, the roadmap for this subsection is to show that given
the type G′, which is G where r is replaced by ⊤, G and G′ behave similarly, i.e. the RCS
the generate are bisimilar. To achieve this, we show that Theorem 35 applies to S(G) and
S(G′). Therefore, the main point is finding conditions on RMPST that ensures hypothesis
of Theorem 35 holds; we have to verify the following items:
1. all transitions our refinement depends on should entail the refinement itself;
2. the transition that carries the refinement must be well-defined. Since variables cannot

be removed from the map, the first occurrence of the target transition must respect the
domain condition. Therefore, for this step, we can ignore recursion.

The main difference with automata is that, in types, we have communications, which
possibly contains choices with multiple branches; and we our goal is to remove the refinement
of one of those branches. Therefore, we first introduce steps of a communication, i.e. given a
choice, what are the possible choices it can take. We then extend this to types. We show
that steps in a type correspond to transitions in the automata of that type.

▶ Example 37 (Step). The type Gy = A → B {ℓ2 (y : int |= x < 10).end} has the step
A → B⟨ℓ2 , y⟩ |= x < 10. Since Gy occurs in one of the branches of Gs (from the introduction
of this section), this step occurs in Gs.

Given this notion of steps occurring in a type that is analogous to transitions in the
RCFSM of that type, we can now focus on the conditions of Theorem 35. Therefore, we
have to characterise what corresponds to well-defined transitions in a type. Since transitions
(in RCS) and steps (in types) are analogous, we introduce well-define steps in a type. We
recall that, in a RCS, a transition is well-defined if the free variables of the refinement it
carries are always known when the transition is fired. Since variables are never removed from
the map, we can focus on the first occurrence of the transition. So far, we do not have a
notion of run for a type. Therefore, we first define an happens-before relation in RMPST,
and we use this relation to define well-defined steps as steps that contain a refinement which
free variable are all exchanged in a communication that happens-before the step we consider.
With those two definitions, we can finally prove that a well-defined step in a type corresponds
to a well-defined transition in the corresponding RCS.

▶ Example 38 (Well-define step in a type). Consider Gs and Gy as in Example 37. The step
A → B⟨ℓ2 , y⟩ |= x < 10 is well-defined. Indeed, fv(x < 10) = {x}, Gs < Gy, and Gs contains
a branch that sends x and which continuation contains Gy.

M. Vassor and N. Yoshida 41:19

We can finally proceed to the overall goal of this section: showing that the type with and
without the target refinement behave similarly. Thanks to the above lemmata, we simply
have to target a refinement with the appropriate conditions and apply Theorem 35.

▶ Theorem 39 (Static elision of redundant refinements in types). Given two a global types
G and Gs = p → q{ℓi(xi : Si |= ri).Gi}i∈I ∈ G, such that, for one t ∈ I, p → q⟨ℓt , xt⟩ |= rt

is a well-defined step with xt ̸∈ fv(rt). Let ℓt′ = ℓt, xt′ = xt, St′ = St, r′
t = ⊤, Gt′ = Gt,

Gs′ = p → q{ℓi(xi : Si |= ri).Gi}i∈I\{t}∪{t′}; and G′ be G where Gs is replaced with Gs′ . If,
for all steps, r → s⟨_, xw⟩ |= rw occurring in G (for each x ∈ fv(r)), M |= rw entails M |= r

(for all M), there exists a bisimulation between the states of S(G) and those of S(G′).

Proof. We prove this by showing that Theorem 35 applies to S(G) and S(G′). The proof is
provided [35]. ◀

▶ Example 40 (Application of Theorem 39). Given Gs as in Example 37 and G′
s as follows

(notice the second refinement is replaced by ⊤), Gs and the following G′
s have the same

behaviour:

G′
s = A → B {ℓ1 (x : int |= x < 0).A → B {ℓ2 (y : int |= ⊤).end}}

7 Implementation

In the previous section, we introduced an instance of our framework: a system that accom-
modates refinements using a decentralised verification mechanism. In this section, we follow
up on this example with an implementation, based on Rumpsteak, of this system.

Rumpsteak [7] is a framework to write Rust programs according to an MPST specification.
The framework is divided into two parts:

(i) a runtime library that provides primitives to write asynchronous programs in Rust; and
(ii) a tool (rumpsteak-generate) to generate skeleton Rust files from specification files

(i.e. from global types), in two steps.

Working with Rumpsteak takes two manual steps. The user specifies (step 1) the protocol
in a global type(written as Scribble files [39], see Figure 6a). This global type is automatically
projected using νScr [15] and the projected types are used to generate skeleton Rust files
(see Figure 6b). The generated Rust code contains Rust types that encode local types (e.g.
the type for A is shown in Line 1 in Figure 6b). The user then manually implements (step 2)
the process of each participant, following their type (Line 7), using provided communication
primitives (Line 13). Rumpsteak relies on Rust’s typechecker to ensure the consistency of
the implementation. For the sake of clarification where needed, we call Vanilla Rumpsteak
the framework without refinements (i.e. as presented in [7]), and Refined Rumpsteak the
framework modified to accommodate refinements.

In this section, we explain the main differences between Vanilla and Refined Rumpsteak:
we introduce refinements in the types used in the runtime library, we modify the program
generation step accordingly, and we introduce tools that ensure the localisation conditions
are met (Definition 29 in Section 5). The overall workflow is presented in Figure 7. We
conclude this section by measuring the overhead induced by the refinement w.r.t. Vanilla
Rumpsteak and the time needed for asserting the localisation conditions.

ECOOP 2024

41:20 Refinements for Multiparty Message-Passing Protocols

1 (*# RefinementTypes #*)
2

3 global protocol PlusMinus
4 (role A, role B, role C)
5 {
6 Secret(n: int) from A to B;
7 rec Loop {
8 Guess(x: int) from C to B;
9 choice at B {

10 More(x: int {x < n}) from B to C;
11 continue Loop;
12 } or {
13 Less(x: int {x > n}) from B to C;
14 continue Loop;
15 } or {
16 Correct(x: int {x = n}) from B to C;
17 }}}

(a) νScr description of the guessing game protocol.

1 type PlusMinusA =
2 Send<B, 'n',
3 Secret,
4 Tautology::<Name, Value, Secret>,
5 Constant<Name, Value>, End>;
6 // ...
7 async fn a(role: &mut A)
8 -> Result<(), Box<dyn Error>> {
9 try_session(role,

10 HashMap::new(),
11 |s: PlusMinusA<'_, _>| async {
12 let s =
13 s.send(Secret(10)).await?;
14 return Ok(((), s))
15 })
16 .await
17 }

(b) Rust type and implementation of participant
A of the guessing game protocol. The handwrit-
ten code (Line 7 to Line 17) is the same than
with Vanilla Rumpsteak.

Figure 6 Implementation of the guessing game using Rumpsteak.

Global Type (Scribble) (Figure 6a) Graph of Global Type

Unrolled Graph

Localisation result

Local Types (DOT)

Rust APIs

Rumpsteak program (Figure 6b)

Executable File

scr2dot

mpst_unroll

dynamic_verify

νScr

rumpsteak-generate

Manual implementation

Compilation (type-checking)

Figure 7 Workflow of Rumpsteak. Green nodes represent steps that already existed in Vanilla
Rumpsteak and that have been adapted to accommodate for refinements, red nodes represent new
steps, and blue nodes represent unmodified steps. The three new steps (scr2dot, mpst_unroll, and
dynamic_verify) verify the conditions mentioned in Definition 29.

7.1 Refinement Implementation

Modifications to the Rumpsteak Library. In order to accommodate for refinements, we have
to introduce new elements in to the Rumpsteak’s encoding of local types. Consider the local
type of participant A introduced in Example 21 B⊕{secret(n : int |= ⊤).end}: Rumpsteak
now has to take into account the name of the variable sent (n), and the refinement attached to
the transition (⊤). Consider the type declaration in Line 1 to Line 5, Figure 6b. Compared to
Vanilla Rumpsteak, we introduce 'n', a const generic5, that carries the name of the variable
sent (Line 4). Regarding the refinement, we introduce Tautology::<Name, Value, Secret>,

5 https://github.com/rust-lang/rfcs/blob/master/text/2000-const-generics.md

https://github.com/rust-lang/rfcs/blob/master/text/2000-const-generics.md

M. Vassor and N. Yoshida 41:21

which represent the refinement ⊤. The generic parameters are used to specify the type
of variable names (chars in our case) and values (i32) as well as the label of the message
(Secret). We modified νScr and rumpsteak-generate to generate skeleton files (the content
of the file up to Line 5). Rumpsteak provides a set of available refinements, and additional
ones can be written ad-hoc (for specific needs). To add an ad-hoc refinement, the user simply
implements the trait Predicate (which extends Default), which requires a method check that
asserts whether the predicate holds. For instance, the check function of Tautology simply
returns true.

Verification of the Conditions for Decentralised Refinement Assertion. As we explained
in Section 5, to make sure that refinements can be verified in a decentralised way, we require
to check that variables needed for the refinements are located correctly (Definition 29). To
perform this verification, we implemented new tools for the Rumpsteak framework (in red in
Figure 7).

Our tools:
(i) convert the global type into a graph (scr2dot);
(ii) unroll the loops once to precisely capture variables initialisations (unroll_mpst); and
(iii) localise variables on the unrolled graph (dynamic_verify).

The core part of this verification, dynamic_verify, finds variables locations with simple
inference rules written in Datalog. We use the crepe library [40] which provides a Datalog
DSL for Rust. We provide more details on the algorithm in [35].

Limitations. The current implementation makes extensive use of the Rust feature const
generics9 which introduces a limited form of dependent types in Rust. It allows to use
constant values in types. As of today, only some basic types can be used as const generics,
in particular chars and the various integer types. We use such const generics to encode
informations about the variables into the types: for instance, the predicate x < 5 would have
the type LTnConst<L, 'x', 5>, where the 'x' and the 5 are const generics.

For readability, we choose to set variables to chars, meaning that in the current imple-
mentation, we can only accommodate a limited number of distinct variables. Should more be
needed, one could easily modify our implementation to replace them with u64, which allows
264 variables names. Similarly, we only consider i32 as message payloads. Should different
types of messages be needed, they could be encoded in an enum.

Finally, the static elision optimisation (Section 6) is not implemented.

7.2 Runtime and Localisation Benchmarks
We evaluate how Rumpsteak with refinements performs with respect to Rumpsteak without
refinements. First, we measure the runtime of our analysis tool which verifies the two
conditions in Definition 29 (scr2dot, unroll_mpst and dynamic_verify). Although not a
runtime cost, and while we expect this analysis to be possibly expensive, we would like to
ensure that it is still practical for test cases from the literature. Secondly, we evaluate the
runtime overhead of adding refinements with respect to Rumpsteak without refinements.

Setup and Benchmark Programs. We evaluate the performance of Rumpsteak with re-
finement with benchmarks. Most of them are taken from the literature (Table 1). This set
of program contains various micro-benchmarks with a variety of combination of properties
(whether the protocol is binary or multiparty, contains recursivity or choice). Notice that
protocols that contain recursivity with no choice (e.g. simple auth are infinite). Therefore,

ECOOP 2024

41:22 Refinements for Multiparty Message-Passing Protocols

Table 1 The set of micro benchmarks together with their characteristics. “MP” denotes a
multiparty protocol, “Rec” the presence of recursion, and “Choice” the presence of choice.

Name MP Rec Choice
① simple adder [21] no no no
② travel_agency [23] no no yes
③ ping pong [42] no yes no
④ simple auth. no yes yes
⑤ ring max yes no no
⑥ three_buyers [19] yes no yes
⑦ plus or minus yes yes yes

such protocols are only measured in the variable localisation paragraph. Also, where it
applies, protocols were modified in order to add relevant refinements; such modifications
are listed below. By default, we add Tautology predicates (Section 7.1). The tests were
performed on a machine running Ubuntu 22.04.1 LTS x86_64 (kernel 5.15.0-60) with an Intel
i7-6700 processor (4 cores, 8 threads running at 4GHz maximum) and 16GB of memory6.
We compare Rumpsteak with refinement vs. Vanilla Rumpsteak. For a comparison between
Vanilla Rumpsteak and other libraries, see [7, Figure 6].

Added Refinements & Protocol Modifications. Some benchmarks from the literature were
adapted in order to accommodate refinements. In addition, we introduce three benchmarks.
Those benchmarks are close to examples from the literature, adapted to better highlight
refinements.
simple adder: This example is adjusted from the Adder ([21]) protocol, but we remove the

choice of operation in order to increase the benchmark diversity;
ping pong: In [42], some of the loops were statically unrolled, and the protocol contained a

choice to exit. Ours is equivalent to an infinite PingPong1 in [42].
simple authentication: This example is a binary example of an authentication protocol (e.g.

OAuth [31]). The added refinements enforce that access is granted if and only if the given
password is correct.

ring max: A multiparty protocol where participants receive a value from their predecessor
(except for the initial participant), and forward an other value to their successor (the final
participant forwards it to the initial one). Refinements ensure that the value forwarded is
greater than or equal to the value received.

plus or minus: An implementation of our running example.

Static Analysis of Variable Locations. Table 2 shows the decentralised verification time
cost for each refined global label. As shown in Figure 7, this static analysis is performed
with three tools. The results shown account for the whole pipeline, and were measured over
50 samples, with 10 warmup runs (excluded from the measurements). Overall, the runtime
for variable localisation is stable (around 5.6ms). We suspect that, for graphs with a low
number of states, the runtime is dominated by the accesses to the file.

6 The micro-benchmarks are not memory intensive. The memory size is not a limiting factor. However,
the benchmarks seem to be dominated by the startup time, which includes memory access time.

M. Vassor and N. Yoshida 41:23

Table 2 Benchmark of the localisation analysis (Red branch in Figure 7). |S| denotes the number
of states of the graph of the protocol; |U | denotes the number of states after unrolling the recursion
loops once; and |V | denotes the number of variables in the protocol. |S|, |U | and |V | are computed
manually to give an insight on how protocols compare. et is the execution time, measured by the
benchmark (in ms).

|S| |U | |V | et (µ ± σ)
① 4 4 3 5.5 ± 0.2
② 7 7 6 5.5 ± 0.2
③ 2 4 1 5.5 ± 0.2
④ 6 11 3 5.6 ± 0.2
⑤ 8 8 7 5.7 ± 0.2
⑥ 10 10 7 5.6 ± 0.2
⑦ 4 19 2 5.6 ± 0.2

Table 3 Evaluation of the runtime overhead due to the addition of refinements in Rumpsteak. p is
the MWU p-value, m is the baseline median runtime and mr is the median runtime with refinements
when applicable (p < 0.05). All times are in ms.

p m mr

① 0.00 0.7 0.8
② 0.11 0.8 N/A
④ 0.29 0.8 N/A
⑤ 0.17 0.8 N/A
⑥ 0.68 0.7 N/A
⑦ 0.04 0.7 0.8

Runtime Overhead of Refinement Feature. Our second set of benchmarks aims to measure
the overhead of runtime refinement verification with respect to the original Rumpsteak
framework. We are expecting Rumpsteak with refinements to be slower than the original
Rumpsteak, due to the additional cost of evaluating refinements. This benchmark has two
objectives: first, to find out whether there is an actual, statistically significant, overhead;
and second, if so, estimate this overhead. To measure this overhead, we only consider the
protocols that terminate from the benchmark set.

To fulfil the first objective, we use a Mann-Whitney U test (MWU). We used MWU as it
is a non-parametric test, and our runtime distributions do not follow a normal distribution,
which prevents us to do simpler analysis. As MWU is sensitive to the number of samples,
we run each benchmark 30 times, on both the original Rumpsteak and Rumpsteak with
refinements. We perform the MWU test on the collected 30 samples, preceded by 10 iterations
to warm the system up. Our hypothesis for the MWU test are the following:

H0: The distributions of runtimes with and without refinements are identical.
H1: The distributions of runtimes with and without refinements are distincts.

The p-values obtained from the MWU test are reported in the first column of Table 3.
We also report the baseline (Rumpsteak without refinements) median run time (over the 30
runs) in the second column of the table. Most often, the overhead is not significant (p ≥ 0.05)
and H0 can not be rejected. When the overhead is statistically significant, we also report the
median runtime (over the 30 runs) of Rumpsteak with refinements in the third column. With
our set of microbenchmarks, in most cases we cannot distinguish Rumpsteak with refinement
from Rumpsteak without refinements. We suspect Rumpsteak runtime is dominated by
communications and context switching. However, as our refinements can be arbitrarily
complex, specific instances could show real slowdown due to refinement evaluation.

ECOOP 2024

41:24 Refinements for Multiparty Message-Passing Protocols

8 Related Work and Conclusion

Design-by-Contract for (Multiparty) Session Types. In binary session types, [37] introduces
contracts for binary sessions, and provides an analysis tool which verifies whether a given
program comply with its associated contract. The verification is done with symbolic execution.
Compared to this paper, we address multiparty sessions. Besides, our framework is more
generic (specific instances could be based on symbolic execution, but we can also accommodate
other verification methods). Bocchi et al. [4] present a variant of MPST that allows predicates
on exchanges, that must hold for a typed process to take transitions. The main difference
with our work is that their approach focuses on correctness by construction, i.e. they accept
only correct protocols, while we can accept protocols that fail, and we simply prevent them
to generate incorrect traces. More precisely, the authors statically ensure that there is a
satisfiable path, which prevents some valid runs to be accepted. For instance, consider the
following type:

A → B {ℓ1 (x : int |= x < 10).B → A {ℓ2 (y : int |= x > y ∧ y > 6).end}}

This type would be rejected in [4] since if A sends x = 5 (which is allowed by x < 10), then
there is no y that satisfies 5 > y ∧ y > 6. By rejecting this, they also reject all possibly valid
runs (e.g. if A sends x = 9 and B replies with y = 7). A follow-up on this work is [3] which
introduces local states, i.e. the authors allow participants to have local variables, which can
be updated during process execution. The session types reflect those elements and contain
predicates on exchanged variables and local variables.

With respect to these two papers, our criteria for the validity of refinements (expressed
as a property of the generated trace) is decoupled from the semantics of the model. This
approach allows us to be more flexible than enforcing statically the refinements, and to lower
the cost of adopting refinements, in particular to retrofit refinements into existing systems.
For instance, using our framework, one can simply use the centralised semantics at first,
which is very expressive, without having to prove the correctness of the implementation. In
a second step, users can then develop different verification or analysis techniques which can
be plugged-in transparently. For instance, switching from Vanilla Rumpsteak to Refined
Rumpsteak does not involve changes in the implementation, as the modifications do not
happen in the programming interface. Also, compared to these papers, our framework is not
bound to MPST only, and provide an actual implementation of our framework.

Design-by-Contract in Choreography Automata. Choreography Automata (CA) are graphs
that represent the global behaviour of a concurrent system. The behaviour of individual
participants is obtained by projecting well-formed CA, i.e. erasing all actions that do not
concern a given participant. The result is a FSM which, after determinising and minimising,
is used as a CFSM. The projection of all participants leads to a CS. Notice that CA accept
some protocols that would be rejected by MPST, and vice-versa.

Gheri et al. [16] study the verification of CA with assertions. Their work and ours are
distinct with respect to the following aspects:

(i) the communication semantics;
(ii) the choices;
(iii) the logic for predicates; and
(iv) the implementation presented in [16] is limited to CA without assertions (i.e., the

design-by-contract approach was not implemented and left as their future work).

M. Vassor and N. Yoshida 41:25

Regarding Item i, Gheri et al. [16] defines choreography automata with synchronous
communication semantics, while the one we developed in this work is asynchronous. Gheri
et al. [16, Section 7] discusses asynchronous semantics but it remains future works.

Regarding Item ii, we are constrained by the syntax of RMPST, in which choices can only
happen between two selected participants, while choreography automata accept protocols
with choices where a (single) participant A sends to multiple receivers (B and C) [16,
Definition 4.15]. Explicit connections [22] is an extension of MPST that accommodates with
choices with multiple receivers.

Regarding Item iii, we kept our refinement logic abstract, while it is fixed in choreography
automata, with a form of first order logic. Besides, predicates are handled differently in both
frameworks as well: Gheri et al. [16] require choreography automata to be history-sensitive
[4], a definition which serves a similar purpose to our definition of variable localisation
(Section 5 and [35]), which constrains our decentralised semantics. Our centralised se-
mantics (Definition 10) is not constrained by variable localisation. For instance, the RMPST
A → B {ℓ1 (x : int |= ⊤).C → D {ℓ2 (y : int |= x = y).end}} produces valid traces with our
centralised semantics, while the corresponding choreography automata would be rejected.

Besides, our work introduces a general framework that can accommodate refined CA in
addition to RMPST. We show [35] a possible way to do so.

Implementations of Refinements in MPST. Neykova et al. [29] develop an F# library for
static verification of MPST with refinements. They present a compiler plugin which uses an
SMT solver (Z3) to statically verify some refinements. They use a notion of similar to our
variable localisation criterion (which they call variable knowledge), and a variant of CFSM
with refinements that is similar to ours. In their work, refinements that are statically asserted
by the SMT solver are pruned in the CFSM, while the rest of refinements are kept in the
CFSM and are dynamically checked. Similarly, [41, 42] develop a framework for multiparty
session types with refinements in F⋆. They delegate the management of refinements to F⋆

type system (which internally uses an SMT solver). They define refinements on global types,
which are then projected onto local types. They show that a global type and its projection are
trace equivalent. Those two works focus on the implementation of MPST with refinements.
[29] does not focus on the theory of refinements and the theory developed in [42] is tightly
coupled to F⋆. For instance, they do not present a correctness criterion such as valid refined
traces we present. Contrary to both works, our correctness criteria (based on valid refined
traces) is decoupled from (i.e. independent of) any target type theory, programming language
or model of computation: we only require an LTS labelled with actions. Besides, the logic
used for refinements is also a parameter of our framework, and users could use alternatives,
leading to a greater expressivity of our framework.

The main syntactical difference between our RMPST and those developed in [42] is that
we attach refinements to the messages of the protocol, while [42] attach refinements to the
payload value. This is due to a different approach: correctness in [42] is related to payload
types being inhabited while our criteria of correctness (developed in Definition 7) relies on
actions being allowed. In binary linear logic-based session types, [9] study the metatheory
of binary session types with arithmetic refinements. In particular, they focus on the type
equality, showing that added refinements make the type equality undecidable (they provide a
sound but incomplete algorithm for type equality). [10] also implement a library for session
types with refinements, although it only accounts for arithmetic refinements.

ECOOP 2024

41:26 Refinements for Multiparty Message-Passing Protocols

Other Related Works. There are various papers on the dynamic verification of MPST.
For instance [2] present a framework that allows for both static and dynamic verification of
MPST. This paper introduces a theory for (dynamically) monitoring assertions on messages
(i.e. the equivalent of our refinements). Furthermore, the authors introduce theoretical tools
(bisimulations) to relate monitored processes with correct unmonitored processes. This paper,
however, suffers a few limitations. First, it focuses on monitorable types (which intuitively
correspond to types satisfying our conditions for decentralised verification Definition 29).
Second, it focuses on dynamic verification of assertions. The paper is compatible with
statically verified processes (which allows turning off the dynamic monitoring), but it does
not present techniques for static verification in itself.

On the other hand, our paper takes a different approach, by decoupling the correctness
criterion from the verification technique. This allows us to have a more general framework
(our framework accept types that are not localisable/monitorable, although not all semantics
can accommodate those), as well as to develop static verification techniques.

In Rust, the refinement crate [11] provides refinement data types. Their approach of
refinements is similar to ours, with a Predicate trait that provides a method to perform
the predicate verification (at runtime). Refinement data types have also been implemented
in multiple languages (e.g. F⋆, Haskell [36], etc.). On the practical side, we can note the
similarities between typestates and session types [20]. [14] implements typestates in Rust
with a DSL to verify protocol conformance. While Rumpsteak does not use their library, it
internally uses similar constructs.

Regarding implementations of session types in Rust, there are several frameworks beside
Rumpsteak. [25] first integrate binary session types in Rust, but their implementation
suffers a few drawbacks (see [26, Section 3] for a detailed explanation). Sesh [26] and Ferrite
[6] are two Rust libraries for binary session types, and they implement synchronous and
asynchronous ones, respectively. MultiCrusty [27] implements synchronous MPST on top of
Sesh, with a mesh of binary sessions. Compared to MultiCrusty, Rumpsteak implements
directly MPST instead of wrapping them into binary sessions, and focuses on asynchronous
MPST. None of the aforementioned tools develops refinements. It would be an interesting
future work to apply our criteria to extend their tools with refinements.

Finally, we note the proximity between (MP)ST with refinements and dependent (MP)ST.
For instance, [33] introduce a session type calculus with label-dependency (their approach
does not explicitly account for payload value refinement). Other approaches exist, for instance,
an intuitionistic linear logic-based type theory for building value-dependent session types
[34], and separation logic-based work for reasoning about session types [17].

Future Work While, in our work, we consider MPST with payloads (some variants only
consider messages with labels), we restrict our MPST with a single payload (i.e. monadic
MPST, where each message carries a single value). The extension to polyadic MPST, where
a message can carry multiple values, is straightforward, by adapting the RCS rules (GRSnd
and GRRec, Definition 14).

We presented two optimisations, in order to illustrate the flexibility of our theoretical
framework. Regarding the decentralised verification (Section 5), there is room for an extension,
e.g. with specific domains (i.e. some class of protocols with specific refinements). Regarding
the static elision of redundant refinements, we envision improving the technique with use of
SMT solvers could be promising. The main difficulty lies in asynchronous communications:
one would need to consider all possible message orderings before solving constraints.

M. Vassor and N. Yoshida 41:27

References
1 Franco Barbanera, Ivan Lanese, and Emilio Tuosto. Choreography automata. In Simon

Bliudze and Laura Bocchi, editors, Coordination Models and Languages - 22nd IFIP WG 6.1
International Conference, COORDINATION 2020, Held as Part of the 15th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta,
June 15-19, 2020, Proceedings, volume 12134 of Lecture Notes in Computer Science, pages
86–106. Springer, 2020. doi:10.1007/978-3-030-50029-0_6.

2 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. Theoretical Computer Science, 669:33–
58, 2017. doi:10.1016/j.tcs.2017.02.009.

3 Laura Bocchi, Romain Demangeon, and Nobuko Yoshida. A Multiparty Multi-Session Logic.
In 7th International Symposium on Trustworthy Global Computing, volume 8191 of LNCS,
pages 111–97. Springer, 2012.

4 Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A Theory of Design-by-
Contract for Distributed Multiparty Interactions. In Paul Gastin and François Laroussinie,
editors, CONCUR 2010 - Concurrency Theory, Lecture Notes in Computer Science, pages
162–176, Berlin, Heidelberg, 2010. Springer. doi:10.1007/978-3-642-15375-4_12.

5 Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. Journal of the
ACM, 30(2):323–342, April 1983. doi:10.1145/322374.322380.

6 Ruofei Chen and Stephanie Balzer. Ferrite: A Judgmental Embedding of Session Types in Rust,
2021. (repository is found at https://github.com/ferrite-rs/ferrite). arXiv:2009.13619.

7 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-free asynchronous message
reordering in rust with multiparty session types. In Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’22, pages 246–261,
New York, NY, USA, April 2022. Association for Computing Machinery. doi:10.1145/
3503221.3508404.

8 Gérard Cécé and Alain Finkel. Verification of programs with half-duplex communication.
Information and Computation, 202(2):166–190, November 2005. doi:10.1016/j.ic.2005.05.
006.

9 Ankush Das and Frank Pfenning. Session Types with Arithmetic Refinements. In Igor
Konnov and Laura Kovács, editors, 31st International Conference on Concurrency Theory
(CONCUR 2020), volume 171 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 13:1–13:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CONCUR.2020.13.

10 Ankush Das and Frank Pfenning. Rast: A Language for Resource-Aware Session Types. Logical
Methods in Computer Science, Volume 18, Issue 1, January 2022. doi:10.46298/lmcs-18(1:
9)2022.

11 Brady Dean and Joey Ezechiëls. refinement crate, 2021. (repository is found at https:
//github.com/2bdkid/refinement).

12 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Session Types Meet Communicating
Automata. In 21st European Symposium on Programming, volume 7211 of LNCS, pages
194–213. Springer, 2012.

13 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Compatibility in Communicating
Automata: Characterisation and Synthesis of Global Session Types. In 40th International
Colloquium on Automata, Languages and Programming, volume 7966 of LNCS, pages 174–186,
Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-39212-2_18.

14 José Duarte and António Ravara. Retrofitting Typestates into Rust. In 25th Brazilian
Symposium on Programming Languages, pages 83–91, Joinville Brazil, September 2021. ACM.
doi:10.1145/3475061.3475082.

15 Francisco Ferreira, Fangyi Zhou, Simon Castellan, and Benito Echarren. NuScr, 2019. URL:
https://github.com/nuscr/nuscr.

ECOOP 2024

https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1016/j.tcs.2017.02.009
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1145/322374.322380
https://github.com/ferrite-rs/ferrite
https://arxiv.org/abs/2009.13619
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://doi.org/10.46298/lmcs-18(1:9)2022
https://doi.org/10.46298/lmcs-18(1:9)2022
https://github.com/2bdkid/refinement
https://github.com/2bdkid/refinement
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1145/3475061.3475082
https://github.com/nuscr/nuscr

41:28 Refinements for Multiparty Message-Passing Protocols

16 Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. Design-By-
Contract for Flexible Multiparty Session Protocols. In Karim Ali and Jan Vitek, editors, 36th
European Conference on Object-Oriented Programming (ECOOP 2022), volume 222 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 8:1–8:28, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2022.8.

17 Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: Session-type
based reasoning in separation logic. Proceedings of the ACM on Programming Languages,
4(POPL):1–30, January 2020. doi:10.1145/3371074.

18 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
ACM SIGPLAN Notices, 43(1):273–284, January 2008. doi:10.1145/1328897.1328472.

19 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
Journal of the ACM, 63(1):9:1–9:67, March 2016. doi:10.1145/2827695.

20 Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda. Type-
safe eventful sessions in java. In Proceedings of the 24th European conference on Object-oriented
programming, ECOOP’10, pages 329–353, Berlin, Heidelberg, June 2010. Springer-Verlag.

21 Raymond Hu and Nobuko Yoshida. Hybrid Session Verification Through Endpoint API
Generation. In Perdita Stevens and Andrzej Wąsowski, editors, Fundamental Approaches to
Software Engineering, Lecture Notes in Computer Science, pages 401–418, Berlin, Heidelberg,
2016. Springer. doi:10.1007/978-3-662-49665-7_24.

22 Raymond Hu and Nobuko Yoshida. Explicit Connection Actions in Multiparty Session
Types. In Marieke Huisman and Julia Rubin, editors, Fundamental Approaches to Software
Engineering, Lecture Notes in Computer Science, pages 116–133, Berlin, Heidelberg, 2017.
Springer. doi:10.1007/978-3-662-54494-5_7.

23 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming
in Java. In Jan Vitek, editor, ECOOP 2008 – Object-Oriented Programming, Lecture Notes
in Computer Science, pages 516–541, Berlin, Heidelberg, 2008. Springer. doi:10.1007/
978-3-540-70592-5_22.

24 International Telecommunication Union. Z.120 : Message Sequence Chart (MSC), February
2011.

25 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session types
for Rust. In Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming,
pages 13–22, Vancouver BC Canada, August 2015. ACM. doi:10.1145/2808098.2808100.

26 Wen Kokke. Rusty Variation: Deadlock-free Sessions with Failure in Rust. Electronic
Proceedings in Theoretical Computer Science, 304:48–60, 2019. (repository is found at https:
//github.com/wenkokke/sesh). doi:10.4204/eptcs.304.4.

27 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic:
Affine Rust Programming with Multiparty Session Types. In Karim Ali and Jan Vitek,
editors, 36th European Conference on Object-Oriented Programming (ECOOP 2022), volume
222 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:29, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISSN: 1868-8969. doi:
10.4230/LIPIcs.ECOOP.2022.4.

28 Bertrand Meyer. Design by Contract. Advances in Object-Oriented Software Engineering,
pages 1–35, 1991.

29 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: compile-time API generation of distributed protocols with refinements in F#.
In Proceedings of the 27th International Conference on Compiler Construction, CC 2018,
pages 128–138, New York, NY, USA, February 2018. Association for Computing Machinery.
doi:10.1145/3178372.3179495.

30 Davide Sangiorgi. An Introduction to Bisimulation and Coinduction. Cambridge University
Press, Cambridge ; New York, 2012.

https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
https://doi.org/10.1145/3371074
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/2808098.2808100
https://github.com/wenkokke/sesh
https://github.com/wenkokke/sesh
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.1145/3178372.3179495

M. Vassor and N. Yoshida 41:29

31 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited.
Proceedings of the ACM on Programming Languages, 3(POPL):30:1–30:29, January 2019.
doi:10.1145/3290343.

32 Felix Stutz. Asynchronous Multiparty Session Type Implementability is De-
cidable - Lessons Learned from Message Sequence Charts. In DROPS-
IDN/v2/Document/10.4230/LIPIcs.ECOOP.2023.32. Schloss-Dagstuhl - Leibniz Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.ECOOP.2023.32.

33 Peter Thiemann and Vasco T. Vasconcelos. Label-dependent session types. Proceedings of the
ACM on Programming Languages, 4(POPL):1–29, January 2020. doi:10.1145/3371135.

34 Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent session types via intuitionistic
linear type theory. In Proceedings of the 13th International ACM SIGPLAN Symposium on
Principles and Practices of Declarative Programming, pages 161–172, Odense Denmark, July
2011. ACM. doi:10.1145/2003476.2003499.

35 Martin Vassor and Nobuko Yoshida. Refinements for multiparty message-passing protocols:
Specification-agnostic theory and implementation, 2024. Full version on Arxiv.

36 Niki Vazou. Liquid Haskell: Haskell as a Theorem Prover. PhD thesis, University of California,
San Diego, USA, 2016. URL: http://www.escholarship.org/uc/item/8dm057ws.

37 Jules Villard. Heaps and Hops. PhD thesis, Laboratoire Spécification et Vérification, École
Normale Supérieure de Cachan, France, February 2011.

38 Nobuko Yoshida and Lorenzo Gheri. A Very Gentle Introduction to Multiparty Session
Types. In Dang Van Hung and Meenakshi D´Souza, editors, Distributed Computing and
Internet Technology, Lecture Notes in Computer Science, pages 73–93, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-36987-3_5.

39 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In Martín Abadi and Alberto Lluch Lafuente, editors, Trustworthy Global Computing,
pages 22–41, Cham, 2014. Springer International Publishing.

40 Erik Zhang. Crepe, 2022. URL: https://crates.io/crates/crepe.
41 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. Stat-

ically Verified Refinements for Multiparty Protocols. Proc. ACM Program. Lang., 4(OOPSLA),
November 2020. doi:10.1145/3428216.

42 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Statically Verified Refinements for Multiparty Protocols. arXiv:2009.06541 [cs], September
2020. arXiv: 2009.06541. arXiv:2009.06541.

ECOOP 2024

https://doi.org/10.1145/3290343
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://doi.org/10.1145/3371135
https://doi.org/10.1145/2003476.2003499
http://www.escholarship.org/uc/item/8dm057ws
https://doi.org/10.1007/978-3-030-36987-3_5
https://crates.io/crates/crepe
https://doi.org/10.1145/3428216
https://arxiv.org/abs/2009.06541

Failure Transparency in Stateful Dataflow Systems
Aleksey Veresov1 # Ñ

EECS and Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden

Jonas Spenger1 #

EECS and Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden

Paris Carbone #

EECS and Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden
Digital Systems, RISE Research Institutes of Sweden, Stockholm, Sweden

Philipp Haller #

EECS and Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract
Failure transparency enables users to reason about distributed systems at a higher level of abstraction,
where complex failure-handling logic is hidden. This is especially true for stateful dataflow systems,
which are the backbone of many cloud applications. In particular, this paper focuses on proving
failure transparency in Apache Flink, a popular stateful dataflow system. Even though failure
transparency is a critical aspect of Apache Flink, to date it has not been formally proven. Showing
that the failure transparency mechanism is correct, however, is challenging due to the complexity
of the mechanism itself. Nevertheless, this complexity can be effectively hidden behind a failure
transparent programming interface. To show that Apache Flink is failure transparent, we model it in
small-step operational semantics. Next, we provide a novel definition of failure transparency based
on observational explainability, a concept which relates executions according to their observations.
Finally, we provide a formal proof of failure transparency for the implementation model; i.e., we prove
that the failure-free model correctly abstracts from the failure-related details of the implementation
model. We also show liveness of the implementation model under a fair execution assumption. These
results are a first step towards a verified stack for stateful dataflow systems.

2012 ACM Subject Classification Theory of computation → Operational semantics; Software and
its engineering → Checkpoint / restart

Keywords and phrases Failure transparency, stateful dataflow, operational semantics, checkpoint
recovery

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.42

Related Version Extended Version: https://arxiv.org/abs/2407.06738 [62]

Funding This work was partially funded by Digital Futures under a Research Pairs Consolidator
grant (PORTALS).

1 Introduction

Stateful dataflow systems have seen wide adoption in the modern cloud infrastructure due to
their ability to process large amounts of event-based data at ingestion time [24]. Apache
Flink [13], for example, is used to power tens-of-thousands of streaming jobs with up to
nine billion events per second at ByteDance [48], and several thousand streaming jobs at
Uber [25]. An essential aspect of stateful dataflow systems is the recovery from failures, as
failures are to be expected in any long-running streaming job [19]. However, failure recovery
is non-trivial. For example, simply recovering from a failure by restarting a job from the

1 Both authors contributed equally to this research.

© Aleksey Veresov, Jonas Spenger, Paris Carbone, and Philipp Haller;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 42; pp. 42:1–42:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:veresov@kth.se
https://veresov.pro
https://orcid.org/0000-0002-5091-9811
mailto:jspenger@kth.se
https://orcid.org/0000-0002-7119-5234
mailto:parisc@kth.se
https://orcid.org/0000-0002-9351-8508
mailto:phaller@kth.se
https://orcid.org/0000-0002-2659-5271
https://doi.org/10.4230/LIPIcs.ECOOP.2024.42
https://arxiv.org/abs/2407.06738
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Failure Transparency in Stateful Dataflow Systems

Distributed Systems Stateful Dataflow Programming Model

Stateful Dataflow Implementation Model

Verified Stateful Dataflow Implementation

this paper

future work

Compilers
e.g., CompCert, CakeML

Operating Systems
e.g., seL4

Machines
e.g., Intel, ARM, RISC-V processors

Figure 1 This work in the context of a fully verified stack for distributed programming.

very beginning would discard all progress up to that point, making the recovery prohibitively
expensive. To balance the need for efficiency and reliability, stateful dataflow systems have to
embrace complex failure recovery protocols. Because of their complexity, the correctness of
these recovery protocols is a crucial problem for the reliability of stateful dataflow systems.

In previous work [21, 44, 26], a failure-masking recovery protocol is considered to be
correct, if failures can be masked such that the user cannot observe the failures. This property
is also known as failure transparency, i.e., a user should be able to ignore failures as if they
do not occur. Failure transparency has been shown for some distributed systems, such as
Durable Functions [8], Reliable State Machines [51], reliable actors (KAR) [61], and serverless
microservices (µ2sls) [30]. As for stateful dataflow, the core mechanism used in Apache
Flink’s [13] recovery protocol, namely Asynchronous Barrier Snapshotting (ABS) [11, 12],
has been shown to be a correct snapshotting protocol [10]. However, the proof does not
reason about failure transparency and its related aspects, such as modelling failures and the
recovery from failures, as well as about the equivalence of observed executions. That is, there
has been no formal proof that Apache Flink’s entire failure recovery protocol provides failure
transparency. Furthermore, the literature lacks a formal definition of failure transparency for
systems described with distinct failure-related rules using small-step operational semantics, a
widely-used method for defining program execution in programming languages theory.

An important approach for ensuring reliability and correctness is machine-checked formal
verification, i.e., proving that a system implements its specification. There is well-known prior
work on verified compilers [41, 33, 53], operating systems [31], as well as processors [16, 29, 55]
(Figure 1, left). However, there is an apparent lack of verified distributed systems, particularly,
there is no verified stateful dataflow system. We believe that it is essential to address this
gap in order to prevent disastrous outages of distributed infrastructure as known today.

This work is a first step towards the grand goal of providing a fully verified reliable stack
for distributed programming, as shown in Figure 1. It addresses the highlighted gap by:
(1) providing a definition of failure transparency, (2) formalizing a stateful dataflow system as
a model in small-step operational semantics, under the assumptions of crash-recovery failures
and FIFO-ordered channels, and (3) formally proving that the model permits abstracting
from failures, i.e., that it is failure transparent. Our definition of failure transparency is
based on observational explainability, a property which, informally, says that the explainable
implementation model generates the same observable output as is possible in the explaining
abstract model. Using this property, a system is defined as failure transparent if the whole
system is observationally explainable by its explicitly separated failure-free part. Finally, we
prove that our formal model of a stateful dataflow system based on Asynchronous Barrier
Snapshotting [13, 10] is failure transparent. This abstraction from failures is designed to
serve the end users of the modelled system with less interest in its implementation details.

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:3

Contributions. In summary, this paper makes the following contributions.
We provide the first small-step operational semantics of the Asynchronous Barrier Snap-
shotting protocol within a stateful dataflow system, as used in Apache Flink (Section 4).
We provide a novel definition of failure transparency for programming models expressed
in small-step operational semantics with explicit failure rules and the intuitions behind it
(Section 5). It is the first attempt to define failure transparency in the context of stateful
dataflow systems.
We prove that the provided implementation model is failure transparent and guarantees
liveness (Section 6).
We provide a mechanization of the definitions, theorems, and models in Coq.2

Outline. Section 2 introduces background on failures, distributed systems, stateful dataflow,
as well as some basic notation used throughout this paper. Section 3 informally introduces
the stateful dataflow programming model and failure recovery via the Asynchronous Barrier
Snapshotting (ABS) protocol. Section 4 provides a small-step operational semantics of a
stateful dataflow system based on ABS. Section 5 defines failure transparency and observa-
tional explainability for programming models expressed in small-step operational semantics.
Section 6 proves that the implementation model is failure transparent. Section 7 discusses
related work, and Section 8 concludes this paper.

2 Background

2.1 Failures in Distributed Systems
A distributed system is a system of many processes communicating over a network [9]. The
kind of distributed systems which are related to this work are event-based processing systems
such as stateful dataflow systems [19, 67, 13, 52, 69, 60]. Failures within such systems are
expected to happen, due to their typical large scale and longevity [19]. However, failures are
notoriously hard to deal with within distributed systems. For this reason, failure transparency
is a necessary abstraction, as it enables the user to abstract from failures. Failure transparency
as a general concept, and failure recovery protocols are both well-studied topics in distributed
systems [63, 65, 40, 44, 43, 26, 21]. Moreover, failure transparency has seen an increase
in interest within the programming languages community in recent years [8, 30, 51, 61].
The goal of failure recovery is to provide automatic system means to recover from system
failures, in ways which the system user may or may not notice. In contrast, the goal of failure
transparency is to provide an abstraction of the system, such that the abstraction hides the
internals of failures and failure recovery, masking the failures from the user [26]. For this
reason, failure transparency greatly simplifies the programming model to the benefit of the
end user.

2.2 Stateful Dataflow and Apache Flink
Stateful dataflow systems, sometimes also called stream processing or dataflow streaming
systems, such as Apache Flink [13], have become ubiquitous for real-time processing of large
amounts of data [48, 25]. Other well known dataflow systems include Google Dataflow [2],
IBM Streams [18], Apache Spark [66] and Spark Streaming [68], Timely Dataflow [52],

2 https://github.com/aversey/abscoq

ECOOP 2024

https://github.com/aversey/abscoq

42:4 Failure Transparency in Stateful Dataflow Systems

NebulaStream [69], Portals [60], and more [7, 56]. The popularity and wide-spread use
of dataflow systems [25, 48] is due to their ability to scale-out production workloads. In
particular, they provide high throughput, low latency, and strong guarantees (such as failure
transparency, sometimes referred to as exactly-once processing). The programming model of
most stateful dataflow systems is based on acyclic dataflow graphs [24]. In these graphs, the
nodes are stateful processing tasks, and the edges are streams of data. As failure transparency
is an important aspect of the stateful dataflow programming model, it and its failure recovery
protocol is the focus of this paper.

2.3 Asynchronous Barrier Snapshotting
The failure recovery protocol used in Apache Flink [13] is a checkpointing-based rollback
recovery protocol [21], in which the system regularly takes checkpoints and, after a failure,
recovers to the latest completed checkpoint. For batch execution systems, such as MapRe-
duce [19], the general approach is to atomically execute one batch at a time, and if a failure
occurs, the system restarts from the beginning of the current batch. In contrast, computation
on stateful dataflow streaming systems is continuous [24], without predefined recovery points
in its execution, complicating the failure recovery. The solution to recovery in continuous
computations is the acquisition of causally consistent snapshots [14], which can be used for
the recovery to a consistent system state after a failure [21]. The specific implementation
of Apache Flink [13] and other stateful dataflow systems [60] use the Asynchronous Barrier
Snapshotting (ABS) protocol [12], an extended and optimized variant for data processing
graphs of the Chandy-Lamport snapshotting protocol [14], for taking causally-consistent
snapshots. In contrast to the Chandy-Lamport snapshotting protocol, the ABS protocol is
tailored to acyclic dataflow graphs and its snapshots do not contain any in-flight events. In
contrast to batching protocols, the ABS protocol is fully asynchronous, and does not require
blocking coordination. For these reasons, the ABS protocol greatly benefits the end-to-end
latency and throughput of the system.

2.4 Basic Notation
Functions. We denote a function f similarly to set-builder notation as:

[
k 7→ t

∣∣ k ∈ dom(f)
]
.

The part after the bar defines the domain of the function. The part before the bar defines
the value of the function at point k by the expression t. The expression t captures all
variables defined on the right side of the bar, including k. A function with only one element
in its domain is represented as

[
x 7→ x′], for example,

[
3 7→ 7

]
is such a function that

dom(
[
3 7→ 7

]
) = {3} and

[
3 7→ 7

]
(3) = 7. We denote function update as f g, such that:

(f g)(x) =
{

g(x) if x ∈ dom(g)
f(x) if x /∈ dom(g)

Sequences. We represent a sequence S as a function f with domain
{

i
∣∣ i ∈ N ∧ i < |S|

}
.

The length of the sequence is represented by |S| and may be infinite. The notation Si stands
for the i-th element of the sequence S and equals f(i). To simplify our analysis of sequences,
we use

[
t
]n

i
as a shorthand for

[
i 7→ t

∣∣ i ∈ N ∧ i < n
]
, where t is an expression that captures

i and represents the i-th element of the sequence. Therefore, for any sequence S, we have
that S =

[
Si

]|S|
i

.

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:5

integers
source

E⟨5⟩ E⟨3⟩ E⟨1⟩

reset
source

Reset

incremental
average

task

result
sink

Figure 2 Example stateful dataflow program calculating the incremental average of a data stream
of integers. Another stream is used to transfer control messages resetting the state of the program.

The usage of indices for variables standing for sequences may differ from other variables.
If S stands for a sequence, then Si corresponds to the i-th element of S. If, in contrast, x is
not a sequence, then xi is an independent variable and is not connected to x or any xj . To
avoid confusion, we name sets and sequences using uppercase and individual elements using
lowercase.

Sequence concatenation can be used to extend or shrink existing sequences. We include a
shorthand notation for sequence concatenation, concatenating S with S′ as follows S : S′ ≡[
i 7→ Si

∣∣ i ∈ N ∧ i < |S|
][

j + |S| 7→ S′
j

∣∣ j ∈ N ∧ j < |S′|
]
. To simplify extraction and

addition of single elements, we denote single-element sequences
[
x

]1
i

as
[
x

]
, where x is the

only value in the sequence. The empty sequence is represented as ε.

3 Stateful Dataflow

Stateful dataflow systems, sometimes also called distributed dataflow, dataflow streaming,
or stream processing systems, are widely used for real-time processing of large amounts of
streaming data. This section informally introduces the stateful dataflow programming model
and its failure recovery mechanism, which we formalize and prove correct in later sections. It
is mostly based on Apache Flink [13], a stateful dataflow system, however, the core concepts
and techniques involved also apply to other similar systems [19, 66, 68, 2, 18, 52, 69, 60].

3.1 A Taste of Programming in Stateful Dataflow
Figure 2 shows a stateful dataflow example calculating the incremental average of a stream
of integers. The example consists of two sources ingesting streams of events into the system.
One source ingests a stream of integers E⟨i⟩, and the other ingests a stream of Reset events.
The term stream can be understood as an unbounded sequence of events, it may in general
continue forever. The example also consists of a task, an internal processing unit, which
calculates an incremental average of the integers. The incrementally computed averages are
emitted to a sink, which is the output of the system.

A more detailed representation of the example is shown in Listing 1. Sources, tasks,
and sinks are created using corresponding functions. The API enables users to: (1) create
sources, tasks, and sinks; (2) specify the connections in the graph by providing input and
output streams; and (3) to specify how the tasks process events by providing their processing
functions. In this example, when the task receives an integer event E⟨i⟩, it updates the
average and emits the new average. When it receives a Reset event, it resets its local state,
such that the average is reset to its initial state. To note is that the task is considered stateful,
as it maintains local state for its computation of the incremental average, even though the
processing function f is a pure function. Also to note is that it is possible to provide an
easier-to-use API above this core API, for example an API based on higher-order functions
(map, flatMap, etc.) [13, 60, 2, 52].

ECOOP 2024

42:6 Failure Transparency in Stateful Dataflow Systems

Listing 1 A stateful dataflow program calculating the incremental average of a data stream of
integers (see Figure 2).

Source(input = "src_reset", output = "reset")
Source(input = "src_ints", output = "ints")
Sink(inputs = { "avgs" }, output = "sink_avgs")
Task(inputs = { "src_ints", "src_reset" }, output = "avgs",

f = (event, state) => event match {
case Reset =>

val new_state = {sum = 0, count = 0}
return (Nil, new_state)

case E⟨value⟩ =>
val new_state = {sum = state.sum + value, count = state.count + 1}
val average = E⟨value = new_state.sum / new_state.count⟩
return (average : Nil, new_state) })

p1

p2

p3

m1,1

m2,1

m1,2 m1,3

m2,2

(a) Inconsistent snapshot.

p1

p2

p3

m1,1

m2,1

m1,2 m1,3

m2,2

(b) Chandy-Lamport snapshot.

p1

p2

p3

m1,1

m2,1

m1,2 m1,3

m2,2

(c) ABS snapshot.

Figure 3 Examples of snapshots obtained in a distributed stateful dataflow system with three
processes p1 → p2 → p3.

3.2 Failure Recovery via Asynchronous Barrier Snapshotting
Failure recovery is a crucial aspect of stateful dataflow systems. In this section, we describe
the failure recovery mechanism of the Asynchronous Barrier Snapshotting (ABS) protocol [12]
as used in Apache Flink. More specifically, ABS is a distributed snapshotting protocol [14]
which is used for the checkpointing-based rollback-recovery protocol [21] within Apache
Flink [12]. After a failure, a checkpointing-based recovery will restart the system from the
latest valid snapshot of the system [21].

Distributed Snapshotting Protocols. A distributed snapshotting protocol is considered
causally consistent if it captures snapshots that do not violate causality [14]. Causality,
here, refers to the causal order relation [35], informally: two events are causally ordered if
one event was part of a causal chain leading to the other event. Consequently, a causally
consistent snapshot captures the state of a system such that all events causally preceding
any other event in the snapshot are included. This definition is illustrated by three example
executions of different snapshotting protocols for a dataflow graph consisting of three nodes,
shown in Figure 3. An incorrect implementation (Figure 3a) would be to let the processes
periodically capture a snapshot of their state without coordination. A snapshot captured
with this method can be inconsistent, thus not suitable for recovery, as it may violate
causality. In the example, the incorrect snapshot has captured that m2,2 was received by
p3 but never sent by p2, this is a violation of causality, and recovery from such a snapshot
would be considered erroneous. In contrast, consistent snapshotting protocols do not violate
causality. The Chandy-Lamport asynchronous snapshotting protocol [14] (Figure 3b) solves

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:7

Listing 2 Representation of an event handler within a stateful dataflow system implementing
failure recovery using the ABS protocol [12, 10].

EventHandler Def TK⟨f,
[
Si

]n

i
, o⟩

Vars state, snapshots
On Event Receive < Sj, epoch, Event⟨w⟩ > If ∃v: state = < epoch, v > Do

v’, w’ = f(v, w’)
state = < epoch, v’ >
emit(< o, epoch, Event⟨w’⟩ >)

On Event Receive
[
< Si, epoch, Border >

]n

i
If ∃v: state = < epoch, v > Do

snapshots.update(epoch 7→ v)
state = < epoch + 1, v >
emit(< o, epoch, Border >)

On Event Fail Do
state = Failed

On Event Recover < recoverEpoch > Do
state = < recoverEpoch, snapshots(recoverEpoch) >

this issue through distributed coordination by means of disseminating markers during its
regular execution, separating pre-snapshot and post-snapshot messages. However, a snapshot
captured with the Chandy-Lamport protocol may capture in-flight events: as shown in
the example (Figure 3b), the message m2,2 was sent (according to p2’s snapshot) but not
yet received (according to p3’s snapshot). The Asynchronous Barrier Snapshotting (ABS)
protocol [12, 10], in contrast, captures complete distributed computations without in-flight
events by modification of the marker-based Chandy-Lamport protocol. As shown in Figure 3c,
the snapshot does not include any in-flight events.

The ABS Protocol. A representation of the ABS protocol [12, 10] corresponding to our
formalization in Section 4 is found in Listing 2. The handler has two mutable states: the
processing task’s volatile state, and the persistent snapshots state. The state is a tuple
< epoch, v > consisting of the current epoch’s sequence number being processed, and the
state v of the processing task. The first event handler consumes an event Event⟨w⟩ from
a stream with stream name Sj out of the sequence of stream names S for some epoch if
it is not currently in a failed state. It processes the event w on its current state v, which
produces an output event w′ and new state v′. It then updates its mutable state, and emits
the output on its outgoing stream with stream name o. The second handler processes the
Border markers from the higher-level ABS protocol. It will consume all border events from
all its incoming streams in a single step. In doing so, it will take a snapshot of the local state
and update the epoch number, as well as disseminate the border marker further downstream.
To note is that the first handler does not consume from a stream if that stream has a border
marker as its next event, instead it will block such streams until the border step (i.e., the
second handler) has been taken. The first and second handlers implement the ABS protocol,
whereas the third and fourth handlers implement the failure recovery. The third handler
models the random failures of tasks, a task can randomly fail at any time, in which case it
loses its volatile state. The fourth handler implements the failure recovery, and is triggered
by some external coordinating instance once it has detected the failure. Once a failure has

ECOOP 2024

42:8 Failure Transparency in Stateful Dataflow Systems

p1

p2

recover
p3

(a) Execution with a failure.

p1

p2

p3

(b) Observed execution.

Figure 4 An execution with failures and its observed execution.

been detected, all tasks are recovered to the same epoch which corresponds to the latest
snapshot of the system. When triggered, the fourth handler recovers the state back to the
snapshot of the epoch found in the message.

Failure Recovery. The dataflow system can recover from failures using the ABS protocol.
Figure 4a shows an execution using the ABS protocol in which p2 fails. The coordinator (not
displayed) will eventually discover the failure, and trigger a synchronous recovery step in
which all processes recover to the latest completed snapshot and continue processing from
there. Even though failures occur in the execution, the observer will be able to construct an
idealized execution corresponding to our notion of failure transparency in which there are no
failed events or incomplete epochs as shown in Figure 4b. This is, loosely speaking, achieved
by ignoring the side effects from the failed epochs, and is explored in detail in Section 6.

4 Implementation Model

We now provide a formal model of the stateful dataflow system described above. The goal
of this formalization is to capture and analyze key aspects of the implementation of the
system, with focus on its failure recovery using the Asynchronous Barrier Snapshotting
protocol [12, 10]. The formal model is presented in two parts: the first part presents an
explicit evaluation rule for message passing, and the second part presents the evaluation
rules for processing and failure recovery.

4.1 Streaming Model
The streaming model is based on processors (or tasks) that communicate via streams. A
processor is a stateful entity that may consume an event from an incoming stream, process it,
and produce events to its outgoing stream. Streams, in turn, transport the events between
processors in a FIFO order. With this notion of processors and streams, we can execute
computational graphs by means of steps. Note that, in this section, we discuss a general
streaming model, leaving the implementation of processors abstract. Whereas, in the next
section, we discuss concrete implementations of processors.

Syntax. Figure 5 shows the syntax of the streaming model. A configuration c = ⟨ Π, Σ, N,

M, D ⟩ represents a point in an execution of a streaming program. The processors Π indexed
by identifiers p represent processor definitions, for which Σ represents the states of the
processors. The messages M are modeled as a sequence of all messages, for which a message
m corresponds to a tuple of a sequence number n, a stream name s, and the message data d.
The current sequence number from which a processor p reads from or writes to a stream s is
represented by Np(s). The sequence numbers for all processors are represented by N . When

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:9

p, q processor ID s, o stream name n ∈ N sequence number

π processor σ state d message data D auxiliary data

Π ::=
[
π

]|Π|
p

processors

Σ ::=
[
σ

]|Π|
p

states

M ::=
[
m

]|M |
i

messages

N ::=
[
Np

]|Π|
p

sequence numbers
Np ::=

[
s 7→ n

∣∣ s
]

sequence numbers of p

X ::=
[
x

]|X|
i

actions
x ::= action

+ s d production
| − s d consumption

m ::= n s d message

Figure 5 Streaming syntax.

p

3 2 1 0

q1

0

q2

0

(a) Initial state.

p

4 3 2 1 0

q1

0

q2

0

(b) Production by p.

p

4 3 2 1

q1

1 0

q2

0

(c) Consumption by q1.

Figure 6 Production and consumption to/from a stream with a producer p and consumers q1

and q2.

a processor processes a message, it may produce and consume messages. This production
and consumption is represented by a sequence of actions X. A production action producing
message d to stream s has the form + s d, similar to the consumption action − s d. The
auxiliary data D is used to store global and additional execution information which is specific
to the models; for example, it can be used to implicitly model the global coordinator. In
the formalization here, the processor π, state σ, message data d and auxiliary global data D

are seen as atomic values, that is, no information about their internal structure is provided.
These limitations permit reusing the same syntax and rule for different instantiations of π, σ,
d and D.

Figure 6 illustrates a stream as a sequence of messages with index numbers. When
producing an event to a stream (Figure 6b), the event is appended to the stream with
an incremented index number. This also increments the producer’s index number for the
stream from 3 to 4. Similarly, the consumer’s index number points to the next event to be
consumed. Figure 6c shows that the consumer q1 has consumed the event 0, which in turn
also increments its index number for the stream, pointing at the next event. Consumers
and producers process the stream independently and asynchronously. The production of a
message is a kind of broadcast, in the sense that all processors will have to consume it before
consuming a newer message.

Step Rule. The streaming model essentially consists of a single rule (S-Step) which describes
the processing of messages. Intuitively, a streaming step from configuration ⟨ Π, Σ, N, M, D ⟩
can be taken if there is a local step with actions X, such that the actions are applicable. A
local step describes how the processor Πp changes its current state Σp to its next state Σ′

p

using actions X. The actions X are applicable to Np and M if all messages consumed by X

are available on the input streams of the processor. The application of the actions X results
in N ′

p and M ′, which are the incremented sequence numbers for the processor and the set of

ECOOP 2024

42:10 Failure Transparency in Stateful Dataflow Systems

messages M extended with the newly produced messages. In case of taking a streaming step,
the configuration transitions to the new configuration ⟨ Π, Σ

[
p 7→ Σ′

p

]
, N

[
p 7→ N ′

p

]
, M ′, D ⟩.

In summary, the result of the streaming step is an update of the local state of the processor
according to the local step, and an update of the sequence numbers and messages according
to the actions X. To simplify the analysis of streaming steps, auxiliary information about
the processor ID, its sequence numbers, and the actions of the step is placed on the arrow
of the execution step. This information can be omitted when it is not needed by applying
abstraction steps S-AbsX and S-AbsP.

Πp ⊩ Σp
X−→ Σ′

p X(Np, M) = (N ′
p, M ′)

⟨ Π, Σ, N, M, D ⟩
Np,X
====⇒

p
⟨ Π, Σ

[
p 7→ Σ′

p

]
, N

[
p 7→ N ′

p

]
, M ′, D ⟩

S-Step

c
Np,X
====⇒

p
c′

c =⇒
p

c′ S-AbsX
c =⇒

p
c′

c ⇒ c′ S-AbsP

The streaming rule can be applied if there exists a derivation of the form Πp ⊩ Σp
X−→ Σ′

p

for a processor Πp. These are called local steps, since they have access only to the local
data of a processor, i.e., its definition, state and locally accessible messages. These rules
describe the local step of a processor, in which the processor may produce and consume
messages/actions X, and update its local state to Σ′

p. The produced actions X modify the
sequence numbers of the processor Np and the messages in the system after application. This
is computed by the action application function X(Np, M) and results in the new sequence
numbers N ′

p and messages M ′ for the next configuration as defined below.

Action Application. The action application rule defines how actions modify the sequence
numbers and messages. A production action + s d increases the sequence number of the
stream s for the producer, and adds the message to the sequence of messages. Each stream
has at most one producer; thus, we do not need to specify the producer in the action or
message. A consumption action − s d increases the sequence number of the stream s for
the consumer, but does not remove it from the sequence of messages, as there may be
other consumers waiting to consume the message. To note is that the consumption action
application is only defined if the message is present in the sequence of messages. Due to this,
local steps may only be applied in the context of the S-Step rule if the consumed message
is present in the sequence of messages. The remaining cases of the definition are for the
recursive application of actions.

▶ Definition 4.1 (Action Application).

(+ s d)(Np, M) = (Np

[
s 7→ Np(s) + 1

]
, M ∪

{
Np(s) s d

}
)

(− s d)(Np, M) = (Np

[
s 7→ Np(s) + 1

]
, M) if Np(s) s d ∈ M , undefined otherwise

(
[
x

]
: X)(Np, M) = X(x(Np, M))

ε(Np, M) = (Np, M)
According to the definition, it is not always possible to apply an action. This may be the

case if, for example, a message for some sequence number is not yet available on its stream.
This enables indirectly “passing” messages to the local step rules. Whereas the local step
rule is defined for all possible steps for all messages that it may consume, cases in which the
message consumption is not applicable by the action application definition are ruled out by
the streaming global step rule. This leaves only messages which are applicable to be applied
to the steps, thus passing the message to the rule.

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:11

v, w value

π ::= TK⟨ f, [Si]|S|
i , o ⟩ task

a ::= [e 7→ v | e] snapshot archive
σ ::= ⟨ a, σV ⟩ state

σV ::= volatile state
fl failed state

| ⟨ e, v ⟩ normal state

e ∈ N epoch number

d ::= ⟨ e, dC ⟩ message
dC ::= message cases

EV⟨ w ⟩ event
| BD epoch border

D ::= M0 initial input messages

Figure 7 Stateful dataflow syntax.

4.2 Stateful Dataflow Model

The presented stateful dataflow model consists of processing tasks, sources, and sinks. A
processing task consumes messages from a set of input streams, and produces messages on its
output stream. The task’s behavior is defined by a function f which processes the messages.
The function f takes the task’s state and an input message, and produces a new state and
a sequence of output messages: f(v, w) = v′,

[
W ′

i

]n

i
. The presented formal model does not

provide a syntax and semantics for functions; they can be expressed using any suitable
formalism. The sources of the model are emulated by streams which are initialized in the
first configuration to contain all the messages which are to be consumed from the source.
That is, each source is represented by its output stream, which in turn becomes an input to
one of the tasks of the computational graph. Sinks are also emulated as streams, however,
in contrast to sources, they are initially empty. The computation of the system, informally,
takes inputs from the sources, processes them in the processing graph, and produces outputs
to the sinks.

Syntax. The syntax of the implementation model (Figure 7) extends the shared streaming
syntax and semantics (Figure 5) by providing concrete instances of processors/tasks, messages,
and state definitions. A task TK⟨ f, S, o ⟩ is a three-tuple of its processing function f , sequence
of input streams S, and its output stream o. Tasks process messages which are tuples of
an epoch number e and the message data dC. There are two kinds of messages: normal
events EV⟨ w ⟩ and epoch borders BD. The epoch border messages are markers used for the
snapshotting algorithm, whereas the events are the actual data processed by the tasks. When
processing, the tasks manipulate state which consists of a persistent snapshot archive a,
i.e., a map from epoch numbers to the corresponding local snapshots, and some volatile state
σV. The snapshot archive is a map from epoch numbers e to the state v of the processor at
the end of the epoch. The volatile state is either a failed state fl or a normal state ⟨ e, v ⟩,
consisting of the current epoch number and the state data value v of the processor. As with
the messages, normal states are tagged by epoch numbers. A processor is in a failed state if
it has crashed and lost its volatile state. The auxiliary data D used for this model consists of
the initial input messages for the system. As we may need to restore the messages which are
yet to be consumed, we keep track of all the initial input messages as the global auxiliary
data of the system.

ECOOP 2024

42:12 Failure Transparency in Stateful Dataflow Systems

(a) Block streams with borders. (b) Borders are aligned.

(c) Upload snapshot and propagate border. (d) Continue processing.

Figure 8 Epoch border alignment protocol (figure adapted from [10]).

4.2.1 Derivation Rules
The semantics of the model consists of seven rules. Three of the rules, I-Event, I-Border,
and F-Fail, are local rules which enable deriving a local step of the form π ⊩ σ

X−→ σ′.
Whereas the I-Event and I-Border rules model the processing of the system, the F-Fail
rule models nondeterministic crash-failures of a processing task within the system. These
rules, together with the streaming rule S-Step and its abstraction rules S-AbsX and S-AbsP,
are used for deriving global steps. The fourth rule, F-Recover, is a global rule used for
recovering the state of all processors after a failure.

Event Rule. The first rule, I-Event, models tasks processing events:

f(v, w) = v′,
[
W ′

i

]n

i

TK⟨ f, S, o ⟩ ⊩ ⟨ a, ⟨ e, v ⟩ ⟩
[− Sj ⟨ e, EV⟨ w ⟩ ⟩]:[+ o ⟨ e, EV⟨ W ′

i ⟩ ⟩]n

i−−−−−−−−−−−−−−−−−−−−−−−−→ ⟨ a, ⟨ e, v′ ⟩ ⟩
I-Event

The rule can perform a local step for a task TK⟨ f, [Si]|S|
i , o ⟩, if the current state of the

task is a normal state ⟨ e, v ⟩, and the task can consume an event EV⟨ w ⟩ from one of its
inputs Sj . Applying a task’s function f to its current state v and the consumed event w

results in the task’s next state v′ and a sequence of output events
[
W ′

i

]n

i
. The rule updates

the state of the task to the new state ⟨ e, v′ ⟩ and produces the output events [EV⟨ W ′
i ⟩]ni on

the output stream o. The local step produces the actions which are the concatenation of the
consumed and produced events. For example, [− Sj ⟨ e, EV⟨ w ⟩ ⟩] : [+ o ⟨ e, EV⟨ w′ ⟩ ⟩] is the
action of consuming the event EV⟨ w ⟩ with epoch number e from the input stream Sj and
producing the event EV⟨ w′ ⟩ with epoch number e on the output stream o.

Border Rule. Whereas the event rule consumes a single event from a stream, the border
rule (I-Border) consumes one border event BD from every incoming stream:

TK⟨ f, [Si]ni , o ⟩ ⊩ ⟨ a, ⟨ e, v ⟩ ⟩
[− Si ⟨ e, BD ⟩]n

i :[+ o ⟨ e, BD ⟩]
−−−−−−−−−−−−−−−−−→ ⟨ a

[
e 7→ v

]
, ⟨ e + 1, v ⟩ ⟩

I-Border

This consumption is enabled for a task if the next event to be consumed on every one of
its incoming streams is a border event. In other words, the event rule consumes events up
until all streams are aligned by the border events, at which point the border rule consumes

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:13

the border events from all its incoming streams. The rule is a local step which, in addition
to consuming border events from all incoming streams and producing a border event on its
outgoing stream, stores the current state v for epoch e to the snapshot storage a (by setting
the new snapshot archive to a[e 7→ v]), as well as incrementing the current epoch number.

Epochs are a key concept of Asynchronous Barrier Snapshotting. Each epoch is a sequence
of data-bearing events, ending with an epoch border, and are used to define the boundaries
of state snapshots. After regular processing for which some streams are blocked by border
events (Figure 8a), the rule aligns the streams by the borders (Figure 8b), takes a copy
of the current state of the processor storing it to the snapshot archive (Figure 8c), and
propagates the epoch border message downstream and increments the epoch number, ready
to process events from the next epoch (Figure 8d). The effect of this is that epochs of events
are separated by the border events throughout the whole processing graph.

Failure Rule. Failures are introduced nondeterministically by the F-Fail rule:

TK⟨ f, S, o ⟩ ⊩ ⟨ a, σV ⟩ → ⟨ a, fl ⟩
F-Fail

The failure rule sets the task’s state to failed ⟨a, fl⟩, thus losing the task’s volatile state.
Once a task is failed, it is no longer able to apply the steps I-Event and I-Border, and
will remain idle until the F-Recover rule has been applied.

Failure Recovery Rule. The last rule, F-Recover, is a global rule which recovers the state
of all failed tasks:

⟨ a, fl ⟩ ∈ Σ
⟨ Π, Σ, N, M, M0 ⟩ ⇒ lcs(⟨ Π, Σ, N, M, M0 ⟩)

F-Recover

The rule may be triggered nondeterministically if there exists a task in a failed state, and
will reset the state of the system to the latest common snapshot. The full details of how
the latest common snapshot (lcs) is computed is discussed further below, as it depends on
additional definitions.

The latest common snapshot is constructed by: (1) calculating the greatest common
epoch for which a snapshot has been taken by all processors in the system; (2) restoring
the state of all processors to their local snapshots at the greatest common epoch; and (3)
restoring sequence numbers and messages to undo any messages that were produced or
consumed for epochs greater than the greatest common epoch. The greatest common epoch
is calculated by finding the minimum (common) of the maximum (greatest) epoch numbers
of the local snapshots of all the processors.

▶ Definition 4.2 (Greatest Common Epoch Number). The greatest common epoch number of
a configuration c = ⟨ Π, Σ, N, M, D ⟩ is:

gce(c) = min
{

max(dom(a))
∣∣ Σp = ⟨ a, σV ⟩

}
The persistent output messages of the system consist of all messages produced up to and

including the greatest common epoch. These messages can be identified by comparing their
epoch number e to the greatest common epoch number e ≤ gce(c). The recovery purges any
messages which are not part of this set, bar the initial input messages M0, thereby making
these output messages (identified by out) persistent.

ECOOP 2024

42:14 Failure Transparency in Stateful Dataflow Systems

p1

p2

p3

(a) An execution with a failure.

p1

p2

p3

(b) Snapshot-view of the execution.

Figure 9 Executions viewed through the latest common snapshot.

▶ Definition 4.3 (Output Messages). For a configuration c = ⟨Π, Σ, N, M, D⟩, its output
messages are:

out(c) =
{

n s ⟨ e, d ⟩
∣∣ (n s ⟨ e, d ⟩) ∈ M ∧ e ≤ gce(c)

}
▶ Definition 4.4 (Messages on a Stream). The subset M ↓ s of messages on a particular
stream is defined as:

M ↓ s =
{

n′ s′ d′ ∣∣ (n′ s′ d′) ∈ M ∧ s′ = s
}

The lcs function computes the latest common snapshot of a configuration for use as a
recovery point in the F-Recover rule. Its computation makes use of the greatest common
epoch number (gce), and the output messages (out). The states Σ′ are restored by removing
any stored snapshots with an epoch number larger than the gce, and the volatile states are
restored to the states captured by the snapshot of the gce. The messages are updated to
only keep the stable output messages out(c) and the messages which are yet to be consumed
Min. The sequence numbers N ′ are updated accordingly, setting the sequence number of a
processor p for a stream s to the number of messages that the processor has either produced
or consumed on the stream: |out(c) ↓ s|. Its complete definition is given below.

▶ Definition 4.5 (Latest Common Snapshot). The latest common snapshot of a configuration
c = ⟨Π, Σ, N, M, M0⟩ is a configuration described by lcs(c):

lcs(c) = ⟨ Π, Σ′, N ′, M0 ∪ out(c), M0 ⟩, where

Σ′ =
[
p 7→ ⟨ A(a), ⟨ gce(c) + 1, a(gce(c)) ⟩ ⟩

∣∣ Σp = ⟨ a, σV ⟩
]

A(a) =
[
e 7→ a(e)

∣∣ e ∈ dom(a) ∧ e ≤ gce(c)
]

N ′ =
[
p 7→

[
s 7→ |out(c) ↓ s|

∣∣ s ∈ dom(Np)
] ∣∣ p ∈ dom(N)

]
Viewing computations through the lens of the latest common snapshot shows configu-

rations which are caused by failure-free executions. Figure 9a shows an execution with a
failed processor p2 and an incompletely processed epoch (green). In contrast, the latest
common snapshot view of the same execution (Figure 9b) shows only the two completed
epochs (red, blue), masking the failed epoch. The snapshot is emulating an execution such
that all the steps on epochs after the greatest common epoch are not taken, and all failed
steps of incompletely processed epochs are ignored. This reasoning is further elaborated for
the proof of failure transparency in the next section, where we show that the implementation
model is failure transparent when viewed through the lens of the output messages function.

4.3 Assumptions
We make the following assumptions as a means to distill the essential mechanism of the
failure recovery protocol. We assume that the message channels are FIFO ordered, a common
assumption for snapshotting protocols [14]. With regard to failures, we make common

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:15

av = 0
a = a0

av = 1
a = a0

av = 1
a = a1

av = 2
a = a1

av = fl
a = a1

av = 1
a = a1

av = 0
a = a1

av = 3
a = a1

av = 4
a = a1

av = 4
a = a2

av = 0
a = a0

av = 1
a = a0

av = 1
a = a1

av = 0
a = a1

av = 3
a = a1

av = 4
a = a1

av = 4
a = a2

receive
E⟨1⟩

process
BDs

receive
E⟨3⟩ fail

recover to
a1(1)

receive
Reset

receive
E⟨3⟩

receive
E⟨5⟩

process
BDs

receive
E⟨1⟩

process
BDs

receive
Reset

receive
E⟨3⟩

receive
E⟨5⟩

process
BDs

Figure 10 Execution of the incremental average task (Figure 2). Top: execution with a failure and
subsequent recovery. Bottom: corresponding failure-free execution. Snapshot archives: a0 =

[
0 7→ 0

]
,

a1 = a0
[
1 7→ 1

]
, a2 = a1

[
2 7→ 4

]
.

assumptions to asynchronous distributed systems [9]. Failures are assumed to be crash-
recovery failures, in which a node looses its volatile state from crashing. Further, we assume
the existence of an eventually perfect failure detector, which is used for (eventually) triggering
the recovery. With regard to system components, we assume the following components which
can be found in production dataflow systems. The implicit coordinator instance is assumed
to be failure free; in practice it is implemented using a distributed consensus protocol such
as Paxos [37]. The snapshot storage is assumed to be persistent and durable; a system such
as HDFS [57] would provide this. Further, the input to the dataflow graph is assumed to be
logged such that it can be replayed upon failure. In practice, a durable log system such as
Kafka [32] would be used for this. For our model, we make the following assumptions. The
recovery is assumed to be an atomic, synchronous system-wide step. In practice, it may be
implemented as an asynchronous atomic step, which allows tasks to start processing before
all have been recovered. Further, the task’s processing functions are assumed to be pure,
i.e., free from side effects. A function f may be re-executed multiple times due to failures; a
common assumption in related work [8, 30].

5 Failure Transparency

In this section, we define failure transparency such that it can be applied to systems described
in small-step operational semantics with distinct failure-related rules. We first provide a
rationale behind failure transparency, followed by its formalization.

5.1 Rationale
The purpose of failure transparency is to provide an abstraction of a system which hides
the internals of failures and failure recovery. In particular, we would like to be able to show
that the implementation model presented in the previous section is failure transparent. In
concrete terms, this entails showing that executions in the implementation model can be
“explained” by failure-free executions, something which we explore in this section.

Consider the task of computing the incremental average from the previous example
(Section 3, Figure 2). The task consumes regular events E⟨i⟩, reset events, and border
events BD. For this example, we consider a partial execution of the task in which it processes
the events: [E⟨1⟩, BD, E⟨3⟩, fail, recover, Reset, E⟨3⟩, E⟨5⟩, BD, . . .]. The task’s configurations
consist of the task’s current average value av, and its snapshot archive, a. Figure 10 shows at
the top an execution of the task with a failure and subsequent failure recovery as the fourth
and fifth events. After the recovery step, in its sixth configuration, the task’s state is reset
to its state for the snapshot a1(1), at which point it had the average value 1.

ECOOP 2024

42:16 Failure Transparency in Stateful Dataflow Systems

The question we ask is whether we can rely on the behavior of the task? More specifically,
can we use the average value av = 2 in the fourth configuration (after receiving the event
E⟨3⟩)? The problem is that the task will fail in its next step, and recover to a state in which
the receiving of the event has been undone. Moreover, the task continues its execution after
recovery by processing the reset event first, and does never reach a state again in which
its average value is 2. For this reason, we cannot blindly rely on the observed behaviors
of the task as we may observe things which are later undone. In more complex systems,
failures may further result in duplications and reorderings of events, further complicating
the reasoning about the system.

Dealing with these issues requires the observer of the system to reason about which events
are effectful and which are to be discarded. In some sense, the observer should be able to
reason about the observed execution as if it was an ideal, failure-free execution, i.e., an
execution in which all events are effectful. Put in another way, the solution is to find a
corresponding failure-free execution, and reason about that one instead. Intuitively, the
observer should find some failure-free execution which “explains” the execution. Considering
the above example, a failure-free execution thereof would correspond to the bottom execution
in Figure 10. Note that there are no failure or recovery steps in the failure-free execution,
yet its state progresses in a similar way to the original execution.

Even though the failure-free execution on an intuitive level correspond to the original
execution, we would like to have a formal notion for this. The idea is to lift the observed
executions by means of “observability functions”, to a level where failure-related events and
states are hidden. For example, for the executions above, we could define an observability
function which takes the configuration of the task and keeps only the snapshot storage. After
this transformation, applying this function to every configuration in the executions, we will
not be able to distinguish the two executions by observing the system at any point in time.
That is, common to both executions, we will first observe a0, then a1, and finally a2. On a
technical level, for every configuration of the original execution, we can find a configuration
in the failure-free execution which, after application of the observability functions, is equal
to it (e.g., the mapping from top to bottom configurations in Figure 10); this is what we
mean by “observable explainability”. Thus, we can explain the original execution by the
failure-free execution using the provided observability function.

The essence of our definition of failure transparency is derived from the notion of explaining
the original executions by failure-free executions using observability functions. Instead of
reasoning about executions, we can reason about the observable output of executions at any
given moment. Using observability functions effectively hides the internals of the model and
enables the user to focus on the output of the system. That is, the user can reason about
failure-free executions instead of faulty executions.

This informal introduction highlights three essential parts of failure transparency: the
execution system, failures within the system, and the observability of the system. The goal
of the rest of this section is to define these terms and to provide a formal definition of failure
transparency.

5.2 Executions
The execution system for the failure transparency analysis is modelled as a transition system
for which the transition relation is provided as a set of inference rules. In particular, we
provide a formal definition for executions as a means to discuss the execution of systems.
With this notion, distributed programs can be formally modelled in small-step operational

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:17

semantics, and consequently formally verified. Although it may seem unintuitive to model
distributed systems as transition systems for which the transition relation is defined over the
global state, this is in fact commonly done in other formal frameworks such as TLA+ [38].
▶ Definition 5.1 (Execution Step). A statement c ⇒ c′ is called an execution step from c to
c′. We denote the derivability of an execution step in the set of rules R by R ⊢ c ⇒ c′.

We reason about systems in terms of their executions. An execution is a sequence of
configurations C, connected by execution steps derivable in a set of rules R, starting from
some initial configuration C0.
▶ Definition 5.2 (Executions). A sequence of configurations

[
Ci

]n

i
is called an execution in

a set of rules R, if ∀i < n. R ⊢ Ci−1 ⇒ Ci. The set of all possible executions starting from
C0 in R is denoted as ER

C0
.

The set of rules R of an execution specifies its reducibility relation by providing c ⇒ c′ as
a conclusion of some of its rules. This approach is commonly known as small-step operational
semantics. In our representation, the set of rules is explicit, whereas commonly it is implicit.
This is due to our need to explicitly distinguish between separate execution systems. This
allows us, for example, to separate an execution system into two parts: one with failures R

s.t. the failure-related rules are a subset thereof F ⊆ R, and one without failures (R \ F).

5.3 Observational Explainability
The observability function represents the observer’s view of the system. It notably differs
from the plain configurations in the following two ways: the observer may not observe all
internal details of configurations, i.e., some parts of the configuration are hidden from the
observer (e.g., hiding commit messages [8]); and the observer may observe some derived
views of the configuration.
▶ Definition 5.3 (Observability Function). An observability function O of an execution
system is a function which maps configurations to their observable outputs. It is required to
be monotonic with respect to execution steps possible in the set of rules R for some partial
order ⊑O, that is: ∀c, c′. (R ⊢ c ⇒ c′) =⇒ O(c) ⊑O O(c′).

We say that an implementation’s execution is observably explained by a specification’s
execution, if the observer cannot distinguish the two executions. This is the case when, for
every configuration in the implementation’s execution, there is a corresponding configuration
in the specification’s execution, such that their observed values are equal after application of
the respective observability functions.
▶ Definition 5.4 (Observational Explanation). A sequence of configurations C of length n is
explained by a sequence of configurations C ′ of length n′ with respect to observability functions
O and O′, denoted as C O⇌O′

C ′, if:

∀m < n. ∃m′ < n′. O(Cm) = O′(C ′
m′)

An implementation’s system, in turn, is observably explainable by the specification’s
system, if for each execution of the implementation there exists an explaining execution in
the specification. We call this property observational explainability.
▶ Definition 5.5 (Observational Explainability). The set of rules R is observationally explain-
able by R′ with respect to their observability functions O and O′ and the translation relation
T , denoted as R O T−⇀↽−O′

R′, if:

∀ c′ ∈ dom(T). ∀c. c′Tc =⇒ ∀C ∈ ER
c . ∃ C ′ ∈ ER′

c′ . C O⇌O′
C ′

ECOOP 2024

42:18 Failure Transparency in Stateful Dataflow Systems

ER
C0

∋C C0 C1 C2 C3 C4 C5

C0 C ′
1 C ′

2 C ′
3 C ′

4 C ′
5ER′

C0
∋C ′

(a) Monotonic mapping.

ER
C0

∋C C0 C1 C2 C3 C4 C5

C0 C ′
1 C ′

2 C ′
3 C ′

4 C ′
5ER′

C0
∋C ′

(b) Non-monotonic mapping.

Figure 11 Monotonic and non-monotonic mapping of configurations.

Properties of Observational Explainability. Observability functions are required to be
monotonic, since observations should be regarded as stable. That is, once a value has been
observed, then it should remain observable in the future. The system should not be able to
undo something that has been observed, otherwise the observer would not be able to rely on
the output. The reason for this is twofold. First, an observer may observe the system multiple
times, and newer observations should provide more up-to-date views. Second, the sequence
of observations should correspond to a valid explanation with respect to the higher-level
specification, this is explored next.

In the general case, it is desirable to have a monotonic mapping of configurations between
the abstract-level and implementation-level executions. Figure 11a shows a monotonic
mapping of configurations between an implementation (top) and a specification (bottom).
What makes the mapping monotonic is that each subsequently mapped configuration of the
implementation is mapped to a configuration with a monotonically growing index. Figure 11b,
on the other hand, shows a non-monotonic mapping, as indicated by the red dashed line.
Non-monotonic mappings, however, are not considered valid explanations. For example, if
the specification consists of the sequence a followed by b, then an implementation which
produces b followed by a is not considered a valid implementation thereof. Thus, we should
not use non-monotonic mappings for the explainability of executions. We capture this notion
in the definition of monotonic observational explanation.

▶ Definition 5.6 (Monotonic Observational Explanation). An observational explanation is
monotonic if it is a monotonic mapping of configurations. That is, [Ci]ni is monotonically
explained by [C ′

j]n′

j w.r.t. O and O′ if:

∃
[
hk

]n

k
. (∀k < n. ∀k′ ≤ k. hk′ ≤ hk) ∧ (∀m < n. ∃m′ = hm < n′. O(Cm) = O′(C ′

m′))

The following lemma explicitly shows that our definition of observational explainability is
equivalent to the definition of monotonic observational explainability. That is, our defini-
tion does not have the problem with non-monotonic mappings of configurations since the
observability functions are required to be monotonic. For this reason, we do not distinguish
between the two definitions in the following sections.

▶ Lemma 5.7. If R is observationally explainable by R′ w.r.t. O, O′, T , then it is also
monotonically observationally explainable:

∀ c′ ∈ dom(T). ∀c. c′Tc =⇒ ∀C ∈ ER
c . ∃ C ′ ∈ ER′

c′ .

C is monotonically explained by C ′ w.r.t. O and O′

Proof. The complete proof is available in the companion technical report [62]. ◀

To further aid the use of these definitions within proofs, we also show that the definition
of observational explainability is transitive, as well as a compositionality lemma on the
observability functions. The parametrization of the observable explainability enables reasoning

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:19

about models which differ in their initial states, and for which we want to apply different
observability functions at the different levels. That is, it can be used for reasoning about
sets of rules which differ in their initial states, and for which we want to apply different
observability functions at the different levels.

▶ Lemma 5.8 (Transitivity). R O T−⇀↽−O′
R′ ∧ R′ O′ T ′

−⇀↽−O′′
R′′ =⇒ R O T ◦T ′

−−−⇀↽−−−O′′
R′′

Proof. The complete proof is available in the companion technical report [62]. ◀

▶ Lemma 5.9 (Composition). ∀O′′. R O T−⇀↽−O′
R′ =⇒ R O′′◦O T−⇀↽−O′′◦O′

R′

Proof. The complete proof is available in the companion technical report [62]. ◀

5.4 Defining Failure Transparency
The general goal of failure transparency is to provide an abstraction of a system which masks
failures from the users. We express this notion using observational explainability between
the implementation and its failure-free part. That is, the implementation should be observa-
tionally explainable by the implementation without failures. By explicitly separating the set
of failure-related rules F , it is easy to define the two systems: namely, the implementation
system with all rules, i.e., R; and another system with all rules except the failure-related
rules, i.e., R \ F . To fully instantiate the observational equivalence, we further use the same
observability function O on both the low and high levels, and as a translation relation we
use the identity relation on the set of initial configurations.

▶ Definition 5.10 (Failure Transparency). A set of rules R is failure-transparent with respect to
failure rules F ⊆ R for a monotonic observability function O and a set of initial configurations
K, this is denoted as R O

K F , iff:

R O {(c, c) | c∈K}−−−−−−−−−⇀↽−−−−−−−−−O (R \ F)

6 Failure Transparency of Stateful Dataflow

In this section, we show that the presented implementation model (Section 4) is failure
transparent (Definition 5.10) for the observability function out (Definition 4.3). In order to
prove this, instead of reasoning about executions directly, we reason about the traces of steps
which are performed to obtain these executions. This simplifies the proof, enabling us to
reorder and remove specific steps in and from a trace; in contrast, doing the same with a
configuration from an execution affects all following configurations. In this section, we first
define traces and a causal order relation on traces, and then prove the failure transparency
of the implementation model by manipulating traces. Finally, we complete our analysis of
the model by formulating and proving its liveness, showing that the implementation model
eventually produces outputs for all epochs in its input.

6.1 Traces and Causality
A trace is a sequence of steps, for which each step is a compact representation of the derivation
of a transition from one configuration to another.

ECOOP 2024

42:20 Failure Transparency in Stateful Dataflow Systems

▶ Definition 6.1 (Trace). A trace Z is a sequence of trace steps. A trace step z is one
of: ⟨I-Event, p, Np, X⟩; ⟨I-Border, p, Np, X⟩; ⟨F-Fail, p⟩; ⟨F-Recover⟩. Here I-Event,
I-Border, F-Fail, and F-Recover play the role of the discriminant, where the trace step
is a tagged union.

For example, if in the derivation tree of an execution step from the ith to the i + 1th
configuration, i.e., of R ⊢ Ci ⇒ Ci+1, F-Recover was the root rule, then this execution
step corresponds to the step ⟨F-Recover⟩ in the trace. To link traces with executions, we
use the following definition of trace application.

▶ Definition 6.2 (Trace Application). A trace Z of length n applied to a configuration c

results in a sequence of configurations C of length n + 1, i.e., Z(c) = C, if, for all steps
Zi, the represented derivation of an execution step can be applied to the ith configuration
producing the i + 1th configuration.

Traces can be generated from executions; however, not every trace corresponds to an
execution. This may be the case if a trace has been constructed incorrectly, or reordered
in some way. For this reason, we define valid traces, which are traces that correspond to
executions.

▶ Definition 6.3 (Valid Trace). A trace Z is valid from configuration c if it is applicable to
it, i.e., if there exists an execution C ∈ EI

c such that Z(c) = C.

As the proof reasons about the reordering of steps in a trace, it is important to formulate
which reorderings of steps preserve the validity of the trace. To handle this, we define a
causal order relation on trace steps similar to the happens-before relation [35], and show how
it can be used to reason about traces.

▶ Definition 6.4 (Causal Order). (See technical report [62] for the formal definition) A step
Zi happens before Zj with i < j if:
1. One of them is an F-Recover step (global recovery)
2. They both occur on the same processor (intraprocessor order)
3. If Zi produced a message which is consumed by Zj (interprocessor order)
4. If there exists some step Zk such that Zi happens before Zk and Zk happens before Zj

(transitivity)

Finally, we state a lemma that causality-preserving permutations, i.e., permutations that
preserve the causal order relation [62, Definition B.5], also preserve the validity and the end
result of their application. Intuitively, it follows from the fact that causally unrelated steps
should not influence each other.

▶ Lemma 6.5 (Application of Causality-Preserving Permutations). For a trace Z valid from c

with size |Z| = n, if Z ′ is a causality-preserving permutation of Z, then: Z ′ is valid from c;
Z and Z ′ end in the same configuration after application to c, i.e., Z(c)n = Z ′(c)n.

Proof. The complete proof is available in the companion technical report [62]. ◀

6.2 Proving Failure Transparency
As it is required by the definition of failure transparency, we first define the sets of rules,
namely I, F, and (I \ F); and the set of valid initial configurations K.

The semantics of the model consist of seven rules, defining two separate sets of rules. The
set of rules with failures I consists of all seven rules that have been defined for the stateful
dataflow implementation model; it corresponds to the implementation model presented in

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:21

p1

p2

recover

p3
commit commit commit

(a) Original faulty execution.

p1

p2

el ≤ e < errecover

p3
commit commit

(b) Separated generations.

p1

p2

recover

p3

el ≤ e < er

commit commit

(c) Reordered generations.

p1

p2

p3
commit commit commit

(d) Merged failure-free execution.

Figure 12 The step-wise construction of a failure-free execution trace from an execution with
failures.

Section 4. The set of failure-related rules F within the implementation model consists of the
two rules F-Fail and F-Recover. This way, the rules without failures are defined as the
set (I \ F).

▶ Definition 6.6 (Implementation Model Rules). I = {S-Step, S-AbsX, S-AbsP, I-Event,

I-Border} ∪ F

▶ Definition 6.7 (Failure-Related Rules). F = {F-Fail, F-Recover}

The sets of initial configurations which are considered are any acyclic graph structures
which are properly initialized.

▶ Definition 6.8 (Valid Initial Configurations). K = ⟨ Π, Σ, N, M, M0 ⟩ such that: the graph
defined by Π is acyclic, and the tasks’ functions f do not output infinite sequences; Σ are
the initial well-formed states; N are sequence numbers initialized to 0 for the streams; M

consists of the well-formed inputs to the streams; M0 = M .

▶ Theorem 6.9 (Failure Transparency of the Implementation Model). I out
K F , i.e., the set of

rules I = {S-Step, S-AbsX, S-AbsP, I-Event, I-Border} ∪ F is failure transparent with
respect to the failure rules F = {F-Fail, F-Recover} for the observability function out and
the set of initial configurations K.

Before proceeding with the proof itself, we provide a sketch of it. The proof idea
is to construct a failure-free observational explanation of an arbitrary execution in the
implementation model.

The construction is done using traces; we reorder and manipulate the original trace so
that failures, recoveries, and discarded trace steps are removed from it. Figure 12 illustrates
the construction: (1) first, we split the trace by the recovery steps into generations; (2)

ECOOP 2024

42:22 Failure Transparency in Stateful Dataflow Systems

next, the trace steps are reordered such that all discarded steps are moved to the end of
the generation; (3) then, these steps are safely discarded; (4) finally, we concatenate the
generations to get the final trace.

Next, we have to show that: (i) the constructed trace is valid, i.e., it corresponds to
a failure-free execution; and (ii) that the execution is an observational explanation of the
original execution. We do so by reasoning about the preservation of validity and observable
outputs in each step of the construction. For trace validity, the most complicated step is the
reordering (step 2 of the construction). We show that the reordering is causality-preserving
and thus, by Lemma 6.5, it produces a valid trace. For observational explanation, throughout
the construction we maintain a mapping of observations from the steps of the original trace
to the steps of the constructed trace. The challenge lies in the reordering of steps (step
2 of the construction) and the fusion of generations (step 4 of the construction). For the
reordering, we show a lemma that the observable output is not changed by the discarded
steps; and, for the fusion, we show that the latest common snapshot of a generation is
exactly the configuration obtained by the reordering and removal of the discarded steps.
This, accompanied by an analysis of the rules, lets us show that the sequence of observable
outputs is the same for the original and the failure-free traces.

Proof. Expanding the definitions, we need to prove that, for all executions in I with potential
failures, there is an observational explanation in the failure-free model (I \ F). Given an
arbitrary execution C of length n in I from initial configuration c ∈ K, i.e.,

[
Ci

]n

i
∈ EI

c, the
goal is to construct a failure-free execution

[
C ′

j

]n′

j
such that:

[
C ′

j

]n′

j
∈ EI\F

c ∧ ∀m < n. ∃m′ < n′. out(Cm) = out(C ′
m′)

This execution is constructed indirectly, by first constructing a trace Z ′ which then
generates it. First, we need to prove that the constructed failure-free trace Z ′ is valid
from c, i.e., Z(c); next, we need to show that the corresponding execution C ′ = Z ′(c) is
an observational explanation of the original execution, that is, for each configuration in
the original execution, we have to provide an observationally equal configuration in the
constructed execution. From the original trace Z, for which Z(c) = C, we construct the
failure-free trace Z ′ in four steps as outlined in the proof sketch and illustrated in Figure 12.

(1) First, the trace is split by the recovery steps into generations, giving us a sequence
of generations G (Figure 12b). Each generation is a sequence of S-Steps ending with an
F-Recover step; in the case of the last generation it may not necessarily end with an
F-Recover step. By construction, each generation is a valid trace as each of them is a
contiguous part of a valid trace. We construct the observability mapping by mapping the
configurations of the original trace to their closest preceding committing border steps. A
committing border step is an I-Border step which changes the greatest common epoch
number, gce, and thus also the observed output, out; such steps are labeled with “commit”
in Figure 12. The equality of observations holds, since, by inspection of the rules, only a
committing border step can change the observable output [62, Lemma B.6].

(2) Next, from each generation g = Gi, we construct a new reordered trace g′ = G′
i so

that all the steps of epochs above the greatest common epoch of the generation are placed
after the steps of epochs below it (Figure 12c). In effect, this moves all the discarded steps to
the end of the generation, since they are discarded by the recovery, which in turn is done to
the greatest common epoch of the generation. In other words, g′ = filter(x ∈ g. epoch(x) ≤
e) : filter(x ∈ g. epoch(x) > e), where e = gce(g|g|−1) is the epoch number to which the
recovery is done. The new traces are still valid, as the reordering is causality preserving [62,

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:23

Lemma B.7], and thus the validity follows from Lemma 6.5. The mapping of observations
is kept intact, since the outputs of the committing border steps are not changed by the
reordering [62, Lemma B.8]. This follows from the fact that the observable output is only
changed by committing border steps [62, Lemma B.6], that causality-preserving permutations
result in the same configuration (Lemma 6.5), and that the reordering is preserving causality.

(3) Then, from each G′
i we construct a new trace G′′

i by removing the discarded steps
and the recovery step. That is, the suffix consisting of the failure steps, recovery steps, and
any steps of epochs greater than the greatest common epoch of the generation are removed.
The new trace is a prefix of G′

i, and is thus still a valid trace [62, Lemma B.2]. We keep the
same mapping of observations for the steps that were not removed. As, within a generation,
only the suffix is removed, it does not affect the observed outputs of the remaining steps,
and thus the mapping of observations is kept unchanged.

(4) Finally, we concatenate all stripped generations G′′
i to get the merged trace Z ′

(Figure 12d). We show that the last configuration of each of the generations G′′
i is exactly

the latest common snapshot of the original generation Gi [62, Lemmas B.10-11], in other
words, the latest common snapshot is a view of a configuration as if only the committed
steps occurred. Since the recovery is done to the latest common snapshot, it is also the same
configuration as the first configuration of the following generation G′′

i+1. For this reason, the
concatenation of all generations forms a trace Z ′ valid from c. The observed outputs are not
changed by the merge, and we maintain the same mapping.

By these four steps we have constructed a failure-free observational explanation of the
faulty execution, which means that the implementation model is observationally explainable
(Definition 5.5) by its failure-free version, or, in other words, it is failure transparent
(Definition 5.10). ◀

6.3 Liveness
The proposed definition of failure transparency is a safety property [3, 34], i.e., it prohibits
the implementation from reaching invalid states. Being as such, failure transparency does
not require the implementation to take any observable execution steps; an implementation
that never takes a step would trivially satisfy the property. In contrast, ensuring that
the implementation eventually does something is a liveness property [3, 34]. To complete
our analysis, we would like to show that the implementation model eventually produces
outputs for all epochs in its input. This is a liveness property which, consequently, does
not concern itself with the correctness of the outputs. However, in combination with the
failure transparency property, the properties ensure that the presented implementation model
eventually produces the correct outputs. For this reason, we prove the following theorem
about the liveness of the implementation model.

▶ Theorem 6.10 (Liveness of the Implementation Model). For every input epoch present in
the initial configuration, eventually a corresponding epoch appears in the output of a fair
execution. That is:

∀k = ⟨Π, Σ, M, N, D⟩ ∈ K. ∀C ∈ EI
k. fair(C) =⇒

∀(n s ⟨e, d⟩) ∈ M. ∃c ∈ C. ∃(n′ s′ ⟨e′, d′⟩) ∈ out(c). e = e′

where a fair execution is maximal (i.e., it is not a prefix of another execution), has a finite
amount of failures, and eventually executes any step which is eventually always enabled (see
the technical report [62] for the formal definition of fair execution). ⌟

ECOOP 2024

42:24 Failure Transparency in Stateful Dataflow Systems

The liveness theorem states that for any fair execution C starting from a valid initial
configuration k, and for all input epochs e, eventually there is a configuration c in the
execution for which the output out(c) contains the epoch e.

Proof. The complete proof is available in the companion technical report [62], it is summa-
rized as follows. First, we show that it suffices to demonstrate that, continuing from any
configuration c reachable from the valid initial configuration k, one or both of the following
are true: eventually there is a failure; or eventually the epoch is visible in the output. As the
considered executions have only finite amounts of failures, we further simplify the proof goal:
it suffices to show that eventually the epoch appears in the output under the assumption
that there are no more failures. We handle this simplified case by inductive reasoning on the
acyclic dataflow graph of processors. The induction’s base case is the graph consisting of
the source input streams but with no processors. The induction hypothesis states that all
streams are well-formed and that the border message of all input epochs eventually appear
on all streams; this is satisfied for the base case by validity of the initial configuration. Then,
in the induction step, we construct the graph by adding one processor at a time, given that
all of its input streams are already handled, as either source inputs or as outputs of other
processors in the previous step’s graph. The assumption of fair scheduling allows us to reason
about the processor locally, since, by definition of fairness, if a message has arrived to the
processor, it will eventually be consumed. As a conclusion of the induction, each processor
will eventually have processed a border of each epoch present in the initial configuration;
thus, eventually all processors will process a border of each initial epoch. This, in turn,
by analysis of I-Border, gce, and out, shows that the border messages of the epoch will
eventually be in the output. ◀

7 Related Work

Failure Transparency, Observational Explainability. There has been a significant body
of research on failure transparency [40]. To our knowledge, the earliest work on failure
transparency was by von Neumann in 1956 [63] on creating reliable systems from unreliable
components. Later work by Wensley in 1972 [65] discussed software techniques for failure
transparent computing. Lowell and Chen discussed failure transparency in the context
of consistent failure recovery protocols [44]. In their work, they introduced “equivalence
functions” for comparing executions, a concept which inspired the observability functions in
this paper. Our work, in contrast, restricts these functions to be monotonic, and discusses
their application to both levels (low and high) of the system, which facilitates the presented
transitivity lemma (Lemma 5.8). Around the same time as Lowell and Chen, Gärtner
discussed general models for fault-tolerant computing [26]. Similar to our work, Gärtner
separated fault-tolerant programs into two separate sets of rules (actions): the rules for
normal behavior; and the rules for failure behavior. With this separation, Gärtner discussed
various properties and forms of fault-tolerant programs. In the context of Gärtner’s work,
our definition of failure transparency would be considered “failure masking”, in the sense
that the system can recover from failures and continue its normal operation. Whereas these
works defined failure transparency as a conjunct of safety and liveness [34, 3], we have only
considered its safety property for our definition.

The presented definition for observational explainability is closely related to previous
definitions of refinement (e.g., TLA [38, 36], Compiler Correctness [53]), implementation
(e.g., I/O Automata [45]), and simulation. In simplified terms, one set of executions
implements another if it is a subset thereof (modulo stuttering and multistep executions).

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:25

Our definition of observational explainability, in some sense, extends the notion of refinement
to directly include a refinement mapping [1] on both sides via observability functions. It
resembles notions from related work such as observational equivalence [8] and observational
refinement [30]; in contrast to these works, we provide a formal definition thereof. Different
from inductive proof approaches as typical for TLA [38] and simulation proof strategies, our
proof approach reasons about the whole sequence. This makes it not necessary to include
notions for ghost variables [49] (also known as auxiliary variables [39]) for the purpose of
reasoning about past or future events.

Failure Transparency Proofs. Failure transparency and observational explainability can
be proven in various ways. For example, Burckhardt et al. [8] prove “observational equiv-
alence” for their serverless programming model. Mukherjee et al. [51] propose a failure
transparency theorem for their system of reliable state machines: an execution of the imple-
mentation is a refinement of an execution without failures “with respect to its observable
behavior”, reminiscent of our definition of failure transparency. Other works include models
for distributed reliable actor communication [61], serverless microservices and observational
refinement [30], and reliable state machines [51]. Their specific approaches may differ, some
use simulation [8, 30], others model failures explicitly [30, 61, 51], and others use notions
similar to observability functions [8]. Another approach is to prove the proper restoration
of applications to the exact configuration as before the crash [50]. Our presented failure
transparency proof shares similarities to the proof of the Asynchronous Barrier Snapshotting
protocol [10], such as reasoning about causal orderings; however, our proof relies to a greater
degree on abstraction in terms of refinement of models.

Distributed, Resilient Programming Models. Stateful dataflow has had a high impact [24]
through systems such as: MapReduce [19], Apache Spark [67, 66], Apache Flink [12],
Google Dataflow [2], IBM Streams [18], Portals [60], and others [7, 56]. However, there are
other notable resilient programming models and systems, including: Pregel, a graph-based
system [47], Resilient X10 [17], virtually resilient immortals [27], fault-tolerant reactives [50],
thread-safe reactive programming [20], Durable Functions [8], stateful entities [54], the
eXchange Calculus [6], and others [61, 30, 51, 15]. In general, these resilient programming
models provide system means to recover from failures, the user does not need to implement
the failure recovery mechanisms themselves. Actor models, in contrast, provide the users
with manual failure-handling constructs. For example, the failure-handling constructs in
Erlang, such as actor monitors and supervision [5], have been used successfully for building
reliable services within the telecom industry [4]. Moreover, other programming models such
as Argus [42] and transactors [22] provide constructs for transactions, which in turn can be
used for building reliable services.

The formalization of distributed systems has been a long-standing research topic. Notably,
formalization frameworks such as TLA [38] and I/O Automata [45], have been used to reason
about distributed systems. Examples of this include a dataflow system that was formalized
using I/O Automata [46]. The ABS protocol for stateful dataflow has been formalized with
transition systems [10]. Recently, operational semantics have been used to model and reason
about such systems [8, 61, 30, 51, 28].

Failure Recovery. A general overview of rollback-recovery protocols was given by Elnozahy
et al. [21], comparing between checkpointing-based and logging-based protocols. Stateful
dataflow systems use either checkpointing, or a combination of the two [7, 56, 2, 12, 64, 66,

ECOOP 2024

42:26 Failure Transparency in Stateful Dataflow Systems

19, 18]. The MapReduce system performs failure recovery by detecting failed nodes, and
replaying the computation from sources or from persisted intermediate results [19]. Apache
Spark, in contrast, improves the recovery by replaying from the sources through what is
called lineage recovery [66]. A similar idea is used in a dynamic dataflow system within
Ray [64]. This paper focused on the ABS protocol used in Apache Flink, which, in contrast
to previous works, uses an asynchronous checkpointing technique [12]. It has been proven to
provide high performance and has since been widely adopted [58]. The current version of
Apache Flink’s runtime offers an opt-in feature for “unaligned checkpoints”, which allow the
checkpoint markers to be treated at a higher priority, decreasing the end-to-end latency at
the cost of some overhead as buffered events may become part of the snapshots [23]. Other
adaptations of the Flink protocol include Clonos [59], which logs the nondeterminism to
facilitate faster partial recovery after failures. Failure recovery remains an open research
topic, as it has great impact on the performance characteristics of fault-tolerant systems [58].

8 Conclusions and Future Work

This paper studies failure transparency of stateful dataflow systems. We propose a novel
definition of failure transparency for programming models expressed in small-step operational
semantics. For the definition of failure transparency we introduce observational explainability,
a notion which resembles refinement but on the level of observations of executions. We
provide an implementation model of a stateful dataflow system using the Asynchronous
Barrier Snapshotting protocol in a small-step operational semantics, and prove that the
model is failure transparent and guarantees liveness.

In future work, we plan to implement a fully verified implementation of a stateful dataflow
system based on the semantics presented in this paper, starting from our Coq mechanization.
Furthermore, we would like to apply our definitions to existing related work.

References

1 Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theor. Comput.
Sci., 82(2):253–284, 1991. doi:10.1016/0304-3975(91)90224-P.

2 Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael Fernández-
Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, and
Sam Whittle. The dataflow model: A practical approach to balancing correctness, latency,
and cost in massive-scale, unbounded, out-of-order data processing. Proc. VLDB Endow.,
8(12):1792–1803, 2015. doi:10.14778/2824032.2824076.

3 Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,
1985. doi:10.1016/0020-0190(85)90056-0.

4 Joe Armstrong. Erlang–a survey of the language and its industrial applications. In Proc.
INAP, volume 96, pages 16–18, 1996.

5 Joe Armstrong, Robert Virding, and Mike Williams. Concurrent programming in ERLANG.
Prentice Hall, 1993.

6 Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Guido Salvaneschi, and Mirko Viroli.
The exchange calculus (XC): A functional programming language design for distributed
collective systems. J. Syst. Softw., 210:111976, 2024. doi:10.1016/J.JSS.2024.111976.

7 Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael Stonebraker. Fault-
tolerance in the Borealis distributed stream processing system. In Fatma Özcan, editor,
Proceedings of the ACM SIGMOD International Conference on Management of Data, Baltimore,
Maryland, USA, June 14-16, 2005, pages 13–24. ACM, 2005. doi:10.1145/1066157.1066160.

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/J.JSS.2024.111976
https://doi.org/10.1145/1066157.1066160

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:27

8 Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor McMahon,
and Christopher S. Meiklejohn. Durable functions: semantics for stateful serverless. Proc.
ACM Program. Lang., 5(OOPSLA):1–27, 2021. doi:10.1145/3485510.

9 Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011. doi:10.1007/978-3-642-15260-3.

10 Paris Carbone. Scalable and Reliable Data Stream Processing. PhD thesis, Royal Institute of
Technology, Stockholm, Sweden, 2018. URL: https://nbn-resolving.org/urn:nbn:se:kth:
diva-233527.

11 Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas Tzoumas.
State management in Apache Flink®: Consistent stateful distributed stream processing.
Proc. VLDB Endow., 10(12):1718–1729, 2017. URL: http://www.vldb.org/pvldb/vol10/
p1718-carbone.pdf, doi:10.14778/3137765.3137777.

12 Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi, and Kostas Tzoumas. Lightweight
asynchronous snapshots for distributed dataflows. CoRR, abs/1506.08603, 2015. arXiv:
1506.08603.

13 Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache Flink™: Stream and batch processing in a single engine. IEEE Data Eng.
Bull., 38(4):28–38, 2015. URL: http://sites.computer.org/debull/A15dec/p28.pdf.

14 K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985. doi:10.1145/214451.
214456.

15 Alvin Cheung, Natacha Crooks, Joseph M. Hellerstein, and Mae Milano. New directions
in cloud programming. In 11th Conference on Innovative Data Systems Research, CIDR
2021, Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org, 2021. URL:
http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf.

16 Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chlipala, and Arvind.
Kami: a platform for high-level parametric hardware specification and its modular verification.
Proc. ACM Program. Lang., 1(ICFP):24:1–24:30, 2017. doi:10.1145/3110268.

17 David Cunningham, David Grove, Benjamin Herta, Arun Iyengar, Kiyokuni Kawachiya, Hiroki
Murata, Vijay A. Saraswat, Mikio Takeuchi, and Olivier Tardieu. Resilient X10: efficient
failure-aware programming. In José E. Moreira and James R. Larus, editors, ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’14, Orlando, FL,
USA, February 15-19, 2014, pages 67–80. ACM, 2014. doi:10.1145/2555243.2555248.

18 Gabriela Jacques da Silva, Fang Zheng, Daniel Debrunner, Kun-Lung Wu, Victor Dogaru,
Eric Johnson, Michael Spicer, and Ahmet Erdem Sariyüce. Consistent regions: Guaranteed
tuple processing in IBM streams. Proc. VLDB Endow., 9(13):1341–1352, 2016. doi:10.14778/
3007263.3007272.

19 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters.
In Eric A. Brewer and Peter Chen, editors, 6th Symposium on Operating System Design and
Implementation (OSDI 2004), San Francisco, California, USA, December 6-8, 2004, pages
137–150. USENIX Association, 2004. URL: http://www.usenix.org/events/osdi04/tech/
dean.html.

20 Joscha Drechsler, Ragnar Mogk, Guido Salvaneschi, and Mira Mezini. Thread-safe reactive
programming. Proc. ACM Program. Lang., 2(OOPSLA):107:1–107:30, 2018. doi:10.1145/
3276477.

21 E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408, 2002.
doi:10.1145/568522.568525.

22 John Field and Carlos A. Varela. Transactors: a programming model for maintaining globally
consistent distributed state in unreliable environments. In Jens Palsberg and Martín Abadi,
editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005,
pages 195–208. ACM, 2005. doi:10.1145/1040305.1040322.

ECOOP 2024

https://doi.org/10.1145/3485510
https://doi.org/10.1007/978-3-642-15260-3
https://nbn-resolving.org/urn:nbn:se:kth:diva-233527
https://nbn-resolving.org/urn:nbn:se:kth:diva-233527
http://www.vldb.org/pvldb/vol10/p1718-carbone.pdf
http://www.vldb.org/pvldb/vol10/p1718-carbone.pdf
https://doi.org/10.14778/3137765.3137777
https://arxiv.org/abs/1506.08603
https://arxiv.org/abs/1506.08603
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/214451.214456
http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf
https://doi.org/10.1145/3110268
https://doi.org/10.1145/2555243.2555248
https://doi.org/10.14778/3007263.3007272
https://doi.org/10.14778/3007263.3007272
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
https://doi.org/10.1145/3276477
https://doi.org/10.1145/3276477
https://doi.org/10.1145/568522.568525
https://doi.org/10.1145/1040305.1040322

42:28 Failure Transparency in Stateful Dataflow Systems

23 The Apache Software Foundation. Unaligned checkpoints flip-76. https://issues.apache.
org/jira/browse/FLINK-14551, 2020. Accessed on 2024-03-28.

24 Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos. A survey on
the evolution of stream processing systems. VLDB J., 33(2):507–541, 2024. doi:10.1007/
S00778-023-00819-8.

25 Yupeng Fu and Chinmay Soman. Real-time data infrastructure at Uber. In Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava, editors, SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June 20-25, 2021, pages 2503–2516.
ACM, 2021. doi:10.1145/3448016.3457552.

26 Felix C. Gärtner. Fundamentals of fault-tolerant distributed computing in asynchronous
environments. ACM Comput. Surv., 31(1):1–26, 1999. doi:10.1145/311531.311532.

27 Jonathan Goldstein, Ahmed S. Abdelhamid, Mike Barnett, Sebastian Burckhardt, Badrish
Chandramouli, Darren Gehring, Niel Lebeck, Christopher Meiklejohn, Umar Farooq Minhas,
Ryan Newton, Rahee Peshawaria, Tal Zaccai, and Irene Zhang. A.M.B.R.O.S.I.A: providing
performant virtual resiliency for distributed applications. Proc. VLDB Endow., 13(5):588–601,
2020. doi:10.14778/3377369.3377370.

28 Philipp Haller, Heather Miller, and Normen Müller. A programming model and foundation
for lineage-based distributed computation. J. Funct. Program., 28:e7, 2018. doi:10.1017/
S0956796818000035.

29 Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whittemore,
Sudhindra Pandav, Anna Slobodová, Christopher Taylor, Vladimir A. Frolov, Erik Reeber,
and Armaghan Naik. Replacing testing with formal verification in Intel CoreTM i7 processor
execution engine validation. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2,
2009. Proceedings, volume 5643 of Lecture Notes in Computer Science, pages 414–429. Springer,
2009. doi:10.1007/978-3-642-02658-4_32.

30 Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu. Executing
microservice applications on serverless, correctly. Proc. ACM Program. Lang., 7(POPL):367–
395, 2023. doi:10.1145/3571206.

31 Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David A. Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seL4: formal verification of an OS kernel. In
Jeanna Neefe Matthews and Thomas E. Anderson, editors, Proceedings of the 22nd ACM
Symposium on Operating Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA,
October 11-14, 2009, pages 207–220. ACM, 2009. doi:10.1145/1629575.1629596.

32 Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system for log
processing. In Proceedings of the NetDB, volume 11, pages 1–7. Athens, Greece, 2011.

33 Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: a verified
implementation of ML. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014, pages 179–192. ACM, 2014. doi:10.1145/2535838.
2535841.

34 Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Software
Eng., 3(2):125–143, 1977. doi:10.1109/TSE.1977.229904.

35 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

36 Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst., 16(3):872–
923, 1994. doi:10.1145/177492.177726.

37 Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998.
doi:10.1145/279227.279229.

https://issues.apache.org/jira/browse/FLINK-14551
https://issues.apache.org/jira/browse/FLINK-14551
https://doi.org/10.1007/S00778-023-00819-8
https://doi.org/10.1007/S00778-023-00819-8
https://doi.org/10.1145/3448016.3457552
https://doi.org/10.1145/311531.311532
https://doi.org/10.14778/3377369.3377370
https://doi.org/10.1017/S0956796818000035
https://doi.org/10.1017/S0956796818000035
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1145/3571206
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/279227.279229

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:29

38 Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002. URL: http://research.microsoft.com/users/lamport/
tla/book.html.

39 Leslie Lamport and Stephan Merz. Auxiliary variables in TLA+. CoRR, abs/1703.05121,
2017. arXiv:1703.05121.

40 Peter Alan Lee and Thomas Anderson. Fault Tolerance, pages 51–77. Springer Vienna, Vienna,
1990. doi:10.1007/978-3-7091-8990-0_3.

41 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, 2009.
doi:10.1145/1538788.1538814.

42 Barbara Liskov. Distributed programming in Argus. Commun. ACM, 31(3):300–312, 1988.
doi:10.1145/42392.42399.

43 David E. Lowell. Theory and practice of failure transparency. PhD thesis, University of
Michigan, USA, 1999. URL: https://hdl.handle.net/2027.42/132190.

44 David E. Lowell and Peter M. Chen. The theory and practice of failure transparency. Technical
report, University of Michigan, 1999.

45 Nancy Lynch and Mark Tuttle. An introduction to input/output automata. CWI-Quarterly,
2(3):219–246, 1989. Also available as MIT Technical Memo MIT/LCS/TM-373, Laboratory
for Computer Science, Massachusetts Institute of Technology.

46 Nancy A. Lynch and Eugene W. Stark. A proof of the Kahn principle for input/output
automata. Inf. Comput., 82(1):81–92, 1989. doi:10.1016/0890-5401(89)90066-7.

47 Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In
Ahmed K. Elmagarmid and Divyakant Agrawal, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana,
USA, June 6-10, 2010, pages 135–146. ACM, 2010. doi:10.1145/1807167.1807184.

48 Yancan Mao, Zhanghao Chen, Yifan Zhang, Meng Wang, Yong Fang, Guanghui Zhang, Rui Shi,
and Richard T. B. Ma. StreamOps: Cloud-native runtime management for streaming services in
ByteDance. Proc. VLDB Endow., 16(12):3501–3514, 2023. doi:10.14778/3611540.3611543.

49 Monica Marcus and Amir Pnueli. Using ghost variables to prove refinement. In Martin Wirsing
and Maurice Nivat, editors, Algebraic Methodology and Software Technology, 5th International
Conference, AMAST ’96, Munich, Germany, July 1-5, 1996, Proceedings, volume 1101 of
Lecture Notes in Computer Science, pages 226–240. Springer, 1996. doi:10.1007/BFB0014319.

50 Ragnar Mogk, Joscha Drechsler, Guido Salvaneschi, and Mira Mezini. A fault-tolerant
programming model for distributed interactive applications. Proc. ACM Program. Lang.,
3(OOPSLA):144:1–144:29, 2019. doi:10.1145/3360570.

51 Suvam Mukherjee, Nitin John Raj, Krishnan Govindraj, Pantazis Deligiannis, Chan-
dramouleswaran Ravichandran, Akash Lal, Aseem Rastogi, and Raja Krishnaswamy. Reliable
state machines: A framework for programming reliable cloud services. In Alastair F. Donaldson,
editor, 33rd European Conference on Object-Oriented Programming, ECOOP 2019, July 15-19,
2019, London, United Kingdom, volume 134 of LIPIcs, pages 18:1–18:29. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ECOOP.2019.18.

52 Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Martín Abadi. Naiad: a timely dataflow system. In Michael Kaminsky and Mike Dahlin, editors,
ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA,
USA, November 3-6, 2013, pages 439–455. ACM, 2013. doi:10.1145/2517349.2522738.

53 Daniel Patterson and Amal Ahmed. The next 700 compiler correctness theorems (functional
pearl). Proc. ACM Program. Lang., 3(ICFP):85:1–85:29, 2019. doi:10.1145/3341689.

54 Kyriakos Psarakis, Wouter Zorgdrager, Marios Fragkoulis, Guido Salvaneschi, and Asterios
Katsifodimos. Stateful entities: Object-oriented cloud applications as distributed dataflows. In
Letizia Tanca, Qiong Luo, Giuseppe Polese, Loredana Caruccio, Xavier Oriol, and Donatella
Firmani, editors, Proceedings 27th International Conference on Extending Database Technology,
EDBT 2024, Paestum, Italy, March 25 - March 28, pages 15–21. OpenProceedings.org, 2024.
doi:10.48786/EDBT.2024.02.

ECOOP 2024

http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
https://arxiv.org/abs/1703.05121
https://doi.org/10.1007/978-3-7091-8990-0_3
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/42392.42399
https://hdl.handle.net/2027.42/132190
https://doi.org/10.1016/0890-5401(89)90066-7
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.14778/3611540.3611543
https://doi.org/10.1007/BFB0014319
https://doi.org/10.1145/3360570
https://doi.org/10.4230/LIPICS.ECOOP.2019.18
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/3341689
https://doi.org/10.48786/EDBT.2024.02

42:30 Failure Transparency in Stateful Dataflow Systems

55 Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes, Will Keen,
Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali Zaidi. End-to-end verification of
processors with ISA-Formal. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer
Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part II, volume 9780 of Lecture Notes in Computer Science, pages
42–58. Springer, 2016. doi:10.1007/978-3-319-41540-6_3.

56 Mehul A. Shah, Joseph M. Hellerstein, and Eric A. Brewer. Highly-available, fault-tolerant,
parallel dataflows. In Gerhard Weikum, Arnd Christian König, and Stefan Deßloch, editors,
Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris,
France, June 13-18, 2004, pages 827–838. ACM, 2004. doi:10.1145/1007568.1007662.

57 Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop
distributed file system. In Mohammed G. Khatib, Xubin He, and Michael Factor, editors,
IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST 2012, Lake Tahoe,
Nevada, USA, May 3-7, 2010, pages 1–10. IEEE Computer Society, 2010. doi:10.1109/MSST.
2010.5496972.

58 George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Arie van Deursen, Paris Carbone,
and Asterios Katsifodimos. CheckMate: Evaluating checkpointing protocols for streaming
dataflows. CoRR, abs/2403.13629, 2024. doi:10.48550/arXiv.2403.13629.

59 Pedro F. Silvestre, Marios Fragkoulis, Diomidis Spinellis, and Asterios Katsifodimos. Clonos:
Consistent causal recovery for highly-available streaming dataflows. In Guoliang Li, Zhanhuai
Li, Stratos Idreos, and Divesh Srivastava, editors, SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20-25, 2021, pages 1637–1650. ACM, 2021.
doi:10.1145/3448016.3457320.

60 Jonas Spenger, Paris Carbone, and Philipp Haller. Portals: An extension of dataflow streaming
for stateful serverless. In Christophe Scholliers and Jeremy Singer, editors, Proceedings of the
2022 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! 2022, Auckland, New Zealand, December 8-10, 2022,
pages 153–171. ACM, 2022. doi:10.1145/3563835.3567664.

61 Olivier Tardieu, David Grove, Gheorghe-Teodor Bercea, Paul Castro, Jaroslaw Cwiklik, and
Edward A. Epstein. Reliable actors with retry orchestration. Proc. ACM Program. Lang.,
7(PLDI):1293–1316, 2023. doi:10.1145/3591273.

62 Aleksey Veresov, Jonas Spenger, Paris Carbone, and Philipp Haller. Failure transparency in
stateful dataflow systems (technical report), 2024. arXiv:2407.06738.

63 John von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable
components. Automata studies, 34(34):43–98, 1956.

64 Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz, Ujval Misra, Alexey
Tumanov, and Ion Stoica. Lineage stash: fault tolerance off the critical path. In Tim Brecht
and Carey Williamson, editors, Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019, pages 338–352. ACM,
2019. doi:10.1145/3341301.3359653.

65 John H. Wensley. SIFT: software implemented fault tolerance. In American Federation
of Information Processing Societies: Proceedings of the AFIPS ’72 Fall Joint Computer
Conference, December 5-7, 1972, Anaheim, California, USA - Part I, volume 41 of AFIPS
Conference Proceedings, pages 243–253. AFIPS / ACM / Thomson Book Company, Washington
D.C., 1972. doi:10.1145/1479992.1480025.

66 Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Steven D. Gribble and
Dina Katabi, editors, Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012, pages
15–28. USENIX Association, 2012. URL: https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/zaharia.

https://doi.org/10.1007/978-3-319-41540-6_3
https://doi.org/10.1145/1007568.1007662
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.48550/arXiv.2403.13629
https://doi.org/10.1145/3448016.3457320
https://doi.org/10.1145/3563835.3567664
https://doi.org/10.1145/3591273
https://arxiv.org/abs/2407.06738
https://doi.org/10.1145/3341301.3359653
https://doi.org/10.1145/1479992.1480025
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

A. Veresov, J. Spenger, P. Carbone, and P. Haller 42:31

67 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In Erich M. Nahum and Dongyan Xu, editors,
2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA,
June 22, 2010. USENIX Association, 2010. URL: https://www.usenix.org/conference/
hotcloud-10/spark-cluster-computing-working-sets.

68 Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica.
Discretized streams: fault-tolerant streaming computation at scale. In Michael Kaminsky
and Mike Dahlin, editors, ACM SIGOPS 24th Symposium on Operating Systems Principles,
SOSP ’13, Farmington, PA, USA, November 3-6, 2013, pages 423–438. ACM, 2013. doi:
10.1145/2517349.2522737.

69 Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavriilidis, Dimitrios
Giouroukis, Philipp M. Grulich, Sebastian Breß, Jonas Traub, and Volker Markl. The
NebulaStream platform for data and application management in the internet of things.
In 10th Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The
Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org, 2020. URL: http:
//cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf.

ECOOP 2024

https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1145/2517349.2522737
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p7-zeuch-cidr20.pdf

Inductive Predicate Synthesis Modulo Programs
Scott Wesley
Dalhousie University, Halifax, Canada

Maria Christakis
TU Wien, Austria

Jorge A. Navas
Certora, Seattle, WA, USA

Richard Trefler
University of Waterloo, Canada

Valentin Wüstholz
ConsenSys, Vienna, Austria

Arie Gurfinkel
University of Waterloo, Canada

Abstract
A growing trend in program analysis is to encode verification conditions within the language of
the input program. This simplifies the design of analysis tools by utilizing off-the-shelf verifiers,
but makes communication with the underlying solver more challenging. Essentially, the analysis
tools operates at the level of input programs, whereas the solver operates at the level of problem
encodings. To bridge this gap, the verifier must pass along proof-rules from the analysis tool to the
solver. For example, an analysis tool for concurrent programs built on an inductive program verifier
might need to declare Owicki-Gries style proof-rules for the underlying solver. Each such proof-rule
further specifies how a program should be verified, meaning that the problem of passing proof-rules
is a form of invariant synthesis.

Similarly, many program analysis tasks reduce to the synthesis of pure, loop-free Boolean
functions (i.e., predicates), relative to a program. From this observation, we propose Inductive
Predicate Synthesis Modulo Programs (IPS-MP) which extends high-level languages with minimal
synthesis features to guide analysis. In IPS-MP, unknown predicates appear under assume and
assert statements, acting as specifications modulo the program semantics. Existing synthesis solvers
are inefficient at IPS-MP as they target more general problems. In this paper, we show that IPS-MP
admits an efficient solution in the Boolean case, despite being generally undecidable. Moreover, we
show that IPS-MP reduces to the satisfiability of constrained Horn clauses, which is less general
than existing synthesis problems, yet expressive enough to encode verification tasks. We provide
reductions from challenging verification tasks – such as parameterized model checking – to IPS-MP.
We realize these reductions with an efficient IPS-MP-solver based on SeaHorn, and describe a
real-world application to smart-contract verification.

2012 ACM Subject Classification Software and its engineering → Software verification

Keywords and phrases Software Verification, Invariant Synthesis, Model-Checking

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.43

Related Version Extended Version: https://arxiv.org/abs/2407.08455

Supplementary Material Software (Source Code): https://github.com/seahorn/seahorn
archived at swh:1:dir:f3193eafa8d1a172794d2230c2abe4da7275b1af

Funding Maria Christakis: supported by the Vienna Science and Technology Fund (WWTF) and
the City of Vienna [Grant ID: 10.47379/ICT22007].
Richard Trefler : supported, in part, by a Discovery Grant (Individual) from the Natural Sciences
and Engineering Research Council of Canada.

© Scott Wesley, Maria Christakis, Jorge A. Navas, Richard Trefler, Valentin Wüstholz, and Arie
Gurfinkel;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 43; pp. 43:1–43:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6708-2122
https://orcid.org/0000-0002-2649-1958
https://orcid.org/0000-0002-0516-1167
https://orcid.org/0009-0007-4235-9328
https://orcid.org/0000-0002-5964-6792
https://doi.org/10.4230/LIPIcs.ECOOP.2024.43
https://arxiv.org/abs/2407.08455
https://github.com/seahorn/seahorn
https://archive.softwareheritage.org/swh:1:dir:f3193eafa8d1a172794d2230c2abe4da7275b1af;origin=https://github.com/seahorn/seahorn;visit=swh:1:snp:a29e65a6f32a3f933137b35bf06e33c416e77a49;anchor=swh:1:rev:36a30812ba8a2921802a648ca171703c98a69a1e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Inductive Predicate Synthesis Modulo Programs

Arie Gurfinkel: supported, in part, by a Discovery Grant (Individual) from the Natural Sciences
and Engineering Research Council of Canada.

1 Introduction

In recent years, many tools have emerged to verify C programs by leveraging the Clang/LLVM
compiler infrastructure (e.g., [9, 60, 56, 54, 31]). These tools take as input C programs
annotated with assumptions and assertions, and decide whether an assertion can be violated
given that all assumptions are satisfied. One such tool is SeaHorn [31], which employs
techniques from software model checking [42], abstract interpretation [32], and memory
analysis [43] to enable efficient verification. Due to these features, many tool designers
have started using annotated C code as an intermediate language to dispatch program
analysis problems to SeaHorn (e.g., [55, 40, 4, 15, 18, 66]). In this setting, programs with
specifications are transformed into C programs with assumptions and assertions, and then
these C programs are analyzed using SeaHorn. The results obtained from SeaHorn are
examined to draw conclusions about the input programs.

However, the flexibility afforded by C code as an intermediate language makes communic-
ation with the underlying verification algorithm more challenging. When SeaHorn is given
a program to verify, it automatically applies various builtin proof-rules, such as induction for
loops [3] and function summarization [42]. A tool designer has no control over how these
rules are employed, nor is the developer able to introduce new proof-rules to SeaHorn. The
goal of this paper is to extend SeaHorn with the language features required to communicate
new declarative proof-rules to the underlying verification algorithm.

To illustrate this challenge, we consider SmartACE [66], a tool that uses SeaHorn for
modular Solidity smart-contract verification. In SmartACE, each smart-contract is modeled
by a non-terminating loop that executes a sequence of transactions1. For SmartACE
to verify a smart-contract, it first requires an inductive invariant for the non-terminating
loop, and a compositional invariant for each map2 in the program. The discovery of an
inductive invariant is automated by SeaHorn’s invariant inference capabilities. However,
SeaHorn is unaware of the modular proof-rules used by SmartACE, and therefore, the
end-user must provide the compositional invariants manually. The authors of SmartACE
hypothesized [66] that if each proof-rule could be declared to SeaHorn, then SeaHorn could
instruct the underlying verification algorithm to infer all invariants automatically. Inspired
by this hypothesis, we first implemented compositional invariant synthesis in SeaHorn,
and then discovered that our solution generalized to many program verification problems.
Consequently, our solution forms a general-purpose framework well-suited to compositional
invariant synthesis.

To illustrate this more general problem, consider a tool designer who wishes to use an
off-the-shelf software verifier (e.g., SeaHorn) as the back-end to a new analysis framework
(e.g., SmartACE). Recall that many off-the-shelf verifiers rely on specialized solvers to
discharge verification conditions, including solvers for Satisfiability Modulo Theories [12],
Constrained Horn Clauses (CHCs) [37], or intermediate verification languages (e.g., [10, 26]).
As depicted in Figure 1, an analysis framework built atop an off-the-shelf verifier takes as
input a program with specifications, translates this program into the language of the verifier,
and then uses the verifier to generate verification conditions for its specialized solver. Since

1 Transactions in Solidity/Ethereum can be thought of as sequences of method invocations.
2 In Solidity, maps are often used to store data for individual smart-contract users.

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:3

Source-to-Source
Translation
(SmartACE)

Off-the-Shelf
Software Analyzer

(SeaHorn)

Verification
Condition Solver

(Spacer)
Input

Program
Analysis
Results

Verification
Conditions

Proof-rules?

Annotated
C Code

Figure 1 The architecture of an analysis framework built atop an off-the-shelf software verifier.
Examples are given with respect to SmartACE.

software verification is undecidable in general, it is often necessary for the tool designer
to declare additional proof-rules for the solver. Example proof-rules include introducing
predicate abstractions, suggesting modular abstractions for an array, and proposing modular
decompositions for a parameterized system. However, it is challenging for the tool designer to
communicate proof-rules to the solver – the former operates at the level of the input program,
while the latter operates at the level of verification conditions. If a tool designer does attempt
to encode proof-rules at the level of the input program, then these proof-rules are typically
eliminated by optimizations from the verifier3, long before verification conditions are ever
produced. That is, there is an impedance mismatch!

To bridge this gap, the verifier must pass proof-rules from the tool designer to the solver.
Each proof-rule is associated with a set of invariants that the solver must find in order to prove
the program correct. In other words, the invariants are declared by the proof-rules. Since
these invariants span many classes (e.g., inductive, compositional, and object invariants), it
is often the case that specialized invariant inference techniques cannot solve this problem.
Instead, one must note that each proof-rule refines the invariants which the solver must
synthesize. Consequently, one solution to the aforementioned impedance mismatch is to
use synthesis techniques (e.g., [7, 25, 71, 59]). In particular, using synthesis allows the tool
designer to declare proof-rules by specifying what invariants are to be synthesized at the
level of the input program. This flexibility, however, comes at a price. General synthesis is
significantly more expensive than verification [64]!

Our key contribution is a definition of a new form of synthesis, called Inductive Predicate
Synthesis Modulo Programs (IPS-MP), that bridges the gap between flexible verification and
efficient synthesis. Our theoretical results are two-fold, we show that: (a) IPS-MP reduces
to satisfiability of CHCs, hence establishing that IPS-MP is a specialization of general
synthesis [61, 63, 5, 41]; (b) for the special case of Boolean programs, IPS-MP is decidable
with the same complexity as verification. We conjecture that the latter extends to other
decidable models of programs (e.g., timed automata). Our practical result is to reduce a wide
range of common proof-rules to IPS-MP. We show how IPS-MP guides inference of inductive
invariants, class invariants, array invariants, and even modular parameterized model checking.
In other words, IPS-MP is well-suited to many areas of program analysis. As a real-world
application, we show that IPS-MP enables the full automation of SmartACE.

Similar to existing synthesis frameworks, IPS-MP extends a programming language with
unknowns. The language itself is unrestricted (i.e., it has loops, procedures, memory, etc.).
However, the unknowns may only appear within assume and assert statements, denoting
constraints on the strongest and weakest possible solutions, respectively. A solution to an
IPS-MP problem is a mapping from each unknown to a Boolean predicate such that the
resulting program is correct (i.e., satisfies all of its assertions). A high-level overview of

3 For example, a pure function with annotations may be optimized away by the Clang compiler.

ECOOP 2024

43:4 Inductive Predicate Synthesis Modulo Programs

Predicate Templates

Synthesizer

Implementation of Predicates

Witness of Unrealizability

Yes

No
Program with Specifications

Figure 2 Overview of the IPS-MP problem.

IPS-MP is shown in Figure 2. Each problem instance consists of two components: (1) a
program with its specification (described by assumptions and assertions), which contains
calls to unknown predicates under assume and assert, and (2) the declarations of those
predicates, which we refer to as predicate templates. Intuitively, a predicate template is a
partial implementation with a number of unknown statements. A solution consists of a full
implementation of each predicate, or a witness to unrealizability (i.e., a proof that a solution
does not exist).

The reducibility of IPS-MP to CHC-solving motivates an efficient IPS-MP solver. We
build on the SeaHorn framework (thus, our underlying language is the fragment of C
supported by SeaHorn [31]), and integrate with two CHC solvers, namely Spacer [42], and
Eldarica [34]. Our empirical results on verification problems from various domains show
that: (1) IPS-MP is effective at specifying verification strategies, (2) our implementation
combined with existing CHC-solvers is highly efficient for linear arithmetic invariants, and (3)
existing reductions to either general synthesis or specification inference are infeasible. Our
evaluation focuses on general synthesis, rather than invariant inference, since the invariants
in our benchmarks span many classes. To contextualize these results, we briefly review the
state-of-the-art in synthesis.

State-of-the-art in synthesis. The general synthesis problem is the task of generating a
program that satisfies a given specification. There are many general synthesis frameworks,
e.g., Sketch [61], Rosette [63], SyGuS [5], and SemGuS [41]. In Sketch and Rosette, users
write programs with holes, representing unknowns. These holes are filled with predefined,
loop-free expressions such that all program assertions are satisfied. SyGuS introduced a more
language-agnostic approach to general synthesis. It generates loop-free programs, satisfying
a given behavioral specification, from a potentially infinite language. Building on SyGuS,
SemGuS allows users to define pluggable semantics, thereby enabling synthesis of programs
with loops. A distinguishing characteristic along this line of work is an emphasis on software
development. In contrast, IPS-MP targets software verification and proof synthesis, which
are theoretically simpler problems.

Specification synthesis (e.g., [21, 2, 53]) is another line of work that addresses a more
specialized synthesis problem targeting program analysis, rather than software development.
In specification synthesis, a program may call functions with unknown implementations. The
goal is to synthesize specifications (e.g., the weakest specification for an unknown library
procedure) that ensure the correctness of the calling program. Typically, a specification
synthesizer imposes extra requirements, such as non-vacuity [53], maximality [2], or reachab-
ility [21], to ensure that solutions are reasonable. In contrast, the invariants synthesized by
IPS-MP have constraints on both the strongest and weakest possible solutions, avoiding the
need for additional (and often costly) requirements.

Of particular interest are the similarities and differences between IPS-MP and syntax-
guided synthesis. In IPS-MP, program holes are filled by expressions from an unbounded
language. To make this problem tractable, IPS-MP restricts Sketch and Rosette by requiring
that holes only appear in partial predicates. Formally, this means that IPS-MP solving is

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:5

subsumed by non-linear constrained Horn clause solving. This restriction is crucial as it
allows an IPS-MP solver to prove that a problem is unrealizable, unlike in Sketch or Rosette.
Furthermore, IPS-MP differs from SyGuS and SemGuS in that the behavioral specification
is given with respect to a given program (in other words, modulo a given program), rather
than through a separate logical specification. The program itself also places requirements on
the holes, through assumptions and assertions, which is in contrast to specification synthesis.

In recent years, new extensions have been proposed to the Sketch framework. However,
these extensions all generalize Sketch to more complex, and consequently less tractable,
problems, whereas IPS-MP restricts Sketch to a more tractable problem which proves to
be useful in the domain of program verification. To illustrate these gaps, we compare
IPS-MP to PSKETCH [62], Synapse [16], Grisette [46], and MetaLift [13]. In the case of
PSKETCH, both frameworks target the development of provably correct concurrent programs.
However, PSKETCH focuses on inductive program verification in the presence of interleaving
executions, whereas IPS-MP focuses on the verification of sequential code fragments via
user-defined proof rules (e.g., the synthesis of compositional invariants in SmartACE). In
the case of Synapse, both tools aim to extend program synthesis problems with hints provided
by an end-user. However, the nature of these hints is very different. In IPS-MP, the user
introduces entirely new proof-rules, for which an underlying solver oversees the search for a
solution. In contrast, the hints provided by an end-user to Synapse assign costs to solutions,
for which the underlying solver tries to optimize. These hints do not allow the end-user
to propose new proof-rules, and are suited to synthesis optimization rather than program
verification. In the case of Grisette, a framework was proposed to programmatically generate
and solve sketches. However, Grisette is based around bounded model-checking, whereas the
IPS-MP problem targets unbounded model-checking and is, therefore, incomparable. More
closely related is MetaLift, which makes use of the fact that inductive program verification
can be reduced to syntax-guided synthesis. However, this verification program is not exposed
to end-users. In particular, the assume and assert statements are hidden from end-users, and
the end-user has no way to propose new placements for them. We conclude that IPS-MP is
a novel synthesis problem.

Constrained Horn clauses. A prominent approach to verification is reduction to the
satisfiability of CHCs, otherwise known as verifier synthesis [30]. While verifier synthesis does
enable the flexible design of software verifiers, it does not address the issue of communicating
proof-rules to the underlying solver. In invariant synthesis, the proof-rules are either chosen
once and for all [30], or are implicit in the solving algorithm (e.g., [44, 65]). While we show
that IPS-MP reduces to CHC-solving, our focus is on communicating new proof-rules to the
solver via synthesis. Other solutions to IPS-MP might emerge in the future.

Contributions. This paper makes the following contributions:
1. Sec. 4 presents the novel IPS-MP problem which has many applications to both program

analysis and software verification;
2. Sec. 5 shows that even though IPS-MP is undecidable in general, there exists an efficient

solution modulo Boolean programs;
3. Sec. 6 provides reductions from important verification problems to IPS-MP;
4. Sec. 7 presents a solver for IPS-MP within SeaHorn. We demonstrate the effectiveness

of our implementation compared to state-of-the-art synthesis frameworks CVC4 [11] (a
SyGuS synthesizer) and HornSpec [53] (a specification synthesizer). We conclude that
IPS-MP fills a gap not met by other synthesis frameworks.

All omitted proofs are found in the extended paper [68].

ECOOP 2024

43:6 Inductive Predicate Synthesis Modulo Programs

1 bool PRED_TEMPLATE Post(int x, int y) {
2 return synth(x, y); }
3 void main(int y) {
4 int x = 0;
5 assume(y > 0);

6 for (int i = 0; i < y; ++i) {
7 x+=1; }
8 assert(Post(x, y));
9 x = *; y = *; assume(Post(x, y));

10 assert(x == y); }

Figure 3 A simple example of the IPS-MP problem.

2 Overview

To illustrate the basics of IPS-MP, we start with an artificial example. For the moment,
we focus on the language used in our presentation and the possible solutions to an IPS-MP
problem. Realistic applications of IPS-MP, highlighting its importance, are presented later
in this section.

Our example, shown in Figure 3, consists of a single function main that provides the
context for a synthesis problem. The function main is written in a typical imperative language,
with loops and function calls. We extend the language with two verification statements,
assume and assert, with their usual semantics. In our example, y is initially positive, due
to assume(y > 0) on line 5, and the program is correct if assert(x == y) on line 10 holds
for all executions. That is, lines 5 and 10 provide a program specification. The goal of
this example is to synthesize a pure expression e such that the program is correct after
substituting e for each call to Post. To indicate that a predicate is a target for synthesis, the
language is extended by the predicate template annotation PRED_TEMPLATE (line 1). Each
predicate template is a pure, loop-free function whose body either returns true, or returns
via a call to the special predicate synth. Each call to synth indicates a hole in the predicate
implementation, and must be determined by a synthesizer. Each return of true places an
explicit constraint on when the implementation must be true. In our example, Post always
returns via a call to synth (line 2). In the rest of the program, a call to a partial predicate
can only appear as an argument to either assume or assert. As described below, verification
calls place implicit constraints on when the implementation must be true. Multiple calls to
the same predicate are allowed. In our example, Post is called once under assert (line 8),
and once under assume (line 9).

A solution to an IPS-MP problem is a mapping from each partial predicate p to a pure
Boolean expression e over the arguments of p, such that if every call to synth in p is replaced
by e, then the main program satisfies all of its assertions. If such a solution does not exist,
the output is a witness to unrealizability, which is a mapping from each partial predicate p

to a pure Boolean expression e over the arguments of p, which is both necessitated by the
assertions placed on the partial predicate, and sufficient to violate an assertion that is part
of the specification. In our example, there are many possible solutions. The weakest and
strongest solutions are postweak(x, y) = (x = y) and poststrong(x, y) = (y > 0∧ x = y). Each
solution defines a corresponding predicate Post such that all assertions in the main program
are satisfied. Intuitively, each call to Post under assume provides an implicit constraint on
the weakest possible synthesized solution. Likewise, each call to Post under assert provides
an implicit constraint on the strongest possible synthesized solution. Following this intuition,
the example shows an application of IPS-MP to find an intermediate post-condition, over
two variables x and y, that is true after the loop and is strong enough to ensure an assertion.
This means that solving IPS-MP requires, in general, inferring inductive invariants for loops
and summaries for functions.

To illustrate the case when synthesis is not possible, consider removing line 7 from
Figure 3. Since x is not incremented, it will never equal y. However, Post cannot be mapped
to false, since this violates the assertion on line 8. If Post is not false, then the assertion

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:7

on line 8 is reachable and will fail. Therefore, this IPS-MP problem is unrealizable. The
witness to unrealizability is a mapping that sends Post to an expression over x and y, which
is necessitated by the assertion on line 8 and violates the assertion on line 10. An example
witness is synthwitness(x, y) = (x = 0 ∧ y = 1).

This section continues with three important applications of IPS-MP. Sec. 2.1 presents a
methodology to reduce verification problems to IPS-MP. For readers new to verification as
synthesis, the standard example of inductive loop invariant inference can be found in the
extended paper. Secs. 2.2, 2.3, and 2.4 extend on the techniques in the full paper to unify
class invariant inference, array verification, and parameterized compositional model checking
under a single synthesis framework. Sec. 2.5 discusses the benefits of predicate templates
and explains why IPS-MP requires both assumptions and assertions of partial predicates.
We note that the automation in SmartACE is a special case of Sec. 2.3.

2.1 Methodology
In Figure 3, a single predicate (i.e., Post) represents a single unknown (i.e., the post-condition
of a loop). This permits an IPS-MP solver to explore all relations between arguments (e.g. x

and y of Post). When there are many variables, or large variable domains, the space of
candidate solutions becomes very large. Restricting the syntactic structure of each unknown,
referred to as its shape, helps to prune the search space. In general, an unknown can be split
into cases (see Sec. 2.3), and the variables in each case can be partitioned (see the extended
paper). Each partition is encoded by a unique predicate. Refining a predicate’s shape prunes
the candidate solution space, but may eliminate valid solutions.

Whenever an unknown is refined, the syntactic changes are reflected only where the
unknown is assumed or asserted. The program remains unchanged otherwise. For this reason,
in IPS-MP, it is convenient to separate unknowns from their shapes. In the context of
program verification, this is accomplished with the following methodology. First, a proof-rule
for the program of interest is reduced to assumptions and assertions on one or more unknowns.
This is done once per proof-rule. Second, the shape of each unknown is refined using insight
from the program. Third, the program is instrumented with assumptions and assertions.
The instrumented program is an IPS-MP problem and is automatically solved by an IPS-MP
solver. We illustrate this methodology using examples from object-oriented program analysis,
array verification, and parameterized verification.

2.2 Class Invariant Inference as Synthesis
As a first example, we illustrate a reduction from class invariant inference to IPS-MP. In
object-oriented programming, a class bundles together a data structure, its initialization
procedure, and its operations. For example, the Counter class in Figure 4a accumulates
values between 0 and some maximum value. The underlying data structure is a pair consisting
of the current value, pos, and the maximum value, max. The initialization procedure on
lines 3–6 first ensures that _max is positive, and then sets the current value to 0 and
the maximum value to _max. The operations for Counter include reset, capacity, and
increment. When reset is called, the current value is set back to 0. When capacity

is called, the distance to the maximum value is returned. When increment is called, if
capacity is greater than 0, then the current value is incremented and true is returned, else
the current value is unchanged and false is returned.

The goal of this example is to prove that drain satisfies its assertions. The drain

function takes an instance of Counter (in an arbitrary state), exhausts the counter’s capacity,
and then resets the counter to 0. The function is correct if increment always returns true

ECOOP 2024

43:8 Inductive Predicate Synthesis Modulo Programs

1 class Counter {
2 int max; int pos;
3 Counter(int _max) {
4 assume(_max > 0);
5 max = _max;
6 pos = 0; }
7 void reset() { pos = 0; }
8 int capacity () {
9 return max - pos; }

10 bool increment () {
11 if (pos >= max) return false;
12 pos += 1;
13 return true; }}
14
15 void drain(Counter o) {
16 while (o.capacity () > 0) {
17 assert(o.increment ()); }
18 o.reset();
19 assert(o.capacity () > 0); }

(a) The original program.

1 bool PRED_TEMPLATE CInv(int m, int p) {
2 return synth(m, p); }
3 void main(void) {
4 if (*) {
5 Counter o(*);
6 assert(CInv(o.max , o.pos));
7 } else if (*) {
8 Counter o = *; assume(CInv(o.max , o.pos));
9 o.reset();

10 assert(CInv(o.max , o.pos));
11 } else if (*) {
12 Counter o = *; assume(CInv(o.max , o.pos));
13 o.increment ();
14 assert(CInv(o.max , o.pos));
15 } else {
16 Counter o = *; assume(CInv(o.max , o.pos));
17 drain(o); }}

(b) The IPS-MP problem (using Figure 4a).

Figure 4 A program (see Figure 4a) which is correct relative to the choice of class invariant
(0 < o.max) ∧ (0 ≤ o.pos ≤ o.max), and a corresponding IPS-MP instance.

on line 17, and capacity always returns a positive value on line 19. Verifying these claims
is non-trivial, as the correctness of drain depends on the possible states of Counter. For
example, proving the assertion on line 17 requires the invariant (0 ≤ max − pos).

A common approach to the modular analysis of object-oriented programs is class invariant
inference (e.g., [24, 36, 1, 45]). A class invariant is a predicate that is true of a class instance
after initialization, closed under the application of impure class methods, and sufficient to
prove the correctness of the class [36]. In the case of Counter, the impure methods are reset

and increment. Therefore, a class invariant for Counter must satisfy four requirements.
Figure 4b illustrates a technique to encode multiple cases in a single IPS-MP program.

Intuitively, this program uses non-determinism to execute one of four possible cases. A case
is selected on line 4 by a sequence of if-else statements, each with a non-deterministic
condition. Even though the execution of each case is mutually exclusive, the IPS-MP solution
must work in all cases. The cases in Figure 4b correspond to the requirements of a class
invariant for Counter. To ensure that the class invariant holds after initialization, the first
case initializes an instance of Counter with non-deterministic arguments, and then asserts
that the instance satisfies the class invariant (lines 4–6). To ensure that the class invariant
is closed with respect to reset, the second case selects an arbitrary instance of Counter

(through non-determinism), assumes that this instance satisfies the class invariant, executes
reset, and then asserts that the instance continues to satisfy the class invariant (lines 7–10).
Similarly, the third case ensures that the class invariant is closed with respect to increment

(lines 11–14). Finally, to ensure that the class invariant entails the correctness of drain, the
fourth case selects an arbitrary instance of Counter, assumes that this instance satisfies the
class invariant, and then calls drain with the instance as an argument (lines 15–17). This
gives a program with unknowns, as required by the verification methodology.

Next, the shape of the class invariant is considered. In this example, we lack program-
specific knowledge to help split the invariant into sub-cases. Furthermore, it would be
futile to partition the invariant’s arguments, as the invariant must relate max to pos (e.g.,
line 17 of Figure 4a requires that 0 ≤ max − pos). Therefore, CInv(m, p) is used as
the shape of the invariant. In Figure 4b, CInv corresponds to the partial predicate on
line 1. One solution to Figure 4b is the expression (m > 0) && (p <= m) for the hole
in CInv. To prove the correctness of drain, a synthesizer may also infer the invariant
(0 ≤ o.pos ∧ o.pos ≤ o.max) for the loop on line 16 of Figure 4a.

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:9

1 void main(int sz) {
2 assume(sz > 0);
3 int *data = new int[sz];
4 memset(data , 0, sz * sizeof(int));
5 int max = 0; int sid = *;
6 assume (0 <= sid && sid < sz);
7 while (true) {
8 int id = *;
9 assume (0 <= id && id < sz);

10 int v = data[id];
11 if (id != sid) {v += 1;}
12 if (v > max) { max = v; }
13 data[id] = v; }}

(a) The original program.

1 bool PRED_TEMPLATE Inv3(int m, int v) {
2 if (m == 0 && v == 0) { return true; }
3 else { return synth(m, v); } }
4 bool PRED_TEMPLATE Inv4(int m, int v){
5 if (m == 0 && v == 0) { return true; }
6 else { return synth(m, v); }}
7 void main(int sid) {
8 int max = 0;
9 while (true) {

10 int id = *;
11 int x = *;
12 assume(id != x);
13 // int v = data[id];
14 int v = *; int u = *;
15 if (id == sid) { assume(Inv3(max ,v)); }
16 else { assume(Inv4(max ,v)); }
17 if (x == sid){ assume(Inv3(max ,u)); }
18 else { assume(Inv4(max ,u)); }
19 // Properties.
20 assert(v <= max);
21 if (id == sid) { assert(v == 0); }
22 // Update.
23 if (id != sid) { v += 1; }
24 if (v > max) { max = v; }
25 // data[id] = v;
26 if (id == sid) { assert(Inv3(max ,v)); }
27 else { assert(Inv4(max ,v)); }
28 if (x == sid) { assert(Inv3(max ,u)); }
29 else { assert(Inv4(max ,u)); }}}

(b) The IPS-MP problem.

Figure 5 A program (see Figure 5a) which is correct relative to the choice of array abstraction
(i = s ∧ v = 0) ∨ (i ̸= s ∧ 0 ≤ v ≤ max), and a corresponding IPS-MP instance.

2.3 Verification of Array-Manipulating Programs as Synthesis

Consider the array-manipulating program in Figure 5a. This program initializes the array
data, and then performs an unbounded sequence of updates to the cells of data while
maintaining the maximum element of data in max. A special index, stored by sid, remains
unchanged during execution. On lines 2–4, data is allocated and then zero-initialized. On
line 5, max is set to 0, since the maximum element of a zero-initialized array is 0. On line 6,
sid is set to an arbitrary index in data. The unbounded sequence of updates begins on line 7,
when the program enters a non-terminating loop. During each iteration, an index is selected
(lines 8–9), and if this index is not sid, then the corresponding cell in data is incremented
by 1 (line 11). If the cell is incremented, then max is updated accordingly (line 12). Note
that Figure 5a can be thought of as a simplified smart contract, where data is an address
mapping, sid is an address variable, and each iteration of the loop is a transaction . For a
more general presentation of smart contracts as array-manipulating programs, see [66].

The goal of this example is to prove two properties about the cells of data. The first
property is that every cell of data is at most max. The second property is that data[sid]

is always zero. It is not hard to see why these properties are true. For example, the first
property is true since every cell of data is initially zero, and after increasing the value of a
cell, max is updated accordingly. However, verifying these properties is challenging, since
data has an arbitrary number of cells. One solution to this problem is to compute a summary
for each cell of data, with respect to max and sid, and independent of data’s length. This
summary is then used in place of each array access to obtain a new program with a finite
number of cells. For simplicity, we assume that array accesses are in bounds, and that
integers cannot overflow (i.e., are modeled as mathematical integers).

ECOOP 2024

43:10 Inductive Predicate Synthesis Modulo Programs

A common approach to obtain such a summary is to over-approximate the least fixed
point of the program by an abstract domain that provides a tractable set of array cell
partitions according to semantic properties (e.g., [29, 33, 20]). An alternative approach
(followed here) is to compute a compositional invariant [49] for each cell of the array. A
compositional (array) invariant is a predicate that is initially true of all cells in the array, and
closed under every write to the array. Furthermore, a compositional invariant must be closed
under interference, that is, if i ̸= j and the cell data[i] is updated, then data[j] continues
to satisfy the compositional invariant. That is, a compositional invariant is assumed after
each read and asserted after each write.

Using this approach, the program in Figure 5b is obtained. On line 10, an arbitrary
index named id is selected, as in the original program. However, on lines 11–12, a second,
distinct index named x is selected, to stand for a cell under interference. On lines 14–18, the
compositional invariant is assumed, in place of reading the values at data[id] and data[x].
On lines 20–21, the two properties are asserted. If an arbitrary cell satisfies both properties,
then every cell must satisfy both properties. On lines 23–24, the cell updates are performed
as in the original program. On lines 26–29, the compositional invariant is asserted, in place
of writing to data[id]. Note that lines 2–4 of Figure 5a do not appear in Figure 5b since
the compositional invariant abstracts away the contents of data. This gives a program with
unknowns, as required by the verification methodology.

Next, the shape of the compositional invariant is restricted. Observe that on line 11 of
Figure 5a, the value written into data depends on whether the index is sid. This suggests
that the compositional invariant has two cases that branch on whether id equals sid, namely
((id = sid)∧ Inv3(max, v))∨ ((id ̸= sid)∧ Inv4(max, v)). In the IPS-MP encoding, both
Inv3 and Inv4 correspond to partial predicates (see lines 1 and 4 in Figure 5b, respectively).
The templates, on lines 2 and 5, correspond to the initialization rule for the invariant.
Recall, however, that these templates are not strictly necessary. One alternative is to assert
Inv3(max ,0) and Inv4(max ,0) before line 9, though this is not illustrated. Due to the
branching shape of the invariant, each assume and assert statement must branch between
the two partial predicates (see lines 14–18 and 26–29). Given Figure 5b, a synthesizer may
find the expressions (v == 0) for the hole in Inv3, and (0 <= v) && (v <= max) for the
hole in Inv4. By substitution, ((id = sid)∧ (v = 0))∨ ((id ̸= sid)∧ (0 ≤ v)∧ (v ≤ max)).
To verify main, a synthesizer may also infer the invariant (0 ≤ max) for the loop at line 9.

2.4 Parameterized Verification as Synthesis

As a third example, we illustrate a reduction from parameterized verification to IPS-MP.
This example considers two or more processes running in a ring network of arbitrary size. A
ring network organizes processes into a single cycle, such that each process has a left and
right neighbour [19]. In this ring, adjacent processes share a lock on a common resource.
Processes are either trying to acquire a lock, or have acquired all locks and are in a critical
section. Initially, all processes are trying and all locks are free. Each processes runs the
program in Figure 6a. The state of each process is given by View on line 3, and the transition
relation of each process is given by tr4 on line 5. Since each process runs the same program
with the same configuration of locks, the ring network is said to be symmetric.

4 For simplicity, tr is not deadlock-free as processes retain their locks until reaching their critical sections.
However, the critical section can be reached any number of times without encountering a deadlock.

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:11

1 typedef enum { Free , Left , Right } Lock;
2 typedef enum { Try , Critical } State;
3 struct View {
4 Lock lhs; Lock rhs; State st; };
5 View tr(View v) {
6 bool held = v.lhs == Left &&
7 v.rhs == Right
8 if (v.st == Critical) {
9 v.st = Try;

10 v.lhs = Free;
11 v.rhs = Free; }
12 else if (held) {
13 v.st = Critical; }
14 else if (v.lhs == Free) {
15 v.lhs = Left; }
16 else if (v.rhs == Free) {
17 v.rhs = Right; }
18 return v; }

(a) The process.

1 bool PRED_TEMPLATE RInv(
2 Lock l, State s, Lock r) {
3 if (l == Free && r == l && s == Try) {
4 return true;
5 } return synth(l, s, r); }
6 void main(struct View v) {
7 if (*) {
8 State otr = *;
9 assume(RInv(v.left , v.st, v.right));

10 assume(RInv(v.right , otr , v.left));
11 v = tr(v);
12 assert(RInv(v.left , v.st, v.right));
13 assert(RInv(v.right , otr , v.left));
14 } else {
15 assume(RInv(v.left , v.st, v.right));
16 bool held = v.left == Left &&
17 v.right == Right;
18 assert(v.st != Critical || held); }}

(b) The IPS-MP problem (uses tr).

Figure 6 A process for a parameterized ring, and an IPS-MP problem that verifies the process.
The process is correct relative to the compositional invariant ((v.lhs ̸= Left) ∨ (v.rhs ̸= Right)) ⇒
(v.st ̸= Critical), and the IPS-MP problem synthesizes the compositional invariant. Note that Lock

and State are defined in Figure 6a using typedef , and that otr is a process under interference.

The goal of this example is to prove that if a process is in its critical section, then the
process holds both adjacent locks. Following [49], this property is proven by computing an
adequate compositional invariant for each process. An adequate compositional invariant is
true of the initial state of each process, closed under the transition relation, closed under
interference, and entails the property of interest. Remarkably, in a symmetric ring network,
a compositional invariant can be computed by analyzing a ring with exactly two processes.

Using this approach, the program in Figure 6b is obtained. This program uses a non-
deterministic if statement to split the analysis into two cases (line 7). The first case
instantiates a two-process network using the compositional invariant (lines 8–10). Due to
network symmetry, the left lock of the first process is the right lock of the second process,
and vice versa. A single process in this network executes a transition (line 11), and then
the closure of the compositional invariant is asserted for both processes (lines 12–13). The
assertions on lines 12–13 ensure both closure under the transition relation and closure under
interference, since only a single process transitioned. The second case instantiates a single
process using the compositional invariant (line 15), and then asserts the property of interest
(lines 16–18). Together, these cases define a compositional invariant. This gives a program
with unknowns, as required by the verification methodology.

Next, the shape of the compositional invariant is considered. In this example, there
is no motivation to split the invariant into cases. Furthermore, it would not make sense
to partition the arguments of the invariant, since the state of a process is dependent
on the combined state of its adjacent locks. Therefore, RInv(l, s, r) is assumed to be
the shape of the invariant. In the IPS-MP encoding, RInv corresponds to the partial
predicate on line 1. The template on line 3 ensures that the compositional invariant is
true of the initial state of each process. As an alternative to a template, one can instead
assert RInv(Free ,Try ,Free) before line 7. One solution to this problem is to fill the
hole in RInv with the expression (s == Try) || ((l == Left) && (r == Right)).
Consequently, ((s ̸= Try)⇒ (l = Left ∧ r = Right)).

ECOOP 2024

43:12 Inductive Predicate Synthesis Modulo Programs

1 bool PRED_TEMPLATE Inv(int x, int y) {
2 if (x + y == 5) { return true; }
3 else { return synth(x, y); } }
4 void main(void) { ... }

(a) Predicate template encoding.

1 bool PRED_TEMPLATE Inv(int x, int y) {
2 return synth(x, y); }
3 void main(void) {
4 int x = *; int y = *;
5 assume(x + y == 5);
6 assert(Inv(x, y));
7 ... }

(b) Assertion-based encoding.

Figure 7 The initial condition (x + y = 5) encoded using a predicate (see Figure 7a), and its
equivalent encoding using an assertion (see Figure 7b).

2.5 Discussion

In Sec. 2.3, all explicit constraints were easily replaced by implicit constraints. However,
explicit constraints can yield more succinct encodings. For example, consider the initial
condition (x + y = 5). In Figure 7a, the condition is given as an explicit predicate template,
and in Figure 7b, it is desugared as an assertion. To desugar the constraint, additional
variables and assumptions are required.

In the examples presented so far, each IPS-MP problem places both assumptions and
assertions on each partial predicate. All interesting IPS-MP problems follow this pattern.
However, IPS-MP is well defined even if a partial predicate has only assumptions placed on
it, only assertions placed on it, or neither. In these cases, the IPS-MP problem is trivial or
reduces to a simpler problem.

If partial predicates only appear in assumptions, then the synthesized solution is never
strengthened. In other words, the solution may be arbitrarily weak. This is an instance
of specification synthesis. Usually, in specification synthesis, non-functional requirements
are placed on each specification to ensure that a solution is “interesting” (e.g., [21, 2, 53]).
Without these requirements, uninteresting solutions, such as false, are permitted. Since
IPS-MP only places functional requirements on its solutions, this case is trivial and returning
false from each predicate is always a solution (given a correct program).

If partial predicates only appear in assertions, then the synthesized solution is only ever
strengthened. A solution in this case is an expression that subsumes all assertions placed on
the predicate. However, an expression that evaluates to true subsumes all possible assertions.
Therefore, this case is also trivial and returning true from each predicate is always a solution
(given a correct program).

If partial predicates never appear in the program, then the synthesizer can select an
arbitrary implementation for each predicate. However, if the synthesizer returns a solution,
then the program must be correct relative to the solution. Therefore, if the program does
violate an assertion, then the synthesizer must return a witness to unrealizability instead.
Consequently, the output of the synthesizer indicates if the program is correct, and is
equivalent to verification.

3 Background

This section recalls results from logic-based program verification. Sec. 3.1 reviews the key
definitions of First Order Logic (FOL) and the Constrained Horn Clause (CHC) fragment
of FOL. Sec. 3.2 introduces a programming language used throughout this paper. Sec. 3.3
recalls the connection between CHCs and program semantics through the weakest liberal
precondition transformer.

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:13

3.1 First Order Logic and Constrained Horn Clauses
A first order signature Σ defines a set of predicates, a set of relations, and their respective
arities. Given a set of variables V, a term is either a variable from V or an application of
a relation in Σ to one or more terms. An atom is an application of a predicate in Σ to
one or more terms. A formula joins atoms using standard logical connectives, existential
quantification, and universal quantification. A formula is quantifier-free if it contains neither
existential nor universal quantification. A formula is a sentence if all variable instances are
quantified. Given a FO-formula φ, the formula φ[x/y] is defined by substituting y for all
free instances of x in φ. We write Term(Σ,V) and QFFml(Σ,V) for the sets of terms and
quantifier-free formulas generated by Σ and V.

A FO-theory T is a deductively closed set of sentences over a signature Σ. A T -model
for a formula φ is an interpretation of each predicate, relation, and free variable in T ∪ {φ}
such that every formula in T ∪ {φ} is true. If a T -model exists for φ, then φ is satisfiable,
otherwise, φ is unsatisfiable. In the case that all valid interpretations of T are T -models for
φ, then φ is T -valid and we write |=T φ. Furthermore, if each interpretation of a T -model
M can be expressed in some logical fragment F , then M provides an F-solution to φ .

Constrained Horn Clauses (CHCs) are a fragment of FOL determined by a FO-signature Σ
and an set of predicates P . A CHC is a sentence of the form ∀V ·φ∧p1(x⃗1)∧· · ·∧pk(x⃗k)⇒ h(y⃗),
where φ ∈ QFFml(Σ,V) and {p1, . . . , pk, h} ⊆ P . For program semantics, it is useful to use v′

to denote the value of a variable v after a program transition and keep(W) :=
∧
w∈W w = w′

to denote that variables W ⊆ V are unchanged during a transition. Given a set of variables
V = {v1, . . . , vn} ⊆ V, the set of variables {v′

1, . . . , v′
n} is denoted V ′. Likewise, given a

formula φ over the variables in V , the formula φ[v1/v′
1] · · · [vn/v′

n] over V ′ is denoted φ′.

3.2 Procedural Programming Language
Throughout this paper, we consider a simple procedural programming language, whose syntax
is standard and can be found in the extended paper. We assume that all expressions are
factored out by a FO-signature Σ, with variables from a set V. That is, each expression is
of the form QFFml(Σ,V). The set of all programs in the language is denoted Progs(Σ,V).
For simplicity, types are omitted. In this language, a program has one or more procedures,
with execution starting from main. Each procedure is written in an imperative language,
including loops and procedure calls. The language is extended with a non-deterministic
assignment (i.e., *), and verification statements assume and assert. The expressions in
assume and assert can be either from QFFml(Σ,V) or a call to a pure Boolean procedure,
called a predicate. Predicates may only be called within assume or assert statements. Given
a program P ∈ Progs(Σ,V), Procs(P) denotes the procedures in P. A special case is when
all variables are Boolean.

▶ Definition 1. Let ΣBool denote a Boolean signature. A Boolean program is a tuple
(Locs, GV , LV , E) with E = (NE , CE , FE , AE , PE) and V = GV ∪ LV such that:
1. Locs is a finite set of control-flow locations with entry-point main ∈ Locs;
2. GV and LV are disjoint sets of local and global variables (respectively);
3. NE ⊆ Locs × QFFml (ΣBool, V ∪ V ′) × Locs is a set of normal edges, CE ⊆ Locs ×

Locs×Locs is a set of call edges, FE ⊆ Locs×Locs×Locs is a set of (partial predicate)
call-under-assume edges, AE ⊆ Locs × Locs × Locs is a set of (partial predicate) call-
under-assert edges, and PE ⊆ Locs × Locs is a set of procedure summary edges;

4. If (l1, R, l2) ∈ NE , then l2 is reachable from l1 by updating the variables according to R

and if (lcall, lin, lret) ∈ CE , then lret is reachable from lcall by executing the procedure with
entry location lin;

ECOOP 2024

43:14 Inductive Predicate Synthesis Modulo Programs

ToCHC(P) := wlp(P(Main),⊤) ∧

 ∧
f∈Procs(P)

ToCHC(f)

ToCHC (f(x⃗) { S; return e⃗; }) := ∀x⃗ ·

(
x⃗ = x⃗ ∧ fpre(x⃗)⇒ wlp

(
S, fsum

(
x⃗, e⃗
)))

ToCHC (p(x⃗) { return e; }) := ∀x⃗ · p(x⃗)⇔ e

Figure 8 The partial correctness conditions for a program P ∈ Progs(Σ,V). This follows the
presentation of [14].

5. If (lcall, lin, lret) ∈ FE , then lret is reachable from lin by assuming the partial predicate with
entry location lcall and if (lcall, lin, lret) ∈ AE , then lret is reachable from lin by asserting
the partial predicate with entry location lcall;

6. If (lin, lout) ∈ PE , then the procedure with entry location lin has exit location lout.

A Boolean program consists of control-flow locations and edges between locations. Each
procedure has a single entry location, lin, and a single exit location, lout, where (lin, lout) ∈ PE .
The program enters at main ∈ Locs, and a special location l⊥ ∈ Locs indicates failure.
Normal edges connect control-flow locations within a procedure and represent non-procedural
statements. For example, the statement assert(e) (where e is an expression) corresponds to
two normal edges, (l1, e ∧ keep(GV ∪ LV), l2) and (l1,¬e ∧ keep(GV ∪ LV), l⊥). Call edges
(optionally under assume or assert) connect locations in a caller’s procedure and a callee’s
procedure by giving the call and return locations of the caller (lcall and lret, respectively),
and the entry location for the callee (lin). For simplicity, all procedures have the same local
variables, and arguments are passed by global variables. The location l⊥ is assumed to have
no outgoing edges.

The state of a Boolean program is a tuple (l, s), where l is a location and s is an assignment
to each Boolean variable. Initially, l = main and s is an arbitrary assignment. For each
normal edge (l1, R, l2), a transition exists from (l1, s1) to (l2, s2), if s1 ∧R ∧ s′

2 is valid. All
call edges have the expected semantics.

3.3 Logical Program Verification
The Weakest Liberal Precondition (WLP) transformer gives logical semantics to imperative
programs [23]. We write wlp(S, Q) for the WLP of a statement S with respect to a post-
conditionQ. The WLP transformer for Progs(Σ,V) is standard and can be found in the
extended paper. Note that in this transformation, the loopln predicate is an invariant for a
loop at line ln.

The wlp(−) transformer can be used to verify partial correctness for procedural programs.
This is achieved through the ToCHC(−) transformer in Figure 8. The wlp(P(main),⊤)
term asserts that main satisfies all assertions. For each procedure f ∈ Procs(P), the term
ToCHC(f) asserts that f is correct for all inputs passed to f in every execution. Note that
in Figure 8, fpre collects inputs to f , and fsum relates the inputs of f to the outputs of
f . In the case that f is a predicate, fpre and fsum are omitted, since f is side-effect free.
Together, ToCHC(P) asserts that the program P is correct for any execution starting from
main. If ToCHC(P) is satisfiable, then there exist loop invariants for P such that P satisfies
all assertions [14]. Therefore, ToCHC(P) can be used to verify P. Furthermore, ToCHC(P)
is in the CHC fragment [14].

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:15

Algorithm 1 Computes the least Boolean program summary (θ, σ) [8]. Follows the
presentation of [17].

1 var (θ, σ) ; // A program summary
2 var W ; // A map from Locs to a queued state
3 Func UpdateReach(l, v):
4 sdiff ← v ∧ ¬ θ(l);
5 if sdiff ̸= ⊥ then
6 θ(l)← θ(l) ∨ sdiff ;
7 W(l)←W(l) ∨ sdiff

8 Func DoIntraproc(V , NE, lwk, swk):
9 for (lwk, R, l2) ∈ NE do

10 s2 ← elim(swk ∧R∗, V ′);
11 s2 ← s2[V ′′/V ′];
12 UpdateReach(l2, s2);

13 Func DoProcSum(V , LV , PE, CE, lwk, swk):
14 for (lin, lwk) ∈ PE do
15 ssum ← elim(swk, LV ∪ LV ′) ∧ ¬σ(lin);
16 if ssum = ⊥ then continue;
17 σ(lin)← σ(lin) ∨ ssum;
18 for (lcall, lin, lret) ∈ CE do
19 X ← s∗

sum ∧ keep(LV ′) ;
20 s← elim(θ(lcall) ∧X, V ′)[V ′′/V ′];
21 UpdateReach(lret, s);

22 Func DoProcs(V , LV , PE, CE, lwk, swk):
23 for (lwk, lin, lret) ∈ CE do
24 sin ← elim(swk, V ∪ LV ′)[V ′/V];
25 UpdateReach(lin, sin);
26 X ← σ(lin)∗ ∧ keep(LV ′);
27 s← elim(swk ∧X, V ′)[V ′′/V ′];
28 UpdateReach(lret, s);

29 Func InitBoolReach(Locs, PE):
30 for l ∈ Locs do θ(l)← ⊥ ;
31 for (lin, lout) ∈ PE do σ(lin)← ⊥ ;
32 θ(main)← ⊤; W(main)← ⊤;
33 Func ComputeBoolReach(P):
34 (Locs, GV , LV , (N, C,∅,∅, P))← P;
35 V ← GV ∪ LV ;
36 InitBoolReach(Locs, P);
37 while ∃ lwk ∈ Locs ·W(lwk) ̸= ⊥ do
38 swk ←W(lwk) ; W(lwk)← ⊥;
39 DoIntraproc(V , N , lwk, swk);
40 DoProcs(V , LV , P , C, lwk, swk);
41 DoProcSum(V , LV , P , C, lwk, swk);

Efficient procedures exist to prove that Boolean programs are correct. For example,
program summarization simultaneously computes a summary θ from control-flow locations
to input-to-reachable-state relations, and a summary σ from procedures to input-output
relations. For a location l ∈ Locs, if θ(l) = ⊥, then l is unreachable. Therefore, a Boolean
program P is correct if and only if θ(l⊥) = ⊥ in the least summary of P [6]. Program
summarization is defined in Def. 25. The algorithm to compute θ is presented in full, for
reuse in Sec. 5.1. For presentation, elim(φ, W) denotes the existential elimination of W in φ.

▶ Definition 2 ([6]). A Boolean program summary for (Locs, GV , LV , E), where E =
(NE , CE ,∅,∅, PE) is a tuple (θ, σ) such that Q = QFFml(ΣBool, V ∪ V ′), V = GV ∪ LV
and the following hold:
1. σ : Locs → Q and θ : Locs → Q;
2. σ (main) = ⊤;
3. ∀ (l1, R, l2) ∈ NE · θ (l1) ∧R′ ⇒ θ (l2) [V ′/V ′′];
4. ∀ (lcall, lin, lret) ∈ CE · θ (lcall) ∧ σ′ (lin) ∧ keep

(
LV ′)⇒ θ (lret) [V ′/V ′′];

5. ∀ (lcall, lin, lret) ∈ CE · elim(θ (lcall) , V ∪ LV ′)⇒ θ (lin);
6. ∀ (lin, lout) ∈ PE · θ (lout)⇒ σ (lin).

ComputeBoolReach in Algorithm 1 is the standard algorithm to compute a least program
summary. The algorithm works by iteratively applying the rules of Def. 2 until a fixed
point is reached (we write R∗ := R[V ′/V ′′][V/V ′]). Termination is ensured by the finite-
state of Boolean programs and the monotonicity of each rule. We extend on the algorithm
ComputeBoolReach in Sec. 5.1.

5 To align with Algorithm 1, Def. 2 is non-standard but equivalent to [6].

ECOOP 2024

43:16 Inductive Predicate Synthesis Modulo Programs

1 bool Post(int x, int y) {
2 return x==y; }
3 void main(int y) {
4 assume(y>0); int x=0;
5 for (int i=0; i<y; ++i) { x+=1; }
6 assert(Post(x, y));
7 x=*; y=*; assume(Post(x, y)); }

(a) The program P[Πweak].

1 bool Post(int x, int y) {
2 return (y>0) && (x==y); }
3 void main(int y) {
4 assume(y > 0); int x=0;
5 for (int i=0; i<y; ++i) { x+=1; }
6 assert(Post(x, y));
7 x=*; y=*; assume(Post(x, y)); }

(b) The program P[Πstrong].

Figure 9 Implementations of the simple program in Figure 3.

4 IPS-MP: Problem Definition

This section defines partial predicates and the IPS-MP problem. A partial predicate is a pure
Boolean function without an implementation. A program P is open if it contains a partial
predicate p. An implementation for p is a Boolean expression e over the arguments of p. The
program obtained by implementing p as return e is denoted P [p← e]. The set of all partial
predicates in P is written Partial(P) = {p1, . . . , pk}. Given a function Π from Partial(P)
to pure Boolean expressions, we write P[Π] to denote P[p1 ← Π(p1)] · · · [pk ← Π(pk)]. The
IPS-MP problem is to find a Π such that P[Π] is correct.

▶ Example 3. Recall program P from Figure 3. Since Post is unimplemented in P, then
P is an open program. Formally, Partial(P) = {Post}. In Sec. 2, two implementations
were proposed for Post, namely (x = y) and (y > 0 ∧ x = y). These implementations are
represented by the mappings Πweak and Πstrong from Partial(P) to pure Boolean expressions
such that Πweak : Post 7→ (x = y) and Πstrong : Post 7→ (y > 0 ∧ x = y). The closed
programs P [Πweak] and P [Πstrong] are illustrated in Figure 9a and Figure 9b, respectively. ◀

▶ Definition 4. An Inductive Predicate Synthesis Modulo Programs (IPS-MP) problem is
a tuple (P, T , Π0) such that P ∈ Progs(Σ,V) with first-order signature Σ and variable set
V, T is a first-order theory, and Π0 : Partial(P)→ QFFml(Σ,V) are predicate templates. A
solution to (P, T , Π0) is a function Π : Partial(P)→ QFFml(Σ,V) such that P [Π] is correct
relative to T and ∀p ∈ Partial(P) · |=T Π0(p)⇒ Π(p).

Assume that (P, T , Π0) is an IPS-MP problem with a solution Π. With respect to the
IPS-MP overview in Figure 2, P is a program with specifications, Π0 is a collection of predicate
templates, and Π is an implementation of partial predicates. The witness to unrealizability
is discussed in Sec. 5. As an example of Def. 4, Figure 5b is restated as a formal IPS-MP
problem.

▶ Example 5. This example restates Figure 5b as an IPS-MP problem (P, Π0, T). The
program P is given by lines 7–29 of Figure 5b. Then Partial(P) = {Inv3, Inv4}, since
Inv3 and Inv4 are called on lines 15–16, but lack full implementations. From lines 1–6,
Π0(Inv3) = Π0(Inv4) = (m = 0 ∧ v = 0). Now, recall from Sec. 2.3 that all variables in
Figure 5b are arithmetic integers. Therefore, T is the theory of integer linear arithmetic. A
solution to (P, Π0, T) is Π such that Π(Inv3) = (v = 0) and Π(Inv4) = (0 ≤ v∧v ≤ m). ◀

5 Decidability of IPS-MP

This section considers the decidability of IPS-MP. Sec. 5.1 shows that IPS-MP is efficiently
decidable in the Boolean case. Sec. 5.2 shows that IPS-MP is undecidable in general, but
admits sound proof-rules for realizability and unrealizabiliy.

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:17

5.1 The Case of Boolean Programs

This section shows that for Boolean programs, IPS-MP is decidable with the same time
complexity as problem verification (i.e., polynomial in the number of program states). In
contrast, general synthesis is known to have exponential time complexity in the Boolean
case [64]. Therefore, IPS-MP modulo Boolean programs does in fact offer the benefits of
general synthesis without the associated costs. To prove this result, we first extend Boolean
program summaries (Def. 2) to programs with partial predicates. These new summaries
are then used to extract solutions to IPS-MP (or witnesses to unrealizability). Analyze of
Algorithm 2 extends on Algorithm 1 to compute these new summaries. The total correctness
and time complexity of Analyze are proven in Cor. 9 and Thm. 7, respectively.

To simplify our presentation, we assume that all predicates are partial. In a Boolean
program, each partial predicate has an entry location, but no edges nor exit location. This
means that a standard summary can be obtained for a Boolean program with partial predicates
by discarding all calls to partial predicates. Such a summary characterizes reachability, under
the assumption that partial predicates are never called. From this summary, the arguments
passed to each partial predicate under assert can be collected. For the program summary
to be correct, the partial predicates must return true on these asserted arguments. If the
partial predicate returns true on these asserted arguments, then for any call under assume
using the same arguments, the program execution must continue to the next state. This
procedure can then be repeated until a fixed point is obtained. This new partial program
summary is defined formally in Def. 6.

▶ Definition 6. Let P = (Locs, GV , LV , (NE , CE , FE , AE , PE)) be a Boolean program. A
partial program summary for P is a tuple (θ, σ, Π) such that:
1. Π : Partial(P)→ QFFml(ΣBool, GV);
2. (θ, σ) is a program summary for (Locs, GV , LV , (NE , CE ,∅,∅, PE));
3. ∀(lcall, lin, lret) ∈ AE · θ(lcall)⇒ Π′(lin);
4. ∀(lcall, lin, lret) ∈ AE · θ(lcall)⇒ θ(lret);
5. ∀(lcall, lin, lret) ∈ FE · θ(lcall) ∧Π′(lin)⇒ θ(lret).

The rules of Def. 6 follow directly from the preceding discussion. Rule 2 ensures that (θ, σ)
is a program summary for P after discarding all calls to partial predicates. Rules3 and 4
collect the arguments passed to partial predicates under assert. Rule 5 advances the program
state from calls to partial predicates under assume, according to the collected arguments.
These steps are made operational by Analyze of Algorithm 2. Note that Analyze does not
call ComputeBoolReach directly, and instead applies all rules in a single loop.

The termination of Analyze follows analogously to ComputeBoolReach . First, note that
Analyze terminates if all work items have been processed. Each iteration of the loop at
line 22 processes at least one work item. A state is added to the work list only if it has
not yet been visited. The number of states is finite, since Boolean programs are finite-state.
Therefore, Analyze must terminate with time polynomial in the number of program states.
This is in contrast to general synthesis, which requires time exponential in the number of
program states [64].

▶ Theorem 7. Let P = (Locs, GV , LV , E) with E = (NE , CE , FE , AE , PE) be a Boolean
program. Then for each input (P, Π0), Analyze of Algorithm 2 terminates in O(n2m · |Locs|)
symbolic Boolean operations where n = 2|GV∪LV | is the number of variable assignments and
m = ·|NE ∪ CE ∪ FE ∪AE | is the number of edges.

ECOOP 2024

43:18 Inductive Predicate Synthesis Modulo Programs

Algorithm 2 An extension of Algorithm 1 to solve IPS-MP for Boolean programs.

1 var (θ, σ, Π) ; // A partial program summary
2 var W ; // A map from Locs to queued states
3 Func DoAssumes(V , LV , PE, FE, lwk, swk):
4 for (lwk, lin, lret) ∈ FE do
5 sin ← elim(swk, V ∪ LV ′)[V ′/V];
6 UpdateReach(lret, Π(lin) ∧ sin);

7 Func DoAsserts(V , LV , PE, AE, lwk, swk):
8 for (lwk, lin, lret) ∈ AE do
9 UpdateReach(lret, Π(lin) ∧ swk) ;

10 UpdateReach(lin,
elim(swk, V ∪ LV ′)[V ′/V]);

11 Func DoFuncSum(V , LV , FE, AE, lwk, swk):
12 if lwk ∈ Partial(P) then
13 Π(lwk)← Π(lwk) ∨ swk;
14 for (lcall, lwk, lret) ∈ FE ∪AE do
15 UpdateReach(lret, θ(lcall) ∧ swk)

16 Func Init(Locs, PE, Π0):
17 InitBoolReach(Locs, PE);
18 for l ∈ Partial(P) do Π(l)← Π0(l) ;
19 Func Analyze(P, Π0):
20 (Locs, GV , LV , (N, C, F, A, P))← P;
21 V ← GV ∪ LV ; Init(Locs, P, Π0);
22 while ∃ lwk ∈ Locs ·W(lwk) ̸= ⊥ do
23 swk ←W(lwk) ; W(lwk)← ⊥;
24 DoIntraproc(V , N, lwk, swk);
25 DoProcs(V , LV , P, C, lwk, swk);
26 DoAssumes(V , LV , P, F, lwk, swk);
27 DoAsserts(V , LV , P, A, lwk, swk);
28 DoProcSum(V , LV , P, C, lwk, swk);
29 DoFuncSum(V , LV , F, A, lwk, swk);

30 Func BoolSynth(P, Π0):
31 Analyze(P, Π0);
32 if θ(l⊥) = ⊥ then return (✓, Π) ;
33 else return (×, Π) ;

The correctness of BoolSynth follows from the correctness of ComputeBoolReach in [17].
Thm. 8 proves that Analyze extends ComputeBoolReach to obtain a least partial program
summary. Cor. 9 proves that an IPS-MP solution (or a witness to unrealizability) can be
extracted from a least partial program summary. Since Analyze terminates, this is a decision
procedure for the Boolean case of IPS-MP.

▶ Theorem 8. Let P = (Locs, GV , LV , E) be a Boolean program and Π0 be a collection
of predicate templates for P. Analyze of Algorithm 2 computes a least partial program
summary, (θ, σ, Π), for P such that ∀p ∈ Partial(P) ·Π0(p)⇒ Π(p).

▶ Corollary 9. BoolSynth of Algorithm 2 decides IPS-MP for Boolean programs.

5.2 The General Case
This section presents sound proof-rules for the realizability and unrealizability of IPS-
MP problems. These rules are shown to be instances of CHC-solving. To justify the
reduction from IPS-MP to this undecidable problem, the general case of IPS-MP is also
shown to be undecidable. First, assume that (P, T , Π0) is an IPS-MP problem. Recall
that P ∈ Progs(F ,V) where F is the FO-fragment of pure program expressions. A logical
encoding of (P , T , Π0) is given by:

CHCSynth(P,Π0) := ToCHC(P) ∧

(∧
p∈Partial(P)

∀x⃗ · (Π0(p) ⇒ p(x⃗))

)
The term ToCHC(P) encodes verification conditions for P , in which each partial predicate is
unspecified. Calls to a partial predicate p, under assume and assert, provide constraints on the
strongest and weakest possible solutions to CHCSynth(P, Π0). The clause ∀x⃗ · (Π0(p)⇒ p(x⃗))
then ensures the strongest solution to p subsumes Π0(p). Then a solution σ to CHCSynth(P, Π)
contains an implementation σ(p) for each partial predicate p, that subsumes Π0(p) and
ensures the correctness of P (Thm. 10). Furthermore, if σ is an F-solution, then each σ(p)
can be implemented in the programming language. On the other hand, if CHCSynth(P, Π0) is
unsatisfiable, then for every choice of implementation Π satisfying Π0, the closed program P [Π]
is incorrect (Thm. 11). Together, these theorems give sound proof rules for the realizability
and unrealizability of (P, T , Π0). In practice, F is chosen to be the same fragment used by
the CHC-solver.

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:19

▶ Theorem 10. Let Σ be a first-order signature, V be a set of variable symbols, F =
QFFml(Σ,V), P ∈ Progs(Σ,V), and (P, T , Π0) be an IPS-MP problem. If σ is an F-solution
to CHCSynth(P, Π0) relative to T , then Π : Partial(P) → F such that Π : p 7→ σ(p) is a
solution to (P , T , Π0).

▶ Theorem 11. If (P, T , Π0) is an IPS-MP problem and CHCSynth(P, Π0) is T -unsatisfiable,
then (P , T , Π0) is unrealizable.

CHCSynth(P, Π0) strengthens ToCHC(P) by adding additional CHCs. Since ToCHC(P)
is a conjunction of CHCs, then CHCSynth(P, Π0) is also a conjunction of CHCs. Therefore, a
CHC solver can check the satisfiability and unsatisfiability of CHCSynth(P, Π0). As a result,
a CHC solver can find a solution to (P, T , Π0) (Thm. 10), or prove that the problem is
unrealizable (Thm. 11).

▶ Theorem 12. CHCSynth(P , Π0) is a CHC conjunction.

▶ Example 13. This example uses Thm. 10 to solve the IPS-MP problem in Figure 4b.
The program in Figure 4b corresponds to the IPS-MP problem (P, T , Π0) where P is the
source code, T is the theory of integer linear arithmetic, and Π0 : CInv → ⊥. In this
example we let F be the fragment of linear inequalities of the variables {m, p}, where m

and p are the arguments to CInv. Then our goal is to find an expression e ∈ F such
that P[CInv ← e] is correct. According to Thm. 10, we can extract e from the output
of a CHC-solver. The first step in this process is to construct the input CHCSynth(P, Π0).
To construct CHCSynth(P, Π0) we must first construct the term ToCHC(P). Recall that
ToCHC(P) encodes verification conditions for the program P. Since P is open (CInv is
unimplemented), then CInv will be an unknown in ToCHC(P). According to Sec. 3.3,
ToCHC(P) will consist of the verification conditions for P[main], along with a summary
for each function in P. We begin by constructing a summary for each method from the
Counter object in P. As described in Sec. 3.3, each predicate fpre(x) collects the inputs
x to a function f , and each predicate fsum(x, e) each argument x to a return value e For
simplicity, we encode object state by passing member fields as arguments and return values.
Redundant declarations are omitted.

φCtor := ∀m · Counterpre(m) ⇒ ((m > 0) ⇒ Countersum(m,m, 0))
φReset := ∀m · ∀p · resetpre(m, p) ⇒ resetpost(m, p,m, 0)
φCap := ∀m · ∀p · capacitypre(m, p) ⇒ capacitysum(m, p.m − p ̸= 0)

φIncr := ∀m · ∀p · incrementpre(m, p) ⇒ (((p ≥ m) ⇒ incrementsum(m, p,⊥)) ∧
((p < m) ⇒ incrementsum(m, p + 1,⊤)))

Next, we construct a summary for the function drain. Note that, unlike the methods of
Counter, the function drain contains a loop. As described in Sec. 3.3, loops are encoded
using loop invariants with the loop at line n associated with an invariant loopn. In our
example, the loop at Line 16 of Figure 4a is associated with a loop invariant loop13. Then
the summary of drain is as follows.

φExit := capacitypre(p′
,m

′) · ∀x ·
(

capacitysum(p′
,m

′
, x) ⇒

(
x ∧ drainsum(p,m, p′

,m
′)
))

φLoop := loop13(p,m, x)∧
((loop13(p,m, x) ∧ x > 0) ⇒ (capacitypre(p,m) ∧ ∀x · (capacitysum(p,mx) ⇒ loop13)))∧

((loop13(p,m, x) ∧ x ≤ 0) ⇒ resetpre(p,m) ∧ ∀p′ · ∀m′ ·
(

resetsum(p,m, p′
,m

′) ⇒ φExit
)

)

φDr :=∀p · ∀m · drainpre(p,m) ⇒ (capacitypre(p,m) ∧ ∀x · (capacitysum(p,m, x) ⇒ φLoop))

Finally, we construct the verification conditions for main. Since main is the entry-point to
P , then main must be safe for all possible inputs. This means that main does not require a
summary. The conditions are as follows.

ECOOP 2024

43:20 Inductive Predicate Synthesis Modulo Programs

φMain := ∀b1 · ∀b2 · ∀b3·

(b1 = 1) ⇒
(

∀m · Counterpre(m) ∧ ∀m′ · ∀p · (Countersum(m,m′
, p) ⇒ CInv(m′

, p)
)

∧

(b1 ̸= 1 ∧ b2 = 1) ⇒ (∀m · ∀p · CInv(m, p) ⇒(
resetpre(m, p) ∧ ∀m′ · ∀p′

(
resetsum(p,m, p′

,m
′) ⇒ CInv(p′

,m
′)
))

)∧

(b1 ̸= 1 ∧ b2 ̸= 1 ∧ b3 = 1) ⇒ (∀m · ∀p · CInv(m, p) ⇒(
incrementpre(m, p) ∧ ∀m′ · ∀p′

(
incrementsum(p,m, p′

,m
′) ⇒ CInv(p′

,m
′)
))

)∧

(b1 ̸= 1 ∧ b2 ̸= 1 ̸= b3 = 1) ⇒ (∀m · ∀p · CInv(m, p) ⇒(
drainpre(m, p) ∧ ∀m′ · ∀p′

(
drainsum(p,m, p′

,m
′) ⇒ ⊤

))
)

As outlined in Sec. 3.3, ToCHC(P) = φMain ∧ φCtor ∧ φReset ∧ φCap ∧ φIncr ∧ φDr . Next,
ToCHC(P) is strengthened by the predicate template Π0(CInv) to obtain CHCSynth(P, Π0) =
ToCHC(P)∧ (∀m · ∀p · ⊥ ⇒ CInv(m, p)). Clearly the term ⊥ ⇒ CInv(m, p) is trivially satis-
fied. This is because the predicate template Π0(CInv) is also trivial. In general, this need not
be the case. Nonetheless, the term ToCHC(P) is non-trivial. If ToCHC(P) is provided to a
CHC-solver, then the CHC-solver will return a solution σ containing the following components:
expressions σ(Counterpre), σ(Resetpre), σ(Capacitypre), σ(Incrementpre), and σ(Drainpre),
which over-approximate the inputs passed to each function; expressions σ(Countersum),
σ(Resetsum), σ(Capacitysum), σ(Incrementsum), and σ(Drainsum), which over-approximate
the return values of each function; an expression σ(loop13) which over-approximates the reach-
able states of the loop in drain; an expression σ(CInv) which describes a safe implementation
for CInv. In one solution, σ(loop13) = (p ≤ m ∧ (x ̸= 0⇒ 0 < p) ∧ (x = 0⇒ 0 = p)). This
states that the counter is always in a valid position, and in position zero if and only if the ca-
pacity returns to zero. In such a solution, it is also possible that σ(CInv) = (m > 0∧p ≤ m).
Clearly σ(CInv) is an F -solution since σ(CInv) is a conjunction of linear inequalities. Then
by Thm. 10, Π : CInv → (m > 0 ∧ p ≤ m) is a solution to (P, T , Π0) with P [Π] both closed
and safe. ◀

Like CHC-solving, the general IPS-MP problem is also undecidable. This is because
program verification reduces to IPS-MP. Intuitively, if a closed program P is given to an
IPS-MP solver, then a solution to the IPS-MP problem implies that P is correct, and a
witness to unrealizability implies that P is incorrect. In this way, the halting problem also
reduces to IPS-MP.

We show that IPS-MP is undecidable for linear integer arithmetic by reducing the halting
problem for 2-counter machines to IPS-MP. Recall that a 2-counter machine is a program
with a program counter and two integer variables [48]. The program has a finite number of
locations, each with one of four instructions: (1) inc(x) increases the variable x by 1 and
increment the program counter; (2) dec(x) decreases the variable x by 1 and increment the
program counter; (3) jump(x, i) goes to location i if x is 0, else increments the program
counter; (4) halt() halts execution of the program. The halting program for 2-counter
machines is known to be undecidable [48].

▶ Theorem 14. The IPS-MP problem is undecidable for linear integer arithmetic.

6 From Verification to Synthesis

This section establishes reductions of Sec. 2. Class invariant inference is proven directly. Array
abstraction and symmetric ring verification are subsumed by a reduction from parameterized
compositional model checking to IPS-MP. Loop invariant synthesis is proven in the extended
paper. We write Σ for a first-order signature, V for a set of variables, and Π⊥ for a collection
of predicate templates which maps each predicate to ⊥.

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:21

1 class Cls {
2 int x; int y;
3 Cls(int a) { ... }
4 void f(int a) { ... }
5 void g(int a, int b) { ... }}
6 void func(Cls ob, int a) { ... }

(a) The input program.

1 bool PRED_TEMPLATE Inv(int x, int y) {
2 return synth(x, y); }
3 void main(int br, int a, int b) {
4 if (br == 0) {
5 Cls ob = Cls(a);
6 assert(Inv(ob));
7 } else if (br == 1) {
8 Cls ob = *; assume(Inv(ob));
9 ob.f(a);

10 assert(Inv(ob));
11 } else if (br==2) {
12 Cls ob = *; assume(Inv(ob));
13 ob.g(a, b);
14 assert(Inv(ob));
15 } else if (br==3) {
16 Cls ob = *; assume(Inv(ob));
17 func(ob, a); }}

(b) The IPS-MP reduction.

Figure 10 A reduction from class invariant inference to IPS-MP.

6.1 Class Invariant Inference
A safe class invariant is a predicate that is true of a class instance after initialization, closed
under the execution of each impure class method, and sufficient to prove the correctness of a
function taking class instances as arguments [36]. Class invariant inference asks to find a
safe class invariant given a program. The inference problem is intensional if solutions are
in the same logical fragment as assertions in the programming language [50]. A definition
of (intensional) class invariant inference is found in Def. 15. In this definition, ToCHC(f)
relates the class invariant φ to a summary of each method f in P , and fpre is used to enforce
that f is summarized. For simplicity, a class has two fields and two impure methods, each
taking at most two arguments (Figure 10a). A generalization to m methods is not difficult.
A generalization to n arguments follows immediately.

▶ Definition 15. A class invariant inference problem is a tuple (P, T) such that P ∈
Progs(Σ,V) is an open program as in Figure 10a and T is a theory. A solution to (P, T) is
a φ ∈ QFFml(Σ, {x, y}) such that the following are T -satisfiable:

ψInit := ∀V
(
Clspre(a) ∧ Clssum(a, x, y) ⇒ φ

)
ψClose1 := ∀V

(
φ ∧ fsum(x, y, a, x′

, y
′) ⇒ φ

′
)

ψClose2 := ∀V
(
φ ∧ gsum(x, y, a, b, x′

, y
′) ⇒ φ

′
)

ψSuffic := ∀V
(
φ ⇒ funcsum(x, y, a)

)
ψSum := ToCHC(P) ∧ ∀V (φ ⇒ fpre(x, y, a) ∧ gpre(x, y, a, b) ∧ funcpre(x, y, a))

▶ Theorem 16. Let (P, T) be a class invariant inference problem and P ′ be the program
obtained by adding main in Figure 10b to P. Then Π is a solution to (P ′, Π⊥, T) if and only
if Π(Inv) is a solution to (P , T).

6.2 Reducing PCMC to IPS-MP
Parameterized compositional model checking (PCMC) is a framework to verify structures
with arbitrarily many components (e.g., an array with arbitrarily many cells, or a ring with
arbitrarily many processes) by decomposing the structure into smaller structures of fixed
sizes [49]. Intuitively, each of these smaller structures is a view of the larger structure from
the perspective of a single component. A proof of the larger structure is obtained by verifying
each of the smaller structures, and showing that their proofs compose with one another [49].
If the number of smaller structures is finite (i.e., most perspectives are similar), then PCMC
is applicable [49]. For example, in Sec. 2.3 and Sec. 2.4, the array and ring were highly
symmetric, and therefore, all perspectives were similar.

ECOOP 2024

43:22 Inductive Predicate Synthesis Modulo Programs

1 struct View { int l; int r; int s; };
2 // Transition relation.
3 View tr(View v) { ... }
4 // Initial state predicate.
5 bool init(int l, int s, int r) { ... }
6 // Correctness property.
7 bool property(View v) { ... }

(a) The input program.

1 bool PRED_TEMPLATE Inv(
2 int l, int s, int , r) {
3 if (init(l, s, r)) { return true; }
4 else { return synth(l, s, r); } }
5 void main(int br, struct View v) {
6 if (br == 0) {
7 int inf = *;
8 assume(Inv(v.left , v.st, v.right));
9 assume(Inv(v.right , inf , v.left));

10 v = tr(v);
11 assert(Inv(v.left , v.st, v.right));
12 assert(Inv(v.right , inf , v.left));
13 } else if (br == 1) {
14 assume(Inv(v.left , v.st, v.right));
15 assert(property(v)); }}

(b) The IPS-MP reduction.

Figure 11 A reduction from compositional ring invariant synthesis to IPS-MP. The state of each
process and resource are both assumed to be integer values.

Once the larger structure has been decomposed, the proof of compositionality follows
by inferring adequate compositional invariants for groups of similar components [49]. The
number of compositional invariants, and the properties they must satisfy, depend on the
decomposition. However, each property is one of initialization, closure, or non-interference.
An initialization property states that a compositional invariant is true for the initial state of
a component. A closure property states that a compositional invariant is closed under all
transitions of its components. A non-interference property states that for any component
c, if c satisfies its compositional invariant and an adjacent component (also satisfying its
compositional invariant) performs a transition, then c continues to satisfy its compositional
invariant after the transition. In addition, all composition invariants must be adequate in that
they imply the correctness of the larger structure. To make the rest of this section concrete,
we restrict ourselves to compositional ring invariants6. As in Sec. 6.1, the inference problem
is assumed to be intensional. A formal definition of (intensional) compositional invariant
inference is given in Def. 177. Note that in Def. 17 ToCHC relates the compositional invariant
φ to the summary of tr, trpre enforces that tr is summarized, and φInf := φ[l/r][s/i][r/l]
is the compositional invariant applied to a process (r, i, l).

▶ Definition 17. A compositional ring invariant (CRI) inference problem is a tuple (P, T)
such that P ∈ Progs(Σ,V) is an open program as in Figure 11a and T is a theory. A
solution to (P, T) is a φ ∈ QFFml(Σ, {l, s, r}) such that the following are T -satisfiable
given φInf := φ[l/r][s/i][r/l]:

ψInit := ∀V
(
init(l, s, r) ⇒ φ

)
ψClose := ∀V

(
φ ∧ φInf ∧ trsum(l, s, r, l′, s′

, r
′) ⇒ φ

′
)

ψAdeq := ∀V (φ ⇒ property(l, s, r)) ψInf := ∀V
(
φ ∧ φInf ∧ trsum(l, s, r, l′, s′

, r
′) ⇒ φInf

′
)

ψSum := ToCHC(P) ∧ ∀V · (φ ∧ φInf ⇒ trpre(l, s, r))

▶ Theorem 18. Let (P, T) be a CRI inference problem, P ′ be the program obtained by adding
main of Figure 11b to P, and Π0 be the predicate template from Figure 11b. Then Π is a
solution to (P ′, Π0, T) if and only if Π(Inv) is a solution to (P , T).

6 Sec. 2.3 is a degenerate case. In this ring, processes communicate through locks. In an array, cells do
not “communicate”.

7 In PCMC, a witness to unrealizability does not entail the incorrectness of a structure. Instead, no proof
of correctness exists relative to the chosen decomposition.

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:23

Table 1 Performance of various solvers on IPS-MP benchmarks.

Benchmarks IPS-MP (Spacer) IPS-MP (Eldarica) HornSpec CVC4

Type Safe Buggy Preds Size Time TO ✓ Time TO MEM ✓ Time UN ✓ TO N/A ✓

Loop 7 7 9 179 KB 4 0 14 45 0 0 14 4 12 2 7 7 0
Class 6 6 6 694 KB 2 0 12 1 449 0 0 12 — 12 0 6 6 0
Array 4 6 6 535 KB 4 0 10 230 0 0 10 — 10 0 4 6 0
Ring 2 3 2 197 KB 1 0 5 52 0 0 5 — 5 0 2 3 0
Proc 3 3 3 418 KB 2 0 6 4 0 0 6 — 6 0 3 3 0
SC 70 4 181 974 MB 6 878 4 70 6 717 53 12 9 — — — — — —

Total 92 29 207 975 MB 6 891 4 117 8 497 53 12 56 4 45 2 22 29 0

7 Implementation and Evaluation

We have implemented an IPS-MP solver within the SeaHorn verification framework.
SeaHorn takes as input a C program, and returns a CHC-based verification problem
in the SMT-LIB format according to Sec. 3.3 [31]. We extend SeaHorn to recognize
predicate templates. For each predicate, SeaHorn adds clauses to the verification conditions
according to Sec. 5.2. Proofs of unrealizability are generated with the implementation of [28]
found in SeaHorn. That is, proofs of unrealizability are already supported by SeaHorn.

The goal of our evaluation is to confirm that:
1. IPS-MP is practical for the reduction described in Sec. 6;
2. CHC-based solvers are more efficient than general synthesis solvers for IPS-MP instances;
3. The overhead incurred when using IPS-MP is tolerable.
Towards (1) and (2), we have collected 92 IPS-MP problems with linear integer arithmetic
as the background theory (see Safe in Tab. 1). Of these benchmarks, 7 reflect loop invariant
inference (and interpolation [47]), 6 reflect class invariant synthesis, 4 reflect array (and
memory) abstraction, 2 reflect ring PCMC, 3 reflect procedure summarization, and 70
reflect parameterized analysis of smart-contract (SC) programs (see [66, 67]). The first
20 benchmarks were collected from research papers in the area of software verification.
The remaining benchmarks, involving the parameterized analysis of SCs, were obtained by
extending SmartACE with support for IPS-MP. Of these 70 SC benchmarks, 62 are taken
from real-world examples used to manage monetary assets [52]. To address question (3),
we compare the performance of SmartACE with and without IPS-MP, relative to these
real-world examples. Note that the extension to SmartACE was a routine exercise, due
to the original design of SmartACE. In particular, SmartACE encodes all compositional
invariants as predicates returning true, to then be refined manually by an end-user [67].
These predicates appear in assume and assert statements, as described in Sec. 2.4. Our
extended version of SmartACE can replace these predicates with predicate templates,
yielding valid IPS-MP problems.

A summary of all benchmarks can be found in Tab. 1. As reflected by their size (see Size
in Tab. 1) and total number of unknown predicates across all realizable instances (see Preds
in Tab. 1), SCs are included to evaluate IPS-MP on large programs. When possible,
benchmarks are drawn from prior works in program analysis (i.e., [39, 45, 58, 52]). To reflect
unrealizability in IPS-MP, 29 faults have been injected in these benchmarks (see Buggy
in Tab. 1). Further information can be found about the realizable real-world SC’s in Tab. 2.
Each SC in this table is associated with one or more safety properties (see Props in Tab. 2),
which in turn, corresponds to a realizable IPS-MP instance. As before, Preds and Size
indicate the total predicate count and size for these instances. All benchmarks are available
at https://doi.org/10.5281/zenodo.5083785.

ECOOP 2024

https://doi.org/10.5281/zenodo.5083785

43:24 Inductive Predicate Synthesis Modulo Programs

Table 2 Overhead of integrating IPS-MP-solving with SmartACE.

Contracts Performance (Time)

Name Props Preds Size ✓ VerX [52] SmartACE (Manual) [66] SmartACE (IPS-MP)

Alchemist 3 12 36 MB 3 29 7 208
Brickblock 6 12 122 MB 6 191 13 1214
Crowdsale 9 27 76 MB 9 261 223 238
ERC20 9 27 45 MB 9 158 12 103
Melon 16 32 149 MB 16 408 30 979
PolicyPal 4 16 123 MB 4 20 773 26 3118
VUToken 5 22 319 MB 1 715 19 17
Zebi 5 14 45 MB 5 77 8 487
Zilliqa 5 10 54 MB 5 94 8 501

Total 62 172 969 MB 58 22 706 346 5685

To evaluate IPS-MP, we find the number of benchmarks that are solved by either of two
state-of-the-art CHC solvers: Eldarica [34] and Spacer [42]. To compare CHC solvers
to general synthesis tools, we provide our benchmarks to a state-of-the-art specification
synthesizer, HornSpec [53], and a state-of-the-art SyGuS solver, CVC48 [11]. Since CVC4
solves SyGuS instances, which do not support proofs on unrealizability, then we only evaluate
CVC4 on realizable benchmarks (see N/A in Tab. 1). Due to the size of each SC benchmark,
we only ran the tools that could solve Loop through to Proc on these benchmarks. The
results for each tool are reported in Tab. 1, where TO is the number of timeouts (after
30 minutes), MEM is the number of failures due to memory limits, UN is the number of
benchmarks for which a tool returned unknown, ✓ is the number of benchmarks solved, and
Time is the total time (in seconds) to find all solutions in a given set. In Tab. 2, the total
time for Spacer is further broken down by SC (see SmartACE (IPS-MP) in Tab. 2). For
comparison, the verification times for VerX (an automated SC verifier with user-guided
predicate abstraction [52]) and the original version of SmartACE (see SmartACE (Manual)
in Tab. 2) are also provided. All evaluations were run on an Intel® Core i7® CPU @ 1.8GHz
8-core machine with 16GB of RAM running Ubuntu 20.04.

From this evaluation, we answer questions (1) through to (3) in the positive.
1. As illustrated by Tab. 1, many examples of class invariant inference and compositional

invariant inference (i.e., Class, Array, Ring, and SC) taken from the literature could
be encoded using IPS-MP. In the case of SC, the generation of IPS-MP instances could
be fully-automated using a modified version of SmartACE. We conclude that IPS-MP
is practical for the reductions described in Sec. 6.

2. As shown in Tab. 1, all small benchmarks were solved by Eldarica and Spacer, with
average times under a minute. Furthermore, all but four SC benchmarks were solved by
Spacer within a 30-minute timeout, with an average time of 96 seconds. Upon closer
inspection, we found that Spacer would fail to solve these four examples, and would
return unknown after approximately one hour. However, CVC4 failed to solve any SC
benchmarks within 30-minutes. Therefore, we conclude that CHC-based IPS-MP-solving
is effective for the reductions of Sec. 6, and can outperform general synthesis solutions.
We note that HornSpec returned unknown on all but two benchmarks9.

8 To support CVC4, we convert each realizable problem from SMT-LIB format to the SyGuS input
language.

9 The authors of HornSpec confirm this result though the cause is unknown.

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:25

3. As shown in Tab. 2, the IPS-MP version of SmartACE incurred an average time overhead
of 18x as compared to the manual version of SmartACE. This should come as no surprise,
since the manual version of SmartACE achieved a verification time of under 3 seconds
for 44 of the 62 properties with the help of user-provided compositional invariants. In
these cases, a solving time as low as 60 seconds would correspond to an overhead of
at least 20x. To better contextualize this overhead, we compare the verification time
of IPS-MP version of SmartACE to the verification time of VerX. We first note the
outlying case of PolicyPal, in which the IPS-MP version of SmartACE achieves a
speedup of over 6x. For the remaining SC’s, the IPS-MP version of SmartACE fell
within 1.3x of VerX on average. Since VerX is a specialized tool with less automation
than the IPS-MP version of SmartACE, we conclude that the overhead incurred by
IPS-MP is tolerable in this particular real-world application. We note that in [52], only
the “average” times were reported for VerX. It is unclear whether this is the average
time to verify all properties, or an average across all properties. The authors of VerX
were contacted, but were unable to provide the original data. For this reason, we assume
conservatively that all times reported by VerX are total.

One limitation of the evaluation is its emphasis on SC verification. However, compositional
SC verification is representative of compositional verification, as illustrated in [66]. We do
acknowledge that design patterns specific to SC development might bias the benchmark set.
We hope for this benchmark set to be expanded in future work.

Note, however, that we do not plan to benchmark our IPS-MP solver against invariant
synthesis tools. Recall that our implementation simply extends SeaHorn with support for the
IPS-MP synthesis language. In cases where the IPS-MP instance reduces to invariant synthesis,
our extension is bypassed, and verification reduces to executing SeaHorn. Therefore, a
direct comparison is not possible, and the evaluation results would not be meaningful.
Furthermore, SeaHorn is a state-of-the-art program verifier with prior success in SV-COMP.
Thus, SeaHorn is already known to perform well on invariant synthesis tasks.

An important direction for future work is to understand why CVC4 times out on all
benchmarks. We hypothesize that the lack of a grammar in IPS-MP proves challenging for
CVC4’s enumerative search. We also note that many of our benchmarks produce non-linear
CHC’s, whereas the invariant synthesis track for SyGuS reduces to solving linear CHC’s.

8 Related Work

General program synthesis. As explained in Sec. 1, general synthesis engines (e.g.,
Sketch [61], Rosette [63], SyGuS [5], and SemGuS [41]) are fundamentally different from
IPS-MP. Among these frameworks, only SemGuS can both solve synthesis problems and
prove unrealizability. Similar to IPS-MP, SemGuS reduces the synthesis problem to satis-
fiability of CHCs. However, this is where the similarities end. SemGuS reduces synthesis
to unsatisfiability and extracts solutions from the refutation proofs. In contrast, IPS-MP
reduces to satisfiability and solutions are extracted from model of the CHCs. SemGuS
solves a more general problem, which comes at a high price both from a theoretical and
practical perspective. We show that IPS-MP modulo Boolean programs can be solved in
polynomial time (in the number of states), while SemGuS lacks this guarantee. Existing
SemGuS solvers (e.g., Messy [41]) synthesize programs from sets of candidates described
using regular tree grammars. As a result, their CHCs use constraints over Algebraic Data
Types to represent the grammar terms, which are harder to solve than either Boolean or
linear arithmetic constraints. Only Sketch and Rosette are “modulo programs”, but do not
allow loops nor recursion.

ECOOP 2024

43:26 Inductive Predicate Synthesis Modulo Programs

Specification synthesis. Specification synthesis solves the problem of finding specifications
for unknown procedures which enable the verification of a given program (e.g., [21, 2, 53]).
Unlike IPS-MP, specification synthesis is under-specified. Trivial specifications such as false
are often sufficient but undesirable. As a consequence, many tools aim to synthesize either
weakest (i.e., maximal) or non-vacuous solutions. In IPS-MP, any solution is valid as long
as it satisfies all program assertions. In Sec. 7, we also compare our IPS-MP solver with
HornSpec [53] and demonstrate that HornSpec is unsuitable for IPS-MP.

Data-driven invariant generation. Multiple approaches have been proposed (e.g., [27, 71,
59, 69, 57, 35]) that rephrase loop invariant synthesis as a learning problem. Recent work
has extended these techniques to parameterized verification [70]. Often, these techniques
require problem-specific biases to learn useful invariants (e.g., [59, 69, 57, 70]). Furthermore,
these techniques lack the complexity bounds of decidable verification. In contrast, IPS-MP
is problem-agnostic, and achieves the same complexity as verification in the Boolean case.
Adapting data-driven techniques to IPS-MP-solving is an interesting future direction.

Constrained Horn clauses. In recent years, CHC-solvers have become a common tool for
verification and synthesis problems. Example include SeaHorn [31], SemGuS [41], and
HornSpec [53]. The connection between CHCs and verification has long been explored in
the CLP community (e.g., [38, 51, 22]). This direction was popularized again by the work of
Rybalchenko et al. [30]. According to the annual CHC-COMP competition10, Spacer [42]
and Eldarica [34] are the most effective general-purpose CHC-solvers.

9 Conclusion

We proposed IPS-MP, a novel synthesis problem suitable for solving a wide range of verific-
ation problems, such as invariant inference and verification of parameterized systems. To
demonstrate the relevance of IPS-MP, we provided three reductions from classic verification
problems to IPS-MP. To highlight IPS-MP’s practicality, we proposed a solution that effect-
ively leverages off-the-shelf CHC solvers and implemented it in the SeaHorn verification
framework. Our evaluation demonstrates the effectiveness of CHC solvers in solving IPS-MP
when compared with general synthesis tools such as HornSpec and CVC4.

Finally, we demonstrated that the interesting instance of IPS-MP for Boolean programs
is efficiently decidable, whereas the general instance is undecidable. Despite this, the general
instance of IPS-MP is theoretically simpler than general synthesis, and thus, warrants
specialized solvers. In future work, we plan to study other instances of IPS-MP, such as
IPS modulo timed automata. We further suspect that IPS-MP will enable new practical
applications of PCMC.

References
1 Aneesh Aggarwal and Keith H. Randall. Related field analysis. In PLDI, pages 214–220. ACM,

2001.
2 Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. Maximal specification synthesis. In POPL,

pages 789–801. ACM, 2016.

10 https://chc-comp.github.io.

https://chc-comp.github.io

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:27

3 Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. Ufo: A framework for
abstraction- and interpolation-based software verification. In CAV, volume 7358 of LNCS,
pages 672–678. Springer Berlin Heidelberg, 2012.

4 Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez, and Albert Rubio.
SAFEVM: a safety verifier for Ethereum smart contracts. In ISSTA, pages 386–389. ACM,
2019.

5 Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal, Hadas
Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund Raghothaman, Shambwaditya Saha,
Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
Syntax-guided synthesis. In Maximilian Irlbeck, Doron A. Peled, and Alexander Pretschner,
editors, Dependable Software Systems Engineering, volume 40 of NATO Science for Peace and
Security Series, D: Information and Communication Security, pages 1–25. IOS Press, 2015.

6 Rajeev Alur, Ahmed Bouajjani, and Javier Esparza. Model checking procedural programs.
In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors,
Handbook of Model Checking, pages 541–572. Springer Cham, 2018.

7 Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. SyGuS-Comp 2016:
Results and analysis. In SYNT@CAV, volume 229 of EPTCS, pages 178–202, 2016.

8 Thomas Ball and Sriram K. Rajamani. Bebop: A path-sensitive interprocedural dataflow
engine. In PASTE, pages 97–103. ACM, 2001.

9 Jiri Barnat, Lubos Brim, Milan Češka, and Petr Ročkai. DiVinE: Parallel distributed model
checker. In PDMC–HIBI, pages 4–7. IEEE, 2010.

10 Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In FMCO, volume 4111 of
LNCS, pages 364–387. Springer Berlin Heidelberg, 2005.

11 Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In CAV, volume 6806 of LNCS,
pages 171–177. Springer Berlin Heidelberg, 2011.

12 Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 305–343. Springer Cham, 2018.

13 Sahil Bhatia, Sumer Kohli, Sanjit A. Seshia, and Alvin Cheung. Building code transpilers for
domain-specific languages using program synthesis. In ECOOP, volume 263 of LIPIcs, pages
38:1–38:30. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

14 Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko. Horn clause
solvers for program verification. In Fields of Logic and Computation II, volume 9300 of LNCS,
pages 24–51. Springer Berlin Heidelberg, 2015.

15 Roderick Bloem, Swen Jacobs, and Yakir Vizel. Efficient information-flow verification under
speculative execution. In ATVA, pages 499–514. Springer Cham, 2019.

16 James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. Optimizing synthesis with
Metasketches. In POPL, pages 775–788. ACM, 2016.

17 Sagar Chaki and Arie Gurfinkel. BDD-based symbolic model checking. In Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 219–245. Springer Cham, 2018.

18 Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul Tripathi.
EzPC: Programmable and efficient secure two-party computation for machine learning. In
EuroS&P, pages 496–511. IEEE, 2019.

19 K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1989.

20 Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric segmentation functor
for fully automatic and scalable array content analysis. In POPL, pages 105–118. ACM, 2011.

ECOOP 2024

43:28 Inductive Predicate Synthesis Modulo Programs

21 Ankush Das, Shuvendu K. Lahiri, Akash Lal, and Yi Li. Angelic verification: Precise
verification modulo unknowns. In CAV, volume 9206 of LNCS, pages 324–342. Springer Berlin
Heidelberg, 2015.

22 Giorgio Delzanno and Andreas Podelski. Model checking in CLP. In TACAS, volume 1579 of
LNCS, pages 223–239. Springer Berlin Heidelberg, 1999.

23 Edsger Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18(8):453–457, 1975.

24 Michael D. Ernst. Dynamically Discovering Likely Program Invariants. PhD thesis, University
of Washington, USA, 2002.

25 Grigory Fedyukovich, Samuel J. Kaufman, and Rastislav Bodík. Sampling invariants from
frequency distributions. In FMCAD, pages 100–107. IEEE, 2017.

26 Jean-Christophe Filliâtre and Andrei Paskevich. Why3—Where programs meet provers. In
ESOP, volume 7792 of LNCS, pages 125–128. Springer Berlin Heidelberg, 2013.

27 Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. ICE: A robust framework
for learning invariants. In CAV, volume 8559 of LNCS, pages 69–87. Springer Berlin Heidelberg,
2014.

28 Jeffrey Gennari, Arie Gurfinkel, Temesghen Kahsai, Jorge A. Navas, and Edward J. Schwartz.
Executable counterexamples in software model checking. In VSTTE, volume 11294 of LNCS,
pages 17–37. Springer, 2018.

29 Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. A framework for numeric analysis of array
operations. In POPL, pages 338–350. ACM, 2005.

30 Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko. Synthes-
izing software verifiers from proof rules. In PLDI, pages 405–416. ACM, 2012.

31 Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. The SeaHorn
verification framework. In CAV, volume 9206 of LNCS, pages 343–361. Springer Berlin
Heidelberg, 2015.

32 Arie Gurfinkel and Jorge A. Navas. Abstract interpretation of LLVM with a region-based
memory model. In Roderick Bloem, Rayna Dimitrova, Chuchu Fan, and Natasha Sharygina,
editors, Software Verification, volume 13124 of LNCS, pages 122–144. Springer, 2022.

33 Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in simple programs.
In PLDI, pages 339–348. ACM, 2008.

34 Hossein Hojjat and Philipp Rümmer. The ELDARICA Horn solver. In FMCAD, pages 1–7.
IEEE, 2018.

35 Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang. Reconciling enumerative
and deductive program synthesis. In PLDI, pages 1159–1174. ACM, 2020.

36 Kees Huizing and Ruurd Kuiper. Verification of object oriented programs using class invariants.
In FASE, volume 1783 of LNCS, pages 208–221. Springer Berlin Heidelberg, 2000.

37 Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In POPL, pages 111–119.
ACM, 1987.

38 Joxan Jaffar, Andrew E. Santosa, and Razvan Voicu. A CLP proof method for timed automata.
In RTSS, pages 175–186. IEEE Computer Society, 2004.

39 Temesghen Kahsai, Rody Kersten, Philipp Rümmer, and Martin Schäf. Quantified heap
invariants for object-oriented programs. In LPAR, volume 46 of EPiC Series in Computing,
pages 368–384. EasyChair, 2017.

40 Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS: analyzing safety of
smart contracts. In NDSS. The Internet Society, 2018.

41 Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas W. Reps. Semantics-Guided
Synthesis. Proc. ACM Program. Lang., 5(POPL):1–32, 2021.

42 Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. SMT-based model checking for recursive
programs. In CAV, volume 8559 of LNCS, pages 17–34. Springer Berlin Heidelberg, 2014.

43 Jakub Kuderski, Jorge A. Navas, and Arie Gurfinkel. Unification-based pointer analysis
without oversharing. In FMCAD, pages 37–45. IEEE, 2019.

S. Wesley, M. Christakis, J. A. Navas, R. Trefler, V. Wüstholz, and A. Gurfinkel 43:29

44 Jérôme Leroux, Philipp Rümmer, and Pavle Subotic. Guiding Craig interpolation with
domain-specific abstractions. Acta Informatica, 53(4):387–424, 2016.

45 Francesco Logozzo. Automatic inference of class invariants. In VMCAI, volume 2937 of LNCS,
pages 211–222. Springer Berlin Heidelberg, 2004.

46 Sirui Lu and Rastislav Bodík. Grisette: Symbolic compilation as a functional programming
library. Proc. ACM Program. Lang., 7(POPL), 2023.

47 Kenneth McMillan. Interpolation and SAT-based model checking. In CAV, volume 2725 of
LNCS, pages 1–13. Springer Berlin Heidelberg, 2003.

48 Marvin Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
49 Kedar S. Namjoshi and Richard J. Trefler. Parameterized compositional model checking. In

TACAS, volume 9636 of LNCS, pages 589–606. Springer Berlin Heidelberg, 2016.
50 Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An Appetizer.

Undergraduate Topics in Computer Science. Springer, 2007.
51 Julio C. Peralta, John P. Gallagher, and Hüseyin Saglam. Analysis of imperative programs

through analysis of constraint logic programs. In SAS, volume 1503 of LNCS, pages 246–261.
Springer Berlin Heidelberg, 1998.

52 Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and Martin
Vechev. VerX: Safety verification of smart contracts. In S&P, pages 1661–1677. IEEE, 2020.

53 Sumanth Prabhu, Grigory Fedyukovich, Kumar Madhukar, and Deepak D’Souza. Specification
synthesis with constrained Horn clauses. In PLDI, pages 1203–1217. ACM, 2021.

54 Zvonimir Rakamarić and Michael Emmi. SMACK: Decoupling source language details from
verifier implementations. In CAV, volume 8559 of LNCS, pages 106–113. Springer Cham, 2014.

55 Dan Rasin, Orna Grumberg, and Sharon Shoham. Modular verification of concurrent programs
via sequential model checking. In ATVA, pages 228–247. Springer Cham, 2018.

56 Heinz Riener and Görschwin Fey. FAuST: A framework for formal verification, automated
debugging, and software test generation. In SPIN, volume 13872 of LNCS, pages 234–240.
Springer Berlin Heidelberg, 2012.

57 Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman Jana. CLN2INV: learning
loop invariants with continuous logic networks. In ICLR. OpenReview.net, 2020.

58 Malte Hermann Schwerhoff. Advancing Automated, Permission-Based Program Verification
Using Symbolic Execution. PhD thesis, ETH Zurich, Switzerland, 2016.

59 Xujie Si, Aaditya Naik, Hanjun Dai, Mayur Naik, and Le Song. Code2Inv: A deep learning
framework for program verification. In CAV, volume 12225 of LNCS, pages 151–164. Springer
Berlin Heidelberg, 2020.

60 Carsten Sinz, Stephan Falke, and Florian Merz. A precise memory model for low-level bounded
model checking. In SSV, page 7, USA, 2010. USENIX Association.

61 Armando Solar-Lezama. Program sketching. Int. J. Softw. Tools Technol. Transf., 15(5-6):475–
495, 2013.

62 Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. Sketching concurrent
data structures. In PLDI, pages 136–148. ACM, 2008.

63 Emina Torlak and Rastislav Bodík. A lightweight symbolic virtual machine for solver-aided
host languages. In PLDI, pages 530–541. ACM, 2014.

64 Moshe Y. Vardi. From verification to synthesis. In VSTTE, volume 5295 of LNCS, page 2.
Springer Berlin Heidelberg, 2008.

65 Hari Govind VK, Yuting Chen, Sharon Shoham, and Arie Gurfinkel. Global guidance for
local generalization in model checking. In Shuvendu K. Lahiri and Chao Wang, editors, CAV,
volume 12225 of LNCS, pages 101–125. Springer Berlin Heidelberg, 2020.

66 Scott Wesley, Maria Christakis, Jorge A. Navas, Richard Trefler, Valentin Wüstholz, and Arie
Gurfinkel. Compositional verification of smart contracts through communication abstraction.
In Static Analysis, volume 12913 of LNCS, pages 429–452. Springer Berlin Heidelberg, 2021.

ECOOP 2024

43:30 Inductive Predicate Synthesis Modulo Programs

67 Scott Wesley, Maria Christakis, Jorge A. Navas, Richard Trefler, Valentin Wüstholz, and Arie
Gurfinkel. Verifying Solidity smart contracts via communication abstraction in SmartACE. In
VMCAI, pages 425–449. Springer Cham, 2022.

68 Scott Wesley, Maria Christakis, Jorge A. Navas, Richard Trefler, Valentin Wüstholz, and Arie
Gurfinkel. Inductive predicate synthesis modulo programs (extended), 2024.

69 Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. Learning nonlinear
loop invariants with gated continuous logic networks. In PLDI, pages 106–120. ACM, 2020.

70 Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan. DistAI:
Data-driven automated invariant learning for distributed protocols. In OSDI, pages 405–421.
USENIX Association, 2021.

71 He Zhu, Stephen Magill, and Suresh Jagannathan. A data-driven CHC solver. In PLDI, pages
707–721. ACM, 2018.

Type Tailoring
Ashton Wiersdorf # Ñ

University of Utah, Salt Lake City, UT, USA

Stephen Chang # Ñ

University of Massachusetts Boston, MA, USA

Matthias Felleisen # Ñ

Northeastern University, Boston, MA, USA

Ben Greenman # Ñ

University of Utah, Salt Lake City, UT, USA

Abstract
Type systems evolve too slowly to keep up with the quick evolution of libraries – especially libraries
that introduce abstractions. Type tailoring offers a lightweight solution by equipping the core
language with an API for modifying the elaboration of surface code into the internal language of
the typechecker. Through user-programmable elaboration, tailoring rules appear to improve the
precision and expressiveness of the underlying type system. Furthermore, type tailoring cooperates
with the host type system by expanding to code that the host then typechecks. In the context of a
hygienic metaprogramming system, tailoring rules can even harmoniously compose with one another.

Type tailoring has emerged as a theme across several languages and metaprogramming systems,
but never with direct support and rarely in the same shape twice. For example, both OCaml
and Typed Racket enable forms of tailoring, but in quite different ways. This paper identifies
key dimensions of type tailoring systems and tradeoffs along each dimension. It demonstrates the
usefulness of tailoring with examples that cover sized vectors, database queries, and optional types.
Finally, it outlines a vision for future research at the intersection of types and metaprogramming.

2012 ACM Subject Classification Software and its engineering → Extensible languages

Keywords and phrases Types, Metaprogramming, Macros, Partial Evaluation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.44

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.24
Software (Artifact): https://doi.org/10.5281/zenodo.12726060 [108]

Funding This work was partially supported by DOE Office of Science Contract DE-SC0022252,
XStack, ComPort, “Rigorous Testing Methods to Safeguard Software Porting” and by NSF grants
SHF 1518844, CCF 2217154, and CCF/CSE 2030859 to the CRA for the CIFellows project. Felleisen’s
research was partially supported by several NSF grants (SHF 2007686, 2116372, 2315884).

Acknowledgements Thanks to Sam Tobin-Hochstadt for inspiring tailoring in Typed Racket, to
Mark Ericksen for teaching best practices of Phoenix Verified Routes, to Ryan Culpepper for syntax
parse support, to Matthew Flatt for help with Rhombus annotations, and to Alex Knauth, Asumu
Takikawa, Gabriel Scherer, Justin Slepak, Leif Andersen, Scott Wiersdorf, and Zeina Migeed for
comments on early drafts.

1 Type Tailoring Helps Programmers

Every typed language should come with a type tailoring toolkit to let programmers system-
atically rewrite code before it reaches the typechecker. Tailoring is essential for keeping up
with libraries, domain specific languages, and even built-in embedded languages. Consider

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 44; pp. 44:1–44:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:research@wiersdorfmail.net
https://lambdaland.org/
https://orcid.org/0000-0001-5524-7930
mailto:stephen.chang@umb.edu
https://www.cs.umb.edu/~stchang/
https://orcid.org/0000-0002-4760-0658
mailto:matthias@ccs.neu.edu
https://www.khoury.northeastern.edu/home/matthias/
https://orcid.org/0000-0001-6678-1004
mailto:benjaminlgreenman@gmail.com
https://cs.utah.edu/~blg
https://orcid.org/0000-0001-7078-9287
https://doi.org/10.4230/LIPIcs.ECOOP.2024.44
https://doi.org/10.4230/DARTS.10.2.24
https://doi.org/10.4230/DARTS.10.2.24
https://doi.org/10.5281/zenodo.12726060
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1518844
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2217154
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2030859
https://cifellows2020.org
https://doi.org/10.4230/DARTS.10.2.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Type Tailoring

regular expressions, which are often embedded in strings. The following example builds a
regular expression that matches and extracts a two-digit number from a username. Without
tailoring, the Typed Racket typechecker rejects this program:

(define dig -pat "[0 -9]") Language: Typed Racket
(define two -digs (string - append dig -pat dig -pat))

(define (user -idnum (username : String)) : Number
(define full -pat (string - append "(" two -digs ")"))
(define m (regexp -match full -pat username))
(if m

(string -> number (second m))
(error "bad username ")))

(user -idnum " dent42 ")

Without Tailoring
Type error: second

argument: (Listof (Option String))
expected result: String

With Tailoring
Success: 42

Programmers fluent in regular expressions know that a call to user-idnum returns a
number when regexp-match succeeds; otherwise, user-idnum raises an error. A standard type
system knows much less because it ignores the values of strings: it does not know that the
first capture group (second m) must exist when the match succeeds, and it does not know
that the call to string->number must also succeed. To resolve these issues, the typechecker
requires explicit checks and casts. Type tailoring can insert sufficient casts automatically by
analyzing the regular expression string and transforming the program, thereby convincing
the typechecker that the code is safe. For programmers, the net result is that the code above
just works – without the clutter of casts, and without the need to migrate to an alternative
regular expression syntax [58, 95, 107].

Type tailoring improves type analysis by observing and propagating static information.
First, a tailoring for regular expressions observes the structure of the pattern string and finds
that it has balanced parentheses that enclose a two-digit pattern:

(define full -pat
(string - append "(" two -digs ") "))

Tailoring sees: full-pat is a literal:
"([0-9][0-9])".

If the string were not available for static analysis there would be nothing to observe:
(define hidden -pat (read -line)) Tailoring sees: hidden-pat is a string.

Second, tailoring propagates information about the pattern string from where it is defined
to where it is used. Since this example is implemented in Typed Racket, it uses Racket syntax
properties to store and retrieve metadata; other languages use similar mechanisms (Section 3).
At the regexp-match call, this static information implies that the result of a successful match
must be a specific list value:

(regexp -match full -pat username)

Tailoring sees: since full-pat has one
capture group, the match returns either
#false or a list of two strings, the second
of which consists of two digits.

Third, tailoring elaborates (rewrites) the regexp-match call to cast a successful match
result, thereby communicating the structure of the result value to the typechecker. Similarly,
tailoring can elaborate the access (second m) to a faster, unsafe memory access because it is
sure to be in bounds when the match succeeds:

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:3

(if m (second m) ...)
⇝ (if m (unsafe -ref m 1) ...)

Tailoring sees: since m is a list in this
branch, it has two strings.

Information about the extracted string flows into a tailoring for string->number and justifies
a final cast to convince the typechecker that the result must be number.

(string -> number •)
⇝ (cast (string -> number •) Number)

Tailoring sees: the cast cannot fail be-
cause • evaluates to a two-digit string.

Stepping back from this example, the overall message is that incorporating a bit of
partial evaluation, flow analysis, and metaprogramming into the front end of a conventional
typechecker is an effective way to support domain-specific typing for embedded languages.
Type tailorings can compose with one another and can enhance an entire module with a
few changes to its preamble (e.g. by importing a tailored regular expression library) rather
than whole-program edits. There is of course a risk that arbitrary tailorings can perform
unexpected or unsafe elaborations, but we show in Section 5 how the authors of tailorings can
mitigate these concerns by appealing to baseline program behavior and static information.

Contributions

Type tailoring has appeared in many contexts, but never as an officially-supported language
feature. This paper analyzes the spectrum of type tailoring across languages and libraries,
identifies the linguistic features that make tailoring work, and establishes a framework
for future research to push the boundaries of end-user programmable type elaboration.
Concretely, the paper makes the following contributions:

it proposes type tailoring as an overarching concept in user-level metaprogramming that
should be recognized and more-widely adopted;
it demonstrates the usefulness of tailoring with a variety of examples using Typed Racket,
Rhombus, Julia, and Elixir (Section 2);
it analyzes tailoring systems along six technical dimensions (Section 3), thereby revealing
three notable points in the language design space (Section 4); and
it provides a recipe for reasoning about the behavior of tailorings and establishing the
validity of their transformations (Section 5).

The paper concludes with related work (Section 6), future work (Section 7), and take-
aways (Section 8).

2 Tailoring in Action

To illustrate the variety of type tailoring, this section presents five examples in four languages:
a tailoring framework and type programming in Typed Racket [102], dynamic typing in Static
Rhombus [33], sized arrays in Julia [7], and statically-checked web routes in Elixir [28]. Each
example contributes a unique perspective to showcase the range of type tailoring applications.
Typed Racket supports a family of related tailorings, Rhombus weakens types instead of
strengthening them, Julia achieves order-of-magnitude performance improvements, and Elixir
shows how tailoring can benefit an untyped language.

2.1 Refining Data in Typed Racket
Typed Racket enables type tailoring by exposing key pieces of Racket’s macro API and by
typechecking code after macro expansion [21, 104]. Macros can thus inspect and transform
code to manipulate what the typechecker sees. The trivial library [40, 41] uses this API to
tailor a variety of domains from printf strings to SQL queries and beyond.

ECOOP 2024

44:4 Type Tailoring

Format Strings

For printf, tailoring uncovers static information from escape characters in format strings.
This tailoring stores information in a dictionary, mapping the key fmt-args to the expected
types of the remaining arguments of printf. (Through the use of a key-value store, multiple
tailorings can work together, as we will see later in this section.)

(require trivial) Typed Racket

(define fmt1 "hello ~a\n")
(define fmt2 "int to bin: ~b\n")

::
{

fmt-args : [any]
}

::
{

fmt-args : [Integer]
}

Calls to printf statically check whether their first argument has format information. When
this information is present, the tailoring checks the number and type of other arguments and
raises an error at compile time if there is a mismatch. Without tailoring, such checks do not
happen until runtime:

(printf fmt1 "world ") Typed Racket
(printf fmt1 "john" " hancock ")
(printf fmt2 "NaN ")

Without Tailoring
Runtime errors: printf
- [fmt1] expected 1 argument, given 2
- [fmt2] expected an integer, given

something else

With Tailoring
Tailoring errors:
- [fmt1] expected 1 argument, given 2
- [fmt2] expected Integer, given

String

Query Strings

For SQL queries, two sources of information come together to provide static checks via
tailoring: database schemas and query strings. Programmers must write the schemas as type
annotations in a notation specified by the SQL tailoring. Query strings use conventional SQL
syntax to access the database. The tailoring parses query strings to reveal type constraints.

In the following example, the schema argument states that the database has one table
named Cats with three columns for an identifier, pet name, and breed. Tailoring elaborates
the query-row call to validate argument types. Without tailoring, the database executes the
nonsensical query and returns an empty result:

(define db Typed Racket
(sqlite3 - connect #: user "user"

#: database "Pets"
#: schema [Cats

[(id : Integer)
(name : String)
(breed : String)]]))

(query -row db
" SELECT breed FROM Cats

WHERE name = ?"
69105)

Without Tailoring
Runtime error: query-row

query returned zero rows

With Tailoring
Tailoring error:

expected String, given Integer

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:5

This tailoring additionally propagates information about the result of a query. When
a query selects only the breed column, the result is a vector with only one string value:
(query -row db Typed Racket

" SELECT breed FROM Cats
WHERE name = ?"

" mittens ")
::

{
type : (Vector String)

}
While the regexp-match example from Section 1 and the printf example from this section

improve code with no effort from users, the SQL tailoring cannot act without a schema as
input. But, since the tailoring works through surface syntax, it can get this input in an
idiomatic way without being constrained by the typechecker or host language. In particular,
tailoring adds support for the #:schema argument by parsing the schema and elaborating to a
plain sqlite3-connect call with only two keyword arguments.

Cooperating Tailorings

Static information embedded in strings can be useful in domains beyond printf, database
queries, and regular expressions. By storing domain-specific information in a dictionary and
using uniquely generated keys (Section 3.4), different tailorings can annotate the same value.
For example, the following string has at least three interesting properties:
(define str Typed Racket

"(SELECT breed FROM Cats)") ::

rx-groups : 1
db : [SELECT (breed) Cats]
string-len : 24

Of course, strings are not the only data structure that get repurposed in domain-specific

ways. Vectors, lists, functions, and numbers also benefit from tailoring:
(define buffer Typed Racket

(make - vector (expt 2 5)))

(define (swap ab)
(list (second ab) (first ab)))

(define pairs ’((1 2) (3 4)))
(map swap pairs)

::
{

vector-len : 32
}

::
{

fn-arity : 1
}

::
{

list-len : 2
}

::
{

list-len : 2
}

In all cases, there is a general recipe at hand:
Static information originates in surface syntax, such as the characters in a string literal or
the shape of a function declaration. Information can also come from an external source,
such as a database schema or online API specification.
When static information is present, type tailoring attaches it to variables and propagates
it through operations such as map and regexp-match.
Tailoring elaborates surface syntax to code that the host typechecker can understand.

Defining a new tailoring requires three steps. First, define a unique key (e.g. via gensym).
Second, create tailored variants of constructors that identify and attach static information.
Third, create wrapper macros (i.e., compile-time functions) around various operations to
leverage static information when it is present and otherwise preserve the default behavior.

Evaluation: Typing Regular Expressions

Regular expression tailoring comes with immediate benefits for typed code because, by
default, programmers must use casts to guard against match failures even when such failures
obviously cannot occur. In Typed Racket, the need for casts arises from the conservative

ECOOP 2024

44:6 Type Tailoring

type of regexp-match results, which says that all match results are either #false or lists with
one string element and an unknown number of additional elements that are either strings or
#false. This type is always correct but usually too imprecise to be useful:

(regexp -match full -pat username) Typed Racket
: (Option (Pairof String (Listof (Option String))))

Searching the Racket 6.5 distribution and code on its package server revealed 160 files
using regexp-match with capture groups. Migrating the files to use type tailoring obviated the
need for casts in 116 originally-untyped files and 6 typed files. These improvements resolved
a total of 329 false type errors (that Typed Racket would have reported) across 93 % of all
regexp-match occurrences in the dataset [108].

Only 38 files were not improved by tailoring. Most of these files (20 of 38) extracted
a capture group, but did not depend on the result being a string. The others either used
non-constant pattern strings (5 files), used helper functions to assemble patterns (9 files), or
used patterns with groups that may indeed fail to capture – such as "(a)|(b)" (4 files).

Evaluation: Predicting Vector Bounds

Racket library code occasionally employs fixed-size vectors. For example, the built-in gzip

implementation declares vector constants to implement a Huffman tree. When these vectors
get accessed with a statically-known index, tailoring can refine code to skip the bounds check.

Across the Racket core distribution and packages, we found 88 files using vector constants.
Tailoring eliminated bounds checks in 11 files. This number is low, but within these few
files, tailoring improved 104 bounds checks in total. Most of these (80 of 104) appear in a
Parcheesi implementation that uses a macro to generate code that accesses valid locations;
this example shows that tailorings are robust even when other metaprogramming is present.

2.2 Elaborating Types in Typed Racket
Types themselves can benefit from tailoring. Since types are mere syntax before the type-
checker gives them meaning, tailoring can elaborate declarative syntax into fine-tuned types.

Concise GUI Subtypes

Felleisen’s implementation [29] of the 7GUI benchmark [53, 54] uses tailoring to simplify
class type declarations. In Typed Racket, subclasses must declare types for all inherited
methods and fields. While this requirement means that a subclass may refine the types of
methods defined in its superclass, it also imposes a significant burden on programmers. In
7GUI, subclasses of the Canvas% type would normally have to spell out the types of thirteen
methods. Type tailoring lets programmers specify just the differences from the parent class:

(define -type - canvas Circle - Canvas % TR
#: minus -init (paint - callback)
(unlock (-> Void))
(draw - circles

(-> (Optional Circle)
(Optional (Listof Circle))
Void)))

Without Tailoring
13 method declarations (not shown)

With Tailoring
2 method declarations, 1 subtraction

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:7

The tailored 7GUI specification for a circle-drawing canvas simply gives the name of
one constructor input to remove (paint-callback) and the types for two methods to add: an
unlock method to freeze the canvas (lock is private) and a method to draw circles on the
canvas. Without tailoring, this specification would require twelve redundant names and types
from the parent class.

Functional-Style Object Types

The zombie program from the gtp benchmark suite [42] presents an example of types tailored
for readability. The original, untyped program uses functions to mimic message-passing
objects [106]. Equipping such a program with types is challenging. For example, the function
new-zombie takes a coordinate pair (Posn) and returns another function (Zombie) from a symbol
to a method representation. These method representations are pairs that combine a label
and function. In the code below, there are two methods that have different types:
(define (new - zombie p) ;; Posn -> Zombie Typed Racket

(λ (msg)
(case msg

[(can -grab ?)
(cons ’can -grab? ;; Method 1: Posn -> Bool

(λ (q) (<= ((posn -dist p) q) *grab - radius *)))]
[(move -to)

(cons ’move -to ;; Method 2: Posn -> Zombie
(λ (q) (new - zombie ((posn -move -to p) q *speed *))))]

[else
(error " unknown message ")])))

Although Typed Racket can express the overloaded return type for a Zombie object (via
singleton types for labels [44]), writing such types requires intimate knowledge of the encoding.
With tailoring, the types can essentially match Typed Racket’s object type syntax:

(define -type Zombie Typed Racket
(-> Symbol

(U (Pair ’can -grab? (-> Posn Bool))
(Pair ’move -to (-> Posn Zombie)))))

(define -obj -ty Zombie TR
[can -grab? (-> Posn Bool)]
[move -to (-> Posn Zombie)])

Without Tailoring
Encoding with pair and union types

With Tailoring
Domain-specific representation

Type Expanders

The type expanders library [94] can build types such as Zombie and Circle-Canvas% within
another type, without the need to declare a top level definition via define-type. The following
example, from the library documentation, presents a type expander HomogeneousList that
uses an integer literal to expand to a List type:

(: five - strings (-> String (HomogeneousList String 5))) Typed Racket
(define (five - strings x)

(list x "a" "b" "c" "d"))

Without Tailoring
(List String String String String String)

With Tailoring
(HomogeneousList String 5)

Type expanders supports a wide range of additional tailorings. These include type abstraction
(Λ) and local definitions in types (Let).

ECOOP 2024

44:8 Type Tailoring

2.3 Relaxing Types in Rhombus
Rhombus enables tailoring in the same manner as Typed Racket by inheriting Racket’s
metaprogramming tools [33]. To illustrate, we equip the static variant of Rhombus (akin
to strict JavaScript [25]) with a dynamic type (Dyn) in the spirit of optional and gradual
typing [92, 100, 101]. Gradually typed languages are often defined by elaboration into a
typed language with casts, making them a natural application for tailoring.

Rhombus comes with an annotation language that can, among other things, statically
resolve method calls. For example, a function whose argument has the List annotation knows
where to find the appropriate length method for this argument:
fun len_plus_one (l :: List): Static Rhombus

l. length () + 1

Static Rhombus requires annotations for the receivers of all methods calls, all list and
map lookups, and similar operations [80]. It uses these annotations to guard against errors
and to compile optimized code. Getting the annotations right can become a burden, as
the long history of gradual typing attests [39, 68, 93, 103]. It would be useful to selectively
disable the requirement, but by default Rhombus provides only a coarse-grained solution via
a keyword use_dynamic that disables annotation requirements within an entire block of code.

The Dyn tailoring is an annotation that selectively disables static checks for an individual
variable without losing guarantees in other parts of the same code block. This can be useful,
for example, to implement a dynamic equality function for lists:

fun list_equals (l1 :: List.of(Dyn), l2 :: List.of(Dyn)): Static Rhombus
def len = l1. length ()
len == l2. length ()

&& for all (i: 0.. len):
l1[i]. equals (l2[i])

Without Tailoring
Compile error: l1[i].equals

no such method based on static information

With Tailoring
Success

Static Rhombus accepts this code and resolves the call to .equals() at runtime. Other
calls, such as l1.length() and the for-comprehension iterator, resolve statically.

Evaluation: Using Dyn in Shplait

Shplait is a typed, ML-like language developed for teaching and implemented in Rhombus [33].
It is one of the largest Rhombus programs to date. Within the Shplait codebase, there are 84
type annotations that appear in function, variable, and class definitions. These annotations
appear in 21 of the 46 core Shplait files. Replacing these annotations with Dyn does not
raise any compilation errors. The only difficulties that arose were due to import clashes
with operations that Dyn overrides (such as ++), which were straightforward to resolve by
importing Dyn with a prefix.

2.4 Static Arrays in Julia
Array accesses in Julia incur a runtime bounds check by default. This check can become a
significant and unnecessary cost in scientific code. For example, the coordinates for bodies in
an N -body simulation might be stored in fixed-length arrays that get accessed in a highly
repetitive pattern. A bounds check on each access would quickly incur a significant and
unnecessary performance cost.

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:9

The StaticArrays package implements a form of type tailoring that elaborates normal-
looking array code into fixed-size tuples [97]. To declare a static array, programmers wrap
a normal array declaration in the @SVector macro. The package supports several kinds of
declarations, including array comprehensions:

vec1 = @SVector [1] Julia
vec3 = @SVector zeros (3)
vec9 = @SVector [i^2 for i = 1:9]

::
{

vector-len : 1
}

::
{

vector-len : 3
}

::
{

vector-len : 9
}

In addition to array constructors and references, StaticArrays tailors a variety of linear
algebra operations to use size information. Matrix multiplication, transposition, and reshaping
can all propagate sizes. Eigenvalue decomposition uses a fast algorithm for small matrices:

m3 = @SMatrix randn (3 ,3) Julia
eigen (m3). values

::
{

matrix-shape : (3, 3)
}

::
{

vector-len : 3
}

Elaborating arrays to tuples is impractical for large arrays in Julia; the StaticArrays
documentation recommends 100 elements as a rule-of-thumb upper bound. Nevertheless,
StaticArrays is an important part of the Julia ecosystem. As of January 2024, it has over 800
direct dependents and 3,000 indirect dependents (30 % of the 10,292 packages on JuliaHub).
One of its clients is the popular OrdinaryDiffEq package [89], which helps explain the large
number of indirect dependents.

Evaluation: Fast Matrix Rotations

The documentation for StaticArrays reports order-of-magnitude speedups on a variety of
linear algebra microbenchmarks using 3 × 3 matrices [97]. Examples include a 5.9 x speedup
for matrix multiplication, a 113 x speedup for determinant computation, and a 8.8 x speedup
for Cholesky decomposition. We built our own microbenchmark that rotates a vector by a
10 × 10 matrix one hundred million times. The results in Table 1 show a 10 x speedup and
a dramatic decrease in memory use thanks to inlining and predictable array layout. These
numbers are the average after two hours of sampling with BenchmarkTools.jl in Julia 1.8
on a single-user Linux machine with 4 physical i7-4790 3.60GHz cores and 16GB RAM.

Table 1 StaticArrays yields a 10x speedup on a synthetic matrix rotation benchmark.

mean (stddev) Memory Use GC % (stddev) samples
Without Tailoring: Arrays 10.7 s (8.3 ms) 13 GB 1.7 % (0.07 %) 671
With Tailoring: StaticArrays 1.5 s (8.9 µs) 0 B 0 % (0 %) 4856

2.5 Verified Web Routes in Elixir
The Phoenix web framework [76] uses Elixir’s macro system to validate web routes. Program-
mers declare routes and corresponding handlers in a dedicated module. Phoenix leverages
information from the route module in a three-step validation process: first, it collects route
references that marked by a certain macro (~p); second, it elaborates these marked references
into plain strings; and third, it checks that each reference has a matching handler.

Route references commonly appear in page templates. For example, the following template
code block contains the references /users/register and /users/login. Suppose that the second
route has a typo, and the correct path is /users/log_in with an underscore. Without tailoring,
routes are mere strings; a typo in a route name is not a problem until a user requests the
page and gets a 404 error. With tailoring, a static check catches the error immediately.

ECOOP 2024

44:10 Type Tailoring

<p> Elixir
<%= link " Register ", to: ~p"/ users / register " %>
<%= link "Log in", to: ~p"/ users/login" %>

</p>

Without Tailoring
Possible 404 at runtime

With Tailoring
Tailoring error:

no route path matches /users/login

Thus, even a dynamically typed language such as Elixir can benefit from domain-specific
static checks during the elaboration of source code to baseline Elixir. Prior work in Scheme
illustrates the same point in several other domains [45], though at a much smaller scale
than Phoenix. Ruby on Rails [6] and Haskell [66] have their own methods of static route
validation; this is a common issue that tailoring helps to solve.

Evaluation: Adoption Data

Phoenix introduced verified routes in February 2023 [65]. They are an optional feature for
existing projects, while for new projects Phoenix generates code with verified routes by
default. As of January 2024, over 1,800 Elixir files on GitHub are using verified routes [36].

3 Dimensions of Tailoring Systems

Many languages and libraries support a form of type tailoring. Examples include the
macro systems in Clojure [18], Scala 2 [9], Scala 3 [87], and Rust [86]; elaborators in
Idris 1 [13]; Template Haskell [90]; OCaml PPX [70], MetaOCaml [52], and MacoCaml [110];
CompRDL [50]; and type providers in the style of F# [14, 75]. Despite differences in their
specific aims and affordances, they all enable metaprogramming of the elaboration from
surface code into typechecked code.

As a step toward an analysis of language support for tailoring and of relative strengths
and weaknesses, this section introduces a framework of technical dimensions (inspired by
prior work [38, 46]) for type tailoring. The dimensions fall into two groups: the first four
describe metaprogramming features, and the last two describe contextual information that
may be available to tailorings:

Metaprogramming Features
Metadata. For tailorings to work together, they must have a way of sharing static

information. Metaprogramming systems that can attach metadata directly to AST
nodes enable this sharing in a direct way. (Compile-time state is an alternative.)

Binding. How to handle bindings is a crucial aspect of information sharing. Information
must be able to flow from a variable declaration to its use. Metaprogramming systems
can discover these connections and expose them to tailorings.

Order. Cooperating tailorings need a reliable and customizable order of expansion. One
tailoring might depend on input from another, and it may wish to have a third tailoring
analyze its output.

Hygiene. To a first approximation, a hygienic metaprogramming system respects the
lexical structure of code. Hygiene is important for tailorings to compose with one
another and with user code. Users, for example, should not need to worry about
whether the f in f(x) is a tailoring (e.g., a macro) or a normal function.

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:11

Table 2 Technical dimensions of tailoring systems.

Metaprogramming Context
System Metadata Binding Order Hygiene Definitions Types
Racket ○ ○ ○ ○ ○ ×
Clojure ○ ○ ○ ○ ○ ×
Elixir ○ × ○ ○ ○ ×
Julia ○ × ○ ○ ○ ×
Idris 1 × ○ ○ × ○ ○

Scala 3 × × ○ ○ ○ ○

Template Haskell × × ○ ○ ○ ×
Type Providers × × × × ○ ○

OCaml PPX ○ × × × ○ ×
Rust × × ○ ○ ○ ×

○ Full support ○ Partial support × No support

Context Information
Definitions. Tailorings benefit from local definitions and external data, such as a database,

as sources of static information. Without definitions, tailorings are limited to local
transformations such as refining calls to printf that apply a literal format string.

Types. Type context is a dimension that has benefits and drawbacks. On one hand, if
tailorings receive typechecked input then they can leverage the types and need not
handle malformed syntax. On the other hand, types restrict the shape of domain-
specific syntax to terms of the host language.

Table 2 presents an evaluation of representative tailoring systems along these technical
dimensions. The rows are not an exhaustive list of tailoring systems but rather give an
overview of distinct feature-sets. For example, there is no row for Rhombus because it has
the same feature set as Racket. The table suggests two high-level takeaways:
1. A number of systems lack support along several dimensions. These represent trade-offs

that realize some benefits at a modest effort. Section 4 examines three points in depth.
2. No system has full support along every dimension. Section 7 presents ideas for designing

a full-featured system as future work.

The rest of this section explores the cells of Table 2 in detail. For each dimension, a
subsection provides a detailed description of what it means and justifies the partial cells (○).
The last subsection gives a concrete implementation of a tailoring for static vector references;
this example shows how one tailoring benefits from several dimensions.

3.1 Metadata
Static information is metadata. Examples include the length of a string literal, the capture
groups in a regular expression, and the schema of a database. Tailorings discover this
metadata, and they need a way to disseminate it to reap the benefits. For example,
discovering the length of a literal vector may be useful by itself, but it is more useful if length
information can propagate through operations such as vector concatenation.

Attaching metadata to AST nodes is a direct way to propagate information. Any piece
of syntax – whether it describes a value, an expression, or a definition – should support
metadata. Furthermore, as the examples from Section 2.1 demonstrate, the metadata should

ECOOP 2024

44:12 Type Tailoring

be a key-value store that can hold data structures as values. Keys clarify the interpretation
of data such as numbers, which, in the examples, represent lengths and regexp groupings.
Structured values declaratively express format-string constraints and database schemas.

Racket [78], Clojure [19], Rhombus [81], and Elixir [27] support general key-value metadata
on arbitrary nodes. Julia [48] and OCaml [70] support a limited form of metadata; only
a specific type of AST node can hold metadata. These metadata nodes can, however, be
inserted as siblings to other nodes in the syntax tree. To the best of our knowledge, the other
systems in Table 2 have no direct support for metadata, though Idris has highly-expressive
dependent types that can achieve similar goals.

3.2 Binding
Variable declarations call for a special kind of metadata that flows from a binding to its
references. Consider a basic let expression that binds a format string to a variable str; a
tailoring system should ensure that calls to printf within the body have access to format
metadata:
(let ([str "age: ~a"]) Racket

... (printf str n) ;; need data here

... (lambda (str) (printf str n))) ;; but not here

In Racket and Rhombus, rename transformers flow data to references [79]. Clojure has
libraries for similar functionality [17, 64]. None of the other systems support renaming
in a programmatic manner, which means that the authors of tailorings need to manage
propagation on their own – perhaps by handcrafting AST structures.

3.3 Order
Control over the order of elaboration makes it possible for tailorings to share their results
with one another. For example, static-length vectors and constant folding are somewhat
useful in their own right, but are more effective together:

(define buf -size (* 4 4)) Typed Racket

(define buffer (make - vector buf -size))

(sub1 (vector - length buffer))

::
{

int-value : 16
}

::
{

vector-len : 16
}

::
{

int-value : 15
}

Unlike in a normal metaprogramming system, it is crucial that the order of elaboration
matches the order of runtime evaluation. The tailoring for make-vector must happen after
the tailoring for multiplication, and the tailoring for sub1 must happen last of all because it
depends on the first two results.

Clojure macros give control over ordering in a simple way through a macroexpand direc-
tive [69] inherited from Lisp [98] and Scheme [23]. Julia [49] and Elixir [27] provide a similar
directive. This method is unhygienic, and may cause problems when macros depend on one
another [31]. There are several alternative forms of sequencing that fall short of arbitrary
ordering. Elixir provides compile-time hooks to register code that runs before and after
a module compiles; these hooks let Phoenix (Section 2.5) verify routes after registration.
Template Haskell allows stacks of tailorings, but programmers must manage them explicitly
by wrapping each piece of syntax in a suitable number of template quotes [90]; the Haskell
type system does help to manage the layers. Idris elaborators require similar management [13].
Rust macros can expand to other macros that have been defined in a separate crate [86].
Type providers in F# cannot expand to one another [75]. OCaml PPX recommends that
users do not rely on the order of expansion [70].

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:13

3.4 Hygiene
A hygienic metaprogramming system enables composable tailorings. Macro hygiene ensures
that compile-time transformations respect the binding structure of the code they manipulate.
A classic illustration is an or macro that introduces a temporary variable:
(defmacro or (a b) Common Lisp

‘(let ((tmp ,a))
(if tmp tmp ,b)))

If a call to this macro simply replaces code, the tmp variable can shadow a binding and
produce the wrong result:

;; before expansion
(let ((tmp 42))

(or nil tmp))

;; expected result : 42

;; after unhygienic expansion
(let ((tmp 42))

(let ((tmp nil))
(if tmp tmp tmp)))

;; actual result : nil

A second hygiene issue concerns references from macro definitions to functions. For
example, the SQL tailoring from Section 2.1 relies on helper functions to analyze strings. If
the helpers’ names were to get shadowed at the macro use-site – as is the case with unhygienic
systems – the tailoring would crash or produces flawed results.

A third related issue is that tailorings ought to work as a drop-in replacement in user
code. Code that calls a standard function such as make-vector should work with a tailored
variant instead, without the programmer needing to annotate the call site as a macro call
rather than a function call. Since functions are typically first-class values, this means that
macros must work hygienically in first-class use-sites.

Lastly, the keys used to label static information need a form of hygiene. If two tailorings
inadvertently choose the same key, they may attach conflicting information to a value.
Tailoring systems must provide a facility to generate unique keys – such as gensym in Julia
and other languages – to prevent clashes.

Racket [32], Rhombus [33], Elixir [27], Scala 3 [88], Template Haskell [90] all support
macro hygiene. Julia is hygienic for simple macros, but in complex macros programmers
must manually rename variables to avoid issues [49]. Rust’s support for hygienic macros
is currently experimental [51, 86]. F# type providers, OCaml PPX [70], Idris [13], and
Scala 2 [9] provide no support for hygienic macros.

3.5 Definitions in Context
There are two aspects of definitions that relate to tailoring. The first and most important
is access to external data, whether it be a relational database (Section 2.1), a manifest
of web routes (Section 2.5), or a JSON endpoint [75]. To add two more examples to the
mix, CompRDL uses domain-specific knowledge of Ruby on Rails and database schemas
to achieve dependent types for table functions [50], and the Rust SQLx library checks the
well-formedness of query strings [59]. Both leverage external data to analyze code without
asking programmers to change their idiomatic code (conventional Rails in Ruby, raw SQL in
Rust). Every tailoring system in Table 2 provides access to external data.

The second aspect of definitions is access to local variables and helper functions. As
mentioned in Section 3.4, a tailoring that parses query strings benefits from access to helper
functions. (Without access, the tailoring must duplicate code in its definition, which then
increases the size of the object code.) Most systems provide access to local definitions, though

ECOOP 2024

44:14 Type Tailoring

in the context of unhygienic systems this must be done with care. Template Haskell code
can access local definitions but is subject to Haskell’s disciplined use of side effects [90].
OCaml PPX runs macros in isolation, so they cannot use compile-time definitions [70].

3.6 Types in Context
In Scala, the typechecker validates input to macros as well as the expanded code. Types
provide extra context to tailorings and detect certain malformed input. However, types
also put restrictions on inputs. In the Squid metaprogramming framework for Scala 2 [74],
programmers typically wrap code in quasiquotes to bypass the surface typechecker. The
following example is from the Squid documentation [73]:
val powCode = code"${(x: Variable [Double]) => mkPow(code"$x", Const(n))}"

After some syntactic adaptations, the expanded code is thoroughly typechecked. (Squid also
accepts Scala code fragments directly; these inputs must be well-typed.)

Idris distinguishes between typed and raw terms during elaboration [13]. All terms must
eventually pass the typechecker, but elaboration can manipulate both sorts of terms. The
other systems in Table 2 do not typecheck their input, though type providers can effectively
rely on types because their inputs are restricted to literal constants. There are, however,
several metaprogramming systems in the literature that do typecheck their inputs. Examples
include SoundX (which furthermore guarantees well-typed transformations) [62], Wyvern [71],
Dependent ML [109], and Scala 2 [9].

3.7 Essential Non-Dimensions
Table 2 focuses on elements that are significant for tailoring but lack full adoption. As such,
it omits basic features that enable type tailoring. The following are requirements rather than
dimensions, but they are nevertheless important for language designers to know about:

Typechecking After Elaboration Regardless of whether or not typechecking happens before
elaboration, it must happen afterward to check the results of user-defined tailorings.

Elaboration-Time Computation Tailorings need infrastructure, such as procedural macros,
to perform non-trivial computations. By contrast, pattern-based macros (which unpack
the syntax of their call-site and rearrange it [56]) cannot even read from an external file.

AST Datatype Without an AST datatype, tailorings are limited to using a token stream as
input and output (e.g., in Rust [86]). Token streams cannot carry metadata (though it
might be stored off to the side) and must be parsed to find their binding structure.

3.8 Example Tailoring Implementation
Let us show how the dimensions work together with an example that tailors vector references
in Racket. This demo replaces vector-ref with either a fast unsafe-vector-ref or an error
when it finds both a literal vector and a literal index; otherwise, it leaves the reference as is:
(vector -ref (vector 5 2 8) 1) ⇝ (unsafe -vector -ref (vector 5 2 8) 1)
(vector -ref (vector 4 9 1) 4) ⇝ error : out -of - bounds
(vector -ref (read -vec) 9) ⇝ (vector -ref (read -vec) 9)

See the documentation of the trivial library [41] for a full-featured implementation that
works for identifiers as well as data literals.

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:15

The six code blocks below define the vector-ref tailoring. When defining the tailoring,
we use the name tailored-vector-ref to avoid shadowing the base vector-ref function. On
export, we rename this tailoring to vector-ref so clients of this library can use the tailored
version as a drop-in replacement in their code:
(provide Racket, 1/6

(rename -out [tailored -vector -ref vector -ref]))

The tailoring module imports unsafe-vector-ref for use in expanded code, and three other
libraries to define the tailoring:
(require Racket, 2/6

(only -in racket / unsafe /ops unsafe -vector -ref)
(for - syntax ;; import these things for macros

racket /base syntax /parse (only -in "tailoring -api.rkt" ⇝ ϕ V I)))

The helper module tailoring-api.rkt is a small wrapper over Racket’s metaprogramming
facilities. Specifically, it provides a bridge for the following dimensions:

Order of expansion (⇝) The syntax class ⇝ triggers macro expansion on a subexpression,
allowing the tailoring to discover static information.

Metadata (ϕ) The function ϕ uses Racket syntax properties to store and retrieve static
information using domain-specific keys.

Hygiene (V ,I) The keys V and I are unique keys (gensyms) for vector length and integer
value information. (Under the hood, tailoring-api.rkt registers such information when
it encounters relevant data literals during expansion.) Uniqueness means that other
tailorings cannot accidentally use the same names and cause a collision; however, it does
not stop a malicious tailoring from writing bad information using the keys.

For details on tailoring-api.rkt, refer to the artifact for this paper.
The tailoring itself is a macro so that it can statically rewrite source code. First, it parses

its input syntax object (stx) to extract and expand two subexpressions:
(define - syntax (tailored -vector -ref stx) Racket, 3/6

(syntax -parse stx
[(_ e1:⇝ e2:⇝)

The expanded form of subexpression e1 is available as e1.⇝, and similarly for e2. The
tailoring checks whether these expanded expressions have the static information that it needs;
specifically, it needs a vector length (key: V) and an integer value (key: I):

#:do [(define n (ϕ (syntax e1.⇝ V))) Racket, 4/6
(define i (ϕ (syntax e2.⇝ I)))]

#: when (and (integer ? n) (integer ? i))

If the information is present, the tailoring checks whether the index is in bounds and
expands to code that either performs a fast vector reference or raises an exception:

(if (and (<= 0 i) (< i n)) Racket, 5/6
(syntax (unsafe -vector -ref e1.⇝ e2.⇝))
(syntax (error ’Index -Exn)))]

Otherwise, the default behavior is whatever Racket’s un-tailored vector-ref does:
[(_ e1:⇝ e2:⇝) Racket, 6/6

(syntax (vector -ref e1.⇝ e2.⇝))]))

With that, the tailoring is complete. A Racket program can import this tailoring to replace
the default vector-ref:

ECOOP 2024

44:16 Type Tailoring

Level 1
Local Tailorings

Level 2
Cooperating Tailorings

Level 3
Binding-Aware Tailorings

Metadata

Binding

Order: multi-pass, hooks

Definitions

Hygiene

Expansion prior to typechecking Order: manual macro expansion

Verified Routes in Phoenix

trivial in Racket

Features

Examples SQLx in Rust

Dyn in Rhombus

StaticArrays in JuliaType Providers in F#

Other
Considerations Type Information

Procedural AST macros

PPX in OCaml

Figure 1 Three levels of support for type tailoring.

(vector -ref (vector 5 2 8) 1) Racket

Without Tailoring
No change; use checked lookup
(vector-ref ...)

With Tailoring
Use unsafe, fast lookup
(unsafe-vector-ref ...)

In summary, tailoring vector-ref relies on a specific order of expansion to receive metadata
about subexpressions, it extracts that metadata in a reliable way that composes with other
tailorings using macro hygiene, and it relies on several definitions from the Racket standard
library such as <= to compare numbers and Racket’s vector-ref to provide a default behavior.
Thus, four technical dimensions come together in this one example. Both the tailoring and
its helper module are defined in user code; they require no changes to the Racket language
to seamlessly improve client code.

4 Design Space Reflections

Tailoring systems come in wide variety in the literature, and yet they all enable at least
some similarly-useful applications. For example, OCaml PPX achieves a pinch of dependent
typing, F# type providers give an early warning when a web service changes its API, and
Julia StaticArrays can propagate array dimensions. None of these systems can propagate
metadata through binding forms, but their implementations are simpler than those that
do. This tension suggests that there are points in the design space of tailorings that offer
compelling tradeoffs between implementation complexity and useful capabilities.

In all, there are three important levels of tailoring support: (1) local tailorings that can
use external data to generate types, (2) cooperating tailorings that share metadata and run
in a customizable order, and (3) binding-aware tailorings that can manage an environment
of static information. Figure 1 summarizes these levels both in terms of their required
metaprogramming features and in terms of the tailorings these features enable. The bottom
of the figure lists type information as a notable but orthogonal direction. Scala and Idris are
the only systems that provide type information to macros, though it is unclear whether type
information advances the frontier of tailoring systems.

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:17

4.1 Level 1: Local Tailorings

The first level of support for type tailoring enables local transformations that can query
external sources of information. The PPX preprocessor in OCaml, SQLx in Rust, and type
providers in F# all fall into this category. These systems can retrieve input from databases,
websites, and/or constant literals to generate tailored code.

At this level, the main ingredient is support for compile-time computation: the prepro-
cessor cannot be limited to simple pattern-and-template transformations. The preprocessor
should also receive AST objects as input and it must be able to inspect these objects, query
external sources, and have its output validated by the typechecker (compare to Section 3.7).
Weakening any of these ingredients makes writing tailorings a challenge for language end-users,
who do not have access to compiler internals. Without access to the AST, for instance, users
must parse the input token stream before they can manipulate it in a meaningful way.

4.2 Level 2: Cooperating Tailorings

The second level of support allows tailorings to work together in basic ways. For example,
Dyn in Rhombus uses metadata to tell operations how to handle an expression, StaticArrays
in Julia lifts array structure into types, and Phoenix in Elixir collects web routes in a first
pass before validating the routes in a second pass. All three require tools for sharing static
information and controlling the order of elaboration.

Hygiene is crucial to enable sharing without bugs. In systems like Julia with partial
support for hygiene, the authors of tailorings must fill the gap manually, for instance, by
calling gensym to create fresh names.

Order in elaboration can come about in two ways. The direct way is to allow tailorings to
expand to other tailorings. In this setting, the elaborator (macro expander) must continually
process AST nodes until no tailoring uses remain. The indirect way, exemplified by Phoenix
and CompRDL, is to use hooks to register tailorings that should happen at a certain point.
In Phoenix, these points are just before and just after the compilation of a module.

Lastly, cooperating tailorings need a way to share information. An API for attaching
metadata to AST nodes is the straightforward solution. Keeping information off to the side
in metadata nodes (as in Julia) or in mutable structures is an alternative.

4.3 Level 3: Binding-Aware Tailorings

The third level of support is to equip the metaprogramming system with binding information.
This level also allows fine-grained control over when the tailorings in a piece of syntax
elaborate. Typed Racket requires these ingredients for its lightweight flow analysis, which
lets tailorings flow through variable declarations and standard operations:

(let ([greeting " hello ~s"])
(printf greeting " world ")) ⇝ (printf "hello ~s" "world ")

(make - vector (+ 40 2)) ⇝ (make - vector 42)

To deal with variables, tailorings need access to the binding structure of code. To ensure
that subterms elaborate before the outer term, tailorings need control over the order of
expansion. Among the languages in Section 3, only Racket and Clojure give full control over
binding structure. Manual macro expansion is more common, with support from Elixir [27],
Julia [49], and Idris [13]. Only Racket and Rhombus provide both in a hygienic way.

ECOOP 2024

44:18 Type Tailoring

5 How to Reason About Tailorings

Programmers need an easy-to-use guide for the design of correct tailorings because tailorings
can rewrite source code arbitrarily. Tailorings come with a degree of safety because the host
language typechecks their output, but types alone do not prevent an incorrect rewrite from√

2 to 42 or an unsafe rewrite that accesses out-of-bounds memory.
In general, tailorings accomplish two goals: they discover and propagate static information,

and they elaborate source expressions to the host language. These goals motivate two
correctness requirements. The first requirement is prediction soundness. If tailoring attaches
static information to an expression and the expression reduces to a value, then the static
information must be a correct description of the value. For example, the key-value pair
{string-len :4} is correct for string values with exactly 4 characters. If tailoring propagates
static information for a variable, then the prediction must hold for all values the variable
might take on.

The second requirement, compatibility, pertains to the behavior of elaborated code. Based
on the examples from Section 2, there are three ways that a source expression and its tailored
variant may relate to one another. Tailorings can:

express new behaviors by translating invalid source syntax into valid host code;
Examples: SQL in Typed Racket (Section 2.1), Dyn in Rhombus (Section 2.3).
refine existing behaviors by changing how, but not what, an expression computes; or
Example: StaticArrays in Julia (Section 2.4).
predict errors by identifying a mismatch in static information.
Example: Verified Routes in Elixir (Section 2.5).

Tailorings that refine behavior or predict errors can use the untailored program as a source
of truth. They should be compatible in the sense of computing equivalent values or rejecting
the same programs. Tailorings that express new behavior generally require a fine-tuned
correctness argument, but they may benefit from the idea of compatibility as well. For
example, the Typed Racket regular expression example in Section 1 should be compatible
with the baseline behavior of untyped Racket.

A Recipe

Showing that a tailoring system is correct calls for a two-part effort. First, the designers of a
cooperating tailoring system (Section 4) must show that any propagation rules or environment-
management rules respect prediction soundness. The designers of a binding-aware system
must show that metadata propagates correctly. The designers of a local system have no
obligations at this stage.

Second, the authors of domain-specific tailorings have three tasks:
1. Confirm the prediction soundness of rules that infer static information from values. These

may be straightforward, such as inferring a length from a literal vector, and they may be
sophisticated, such as the F# algorithm for JSON shapes [75].

2. Categorize tailorings that elaborate expressions as either: expressing new behavior,
refining existing behavior, or predicting errors.

3. Argue that the elaborations are acceptable. Elaborations should either be compatible
with some baseline behavior or desirable in some other sense.

By way of example, the next three subsections present two domain-specific tailorings and
one set of general propagation rules.

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:19

5.1 Express New Behavior: Variable-Arity Map
With arity information about functions, a language with simple function types (such as
Haskell, but not Typed Racket [99]) can support a variable-arity map function by generating
code for a fixed-arity map. In the examples below, map1 expects exactly one list, while map2
expects exactly two lists and applies the function to their elements in parallel:

(map add1 ’(1 2 3))
⇝ (map1 add1 ’(1 2 3))

(map max ’(1 2 3) ’(4 5 6))
⇝ (map2 max ’(1 2 3) ’(4 5 6))

When variable-arity map receives a function with unknown arity, or when the arity does
not match the number of lists given, it raises an exception:

(map max ’(1 2 3))
⇝ Exn: ‘max ’ expects 2 arguments , but ‘map ‘ got only 1 list

For the first piece of static information, we need a tailoring that discovers the arity of
functions – for example, that that max takes 2 arguments:

(: max (-> Real Real Real))
(define (max a b)

(if (>= a b) a b))
::

{
fn-arity : 2

}
Prediction soundness comes from a function’s arity being statically apparent. Likewise,

predicting the number of list arguments is a simple matter of counting the arguments to map.
This tailoring is expressing new behavior when there is no variable-arity map in the source

language. A reasonable baseline is to generalize the behavior of map1, map2, and so on in a
compatible way. Assuming prediction soundness, map should elaborate to the correct mapi or
predict the error that mapi would raise.

5.2 Refine Behavior and Predict Errors: Vector Bounds
When a tailoring expands to potentially-unsafe code, demonstrating soundness is crucial.
Consider a tailoring that optimizes array references: when accesses (vector-ref) are known to
be in bounds, it is safe to bypass the bounds check (unsafe-ref). However, if the index or the
array length are not known statically, the tailoring falls back to a safe variant (checked-ref).
This tailoring should always return the same result that a normal in-bounds access would,
and should also optimize only when it is safe to do so:

(define my -vect (vector 1 2 3))

(vector -ref my -vect 1) ⇝ (unsafe -ref my -vect 1)
(vector -ref (read - vector) 3) ⇝ (checked -ref (read - vector) 3)
(vector -ref my -vect (read -int)) ⇝ (checked -ref my -vect (read -int))

If this tailoring detects an out-of-bounds access statically, it can predict an error at
tailoring time instead of leaving it until runtime.

(vector -ref my -vect 42) ⇝ Exn: Index ’42’ out of range

Information about vector sizes can come from two sources: static vector declarations and
constructors such as make-vector that use statically-known sizes:

(vector 1 2 3)

(make - vector 42 0)

::
{

vector-len : 3
}

::
{

vector-len : 42
}

Prediction soundness follows from the semantics of these built-ins.
This tailoring is refining existing behavior by optimizing accesses that are known to be

safe. It also predicts errors when it can statically discover an out-of-bounds access. With
prediction soundness in hand, behavioral soundness follows from comparing known lengths
to known offsets.

ECOOP 2024

44:20 Type Tailoring

5.3 Propagation and Substitution

Tailoring systems that propagate static information from variable definitions to references (i.e.,
cooperating systems in Section 4) must demonstrate prediction soundness for the forwarded
information. Metadata must remain an accurate description for any runtime value the
variable may take on. For instance, consider a vector bound to a variable x:

(let ([x (vector 1 2 3)])
... x ...) x ::

{
vector-len : 3

}
In the body of the let, the identifier x should have the information {vector-len :3}

attached to it. Subsequent tailorings inside the body of the let form should be able to take
advantage of this information:

(let ([x ...]) ⇝ (let ([x ...])
(vector -ref x 1)) (unsafe -ref x 1))

At the same time, if x is shadowed by a different binding inside the body of the let, that
same static information must not be attached to the new binding – transgressing lexical
scoping would violate prediction soundness.

Aside from propagation through bindings, a binding-aware system can propagate informa-
tion through a bottom-up tree traversal. For instance, if expressions can join the predictions
from both branches:

(if (daylight - savings)
(vector 1 2 3)
(vector 4 5 6))

::
{

vector-len : 3
}

In this example, both branches carry the same static information; but when the branches
disagree, precise information cannot propagate upward:

(if (daylight - savings)
(vector 1 2 3)
(read - vector))

::
{

empty map
}

Exactly how to join pieces static information is context-dependent. For example, if both
branches of an if are static vectors, but one is longer than the other, it might be sensible to
propagate a length that is known to be safe. In other domains, defaulting to an empty set of
properties might be the sensible thing to do.

6 Related Work

Type tailoring combines aspects of types, metaprogramming, and static analysis. In closely
related work that inspired our Typed Racket tailorings, Herman and Meunier [45] show how
a macro system can implement domain-specific static analyses for format strings, regular
expressions, and database queries. They do not consider the interplay of domain-specific
information and types. Ziggurat is a tailoring system for a C-like language [30]. It enables
towers of language levels, each with a custom type system or flow analysis, and lets neighboring
levels share information. Pluggable typecheckers add layers in a similar sense, though without
direct support for sharing information across layers [8, 22, 67, 72]. Squid provides a framework
for type-checked partial evaluation using the Scala macro system [74]. Scala LMS is another
tailoring system specialized to partial evaluation that has enabled extensible optimizing
compilers for domains ranging from databases to linear algebra [82, 83, 84, 85]. The finally-
tagless encoding of staged interpreters is a third technique for partial evaluation that can
be implemented within a typed language such as ML [10]. While its applications are more
limited than the tailorings in this paper, it avoids the need for a metaprogramming layer.

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:21

The ingredients of a full-featured tailoring systems are made possible by research from
the Lisp family of languages [20, 21, 33, 34, 55, 56, 98]. In particular, we note the long line
of research on hygiene [1, 15, 16, 32, 55, 77].

Tailoring achieves a modicum of dependent typing in the context of a simply-typed
language and without the burden of formal proof. The printf and vector size tailorings are
similar to work on dependent types [26]. Cayenne is related as a practical compromise with
dependent types; its typechecker takes care of the proof burden, but may run indefinitely [3].
Dependent type systems are common targets for metaprogramming. Prior work includes
the Lean 4 macro system [24], type-directed editing and elaborator reflection in Idris [13,
58], certified metaprogramming in Coq [2], and elaboration-time solvers in Agda [57, 60].
Extensible tactic languages such as Cur [11] and VeriML [96] are tailoring systems that turn
concise proofs into elementary ones.

By contrast to metaprogramming systems in general, tailoring is limited to the elaboration
of surface syntax to a typed host language. Closely-related systems include Turnstile [12] and
Klister [5], which create whole typed languages; Haskell typechecker plugins [4, 43], which
customize the type constraint solver; and Nx [105], which compiles Elixir-like source code
to GPU kernels. On a similar note, the Haskell library Servant checks web APIs statically
using typechecker extensions rather than metaprogramming [66].

7 Future Work

Developing improved support for tailoring is an ongoing challenge. In addition to the quest
for a system that productively combines all technical dimensions from Table 2, the following
are key areas of focus going forward:

Deeper Control Flow Analysis. While the tailorings in this paper leverage some control
flow analysis, this analysis is limited to local, forward propagation. No information
flows through function calls, and join points (conditionals and loops) lose information to
produce a conservative approximation. One way to recover precision is with annotations
supported by runtime checks, though annotations put extra responsibility on programmers
and checks introduce costs. Another way is to embed full [91] or demand-driven [35]
control flow analysis in the tailoring system. Work on Turnstile is closely related, as it
shows how macros can implement type analyses [11, 12].

Elaboration-Time Performance, How Much Metadata? The compile-time performance of
tailorings has not been an issue for tailorings thus far, but it will become an issue if
tailorings strive for whole-program or even whole-module analyses. Turnstile and k-cfa
both suffer in this respect. A related issue is how much metadata to attach to AST
nodes. Typed Racket tailoring (Section 2.1) inspects every data literal for every form of
domain-specific information, which means that a string value can carry several kinds of
information if it matches regular expression, printf, and SQL query syntax. Tracking
information may, at some point, incur a noticeable compile-time cost.

How to Interleave Elaboration and Typechecking. Most tailorings in this paper happen
before typechecking, which leaves them free to accept DSL syntax but also forces them to
accommodate ill-typed or even ill-formed programs. In Scala, typechecking happens before
and after tailoring. Further research is needed to weigh the strengths of each approach on
concrete examples. On a related note, several features in Typed Racket including match

and list comprehensions are implemented as macros and therefore get typechecked only
after expansion. The typechecker struggles to reason about this post-expansion code. A
source-level type analysis may be more straightforward.

ECOOP 2024

44:22 Type Tailoring

Toward a Proof API. Typechecking before expansion raises the question of how to share
results with the host type system. The tailorings in this paper either produce simple
code or use casts to share results. Other tailoring-adjacent systems, such as the units-of-
measure Haskell plugin [43], merely assert results to the host language. One avenue for
enhancement is to equip a standard typechecker with a tactic language (e.g., [37, 63])
to support proof objects. The System DE calculus implements a similar design for
termination proofs [61]; it contains a sublanguage for constructing proof terms that the
typechecker can accept and erase during compilation.

8 Discussion

Type tailoring is a lightweight way to grow [47] a type system by equipping it with additional
expressiveness. Critically, tailorings are mere library code produced by and for ordinary users,
rather than by compiler engineers. Additionally, tailorings cooperate with the existing type
system and are composable with one another. Since tailorings run before the typechecker,
host-language typechecking provides a basic correctness guarantee; for further assurance, this
paper also presents a framework for reasoning about behavioral changes that tailorings may
introduce. Finally, since a type tailoring leverages the host’s metaprogramming system, no
extra effort is needed to integrate it into a language’s build system – unlike what a bespoke
static analysis might require.

Although this paper has shown that support from a metaprogramming system empowers
end users to build a type tailoring system, it would be interesting to see how first-class
support for tailoring might improve its expressiveness and efficiency. No programming
language includes type tailoring as an official, documented aspect of the language, but
programmers clearly benefit from what support exists anyway. The many forms of tailoring
in the programming language landscape give ample evidence that tailoring is a useful idea.
The API blueprints presented here may allow these related efforts to build on one another.

In summary, this paper provides a research foundation that has takeaways for end users,
language designers, and the authors of tailorings:

For users, the examples in Section 2 show that type tailoring balances ease of use with
some expressiveness of dependent types.
For designers, the analysis in Section 3 explains why a powerful metaprogramming system
is desirable. Tailoring in Julia, for example, falls short of what it could achieve with
cooperating API features (Figure 1).
For authors of tailorings, the guidelines in Section 5 separate well-reasoned tailorings
from arbitrary reprogramming of the compiler front end.

Type tailoring leads to a broader perspective on what metaprogramming for types can
achieve. It can facilitate maintainability and reliability for end users, help researchers
prototype type system ideas, and reduce demands on the core type system.

References
1 Michael D. Adams. Towards the essence of hygiene. In POPL, pages 457–469. ACM, 2015.

doi:10.1145/2676726.2677013.
2 Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nicolas Tabareau.

Towards certified meta-programming with typed Template-Coq. In ITP, pages 20–39. Springer,
2018. doi:10.1007/978-3-319-94821-8_2.

3 Lennart Augustsson. Cayenne—a language with dependent types. In ICFP, pages 239–250.
ACM, 1998. doi:10.1145/289423.289451.

https://doi.org/10.1145/2676726.2677013
https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1145/289423.289451

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:23

4 Christiaan Baaij. GHC type checker plugins: adding new type-level operations, 2016. .
Accessed 2016-06-30. URL: http://christiaanb.github.io/posts/type-checker-plugin/.

5 Langston Barrett, David Thrane Christiansen, and Samuel Gélineau. Predictable macros for
Hindley–Milner. In TyDE, 2020. Extended abstract.

6 Gary Bernhardt. Software: static-path. . Accessed 2024-01-17. URL: https://github.com/
garybernhardt/static-path.

7 Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh approach
to numerical computing. SIAM Review, 59(1):65–98, 2017. doi:10.1137/141000671.

8 Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a production
environment. In OOPSLA, pages 215–230, 1993. doi:10.1145/165854.165893.

9 Eugene Burmako. Scala macros: Let our powers combine!: On how rich syntax and static
types work with metaprogramming. In SCALA, pages 3:1–3:10. ACM, 2013. doi:10.1145/
2489837.2489840.

10 Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. Journal of Functional Programming,
19(5):509–543, 2009. doi:10.1017/S0956796809007205.

11 Stephen Chang, Michael Ballantyne, Milo Turner, and William J. Bowman. Dependent type
systems as macros. PACMPL, 4(POPL):3:1–3:29, 2020. doi:10.1145/3371071.

12 Stephen Chang, Alex Knauth, and Ben Greenman. Type systems as macros. In POPL, pages
694–705. ACM, 2017. doi:10.1145/3009837.3009886.

13 David R. Christiansen and Edwin C. Brady. Elaborator reflection: Extending Idris in Idris.
In ICFP, pages 284–297. ACM, 2016. doi:10.1145/2951913.2951932.

14 David Raymond Christiansen. Dependent type providers. In WGP, pages 25–34. ACM, 2013.
doi:10.1145/2502488.2502495.

15 William D. Clinger and Jonathan Rees. Macros that work. In POPL, pages 155–162. ACM,
1991. doi:10.1145/99583.99607.

16 William D. Clinger and Mitchell Wand. Hygienic macro technology. PACMPL, 4(HOPL):80:1–
80:110, 2020. doi:10.1145/3386330.

17 Clojure Contributors. Software: Clojure/tools.macro. . Accessed 2024-01-18. URL: https:
//github.com/clojure/tools.macro.

18 Clojure Contributors. Clojure macros, 2024. . Accessed 2024-01-17. URL: https://clojure.
org/reference/macros.

19 Clojure Contributors. Clojure metadata documentation, 2024. . Accessed 2024-01-17. URL:
https://clojure.org/reference/metadata.

20 Ryan Culpepper. Fortifying macros. Journal of Functional Programming, 22(4-5):439–476,
2012. doi:10.1017/S0956796812000275.

21 Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt. Advanced macrology and the
implementation of Typed Scheme. In SFP. Université Laval, DIUL-RT-0701, pages 1–14,
2007. URL: http://www2.ift.ulaval.ca/~dadub100/sfp2007/procPaper1.pdf.

22 Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kıvanç Muşlu, and Todd W. Schiller.
Building and using pluggable type checkers. In ICSE, pages 681–690, 2011. doi:10.1145/
1985793.1985889.

23 R. Kent Dybvig. Chez Scheme Users Guide. Cadence Research Systems, 2nd edition, 2011.
24 Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo de Moura. A

metaprogramming framework for formal verification. PACMPL, 1(ICFP):34:1–34:29, 2017.
doi:10.1145/3110278.

25 ECMA International. ECMAScript language specification: 11.2.2 strict mode code, 2024.
URL: https://262.ecma-international.org/15.0/index.html#sec-strict-mode-code.

26 Richard A. Eisenberg and Stephanie Weirich. Dependently typed programming with singletons.
In Haskell, pages 117–130. ACM, 2012. doi:10.1145/2364506.2364522.

27 Elixir Contributors. Elixir macro documentation, 2024. . Accessed 2024-01-17. URL: https:
//hexdocs.pm/elixir/1.16/Macro.html.

ECOOP 2024

http://christiaanb.github.io/posts/type-checker-plugin/
https://github.com/garybernhardt/static-path
https://github.com/garybernhardt/static-path
https://doi.org/10.1137/141000671
https://doi.org/10.1145/165854.165893
https://doi.org/10.1145/2489837.2489840
https://doi.org/10.1145/2489837.2489840
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/3371071
https://doi.org/10.1145/3009837.3009886
https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1145/2502488.2502495
https://doi.org/10.1145/99583.99607
https://doi.org/10.1145/3386330
https://github.com/clojure/tools.macro
https://github.com/clojure/tools.macro
https://clojure.org/reference/macros
https://clojure.org/reference/macros
https://clojure.org/reference/metadata
https://doi.org/10.1017/S0956796812000275
http://www2.ift.ulaval.ca/~dadub100/sfp2007/procPaper1.pdf
https://doi.org/10.1145/1985793.1985889
https://doi.org/10.1145/1985793.1985889
https://doi.org/10.1145/3110278
https://262.ecma-international.org/15.0/index.html#sec-strict-mode-code
https://doi.org/10.1145/2364506.2364522
https://hexdocs.pm/elixir/1.16/Macro.html
https://hexdocs.pm/elixir/1.16/Macro.html

44:24 Type Tailoring

28 Elixir Contributors. Elixir standard library, 2024. . Accessed 2024-01-17. URL: https:
//hexdocs.pm/elixir/1.16.0/Kernel.html.

29 Matthias Felleisen. Software: 7GUI, 2020. . Accessed 2023-12-21. URL: https://github.com/
mfelleisen/7GUI.

30 David Fisher and Olin Shivers. Building language towers with Ziggurat. Journal of Functional
Programming, 18(5-6):707–780, 2008. doi:10.1017/S0956796808006928.

31 Matthew Flatt. Composable and compilable macros: You want it when? In ICFP, pages
72–83. ACM, 2002. doi:10.1145/581478.581486.

32 Matthew Flatt. Binding as sets of scopes. In POPL, pages 705–717, 2016. doi:10.1145/
2837614.2837620.

33 Matthew Flatt, Taylor Allred, Nia Angle, Stephen De Gabrielle, Robert Bruce Findler, Jack
Firth, Kiran Gopinathan, Ben Greenman, Siddhartha Kasivajhula, Alex Knauth, Jay McCarthy,
Sam Phillips, Sorawee Porncharoenwase, Jens Axel Søgaard, and Sam Tobin-Hochstadt.
Rhombus: A new spin on macros without all the parentheses. PACMPL, 7(OOPSLA2), 2023.
doi:10.1145/3622818.

34 Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler. Macros that
work together: Compile-time bindings, partial expansion, and definition contexts. Journal of
Functional Programming, 22(2):181–216, 2012. doi:10.1017/S0956796812000093.

35 Kimball Germane, Jay McCarthy, Michael D. Adams, and Matthew Might. Demand control-
flow analysis. In VMCAI, pages 226–246. Springer, 2019. doi:10.1007/978-3-030-11245-5_
11.

36 GitHub. GitHub search: use Phoenix.VerifiedRoutes in Elixir, 2024. . Accessed
2024-01-17. URL: https://github.com/search?q=%22use+Phoenix.VerifiedRoutes%22+
AND+%22def+verified_routes%22+language%3AElixir&type=code.

37 Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer. How to make ad hoc
proof automation less ad hoc. In ICFP, pages 163–175. ACM, 2011. doi:10.1145/2034773.
2034798.

38 Thomas R. G. Green and Marian Petre. Usability analysis of visual programming environments:
A ‘cognitive dimensions’ framework. Journal of Visual Languages and Computing, 7(2):131–174,
1996. doi:10.1006/JVLC.1996.0009.

39 Michael Greenberg. The dynamic practice and static theory of gradual typing. In SNAPL,
pages 6:1–6:20. Schloss Dagstuhl, 2019. doi:10.4230/LIPICS.SNAPL.2019.6.

40 Ben Greenman. Type Tailoring, 2017. . Accessed 2024-01-08. URL: https://blog.
racket-lang.org/2017/04/type-tailoring.html.

41 Ben Greenman. Trivial: Type tailored library functions, 2020. . Accessed 2024-01-07. URL:
https://docs.racket-lang.org/trivial/index.html.

42 Ben Greenman. GTP benchmarks for gradual typing performance. In REP, pages 102–114.
ACM, 2023. doi:10.1145/3589806.3600034.

43 Adam Gundry. A typechecker plugin for units of measure: Domain-specific constraint solving
in GHC Haskell. In Haskell, pages 11–22. ACM, 2015. doi:10.1145/2804302.2804305.

44 Susumu Hayashi. Singleton, union and intersection types for program extraction. Information
and Computation, 109(1/2):174–210, 1994. doi:10.1006/INCO.1994.1016.

45 David Herman and Philippe Meunier. Improving the static analysis of embedded languages
via partial evaluation. In ICFP, pages 16–27. ACM, 2004. doi:10.1145/1016850.1016857.

46 Joel Jakubovic, Jonathan Edwards, and Tomas Petricek. Technical dimensions of programming
systems. Programming, 7(3), 2023. doi:10.22152/PROGRAMMING-JOURNAL.ORG/2023/7/13.

47 Guy L. Steele Jr. Growing a language. In Addendum to OOPSLA. ACM, 1998. doi:
10.1145/346852.346922.

48 Julia Contributors. Julia AST documentation, 2024. . Accessed 2024-01-17. URL: https:
//docs.julialang.org/en/v1/devdocs/ast/.

49 Julia Contributors. Julia metaprogramming, 2024. . Accessed 2024-01-17. URL: https:
//docs.julialang.org/en/v1/manual/metaprogramming/.

https://hexdocs.pm/elixir/1.16.0/Kernel.html
https://hexdocs.pm/elixir/1.16.0/Kernel.html
https://github.com/mfelleisen/7GUI
https://github.com/mfelleisen/7GUI
https://doi.org/10.1017/S0956796808006928
https://doi.org/10.1145/581478.581486
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1145/3622818
https://doi.org/10.1017/S0956796812000093
https://doi.org/10.1007/978-3-030-11245-5_11
https://doi.org/10.1007/978-3-030-11245-5_11
https://github.com/search?q=%22use+Phoenix.VerifiedRoutes%22+AND+%22def+verified_routes%22+language%3AElixir&type=code
https://github.com/search?q=%22use+Phoenix.VerifiedRoutes%22+AND+%22def+verified_routes%22+language%3AElixir&type=code
https://doi.org/10.1145/2034773.2034798
https://doi.org/10.1145/2034773.2034798
https://doi.org/10.1006/JVLC.1996.0009
https://doi.org/10.4230/LIPICS.SNAPL.2019.6
https://blog.racket-lang.org/2017/04/type-tailoring.html
https://blog.racket-lang.org/2017/04/type-tailoring.html
https://docs.racket-lang.org/trivial/index.html
https://doi.org/10.1145/3589806.3600034
https://doi.org/10.1145/2804302.2804305
https://doi.org/10.1006/INCO.1994.1016
https://doi.org/10.1145/1016850.1016857
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2023/7/13
https://doi.org/10.1145/346852.346922
https://doi.org/10.1145/346852.346922
https://docs.julialang.org/en/v1/devdocs/ast/
https://docs.julialang.org/en/v1/devdocs/ast/
https://docs.julialang.org/en/v1/manual/metaprogramming/
https://docs.julialang.org/en/v1/manual/metaprogramming/

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:25

50 Milod Kazerounian, Sankha Narayan Guria, Niki Vazou, Jeffrey S. Foster, and David Van Horn.
Type-level computations for Ruby libraries. In PLDI, pages 966–979. ACM, 2019. doi:
10.1145/3314221.3314630.

51 Daniel Keep and Lukas Wirth. The little book of Rust macros, 2024. . Accessed 2024-01-17.
URL: https://veykril.github.io/tlborm/proc-macros/hygiene.html.

52 Oleg Kiselyov. Reconciling abstraction with high performance: A MetaOCaml approach. Foun-
dations and Trends® in Programming Languages, 5(1):1–101, 2018. doi:10.1561/2500000038.

53 Eugen Kiss. 7GUIs: A GUI programming benchmark. . Accessed 2023-12-21. URL: https:
//eugenkiss.github.io/7guis/.

54 Eugen Kiss. Comparison of Object-Oriented and Functional Programming for GUI Development.
PhD thesis, Leibniz Universitaet Hannover, 2014.

55 Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce F. Duba. Hygienic
macro expansion. In LFP, pages 151–161. ACM, 1986. doi:10.1145/319838.319859.

56 Eugene E. Kohlbecker and Mitchell Wand. Macro-by-example: Deriving syntactic transforma-
tions from their specifications. In POPL, pages 77–84. ACM, 1987. doi:10.1145/41625.41632.

57 Pepijn Kokke and Wouter Swierstra. Auto in Agda - programming proof search using reflection.
In MPC, pages 276–301. Springer, 2015. doi:10.1007/978-3-319-19797-5_14.

58 Joomy Korkut and David Thrane Christiansen. Extensible type-directed editing. In TyDe,
pages 38–50. ACM, 2018. doi:10.1145/3240719.3241791.

59 LaunchBadge. Software: SQLx, 2023. . Accessed 2024-01-17. URL: https://github.com/
launchbadge/sqlx.

60 Fredrik Lindblad and Marcin Benke. A tool for automated theorem proving in Agda. In
TYPES, pages 154–169. Springer, 2004. doi:10.1007/11617990_10.

61 Yiyun Liu and Stephanie Weirich. Dependently-typed programming with logical equality
reflection. PACMPL, 7(ICFP):210:1–210:37, 2023. doi:10.1145/3607852.

62 Florian Lorenzen and Sebastian Erdweg. Sound type-dependent syntactic language extension.
In POPL, pages 204–216. ACM, 2016. doi:10.1145/2837614.2837644.

63 Gregory Malecha and Jesper Bengtson. Extensible and efficient automation through reflective
tactics. In ESOP, pages 532–559. Springer, 2016. doi:10.1007/978-3-662-49498-1_21.

64 Michał Marczyk. Answer to "does Clojure have identifier macros?". . Accessed 2024-01-18.
URL: https://stackoverflow.com/a/33426863/7327755.

65 Chris McCord. Phoenix 1.7.0 released: Built-in Tailwind, Verified Routes, LiveView Streams,
and what’s next, 2023. . Accessed 2024-01-17. URL: https://phoenixframework.org/blog/
phoenix-1.7-final-released.

66 Alp Mestanogullari, Sönke Hahn, Julian K. Arni, and Andres Löh. Type-level web APIs with
Servant: An exercise in domain-specific generic programming. In WGP, pages 1–12. ACM,
2015. doi:10.1145/2808098.2808099.

67 Ana L. Milanova and Wei Huang. Inference and checking of context-sensitive pluggable types.
In FSE, page 26. ACM, 2012. doi:10.1145/2393596.2393626.

68 David A. Moon. MACLISP reference manual, Revision 0. Technical report, MIT Project
MAC, 1974.

69 Multiple Authors. Language: Macros, 2023. . Accessed 2024-01-17. URL: https:
//clojure-doc.org/articles/language/macros/.

70 OCaml Contributors. OCaml PPX, 2024. . Accessed 2024-01-17. URL: https://ocaml.org/
docs/metaprogramming.

71 Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex Potanin, and Jonathan
Aldrich. Safely composable type-specific languages. In ECOOP, pages 105–130. Springer, 2014.
doi:10.1007/978-3-662-44202-9_5.

72 Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D.
Ernst. Practical pluggable types for Java. In ISSTA, pages 201–212. ACM, 2008. doi:
10.1145/1390630.1390656.

ECOOP 2024

https://doi.org/10.1145/3314221.3314630
https://doi.org/10.1145/3314221.3314630
https://veykril.github.io/tlborm/proc-macros/hygiene.html
https://doi.org/10.1561/2500000038
https://eugenkiss.github.io/7guis/
https://eugenkiss.github.io/7guis/
https://doi.org/10.1145/319838.319859
https://doi.org/10.1145/41625.41632
https://doi.org/10.1007/978-3-319-19797-5_14
https://doi.org/10.1145/3240719.3241791
https://github.com/launchbadge/sqlx
https://github.com/launchbadge/sqlx
https://doi.org/10.1007/11617990_10
https://doi.org/10.1145/3607852
https://doi.org/10.1145/2837614.2837644
https://doi.org/10.1007/978-3-662-49498-1_21
https://stackoverflow.com/a/33426863/7327755
https://phoenixframework.org/blog/phoenix-1.7-final-released
https://phoenixframework.org/blog/phoenix-1.7-final-released
https://doi.org/10.1145/2808098.2808099
https://doi.org/10.1145/2393596.2393626
https://clojure-doc.org/articles/language/macros/
https://clojure-doc.org/articles/language/macros/
https://ocaml.org/docs/metaprogramming
https://ocaml.org/docs/metaprogramming
https://doi.org/10.1007/978-3-662-44202-9_5
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1145/1390630.1390656

44:26 Type Tailoring

73 Lionel Parreaux. Squid—type-safe metaprogramming for Scala, 2024. . Accessed 2024-01-17.
URL: https://epfldata.github.io/squid/home.html.

74 Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E. Koch. Unifying
analytic and statically-typed quasiquotes. PACMPL, 2(POPL):13:1–13:33, 2018. doi:
10.1145/3158101.

75 Tomas Petricek, Gustavo Guerra, and Don Syme. Types from data: Making structured
data first-class citizens in F#. In PLDI, pages 477–490. ACM, 2016. doi:10.1145/2908080.
2908115.

76 Phoenix Contributors. Phoenix verified routes, 2023. https://hexdocs.pm/phoenix/Phoenix.
VerifiedRoutes.html. Accessed 2023-11-28.

77 Justin Pombrio and Shriram Krishnamurthi. Hygienic resugaring of compositional desugaring.
In ICFP, pages 75–87. ACM, 2015. doi:10.1145/2784731.2784755.

78 Racket Contributors. Racket syntax properties documentation, 2024. . Accessed 2024-01-17.
URL: https://docs.racket-lang.org/reference/stxprops.html.

79 Racket Contributors. Syntax transformers, 2024. . Accessed 2024-01-17. URL: https:
//docs.racket-lang.org/reference/stxtrans.html.

80 Rhombus Contributors. Rhombus documentation: Static and dynamic lookup, 2024. .
Accessed 2024-01-17. URL: https://docs.racket-lang.org/rhombus/Static_and_Dynamic_
Lookup.html.

81 Rhombus Contributors. Rhombus syntax object documentation, 2024. . Accessed 2024-01-17.
URL: https://docs.racket-lang.org/rhombus/stxobj.html.

82 Tiark Rompf. Reflections on LMS: exploring front-end alternatives. In SCALA, pages 41–50.
ACM, 2016. doi:10.1145/2998392.2998399.

83 Tiark Rompf and Nada Amin. A SQL to C compiler in 500 lines of code. Journal of Functional
Programming, 29:e9, 2019. doi:10.1017/S0956796819000054.

84 Tiark Rompf and Martin Odersky. Lightweight modular staging: A pragmatic approach
to runtime code generation and compiled DSLs. In GPCE, pages 127–136. ACM, 2010.
doi:10.1145/1868294.1868314.

85 Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jovanovic, HyoukJoong
Lee, Manohar Jonnalagedda, Kunle Olukotun, and Martin Odersky. Optimizing data structures
in high-level programs: New directions for extensible compilers based on staging. In POPL,
pages 497–510. ACM, 2013. doi:10.1145/2429069.2429128.

86 Rust Contributors. Rust macros, 2024. . Accessed 2024-01-17. URL: https://doc.rust-lang.
org/reference/procedural-macros.html.

87 Scala 3 Contributors. Scala 3 macros, 2024. . Accessed 2024-01-17. URL: https://docs.
scala-lang.org/scala3/guides/macros/macros.html.

88 Scala 3 Contributors. Scala 3 reference: Macros, 2024. . Accessed 2024-01-17. URL: https:
//docs.scala-lang.org/scala3/reference/metaprogramming/macros.html.

89 SciML Contributors. Software: OrdinaryDiffEq.jl, 2024. . Accessed 2024-01-17. URL:
https://github.com/SciML/OrdinaryDiffEq.jl.

90 Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell. In Haskell,
pages 1–16. ACM, 2002. doi:10.1145/581690.581691.

91 Olin Shivers. Control-flow analysis in Scheme. In PLDI, pages 164–174. ACM, 1988. doi:
10.1145/53990.54007.

92 Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In SFP. University
of Chicago, TR-2006-06, pages 81–92, 2006. URL: http://scheme2006.cs.uchicago.edu/
scheme2006.pdf.

93 Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. Refined
criteria for gradual typing. In SNAPL, pages 274–293. Schloss Dagstuhl, 2015. doi:10.4230/
LIPICS.SNAPL.2015.274.

94 Suzanne Soy. Software: type-expander, 2020. . Accessed 2023-12-21. URL: https://github.
com/SuzanneSoy/type-expander.

https://epfldata.github.io/squid/home.html
https://doi.org/10.1145/3158101
https://doi.org/10.1145/3158101
https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1145/2908080.2908115
https://hexdocs.pm/phoenix/Phoenix.VerifiedRoutes.html
https://hexdocs.pm/phoenix/Phoenix.VerifiedRoutes.html
https://doi.org/10.1145/2784731.2784755
https://docs.racket-lang.org/reference/stxprops.html
https://docs.racket-lang.org/reference/stxtrans.html
https://docs.racket-lang.org/reference/stxtrans.html
https://docs.racket-lang.org/rhombus/Static_and_Dynamic_Lookup.html
https://docs.racket-lang.org/rhombus/Static_and_Dynamic_Lookup.html
https://docs.racket-lang.org/rhombus/stxobj.html
https://doi.org/10.1145/2998392.2998399
https://doi.org/10.1017/S0956796819000054
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/2429069.2429128
https://doc.rust-lang.org/reference/procedural-macros.html
https://doc.rust-lang.org/reference/procedural-macros.html
https://docs.scala-lang.org/scala3/guides/macros/macros.html
https://docs.scala-lang.org/scala3/guides/macros/macros.html
https://docs.scala-lang.org/scala3/reference/metaprogramming/macros.html
https://docs.scala-lang.org/scala3/reference/metaprogramming/macros.html
https://github.com/SciML/OrdinaryDiffEq.jl
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/53990.54007
https://doi.org/10.1145/53990.54007
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
https://doi.org/10.4230/LIPICS.SNAPL.2015.274
https://doi.org/10.4230/LIPICS.SNAPL.2015.274
https://github.com/SuzanneSoy/type-expander
https://github.com/SuzanneSoy/type-expander

A. Wiersdorf, S. Chang, M. Felleisen, and B. Greenman 44:27

95 Eric Spishak, Werner Dietl, and Michael D. Ernst. A type system for regular expressions. In
FTfJP, pages 20–26. ACM, 2012. doi:10.1145/2318202.2318207.

96 Antonis Stampoulis and Zhong Shao. VeriML: Typed computation of logical terms inside a
language with effects. In ICFP, pages 333–344. ACM, 2010. doi:10.1145/1863543.1863591.

97 StaticArrays Contributors. StaticArrays, 2024. . Accessed 2024-01-17. URL: https://
juliahub.com/ui/Packages/General/StaticArrays/.

98 Guy L. Steele, Jr. Common Lisp. Digital Press, 2nd edition, 1990.
99 T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias Felleisen. Practical variable-arity

polymorphism. In ESOP, pages 32–46, 2009. doi:10.1007/978-3-642-00590-9_3.
100 Satish Thatte. Quasi-static typing. In POPL, pages 367–381, 1990. doi:10.1145/96709.96747.
101 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: from scripts to

programs. In DLS, pages 964–974, 2006. doi:10.1145/1176617.1176755.
102 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of Typed

Scheme. In POPL, pages 395–406, 2008. doi:10.1145/1328438.1328486.
103 Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Ben Green-

man, Andrew M. Kent, Vincent St-Amour, T. Stephen Strickland, and Asumu Takikawa.
Migratory typing: Ten years later. In SNAPL, pages 17:1–17:17. Schloss Dagstuhl, 2017.
doi:10.4230/LIPICS.SNAPL.2017.17.

104 Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and Matthias
Felleisen. Languages as libraries. In PLDI, pages 132–141, 2011. doi:10.1145/1993498.
1993514.

105 José Valim. Nx: Numerical Elixir, 2023. . Accessed 2024-01-16. URL: https://github.com/
elixir-nx/nx.

106 David Van Horn. Software: zombie, 2020. . Accessed 2023-02-20. URL: https://github.com/
philnguyen/soft-contract/tree/master/soft-contract/benchmark-contract-overhead.

107 Stephanie Weirich. The influence of dependent types (keynote). SIGPLAN Notices, 52(1),
2017. doi:10.1145/3093333.3009923.

108 Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman. Artifact for Type
Tailoring (ECOOP 2024), July 2024. doi:10.5281/zenodo.12726060.

109 Hongwei Xi. Dependent ML: An approach to practical programming with dependent types.
Journal of Functional Programming, 17(2):215–286, 2007. doi:10.1017/S0956796806006216.

110 Ningning Xie, Leo White, Olivier Nicole, and Jeremy Yallop. MacoCaml: Staging composable
and compilable macros. PACMPL, 7(ICFP), 2023. doi:10.1145/3607851.

ECOOP 2024

https://doi.org/10.1145/2318202.2318207
https://doi.org/10.1145/1863543.1863591
https://juliahub.com/ui/Packages/General/StaticArrays/
https://juliahub.com/ui/Packages/General/StaticArrays/
https://doi.org/10.1007/978-3-642-00590-9_3
https://doi.org/10.1145/96709.96747
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.4230/LIPICS.SNAPL.2017.17
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/1993498.1993514
https://github.com/elixir-nx/nx
https://github.com/elixir-nx/nx
https://github.com/philnguyen/soft-contract/tree/master/soft-contract/benchmark-contract-overhead
https://github.com/philnguyen/soft-contract/tree/master/soft-contract/benchmark-contract-overhead
https://doi.org/10.1145/3093333.3009923
https://doi.org/10.5281/zenodo.12726060
https://doi.org/10.1017/S0956796806006216
https://doi.org/10.1145/3607851

Higher-Order Specifications
for Deductive Synthesis of Programs with Pointers
David Young* # Ñ

University of Kansas, Lawrence, KS, USA

Ziyi Yang* # Ñ

National University of Singapore, Singapore

Ilya Sergey # Ñ

National University of Singapore, Singapore

Alex Potanin # Ñ

Australian National University, Canberra, Australia

Abstract
Synthetic Separation Logic (SSL) is a formalism that powers SuSLik, the state-of-the-art approach for
the deductive synthesis of provably-correct programs in C-like languages that manipulate heap-based
linked data structures. Despite its expressivity, SSL suffers from two shortcomings that hinder
its utility. First, its main specification component, inductive predicates, only admits first-order
definitions of data structure shapes, which leads to the proliferation of “boiler-plate” predicates
for specifying common patterns. Second, SSL requires concrete definitions of data structures to
synthesise programs that manipulate them, which results in the need to change a specification for a
synthesis task every time changes are introduced into the layout of the involved structures.

We propose to significantly lift the level of abstraction used in writing Separation Logic specific-
ations for synthesis – both simplifying the approach and making the specifications more usable and
easy to read and follow. We avoid the need to repetitively re-state low-level representation details
throughout the specifications – allowing the reuse of different implementations of the same data
structure by abstracting away the details of a specific layout used in memory. Our novel high-level
front-end language called Pika significantly improves the expressiveness of SuSLik.

We implemented a layout-agnostic synthesiser from Pika to SuSLik enabling push-button synthesis
of C programs with in-place memory updates, along with the accompanying full proofs that they
meet Separation Logic-style specifications, from high-level specifications that resemble ordinary
functional programs. Our experiments show that our tool can produce C code that is comparable in
its performance characteristics and is sometimes faster than Haskell.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Software and its engineering → Automatic programming; Software and its engineering → Compilers

Keywords and phrases Program Synthesis, Separation Logic, Functional Programming

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.45

Related Version Extended Version: https://arxiv.org/abs/2407.09143 [14]

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.25
Software (Source Code): https://github.com/roboguy13/PikaC

archived at swh:1:dir:b11b817c991d60c0916c4a3341a9932a4c4080ed
Software (Docker for Artifact evaluation): https://zenodo.org/records/10558356

Funding This work was partially supported by a Singapore Ministry of Education (MoE) Tier 3
grant “Automated Program Repair” MOE-MOET32021-0001 and MoE Tier 1 grant T1 251RES2108
“Automated Proof Evolution for Verified Software Systems”.

∗ Contributed equally to this work.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© David Young, Ziyi Yang, Ilya Sergey, and Alex Potanin;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 45; pp. 45:1–45:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d063y800@ku.edu
https://roboguy13.github.io/
https://orcid.org/0009-0006-1193-330X
mailto:yangziyi@u.nus.edu
https://www.yangdinglou.com/
https://orcid.org/0000-0002-8015-7846
mailto:ilya@nus.edu.sg
https://ilyasergey.net/
https://orcid.org/0000-0003-4250-5392
mailto:alex.potanin@anu.edu.au
https://potanin.github.io/
https://orcid.org/0000-0002-4242-2725
https://doi.org/10.4230/LIPIcs.ECOOP.2024.45
https://arxiv.org/abs/2407.09143
https://doi.org/10.4230/DARTS.10.2.25
https://doi.org/10.4230/DARTS.10.2.25
https://github.com/roboguy13/PikaC
https://archive.softwareheritage.org/swh:1:dir:b11b817c991d60c0916c4a3341a9932a4c4080ed;origin=https://github.com/roboguy13/PikaC;visit=swh:1:snp:53b0d53efe83a0e93559f7b2ad96e28e32e02e97;anchor=swh:1:rev:c14ae014d31b4fe12dd3ee7e69602e4b045cde56
https://zenodo.org/records/10558356
https://doi.org/10.4230/DARTS.10.2.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

Acknowledgements We thank the anonymous ECOOP 2024 PC and AEC reviewers for their
constructive and insightful comments.

1 Introduction

Recent advances in program synthesis have allowed programmers to concentrate on stating
precise specifications – leaving the job of generating provably correct and efficient imperative
code to the synthesiser, such as SuSLik [6, 9, 13]. Such specifications are usually expressed
using (Synthetic) Separation Logic [7, 10] that while hugely successful in verifying properties
of pointer-manipulating programs remains out of reach to many mainstream developers. As
the programs grow in complexity, such SSL specifications can become exceedingly verbose
and complex – making the job of specification writer especially error-prone and defeating the
purpose of a usable proof automation toolchain.

The power of Separation Logic (SL) specifications for the tasks of both verification and
synthesis, is its mechanism of inductive predicates that concisely capture the shape of possibly
recursive pointer-based tree-like data structures, determining both induction schemes for
verification and the shape of recursion for the synthesis tasks of the programs that manipulate
such data structures [10]. The surprising ability of SL specifications to capture precisely the
logic of a desired program to be synthesised in the logical assertions comes at the price of
the involved inductive predicates being (a) first-order and (b) somewhat low-level, with both
these aspects posing limitations to the usability of SL-based program synthesis.

The first-order nature of the predicates means, for instance, that synthesis tasks that
involve several data structures with very similar heap layouts would require to use different
predicate definitions. As a specific example, consider a task synthesising two functions, f
and g. Both f and g take as an argument a pointer to a linked list of integers; f increments
all elements of the list by one, while g multiplies all its elements by two. To specify these two
tasks, the state-of-the-art tools for program synthesis based on SL specifications require the
user to provide, in addition to the pre-/postconditions, three different inductive predicates:
one for an arbitrary list, another for a list that carries a known payload, with each element
incremented by one, and the final capturing the multiplication of each element by two.

The second aspect, i.e., the low-level nature of the SL inductive predicates used for
synthesis, shows up when we try to rewrite an already specified synthesis task for a data
structure with a slightly different layout. As an example, imagine defining the task of
concatenating two lists. It is natural to expect that the specification will look very similar
for both singly and doubly linked lists. Yet, since those are two different structures, with
two different layouts, the user would require to supply two different task specifications.

A seasoned programmer would immediately notice that both issues (a) and (b) very
much resemble the struggle that one faces when programming in a language that does not
provide certain abstractions, which are nowadays mostly taken for granted: higher-order
functions and abstract data types. Our first example could be streamlined should the SL-based
specification language offer a way to define a function similar to List.map, available in all
popular functional programming languages, so it could be used to concisely express the two
scenarios of manipulating with the payload of a list’s elements. The second example would
benefit from the ability to specify concatenation of abstract lists, while separately handling
manipulations with single- or doubly-linked lists in terms of their memory layouts.

D. Young, Z. Yang, I. Sergey, and A. Potanin 45:3

Pika code SuSLik specification SuSLik synthesis tree C code + SL proof

Figure 1 Pika translation pipeline.

Key Ideas
The two challenges faced by the SSL specification language for the synthesis of heap-
manipulating programs – the need for higher-order functions and abstract data types – have
provided the primary motivation for this work.

As a solution, we developed Pika: a high-level front-end language and specification
translation framework built on to of the state-of-the-art SL-based program synthesiser
SuSLik.1 SuSLik is based on a variant of separation logic called synthetic separation logic or
SSL [9]. Pika has a syntax similar to popular functional programming languages and features
specification-level higher-order functions on Algebraic Data Types (ADTs). In addition to
being more succinct in comparison to Synthetic Separation Logic (SSL), the specification
formalism of SuSLik, Pika also addresses its reusability issues outlined above. First, the
use of specification-level higher-order functions allows the user to abstract over the specific
properties of the payloads of the heap-based data structures, thus, generalising existing
inductive predicates for so they could be employed in a wider range of synthesis tasks. Second,
by manipulating ADTs, the synthesis specifications do not need to deal with the specific
memory layouts of the data structures. This separates the specification of the tasks that
operate on those data structures from the low-level details of their memory representations.

The Pika pipeline is depicted in Figure 1. As our goal was to extend the expressivity of
SuSLik by giving it a high-level specification language while retaining its meta-theoretical
guarantees (i.e., the certifiable correctness of the programs it synthesises), we had to overcome
several technical obstacles when designing Pika and implementing it on top of SuSLik. First,
we had to formally define the operational semantics of Pika and its translation to SSL-based
specifications of SuSLik, defining the corresponding soundness result, relating the behaviour of
programs eventually synthesised to that of their high-level counterparts (Section 3). Second,
to support the higher-order specifications of Pika, we introduced conservative extensions
to SuSLik’s specification language as well as to its deductive synthesis rules, to make it
capable of handling pre-/postconditions with first-class functions operating on the payload
of heap-stored data types (Section 4).

Pika as a Programming Language
Given the close similarity of Pika, our new specification language, to general-purpose func-
tional programming languages, such as Haskell, it is natural to wonder whether it’s possible
to leverage its underlying synthesis pipeline as a way to produce efficient imperative programs
in a language such as C from equivalent high-level functional programs. In other words, if we
decide to use a combination Pika + SuSLik as a compiler, would it be a viable replacement to
many-decades old tools such as Glasgow Haskell Compiler (GHC) [3], for producing efficient
runnable code? To answer this question, we have conducted evaluation on several list- and
tree-manipulating benchmarks, comparing the performance of verified C code, emitted by
SuSLik from Pika specifications, to that of executables produced for equivalent tasks by GHC.

1 Both susliks and pikas are Central Asian mammals. Pikas might look similar to susliks, but are more
nimble and have longer life expectancy.

ECOOP 2024

45:4 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

Our preliminary results are encouraging: thanks to avoiding unnecessary allocation and
using destructive heap updates whenever possible, the C code synthesised by Pika + SuSLik
outperforms the GHC output (with compiler optimisations flags turned) in the majority
of list-manipulating benchmarks we’ve tried; our synthesis tool also produces strictly more
performant C code for tree-manipulating benchmarks when compared to the corresponding
Haskell programs, compiled by GHC without or with optimisations (Section 5). In particular,
we specifically observe this when we compare C code synthesised by Pika + SuSLik with no
C compiler optimisation flags to GHC compiled code with no GHC compiler flags.

Contributions
In this work, we make the following contributions:

We address the expressivity limitations of SSL, the specification formalism of the state-
of-the-art deductive synthesis tool SuSLik by developing Pika– a high-level specification
language with higher-order functions and abstract data types.
We formally define the operational semantics of Pika and prove the soundness of translation
from Pika to pre-/postconditions in SSL.
We develop an extension to SuSLik’s specification and synthesis mechanism that enables
translation from Pika specifications featuring first-class functions.
We observe that the synthesis tool resulting from the combination Pika + SuSLik enables
certified memory-layout-agnostic compilation from a functional specification to C code.
We report on the evaluation of the Pika regarding its expressiveness and performance.
In particular, we show that the C code it produces frequently outperforms equivalent
Haskell programs compiled by GHC.

2 Overview

2.1 Background
The Pika language is translated into SuSLik [9], which is a program synthesis tool that uses
Synthetic Separation Logic (SSL)-a variant of Hoare-style [4] Separation Logic (SL) [7].

A synthesis task specification in SuSLik is given as a function signature together with a
pair of pre- and post-conditions, which are both SL assertions [9]. The synthesiser generates
code that satisfies the given specification, along with the SL proof of its correctness by
searching in a space of proofs that can be derived by using the rules of the underlying logic [13].
A distinguishing feature of Synthetic Separation Logic is the format of its assertions. An SSL
assertion consists of two parts: a pure part and a spatial part. The pure part is a Boolean
expression constraining the variables of the specification using a few basic relations, like
equality and the less-than relation for integers. The spatial part is a symbolic heap, which
consists of a list of heaplets separated by the ∗ symbol.

Each heaplet takes on one of the following forms [9]:
emp: This represents the empty heap. It is also the left and right identity for ∗.
ℓ 7→ a: This asserts that memory location ℓ points to the value a. It also asserts that the
location ℓ is accessible.
[ℓ, ι]: At memory location ℓ, there is a block of size ι.
p(ϕ): This is an application of the inductive predicate p to the arguments ϕ. An induct-
ive predicate has a collection of branches, guarded by Boolean expressions (conditions) on
the parameters. The body of each branch is an SSL assertion. The assertion associated
with the first branch condition that is satisfied is used in place of the application. Note
that inductive predicates can be (and often are) recursively defined.

D. Young, Z. Yang, I. Sergey, and A. Potanin 45:5

Variable x, y Alpha-numeric identifiers ∈ Var
Size, offset n, ι Non-negative integers
Expression e ::= 0 | true | x | e = e | e ∧ e | ¬e | d
T -expr. d ::= n | x | d+ d | n · d | {} | d | · · ·
Command c ::= let x = *(x + ι) | *(x + ι) = e |

let x = malloc(n) | free(x) | error | f(ei)
Program Π ::= f(xi) { c } ; c
Logical variable ν, ω

Cardinality variable α

T -term κ ::= ν | e | · · ·
Pure logic term ϕ, ψ, χ ::= κ | ϕ = ϕ | ϕ ∧ ϕ | ¬ϕ
Symbolic heap P,Q,R ::= emp | ⟨e, ι⟩ 7→ e | [e, ι] | pα(ϕi) | P ∗Q
Heap predicate D ::= pα(xi) : ej ⇒ ∃y.{χj ;Rj}
Assertion P,Q ::= {ϕ;P}
Environment Γ ::= ∀xi.∃yj .

Context Σ ::= D
Synthesis goal G ::= P ⇝ Q

Figure 2 Syntax of Synthetic Separation Logic.

The general form of an SSL assertion is (p;h1 ∗ h2 ∗ · · · ∗ hn), where p is the pure part and
h1, h2, · · · , hn are the heaplets which are the conjuncts that make up a separated conjunction
of the spatial part. ∗ is separating conjunction: h1 ∗ h2 means that the heaplets h1 and h2
apply to disjoint parts of the heap. A syntax definition for SSL is given in Figure 2, which is
adapted from Cyclic Program Synthesis by Itzhaky et al. [6]. We will also use the symbol **
for separating conjunction and the symbol :-> for 7→.

As the specification language of SuSLik, SSL serves as the compilation target for the
Pika language. From there, executable programs are generated through SuSLik’s program
synthesis. Consider a program that takes an integer x and a result in location r and stores
x+ 1 at location r. This can be written as the SuSLik specification:

void add1Proc (int x, loc r)
{ r :-> 0 }
{ y == x + 1 ; r :-> y }

{ ?? }

This example can be written as follows in our tool:

add1Proc : Int -> Int;
add1Proc x := x + 1;

In contrast with SuSLik spec, the Pika one requires no direct manipulation with pointers.

2.2 The Pika Language
While SSL provides a specification language that allows tools like SuSLik to synthesise code,
it is only able to express specifications as pointers. This is useful for some applications,
such as embedded systems, but it does not provide any high-level abstractions. As a result,
every part of a specification is tailored to a specific memory representation of each data
structure involved. To address this shortcoming, we introduce a language with algebraic data
types that gets translated into SSL specifications. Additionally, we introduce a language
construct that allows the programmer to specify a memory representation of an algebraic

ECOOP 2024

45:6 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

data List := Nil | Cons Int List;

Sll : List >-> layout [x];
Sll (Nil) := emp;
Sll (Cons head tail) := x :-> head , (x+1) :-> tail , Sll tail;

Figure 3 List algebraic data type together with its singly-linked list layout Sll.

data type called a layout. The distinction between algebraic data types and layouts provides
the separation of concerns between the low-level representation of a data structure and code
that manipulates it at a high level.

Syntactically, Pika resembles a functional programming language of the Miranda [12] and
Haskell [5] lineage. It supports algebraic data types, pattern matching at top-level function
definitions (though not inside expressions) and Boolean guards. The primary difference
arises due to the existence of layouts and the fact that the language is compiled to an SSL
specification rather than executable code. Beyond algebraic data types and layouts, Pika
has a built-in type for integers as well as Booleans.

Functions in Pika are only defined by their operations on algebraic data types. Thus, all
function definitions are “layout-polymorphic” over the particular choices of layouts for their
arguments and result. Giving a layout polymorphic function, a particular choice of layouts is
called “instantiation”. Specifying the layout of a non-function value is called “lowering.”

The code generator is instructed to generate a SuSLik specification for a certain func-
tion at a certain instantiation by using a %generate directive. For example, if there is
a function definition with the type signature mapAdd1 : List -> List, a line reading
%generate mapAdd1 [Sll] Sll would instruct the Pika compiler to generate the SuSLik
inductive predicate corresponding to mapAdd1 instantiated to the Sll layout for both its
argument and its result. An example of an ADT definition and a corresponding layout
definition is given in Figure 3. There is one unusual part of the syntax in particular that
requires further explanation: layout type signatures. A layout definition consists of a layout
type signature and a pattern match (much like a function definition), with lists of SSL heaplets
on the right-hand sides. A layout type signature has a special form A : α ↣ layout[x].
This says that the layout A is for the algebraic data type α and the SSL output variable x
denoting the “head” pointer of the respective structure.

2.3 Pika by Example
We demonstrate the characteristic usages of Pika by a series of examples. In these examples,
we will often make use of the List algebraic data type and its Sll layout from Figure 3. A
simple example of Pika code that illustrates algebraic data types and layouts is a function
which creates a singleton list out of the given integer argument:

% generate singleton [Int] Sll

singleton : Int -> List;
singleton x := Cons x (Nil);

This gets compiled to the following SuSLik specification (modulo auto-generated names):

predicate singleton (int p, loc r) {
| true => { r :-> p ** (r+1) :-> 0 ** [r ,2] }
}

D. Young, Z. Yang, I. Sergey, and A. Potanin 45:7

predicate sll(loc x) {
| x == 0 => { emp }
| not (x == 0) => { [x, 2] ** x :-> v ** (x+1) :-> nxt ** sll(nxt) }
}

predicate mapAdd1 (loc x, loc r) {
| x == 0 => { emp }
| not (x == 0) => { [x, 2] ** x :-> v ** (x+1) :-> xNxt ** [r, 2]

** r :-> (v+1) ** (r+1) :-> rNxt ** mapAdd1 (xNxt , rNxt) } }

void mapAdd1_fn (loc x, loc y)
{ sll(x) ** y :-> 0 }
{ y :-> r ** mapAdd1 (x, r) }

{ ?? }

Figure 4 Specifying a function that adds one to each element of a singly-linked list in SuSLik.

A slightly more complicated example comes from trying to write a functional-style map
function directly in SuSLik. Consider a function which adds 1 to each integer in a list of
integers. Considering the list implementation to be a singly-linked list with a fixed layout,
one way to express this in SuSLik is shown in Figure 4. In the mapAdd1 predicate, the input
list is given as the x parameter and the r parameter points to the output list. In the non-null
case, the head of r is required to be the successor of the head of x. The predicate is then
applied recursively to the tails.

Note that inductive predicates are used for two different purposes: the sll inductive
predicate describes a singly-linked list data structure, while the mapAdd1 inductive predicate
describes how the input list relates to the output list. Both are used in the specification of
mapAdd1_fn: sll in the precondition and mapAdd1 in the postcondition.

Using the mapAdd1 inductive predicate gives us two advantages over attempting to put
the SSL propositions directly into the postcondition of mapAdd1_fn:
1. We are able to express a conditional on the shape of the list. This is much like pattern

matching in a language with algebraic data types, but we are examining the pointer
involved directly.

2. We are able to express recursion part of the postcondition: the mapAdd1 inductive
predicate refers to itself in the not (x == 0) branch.

These two features are both reminiscent of features common in functional programming lan-
guages: pattern matching and recursion. However, there are still some significant differences:

In traditional pattern matching, the underlying memory representation of the data
structure is not exposed.
Compared to a functional programming language, the meaning of the specification is
more obscured. It is necessary to think about the structure of the linked data structure to
determine what the specification is saying. This is related to the first point: The memory
representation is front-and-center.
In many functional languages, mutation is either restricted or generally discouraged. In
SuSLik, mutation is commonplace.

Suppose we want to write the functional program that corresponds to this specification.
One way to do this in a Haskell-like language is by using the List type from Figure 3.

mapAdd1_fn : List -> List;
mapAdd1_fn (Nil) := 0;
mapAdd1_fn (Cons head tail) := Cons (head + 1) (mapAdd1_fn tail);

ECOOP 2024

45:8 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

The only missing information is the memory representation of the List data structure. We
do not want the mapAdd1_fn implementation to deal with this directly, however. We want to
separate the more abstract notions of pattern matching and constructors from the concrete
memory layout that the data structure has.

To accomplish this, we now extend the code with the definition of Sll from Figure 3.
Sll is a layout for the algebraic data type List. Now we have all of the information of
the original specification but rearranged so that the low-level memory layout is separated
from the rest of the code. This separation brings us to an important observation about
the language, manifested throughout these examples: none of the function definitions need
to directly perform any pointer manipulations. This is relegated entirely to the reusable
layout definitions for the ADTs. The examples are written entirely as recursive functions
that pattern match on, and construct, ADTs.

All that is left is to connect these two parts: the layouts and the function definitions.
We instruct a SuSLik specification generator to generate a SuSLik specification from the
mapAdd1_fn function using the Sll layout:

% generate mapAdd1_fn [Sll] Sll

The [Sll] part of the directive tells the generator which layouts are used for the arguments.
In this case, the function only has one argument and the Sll layout is used. The Sll at the
end specifies the layout for the result.

2.3.1 Synthesising the in-place map function
We can generalise our mapAdd1 to map arbitrary Int functions over a list and then redefine
mapAdd1 using the new map.

% generate mapAdd1 [Sll] Sll

data List := Nil | Cons Int List;

Sll : List >-> layout [x];
Sll (Nil) := emp;
Sll (Cons head tail) := x :-> head , (x+1) :-> tail , Sll tail;

map : (Int -> Int) -> List -> List;
map f (Nil) := Nil;
map f (Cons x xs) := Cons (instantiate [Int] Int f x) (map f xs);

add1 : Int -> Int;
add1 x := x + 1;

mapAdd1 : List -> List;
mapAdd1 xs := instantiate [Int -> Int , Sll] Sll map add1 xs;

The keyword instantiate gives specific layouts to use for the types in function applications,
e.g., if a function g has type A -> B -> C -> D, then instantiate [L1, L2, L3] L4 g x y z
will use layout L1 for type A, L2 for type B, L3 for type C and, finally, L4 for the result type
D, while applying the function g to the three arguments x, y and z.

This example makes use of instantiate in two places. The first one in the call of
instantiate [Int] Int f x: the builtin Int layout is used for both the input and output. In
this special case, the Int layout shares a name with the Int type that it represents. This is
necessary since instantiate is used for all non-recursive (non constructor) calls.

D. Young, Z. Yang, I. Sergey, and A. Potanin 45:9

predicate filterLt9 (loc x, loc r) {
| (x == 0) => { r == 0 ; emp }
| not (x == 0) && head < 9 =>

{ x :-> head ** (x+1) :-> tail ** [x ,2] ** filterLt9 (tail , r) }
| not (x == 0) && not (head < 9) =>

{ x :-> head ** (x+1) :-> tail ** [x ,2] ** filterLt9 (tail , y)
** r :-> head ** (r+1) :-> y ** [r ,2] } }

void filterLt9 (loc x1 , loc r)
{ Sll(x1) ** r :-> 0 }
{ filterLt9 (x1 , r0) ** r :-> r0 }

{ ?? }

Figure 5 SuSLik specification of filterLt9, excluding Sll, which is given in Figure 3.

In the second use, instantiate [Int -> Int, Sll] Sll map add1 xs, we specify that the
second argument uses the Sll layout for the List type from Figure 3. We also give Sll as
the layout for the result of the call. Note that it is not necessary to use instantiate for the
recursive call to map. This is because the appropriate layout is inferred for recursive calls.

The type signature of mapAdd1 implies that it is layout polymorphic, as the type does
not refer to any specific layout. It might be surprising that instantiate is required in the
body of mapAdd1 since the type signature of mapAdd1 suggests that it is layout polymorphic
and yet we must pick a specific List layout when we use instantiate to call map. This is
because, in general, a call inside the body of some function fn might use any layout, even
layouts that have no relation to the layouts that fn is instantiated to. Finally, please note
that our benchmarks shown in Figure 1 include a more general version of mapAdd.

2.3.2 Guards

While we have a pattern-matching construct at the top level of a function definition, we have
not seen a way to branch on a Boolean value so far. This is a feature that is readily available
at the level of SuSLik, since the same conditional construct we use to implement pattern
matching can also use other Boolean expressions.

We can expose this in the functional language using a guard, much like Haskell’s guards.
Suppose we want to write a specialised filter-like function. Specifically, we want a function
that filters out all elements of a list that are less than 9. This is a specific example where
the SuSLik specification is noticeably more difficult to read. For a SuSLik specification of
this example, see Figure 5. On the other hand, an implementation of this in Pika is:

% generate filterLt9 [Sll] Sll

filterLt9 : List -> List;
filterLt9 (Nil) := Nil;
filterLt9 (Cons head tail)

| head < 9 := filterLt9 tail;
| not (head < 9) := Cons head (filterLt9 tail);

When translating a guarded function body, the translator takes the conjunction of the
Boolean guard condition with the condition for the pattern match. Finally, please note that
our benchmarks shown in Figure 1 include a more general version of filterLt.

ECOOP 2024

45:10 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

While the SuSLik version of filterLt9 requires working with pointers directly, the Pika
version uses pattern matching and constructor application. This allows the Pika code to
work independent of the layout used.

2.3.3 if-then-else

Another feature that is common in functional languages is if-then-else expressions. This
has a straightforward translation into SuSLik. The if-then-else construct corresponds to
SuSLik’s C-like ternary operator. We can use this feature to implement the even function
which produces 1 is the argument is even and 0 otherwise.

% generate even [Int] Int

even : Int -> Int;
even (n) := if (n % 2) == 0 then 1 else 0;

2.3.4 Using multiple layouts
To show the interaction between multiple algebraic data types, we write a function that
follows the left branches of a binary tree and collects the values stored in those nodes into
a list. This example demonstrates a binary tree algebraic data type and a layout that
corresponds to it.

% generate leftList [TreeLayout] Sll

data Tree := Leaf | Node Int Tree Tree;

TreeLayout : Tree >-> layout [x];
TreeLayout (Leaf) := emp;
TreeLayout (Node payload left right) := x :-> payload , (x+1) :-> left ,

(x+2) :-> right , TreeLayout left , TreeLayout right;

leftList : Tree -> List;
leftList (Leaf) := Nil;
leftList (Node a b c) := Cons a (leftList b);

2.3.5 Synthesising fold
A fold is a common kind of operation on a data structure in functional programming, where
a binary function is applied to the elements of a data structure to create a summary value.
For example, if the binary function is the addition function, it will give the sum of all the
elements of the data structure. The classic example of such a fold is a fold on a list. In this
example, we will write a right fold over a List.

% generate fold_List [Int , Sll] Int
fold_List : Int -> List -> Int;
fold_List z (Nil) := z;
fold_List z (Cons x xs) :=

instantiate [Int , Int] Int f x (fold_List z xs);

D. Young, Z. Yang, I. Sergey, and A. Potanin 45:11

We will specifically look at the specialization where we use the addition function for f so
that we can focus on way that layouts are used in the translation. This sort of specialization
corresponds to defunctionalization. The compiler produces the following SuSLik specification
for fold_List:

predicate fold_List (int i1 , loc x, int i2) {
| x == 0 => { i2 == i1 ; emp }
| not (x == 0) => { (zz4 == i1) && ((zz5 == nxt13) &&

(i2 == (h + b3))) ; [x ,2] ** x :-> h ** (x + 1) :-> nxt13 **
fold_List (zz4 , zz5 , b3) } }

The first two parameters of the SuSLik predicate correspond to the two arguments of the
Pika function. The final parameter of the predicate, i2, corresponds to the output of the
Pika function. There are two cases:
1. The x == 0 case corresponds to the Nil case in Pika. In this case, the pure part of

the assertion (to the left of the semicolon) requires that the output is equal to the first
parameter. This is because the Pika function returns the first parameter in its Nil case.

2. The not (x == 0) case corresponds to the Cons case. First, let’s look at the spatial
part (this is everything to the right of the semicolon). The pattern match destructures
the Cons into its head and tail. Likewise, in the spatial part of the SuSLik predicate,
we require that x points to h (the head) and x + 1 points to nxt13 (the tail). We also
recursively call the predicate on the tail. The pure part does two things: it introduces
new names for things (these are used internally) and it requires that the output i2 is the
sum of the head (h) and the value obtained from the output of the recursive call (b3).

3 Formal Semantics of Pika

In this section, we have the following plan:
We define abstract machine semantics for executing a subset of Pika programs. This
semantics is given by the big-step relation 7−→ which we define later.
We define the translation from that subset of Pika into SSL. This translation is given
by the function T JeKV,r from Pika expressions into SSL propositions. The r is a variable
name to be used in the resulting proposition and V is a collection of fresh names.
We prove a soundness theorem. Given any well-typed expression e and an abstract
machine reduction producing the store-heap pair (σ′, h′), the SSL translation of e should
be satisfied by SSL model (σ′, h′). This is stated formally, and proven, in Theorem 3.

This subset of Pika does not have guards or conditional expressions, but it does have
pattern matching. It also has the requirement that functions can only have one argument.
Unlike the implementation, there is no elaboration. As a result, every algebraic data type
value must be lowered to a specific layout at every usage and every function application must
be explicitly instantiated with a layout for the argument and a layout for the result. We also
limit the available integer and Boolean operations for brevity.

The grammar for this subset is given in Figure 6. The grammar for types, layout
definitions and algebraic data type definitions remain the same as before and are therefore
omitted. instA,B(f) corresponds to instantiate [A] B f. We also include another con-
struct, lowerA(C e1 · · · en). This says to use the specific layout A for the given constructor
application C e1 · · · en.

The semantics for SSL are largely derived [9] from standard separation logic semantics. [11]

ECOOP 2024

45:12 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

⟨i⟩ ::= · · · | -2 | -1 | 0 | 1 | 2 | · · ·

⟨b⟩ ::= true | false

⟨e⟩ ::= ⟨var⟩ | ⟨i⟩ | ⟨b⟩ | ⟨e⟩ + ⟨e⟩ | C ⟨e⟩ | instA,B(f)(⟨e⟩) | lowerA(⟨e⟩)

⟨fn-def ⟩ ::= ⟨fn-case⟩

⟨fn-case⟩ ::= f ⟨pattern⟩ := ⟨e⟩

Figure 6 Grammar for restricted Pika subset.

3.1 Overview of the Two Interpretations
The soundness theorem will link the abstract machine semantics to the translation. In fact,
the abstract machine semantics and the translation are similar to each other. For the abstract
machine we manipulate concrete heaps, while for the translation we generate symbolic heaps.

Comparing the two further, there are two main points (beyond what we’ve already
mentioned) where these two interpretations of Pika differ:
1. When we need to unfold a layout, how do we know which layout branch to choose?
2. How do we translate function applications (including, but not limited to, recursive

applications)?

First, consider the abstract machine semantics. In this case, we are able to choose
which branch of a layout to use by evaluating the expression we are applying it to until the
expression is reduced to a constructor value (where a “constructor value” is either a value or
a constructor applied to constructor values). If the expression is well-typed, this will always
be a constructor of the algebraic data type corresponding to the layout. The two rules that
this applies to are AM-Lower and AM-Instantiate. To interpret a function application,
we interpret its arguments and substitute the results into the body of the function. We
then proceed to interpret the substituted function body. This process is performed by the
AM-Instantiate rule.

Next, consider the SSL translation. Here we can determine which layout branch to
use by generating a Boolean condition that will be true if and only if the SSL proposition
on the right-hand side of the branch holds for the heap. Note that we assume that the
programmer-supplied layout definitions are injective functions from algebraic data types to
SSL assertions (up to bi-implication). We can directly translate function applications into
SSL inductive predicate applications. Since inductive predicates already allow for recursive
applications, there is no special handling necessary for recursion.

After defining these interpretations, we show how the abstract machine relation 7−→ and
the SSL interpretation function T JeKV,r relate to each other by the Soundness Theorem 3.

3.2 Abstract Machine Semantics
In this section, we will define an abstract machine semantics for Pika and relate this to the
standard semantics for SSL.

3.2.1 Notation and Setup
The set of values is Val = Z ∪ B ∪ Loc. Each of these three sets is disjoint from the other
two. In particular, note that Loc and Z are disjoint.

D. Young, Z. Yang, I. Sergey, and A. Potanin 45:13

There is also a set of Pika values FsVal. This includes all the elements of Val, but also
includes “constructor values” given by the rules in Figure 7. In addition to the store and
heap of standard SSL semantics, the abstract machine semantics uses an FsStore. This is a
partial function from locations to Pika values: FsStore = Loc ⇀ FsVal. The primary purpose
of this is to recover constructor values when given a location.

The general format of the transition relation is (e, σ, h,F) 7−→ (v, σ′, h′,F ′, r), where the
expression e results in the store being updated from σ to σ′, the heap being updated from h

to h′, v is the Val obtained by evaluating e, the initial and final FsStore are F and F ′ and
the result is stored in variable r. We assume that there is a global environment Σ which
contains all layout definition equations and function definition equations.

Given a heap h and a heap layout H, we will make use of the notation h · [H]. This
extends the heap with the location assignments given in H. We say that the layout body
H is acting on the heap h. This is defined in Figure 9. The intuition for this is that h gets
updated using the symbolic heap description in H. For example, ∅ · [a :-> 7] will contain
only the value 7 at the location a. It is assumed that H does not have any variables on the
right-hand side of :->.

3.2.2 Abstract Machine Rules
The abstract machine semantics provides big-step operational semantics for evaluating Pika
expressions on a heap machine. Its rules, given by Figure 8, make use of standard SSL
models:

Model M ::= (σ, h)
Store σ : Var ⇀ Val
Heap h : Loc ⇀ Val

Note that a compound expression, consisting of multiple subexpressions, uses disjoint parts
of the heap for each subexpression. This can be seen in the AM-Add, AM-Lower and
AM-Instantiate rules, which is essential for the proof of Soundness Theorem 3.

3.3 Translating Pika Specifications into SSL
We will define two translations: One from Pika expressions into SSL propositions and the
other from Pika definitions into SSL inductive predicate definitions. We start with the former.

3.3.1 Translating Expressions
In the rules given in Figure 10, the notation IA,B(f) gives the name of the inductive predicate
that the Pika function f translates to when it is instantiated to the layouts A and B.

We start by defining the translation rules for expressions. We use these translation rules
in Lemma 1 to define a translation function T J·KV,r. Then, we will define translation rules for
function definitions. The translation relation for expressions has the form (e, V) ⇓ (p, s, V ′, v),
where p and s are the pure part and spatial part (respectively) of an SSL assertion and
V, V ′ ∈ P(Var).

The rules can be thought of as being in two groups:
1. Rules for base type expressions, such as S-Lit and S-Add.
2. Rules for using layouts to translate expressions whose types involve algebraic data types.

Examples include S-Lower-Constr and S-Inst-Inst.

ECOOP 2024

45:14 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

x ∈ Val
x ∈ FsVal FsVal-Base

x1 ∈ FsVal · · · xn ∈ FsVal
(C x1 · · ·xn) ∈ FsVal FsVal-Constr

Figure 7 FsVal judgment rules.

r fresh i ∈ Z σ′ = σ ∪ {(r, i)}
(i, σ,∅,F) 7−→ (i, σ′,∅,F , r) AM-Int

r fresh b ∈ B σ′ = σ ∪ {(r, b)}
(b, σ,∅,F) 7−→ (b, σ′,∅,F , r) AM-Bool

v ∈ dom(σ) σ(v) ̸∈ Loc
(v, σ,∅,F) 7−→ (σ(v), σ,∅,F , v) AM-Var-Base

v ∈ dom(σ) σ(v) ∈ Loc
(v, σ,∅,F) 7−→ (F(σ(v)), σ,∅,F , v) AM-Var-Loc

(x, σ,F , h1) 7−→ (x′, σx, h
′
1,F , vx) (y, σx,F , h2) 7−→ (y′, σy, h

′
2,F , vy)

r fresh h = h1 ◦ h2 h′ = h′
1 ◦ h′

2 z = x′ + y′ σ′ = σy ∪ {(r, z)}
(x+ y, σ, h,F) 7−→ (z, σ′, h′,F , r) AM-Add

(A[x] (C a1 · · · an) := H) ∈ Σ (e, σ0, h0) 7−→ (C e1 · · · en, σ1, h1, y1)
(ei, σi, hi) 7−→ (e′

i, σi+1, h
′
i, vi) for each 1 ≤ i ≤ n

h′ = h′
1 ◦ h′

2 ◦ · · · ◦ h′
n h = h0 ◦ h1 ◦ · · · ◦ hn σ′ = σn+1 ∪ {(r, ℓ)}

ℓ fresh r fresh
H ′ = H[x := ℓ][a1 := σ2(v1)][a2 := σ3(v2)] · · · [an := σn+1(vn)]

F ′ = F ∪ {(ℓ, (C e′
1 · · · e′

n))}
(lowerA(e), σ0, h,F) 7−→ ((C e′

1 · · · e′
n), σ′, h′ · [H ′],F ′, r) AM-Lower

(A[x] (C a) := H) ∈ Σ (f (C b) := ef) ∈ Σ
(e, σ, h) 7−→ (C e1, σ1, h1, y)
(e1, σ1, h1) 7−→ (e′

1, σ2, h2, r)
ℓ fresh r fresh y fresh

H ′ = H[x := ℓ][a := e′
1] h′ = h1 · [H ′] σ′ = σf ∪ {(r, ℓ)}

F ′ = F ∪ {(ℓ, (C e′
1))}

(lowerB(ef [b := y]), σ2, h
′) 7−→ (e′

f , σf , h
′′, r)

(instA,B(f)(e), σ,F , h) 7−→ (e′
f , σ

′, h′′,F ′, r) AM-Instantiate

Figure 8 Abstract machine semantics rules.

h · [emp] = h
L-Emp

h′ = h · [H] a ∈ Val
h · [ℓ :-> a,H] = h′[ℓ 7→ a] L-PointsTo

e ∈ Val
h · [A[x](e), H] = h · [H] L-Apply

Figure 9 Rules for layout bodies acting on heaps.

D. Young, Z. Yang, I. Sergey, and A. Potanin 45:15

In the first group, consider S-Add. In the result of the translation, we’ve included
v == v1 + v2 in the list of conjuncts in the pure part. Here, v1 and v2 are the results of the
two subexpressions in the addition. In the pure part, we also include the pure parts of the
two subexpressions as conjuncts. These are p1 and p2. The spatial part of the translation
consists of the spatial parts of the two subexpressions, s1 and s2.

Now, in the second group, consider S-Lower-Constr. This translates a Pika constructor
application expression using a specific layout (which is provided by using the lower−(−)
construct). It takes the specific branch of the layout corresponding to the constructor in
question and puts the right-hand side of that branch into the spatial part, after applying the
appropriate substitutions for the arguments given to the constructor in the application. The
right-hand side of the layout branch is H and, after the substitution, it is called H ′.

The S-Inst-Inst rule is used to translate a function application being applied to the
result of another function application, given particular layouts for each application. In
SuSLik, it does not make sense to directly apply a predicate to another predicate application.
Therefore, we must do an ANF-like translation, where the result does not have “compound”
applications like this. This translation is exactly what S-Inst-Inst is doing.

▶ Lemma 1 (T J·K function). (·, V) ⇓ (·, ·, ·, r) is a computable function Expr → (Pure ×
Spatial × P(Var)), given fixed V and r where r ̸∈ V .

By throwing away the third element of the tuple in the codomain, we obtain a function
Expr → (Pure × Spatial) from expressions to SSL propositions.

Call this function T J·KV,r. That is, we define the function as follows where r ̸∈ V :

T JeKV,r = (p; s) ⇐⇒ (e, V) ⇓ (p, s, V ′, r) for some V ′

We highlight the computability of this function to emphasise the fact that it can be used
directly in an implementation of this subset of Pika.

3.3.2 Translating Function Definitions
The next step is to define the translation for Pika function definitions. In order to do this, we
must first figure out how to determine the appropriate layout branch to use when unfolding a
layout, a problem we highlighted earlier. Once this is accomplished, the rest of the translation
can be defined. When this problem was solved for the abstract machine semantics, it was
possible to simply evaluate the Pika expression until a constructor application expression
was reached. From there, it is possible to just look at the constructor name and match it
against the appropriate layout branch.

For the translation, however, we do not have the luxury of being able to evaluate
expressions. Instead, we must instead rely on the fact that, in SSL, a “pure” (Boolean)
condition can determine which inductive predicate branch to use. The question becomes:
Given an algebraic data type and a layout for that ADT, how do we generate an appropriate
Boolean condition for a given constructor for the ADT?

The solution is to find a Boolean condition which, given that the inductive predicate
holds, is true if and only if the layout branch corresponding to that ADT constructor is
satisfiable. In more detail, to define the branches of an inductive predicate IA(x), given an
ADT α, a constructor C : β1 → β2 → · · · → βn → α, a layout A : α ↣ layout[x] with a
branch A[x] (C a1 · · · an) := H and given that IA(x) holds, find a Boolean expression b with
one free variable x such that b ⇐⇒ ∃σ, h. (σ, h) |= H.

ECOOP 2024

45:16 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

i ∈ Z v fresh
(i, V) ⇓ (v == i, emp, V ∪ {v}, v) S-Int

b ∈ B v fresh
(b, V) ⇓ (v == b, emp, V ∪ {v}, v) S-Bool

v ∈ Var
(v, V) ⇓ (true, emp, V, v) S-Var

(e1, V0) ⇓ (p1, s2, V1, v1) (e2, V1) ⇓ (p2, s2, V2, v2) v fresh
(e1 + e2, V0) ⇓ (v == v1 + v2 ∧ p1 ∧ p2, s1 ∗ s2, V2 ∪ {v}, v) S-Add

v ∈ Var
(lowerA(v), V) ⇓ (true, A(v), V ∪ {v}, v) S-Lower-Var

(A[x] (C a1 · · · an) := H) ∈ Σ
(ei, Vi) ⇓ (pi, si, Vi+1, vi) for each 1 ≤ i ≤ n

v fresh
V ′ = Vn+1 ∪ {x} H ′ = H[a1 := v1] · · · [an := vn]

(lowerA(C e1 · · · en), V1) ⇓ (p1 ∧ · · · ∧ pn, H
′ ∗ s1 ∗ · · · ∗ sn, V

′, x) S-Lower-Constr

v ∈ V r fresh
(instA,B(f)(v), V) ⇓ (true, IA,B(f)(v, r), V ∪ {r}, r) S-Inst-Var

(A[x] (C a1 · · · an) := H) ∈ Σ
(ei, Vi) ⇓ (pi, si, Vi+1, vi) for each 1 ≤ i ≤ n

x fresh
V ′ = Vn+1 ∪ {x} H ′ = H[a1 := v1] · · · [an := vn]

(f (C b1 · · · bn) := ef) ∈ Σ e′
f = ef [b1 := v1] · · · [bn := vn]

(lowerB(e′
f), Vn+1) ⇓ (p, s, V ′, r)

(instA,B(f)(C e1 · · · en), V1) ⇓ (p ∧ p1 ∧ · · · ∧ pn, s ∗ s1 ∗ · · · ∗ sn, V
′, r) S-Inst-Constr

(instA,B(g)(e), V) ⇓ (p1, s1, V1, r1)
(instB,C(f)(r1), V1) ⇓ (p2, s2, V2, r2)

(instB,C(f)(instA,B(g)(e)), V) ⇓ (p1 ∧ p2, s1 ∗ s2, V2, r2) S-Inst-Inst

Figure 10 Expression Translation Rules.

V = {v1, · · · , vn} where v1, · · · , vn are distinct variables
r ∈ Var r ̸∈ V c = cond(A,C, x) p1 · · · pn fresh

(p, s) = T JinstA,B(f)(C p1 · · · pn)KV,r

(f (C a1 · · · an) := e) fn-def7−−−→A,B (IA,B(f)(x, r) : c ⇒ {p; s})
FnDef

Figure 11 Translation rule for function definitions.

D. Young, Z. Yang, I. Sergey, and A. Potanin 45:17

▶ Lemma 2 (cond function). There is a computable function cond(·, ·) that takes in any
layout A : α ↣ layout[x] with a branch A[x] (C a1 · · · an) := H for a given constructor
C : β1 → β2 → · · · → βn → α and it produces a Boolean expression with one free variable x
such that the following holds under the assumption that IA(x) holds.

cond(A,C) ⇐⇒ ∃σ, h. (σ, h) |= H

Here, IA(x) is the name of the generated inductive predicate corresponding to the layout A.

With this function in hand, we are now ready to define the translation for Pika function
definitions. This definition is in Figure 11. In this rule, the fresh variables p1, · · · , pn will be
substituted for a1, · · · , an.

3.4 Typing Rules
Typing rules for Pika expressions are given in Figure 12. These rules differ from standard
typing rules for a functional language due to the existence of layouts and their associated
constructors, like instantiate and lower. If an expression is well-typed, then each use of
instantiate and lower only uses layouts together with the ADT that they are defined for.

The rules also make use of a concreteness judgment. The rules for this judgment are given
in Figure 13a. The intuition of this judgment is that a type is “concrete” iff values of that
type can be directly represented in the heap machine semantics. For example, an ADT type
is not concrete because a layout has not been specified. However, once a particular layout is
specified for the ADT type, it becomes concrete. Base types, like Int, are also concrete.

Rules for the ensuring that global definitions are well-typed are given in Figure 13b. In
this figure, ∆ is the set of all (global) constructor type definitions.

3.5 From Pika to SLL Specifications: Soundness of the Translation
We want to show that our abstract machine semantics and our SSL translation fit together. In
particular, our abstract machine semantics should generate models that satisfy the separation
logic propositions given by our SSL translation. Figure 14 gives a high-level overview of how
these pieces fit together. We will give a more specific description of this in Theorem 3.

▶ Theorem 3 (Soundness). For any well-typed expression e, if T JeKV,r is satisfiable for
V = dom(σ′) and (e, σ, h,F) 7−→ (e′, σ′, h′,F ′, r), then (σ′, h′) |= T JeKV,r. That is, given an
expression e with a satisfiable SSL translation, any heap machine state that e transitions to (by
the abstract machine semantics) will be a model for the SSL translation of e (cf. Figure 14).

Proof. See the Appendices in the extended version of the paper [14]. ◀

The fact that, at the top level, we only translate function definitions suggests an additional
theorem. We want to specifically show that any possible function application is sound, in
the sense just described. This immediately follows from Theorem 3.

Abbreviating instA,B(f) as fA,B , we can state the following theorem:

▶ Theorem 4 (Application soundness). For any well-typed function application fA,B(e), if
T JfA,B(e)KV,r is satisfiable for V = dom(σ′) and (fA,B(e), σ, h,F) 7−→ (e′, σ′, h′,F ′, r), then
(σ′, h′) |= T JfA,B(e)KV,r.

Proof. This follows immediately from Theorem 3. ◀

ECOOP 2024

45:18 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

i ∈ Z
Γ ⊢ i : Int T-Int b ∈ B

Γ ⊢ b : Bool T-Bool
(v : α) ∈ Γ
Γ ⊢ v : α T-Var

(f : α → β) ∈ Σ
Γ ⊢ f : α → β

T-Fn-Global

Γ ⊢ x : Int Γ ⊢ y : Int
Γ ⊢ x+ y : Int T-Add

(v : α) ∈ Γ (A : α↣ layout[x]) ∈ Σ
Γ ⊢ lowerA(v) : A T-Lower-Var

(C : α1 → · · · → αn → β) ∈ Σ (B : β↣ layout[x]) ∈ Σ
Γ ⊢ ei concreteαi

for each i with 1 ≤ i ≤ n

Γ ⊢ lowerA(C e1 · · · en) : B T-Lower-Constr

(A : α↣ layout[x]) ∈ Σ (B : β↣ layout[y]) ∈ Σ
Γ ⊢ f : α → β Γ ⊢ e : A

Γ ⊢ instA,B(f)(e) : B T-Instantiate

(C : α1 → · · · → αn → β) ∈ Σ Γ ⊢ ei : αi for each i with 1 ≤ i ≤ n

Γ ⊢ C e1 · · · en : β T-Constr

Figure 12 Typing rules.

4 Extensions of SuSLik

We have shown the translation from the functional specifications into SSL specifications.
However, some of the SSL specifications are not supported in the original SuSLik and existing
variants. In this section, we show how to extend the SuSLik to support more features to
make the whole thing work. We will show the extensions on the following three aspects:

How to describe and call an existing function within SSL predicates.

How to make the result of one function call as the input of another function call.

How to synthesise programs with inductive predicates without the help of pure theory.

Γ ⊢ e : Int
e concreteInt

C-Int Γ ⊢ e : Bool
e concreteBool

C-Bool

(A : α↣ layout[x]) ∈ Σ Γ ⊢ e : A
e concreteα

C-Layout

(a) Concreteness judgment rules.

(C : α1 → α2 → · · · → αn → β) ∈ ∆
b1 : α1, b2 : α2, · · · , bn : αn ⊢ e : γ

(f (C b1 · · · bn) := e) ⇒ f : β → γ
G-Fn

(b) Global definition typing.

Figure 13 Rules for concreteness judgement and typing global definitions.

D. Young, Z. Yang, I. Sergey, and A. Potanin 45:19

Pika SSL propositions

Abstract machine semantics

translation

interpretation
|=

Figure 14 The relationship between the two Pika semantics given by the soundness theorem.

4.1 Function Predicates
Without any modification upon the implementation, we find the SSL predicate with some
restrictions can be used to describe function relations other than data structures (named
function predicates). The definition of function predicates is as follows:

▶ Definition 5 (Function Predicates). Given any non-higher-order n-ary function
f(x1, ..., xn) in the functional language, the function predicate to synthesise f has the
following format:

predicate predf(T x1, ... ,T xn, T output){...}

where T ∈ {loc, int}. The type of xi (and output) is decided by the type of f . If it is an
integer in f , then its type is int; otherwise, it is loc (for any data structure in Pika).

Since the input of the whole workflow is functional programs, the “output” in the
definition is to provide another location for the output of the function. And the specification
to synthesise function f should have the following format:
void f(loc x1, ... ,loc xn)
{x1 :-> v1 ** x2 :-> l2 ** sll(l2) ** ... ** xn :-> vn ** output :-> 0}
{x1 :-> v1 ** x2 :-> l2 ** ... ** xn :-> vn ** output :-> output0 **

predf(v1, l2, ..., vn, output0)}

4.2 SSL Rules for func Structure
As we show in previous examples, the reason we can have func structure is that the points-to
structure in the post-condition is always eliminated after write operations. For example, the
in-placed inc1 functions specification is satisfied via the Write (Figure 15) on the location.
void inc_y(loc y, loc x)
{x :-> vx ** y :-> vy}
{x :-> vx + vy ** y :-> vy}

The core insight of func structure is: since the function synthesised by function predicate
behaves like the pure function, it is the same as the Write rule in the sense that only the
output location is modified. Thus, we add the new Funcwrite rule into the zoo of SSL
rules (see Figure 15). To make the func structure correctly equal to some “write” operation,
the following restrictions should hold, which are achieved by the translation:

If func f(x1, ..., xn, output) appears in a post-condition, then no write rule can be
applied to any xi. This is to avoid the ambiguity of the func.
The type of function f is consistent.

ECOOP 2024

45:20 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

Write
Vars (e) ⊆ Γ e ̸= e′ {ϕ; x 7→ e ∗ P}⇝{ψ; x 7→ e ∗ Q}| c

{ϕ; x 7→ e′ ∗ P}⇝{ψ; x 7→ e ∗ Q}| ∗x = e ; c

Funcwrite
∀i ∈ [1, n],Vars (ei) ⊆ Γ {ϕ; P}⇝{ψ; Q}| c

{ϕ; x 7→ e ∗ P}⇝{ψ; func f(e1, . . . , en, x) ∗ Q}| f(e1, . . . , en, x) ; c

Figure 15 The Write and new Funcwrite rules in SSL.

Note that based on the setting of the function predicate, the parameters of the function
call are pointers, while the parameters of the function predicate are content to which pointers
point. Furthermore, we have the func generated from function predicates and with the format
defined in Subsection 4.1. As a result, the equivalent original SSL that duplicates points-to
of one location is not a problem, since they can be merged as one.

4.3 Temporary Location for the Sequential Application
Though richly expressive, SSL has difficulty in expressing the sequential application of
functions. For example, given the func structure available, the following function is not
expressible within one function predicate:
f x y = g (h x) y

If we attempt to express it, we will have the following part in the predicate:
predicate f(loc x, loc y, loc output)
{... ** func h(x, houtput) ** func g(houtput, y, output)}

However, houtput is not a location in the pre-condition, which is not allowed in SSL.
Thus, we introduce a new keyword temp to denote the temporary location for the sequential
application. The new definition of func is as follows:
predicate f(loc x, loc y, loc output)
{... ** temp houtput ** func h(x, houtput) ** func g(houtput, y, output)}

Roughly speaking, the temp structure will help to allocate a new location for the output of
the first function, and then use it as the input of the second function. After all appearances
of houtput is eliminated, we will deallocate the location.

Note that the temporary variable is possible to appear in two different structures: recursive
function predicates or func call. The reason we don’t need to consider the basic arithmetic
operations is that the integer will be directly used as the predicate parameter, instead of the
location as the parameter. For example, the sum of a list can be expressed as:
predicate sum(loc l, int output){
| l == 0 => {output == 0; emp}
| l != 0 => {output == output1 + v; [l, 2] ** l :-> v ** l + 1 :-> lnxt **

sum(lnxt, output1)} }

Such sequential application is common in functional programming, especially in the
recursive function. For example, it is not elegant to flatten a list of lists without the
sequential application.

D. Young, Z. Yang, I. Sergey, and A. Potanin 45:21

Tempfuncalloc
{ϕ; x 7→ a ∗ P}⇝{ψ; func f(e1, . . . , en, x) ∗ temp(x, 1) ∗Q}| c

{ϕ; P}⇝{ψ; func f(e1, . . . , en, x) ∗ temp(x, 0) ∗ Q}| let x = malloc(1) ; c

Tempfuncfree
{ϕ; P}⇝{ψ;Q}| c

̸ ∃x ∈ Q ∧ {ϕ; P}⇝{ψ; temp(x, 1) ∗ Q}| let x0 = ∗x ; type_free(x0); free(x); c

Figure 16 New allocating and deallocating rule for temp in SSL.

flatten :: [[a]] -> [a]
flatten [] = []
flatten (x:xs) = x ++ flatten xs

We can express this function, but with some strange structure to store all temporary lists.
predicate flatten(loc x, loc output){
| x == 0 => {output :-> 0}
| x != 0 => {[x, 2] ** x :-> x0 ** sll(x0) ** x + 1 :-> xnxt **
[output, 2] ** func append(x, outputnxt, output) ** output + 1 :-> outputnxt **
flatten(xnxt, outputnxt)} }

With such a function predicate, though we can synthesise the function whose result stored
in output is the flattened list, the list output is containing a lot of intermediate values, which
is neither consistent with the definition in the source language nor space efficient.

The new rules consist of allocating and deallocating rules (Figure 16). Based on the
definition of the func structure and the function predicate, the allocated locations are different,
where the temp location for func is directly used; while the temp location for function predicate
should allocate a new location for function predicates. As for the deallocation, not only
the temp location(s) but also the content they point to should be deallocated. That is the
reason we have the type_free function, which is syntax sugar to deallocate the content of
a location based on the type information. For example, if the type of the location is tree,
then the type_free will deallocate the content of the location via tree_free function, which
is synthesised based on the SSL predicate tree as follows.
void tree_free(loc x)

{tree(x)}
{emp}

Specifically, if the location contains the value with type int, then the type_free will do
nothing. Thus, the function predicate with temp is much better, in the sense that no extra
space is used, and the synthesised function is consistent with the source language.
predicate flatten(loc x, loc output){
| x == 0 => {output :-> 0}
| x != 0 => {[x, 2] ** x :-> x0 ** sll(x0) ** x + 1 :-> xnxt ** temp outputnxt

** flatten(xnxt, outputnxt) ** func append(x, outputnxt, output)} }

4.4 Avoiding Excessive Heap Manipulation with Read-Only Locations
The existing SuSLik depends on the set theory to express the pure relation. However, it is
not trivial to automatically generate the pure part of SSL specifications from the functional
specifications. To see why the set theory is needed, the following simple example shows the
functionality of the set theory, with sll_n being the single-linked list with no set.

ECOOP 2024

45:22 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

predicate sll_n(loc x) {
| x == 0 => {true; emp }
| not (x == 0) => { [x, 2] ** x :-> v ** (x + 1) :-> xnxt ** sll(xnxt) } }
predicate copy(loc x, loc y) {
| x == 0 => {y == 0; emp }
| not (x == 0) => { [y, 2] ** y :-> v ** (y + 1) :-> ynxt ** [x, 2] ** x :-> v

** (x + 1) :-> xnxt ** copy(xnxt, ynxt) } }

While the intent of the function predicate copy is to copy the list x to y, without the set
theory, the output program will be somewhat surprising to see:

{sll_n(x)}
void copy (loc x, loc y) {

if (x == 0) {
} else {

let n = *(x + 1); copy(n, y); let y01 = *y; let y0 = malloc(2); *y = y0;
*(y0 + 1) = y01; let vy = *y0 *x = vy; } }

{copy(x, y)}

The problem here is that, when we have the pure relation in the predicate to indicate
that the values are the same, the synthesiser finds another possible way: instead of copying
the value of x to y, we can just change the value of x to initial value vy after malloc. This is
not the user intent, and the output program is not correct. Turns out, the solution is not
that difficult: we simply need add a new kind of heaplet in the specification language, call
constant points-to, which has a similar idea as read-only borrows [2]. The only difference of
the constant points-to from the original points-to heaplet is that the value of the location
is constant, which means that the Write rule in SSL is not applicable. By this way, the
extended SuSLik will not consider the modification of the input location, thus provides the
correctness mechanism (in Subsection 3.5) for the translation of Pika.

5 Evaluation

In this section, we evaluate Pika’s expressiveness. A secondary objective is to evaluate
Pika’s performance. The performance evaluation is done largely to put Pika into context by
comparing it to a prominent functional programming language (Haskell). The main purpose
of Pika is to increase the expressiveness of SuSLik, which is the reason for the primary
evaluation objective. Towards these goals, we answer the following research questions:

RQ1: Is the performance of the synthesised code competitive with code generated from
traditional functional language compilers?
RQ2: In concrete terms, how does the tool’s expressivity compare with the expressivity
of SuSLik specifications for programs written in a functional style?
RQ3: What are the failure modes of our approach?

Our implementation and benchmarks are available in supplementary material. The
experiments were conducted on a 2021 MacBook Pro with an M1 processor and 32 GB of
RAM. We used GHC version 9.8.1 and Apple Clang version 13.0.0.

For RQ1, we run benchmarks and compare execution time. The benchmarks we selected
are a series of functions that manipulate data structures such as lists and trees, which covers
different common abstract operations (like map, filter, fold). The comparison is between
Haskell functions based on user-defined data structures and C functions generated from
Pika’s specifications (via the extended SuSLik), parameterised with the data structures of
large size. We recorded both execution time with and without optimisation of compilers.

D. Young, Z. Yang, I. Sergey, and A. Potanin 45:23

sum filterLt mapAdd take leftList treeSize
Test cases

0

50

100

150

200

Ex
ec
ut
io
n
tim

e
(m

s)

C -O0
Haskell -O0

(a) Benchmarks without optimizations.

sum filterLt mapAdd take leftList treeSize
Test cases

0

10

20

30

40

Ex
ec
ut
io
n
tim

e
(m

s)

C -O3
Haskell -O2

(b) Benchmarks with optimizations.

Figure 17 Performance of C functions generated by Pika compared to Haskell/GHC.

Table 1 Statistics on the benchmarks: Pika spec size v, generated SSL spec size, translator
performance, and synthesiser performance. All times are in seconds.

Task Name Pika AST SuSLik AST |Pika AST|
|SuSLik AST| Compile Time Synthesis Time

1 cons 76 123 0.618 0.012 5.134
2 plus 46 91 0.505 0.002 5.992
3 add1Head 64 109 0.587 0.006 5.114
4 listId 62 107 0.579 0.005 4.906
5 add1HeadDLL 74 146 0.507 0.007 10.618
6 even 19 42 0.452 0.001 3.999
7 foldr 63 113 0.558 0.005 5.454
8 sum 58 103 0.563 0.004 5.125
9 filterLt 84 147 0.571 0.009 6.104
10 mapAdd 71 116 0.612 0.007 5.031
11 leftList 116 156 0.744 0.008 7.722
12 treeSize 78 126 0.619 0.007 5.980
13 take 119 212 0.561 0.012 10.447

The results are shown in Figure 17. Our findings are as follows:
When compiled to an executable run without optimisations, the C programs generated by
Pika are faster than Haskell programs. And we can also observe that the speed difference
is larger for functions with more complex data structures.
When compiled to an executable with optimisations:

For functions with complex data structures, the comparison is similar to the case
without optimisation.
For functions for the singly-linked list GHC’s optimisation is very powerful, resulting
in much better performance than C programs generated by Pika. With more tests,
we found out the performance after GHC’s optimisation is similar to the one using
Haskell’s built-in list. We believe this is because GHC’s optimisations are fine-tuned
to optimise code manipulating list-like data structures and use the same optimisation
as for Haskell’s built-in list. That said, similar observations regarding GHC do not
hold on other complex data structures, such as trees.

ECOOP 2024

45:24 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

selfAppend : List -> List;
selfAppend xs := instantiate [Sll , Sll] Sll append xs xs;

append : List -> List -> List;
append (Nil) ys := ys;
append (Cons x xs) ys := instantiate [Int , Sll[mutable]] Sll cons

(addr x) (append xs ys);

Figure 18 A Pika specification not supported by SuSLik.

To answer RQ2, we first find some common patterns for Pika programs in the benchmarks
shown in Table 1: (1) pattern matching on ADTs (#9, 10, etc.), (2) code reusability (#3 vs 5,
#7 vs 8). Those features are not directly expressible in SuSLik because of the low-level nature
of SSL. For example, the add1Head and add1HeadDLL functions share the same function
definition, where the only difference is the type layout used; but the SuSLik specifications
need to be treated separately, which makes the codes more complex. To make some objective
observations on the expressivity, we measure the number of nodes in the input Pika AST and
find it consistently fewer than the number of AST nodes in the generated SuSLik specification.

To address RQ3, note that a particular failure mode occurs when Pika source code
reuses a variable in a way that violates SSL constraints. For example, see the selfAppend
example in Figure 18 which uses its argument twice. We could have addressed this issue by
introducing a lightweight linear type system to Pika, but have not carried out this exercise
yet. Another kind of failure occurs when SuSLik fails to synthesise an implementation of the
generated specification: handling these failures is beyond the scope of this work.

6 Discussion

We have given a translation from a high-level functional language into SSL specifications to
be given to a program synthesiser.

In doing so, we have revealed a close connection between, on one hand, algebraic data
types and recursive pattern-matching functions and, on the other hand, SSL inductive
predicates. The soundness of this connection is demonstrated by Theorem 3 in Section 3.

Beyond the theory, this connection can be exploited in three directions:
Increased type safety: Algebraic data types allow you to distinguish between types that
have the same runtime heap representation.
More reusability: An algebraic data type can have multiple layouts, each of which gives a
different possible runtime heap representation for the ADT. As Pika functions are defined
only in terms of algebraic data types, they naturally get the polymorphism of the ADT
by being able to work with any layout of the ADT.
Greater succinctness: When working at this higher level of abstraction, it generally takes
less code as you are not frequently manipulating heap locations. The only mention of
heap locations is in reusable layout definitions. This can also give greater clarity.

7 Related Work

Pika is built upon the SuSLik synthesis framework. SuSLik provides a synthesis mechanism
for heap-manipulating programs using a variant of Separation Logic [9]. However, it does not
have any high-level abstractions. In particular, writing SuSLik specifications directly involves
a significant amount of pointer manipulation. Further, it does not provide abstraction over
specific memory layouts. As described in Subsection 2.2, Pika addresses these limitations.

D. Young, Z. Yang, I. Sergey, and A. Potanin 45:25

Dargent language [1] also includes a notion of layouts and layout polymorphism for a class
of algebraic data types, which differs from our treatment of layouts in two primary ways:
1. In Pika, abstract memory locations (with offsets) are used. In contrast, Dargent uses

offsets that are all relative to a single “beginning” memory location. The Pika approach
is more amenable to heap allocation, though this requires a separate memory manager
of some kind. This is exposed in the generated language with malloc and free. On
the other hand, the technique taken by Dargent allows for greater control over memory
management. This makes dealing with memory more complex for the programmer, but it
is no longer necessary to have a separate memory manager.

2. Algebraic data types in the present language include recursive types and, as a result, Pika
has recursive layouts for these ADTs. This feature is not currently available in Dargent.

Furthermore, layout polymorphism also works differently. While Dargent tracks layout
instantiations at a type-level with type variables, in the present work we simply only check
to see if a layout is valid for a given type when type-checking. In particular, we cannot write
type signatures that require the same layout in multiple parts of the type (for instance, in a
function type List -> List we have no way at the type-level of requiring that the argument
List layout and the result List layout are the same). This more rudimentary approach that
Pika currently takes could be extended in future work. Overall, the examples in the Dargent
paper tend to focus on the manipulation of integer values. In contrast, we have focused
largely on data structure manipulation, which follow the primary motivation of SuSLik.

Synquid is another synthesis framework with a functional surface language. While Synquid
allows an even higher-level program specification than Pika through its liquid types, it does
not provide any access to low-level data structure representation. [8] In contrast, Pika’s level
of abstraction is similar to that of a traditional functional language but, similar to Dargent,
it also allows control over the data structure representation in memory.

8 Future Work and Conclusion

We make the following observations based on our experience of developing and using Pika.
By allowing layouts to use multiple SSL parameters, we would be able to give a greater

variety of layouts associated with an ADT. For instance, the List data type used in the
examples could have a doubly-linked list layout in addition to the singly-linked list layout
Sll. Note that any existing Pika function defined over List will continue to work with no
modification with these new layouts. Defunctionalisation and lambda lifting can also be used
to implement true higher-order functions.

It is possible to do inference of some layouts, for example in mapAdd1 we would usually
want to use the same layout as the argument layout, but we leave this for future work.
Another approach is to introduce type variables that correspond to layouts, as done in the
series of works on the Dargent tool [1]. We leave this approach for future work as well.

Reverse transformation deserves further investigation: if we go from an SSL specification
to Pika program and then compile to, e.g., C, can we synthesise additional programs that
traditional SSL synthesisers would struggle with? What are the limitations of this approach?

We may be able to expose more of the synthesis mechanism in the Pika language. For
example, generate an SSL specification given only a Pika type signature (and corresponding
%generate directive). This could combine well with additional polymorphism, as we could
utilise the free theorems that are given by a polymorphic type signature to further constrain
the resulting specification.

ECOOP 2024

45:26 Higher-Order Specifications for Deductive Synthesis of Programs with Pointers

Finally, is it possible to derive translations for languages such as Pika from abstract
machine semantics? In this paper, we have given a language with abstract machine semantics.
We then give a translation of that language into SSL. We then show that the final states
given by the abstract machine semantics are models for the SSL propositions produced by
our translation. But is it possible to begin by specifying the abstract machine semantics and
then mathematically (or automatically) derive an appropriate translation into SSL, with the
requirement that the translation satisfies the soundness theorem?

In conclusion, we have presented Pika: a high-level functional specification language that
paves the way for the efficient synthesis of a verifiably correct imperative code with in-place
memory updates that is comparable in efficiency to the handwritten C.

References
1 Zilin Chen, Ambroise Lafont, Liam O’Connor, Gabriele Keller, Craig McLaughlin, Vincent

Jackson, and Christine Rizkallah. Dargent: A silver bullet for verified data layout refinement.
Proc. ACM Program. Lang., 7(POPL), January 2023. doi:10.1145/3571240.

2 Andreea Costea, Amy Zhu, Nadia Polikarpova, and Ilya Sergey. Concise Read-Only Specifica-
tions for Better Synthesis of Programs with Pointers. In ESOP, volume 12075 of LNCS, pages
141–168. Springer, 2020. doi:10.1007/978-3-030-44914-8_6.

3 Cordelia V. Hall, Kevin Hammond, Will Partain, Simon L. Peyton Jones, and Philip Wadler.
The Glasgow Haskell Compiler: A Retrospective. In Proceedings of the 1992 Glasgow Workshop
on Functional Programming, Workshops in Computing, pages 62–71. Springer, 1992. doi:
10.1007/978-1-4471-3215-8_6.

4 C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, 1969. doi:10.1145/363235.363259.

5 Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A History of Haskell:
Being Lazy with Class. In Proceedings of the Third ACM SIGPLAN Conference on History of
Programming Languages, pages 12–1–12–55. ACM, 2007. doi:10.1145/1238844.1238856.

6 Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey. Cyclic
program synthesis. In PLDI, pages 944–959. ACV, 2021. doi:10.1145/3453483.3454087.

7 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local Reasoning about Programs
that Alter Data Structures. In CSL, volume 2142 of LNCS, pages 1–19. Springer, 2001.
doi:10.1007/3-540-44802-0_1.

8 Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from poly-
morphic refinement types. In PLDI, pages 522–538. ACM, 2016. doi:10.1145/2908080.
2908093.

9 Nadia Polikarpova and Ilya Sergey. Structuring the synthesis of heap-manipulating programs.
Proc. ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/3290385.

10 John C. Reynolds. Separation logic: a logic for shared mutable data structures. In LICS,
pages 55–74, 2002. doi:10.1109/LICS.2002.1029817.

11 Reuben N. S. Rowe and James Brotherston. Automatic cyclic termination proofs for recursive
procedures in separation logic. In CPP, pages 53–65. ACM, 2017. doi:10.1145/3018610.
3018623.

12 David Turner. An Overview of Miranda. SIGPLAN Not., 21(12):158–166, 1986. doi:
10.1145/15042.15053.

13 Yasunari Watanabe, Kiran Gopinathan, George Pîrlea, Nadia Polikarpova, and Ilya Sergey. Cer-
tifying the synthesis of heap-manipulating programs. Proc. ACM Program. Lang., 5(ICFP):1–29,
2021. doi:10.1145/3473589.

14 David Young, Ziyi Yang, Ilya Sergey, and Alex Potanin. Higher-Order Specifications for
Deductive Synthesis of Programs with Pointers (Extended Version). CoRR, abs/2407.09143,
2024. doi:10.48550/arXiv.2407.09143.

https://doi.org/10.1145/3571240
https://doi.org/10.1007/978-3-030-44914-8_6
https://doi.org/10.1007/978-1-4471-3215-8_6
https://doi.org/10.1007/978-1-4471-3215-8_6
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/3453483.3454087
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/3290385
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3018610.3018623
https://doi.org/10.1145/3018610.3018623
https://doi.org/10.1145/15042.15053
https://doi.org/10.1145/15042.15053
https://doi.org/10.1145/3473589
https://doi.org/10.48550/arXiv.2407.09143

CtChecker: A Precise, Sound and Efficient Static
Analysis for Constant-Time Programming
Quan Zhou #

Penn State University, University Park, PA, USA

Sixuan Dang #

Duke University, Durham, NC, USA

Danfeng Zhang #

Duke University, Durham, NC, USA

Abstract
Timing channel attacks are emerging as real-world threats to computer security. In cryptographic
systems, an effective countermeasure against timing attacks is the constant-time programming
discipline. However, strictly enforcing the discipline manually is both time-consuming and error-
prone. While various tools exist for analyzing/verifying constant-time programs, they sacrifice at
least one feature among precision, soundness and efficiency.

In this paper, we build CtChecker, a sound static analysis for constant-time programming.
Under the hood, CtChecker uses a static information flow analysis to identify violations of constant-
time discipline. Despite the common wisdom that sound, static information flow analysis lacks
precision for real-world applications, we show that by enabling field-sensitivity, context-sensitivity
and partial flow-sensitivity, CtChecker reports fewer false positives compared with existing sound
tools. Evaluation on real-world cryptographic systems shows that CtChecker analyzes 24K lines of
source code in under one minute. Moreover, CtChecker reveals that some repaired code generated by
program rewriters supposedly remove timing channels are still not constant-time.

2012 ACM Subject Classification Security and privacy → Information flow control

Keywords and phrases Information flow control, static analysis, side channel, constant-time pro-
gramming

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.46

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.26

Funding This work was supported by the NSF under grants 2401182, 2401496, 1942851 and 1956032.

Acknowledgements We express our sincere gratitude to the anonymous reviewers for their insightful
feedback and suggestions. We would like to thank Shuai Wang for sharing detailed CacheS evaluation
results, and Ernest DeFoy III and Xiang Li for their contributions in the early stage of the project.

1 Introduction

Modern cryptographic systems are vulnerable to timing attacks [21, 10, 26, 6], which can
quickly reveal confidential keys by analyzing the encryption/decryption time of those systems.
While the treat has been well-known for decades, identifying timing channel vulnerabilities
in cryptographic systems is a daunting task, as timing channels result from implementation
details such as data and instruction cache effects, branch prediction buffers and memory
controllers. As all of those hardware features are invisible in the source code, manually
identifying timing channel vulnerabilities is extremely challenging, if possible at all, as doing
so precisely requires a crystal clear view of the whole software-hardware stack and how secret
information flows throughout the stack.

V1.1

A
rt
ifa

cts Available

ECOOP

© Quan Zhou, Sixuan Dang, and Danfeng Zhang;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 46; pp. 46:1–46:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:qfz5074@psu.edu
https://orcid.org/0009-0003-3497-7848
mailto:sd570@duke.edu
https://orcid.org/0000-0002-3241-9530
mailto:danfeng.zhang@duke.edu
https://orcid.org/0000-0003-1942-6872
https://doi.org/10.4230/LIPIcs.ECOOP.2024.46
https://doi.org/10.4230/DARTS.10.2.26
https://doi.org/10.4230/DARTS.10.2.26
https://doi.org/10.4230/DARTS.10.2.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 CtChecker

To make it feasible to mitigate timing channels, one common practice is to identify and rule
out dangerous code patterns that lead to timing channels. Notably in cryptographic systems,
a common countermeasure against timing attacks is to follow constant-time disciplines [1, 11],
which rules out (1) branching on secret-dependent data, as well as (2) accessing memory with
secret-dependent offset (e.g., an array access with a secret-dependent index). For example, a
secret-dependent branch if s[i] then x = 2 may be identified by noting that s[i] is the i-th
bit of the private key, hence violating the first constant-time discipline. We might further
replaced it with x = s[i]*(2-x)+x, or x = (-s[i]&2)|((s[i]-1)&x), which are both functionally
equivalent to the original code. While the violation in this example is easy to spot as it
directly uses the secret value s, detecting constant-time violations and rewriting them in a
secure way in general is still error-prone, as evidenced by timing leak in manually validated
code [27] as well as a sequence of timing-related patches where early patches introduce
new vulnerabilities that are fixed by later ones [36]. Hence, more rigorous and automated
techniques are necessary for security.

Motivated by the need for rigorous and automated tools, designing and developing
automated tools for detecting and sometimes repairing constant-time violations has been
an active research area. Observing the relation between constant-time disciplines and non-
interference [16], most automated tools rely on some form of information flow analysis to
detect constant-time violations (i.e., to detect “tainted” branch conditions and memory
addresses). For example, ct-verif [1] uses a sound and complete reduction on the source code
to verify constant-time disciplines as a safety problem, via off-the-shelf verification tools.
FACT [11] is a domain-specific language that uses a static information flow type system
to detect constant-time violations. Constantine [7] deploys a dynamic taint analysis [7],
while FlowTracker [32] uses an optimized program dependence graph (PDG) to identify
constant-time violations. If we narrow down the scope further and focus on cache-based timing
channels only, it is also common to identify constant-time violations first, before further
refining the results to those that are vulnerable to cache-based attacks only. For instance,
SC-Eliminator [46] uses a static taint analysis to identify “leaky conditional statements” (i.e.,
sensitive branches) and “leaky lookup-table accesses” (i.e., sensitive memory addresses via
array accesses) before applying a (more costly) static cache analysis on leaky lookup-table
accesses to filter out the ones that are not vulnerable to cache-based timing attacks (though
they might still be vulnerable to other variants of timing attacks; see Section 2.3). The same
applies to SpecSafe [9] and oo7 [43], which used static and dynamic taint analysis respectively
before applying more costly cache analysis to refine their results.

With ample tools that use information flow analysis to detect constant-time violations,
the precision issue of those tools is still under-investigated to the best of our knowledge. Yet,
to be practical, the precision issue is just as important as soundness, especially given the
common wisdom that static information flow analysis usually comes with high false positive
rates when being applied to real-world applications [33]. To be more concrete, the following
research questions still linger when cryptographic library developers plan to develop or adopt
an information flow analysis for the purpose of detecting constant-time violations:
RQ1: To analyze cryptographic libraries, what are the impacts of various design decisions

(e.g., field-sensitivity, declassification, context-sensitivity) on the analysis precision?
RQ2: Which approach (e.g., logic-based formal verification, PDG-based analysis) should

they follow in order to achieve better trade-offs between precision and performance?
RQ3: Is it possible to improve the precision of existing tools without sacrificing soundness

and performance?

Q. Zhou, S. Dang, and D. Zhang 46:3

To address these research questions, we start from a baseline PDG-based static information
flow analysis called PIDGIN [18], with minor extensions that use its resulting sensitivity
of registers and memory blocks to detect violations of constant-time disciplines. With the
baseline implementation, we thoroughly study the root causes of false positives produced by
the baseline and improve it with various features such as field-sensitivity, declassification
and flow-sensitivity to reduce its false positive rate. The precision study is performed on a
benchmark consisting of various implementations of modular exponentiation used in popular
cryptographic systems (Libgcrypt, OpenSSL, mbedTLS and BearSSL), which are known
to be vulnerable to timing attacks, as well as a set of automatically repaired code from
Constantine [7], which are expected to be constant-time. The precision study shows that
field-sensitivity and declassification are the most effective features. As a result from the
precision study, we built CtChecker, a precise, sound and efficient information flow analysis
for constant-time programming. CtChecker was implemented based on PIDGIN, with several
precision improving features introduced. CtChecker targets LLVM intermediate representation
(IR), which allows it to analyze various source code languages with compatible compiler
front-ends. In summary, CtChecker reduces the false positives of the baseline by 67.6%, and
we observed that the remaining ones are mainly due to imprecision in the sound points-to
analysis used by CtChecker. Moreover, CtChecker detects true positives in 6 repaired programs
produced by Constantine, which was not revealed before to the best of our knowledge.
A1: Field-sensitivity and declassification are the most effective features that can improve

analysis precision, while the precision of point-to analysis (used by sound information
flow analysis) has a considerable impact on the overall precision.

To study the remaining two research questions, we first compare the precision of CtChecker
with respect to ct-verif [1], which first transforms source code to target code via a sound and
complete reduction, and then verifies safety properties on the target code via off-the-shelf
verification tools. Despite the fact that the reduction is sound and complete, and the common
wisdom that logic-based formal verification generally offers superior precision than static
program analyses that are built on approximation of program semantics, CtChecker turns
out to be both more precise and more efficient compared with ct-verif [1]. Digging into the
results, we found that ct-verif uses loop invariant heuristics to verify the code after reduction,
which introduced higher false positive rates than CtChecker. Moreover, PDG-based approach
is more appealing for detecting constant-time violations as it can pinpoint those violations in
the code, while verifiers only produce a binary result of the existence or absence of violations.
A2: Based on our empirical study on state-of-the-art tools, we found that PDG-based

information flow analysis offers the best trade-off between precision and performance
compared with logic-based approach.

We further compare CtChecker with CacheS [44] and SC-Eliminator [46] on the benchmarks
that those tools were evaluated on. Both tools are soundy as CacheS is built on lightweight
but unsound memory model, and SC-Eliminator assumes no information flow via aliasing.
Though CtChecker is built on a sound points-to analysis, we found that CtChecker reports
very similar positives with those reported by CacheS [44], even though CacheS is built on
complex abstraction interpretation with an unsound memory model. Compared with the
static taint analysis used by SC-Eliminator, CtChecker reports fewer positives in 6 programs
and the same positives in 9 programs in the SC-Eliminator benchmark. CtChecker reports
more positives in 2 programs, but they are all true positives missed by SC-Eliminator, since
it does not propagate information flows via aliasing.
A3: CtChecker improves the precision of existing tools without sacrificing soundness and

performance. Compared with CtChecker, existing solutions either fall short on the high
false positive rates with sound static method [1], or inherit the unsoundness of dynamic

ECOOP 2024

46:4 CtChecker

method [45, 37], or simplified but unsound memory model [44, 46]. Notably, the precision
of CtChecker is close to those built on unsound memory models, even though they have
the advantage of possibly reporting fewer false positives by sacrificing soundness.

In summary, this paper makes the following contributions:
Design and implementation of CtChecker, a precise, sound and efficient static information
flow analysis for constant-time programming. The source code is made publicly available1.
Identification of the imprecision sources (e.g., field-sensitivity, declassification and flow-
sensitivity) of constant-time analysis on cryptographic libraries (Section 3), and improve-
ment of overall analysis precision based on the findings. Overall, field-sensitivity and
declassification are the most effective features that improve precision, while combining
multiple features enables CtChecker to reduce the total false positives compared to the
baseline by 67.6% (Section 4).
Comparison between CtChecker and state-of-the-art tools with similar goals. Evaluation
results suggest that PDG-based information flow analysis offers the best trade-off between
precision and performance compared with logic-based approach (e.g., ct-verif [1]) and
abstract interpretation (e.g., CacheS [44]). Moreover, its precision is close to tools that
are built on unsound memory models (Section 4).
Evaluation of CtChecker on automatically repaired code from Constantine [7] reveals new
timing channels that are not reported before (Section 4).

2 Background

2.1 Information Flow Analysis
Information flow analysis tracks interactions of information throughout a program. Given
the confidentiality of program inputs, an information flow analysis tracks which data have
been computed from confidential information or its derivatives. In general, information flow
analysis handles complex confidentiality and/or integrity policies which can be formalized as
a security lattice [13], while its simplest setting, known as taint analysis, only handles a two-
level confidentiality lattice with “public” and “secret” labels only. A sound information flow
analysis typically enforces non-interference [16] or its variants. Intuitively, non-interference
guarantees that information labeled with higher confidentiality (or lower integrity) has no
influence on information labeled with lower confidentiality (or higher integrity).

Listing 1 Example of Explicit and Implicit Information Flow.
// key = sensitive information
x = key + 1;
y = 0;
if (key > 100) {

y = 1;
}

There are two kinds of information flows: explicit and implicit, as illustrated in the
example shown in Listing 1. In this simple example, key is the only confidential input. We
can see that x is directly computed from key, forming an explicit information flow. On the
other hand, the variable y is assigned to a public constant in the true branch. However, due
to the fact that the assignment occurs only in a branch whose condition is dependent on
key, an attacker with the ability to observe the value of y can infer if the value of key is
above 100 or not. In this case, the confidential data implicitly flows into y.

1 https://github.com/psuplus/CtChecker

https://github.com/psuplus/CtChecker

Q. Zhou, S. Dang, and D. Zhang 46:5

A variety of information flow analyses have been implemented with different methodical
approaches. The utilization of program dependence graph (PDG) to detect the flow of
information inside a program can be found in works such as PIDGIN [18] and FlowTracker [32].
Another approach is to use reduction techniques such as self-composition [5, 1] and product
programs [4, 48] to reduce the information flow problem to safety properties, which can be
verified by formal methods. Type-based approach, another more traditional method, can be
found in various implementations [23, 42, 30]. Besides the static sound approaches above,
dynamic taint analysis tracks information flow [14, 24, 39] at program execution time.

In this paper, we focus on the PDG-based approach and logic-based approach as they
have been used in existing automated and sound tools that detects timing channels [1, 32].
Some prior work uses type-based approach to detect timing channels in software [49] and
hardware [51] designs, but the precision of type systems is usually limited [33, 20]. They
require type annotations from programmers, which is time-consuming, and pinpointing the
root cause of type errors is a nontrivial task [50, 25, 34].

2.2 Timing Channels in Cryptosystems

A timing channel is a side channel in which an attacker uses program execution time to learn
information about sensitive data. In some implementations of sliding window exponentiation,
for example, the sequences of squares and multiplies can be measured due to differences in
each method’s execution time. This attack can be illustrated in the source code from an old
OpenSSL implementation of sliding window exponentiation, shown in Listing 2.

Listing 2 Square and Multiply Timing Channel.
1 for (i = 1; i < bits; i++) {
2 if (! BN_sqr (v, v, ctx))
3 goto err;
4 if (BN_is_bit_set (p, i))
5 if (! BN_mul (rr , rr , v, ctx))
6 goto err;
7 }

The for-loop here iterates through each bit in the confidential exponent p. In each
iteration, it first computes the square of v, and if the i-th bit of p is set, an additional
multiplication computation is executed before proceeding to the next loop iteration. Since
the extra multiplication computation is only performed when the i-th bit of p is set, the code
is vulnerable to a timing attack which utilizes the “side effects” of the extra computation on
timing to rebuild the entire private key (e.g., [6]).

Another common kind of timing channels in cryptography algorithm implementations
root from array accesses being indexed with an offset derived from secret. The reason is that
when accessing the memory, different indices may cause the loading or eviction of data into
or from different cache lines in the data cache. By observing such behaviors, an attacker
could reveal secret data; this variant of timing attacks is also known as cache attacks. The
code snippet below is an example which is vulnerable to cache attack, where a public array
Sbox is accessed with secret key RK:

RK [4] = RK [0] ^ Sbox [(RK [3] >> 8) & 0xFF];

As different values of RK[3] can lead to different cache lines to be fetched, a cache-probing
attack can be launched to learn the value of RK[3]. The code snippet represents real timing
vulnerabilities in encryption algorithms such as AES [17].

ECOOP 2024

46:6 CtChecker

2.3 Constant-Time Disciplines and Cache-Specific Analysis

As timing channels are revealed by the execution time of a program, and many hardware
features (e.g., data/instruction cache, CPU pipeline and cache bank) can affect timing,
manually reasoning about timing channel vulnerabilities is extremely challenging, if possible
at all. So as a practical countermeasure against timing channels, the threat model of constant-
time discipline [1, 11] defines two constant-time violations of programs which can be exploited
by attackers: (1) secret-dependent branch conditions, and (2) secret-dependent memory
addresses. The constant-time disciplines are widely adopted in security-critical cryptographic
systems [1, 11] due to a few benefits:

It is agnostic to hardware configurations (e.g., cache configuration and replacement policy)
and features (e.g., cache, pipeline and cache bank) that are utilized by timing attacks.
It provides a security abstraction that is more attractable both for programmers and for
rigorous program analysis. For example, it is a common practice to use information flow
analysis [1, 7, 11, 32] to detect constant-time discipline violations: it is sufficient to tag
branches and memory accesses that use tainted values.

We note that under a weaker threat model that focuses on cache-based timing attacks only,
various cache analyses [8, 35, 46] has been developed to detect if confidential information
has impact on the cache hit/miss behaviors. For instance, SC-Eliminator [46] assumes a
weaker threat model where an attacker only observes the number/type of instructions and
cache hits/misses. Consider preload A; A[secret], where preload A loads the whole array A
into the cache. The code is secure per SC-Eliminator’s threat model since A[secret] always
hits the cache. But it is insecure against other sophisticated attacks, such as the CacheBleed
attack [47] that exploits cache-bank conflicts, and traffic analysis on the memory bus.

Despite the differences in their threat models, we note that cache analysis sometimes
performs a static taint analysis first to identify array indices that are potentially tainted by
sensitive data. Then, with the results from the taint analysis, a more costly cache analysis is
performed to determine cache hits/misses. A positive from the taint analysis is removed if
the cache analysis decides that this positive is a cache must-hit [35, 46]. Hence, precision
improvements in sound and efficient static taint analysis, the focus of this paper, could also
improve the precision of existing cache analysis, despite their very different threat models.

3 CtChecker Design

In this section, we depict the design details of CtChecker. We first describe the general
workflow of CtChecker. Then we highlight the unique challenges and their solutions, and
finally discuss the precision of CtChecker.

3.1 General Workflow

CtChecker first captures information flows by identifying the information flow introduced by
each instruction according to its semantics. The captured flows are represented as a set of
constraints, where each constraint element represents the sensitivity of registers or memory
blocks. A least solution that satisfies all constraints is then computed. Lastly, all branch
conditions and memory accesses are checked against the least solution to see if any sensitive
information was used in them, resulting in violations of constant-time discipline.

Q. Zhou, S. Dang, and D. Zhang 46:7

<pointer > = getelementptr inbounds <ty >, ptr
<ptrval >{, [inrange] <ty > <idx >}*

Flow: V (ptrval) → V (pointer)

store <ty > <value >, ptr <pointer >

Flow: V (value) → D(pointer)

<result > = load <ty >, ptr <pointer >

Flow: V (pointer) ∪ D(pointer) → V (result)

Figure 1 Memory-Related Specification for LLVM IR.

3.1.1 Capturing Information Flows
The information flow specification of each instruction describes the sources (i.e., where
information come from) and the sinks (i.e., where information go to). Based on the semantics
of each instruction, the sources and sinks are usually easy to identify: instruction operands
being read are sources and operands that are written to are sinks. However, since pointers
can point to different data (in the memory) and the data to which they point to can change,
a concrete information flow specification needs to distinguish three categories of elements,
namely 1) the operand itself (e.g., a register), 2) the memory location that a pointer directly
points to, and 3) all memory locations that are reachable from a pointer (through pointer
arithmetics). Hence, we define three functions (V, D, R) which return the elements to be
constrained for a value, respective to the three categories.

V (x), the value associated with the operand x.
D(p), the memory block that a pointer p points to.
R(p), the set of all reachable (i.e., accessible) memory blocks from a pointer p.

In order to correctly compute D and R, a sound points-to analysis is employed. Formally,
the points-to analysis creates a directed graph G = (P, M, E) from the code being analyzed,
where node set P represents all pointer values, node set M represents all memory blocks
being allocated, and edge set E links nodes in P to nodes in M (i.e., the points-to relation),
as well as links connecting memory blocks, as a memory block can also hold a pointer.

To compute the function D(p), we locate p ∈ P and return the set {m | m ∈ M ∧ (p, m) ∈
E}. Similarly, to compute the function R(p), we return the set of memory blocks that are
reachable from p in G. For example, assume a pointer p1 pointing to a pointer field of a data
structure, D(p1) will be the memory block storing the pointer only, while R(p1) contains
all the memory blocks that can be recursively reached by p1 through node traversal, which
include both the memory block storing the pointer and the data that the pointer points to.

For most IR instructions, information flow is captured by a simple value flow, V (source) →
V (sink). For memory-related instructions (e.g., the getelementptr (GEP), store and load
instructions in LLVM IR), the more complicated specification is given in Figure 1. Specifically,
for GEP instruction that calculates the memory address of a subelement in an aggregate
data structure (i.e., array and structure) from the base pointer and the index of the target
subelement, the sink V (pointer) is the address directly pointed to by p. For store and load,
function D is used to specify the source and destination of the memory write and read
respectively. Function R is used for function calls, which we discuss in Section 3.2.4.

ECOOP 2024

46:8 CtChecker

3.1.2 Constraints and Their Least Solution
With the information flow specification, CtChecker creates a set of constraints from sources to
sinks for each instruction. For each register and memory block m ∈ M , a distinguished con-
straint element is created (i.e., a one-to-one mapping). For an information flow source → sink,
a constraint is generated as Esource ≤ Esink where Esource and Esink are the corresponding
constraint element of the source and sink respectively. The ≤ symbol represents a partial
ordering on the constraint elements and each constraint element can either be L (public) or
H (secret), where L < H and H ̸≤ L. Additionally, CtChecker identifies the initial sensitive
data m (e.g., secret keys) and generates constraints of the form H ≤ Em. For example,
code snippet “k=secret; x=k; y=0;” will generate three constraints H ≤ Ek, Ek ≤ Ex

and 0(constant) ≤ Ey. These generated constraints are then added to the set of constraints,
which are used to find the least solution.

The least solution, if exists, can be computed with linear-time algorithms, such as
the Rehof-Mogensen algorithm [31]. By definition, the least solution provides the least
confidentiality level of each constraint element, where the set of constraint elements with the
least level H are considered to contain sensitive information. For the code snippet above,
the least confidentiality level of k, x and y are H , H , and L, respectively. As a result, k and
x are considered containing sensitive information.

3.1.3 Checking the Constant-Time Discipline
With the least solution at hand, CtChecker can check whether the analyzed program adheres
to the constant-time discipline by examining all branch conditions and memory accesses,
where a violation is found if a branch condition has level H, or a memory address being
loaded from or stored to has level H. CtChecker reports all locations in terms of the line
number in the source code regarding violations of the constant-time discipline.

3.2 Challenges and Solutions
The general workflow above presents the foundation of a sound analysis of constant-time
programs. However, to develop an useful analysis, we need to address the following challenges.

3.2.1 Field-Sensitivity
In the naive analysis above, function D is modeled as D(pointer), the aggregated data
structure that pointer points to. However, it is common for cryptographic libraries to store
secret and public information in the same structure. In Listing 3, consider the gcry_mpi
struct of Libgcrypt, where the array under expo->d in the modular exponentiation function
holds secret value, while all other metadata fields are public. The naive approach would
constrain expo as a single entity, reporting both branches at lines 8 and 9 as secret-dependent
branches. However, the branch on expo->flags is not secret, resulting in a false positive.

To address the issue, both the sound points-to analysis and information flow analysis
need to be field-sensitive, meaning that they both need to differentiate different fields in
a structure. In particular, points-to analysis creates one separate memory block for each
subelement in aggregate data structures, and correspondingly, CtChecker creates one distinct
constraint element for each memory block from points-to analysis. By retrieving the offset
and size information when possible (using idx operand from the corresponding GEP instruction
of a store or load instruction as well as type information), CtChecker refines function D as
D(pointer, offset, size), providing the necessary lookup information into the memory nodes in
G, constructed by a field-sensitive points-to analysis. Function R is refined in a similar way.

Q. Zhou, S. Dang, and D. Zhang 46:9

Listing 3 Field-Sensitivity Issues.
1 struct gcry_mpi {
2 ...
3 unsigned int flags ;
4 mpi_limb_t *d; // secret value
5 };
6

7 struct gcry_mpi *expo;
8 if (expo -> flags) ... // not secret - dependent
9 if (expo ->d[i]) ... // secret - dependent

10 if (expo ->d) ... // not secret - dependent

One remaining subtlety is to distinguish pointer values and the memory blocks that they
point to. For example, it is common to store private keys at the public memory address
(i.e., revealing the addresses of the keys does not reveal their values). To prevent CtChecker
from over-tainting these addresses (e.g., line 10 in Listing 3), CtChecker follows a two-phase
approach. In the first phase, CtChecker propagates the addresses that are potentially storing
sensitive information. In the second phase, when the data in these addresses is accessed, the
tainted information will then be tracked from these accesses.

We note that while field-sensitivity can be enabled on many cases, a sound analysis in-
evitably needs to sacrifice field-sensitivity in cases where type information is missing, or aliases
have inconsistent types, for instance. In these cases, refined function D(pointer, offset, size)
resorts to its basic version without offset and size (i.e., D retrieves all fields in the structure
that pointer points to).

3.2.2 Declassification
In real-world applications, strict information flow analysis should be relaxed to allow infor-
mation flows that reveal limited or intended amount of sensitive information. This relaxation
is known as declassification. CtChecker supports a whitelisting mechanism, where a user-
provided whitelist (often provided by a programmer with domain knowledge) consists of
variables that are derived from tainted data but are considered harmless. For all crypto-
graphic libraries, we add variables storing key sizes but nothing else to the whitelist. These
variables are manually checked to make sure that they do not contain key content themselves.

With a whitelist, CtChecker removes constraints that are associated with whitelisted
variables after constraint generation. This way, not only the whitelisted variables are
considered public, but also variables derived from them. The branches based on whitelisted
variables or their derivatives are not reported by CtChecker.

3.2.3 Flow-Sensitivity
A variable might store both sensitive and public values at different program points, leading
to imprecision issues. Consider the code snippet where both branches are dependent on i.

1 int i = key;
2 if (i == 0) ... // secret - dependent
3 i = 10;
4 if (i == 0) ... // not secret - dependent

A naive information flow analysis generates the constraints H ≤ Ei and L ≤ Ei, where i
throughout the program shares the same constraint element Ei. The least solution of the
constraints is Ei = H , meaning that i is potentially sensitive. As a consequence, both branch
conditions at lines 2 and 4 are marked as violations of constant-time discipline.

ECOOP 2024

46:10 CtChecker

declare <RetType > @<FnName > ([arg list])

Flow: Vargs ∪ Rargs → Tret ∪ Rargs

Vargs =
N⋃

i=0

V (argi)

Rargs =
N⋃

i=0

{R(argi) : type(argi) = pointer}

Tret =
{

V (retval) RetType = primitive
R(retptr) RetType = pointer

Figure 2 Unknown Function Specification for LLVM IR.

Observing that the root cause of the issue above is lacking flow-sensitivity, CtChecker
utilizes existing compiler support to improve flow-sensitivity. In LLVM, all registers are in
static single-assignment (SSA) form. Hence, CtChecker can utilize LLVM’s mem2reg pass,
which transforms the IR code by turning the standard alloca-store-load instruction
sequences on memory (e.g., assignment and use of i in the example above) into simple
register assignments. With the code transformation, the two i’s are named as i.0 and
i.1, respectively. Hence, two constraints are generated: H ≤ Ei.0, L ≤ Ei.1, and the least
solution is Ei.0 = H, Ei.1 = L. Therefore, only the branch at line 2 which uses i.0 is marked.

However, we note that due to aliasing and other subtleties in C language’s memory model,
enabling flow-sensitivity on pointer-based accesses while maintaining soundness is much more
challenging, which is beyond the scope of this paper.

3.2.4 Unknown Functions
The analyzed code often calls to external functions whose source code is either unavailable,
or not covered by the analysis. To soundly capture information flows with the absence of
some function definitions, we need to constrain possible flows in those missing functions.
Obviously, input arguments can flow to return values. Moreover, if an argument or the
return value is a pointer, any value that is reachable from the pointer-argument might flow
to all reachable values from the pointer-return (e.g., through pointer arithmetics and memory
writes). Hence, the information flows with absent function implementation is specified as
the rule in Figure 2, where reachable memory from pointer-arguments are both sources and
sinks of information flow, while reachable memory from pointer-return are sinks.

3.3 Precision of CtChecker
While CtChecker is empowered by various techniques above to improve its precision while
maintaining soundness, false positives are still unavoidable like any nontrivial static program
analysis.

One potential source is from a sound points-to analysis. To be sound, the points-to
analysis must mark memory nodes as collapsed when the type information is inconsistent or
missing. Once a node is collapsed in the points-to analysis, field-sensitivity is lost on the
memory node. Moreover, whenever the points-to analysis fails to distinguish two different
pointers’ corresponding memory nodes, it merges them into one node, resulting in an
over-approximation of the taint analysis.

Q. Zhou, S. Dang, and D. Zhang 46:11

Second, CtChecker is a context-sensitive interprocedural analysis. However, when a
callee function is invoked multiple times within the same caller function with different
arguments, CtChecker only creates one context for all calls. This leads to the same indexed
arguments of the multiple calls being aliased in the points-to analysis. As a result, a similar
over-approximation is observed.

Furthermore, the adoption of LLVM’s mem2reg pass only enables flow-sensitivity on
non-aggregate type memory. Memory accesses involving GEPs are still flow-insensitive.

While the above limitation prevents us from removing all false positives, we observe that
CtChecker is able to outperform existing sound analysis. We provide the evaluation details
next in Section 4.

4 Evaluation

4.1 Implementation

We implement CtChecker on PIDGIN [18], a static information flow analysis that integrates
a query language into program dependence graphs (PDGs). However, PIDGIN lacks the
precision-enhancing features discussed in Section 3.2, which we implement with an additional
2100 LOC in C++.

One implementation choice of static information flow analysis is the points-to analysis to
derive sound approximation of memory blocks that a pointer might point to. The two main-
stream points-to analysis algorithms are the unification-based Steensgaard’s algorithm [38]
and the inclusion-based Andersen’s algorithm [2]. Both algorithms have implementations that
are both context- and field-sensitive in order to gain better precision. For example, DSA [22]
is a field- and context-sensitive points-to analysis based on Steensgaard’s algorithm with
heap cloning. On the other hand, Andersen’s algorithm is generally considered more precise
but also costly. Tools such as SVF [40] provide precision from context- and field-sensitivity
without sacrificing much performance. Noting that DSA is used in our baseline PIDGIN and
ct-verif [1], a representative logic-based tool, CtChecker is also built on top of DSA to make
fair comparison with them (see the comparison with PIDGIN in Section 4.4 and ct-verif in
Section 4.5). We leave the study of the impact of points-to analysis on constant-time analysis
as future work.

4.2 Benchmarks

We evaluated CtChecker on two sets of benchmark programs. The first benchmark set
consists of code taken from four cryptographic libraries, i.e., BearSSL v0.6 [29], Libgcrypt
v1.10.1 [12], mbedTLS v3.2.1 [41] and OpenSSL v1.1.1q [15]. Among the four libraries,
Libgcrypt and OpenSSL have widespread use, mbedTLS is built for embedded platforms,
and BearSSL is less popular but it claims to be a constant-time cryptographic library [28]. In
particular, the code consists of the modular exponentiation implementations of each library,
where 4 implementations are taken from OpenSSL, as it is the only library that has various
implementations for the same functionality. In the benchmark, the exponents in the modular
exponentiation computation is marked as confidential sources. According to the definition of
constant-time discipline, the sinks of the analysis are simply branch conditions and memory
addresses.

ECOOP 2024

46:12 CtChecker

The second benchmark set consists of code generated by a constant-time rewriter Con-
stantine [7], which automatically identifies timing channels in the source code and repair
them to follow the constant-time discipline2. To the best of our knowledge, this is the first
work to analyze the rewritten code by constant-time rewriters. Due to an incompatible
LLVM version used by Constantine [7], we used an off-the-shelf C-backend [19] to translate
their rewritten IR back to C source code whenever possible.

4.3 Evaluation Setup
We answer four research questions with the evaluation:
Q1: Impact of separate features. How do field-sensitivity, declassification and flow-

sensitivity affect the analysis precision as separate features? Will including additional
source code improve the analysis precision? Does CtChecker improve the precision of its
baseline (i.e., PIDGIN)?

Q2: Comparison with state-of-the-art. Does CtChecker improve the precision when com-
pared with ct-verif [1], a sound verifier for constant-time programming? Does CtChecker
produce comparable or even more precise results when compared with CacheS [44] and
SC-Eliminator [46]), both are built on simplified but unsound memory model?

Q3: Precision. How many false positives does CtChecker produce? What are the origins of
the remaining false positives?

Q4: Scalability. Does CtChecker scale to real-world codebase with moderate size?

4.4 Impacts of Analysis Features
To answer Q1, we first create three variants of CtChecker, where only one feature among
field-sensitivity (FS), white-list (WL) and flow-sensitivity (FL) is enabled. One extra feature,
which is external to CtChecker, is how much code does it cover in the analysis. To study
the impact of code coverage, we create two versions of each library implementation: one
only includes the essential code that is necessary to compile the modular exponentiation
implementation, while the other version (SRC) includes utility functions such as the multi-
precision integer (mpi) or big number (bn) libraries3. The evaluation results are summarized
in Table 1.

The improvement for field-sensitivity alone (column FS) is smaller than expected: while
all implementations allocate secret and non-secret values in same structures, only four
implementations (Libgcrypt, mbedTLS, BearSSL and OpenSSL-MontConstTime) observe
some improvements. The reason is largely due to the lack of utility function implementations:
both points-to analysis and information flow analysis remain very conservative without
callee’s implementation, making it hard to differentiate read/write effects on each individual
data field.

All four libraries saw a considerable reduction in positives when whitelist was used
(column WL). The removed positives only leak key sizes, which are explicitly declassified in
the whitelist. OpenSSL and mbedTLS saw a slight reduction with flow-sensitivity enabled
(column FL).

2 We pick Constantine [7] instead of other available rewriters such as SC-Eliminator [46], Lif [35] as they
both assume a weaker threat model that only tackles cache attacks (see Section 2.3). In particular, their
rewritten code with prefetching technique still violates constant-time disciplines.

3 The only exception is on BearSSL, which remains the same for both versions for two reasons: (1) the
modular exponentiation function only contains high-level code that makes up fewer than 20 lines of
code. An analysis on it alone does not generate any meaningful result, and (2) BearSSL has a much
smaller codebase compared with other libraries.

Q. Zhou, S. Dang, and D. Zhang 46:13

Table 1 Number of positives based on features. Each column represents the analysis result with
some features enabled. Base: the baseline analysis, FS : field-sensitivity, WL: whitelist, SRC : adding
extra source code, FL: flow-sensitivity, and All: all features enabled. TP represents the true positives
and Reduction computes the reduction rate of false positives, i.e., (Base − All)/(Base − TP).

Library Base FS WL SRC FL All TP Reduction
Libgcrypt 1.10.1 66 46 55 76 66 30 6 60.0%
mbedTLS 3.2.1 50 45 48 33 45 10 4 87.0%
BearSSL 0.6 18 15 6 18 16 3 1 88.2%
OpenSSL 1.1.1q

Reciprocal 14 14 3 20 13 9 2 41.7%
Mont 45 45 36 37 44 25 2 46.5%
MontConstTime 36 27 28 29 34 18 0 50.0%
MontWord 4 4 2 15 4 12 1 -267%

binsec/aes_big 0 0 – – 0 0 0 –
binsec/des_tab 51 26 – – 51 26 24 92.6%
binsec/tls-rempad-luk13 7 6 – – 7 6 6 100%
appliedCryp/3way 41 0 – – 41 0 0 100%
appliedCryp/des 72 62 – – 72 62 62 100%
appliedCryp/loki91 75 72 – – 75 72 56 15.8%
ghostrider/findmax 0 0 – – 0 0 0 –
ghostrider/matmul 4 0 – – 4 0 0 100%
libg/des 448 432 – – 448 432 432 100%
pycrypto/ARC4 20 19 – – 20 19 19 100%

Overall 951 813 178 228 940 724 615 67.6%

Including additional source code (column SRC) does not necessarily reduce false positives:
doing so in fact increases positive numbers for Libgcrypt, OpenSSL-Reciprocal and OpenSSL-
MontWord. This somewhat surprising degradation comes from the imprecision of the
underlying points-to analysis. The points-to analysis, using heap cloning technique, will
merge distinct nodes that are processed by a common function. The analysis also merges
nodes that are found to be in the same equivalence class. In the case of Libgcrypt, nodes
that were considered distinct in the baseline test, end up aliased to the same node in the full
source benchmark.

CtChecker enables all features and analyzes more than the essential code (i.e., it also
covers utility function implementations), whose result is shown under the column “All”. For
most libraries, CtChecker delivers the most precise result, with the exceptions of OpenSSL-
Reciprocal and OpenSSL-MontWord. By inspecting the differences, we concluded that the
reason is also due to undesirable effects in the points-to analysis when additional code is
being analyzed.

4.5 Comparison with ct-verif

ct-verif [1] is one of the first sound tools for verifying constant-time properties; it uses the
self-composition technique [5] to convert the constant-time property into a classical program
verification problem. One reason for comparing with ct-verif is that it is also built on top
of the DSA [22] points-to analysis; hence, the comparison focuses on the advantages of
each approach, rather than some engineering details, such as the difference in the points-to
analysis, in their implementations.

ECOOP 2024

46:14 CtChecker

Table 2 Comparison with ct-verif. “Full-SRC” corresponds to full source in Table 1. “No-
Undefined-Function” is the version where all function calls without sources are removed. “ct-verif-
Verified” stands for all positives in ct-verif are removed, while “CtChecker-Verified” stands for all
positives in CtChecker are removed.

Library

ct-verif CtChecker

Full
SRC

No
Undefined
Function

ct-verif
Verified

CtChecker
Verified

Full
SRC

No
Undefined
Function

ct-verif
Verified

CtChecker
Verified

Libgcrypt 1.10.1 – 20 0 10 30 6 0 0
mbedTLS 3.2.1 OOM 5 0 1 10 4 0 0
BearSSL 0.6 3 3 0 0 3 3 0 0
OpenSSL 1.1.1q

Reciprocal – 2 0 0 9 2 0 0
Mont. – 4 0 2 25 2 0 0
Mont. Const. Time – 2 0 3 18 0 0 0
Mont. Word – 1 0 0 12 1 0 0

One challenge in the comparison is that as a verification tool, ct-verif only reports whether
the input program is constant-time or not4. To find the exact lines that ct-verif deems
constant-time violations, a line-by-line check on the source code is needed. Whenever ct-verif
reports a positive, we log the current line, modify it with some constant-time code, and run
ct-verif again. The same strategy is applied to function calls that lead the control flow to
other functions.

Even though we carefully make the changes so that the information flow remains the
same, there is still a chance that the information flow might be changed while rewriting the
code that has constant-time violations. For a fair comparison, both tools are running on the
same rewritten code.

4.5.1 Results
Both ct-verif and CtChecker are sound analyses and we did observe that both tools report all
true positives. The differences are on false positives. To evaluate the false positive reported
by each tool, we consider four variants of the cryptographic libraries that we evaluated in
Section 4.3. The results are summarized in Table 2.

Full-SRC contains the full source code of the libraries, including mpi libraries. ct-verif
was only able to analyze BearSSL in this setting (recall that BearSSL has the smallest
codebase among all libraries). ct-verif fails with an out-of-memory error on mbedTLS. As for
Libgcrypt and OpenSSL, full source introduces a huge amount of source code. Since we have
to manually go through the source code line by line with ct-verif to find offending lines. It is
a prohibitive amount of work to get all positives. On the contrary, CtChecker could get all
four libraries’ results, where the result on BearSSL is the same as what ct-verif reports.

No-Undefined-Function corresponds to the minimal source in Table 1. The difference
here is that a function call will be removed if it calls an undefined function. The reason is to
accommodate the difference in how the tools treat excluded sources. ct-verif treats a return
value as sensitive even if there is no tainted argument used in this function call. CtChecker
taints all reachable memory in the presence of pointer-values (even if the pointer itself is

4 When verification fails, ct-verif does generate some error messages. However, it is hard to decipher those
messages and link them to the source code.

Q. Zhou, S. Dang, and D. Zhang 46:15

not tainted, see Section 3.2). Removing undefined function calls allows a fair comparison
between the two tools. We note that for all libraries, CtChecker is consistently at least as
precise as ct-verif, where CtChecker reports fewer positives in 4 out of 7 libraries.

ct-verif-Verified was created from column No-Undefined-Function by removing all positives
reported by ct-verif, resulting in fully verified code that is constant time. Any positive reported
by CtChecker on this version is expected to be a false positive. That being said, CtChecker
reported no positive when all positives are removed in ct-verif.

CtChecker-Verified was created similarly from column No-Undefined-Function by removing
all positives that are reported by CtChecker. Each program is a piece of verified constant-time
code. Hence, the positives reported by ct-verif on this version are false positives (we also
manually confirmed). ct-verif reports 16 false positives in total on the constant-time code.

To understand the possible causes for these false positives reported by ct-verif, we analyzed
its output IR code and results. One reason is that memory nodes within an array are marked
public with a constant length by annotation in ct-verif. When a loop is encountered, memory
could be accessed with a loop variable. Then, ct-verif fails to determine whether a piece of
accessed memory is within the public area or not, because it cannot infer how many iterations
at most the loop will be executed. Loop invariants could be automatically computed to verify
the range of loop variables. However, the loop invariant generation in ct-verif, based on a
simple heuristic, might fail to verify secure code. Another series of false positives originates
from how ct-verif handles memcpy, for which it will show arbitrary behaviors. For example,
in the code snippet below, the addresses of s, p1, p2 and p3 are set to public. The contents
of p1, p2 and p3 are also public.

1 int test(int *s, int *p1 , int *p2 , int *p3) {
2 int a=32;
3 memcpy (p1 , p2 , a);
4 if (p3 [0]) dummy ++;
5 }

After calling memcpy, the content of p3 is tainted and line 4 will be reported, even though
p3 is neither an argument nor the return of memcpy.

In summary, CtChecker exhibited a considerable improvement in precision over ct-verif, a
result apparent in the difference between the number of positives reported by each tool in
the last three columns. Moreover, as discussed above, CtChecker is more user-friendly as it
reports all positives in one shot, whereas using ct-verif to find all positives in source code is
cumbersome.

4.6 Comparison with CacheS

CacheS [44] uses abstract interpretation to verify constant-time property. Notably, CacheS
is a “soundy” analysis where “the implementation is unsound for speeding up analysis and
optimizing memory usage, due to its lightweight but unsound treatment of memory”, quoted
from the same paper. Also, it operates on a platform independent IR called REIL IR, which
is lifted from x86 assembly code. We compare CtChecker against CacheS to show how the
memory model and IR code could affect analysis results, see Table 3.

For Libgcrypt, CacheS reports line 19 in Listing 4 (line 682 in mpi-pow.c), where e0 is
derived from secret. But CtChecker ignores this line. The reason is that in LLVM IR, this
line is neither compiled into a branch nor accesses memory with sensitive index. However, in
REIL IR, cmov instruction is lifted to a branch with a condition that is derived from the
secret, the reason that CacheS reports it.

ECOOP 2024

46:16 CtChecker

Table 3 Comparison with CacheS (⋆: low-risk positives; †: extra positive reported by CacheS).

Library File CtChecker
Positives

CacheS
Positives

Libgcrypt 1.10.1 mpi-pow.c

440 440
559⋆ 749⋆

617 617
641 –
667 –
– 682†
702⋆ –

mbedTLS 3.2.1 bignum.c

2124 2124
2127 2127
2173 2173
2182⋆ 2182⋆

BearSSL 0.6 i32_sub.c 36 N/A
OpenSSL 1.1.1q

Reciprocal

bn_exp.c

242

N/A
262

Mont. 398
419

Mont. Word 1240

We also observe that CacheS ignores a few high-risk positives reported by CtChecker. In
Libgcrypt, two high-risk positives are overlooked, namely, lines 7 and 13 in Listing 4 (lines
641 and 667 in mpi-pow.c). In LLVM IR, the branch conditions at these lines are derived
from the secret value and they are inside a loop, which leads to multiple-bit leakage. Similar
to the previous case, the difference between two tools’ analysis targets leads to discrepancies
in results. CacheS observes a bsr instruction in the assembly code, which is a constant-time
instruction on most architectures.

CacheS employs a lightweight but unsound memory model, which avoids one issue of
CtChecker: 69% of false positives of CtChecker are introduced by DSA. However, as a trade-off,
this advantage may lead to false negatives in detecting high-risk vulnerabilities, though we
did not observe any false negatives from CacheS in our evaluation.

4.7 Comparison with SC-Eliminator’s Taint Analysis

As discussed in Section 2.3, SC-Eliminator [46] and CtChecker assume different threat models.
As a consequence, SC-Eliminator performs a taint analysis that identifies violations of
constant-time disciplines first, before the results are further analyzed by a cache analysis.
Here, we compare CtChecker with SC-Eliminator’s taint analysis as they both share the
same functionality. The comparison is also meaningful as precision improvements in the
taint analysis could help cache-analysis tools like SC-Eliminator to rewrite less code, which
improves the performance of the product rewritten code.

Q. Zhou, S. Dang, and D. Zhang 46:17

Listing 4 Code snippet from Libgcrypt (mpi_pow.c).
1 count_leading_zeros (c0 , e);
2 e = (e << c0);
3 c -= c0;
4 j += c0;
5

6 e0 = (e >> (BITS_PER_MPI_LIMB - W));
7 if (c >= W)
8 c0 = 0;
9 ...

10 count_trailing_zeros (c0 , e0);
11 e0 = (e0 >> c0) >> 1;
12

13 for (j += W - c0; j >= 0; j--)
14 {
15 base_u_size = 0;
16 for (k = 0; k < (1<< (W - 1)); k++)
17 {
18 ...
19 base_u_size |= (precomp_size [k] & (0UL - (k == e0)));
20 }
21 ...
22 }

We build SC-Eliminator from source code5 with LLVM 8.0.1. The comparison was based
on the benchmarks used in [46], see Table 4. Before analyzing the results, we note two major
differences between CtChecker and SC-Eliminator’s taint analysis:
1. While CtChecker is built on a sound points-to analysis, SC-Eliminator’s taint analysis

does not use any points-to analysis. The result is that the latter might miss taints that
are propagated via aliasing.

2. While CtChecker is implemented as an interprocedural analysis, SC-Eliminator’s taint
analysis is implemented as an intraprocedural analysis. Although an intraprocedural
analysis is inherently free of context-sensitivity issues that we discuss further in Section 4.8,
it requires manual efforts to label sensitive function parameters6, which is both time-
consuming and error-prone.

Despite the differences above, both favor SC-Eliminator’s taint analysis in terms of
precision, CtChecker reports fewer positives in 6 benchmark programs, while the two tools
report the same number of positives on 9 of the benchmark programs. Surprisingly, SC-
Eliminator reports less positives in two algorithm programs, namely, anubis and cast5 in the
Chronos library. The extra positives that CtChecker reports, as we investigate deeper, are
true positives. But due to the lack of a points-to analysis, SC-Eliminator missed them. In
other words, SC-Eliminator in fact has false negatives, which we elaborate next.

4.7.1 False Negatives in SC-Eliminator’s Taint Analysis
The lack of a points-to analysis sometimes breaks the propagation of information flow.
The code snippet shown in Listing 5 contains a concrete true positive that is missed by
SC-Eliminator. Here, the first parameter key of function bar is the tainted source. At line 8,
the first element of ctx->keys is tainted by key. So, line 9 violates constant-time disciplines

5 https://bitbucket.org/mengwu/timingsyn/src/master/
6 To reduce the effort, with only a few hard-coded cases, SC-Eliminator’s taint analysis assumes that only

the first parameter of every function to be tainted.

ECOOP 2024

https://bitbucket.org/mengwu/timingsyn/src/master/

46:18 CtChecker

Table 4 Comparison with SC-Eliminator’s Taint Analysis.

Library
SC-Eliminator CtChecker

Positives
Reported

False
Negatives

Positives
Reported

appliedCryp/3way.c 4 0 3
appliedCryp/des.c 22 0 18
appliedCryp/loki91.c 8 0 7
chronos/aes.c 388 0 388
chronos/anubis.c 84 8 92
chronos/cast5.c 288 160 448
chronos/cast6.c 448 0 448
chronos/des.c 426 0 416
chronos/des3.c 400 0 390
chronos/fcrypt.c 128 0 128
chronos/khazad.c 40 0 40
libg/camellia.c 32 0 32
libg/des.c 144 0 144
libg/seed.c 8 0 8
libg/twofish.c 248 0 248
supercop/aes_core.c 412 0 409
supercop/cast-ssl.c 448 0 448

as the branch condition is tainted. However, SC-Eliminator misses the positive and leaves
it unchanged in the rewritten code. Due to the lack of a points-to analysis, SC-Eliminator
cannot infer that variable keys defined at line 7 and ctx->keys point to the same memory.
This contrived example illustrates why SC-Eliminator misses those true positives in anubis
and cast5 in the Chronos library.

Listing 5 Example of a false negative in SC-Eliminator.
1 void do_something () {...}
2 typedef struct {
3 int ** keys;
4 int n;
5 } CONTEXT_st ;
6 void bar(int *key , CONTEXT_st *ctx){
7 int ** keys = ctx ->keys;
8 keys [0] = key;
9 if(ctx ->keys [0][0] == 0)

10 do_something ();
11 }

4.8 Analysis Precision
To answer Q3, we inspected each positive and categorized it into three kinds: low-risk,
high-risk and false positive, where the first two are true positives, and their difference is in
the severity of information leakage. In particular, a low-risk positive only reveals one bit of
information while high-risk positives can leak multiple bits of secrets (e.g., a sensitive branch
within a loop).

The classification result is shown in Table 5. CtChecker reports a total number of 724
positives, with 615 true positives and 109 false positives.

True Positives. CtChecker does find true positives in the rewritten code by Constantine.
For example, line 5 in Listing 6 is a timing channel and line 17 is a cache side channel.
At the beginning, %idx is an address calculated from %sec, which is derived from a secret

Q. Zhou, S. Dang, and D. Zhang 46:19

Table 5 Result Classifications. Base and All refer to the same columns in Table 1.

Library Base All FP Low-risk High-risk
Libgcrypt 1.10.1 66 30 24 2 4
mbedTLS 3.2.1 50 10 6 1 3
BearSSL 0.6 18 3 2 0 1
OpenSSL 1.1.1q

Reciprocal 14 9 7 0 2
Mont. 45 25 23 0 2
Mont. Const. Time 36 18 18 0 0
Mont. Word 4 12 11 0 1

binsec/aes_big 0 0 0 0 0
binsec/des_tab 51 26 2 24 0
binsec/tls-rempad-luk13 7 6 0 6 0
appliedCryp/3way 41 0 0 0 0
appliedCryp/des 72 62 0 62 0
appliedCryp/loki91 75 72 16 56 0
ghostrider/findmax 0 0 0 0 0
ghostrider/matmul 4 0 0 0 0
libg/des 448 432 0 432 0
pycrypto/ARC4 20 19 0 19 0

key. It is then cast to an integer type and is masked by 63. The result %and is tainted
from the masking operation. At line 4, %cmp, the branch condition, is computed from %and,
making the branch secret dependent. What makes the case more interesting is that the
branch at line 5 does not exist in the original source code. Constantine adds the branch
to check if %and satisfies certain property. If not, the execution will stop. For this reason,
even though this branch is added into the main processing loop, it should be considered a
low-risk positive. Later, %and is used to compute another address %addptr at line 11. Then,
%addptr is accessed by load if the execution path comes from forbody.pre. This memory
access is sensitive because the index is derived from secret even after the masking operation.
All positives found in rewritten code follow the similar pattern.

Listing 6 Rewritten IR by Constantine from pycrypto/ARC4.
1 %idx = gep @stream_state , 0, %sec
2 %2 = ptrtoint %idx to i64
3 %and = and %2, 63
4 %cmp = icmp slt %and , and (sub (add (ptrtoint (@stream_state to i64),

319) , ptrtoint (@stream_state to i64)), -64)
5 br %cmp , label % forbody .pre , label %exit
6

7 exit:
8 ...
9

10 forbody .pre:
11 % addptr = gep @stream_state , 0, %and
12 br label %for.body
13

14 forbody :
15 ...
16 %_ptr = phi [%addptr1 , % forbody], [%addptr , % forbody .pre]
17 %3 = load volatile %_ptr

False Positives. While the overall false positive rate of CtChecker on all benchmarks
appears low, we further studied the root cause of false positives in the cryptographic library
benchmarks, which witness a higher rate of false positives, and found that the majority
(63 of them) are caused by the imprecision of DSA, 26 by context-insensitivity, and 2 by

ECOOP 2024

46:20 CtChecker

flow-insensitivity (see Section 3.3 for the major reasons of imprecision). Arguably, 69% of
false positives due to DSA are unavoidable while we aim for a sound and scalable analysis. For
example, when creating the data structure graph for the reciprocal method in OpenSSL, the
structure representing the exponent p is collapsed. Without the field information, CtChecker
have to conservatively taint the whole structure. Consequently, line 1 in Listing 7 (which
corresponds to line 171 in bn_exp.c) is reported even though it only depends on flag field,
not the data field.

Listing 7 False positives caused by collapsed memory and callsite-insensitivity in OpenSSL.
1 if (BN_get_flags (p, BN_FLG_CONSTTIME) != 0
2 || BN_get_flags (a, BN_FLG_CONSTTIME) != 0
3 || BN_get_flags (m, BN_FLG_CONSTTIME) != 0) {
4 BNerr (BN_F_BN_MOD_EXP_RECP , ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
5 return 0;
6 }

29% of false positives are produced when a callee function is invoked multiple times within
the same caller function with different arguments. In this case, DSA provides no callsite
distinction. In Listing 7, BN_get_flags is called multiple times with p, a and m as the first
parameter, respectively. Since p is tainted, lines 2 and 3 (lines 172 and 173 in bn_exp.c) are
also reported. One fix is to distinguish all calling contexts in the static analysis, or inlining
all function calls before the source code is being analyzed. However, both approaches will
hurt the scalability of static analysis on large programs.

Other implementations of points-to analyses may be used to improve precision further
in two different aspects: (1) to reduce the number of collapsed memory nodes, and (2) to
provide finer-grained context-sensitivity on callsites. As an example, these improvements
might remove false positives mentioned in the example of reciprocal method in OpenSSL
above. However, as developing a more precise points-to analysis is beyond the scope of this
paper, we leave it as future work.

The remaining 2 false positives are due to the lack of flow-sensitivity. As discussed in
Section 3.2, LLVM’s mem2reg pass only provides flow-sensitivity to some extent. For example,
the tainted data in mbedTLS is the d field of variable E. Hence, line 1 in Listing 8 (line 1988
in bignum.c) is not key-dependent as it only returns the s field of E.

Listing 8 False positives caused by flow-insensitivity in mbedTLS.
1 if(mbedtls_mpi_cmp_int (E, 0) < 0)
2 return (MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
3 ...
4 while (1) // Main processing loop
5 {
6 ...
7 MBEDTLS_MPI_CHK (mpi_select (&WW , W, (size_t) 1 << wsize , wbits));
8 ...
9 }

However, line 1 is falsely reported by CtChecker. Inside mpi_select, s field of WW is changed
to the secret derived from wbits that is tainted. Since DSA treats E and WW as potential
aliases, s field of E is also tainted. However, CtChecker is unable to distinguish when s field
of E is tainted. Hence, it conservatively reports line 1 as a positive.

4.9 Scalability
To answer Q4, we evaluate the scalability of CtChecker on benchmark programs from Table 1
on a PC equipped with 2.30GHz Intel Core i7-11800H and 16 GB memory.

Q. Zhou, S. Dang, and D. Zhang 46:21

0 5 10 15 20 25
Code Size (KLOC)

0

10

20

30

40
Ru

nn
in

g
Ti

m
e

(s
ec

on
ds

)

BearSSL
Libgcrypt

mbedTLS

Recp

Mont
MontConstTime

MontWord

des_tab
appliedCryp/des

loki91

libg/des

Figure 3 Running Time vs. Code Size of Benchmarks. Unlabeled data points are from Constantine
rewritten code with smaller size.

For each cryptographic library, the experiment was done with both the full source (i.e., the
SRC version) and the minimal source (i.e., the modular exponentiation code only). Among
the tested benchmarks, BearSSL has the smallest codebase of about 4 KLOC, whereas the
largest codebase is OpenSSL with around 24 KLOC for its full source version. The running
time for these two libraries are 2 and 39 seconds, respectively. The comparison shows that
processing time is small even for larger libraries. The libg/des code rewritten by Constantine,
which has around 8.6 KLOC, had the longest running time of 48 seconds. Overall, the
running time against code size of all benchmark programs being analyzed shows a close to
linear trend, as shown in Figure 3.

In terms of memory consumption, the peak usage is around 150 MB when OpenSSL
is being analyzed, during the constraint solving step. The result shows that CtChecker is
scalable in both the spatial and temporal dimensions.

4.9.1 Running Time of Other Tools
We did not compare the running time and memory usage of CtChecker quantitatively with
other tools since the underlying techniques are very different, making a direct comparison
unfair. However, we discuss other tools’ running time and memory consumption below.
ct-verif: For moderate-sized codebase like mbedTLS, the full source code makes ct-verif run

out-of-memory (OOM) after several hours. Moreover, ct-verif stops execution once the
first violation is found, making it hard to gauge its execution time if it were reporting all
positives in one shot.

CacheS: As reported in [44], the running time for CacheS is at least 33.2 seconds when there
is only one function being analyzed, up to 179.2 seconds if the execution runs successfully
without timeout, and more than 5 hours if timeout occurs. The memory consumption is
also significantly larger than CtChecker, where at least 620 MB of space was used. That
said, we note that their reported numbers are collected from different experimental settings
than ours, e.g., physical machine, analyzed code base, etc. Therefore, the performance
numbers are not directly comparable.

SC-Eliminator: Its taint analysis is the fastest among all tools, which takes around 1 second
for each of their benchmarks. The reasons are two-fold however. On the one hand, it does
not utilize a points-to analysis, which sacrifices its soundness as we mentioned in Section 4.7.

ECOOP 2024

46:22 CtChecker

On the other hand, it simply propagates taints when each instruction is analyzed, which
leads to soundness issues in corner cases. For instance, given x:=y; y:=secret in a
loop, SC-Eliminator fails to taint x, as the taint on y is discovered later in the analysis.
CtChecker is built on more rigorous information flow analysis with constraint generation
and solving. The points-to analysis and constraint generation/solving collectively consume
most of the time for CtChecker.

Although a fair comparison on efficiency is infeasible, it is safe to conclude that CtChecker’s
efficiency is better or at least comparable to other tools employing similar sub-components.
SC-Eliminator is more efficient than ours and other competitors with a loss of soundness, as
discussed above.

5 Related Work

5.1 Detecting Timing Side Channels
Both static and dynamic approaches are widely adopted to detect constant time violations.
VirtualCert [3] and FlowTracker [32] are static tools built with formal methods. VirtualCert
is flow-insensitive and is specially used for virtualized systems. FlowTracker focuses on
optimizing the representation of implicit flows and is flow-sensitive. Almeida et al. [1] propose
ct-verif, a static tool that employs self-composition for verifying constant-time property. It
either accepts or rejects programs being verified, but it does not pinpoint the source code
where the violations occur. Both VirtualCert and ct-verif require additional annotations to
work. SecVerilog [51] is a language-based approach for checking hardware-level information
flow violations. Somorovsky [37] presents a dynamic tool using fuzzing technique to detect
implementation with constant-time violations. Dynamic methods could avoid false positives
but are limited by their search space, which leads to unsoundness. Compared to these tools,
CtChecker is a sound and generic non-constant-time code detection tool that does not require
additional annotations.

5.2 Detecting Cache Side Channels
Cache-based side channels are another type of covert channel that could leak sensitive
information to unintended parties. CacheD [45] is a trace-based analysis that identifies
cache-based timing channels using taint tracking and symbolic execution. However, symbolic
execution might not have the full coverage of execution paths. Brotzman et al. [8] propose a
cache-aware symbolic execution (CaSym) that works on LLVM IR. CaSym is able to cover
all execution path by introducing a technique that could transform a program with loops to
its loop-free version. Both works report the location of vulnerabilities to make it easier for
developers to fix them. CacheS [44] is a static analysis that could detect timing channels and
cache-based channels. A novel abstract domain called Secret-Augmented Symbolic domain
(SAS) is proposed to track sensitive information with high precision while remaining efficient.
However, the unsound memory model it uses may cause false negatives. For comparison,
CtChecker employs a sound points-to analysis, which makes it both sound and efficient.

5.3 Mitigating Side Channels
Another line of work involves mitigating side channels after vulnerabilities are detected.
Cauligi et al. [11] propose a C-like DSL called FaCT. Its compiler is claimed to be able
to compile secret-sensitive source code into constant-time LLVM bitcode. However, FaCT

Q. Zhou, S. Dang, and D. Zhang 46:23

requires libraries to be rebuilt in this language, making it impractical for existing libraries
and legacy systems. Wu et al. [46] propose SC-Eliminator, a program rewriter that can
eliminate both timing- and cache-based side channels. A constant time select function is
proposed for secret-dependent branches. Cache-side channels are removed by preloading
all elements in a lookup table. Soares et al. [35] point out that SC-Eliminator introduces
out-of-bound memory accesses when doing the transformation. They put forward another
rewriter called lif that ensures memory safety at the same time. Preloading methods fail
when an attacker could evict cache lines after preloading and before accessing the data.
Constantine [7] adopts a radical full linearization design. It focuses on how to maintain
efficiency under the radical design. CtChecker does not repair programs when vulnerabilities
are found. However, it could help the rewriters to identify problematic code locations more
precisely, hence reducing the overhead of mitigation. Moreover, as we demonstrated in the
evaluation, it can also serve as an efficient verifier for the code generated by those program
rewriters.

6 Conclusion and Future Work

In this work, we build CtChecker, a sound, precise and scalable static information flow
analysis for constant-time programming. Compared with traditional information flow analysis,
CtChecker is equipped with various features to improve analysis precision on cryptographic
code. The features effectively reduce false positive rates while maintaining analysis soundness.
By inspecting remaining false positives, we observed that the majority is due to imprecision
in the sound points-to analysis that CtChecker is built on.

For future work, a fraction of remaining false positives is due to a callee function being
invoked multiple times within the same caller function with different arguments. We plan to
investigate how to identify the instances where inlining such code might improve precision,
with the insight that heterogeneous arguments to the callee function are the root cause of the
imprecision issue. The selective inlining strategy likely will strike a good balance between
precision and performance.

References
1 José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi.

Verifying constant-time implementations. In USENIX Security Symposium, pages 53–70, 2016.
2 Lars Ole Andersen. Program analysis and specialization for the c programming language.

Ph.D. Thesis, 1994.
3 Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie. System-level

non-interference for constant-time cryptography. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, pages 1267–1279, New York,
NY, USA, 2014. ACM. doi:10.1145/2660267.2660283.

4 Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational verification using product
programs. In International Symposium on Formal Methods, pages 200–214. Springer, 2011.

5 Gilles Barthe, Pedro R D’argenio, and Tamara Rezk. Secure information flow by self-
composition. Mathematical Structures in Computer Science, 21(6):1207–1252, 2011.

6 Daniel J Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot Bruinderink, Nadia Heninger,
Tanja Lange, Christine van Vredendaal, and Yuval Yarom. Sliding right into disaster: Left-
to-right sliding windows leak. In International Conference on Cryptographic Hardware and
Embedded Systems, pages 555–576. Springer, 2017.

7 Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida. Constantine:
Automatic side-channel resistance using efficient control and data flow linearization. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
pages 715–733, 2021.

ECOOP 2024

https://doi.org/10.1145/2660267.2660283

46:24 CtChecker

8 Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut Kandemir. Casym:
Cache aware symbolic execution for side channel detection and mitigation. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 505–521. IEEE, 2019.

9 Robert Brotzman, Danfeng Zhang, Mahmut Taylan Kandemir, and Gang Tan. Specsafe:
detecting cache side channels in a speculative world. Proceedings of the ACM on Programming
Languages, 5(OOPSLA):1–28, 2021.

10 David Brumley and Dan Boneh. Remote timing attacks are practical. Computer Networks,
48(5):701–716, 2005.

11 Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S Wahby, John
Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan. Fact: a dsl for
timing-sensitive computation. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 174–189, 2019.

12 GnuPG community. Libgcrypt. https://gnupg.org/software/libgcrypt/index.html, 2022.
13 Dorothy E. Denning. A lattice model of secure information flow. Communication of the ACM,

19(5):236–243, 1976.
14 William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P

Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid: an information-flow
tracking system for realtime privacy monitoring on smartphones. ACM Transactions on
Computer Systems (TOCS), 32(2):1–29, 2014.

15 OpenSSL Software Foundation. Openssl: Cryptography and ssl/tls toolkit. https://www.
openssl.org/, 2022.

16 Joseph A Goguen and José Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11–20. IEEE, 1982.

17 David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games–bringing access-based
cache attacks on aes to practice. In 2011 IEEE Symposium on Security and Privacy, pages
490–505. IEEE, 2011.

18 Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong. Exploring and enforcing
security guarantees via program dependence graphs. ACM SIGPLAN Notices, 50(6):291–302,
2015.

19 JuliaHubOSS. Llvm c backend. https://github.com/JuliaHubOSS/llvm-cbe, 2018.
20 Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit flows: Can’t live with

‘em, can’t live without ‘em. In Information Systems Security: 4th International Conference,
ICISS 2008, Hyderabad, India, December 16-20, 2008. Proceedings 4, pages 56–70. Springer,
2008.

21 Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Annual International Cryptology Conference, pages 104–113. Springer, 1996.

22 Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-sensitive points-to
analysis with heap cloning practical for the real world. ACM SIGPLAN Notices, 42(6):278–289,
2007.

23 Andrew C Myers. Jflow: Practical mostly-static information flow control. In Proceedings of
the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
228–241, 1999.

24 James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for automatic detection,
analysis, and signaturegeneration of exploits on commodity software. In NDSS, volume 5,
pages 3–4, 2005.

25 Zvonimir Pavlinovic, Tim King, and Thomas Wies. Finding minimum type error sources.
ACM SIGPLAN Notices, 49(10):525–542, 2014.

26 Colin Percival. Cache missing for fun and profit, 2005.
27 Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. Make sure dsa signing exponen-

tiations really are constant-time. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1639–1650, 2016.

28 Thomas Pornin. Constant-time in bearssl. https://bearssl.org/constanttime.html, 2018.

https://gnupg.org/software/libgcrypt/index.html
https://www.openssl.org/
https://www.openssl.org/
https://github.com/JuliaHubOSS/llvm-cbe
https://bearssl.org/constanttime.html

Q. Zhou, S. Dang, and D. Zhang 46:25

29 Thomas Pornin. Bearssl is an implementation of the ssl/tls protocol (rfc 5246) written in c.
https://bearssl.org, 2022.

30 François Pottier and Vincent Simonet. Information flow inference for ml. In Proceedings of
the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
319–330, 2002.

31 Jakob Rehof et al. Tractable constraints in finite semilattices. Science of Computer Program-
ming, 35(2-3):191–221, 1999.

32 Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F. Aranha. Sparse representa-
tion of implicit flows with applications to side-channel detection. In Proceedings of the 25th
International Conference on Compiler Construction, CC 2016, pages 110–120, New York, NY,
USA, 2016. ACM. doi:10.1145/2892208.2892230.

33 Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security. IEEE
Journal on selected areas in communications, 21(1):5–19, 2003.

34 Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ranjit Jhala.
Type error feedback via analytic program repair. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 16–30, 2020.

35 Luigi Soares and Fernando Magno Quintãn Pereira. Memory-safe elimination of side channels.
In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO),
pages 200–210. IEEE, 2021.

36 Juraj Somorovsky. Curious padding oracle in openssl (cve-2016-2107), 2016. Last
Retrieved: Jan 2024. URL: https://web-in-security.blogspot.co.uk/2016/05/
curious-padding-oracle-in-openssl-cve.html.

37 Juraj Somorovsky. Systematic fuzzing and testing of tls libraries. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, pages
1492–1504, New York, NY, USA, 2016. ACM. doi:10.1145/2976749.2978411.

38 Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 32–41, 1996.

39 G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas. Secure program execution
via dynamic information flow tracking. ACM Sigplan Notices, 39(11):85–96, 2004.

40 Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow analysis in llvm. In
Proceedings of the 25th international conference on compiler construction, pages 265–266.
ACM, 2016.

41 TrustedFirmware. Mbed tls. https://www.trustedfirmware.org/projects/mbed-tls, 2022.
42 Dennis Volpano and Geoffrey Smith. A type-based approach to program security. In TAP-

SOFT’97: Theory and Practice of Software Development: 7th International Joint Conference
CAAP/FASE Lille, France, April 14–18, 1997 Proceedings 22, pages 607–621. Springer, 1997.

43 Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and Abhik Roy-
choudhury. oo7: Low-overhead defense against spectre attacks via program analysis. IEEE
Transactions on Software Engineering, 47(11):2504–2519, 2019.

44 Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng Zhang, and Dinghao Wu. Identifying
{Cache-Based} side channels through {Secret-Augmented} abstract interpretation. In 28th
USENIX security symposium (USENIX security 19), pages 657–674, 2019.

45 Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. Cached: Identifying
cache-based timing channels in production software. In Proceedings of the 26th USENIX
Security Symposium, pages 235–252, 2017.

46 Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Eliminating timing side-
channel leaks using program repair. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 15–26, 2018.

47 Yuval Yarom, Daniel Genkin, and Nadia Heninger. Cachebleed: a timing attack on openssl
constant-time rsa. Journal of Cryptographic Engineering, 7:99–112, 2017.

48 Anna Zaks and Amir Pnueli. Covac: Compiler validation by program analysis of the cross-
product. In International Symposium on Formal Methods, pages 35–51. Springer, 2008.

ECOOP 2024

https://bearssl.org
https://doi.org/10.1145/2892208.2892230
https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html
https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html
https://doi.org/10.1145/2976749.2978411
https://www.trustedfirmware.org/projects/mbed-tls

46:26 CtChecker

49 Danfeng Zhang, Aslan Askarov, and Andrew C Myers. Language-based control and mitigation
of timing channels. In Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation, pages 99–110, 2012.

50 Danfeng Zhang and Andrew C Myers. Toward general diagnosis of static errors. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 569–581, 2014.

51 Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. A hardware design language
for timing-sensitive information-flow security. ACM SIGPLAN Notices, 50(4):503–516, 2015.

Defining Name Accessibility Using Scope Graphs
Aron Zwaan #

Delft University of Technology, The Netherlands

Casper Bach Poulsen #

Delft University of Technology, The Netherlands

Abstract
Many programming languages allow programmers to regulate accessibility; i.e., annotating a decla-
ration with keywords such as export and private to indicate where it can be accessed. Despite
the importance of name accessibility for, e.g., compilers, editor auto-completion and tooling, and
automated refactorings, few existing type systems provide a formal account of name accessibility.

We present a declarative, executable, and language-parametric model for name accessibility,
which provides a formal specification of name accessibility in Java, C#, C++, Rust, and Eiffel. We
achieve this by defining name accessibility as a predicate on resolution paths through scope graphs.
Since scope graphs are a language-independent model of name resolution, our model provides a
uniform approach to defining different accessibility policies for different languages.

Our model is implemented in Statix, a logic language for executable type system specification
using scope graphs. We evaluate its correctness on a test suite that compares it with the C#, Java,
and Rust compilers, and show we can synthesize access modifiers in programs with holes accurately.

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its
engineering → Language features; Theory of computation → Program constructs

Keywords and phrases access modifier, visibility, scope graph, name resolution

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.47

Related Version Extended Version: https://doi.org/10.48550/arXiv.2407.09320 [36]

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.27

Acknowledgements We thank Friedrich Steimann for challenging us to specify and formalize access
modifiers using scope graphs, and the anonymous reviewers for their helpful comments.

1 Introduction

Many programming languages, especially object-oriented ones, support information hiding,
i.e., regulating from which positions in a program a declaration can be accessed. Information
hiding is used to enforce invariants of particular code units, implement design patterns (e.g.
the singleton pattern), improve modularization, limit public APIs to offer guidance to library
users and guarantee forward compatibility. Support for information hiding is usually provided
using access modifier keywords1 (access modifiers for short), such as public, protected,
internal and private. Each of these corresponds with a particular accessibility policy that
is validated by the type checker.

Although recent research has not paid much attention to access modifiers, there are still
good reasons to study their semantics. First, understanding access modifiers is required to
implement (alternative) compilers and editor services correctly. In particular, disregarding
accessibility may result in incorrect name binding, and hence incorrect program behavior.
Second, formalizing access modifiers enables reasoning about the meaning of programs.

1 Other common names include “access specifier” or “visibility modifier”.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Aron Zwaan and Casper Bach Poulsen;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 47; pp. 47:1–47:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.s.zwaan@tudelft.nl
https://orcid.org/0000-0002-1818-4245
mailto:c.b.poulsen@tudelft.nl
https://orcid.org/0000-0003-0622-7639
https://doi.org/10.4230/LIPIcs.ECOOP.2024.47
https://doi.org/10.48550/arXiv.2407.09320
https://doi.org/10.4230/DARTS.10.2.27
https://doi.org/10.4230/DARTS.10.2.27
https://doi.org/10.4230/DARTS.10.2.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Defining Name Accessibility Using Scope Graphs

package p1;
class A {

int x;
}

package p2;
class B extends p1.A { }

package p1;
class C extends p2.B {

int y = x;
}

(a) Inheritance through Packages.

package p;
class A {

protected int x;
}

class B extends A {
private int x;

}

class C extends B {
int y = x;

}

(b) Inaccessible or Shadowed?

package p;
class A {

private int x = 0;
protected int y = 1

}
class B {

int x = 3;
int y = 4;
class C extends A {

int z = x + y
}

}

(c) Accessibility and Shadowing.

Figure 1 Examples of intricate Access Modifier semantics. Classes are assumed to be public.

Finally, program transformation tools, such as automated refactorings, must handle the
semantics of accessibility correctly. This is especially relevant for research on large-scale
automated transformations, aimed at dealing with large (legacy) codebases. It is often
infeasible to check transformations performed with such tools manually. Thus, the correctness
of these transformations must be guaranteed through other means.

The meaning of access modifiers can be intricate in corner cases. We illustrate that using
the examples in Figure 1. In Figure 1a, there is an inheritance chain, where class C extends
class B, which itself extends A. Classes A and C reside in package p1, while B is in p2. Class A
defines a package-accessible field x, which is accessed in C. The question here is whether
that access is actually allowed. One could reason that it is correct, as the access occurs in
the same package as the declaration, so a package-level declaration should be visible. On
the other hand, one could consider x not inherited by B [11, §8.2], and thus not inherited
by C either. In fact, the Java language designers chose the second option, rejecting this
program [23, §4.2]. Using ((A) this).x is accepted however.

Something similar happens in Figure 1b. Here, one can consider the reference x in class C
to be invalid, as the field in class B is inaccessible. Alternatively, under the assumption
that B.x is out of scope, the reference can be valid, pointing to A.x. In this case, Java
checks accessibility after shadowing, so this program is again rejected. However, in Figure 1c,
accessibility does influence the binding. The reference x binds to the field of the enclosing
class B, as the field inherited from class A is inaccessible. However, reference y binds to the
field inherited from A. Thus, in this case, the accessibility of the inherited fields determines
the resolution of x and y; i.e., accessibility is checked before shadowing. This shows that
specifying accessibility is essential to defining the name binding of a language correctly.

Unintuitive semantics of accessibility occurs in non-object-oriented languages as well.
For example, the accessibility scheme of Agda seems simple: definitions are either public or
module-private, and imported definitions can be re-exported. However, issue #54612 reports
that re-exports in a private block are still exposed to the outside world. While this intuitively
seems wrong to most commenters, an argument is made that this is actually the intended
behavior. The discussion stalls shortly after a remark that talking about intended behavior
is “meaningless without a specification”.

2 https://github.com/agda/agda/issues/5461

https://github.com/agda/agda/issues/5461

A. Zwaan and C. Bach Poulsen 47:3

These examples show that the meaning of access modifiers is not always obvious. Hence,
language designers should define their semantics unambiguously. Ideally, that is done through
specifications containing inference rules. Inference rules allow unambiguous interpretation of
the meaning of programming language constructs, including name binding. However, perhaps
surprisingly, a general model for defining access modifiers has never been proposed.

Perhaps closest is the work of Steimann and Thies [25] (later incorporated in the JRRT
refactoring tool [23]). They propose a constraint-based approach to automating refactorings
in Java, by collecting and solving accessibility constraints. These constraints are generated
using constraint generation rules, which cover the access rules the Java compiler enforces. By
solving these constraints, changes in accessibility implied by the refactoring can be inferred,
yielding type- and behavior-preserving refactorings.

Steimann and Thies’ work solves the problem of making refactorings in Java sound
regarding accessibility. However, it does not yet give a high-level explanation of the meaning
of access modifiers. This is partly because the constraint generation rules need several
low-level details to catch some intricate corner cases, but also because the function that
computes the minimal required accessibility level is not given, as it was “unpleasant to
specify” and “of no theoretical interest” [25, §5.2]. Therefore, their work cannot easily be
adapted to a different language or a different application (e.g., a type checker).

To advance the state of the art, we pursue the following goals:
Explain the meaning of access modifiers.
Explain the (subtle) differences between access modifiers in different languages.
Provide a framework for experimenting with feature combinations that do not (yet) exist
in other languages.

To this end, we do not fully formalize one particular language, but rather define a toy
language that incorporates and combines a large number of accessibility features. To abstract
over low-level name resolution details, we use scope graphs [18, 27, 22, 38]. In this paper,
we demonstrate this is a natural fit, because accessibility can be expressed as a predicate
over paths in a scope graph. The specification is written in the logic language Statix [27, 22],
which has a well-defined declarative semantics and also supports generating executable
type-checkers automatically.

We compare these executable type checkers with reference compilers of Java, C#, and
Rust, showing that we accurately captured the semantics of access modifiers in some real-
world languages. Moreover, using Statix/scope graphs as a basis for (language-parametric)
refactorings is an active topic of research [16, 29, 15, 3]. We envision that this will provide
accessibility-aware refactorings similar to Steimann et al., without requiring significant
additional effort. This is substantiated by the fact that Statix-based code completion [19]
proposes an access modifier if and only if it would not cause accessibility errors elsewhere in
the program.

In summary, the contributions of this paper are as follows:
We provide a systematic classification of accessibility features (Section 2);
we apply our taxonomy to Java, C++, C#, Rust, and Eiffel (Section 2);
we present a specification of (various versions of) accessibility on modules (Section 5),
subclasses (Section 6), and their conjunctive and disjunctive combination (Section 7);
we extend our specification with accessibility-restricting inheritance (Section 8);
we prove some theorems about our model, showing it is well-behaved (Section 9); and
we implement our specification in Statix, and compare it with the standard compilers of
Java, C#, and Rust. Moreover, we show access modifiers can be synthesized accurately
using Statix-based Code Completion [19] (Section 10).

This paper comes with an artifact that allows reproducing the evaluation [35], and appendices
containing a full specification of the access modifiers and proofs of the stated theorems [36].

ECOOP 2024

47:4 Defining Name Accessibility Using Scope Graphs

2 Access Modifiers in Real-World Languages

In this section, we explore the design space of access modifiers as they occur in real-world
languages. We first motivate why languages have access modifiers (Section 2.1). After that,
we discuss common accessibility features (Section 2.2), summarizing them in a feature model
(Section 2.3).

2.1 Why Accessibility?
Most programming languages allow programmers to define entities (variables, functions, types,
etc.), and assign a name to them. That name can then be used to refer to the introduced
entity from other positions in the program. However, as there is typically a large number of
entities within a software project, most languages offer a notion of modularization to group
related definitions. Equally named definitions in different modules can be distinguished by
qualifying them with the name of the module in which they reside. Unqualified (or partially
qualified) names by default resolve within their enclosing module, or imported modules.
Details of this scheme differ from language to language, but generally aim to make definitions
easy to refer to (e.g., by minimizing the number of required qualifiers), while trying to be
unambiguous to the compiler and the programmer.

However, these rules may often be too lenient with respect to the intention of the
programmer. A definition may be accessible from scopes where it is not intended to be used.
This can have detrimental effects on the quality of a software artifact. For example, exposing
all internal definitions of a library makes it (1) less intuitive to its users, (2) prone to forward
compatibility issues and technical dept (e.g. strong coupling).

For these reasons, many programming languages provide constructs that give the pro-
grammer control over the regions of code where a definition can be accessed. For example, in
many object-oriented languages, a class can access fields from its ancestor classes by default
(language-controlled). However, if the programmer does not want a field to be accessible from
subclasses, they can add a private access modifier. This modifier prevents access from all
other classes (programmer-controlled). Although many constructs that provide access control
to the programmer can be envisioned, most languages settle on a limited set of keywords
that can be attached to a definition. In practice, this relatively simple scheme has proven
powerful enough to cover most use cases.

2.2 Accessibility in Practice
Next, we explore how languages typically provide modularization and accessibility features.

Modules. A common feature that provides modularization is modules (also called “package”
or “namespace”). A module is a syntactic construct that introduces a named collection of
definitions. Members of modules can be accessed using the name of the module, for example
in a preceding import statement, or as a qualifier to the name of the member that is accessed.

Hiding a definition from other modules is the simplest accessibility restriction that can be
applied with respect to modules. For example, Java declarations without an access modifier
can only be accessed within the same package. Rust items without a modifier behave similarly,
except that declarations can still be accessed from submodules.

Some languages have multiple notions of modularization. For example, C# has assemblies,
namespaces, and files, where a namespace can comprise multiple files, and/or a file can
contain multiple namespaces. The internal keyword in C# restricts accessibility to the
assembly, and the file keyword (introduced in C# 11 [32]) to the current file. Similarly,
Java 9 introduces modules [21], with features to restrict access from external modules.

A. Zwaan and C. Bach Poulsen 47:5

mod outer {
mod inner {

pub x = 42;
}
pub use inner ::x;

}

fn main () {
// ERROR: inner is inaccessible :
// let x = outer :: inner ::x;
let x = outer ::x;
println! ("{x}")

}

Figure 2 Re-exports can change Accessibility.

Some languages give some more control over which modules a declaration can be accessed
from. For example, Rust has the pub(in path) access modifier, where path refers to some
enclosing module. This enables programmers to expose items to an arbitrary ancestor.

Imports usually do not affect the visibility of a declaration. A notable exception to this
rule is re-exporting (e.g., as implemented in Rust), which can actually change the visibility
of a declaration, as shown in Figure 2. In this program, the module inner is accessible in
outer, but not in its parent (the root scope). Therefore, the function main cannot access its
field x. However, outer re-exports inner::x, which gives rise to a new definition outer::x.
As outer is accessible in the root scope, so is this definition. Hence, via the re-export, main
can access x, although the original declaration was hidden.

From an accessibility point of view, re-exporting can typically be considered as a combi-
nation of an import and a declaration, where the declaration always points to the imported
member. The re-exported item (inner::x in the example) should be accessible from the
location of the re-export. References to the re-export should have access to the location of
the re-export, but not necessarily to the location of the original declaration. In fact, for any
access path, it does not matter whether the declaration is a re-export or not.

Classes. A special modularization concept is the notion of classes, which represent composite
data types with associated operations (methods). Where simple modules only have a static
interpretation, an arbitrary number of class instances can exist at runtime.3 While modules
can implicitly be related to each other by their relative position, such a relation does not exist
for classes. However, classes can extend other classes, ensuring the subclass inherits the fields
of its parent class. This creates an inheritance hierarchy orthogonal to the module hierarchy.

Object-oriented languages usually provide modifiers to control accessibility over the
inheritance chain. For example, Java and C# have a private keyword, which prevents
access outside the defining class. Additionally, the protected keyword allows access from
subclasses, but prevents access from any other location.

In Java and C#, the accessibility level is inherited with the field. That means, if a field
in the superclass is protected, it will be protected in the subclass as well. However, C++

allows restricting the accessibility of members of the parent class. A private modifier on
extends-clauses will make all inherited public/protected members private on instances of the
subclass. Similarly, a protected modifier will make all inherited public members protected.

Finally, some languages allow specifying “friend” classes, which grant the friend access to
its members. This enables fine-grained access control, independent from module and class
hierarchies. While discouraged in C++, Eiffel provides only this access control mechanism.

3 At this point, we slightly over-simplify the reality. For example, neither parameterized modules (ML)
nor objects (e.g. Scala/Kotlin) fit in this scheme. We made this choice deliberately, to cover the most
prevalent cases. We conjecture that the techniques we develop for classes can be applied to parameterized
modules (and vice versa for modules and objects) but leave explicating that to future work.

ECOOP 2024

47:6 Defining Name Accessibility Using Scope Graphs

Interaction. Accessibility restrictions on modules and classes be combined. This is very
explicit in C#, which has protected internal and private protected as additional
modifiers. The former permits access from within the assembly (similar to internal) and
to subclasses (similar to protected), even if they live outside the assembly. Analogously,
private protected grants access to subclasses in the same assembly only, which is equivalent
to the conjunction of internal and protected.

2.3 Classification

These concepts are organized and related in the feature model in Figure 3. Following the
previous discussion, the main features are modules and classes. We have only a single feature
for modules, because the different variants are (apart from C#s files and namespaces) typically
not mutually nested. The internal keyword can either relate to the containing module
(Direct) or an arbitrary parent module (Ancestor). We explore this further in Section 5.

Programming Language

Modules

internal

Direct Ancestor

Classes

Friends

Subclass Access
Modifiers

private protected protected OR internal protected AND internal

Extends Clause
Access Modifier

private protected

«requires»

Optional

Or

Alternative (xor)

Legend

Figure 3 Feature Model for Access Control.

Table 1 Languages classified according to the feature model in Figure 3.

Java C# C++ Eiffel Rust

Modules
Internal Direct Direct4 Direct Ancestor
Classes
Friends
Subclass Acc. Mod.
private
protected
protected | internal
protected & internal

Extends Clause Acc. Mod.
private
protected

A. Zwaan and C. Bach Poulsen 47:7

In the Classes category, the three subfeatures denote the three mechanisms for access
control: Friends allow access to other classes by name, Subclass Access Modifiers are
access modifiers on definitions that determine how it is accessible within the class hierarchy
(Sections 6 and 7), and Extends Clause Access Modifiers (Section 8) are access modifiers on
extends clauses, as seen in C++. The latter two have subfeatures for each concrete keyword
associated with the access control mechanism. For that reason, private and protected
occur twice: once on definitions and once on extends clauses. Table 1 classifies several
languages according to this scheme. In the remainder of this paper, we develop AML (Access
Modifier Language), a language that covers all features. To this end, we first introduce scope
graphs (Section 3), and a base language for AML (Section 4).

3 Using Scope Graphs to Model Name Binding in Programs

In the previous section, we sketched the landscape of access modifiers. This discussion was
based largely on prose specifications as well as experiments with compiler implementations.
No language specification we are aware of provides a more rigorous model of accessibility (or
even non-lexical name binding). In this section, we introduce scope graphs [18, 27, 22, 38],
and argue that they provide a suitable framework for such a model. Section 4 introduces
AML (Access Modifier Language), a toy language with a type system defined using scope
graphs. Sections 5–8 will extend this language with all accessibility features from Figure 3.

3.1 Scope Graphs as A Model for Name Binding

From a name binding perspective, classes and modules have some similarities. Each of
these constructs can be thought of as introducing a “scope” (region of code), in which
declarations live, and in which names can be resolved. Scopes are related to each other in
various ways. First, modules are related according to their relative position in the abstract
syntax tree. In addition, imports and extends clauses relate arbitrary modules and classes,
respectively. Resolving a reference corresponds to finding a matching declaration in a scope
that is reachable from the scope of the reference. For example, a reference may resolve to a
declaration if it lives in a lexically enclosing scope, or in a module that is imported in an
enclosing scope.

Scope graphs [18, 27, 22, 38] make this more precise. In this model, the name binding
structure of a program is represented by a graph. Figure 4 (adapted from Poulsen et al. [20,
Fig. 1]) gives an example program and its corresponding scope graph. A scope is represented
by a circular node in the graph. For example, s0 represents the global scope, and sA, sB and sC

represent the bodies of modules A, B, and C, respectively. Scopes are related using labeled,
directed edges. For example, sA is lexically enclosed by s0, and thus the graph contains an
edge from sA to s0 with label LEX. Similarly, sB imports sA, and thus the graph contains an
edge sB

IMP sA. Finally, scope graphs contain declarations. For example, a declaration of i
in scope sC is represented by the sC

VAR i : int edge/node pair. Similarly, the modules are
declared in the root scope (e.g., s0

MOD A ∼ sA). The language specification determines which
data is included in the declaration. Similarly, the labels for edges and declarations can be
chosen to match the (binding) constructs of the language.

4 Either the most direct enclosing file (file), or most directly enclosing assembly (internal), possibly
bypassing some namespaces.

ECOOP 2024

47:8 Defining Name Accessibility Using Scope Graphs

module A {
var i = 5

}
module B {

import A
}
module C {

import B
var j = i

}

s0A ∼ sA MOD

B ∼ sB

MOD

C ∼ sCMOD

sB

LEX

sA

LEX

sC

LEX

IMP IMPi : int VAR j : intVAR

sC
LEX∗IMP?VAR

isVari

Figure 4 Reachability example. The IMP? part in the regular expression prevents traversal over
the second IMP edge.

module D {
var x = 3
module E {

import F
var y = x

}
}
module F {

var x = 4
}

s0D ∼ sD MOD F ∼ sFMOD

sD

LEX

sF

LEX

x : intVAR x : intVARE ∼ sE MOD

sE

LEX IMP

y : int VAR sE
LEX∗IMP?VAR

isVarx / VAR < IMP < LEX

Figure 5 Shadowing example. The highlighted label order causes the edge to sF to have priority.

Reachability. To resolve a reference, a query is executed to find a valid path in the scope
graph from the scope of the reference to a matching declaration. Queries give specification
writers several options to filter paths, to retain only valid paths. First, a unary predicate
selects valid declarations. Usually, this predicate matches declarations with the name of the
reference. Second, a regular expression over labels is used to select valid paths. This regular
expression can, for example, be used to prevent transitive imports, or accessing members in
a lexical parent of an imported module.

Figure 4 illustrates this with the query for i in module C (dashed blue box). The
parameter on the arrow (LEX∗IMP?VAR), is a regular expression that defines which paths to
declarations are valid. The LEX∗ indicates that a path may traverse an arbitrary number of
LEX-edges. This corresponds to looking for variables in enclosing scopes. Next, the IMP? part
indicates that zero or one IMP-edges can be traversed. Finally, the regular expression ends
with VAR to ensure all paths resolve in variable declarations only, excluding e.g. modules. The
isVari parameter matches all variable definitions with name i (isVar is defined in the next
section). The candidate path (shown as blue edges) does not match this regular expression.
Because IMP-labeled edges may only be traversed one time, the step to sA cannot be made.
In other words: the declaration of i in A is not reachable from C.

Visibility. Not every declaration that is reachable (i.e., for which a valid access path exists)
can actually be referenced, due to shadowing. For example, in most languages, local definitions
have higher priority than imported ones. We call reachable declarations that are not shadowed
by any other declaration visible.

In scope graphs, visibility can be encoded using a partial order on labels. For example,
an order VAR < IMP encodes that (local) variable declarations shadow imported declarations.
This is illustrated in Figure 5. The reference x in module F can refer to the declaration in

A. Zwaan and C. Bach Poulsen 47:9

module D as well as the one in module E. Because the label order (third argument) indicates
that imports shadow lexically enclosing scopes (IMP < LEX). Thus, the variable resolves to the
declaration in sF. Alternatively, if LEX < IMP, it would resolve to x in sD. Finally, if neither
LEX ̸< IMP nor IMP ̸< LEX, both paths would be included in the query result.

In summary, scope graphs model the name binding structure of a program using nodes
for scopes and declarations, and edges for relations between those. Queries can be used to
model reference resolution. A query selects a declaration when (1) it matches some predicate,
and (2) there exists a path to it of which the labels match a regular expression, and (3) no
other paths that traverse labels with higher priority exist. The result of a query is a set of
paths that lead to these matching declarations.

Accessibility. We can model extensibility using plain scope graphs by including accessibility
information in the declaration. In other words, a declaration of a variable in a scope graph
contains not only a name and a type, but also its accessibility level. After resolution, we
check if the path that the query returns is actually valid according to the accessibility level
of the declaration. For example, if a variable is private, but an EXT-edge (for class extension)
is traversed, an error is emitted. With this pattern, we can model all accessibility features.

Notation. Figures 4 and 5 introduce the graphical notation of scope graphs. In text,
variable s ranges over scopes, and S over sets of scopes. Moreover, we use the following
notation for assertions on scope graphs: s1

L s2 ∈ G means “scope graph G has an L-labeled
edge from s1 to s2”, and s D d ∈ G means that G has a declaration with data d under
label D in scope s. Moreover, we write queries in the following way:

queryG s
R P / O 7→ R

where G is the scope graph in which the query is resolved, s is the scope in which the resolution
starts, R is the regular expression that paths must adhere to, and P is the predicate that
declarations must match. O is the strict partial order on labels used for shadowing. It is
usually written as L1 < L2 < · · · < Ln. We omit the label order when there is no shadowing.
R is the result set containing tuples of paths and declarations. When we expect a single
result, we use {⟨p, d⟩} to match on the value in the set. Paths are alternating sequences of
scopes and labels, written as s1

L1 s2 · · · sm. Paths do not include the declaration it resolved
to, but stop at the scope in which the declaration occurs. The functions src(p), tgt(p) refer to
the source and target scope of a path, respectively. scopes(p) denotes all scopes in a path.

4 AML: The Base Language

In the next sections, we show how scope graphs support intuitive formalization of accessibility.
We will do so by defining AML (Access Modifier Language). The base syntax (which will
be extended later) is given in Figure 6. In AML, a program consists of a list of modules.
Each module can define other modules, import other modules, and contain class definitions.
A class can optionally extend another class, and contains a list of field declarations. Each field
has an access modifier, and is initialized by some expression. Possible expressions include
references, integer constants, class instance creation, field access, and binary operations.

At the right-hand side of Figure 6, the scope graph parameters are shown. There are
three labels that connect scopes. LEX denotes lexical scoping, IMP denotes imports, and EXT

class extension. The other three labels are used for declarations. MOD is used for module
declarations, CLS for classes, and VAR for variables/fields. Next, we assume that each module

ECOOP 2024

47:10 Defining Name Accessibility Using Scope Graphs

⟨prog⟩ ::= ⟨mod⟩∗

⟨mod⟩ ::= module ⟨x⟩ { ⟨md⟩∗ }

⟨md⟩ ::= ⟨mod⟩ | import ⟨x⟩ | ⟨cls⟩

⟨cls⟩ ::= class ⟨x⟩ (: ⟨acc⟩ ⟨x⟩)? { ⟨cd⟩∗ }

⟨cd⟩ ::= ⟨acc⟩ var ⟨x⟩ = ⟨e⟩ | ⟨cls⟩

⟨acc⟩ ::= public | . . .

⟨e⟩ ::= ⟨n⟩ | ⟨x⟩ | new ⟨x⟩ () | ⟨e⟩ . ⟨x⟩ | . . .

⟨l⟩ ::= LEX | IMP | EXT

| MOD | CLS | VAR

| THISM | THISC

⟨d⟩ ::= mod ⟨x⟩ : ⟨s⟩
| cls ⟨x⟩ : ⟨s⟩
| var ⟨x⟩ : ⟨T ⟩ @ ⟨A⟩
| ⟨s⟩

⟨T ⟩ ::= int | inst ⟨s⟩
⟨A⟩ ::= PUB | . . .

Figure 6 Syntax of AML. The highlighted positions indicate extensions in later sections. The
syntax of the complete language can be found in Appendix A [35].

Data Matching Predicates P(d)

isModx(mod x′ : s) ⇐ x = x′ isClsx(cls x′ : s) ⇐ x = x′

isVarx(var x′ : T @ A) ⇐ x = x′ isScopes(s′) ⇐ s = s′

Class Members s ⊢G cd ok

D-Def
s ⊢G e : T s ⊢G acc ⇒ A s

VAR (var x : T @ A) ∈ G
s ⊢G acc var x = e ok

Type of Expression s ⊢G e : T

T-Var
queryG s

LEX∗EXT∗VAR isVarx / VAR < EXT < LEX 7→ {⟨p, var x : T @ A⟩} s ⊢G p ! A

s ⊢G x : T

T-Fld

s ⊢G e : inst sc

queryG sc
EXT∗VAR isVarx / VAR < EXT 7→ {⟨p, var x : T @ A⟩}

s ⊢G p ! A

s ⊢G e.x : T

Access Modifier s ⊢G acc ⇒ A

A-Pub
s ⊢G public ⇒ PUB

Access Policy s ⊢G p ! A

AP-Pub
s ⊢G p ! PUB

Module and Class References s ⊢G x M
⇝ sm s ⊢G x C

⇝ sc

Q-Mod
queryG s

LEX∗MOD isModx / MOD < LEX 7→ {⟨p, mod x : sm⟩}

s ⊢G x M
⇝ sm

Q-Cls
queryG s

LEX∗IMP?CLS isClsx / CLS < IMP < LEX 7→ {⟨p, cls x : sc⟩}

s ⊢G x C
⇝ sc

Figure 7 Typing Rules of AML. Accessibility is integrated at the highlighted positions. The full
type system specification can be found in Appendix A [35].

A. Zwaan and C. Bach Poulsen 47:11

scope has a THISM edge pointing to itself, and similarly, each class has a THISC scope pointing
to itself. This will be used to resolve enclosing classes or modules. The sort ⟨d⟩ denotes the
data that can be associated with scopes. Modules and classes are characterized by their name
and the scope of their body. A field has a name, a type ⟨T ⟩, and an accessibility level ⟨A⟩.
Scopes that are not declarations implicitly map to themselves. To query declarations, we
use the four predicates shown at the top of Figure 7, which each match a single kind of
declaration. Depending on the type of access control we formalize, different access modifiers
will be used. Therefore, we have left the ⟨acc⟩ and ⟨A⟩ productions partially unspecified.
Each section will instantiate those appropriately.

Typing Rules. Figure 7 presents some typing rules of AML. The rules are written in a
declarative style, where a scope graph G that models the program is assumed. Constraints
over the scope graph are used as premises. The highlighted premises show where accessibility
is integrated into the type system. We now discuss each of the presented rules.

The D-Def rule asserts a declaration is well-typed if the initialization expression e

has some type T (first premise), the access modifier acc corresponds to some accessibility
policy A (second premise), and an appropriate declaration exists in the scope graph (third
premise). The accessibility policy is included in the declaration, which enables us to validate
accessibility when type checking references.

Next, rule T-Var defines how references are type checked in a current scope s. First,
it performs a query that looks into the lexical context (LEX∗), parent classes (EXT∗), and
eventually resolves to a variable declaration (VAR). It matches only variables with the same
name as the reference (isVarx). Regarding shadowing, it prefers local variables over variables
from a parent class (VAR < EXT), and variables from parent classes over variables from enclosing
classes (EXT < LEX). The query should return a single result, as the name would otherwise
be ambiguous. From this result, the access path p, type T , and accessibility policy A are
extracted. The path and the accessibility policy are used in the second (highlighted) premise
(s ⊢G p ! A), which asserts that “accessibility policy A grants access via path p in scope s”. In
future sections, we will define new accessibility policy rules, that may prohibit access of a
variable, even if the query premise resolved properly.

Note that, by having accessibility separated from the resolution, we do not capture the
interaction between accessibility as shown in Figure 1c. We made this choice because the
place where accessibility is integrated does not influence the access rules themselves, and this
presentation allows more concise derivations, which makes the explanations more accessible.
Appendix A.1 [35] shows how to integrate accessibility in the shadowing policy of a query,
and is incorporated in the evaluation (Section 10).

For this base language, we only have the public access modifier. The A-Pub rule shows
that this keyword corresponds to the PUB policy. The meaning of this policy is that access is
allowed from any location, with any access path. This is encoded in the AP-Pub rule, which
has no premises.

Finally, the last two rules define how references to classes and modules are resolved.
Rule Q-Mod indicates that module reference x resolves to scope sm if that scope is included
in the closest module declaration with name x in the lexical context. Similarly, a class
reference resolves to the scope of the closest class declaration sc, preferring (non-transitively)
imported classes over classes in the lexical context (Q-Cls).

Example. The example in Figure 8 shows two classes A and B. Both classes have a THISC-edge
pointing to itself. Class B extends class A, which is represented by the sB

EXT sA edge in the
scope graph. Class A has a public field i with type int. The type as well as the corresponding

ECOOP 2024

47:12 Defining Name Accessibility Using Scope Graphs

class A {
public var i = 42

}
class B : public A {

public var j = i
}

sATHISC

sBTHISC

EXT

var i : int @ PUBVAR

var j : int @ PUBVAR

sB
LEX∗EXT∗VAR

isVar(i) / VAR < EXT < LEX

(a) Example program and (partial) scope graph.

queryG sB
... isVari / . . . 7→ {⟨sB

EXT sA, var i : int @ PUB⟩} sB ⊢G sB
EXT sA ! PUB

sB ⊢G i : int
(b) Part of typing derivation that shows how access is granted by the PUB accessibility policy.

Figure 8 Example AML program demonstrating the scope graph structure and name resolution
with accessibility checking.

Enclosing Modules ⊢G s ↠M S ⊢G s ↑M s

Enc-M
queryG s

LEX∗THISM ⊤ 7→ R SM = {sm | ⟨pm, sm⟩ ∈ R}

⊢G s ↠M SM

Enc-MI
queryG s

LEX∗THISM ⊤ / THISM < LEX 7→ {⟨p, sm⟩}
⊢G s ↑M sm

Enclosing Classes ⊢G s ↠C S ⊢G s ↑C s

Enc-C
queryG s

LEX∗THISC ⊤ 7→ R SC = {sc | ⟨pc, sc⟩ ∈ R}

⊢G s ↠C SC

Enc-CI
queryG s

LEX∗THISC ⊤ / THISC < LEX 7→ {⟨p, sc⟩}
⊢G s ↑C sc

Figure 9 Auxiliary relations for AML scope graphs.

PUB access policy are included in the scope graph declaration. Similarly, class B has a field j.
The initialization expression of j references i, which is represented with the query shown in
the dashed box.

Figure 8b shows the part of the typing derivation that checks the highlighted reference.
Reference i is type checked in scope sB, and has type int. The first premise repeats the
query shown in the scope graph, with the parameters and result made explicit. In particular,
the resolution path is sB

EXT sA. The validity of this path is checked by the second premise,
which is satisfied by the AP-Pub rule.

Auxiliary Relations. Finally, Figure 9 presents some auxiliary relations that we will use
later. First, the ⊢G s ↠M SM relation asserts that SM is the set of scopes of the enclosing
modules of s. It is defined as a query that looks for a THISM edge in the lexically enclosing

A. Zwaan and C. Bach Poulsen 47:13

scopes. There is no shadowing, so R can contain multiple results in the case of multiple
nested modules. The result R is translated to the set of module scopes by discarding the
access paths.

This relation is inhabited for any enclosing module scope. The second relation ⊢G s ↑M sm

is only inhabited for the innermost enclosing module sm. The query in its definition finds
the closest THISM-edge, which is enforced by the shadowing policy THISM < LEX. Thus, the
query returns only one result, from which the module scope sm is extracted. Analogously,
⊢G s ↠C SC relates s to all enclosing class scopes SC , and ⊢G s ↑C sc is satisfied if sc is the
innermost enclosing class of s.

5 Defining Module Visibility

Some languages have access modifiers that regulate the visibility of a declaration in other
modules. For example, in Rust, it is possible to write pub(in ...) to indicate in which
module a declaration is visible. Similarly, some languages support giving particular classes
access to an item. It is the primary accessibility mechanism for Eiffel, and C++’s friend
modifier enables this as well. Less flexible approaches, such as Java’s package visibility
and C#’s internal keyword can be seen as special instances of this mechanism.

To demonstrate how these access policies can be encoded using scope graphs, we extend
our base language as follows. Figure 10a introduces an additional modifier keyword internal,
which can contain references to modules. The declaration is visible in these modules only.
The corresponding accessibility policy MOD has a set of scopes, each corresponding to a name
given in the keyword argument.

Next, we explain how this keyword is interpreted. An internal declaration is accessible
if the reference occurs in a module that the arguments to the internal modifier give access
to. This is formalized in the rules given in Figure 10b. Rule A-Int translates an internal
access modifier to the MOD policy. Each module name argument to the modifier (xi) is
resolved relative to the current scope s. This yields a collection of module scopes si, which

⟨acc⟩ ::= . . . | internal (⟨x⟩∗) ⟨A⟩ ::= MOD S

(a) Syntax of internal keyword.

A-Int
S =

{
s′

∣∣∣ xi ∈ x0...n, s ⊢G xi
M
⇝ s′

}
s ⊢G internal(x0...n) ⇒ MOD S

AP-Int
⊢G s ↠M SM sm ∈ SM sm ∈ S

s ⊢G p ! MOD S

(b) Semantics of internal keyword.

A-Int’

⊢G s ↠M SM

S =
{

s′
∣∣∣ xi ∈ x0...n, s ⊢G xi

M
⇝ s′, s′ ∈ SM

}
s ⊢G internal(x0...n) ⇒ MOD S

(c) Variant 1: Ancestor module only.

AP-Int’
⊢G s ↑M sm sm ∈ S

s ⊢G p ! MOD S

(d) Variant 2: Innermost module.

AP-Int’’
· · ·

[
⊢G s ↠M SMi s′

m ∈ SMi s′
m ∈ S

]
s′∈(scopes(p)\{tgt(p)})

s ⊢G p ! MOD S

(e) Variant 3: Definition exposed to all classes in path.

Figure 10 Extending AML (Figure 7) with module-level visibility.

ECOOP 2024

47:14 Defining Name Accessibility Using Scope Graphs

class A {
internal (M) var x = 42

}
module M {

module N {
class B {

public var y =
new C().x

}
}
class C : public A { }

}

s0THISM

sA

LEX

var x : int @ MOD {sM }VAR

sM

THISM
LEX

sC

LEX

EXT

sN

THISM

LEX sBLEX

cls A : sA

CLS

mod M : sM

MOD

(a) Example program and partial scope graph demonstrating the internal access modifier.

A-Int
sA ⊢G M M

⇝ sM

sA ⊢G internal(M) ⇒ MOD {sM }
(b) Part of typing derivation that shows how accessibility policy is derived.

AP-Int

· · ·
⊢G sB ↠M {s0, sM, sN } sM ∈ {s0, sM, sN } sM ∈ {sM }

sB ⊢G
(
sC

EXT sA
)

! MOD {sM }
(c) Part of typing derivation that shows how access is granted by the MOD accessibility policy.

Figure 11 Example program demonstrating the meaning of the internal access modifier.

are included in the resulting policy. The AP-Int rule encodes that accessing an internal
variable is valid if sm, the scope of some enclosing module of s (the scope of the reference),
is in the list of scopes to which access is granted.

Example. Figure 11 gives an example of an internal variable. Class A has a field x that
can be accessed from module M. In the scope graph, this is indicated with the access policy
MOD {sM } on the corresponding declaration in sA. The derivation of this policy is shown
in Figure 11b. Module M contains a nested module N, which contains a class B. In class B, the
field x is accessed on an instance of A. The (partial) typing derivation in Figure 11c shows
this access is allowed by the AP-Int rule. The first premise asserts that s0, sM and sN are the
enclosing modules of sB. This can be seen in the scope graph, as those scopes are reachable
via paths with regular expression LEX∗THISM (Figure 9). As sM occurs both in the enclosing
modules and in the access policy, access is allowed.

Variant 1. Several variations on this scheme are conceivable. For example, languages
can restrict the modules to which an internal modifier may expose a declaration. For
example, Rust has the pub(in ⟨path⟩) visibility modifier, similar to how we defined internal.
However, at the ⟨path⟩ position, only “an ancestor module of the item whose visibility is
being declared” is allowed [7, §12.6]. This is encoded in Figure 10c. Compared to A-Int,
this rule adds premises (highlighted) that guarantee that the arguments of the internal
modifier (xi) resolve to an enclosing module (si ∈ SM).

Note how these premises would make the example fail to type-check. Only s0 is an
enclosing module of sA. In particular, the derivation in Figure 11b would have an additional
premise sA ∈ {s0 }, which is clearly unsatisfiable.

A. Zwaan and C. Bach Poulsen 47:15

class A {
private int x = 42;
public int accessX (B b) {

return b.x; // ERROR!
}

}
class B extends A { }

class A {
private int x = 42;
public int AccessX (B b) {

return b.x; // fine
}

}
class B : A { }

Figure 12 Difference in private member access of subclass instances between Java and C#.

Variant 2. Next, consider the example in Figure 11a again. In the system above, x is
accessible in B, because x is exposed to one of its enclosing modules (M). However, sM is not
its innermost enclosing module. Such a more lenient accessibility scheme might be desirable
(e.g., Rust has this behavior), but languages such as Java do not allow this. To model these
languages, we instead use the premise that asserts sm is the innermost enclosing module
scope. The rule for this variant is given in Figure 10d.

With this addition, the example would fail to type-check as well. The access validation
(Figure 11c) would now have to satisfy ⊢G sB ↑M sM, which is impossible, as sN is the innermost
enclosing module.

Variant 3. Finally, consider example Figure 1a from the introduction again. In this example,
the reference to x in class C was not valid, as B (by virtue of residing in a different package),
did not inherit x. The (partial) rule in Figure 10e covers this case. For each scope in the path
(apart from the target), it adds premises that assert that the definition is exposed to that
scope (similar to s in Figure 10b).5 The target is excluded because it is not inheriting the
accessed field, but rather defining it. (Recall that paths move from reference to declaration,
so the target is the scope of the defining class.) For that reason, there is no need to assert it
inherits the field.

When adding this rule fragment to the derivation in Figure 11c, there will be additional
premises that validate that class C inherits x. This is the case, as C resides in module M.

6 Defining Subclass Visibility

Next, we consider how to define access modifiers that regulate access from other classes: the
private modifier (Section 6.1), and the protected keyword (Section 6.2).

6.1 Private Access
The private access modifier is slightly challenging to define, as languages implement it
differently. For example, C# allows accessing private variables on instances of subclasses,
whereas Java does not. Consider the example programs in Figure 12. In the Java case, the
access b.x is invalid, because it only allows access on instances of A.

On the other hand, Java exposes private members to the outermost enclosing class6,
while C# only exposes members to the defining (i.e., innermost enclosing) class (including
nested classes), as shown in Figure 13.

5 Alternatively, the premises of Figure 10d can be used when direct exposure is required.
6 “[When] the member or constructor is declared private, (...) access is permitted if and only if it

occurs within the body of the top level class [sic!] that encloses the declaration of the member or
constructor.” [11, §6.6.1]

ECOOP 2024

47:16 Defining Name Accessibility Using Scope Graphs

class A {
class B {

private int x = 42;
}
int accessX (B b) {

return b.x; // fine
}

}

class A {
class B {

private int x = 42;
}
int AccessX (B b) {

return b.x; // ERROR!
}

}

Figure 13 Difference in private member access from enclosing class between Java and C#.
⟨acc⟩ ::= . . . | private⟨A⟩ ::= . . . PRV

(a) Syntax of private keyword.

A-Priv
s ⊢G private ⇒ PRV

(b) private to PRV access policy.

AP-Priv
⊢G s ↠C SC tgt(p) ∈ SC

s ⊢G p ! A

(c) Semantics of private keyword.

AP-Priv’
. . . p ∼ LEX∗

s ⊢G p ! A

(d) Prevent access on instances of subclasses.

AP-Priv”
⊢G s ↠C SCref ⊢G tgt(p) ↠C SCdecl sc ∈ SCref sc ∈ SCdecl

s ⊢G p ! A

(e) Allow access from enclosing classes.

Figure 14 Extending AML (Figure 7) with private visibility.

We start with modeling the C# semantics in Figures 14a–14c. Rule AP-Priv states that
the class in which the field is declared (which is the target of the path tgt(p)) should be an
enclosing class of the scope in which the access occurs. This permits access from nested
classes of tgt(p), but does not expose it to enclosing classes. On the other hand, access on
instances of subclasses is allowed, as there are no constraints on the structure of the path.

Note that we did not specify that this rule matches on the PRV policy specifically, but
rather applies to any access policy A. This is a deliberate choice; it adds the possibility of
using this rule as a fallback in case no other rule works. This ensures other accessibility
policies will never be more strict than PRV, which corresponds to general intuition. By
matching on an arbitrary A in AP-Priv, we simplify the definition of the other policies, as
they otherwise would need to define special rules for private-like access.

Current Instance. Now, we adapt these rules to match the Java semantics. First, Figure 14d
shows how to prevent access to the private field on instances of subclasses (Figure 12). It
uses a new type of constraint, p ∼ R, which holds when the sequence of labels in path p is in
the language described by the regular expression R. In this case, we assert that the access
path p must adhere to the regular expression LEX∗. This prevents access from instances of
subclasses of the defining class, as that requires traversing an EXT edge. For example, the
access path in Figure 12 would be sB

EXT sA ∼ LEX∗, which is not satisfiable.

Outermost Class. Finally, Figure 14e shows how to expose private fields to the outermost
enclosing class. In this rule, the set SCref contains the scope of the enclosing classes of the
reference location, and SCdecl contains the scope of the enclosing classes of the class in which
the declaration occurs. These sets should share a scope sc, which represents the shared
enclosing class of the reference and the declaration.

A. Zwaan and C. Bach Poulsen 47:17

⟨acc⟩ ::= . . . | protected ⟨A⟩ ::= . . . | PRT

(a) Syntax of protected keyword.

A-Prot
s ⊢G protected ⇒ PRT

AP-Prot
⊢G s ↠C SC sc ∈ SC sc ∈ scopes(p)

s ⊢G p ! PRT
(b) Semantics of protected keyword.

Figure 15 Extending AML (Figure 7) with protected visibility.

class A {
protected var x = 42

}
class B : public A {

class I {
public int f(b: B) {

return b.x;
}

}
}

sATHISC var x : int @ PRTVAR

sB

EXT

THISC sILEX

THISC

sfLEX

var b : inst sB @ PUB

VAR

(a) Example program and partial scope graph demonstrating the protected access modifier.

· · ·
⊢G sf ↠C {sI, sB } sB ∈ {sI, sB } sB ∈ scopes

(
sB

EXT sA
)

sf ⊢G
(
sB

EXT sA
)

! PRT

(b) Part of typing derivation that shows how access is granted by the PRT accessibility policy.

Figure 16 Example program demonstrating the meaning of the protected access modifier.

Note how this rule enables type-checking the program in Figure 13. Using AP-Priv does
not work, as ⊢G sA ↠C {sA }, which does not include tgt(p) = sB. However, we can check it
with AP-Priv”, as ⊢G tgt(p) ↠C {sB, sA }, which includes the shared enclosing class sA.

6.2 Protected Access
The protected access modifier (Figure 15a) grants access to subclasses of the defining class,
including classes nested in subclasses. For field access expressions (⟨e.x⟩), e must be an
instance of a class that encloses the reference [11, §6.6.2.1]. This semantics (Figure 15b) can
be modeled by asserting that there should be some class sc that is both (a) an enclosing scope
of the reference location (⊢G s ↠C SC), and (b) occurs in the in the access path (sc ∈ scopes(p)).
The last condition implies that the enclosing class sc is a subclass of the defining class, which
is the intuitive understanding of the protected keyword.

Figure 16 demonstrates how this rule works. In this program, there is a class A which
has a subclass B. Class B has a nested class I, which has a method f with a parameter b of
type B. The body of f accesses field x on the instance of B. On the right-hand side of the
picture, a part of the corresponding scope graph is shown. The scopes for classes A and B are
connected by an EXT-edge again. The fact that class I is nested in class B is represented by
the sI

LEX sB edge, similar to other lexically nested constructs. Likewise, scope sf, which
represents the body of the method f, has a LEX-edge to sI.

Figure 16b shows how the access to b.x is validated. The first premise states that sI

and sB are the enclosing classes of sf. The other premises assert that sB is in the enclosing
classes as well as in the access path. Together, this allows access to the protected member.
Note how access to an instance of A in sf would not be allowed. In that case, the access path
would have been just sA, which is not an enclosing class of sf.

ECOOP 2024

47:18 Defining Name Accessibility Using Scope Graphs

⟨acc⟩ ::= . . . | protected internal (⟨x⟩∗) | private protected (⟨x⟩∗)

⟨A⟩ ::= . . . | SMD S | SMC S

(a) Syntax of policy interaction keywords.

A-PProt
S =

{
s′

∣∣∣ xi ∈ x0...n, s ⊢G xi
M
⇝ s′

}
s ⊢G private protected(x0...n) ⇒ SMC S

A-PInt
S =

{
s′

∣∣∣ xi ∈ x0...n, s ⊢G xi
M
⇝ s′

}
s ⊢G protected internal(x0...n) ⇒ SMD S

(b) Translation of composite keywords to their policies.

AP-SMC
s ⊢G p ! MOD S s ⊢G p ! PRT

s ⊢G p ! SMC S

AP-SMD-Prot
s ⊢G p ! PRT

s ⊢G p ! SMD S
AP-SMD-Mod

s ⊢G p ! MOD S(∗)

s ⊢G p ! SMD S

(c) Semantics of interaction policies.

Figure 17 Extending AML (Figure 7) with keywords to combine module-level and subclass-level
accessibility.

7 Combining Subclass and Module Visibility

Access modifiers regulating both the module and subclass dimensions occur in real-world
languages as well. For example (as noticed earlier), Java’s protected keyword also exposes
a definition in the same package, similar to C#’s protected internal. In addition, C# has
a private protected modifier, which allows access to subclasses in the same assembly only.
In fact, those two keywords denote the two main ways in which access modifiers can interact.
First, protected internal denotes disjunctive interaction, where a declaration is accessible
from the subclasses or the same module. Second, private protected denotes conjunctive
interaction, where a declaration is accessible from the subclasses in the same module only.
These interactions are straightforward to define, with one intricate case discussed below.

Figure 17a defines the syntax of the two new keywords (based on their name in C#)
and policies. We add SMD (Subclass/Module, Disjunctive) and SMC (Subclass/Module,
Conjunctive) policies, which each contain a list of module scopes to which they are exposed.
The translation from keyword to policy is given in Figure 17b. Both rules resolve their module
arguments, similar to A-Int. The SMC policy has one rule (AP-SMC), which simply asserts
that access is granted by the module (MOD) and protected (PRV) policies. There are two
rules for the SMD policy. The first one simply delegates to the PRT access policy, permitting
access wherever a protected member would have been accessible. The other rule delegates
to the MOD policy, but more careful attention must be paid here (hence the (∗) mark). Recall
that the semantics of this policy has a variant that asserts that the whole inheritance chain
has access to the declaration (Figure 10e). However, this extension should not be applied
here, because the protected part of this modifier already grants access, regardless of the
module-level exposure.

A. Zwaan and C. Bach Poulsen 47:19

P-Pub
p ∼ LEX∗EXT∗

s ⊢G p

! P-Priv-Prot

⊢G s ↠C SC sc ∈ SC split-at(sc, p) = ⟨p1, p2⟩
p1 ∼ LEX∗EXT∗ p2 ∼ EXTPRV

?(EXT|EXTPRT)∗

s ⊢G p

!

Figure 18 Extending AML (Figure 7) with path-level visibility.

8 Defining Extends-Clause Accessibility Restriction

Until now, we have only considered inheritance as it exists in Java and C#. In this section,
we shift our focus to C++, in particular the access modifiers on extends clauses. In C++, it
is possible to add a private modifier to an extends clause, which reduces the accessibility of
public and protected members to private in the derived class. Similarly, the protected
keyword can be used to reduce the accessibility of public members to protected. For
qualified accesses, C++ imposes the additional constraint that the inheritance chain leading
to class in which the variable is declared should be accessible from the class in which the
access occurs [8, §11.9.3 (4)].

Setup. In contrast to the previous sections, we cannot encode inheritance-imposed access
control in our accessibility policy A. Instead, we encode it in the scope graph directly. For
that purpose, we introduce two new labels: EXTPRV and EXTPRT, which model private and
protected extension, respectively. Similar to the previous sections, EXT will model public
extension; i.e. inheritance without access restriction.

Fortunately, we can validate path access independently from the declaration-level access
policy.7 We require two adaptations to the rules T-Var and T-Fld (Figure 7). First, the
regular expressions of the queries must be changed to also traverse these new edges. Thus,
in T-Var, LEX∗EXT∗VAR must be changed to LEX∗(EXT|EXTPRT|EXTPRV)∗

VAR. Similarly, T-Fld
now has (EXT|EXTPRT|EXTPRV)∗

VAR as regular expression instead of EXT∗VAR. Second, we add a
premise s ⊢G p

! to both rules. This premise asserts that the labels in the path p do not hide
the accessed definition in scope s.

Path accessibility can be captured in two rules, shown in Figure 18. First, P-Pub asserts
that a path is valid when there is only public inheritance. With this rule, the semantics of
the programs that do not use private or protected inheritance has not changed. Second, rule
P-Priv-Prot covers the other two cases. This rule looks intricate, but the intuition behind
it is not too complicated. Similar to the private and protected modifiers (Sections 6.1
and 6.2), access must occur within the class where the member is private/protected. This
is now not necessarily the defining class, but rather the last class in the inheritance chain
that has a non-public modifier on the extends clause. In the rule, this is encoded as follows.
The first two premises introduce a scope sc, which is an enclosing scope of the reference
location s. The third premise asserts that the path p can be split into two segments at
scope sc. That is, p consists of two segments: a part p1 from s1 to sc and a part p2 from sc

to sn. This implies that sc is in the access path. To validate that all subclasses of sc in
the path have public inheritance, p1 should match regular expression LEX∗EXT.8 The path
leading from the current class to the declaration (p2) may start with a private inheritance
step (EXTPRV

?), but may have only public and protected inheritance higher in the access path.

7 That also holds for the subtle interaction between internal and protected discussed in Section 7.
protected or private inheritance in subclasses of the reference class can still compromise these access
modes, and must therefore be validated.

8 Alternatively, one can encode the requirement that the instance type must be sc itself by using LEX∗,
similar to Figure 14d.

ECOOP 2024

47:20 Defining Name Accessibility Using Scope Graphs

class A {
public var x = 42

}
class B : private A {

public var y = new C().x
}
class C : public B { }

sATHISC

var x : int @ PUB

VAR

sBEXTPRV

THISC

sCEXT

THISC

(a) Example program and partial scope graph demonstrating path access restrictions.

· · ·
⊢G sB ↠C {sB } sB ∈ {sB }

split-at(sB, sC
EXT sB

EXTPRV sA) = ⟨sC
EXT sB, sB

EXTPRV sA⟩(
sC

EXT sB
)

∼ LEX∗EXT∗ (
sB

EXTPRV sA
)

∼ EXTPRV
?(EXT|EXTPRT)∗

sB ⊢G
(
sC

EXT sB
EXTPRV sA

) !

(b) Part of typing derivation that shows how access is granted by the P-Priv-Prot rule.

Figure 19 Example program demonstrating path accessibility.

Figure 19 gives an example that uses this rule. There is a class A with a field x. Class A
is inherited privately by class B, which makes x private in B. Next, class C extends B publicly.
In class B, x is accessed on an instance of C. This access should be allowed, as class B is the
class in which x is private as well as the class in which the reference occurs. The partial
derivation in Figure 19b asserts this. sB is the scope that encloses the reference. Splitting
the access path from sC to sA at that sB yields two segments of a single step. The segment
leading up to sB (sC

EXT sB) does indeed match the regular expression LEX∗EXT∗. Likewise,
the other segment also matches its regular expressions, showing that this access is valid.
Note that, when class C would have extended class B with protected or private visibility
instead, the premise on the first section would not hold anymore. This corresponds with the
behavior in Section 6 (the field must be accessible as if it was defined on the instance type)
as well as the specification of C++ cited above.

9 Analysis

A comprehensive model of accessibility can be made by composing the system fragments
we discussed so far (Figures 7, 10, 14, 15, 17, and 18). In this section, we discuss a few
properties that our system adheres to.

9.1 Soundness of Access Policies
First, we claim some soundness theorems for private, protected and internal access.
There is no soundness theorem for public, as access is allowed unconditionally. Soundness
theorems for private protected and protected internal are easily derived from Theo-
rems 2 and 3, and hence omitted. In the theorems, PG ranges over valid typing derivation
for an AML program with scope graph G, xr over references, and xd over declarations.
Appendix D [35] defines the predicates used in these theorems, and proves them.

A. Zwaan and C. Bach Poulsen 47:21

First, soundness for private access is stated as follows:

▶ Theorem 1 (Soundness of private member access).

resolvePG (xr) = xd ∧ privatePG
(xd) ⇒

∃sd. definingClassPG
(xd) = sd ∧ enclosingClassPG

(xr, sd)

This should be read as “when xr resolves to xd, and xd is private, then xr must occur in the
class sc that defines xd”.

Likewise, soundness for protected access is stated as:

▶ Theorem 2 (Soundness of protected member access).

resolvePG (xr) = xd ∧ protectedPG
(xd) ⇒

∃sc, sd. definingClassPG
(xd) = sd ∧ enclosingClassPG

(xr, sc) ∧ subClassPG (sc, sd)

Compared to Theorem 1, this theorem states that xr can occur in some arbitrary subclass sc

of sd if xd is protected.
Finally, internal access is specified correctly when:

▶ Theorem 3 (Soundness of internal member access).

resolvePG (xr) = xd ∧ internalPG (xd, x) ⇒
(∃x, sm. enclosingModPG

(xr) = sm ∧ x ∈ x ∧ resolveMod(x) = sm) ∨
(∃sd. definingClassPG

(xd) = sd ∧ enclosingClassPG
(xr, sd))

This theorem states that references to declarations with modifier internal are valid if the
enclosing module of the reference sm is referred to in the arguments of the access modifier x,
or if it is accessed as a private variable.

9.2 Equivalence of Access Policies
The access policy language ⟨A⟩ we defined is not minimal. It is possible to define equivalent
policies in multiple ways. To analyze that, we define equivalence of access policies as follows:

▶ Definition 4 (Equivalence of Access Policies).

∀G, s, p. (s ⊢G p ! A) ⇔ (s ⊢G p ! A′)
A ≡ A′

That is, two accessibility policies are equivalent when, for any scope s, path p, scope graph G,
either both policies admit access, or neither does.

The equivalences that hold in our model are: PRT ≡ SMD ∅ and PRV ≡ SMC ∅ ≡ MOD ∅. This
follows from the fact that module access grants nothing if no module parameters are given.
Thus, the SMD ∅ policy reduces to PRT, while SMC ∅ and MOD ∅ do not elevate accessibility
beyond PRV. Appendix B [35] gives proofs for each of these equivalences. Because of these
equivalences, we did not include PRT and PRV in our implementation (Section 10).

9.3 Order of Access Policies
Intuitively, there exists an ordering between accessibility policies, where PRV is the bottom
most restrictive, and PUB is the least restrictive. This order is partial, as the module-exposure
dimension and subclass-exposure dimension are orthogonal. Assuming a subset relation on
scope sets (S ⊂ S′), we can define a strict partial order A <A A′ as follows:

ECOOP 2024

47:22 Defining Name Accessibility Using Scope Graphs

PRV SMC S0 SMC S1
S0 ⊊ S1

MOD S1 MOD S2
S1 ⊊ S2

PRT SMD S2 SMD S3
S2 ⊊ S3 PUB

where the edges indicate instances of the <A-relation. The edges with a condition indicate
that SMC, MOD, and SMD become more permissive when more scopes are added to the policy.

The intuition behind this order is not arbitrary. In fact, we claim the following:

▶ Theorem 5 (The order on access policies <A is well-behaved).

(A <A A′) ⇒ ∀G, s, p. (s ⊢G p ! A) ⇒ (s ⊢G p ! A′)

That is, when A is more restrictive than A′, and A permits access in scope s via a path p,
then A′ will permit that access too. A proof of this theorem can be found in Appendix C [35].

10 Evaluation

So far, we have motivated our specification with examples from real-world languages such as
Java and C#, and stated some generic properties of our model. However, for our specification
to be usable as a basis for practical tools, it must correspond with the behavior of the
actual languages. To validate that, we evaluated our specification in two ways. First, we
systematically compared our specification with reference compilers of Java, C#, and Rust.
Second, we validated the compatibility of our framework with recent work on language-
parametric code completion [19].

10.1 Comparison with Reference Compilers: Implementation
The comparison to compilers of real-world languages is implemented as follows:
1. Apply our type system on an AML program (the test case).
2. Translate the AML program to the target language.
3. Compile the translated program using a compiler of the target language.
4. Compare results: either both analyses should succeed, or both should give errors.
We discuss these steps in more detail below.

AML Type Checker. To compare our model with real-world compilers, we need a way to
type check concrete AML programs. To that end, we implemented AML in the Spoofax
language workbench [13, 31]. The actual type system is implemented using the Statix
specification language [27, 22]. Statix is a suitable choice, as its declarativity allows an
overall straightforward translation from our inference. For example, the Statix encoding
of rule T-Var in Figure 20a strongly corresponds to the original (Figure 7). Using this
implementation, we can systematically check accessibility in concrete AML programs.

Compiling with Reference Compiler. Next, we implemented source-to-source translations
from AML to each of Java, C# and Rust. This translation was straightforward by design,
as otherwise the results of the type checkers can be different due to semantic differences
introduced by the translation. For that reason, we do not support AML features that have
no direct counterpart in the target language. For example, the translation to Java will
error when the AML program uses the private protected access modifier, as Java does
not support that accessibility policy. This way, we know that correspondence between the
programs is guaranteed when the translation succeeds.

A. Zwaan and C. Bach Poulsen 47:23

typeOfExpr : scope * Expr -> TYPE

typeOfExpr (s, Id(x)) = T :- {p A}
query var

filter LEX* EXT*
and { x’ :- x’ == x }
min $ < EXT , EXT < LEX
in s |-> [(p, (x, T, A))],

accessOk (s, p, A),
pathOk (s, p).

(a) Encoding of rule T-Var in Statix.

test private - nested [[
class A {

private var x = 42
class B {

public var y = x
}

}
]]
analysis succeeds
run java - compat

(b) Example test case.

Figure 20 Overview of Approach to Comparison with Reference Compilers.

After translating, we invoke the reference compiler, observe its output (success or failure),
and compare the given output with the result from our own type checker (step 1). If those
are different (i.e., our type checker accepts the program, while the reference compiler emits
errors, or vice versa), the test fails.

10.2 Comparison with Reference Compilers: Test Cases

To the best of our knowledge, there exists no test suite specifically aimed at verifying the
semantics of access modifiers. For that reason, we manually created an extensive test suite.
Each test contains a class Def, that defines some variable x with some access modifier A.
Furthermore, each test contains a class Ref, in which a reference to x occurs. Def and Ref
can be related in two different ways at the same time:

By inheritance: either (1) Def and Ref are actually the same class, (2) have no mutual
inheritance, (3) Ref inherits Def, or (4) Def inherits Ref.
By module position: either Def and Ref (1) occur in the same module, or (2) Ref occurs
in a parent/sibling/child module of Def.
By class nesting: either (1) Def and Ref are top-level classes, (2) Ref is nested in Def,
(3) Def is nested in Ref, or (4) Def and Ref have a shared enclosing class.

In addition, tests for member accesses (i.e., recv.x) have a receiver type Recv. This type
must either be equal to Def, or inherit from it. However, it can be related in all possible
other ways to Def and Ref. By systematically exploring all options, we derived our test suite.

We excluded cases that are (1) impossible (e.g., Ref cannot be nested in Def and live in
a different module at the same time), (2) use features not supported by the target language,
(3) invalid for another reason (i.e., inheriting from a nested class is not allowed by Java),
or (4) do not bind properly (i.e., lexical access where Ref and Def do not inherit from each
other, and are not nested in each other), To reduce the number of test cases, we restricted
the cases that involved nested classes to have one module only. Additionally, we only used
private, protected and protected internal as access modifiers in these cases. Table 2
summarizes the results of the test suite generation.

Figure 20b shows an example test case written in the Spoofax Testing Language (SPT) [12].
This test validates that a private field is accessible from a nested class. The test consists of a
program (between double square brackets), and some expectations. In this case, we expect
the (Statix-based) analysis to succeed. Moreover, we expect the java-compat transformation
to succeed. This transformation is executing the steps in Section 10.1.

ECOOP 2024

47:24 Defining Name Accessibility Using Scope Graphs

Table 2 Summary of Test Suite.

Java C# Rust Manual

Acc. Mods. public Same as Java, and public All
protected internal protected internal

internal, private private protected
Features class inheritance class inheritance structs, advanced modules

class nesting, and class nesting, and modules inheritance visibility
packages assemblies

#Cases 433 522 60 168
Compiler javac 11.0.20.1 dotnet 7.0.401 rustc 1.73.0 —

Results. There are several features present in AML that were not covered by any of the
reference compilers, most notably private/protected inheritance, and module visibility
beyond what Rust supports. To validate we cover these features to some extent, we have
written 168 additional test cases. While initially exposing a lot of edge cases, in the end all
test cases succeeded. This shows that our specification covers the languages it set out to
model rather accurately.

10.3 Code Completion
One of our future goals is to use our framework to implement refactoring tools that are sound
with respect to accessibility. The most recent work in this area is done by Pelsmaeker et
al. [19]. They show how Statix specifications can be used to generate editor auto-completion
proposals language-parametrically. We applied auto-completion to the access modifiers in the
C#/Java and Rust tests (152, after deduplication), and validated soundness and completeness.
That is, when the analysis succeeded, code completion should propose the current modifier
at that position. Otherwise, if the access was invalid, the modifier should not be proposed,
as only less restrictive ones are valid at that position.

We consider the fact that all completion tests pass a good indication that our specification
can be applied with refactoring tools in the future. Apparently, the code completion framework
is sound and complete with respect to our encoding of access modifiers. Accessibility errors
introduced by a refactoring can be fixed by generating proposals for that position, and using
the ordering from Section 9.3 to pick the most restrictive one.

10.4 Threats to Validity
In Section 4, we briefly mentioned that the specification as presented in the paper did
not model the interaction between shadowing and accessibility correctly. Doing so would
require a full path order, instead of ordering paths by a lexicographical order on labels.
Appendix A.1 [35] explains how we think that could be done. However, Statix does not
support full path orders. To work around that, we emulated this behavior using a few helper
predicates. Our test suite gives confidence we modeled it correctly, but we did not prove
that the specification in Statix and the full path order are semantically equivalent.

Finally, we might have modeled incorrect/unspecified behavior if the reference compilers
were incorrect. Examples such as Figure 12 were derived from actual compiler behavior.
However, we could not find our interpretation of the implementation behavior explicitly
specified in the JLS [11, §6.6.1].

A. Zwaan and C. Bach Poulsen 47:25

11 Related Work

In this section, we discuss previous work related to access modifiers and scope graphs.

11.1 Access Modifier Semantics and Implementations
The origin of access modifiers dates back to at least Simula 67, which around 1972 introduced
protected and hidden access modifiers [4, §8] (the latter being equivalent to our private).
Later, languages such as Java and C++ incorporated these keywords, making them well-known
and often used. Design principles and patterns [9] using these keywords were developed,
making contemporary software development heavily reliant on accessibility features the
programming language provides.

Giurca and Savulea (2004) [10] apply object-oriented notions of public, protected and
private to logic programs, with the purpose of better knowledge distribution and run time
optimization. Moreover, Apel et al. [2, 1] introduce access modifiers in feature-oriented
programming. Where we define accessibility for module nesting and class inheritance, they add
the “feature refinement” dimension to this. In particular, the feature keyword restricts access
to the “current feature” only (comparable to private in the class inheritance dimension), the
subsequent keyword grants access to the current feature and later refinements (comparable
to protected), and the program modifier allows access from any position (similar to public).
In our terminology, their model supports “conjunctive” combination of the class and feature
dimensions. As Section 7 shows that combining the module and class dimensions conjunctively
is straightforward, we expect that integrating their work in our model will not pose major
challenges (apart from a combinatorial explosion of policies).

Semantics. As access modifiers mainly originated from practical needs, it is not very
surprising that little attention to them was paid from a more theoretical perspective. A few
attempts to create a more formal account have been performed, however. In 1998, Yang [33]
presented a formalization of Java access modifiers using attribute grammars. At that time,
attribute grammars still lacked several convenience features, such as default attributes [30] and
collection attributes [14]. For that reason, all members must be propagated explicitly to the
scopes where they are accessible, which makes the specification rather verbose. Additionally,
since fields and methods are not treated equally (shadowing vs. overriding), they are treated
separately, doubling the specification size. In contrast, we specify the propagation of members
queries in scope graphs, which is more concise. The additional requirements on methods
(not explicitly discussed), can be handled at the definition site. Furthermore, we cover
more features than just the Java ones. Fharkani et al. [6] present a generalized model of
accessibility, where accessibility is modeled as a set of rules granting access of a member to
another member (similar to Eiffel/friends in C++). In addition, rules can deny access to
the named member, or apply to all members except the named ones.

Tools. Steimann et al. [25] observe that disregarding accessibility can result in a lot of
subtle mistakes. For example, a method may silently fail to override another method when it
is moved to a different package, which results in different dynamic dispatch. To capture these
errors, they present nine constraint generation rules that model the accessibility semantics of
Java. Refactoring tools can use these constraints to detect where the accessibility level of a
member must be elevated. This work was incorporated in the JRRT refactoring tool [23],
which was evaluated on a large number of real-world Java projects, showing the accuracy of
their implementation. While their work also covers overriding-specific constraints, which our

ECOOP 2024

47:26 Defining Name Accessibility Using Scope Graphs

specification treats rather superficially, we think our model is more comprehensible, and also
gives insight in the differences between languages. Moreover, their work is applied in real
refactoring implementations, while the quest for Statix-based refactorings is still ongoing.
Meanwhile, a similar approach was applied to Eiffel accessibility [24, §6.3].

While these tools elevate accessibility if needed, a different line of research aims to restrict
accessibility if possible [5, 17, 34]. The purpose of these tools is to detect access modifiers
that are more lenient than needed, and restrict those. This is claimed to improve readability,
enable optimizations, and increase modularity [17]. The exact underlying model is not the
topic of these publications, and hence remains unclear. Despite that, the tools appear to
be useful in practice. Zoller and Schmolitzky mention some challenges in porting their tool
to other object-oriented languages [34, V.B]. A language-parametric model such as ours
helps in that regard by (1) making differences between languages explicit, and (2) make
implementations of these (kind of) tools language-parametric.

11.2 Scope Graphs
Scope Graphs (Section 3) have been introduced by Neron et al. [18], and later refined by
Van Antwerpen et al. [27] and Rouvoet et al. [22]. In order to bridge the gap between
language specification and implementation, scope graphs have been embedded into the
NaBL2 constraint language [26]. Later, the Statix logic language was introduced [27, 22],
which is more expressive than NaBL2. Both languages allow specifying type checking as
constraint programs, giving the language a declarative appeal, but also yielding an executable
type checker. Scope graphs are also available in a framework for concurrent and incremental
type checkers [28, 39] and an embedded DSL in Haskell [20]. Finally, Statix specifications
have been used for language-parametric code completion [19] and refactorings [16, 29]. Zwaan
and Van Antwerpen provide a detailed overview of the development history of scope graphs,
their embeddings in type system specification DSLs, and their applications [38].

12 Conclusion

Access modifiers occur in many real-world languages. To implement high-quality tooling
for these languages, a good understanding of access modifiers is required. In this paper, we
presented a model for access validation based on scope graphs. Our model covers the most
important accessibility features in contemporary languages, including module accessibility,
and inheritance accessibility, both on declarations and extends-clauses. Variations between
different languages, both in supported features and their semantics, are made explicit in
our model. Our specification is quite declarative, partly because scope graphs abstract over
low-level name resolution and scoping details. Our model was validated using an extensive
test suite, using Java, C#, and Rust compilers as oracles. This test suite was also used
to show that we can synthesize access modifiers accurately using previous work on code
completion [19].

Our main motivation for this work is twofold. First, we aim to provide a “language-
transcendent” model for accessibility that enables comparison of different languages regarding
accessibility. To this end we identify and formalize differences in the semantics of several
access modifiers. In addition, we formulate soundness theorems of several access modifiers,
and prove them. As such, we consider our specification accurate enough to serve as a reference
for future tool implementations. Second, we aim to use our model in language-parametric
refactorings, ensuring they respect accessibility properly. As these refactoring tools are still
in development, actual validation of this application is still future work.

A. Zwaan and C. Bach Poulsen 47:27

References
1 Sven Apel, Sergiy S. Kolesnikov, Jörg Liebig, Christian Kästner, Martin Kuhlemann, and

Thomas Leich. Access control in feature-oriented programming. Science of Computer Pro-
gramming, 77(3):174–187, 2012. doi:10.1016/j.scico.2010.07.005.

2 Sven Apel, Jörg Liebig, Christian Kästner, Martin Kuhlemann, and Thomas Leich. An orthog-
onal access modifier model for feature-oriented programming. In Sven Apel, William R. Cook,
Krzysztof Czarnecki, Christian Kästner, Neil Loughran, and Oscar Nierstrasz, editors, Proceed-
ings of the First International Workshop on Feature-Oriented Software Development, FOSD
2009, Denver, Colorado, USA, October 6, 2009, ACM International Conference Proceeding
Series, pages 27–33. ACM, 2009. doi:10.1145/1629716.1629723.

3 Casper Bach Poulsen, Xulei Liu, and Luka Miljak. Towards a Language-parametric
DSL for Refactoring (Short Paper), 2024. URL: https://popl24.sigplan.org/details?
action-call-with-get-request-type=1&c9432bfaa61a48fb852237f9e99a821daction_
1742650661080820307cb713fc2d28c30ae360b0bed=1&__ajax_runtime_
request__=1&context=POPL-2024&track=pepm-2024&urlKey=8&decoTitle=
Towards-a-Language-parametric-DSL-for-Refactoring-Short-Paper-.

4 Andrew P. Black. Object-oriented programming: Some history, and challenges for the next
fifty years. Inf. Comput., 231:3–20, 2013. doi:10.1016/j.ic.2013.08.002.

5 Philipp Bouillon, Eric Großkinsky, and Friedrich Steimann. Controlling Accessibility in Agile
Projects with the Access Modifier Modifier. In Richard F. Paige and Bertrand Meyer, editors,
Objects, Components, Models and Patterns, 46th International Conference, TOOLS EUROPE
2008, volume 11 of Lecture Notes in Business Information Processing, pages 41–59. Springer,
2008. doi:10.1007/978-3-540-69824-1_4.

6 Toktam Ramezani Farkhani, Mohammadreza Razzazi, and Peyman Teymoori. Eam: Expansive
access modifiers in oop. In 2008 International Conference on Computer and Communication
Engineering, pages 589–594, 2008. doi:10.1109/ICCCE.2008.4580672.

7 The Rust Foundation. The Rust Reference. Accessed 25-09-2023. URL: https://doc.
rust-lang.org/reference/.

8 The Standard C++ Foundation. Working Draft, Standard for Programming Language
C++. Online version from https://github.com/cplusplus/draft/releases/tag/n4868 was
consulted. Per release notes, ‘only editorial changes compared to C++20’ were made.

9 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Abstraction
and Reuse of Object-Oriented Design. In Oscar M. Nierstrasz, editor, ECOOP’ 93 — Object-
Oriented Programming, pages 406–431, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.
doi:10.1007/3-540-47910-4_21.

10 Adrian Giurca and Dorel Savulea. Logic programs with access modifiers. In 4th International
Conference on Artificial Intelligence and Digital Communication, AIDC, pages 22–31, 2004.

11 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java Language
Specification - Java SE 8 Edition, February 2015. URL: https://docs.oracle.com/javase/
specs/jls/se8/html/.

12 Lennart C. L. Kats, Rob Vermaas, and Eelco Visser. Integrated language definition testing:
enabling test-driven language development. In Cristina Videira Lopes and Kathleen Fisher,
editors, Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011,
Portland, OR, USA, October 22 - 27, 2011, pages 139–154. ACM, 2011. doi:10.1145/2048066.
2048080.

13 Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In William R. Cook, Siobhán Clarke, and Martin C.
Rinard, editors, Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010, pages 444–463,
Reno/Tahoe, Nevada, 2010. ACM. doi:10.1145/1869459.1869497.

ECOOP 2024

https://doi.org/10.1016/j.scico.2010.07.005
https://doi.org/10.1145/1629716.1629723
https://popl24.sigplan.org/details?action-call-with-get-request-type=1&c9432bfaa61a48fb852237f9e99a821daction_1742650661080820307cb713fc2d28c30ae360b0bed=1&__ajax_runtime_request__=1&context=POPL-2024&track=pepm-2024&urlKey=8&decoTitle=Towards-a-Language-parametric-DSL-for-Refactoring-Short-Paper-
https://popl24.sigplan.org/details?action-call-with-get-request-type=1&c9432bfaa61a48fb852237f9e99a821daction_1742650661080820307cb713fc2d28c30ae360b0bed=1&__ajax_runtime_request__=1&context=POPL-2024&track=pepm-2024&urlKey=8&decoTitle=Towards-a-Language-parametric-DSL-for-Refactoring-Short-Paper-
https://popl24.sigplan.org/details?action-call-with-get-request-type=1&c9432bfaa61a48fb852237f9e99a821daction_1742650661080820307cb713fc2d28c30ae360b0bed=1&__ajax_runtime_request__=1&context=POPL-2024&track=pepm-2024&urlKey=8&decoTitle=Towards-a-Language-parametric-DSL-for-Refactoring-Short-Paper-
https://popl24.sigplan.org/details?action-call-with-get-request-type=1&c9432bfaa61a48fb852237f9e99a821daction_1742650661080820307cb713fc2d28c30ae360b0bed=1&__ajax_runtime_request__=1&context=POPL-2024&track=pepm-2024&urlKey=8&decoTitle=Towards-a-Language-parametric-DSL-for-Refactoring-Short-Paper-
https://popl24.sigplan.org/details?action-call-with-get-request-type=1&c9432bfaa61a48fb852237f9e99a821daction_1742650661080820307cb713fc2d28c30ae360b0bed=1&__ajax_runtime_request__=1&context=POPL-2024&track=pepm-2024&urlKey=8&decoTitle=Towards-a-Language-parametric-DSL-for-Refactoring-Short-Paper-
https://doi.org/10.1016/j.ic.2013.08.002
https://doi.org/10.1007/978-3-540-69824-1_4
https://doi.org/10.1109/ICCCE.2008.4580672
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/reference/
https://github.com/cplusplus/draft/releases/tag/n4868
https://doi.org/10.1007/3-540-47910-4_21
https://docs.oracle.com/javase/specs/jls/se8/html/
https://docs.oracle.com/javase/specs/jls/se8/html/
https://doi.org/10.1145/2048066.2048080
https://doi.org/10.1145/2048066.2048080
https://doi.org/10.1145/1869459.1869497

47:28 Defining Name Accessibility Using Scope Graphs

14 Eva Magnusson, Torbjorn Ekman, and Gorel Hedin. Extending Attribute Grammars with
Collection Attributes–Evaluation and Applications. Source Code Analysis and Manipulation,
IEEE International Workshop on, 0, 2007. doi:10.1109/SCAM.2007.13.

15 Luka Miljak, Casper Bach Poulsen, and Flip van Spaendonck. Verifying Well-Typedness
Preservation of Refactorings using Scope Graphs. In Aaron Tomb, editor, Proceedings of the
25th ACM International Workshop on Formal Techniques for Java-like Programs, FTfJP 2023,
Seattle, WA, USA, 18 July 2023, pages 44–50. ACM, 2023. doi:10.1145/3605156.3606455.

16 Phil Misteli. Renaming for Everyone: Language-parametric Renaming in Spoofax. Master’s
thesis, Delft University of Technology, May 2021. URL: http://resolver.tudelft.nl/uuid:
60f5710d-445d-4583-957c-79d6afa45be5.

17 Andreas Müller. Bytecode analysis for checking java access modifiers. In Work in Progress
and Poster Session, 8th Int. Conf. on Principles and Practice of Programming in Java (PPPJ
2010), Vienna, Austria, pages 1–4, 2010.

18 Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A Theory of Name
Resolution. In Jan Vitek, editor, Programming Languages and Systems - 24th European
Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9032 of Lecture Notes in Computer Science, pages 205–231. Springer, 2015. doi:
10.1007/978-3-662-46669-8_9.

19 Daniël A. A. Pelsmaeker, Hendrik van Antwerpen, Casper Bach Poulsen, and Eelco Visser.
Language-parametric static semantic code completion. Proceedings of the ACM on Programming
Languages, 6(OOPSLA):1–30, 2022. doi:10.1145/3527329.

20 Casper Bach Poulsen, Aron Zwaan, and Paul Hübner. A Monadic Framework for Name
Resolution in Multi-phased Type Checkers. In Coen De Roover, Bernhard Rumpe, and Amir
Shaikhha, editors, Proceedings of the 22nd ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences, GPCE 2023, Cascais, Portugal, October
22-23, 2023, pages 14–28. ACM, 2023. doi:10.1145/3624007.3624051.

21 Mark Reinhold. Java platform module system, August 2017. URL: https://jcp.org/en/
jsr/detail?id=376.

22 Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco
Visser. Knowing when to ask: sound scheduling of name resolution in type checkers derived from
declarative specifications. Proceedings of the ACM on Programming Languages, 4(OOPSLA),
2020. doi:10.1145/3428248.

23 Max Schäfer, Andreas Thies, Friedrich Steimann, and Frank Tip. A Comprehensive Approach
to Naming and Accessibility in Refactoring Java Programs. IEEE Trans. Software Eng.,
38(6):1233–1257, 2012. doi:10.1109/TSE.2012.13.

24 Friedrich Steimann, Christian Kollee, and Jens von Pilgrim. A Refactoring Constraint
Language and Its Application to Eiffel. In Mira Mezini, editor, ECOOP 2011 - Object-Oriented
Programming - 25th European Conference, Lancaster, UK, July 25-29, 2011 Proceedings,
volume 6813 of Lecture Notes in Computer Science, pages 255–280. Springer, 2011. doi:
10.1007/978-3-642-22655-7_13.

25 Friedrich Steimann and Andreas Thies. From Public to Private to Absent: Refactoring Java
Programs under Constrained Accessibility. In Sophia Drossopoulou, editor, ECOOP 2009
- Object-Oriented Programming, 23rd European Conference, Genoa, Italy, July 6-10, 2009.
Proceedings, volume 5653 of Lecture Notes in Computer Science, pages 419–443. Springer,
2009. doi:10.1007/978-3-642-03013-0_19.

26 Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth. A constraint language for static semantic analysis based on scope graphs.
In Martin Erwig and Tiark Rompf, editors, Proceedings of the 2016 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 49–60. ACM, 2016. doi:10.1145/2847538.2847543.

https://doi.org/10.1109/SCAM.2007.13
https://doi.org/10.1145/3605156.3606455
http://resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5
http://resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/3527329
https://doi.org/10.1145/3624007.3624051
https://jcp.org/en/jsr/detail?id=376
https://jcp.org/en/jsr/detail?id=376
https://doi.org/10.1145/3428248
https://doi.org/10.1109/TSE.2012.13
https://doi.org/10.1007/978-3-642-22655-7_13
https://doi.org/10.1007/978-3-642-22655-7_13
https://doi.org/10.1007/978-3-642-03013-0_19
https://doi.org/10.1145/2847538.2847543

A. Zwaan and C. Bach Poulsen 47:29

27 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. Scopes
as types. Proceedings of the ACM on Programming Languages, 2(OOPSLA), 2018. doi:
10.1145/3276484.

28 Hendrik van Antwerpen and Eelco Visser. Scope States: Guarding Safety of Name Resolution
in Parallel Type Checkers. In Anders Møller and Manu Sridharan, editors, 35th European
Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Den-
mark (Virtual Conference), volume 194 of LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ECOOP.2021.1.

29 Loek Van der Gugten. Function Inlining as a Language Parametric Refactoring. Master’s
thesis, Delft University of Technology, June 2022. URL: http://resolver.tudelft.nl/uuid:
15057a42-f049-4321-b9ee-f62e7f1fda9f.

30 Eric Van Wyk, Oege de Moor, Kevin Backhouse, and Paul Kwiatkowski. Forwarding in
Attribute Grammars for Modular Language Design. In R. Nigel Horspool, editor, Compiler
Construction, 11th International Conference, CC 2002, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12,
2002, Proceedings, volume 2304 of Lecture Notes in Computer Science, pages 128–142. Springer,
2002. doi:10.1007/3-540-45937-5_11.

31 Guido Wachsmuth, Gabriël Konat, and Eelco Visser. Language Design with the Spoofax
Language Workbench. IEEE Software, 31(5):35–43, 2014. doi:10.1109/MS.2014.100.

32 Bill Wagner, Manuel Zelenka, and Youssef Victor. C# Reference — Keywords — file, November
2022. URL: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/
keywords/file.

33 Wuu Yang. Discovering anomalies in access modifiers in java with a formal specification, 1998.
URL: http://dspace.fcu.edu.tw/bitstream/2377/2120/1/ce07ics001998000164.pdf.

34 Christian Zoller and Axel Schmolitzky. Measuring Inappropriate Generosity with Access
Modifiers in Java Systems. In 2012 Joint Conference of the 22nd International Workshop on
Software Measurement and the 2012 Seventh International Conference on Software Process
and Product Measurement, Assisi, Italy, October 17-19, 2012, pages 43–52. IEEE Computer
Society, 2012. doi:10.1109/IWSM-MENSURA.2012.15.

35 Aron Zwaan and Casper Bach Poulsen. Defining Name Accessibility using Scope Graphs
(Artifact), May 2024. doi:10.5281/zenodo.11179594.

36 Aron Zwaan and Casper Bach Poulsen. Defining Name Accessibility using Scope Graphs
(Extended Edition). CoRR, May 2024. doi:10.48550/arXiv.2407.09320.

37 Aron Zwaan and Casper Bach Poulsen. Defining Name Accessibility using Scope Graphs
(Artifact). Software (visited on 2024-08-05). URL: https://zenodo.org/records/11179594.

38 Aron Zwaan and Hendrik van Antwerpen. Scope Graphs: The Story so Far. In Ralf Lämmel,
Peter D. Mosses, and Friedrich Steimann, editors, Eelco Visser Commemorative Symposium,
EVCS 2023, April 5, 2023, Delft, The Netherlands, volume 109 of OASIcs. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/OASIcs.EVCS.2023.32.

39 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser. Incremental type-checking for
free: using scope graphs to derive incremental type-checkers. Proceedings of the ACM on
Programming Languages, 6(OOPSLA2):424–448, 2022. doi:10.1145/3563303.

ECOOP 2024

https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
http://resolver.tudelft.nl/uuid:15057a42-f049-4321-b9ee-f62e7f1fda9f
http://resolver.tudelft.nl/uuid:15057a42-f049-4321-b9ee-f62e7f1fda9f
https://doi.org/10.1007/3-540-45937-5_11
https://doi.org/10.1109/MS.2014.100
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/file
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/file
http://dspace.fcu.edu.tw/bitstream/2377/2120/1/ce07ics001998000164.pdf
https://doi.org/10.1109/IWSM-MENSURA.2012.15
https://doi.org/10.5281/zenodo.11179594
https://doi.org/10.48550/arXiv.2407.09320
https://zenodo.org/records/11179594
https://doi.org/10.4230/OASIcs.EVCS.2023.32
https://doi.org/10.1145/3563303

	p000-Frontmatter
	Message from the Program Chairs
	Message from the Artifact Evaluation Chairs
	Foreword by the President of AITO

	p001-Aceto
	1 Introduction
	2 The TinySol language
	2.1 Syntax
	2.2 Big-step semantics
	2.2.1 Declarations
	2.2.2 Expressions
	2.2.3 Statements
	2.2.4 Transactions and blockchains

	3 Call integrity and noninterference in TinySol
	4 A type system for noninterference and call integrity
	4.1 Type syntax
	4.2 Subtyping
	4.3 Type judgments
	4.4 Safety and soundness
	4.5 Extending the type system to transactions
	4.6 Noninterference and call integrity

	5 Examples and limitations
	6 Related work
	7 Conclusion and future work

	p002-Aceto
	1 Introduction
	2 A computational model for reactive systems
	2.1 Process tracing and trace partitioning
	2.2 Modelling decentralised instrumentation

	3 Decentralised instrumentation
	3.1 Growing the set-up
	3.2 Ensuring complete traces
	3.3 Ensuring consistent traces
	3.4 Isolating tracers
	3.5 Minimising overhead
	3.6 Shrinking the set-up

	4 Correctness validation
	4.1 Implementability
	4.2 Correctness

	5 Empirical evaluation
	5.1 Benchmarking tool
	5.2 Benchmark configuration
	5.3 Instrumentation configuration
	5.4 High concurrency benchmarks
	5.4.1 Instrumentation overhead
	5.4.2 Monitoring overhead
	5.4.3 Resource usage

	5.5 Moderate concurrency benchmarks
	5.6 Discussion

	6 Conclusion

	p003-Arvay
	1 Introduction
	2 Michelson
	2.1 Types
	2.2 Programs and Instructions
	2.3 Blockchain Interface

	3 Michelson Reference Implementation
	3.1 Program Execution
	3.2 Execution of Control Flow Instructions
	3.3 Relation to Big-Step Semantics
	3.4 Contract Execution and Execution Chains

	4 Dynamic Logic for Michelson
	4.1 Terms and Formulas
	4.2 Representing Michelson Program State in DL
	4.3 Proof Rules for Michelson
	4.4 Proof Rules for the Blockchain Run-time

	5 Semantics and Soundness
	5.1 Values and Models
	5.2 Soundness of the DL

	6 Related Work
	6.1 Verification of Smart Contracts
	6.2 Symbolic Execution for Bytecode Interpretation
	6.3 Related Uses of Dynamic Logic

	7 Conclusion

	p004-Arzt
	1 Introduction
	2 Android Background
	3 Running Example
	4 Approach
	4.1 General Idea
	4.2 Overview of the Approach
	4.3 Identifying Potential Callbacks
	4.4 Dynamic Callgraph Analysis
	4.5 Dynamic Taint Analysis
	4.6 Callback Summary Modelling
	4.7 Callback Reconstruction
	4.8 Extensions and Special Cases
	4.9 Applying Summaries

	5 Implementation
	6 Limitations
	7 Evaluation
	7.1 Experiment Setup
	7.2 Baseline over the Dataset
	7.3 RQ1: Number of Generated Callbacks
	7.4 RQ2: Correctness of Generated Callbacks
	7.5 RQ3: Instrumentation Performance
	7.6 RQ4: Prevalence of Transfer Functions
	7.7 RQ5: Comparison with EdgeMiner
	7.8 RQ6: Case Study on Individual Callbacks
	7.9 RQ7: Effect on Client Analysis

	8 Related Work
	9 Conclusion

	p005-Bacchiani
	1 Introduction
	2 Types and subtyping
	2.1 Typestates
	2.2 Types

	3 Basic operations on types
	3.1 Upcast
	3.2 Downcast
	3.3 Evolve

	4 Typestate Trees
	4.1 Upcast
	4.2 Downcast
	4.3 Evolve
	4.4 Merge

	5 Typestate Trees Soundness
	6 Application to type checking
	7 Use Cases
	8 Related work
	9 Conclusions and future work
	A Research Methodology
	B Glossary

	p006-Berlakovich
	1 Motivation
	2 Background
	2.1 C Extensions
	2.2 Type Feedback via Inline Caching
	2.3 Quickening: Instruction Rewriting to Capture Runtime Knowledge
	2.4 Inline Caching and Quickening in Python

	3 C extensions of Dynamic Languages
	3.1 Domain Specificity of C Extensions
	3.2 Of Optimizers, Binders, and Extenders
	3.3 Exploring Extenders
	3.4 Summary of Observations

	4 Design of Cross-Module Quickening
	4.1 Optimization Interface
	4.1.1 Validating Assumptions and Deoptimization

	4.2 Cross-Module Optimization Opportunities
	4.2.1 Type-specialized Instructions
	4.2.2 Extension-delimited Superinstructions
	4.2.3 Caching Between Instruction Executions

	5 Implementation of Cross-Module Quickening in CPython
	5.1 CPython in a Nutshell
	5.2 Integration with Cross-Module Quickening
	5.2.1 Specializing Hot Instructions
	5.2.2 External opcode handlers
	5.2.3 Dealing with a Limited Opcode Space
	5.2.4 Implementing Extension-Delimited Superinstructions
	5.2.5 Deoptimization in CPython

	6 Implementation of Cross-Module Quickening in NumPy
	6.1 NumPy in a Nutshell
	6.2 Exploiting ufunc Type Stability
	6.3 Automatic Generation of Derivatives
	6.4 Per-Instruction Caches in NumPy

	7 Evaluation
	7.1 System Configuration
	7.2 Experimental Design
	7.3 Performance
	7.4 Dynamic Locality Analysis
	7.5 Implementation Effort

	8 Discussion
	8.1 Performance
	8.2 Implementation Effort
	8.2.1 CPython
	8.2.2 NumPy

	8.3 Threats to Validity
	8.3.1 Generalization Beyond Python
	8.3.2 Generalization Beyond NumPy
	8.3.3 Performance Bias Through NPBench
	8.3.4 Performance Result Interpretation

	9 Related Work
	10 Conclusions
	A All Benchmarks

	p007-Bernad
	1 Motivation
	2 Background
	2.1 C++ Polymorphism and Dynamic Binding
	2.2 Counterfeit-Object-Oriented Programming (COOP)
	2.3 Execute-Only Memory (XOM)
	2.4 Message Integrity Through MACs

	3 Related Work
	4 Threat Model
	5 Design Aspects of Hobbit
	5.1 C++ Object Lifetime and Layout
	5.2 Message-Authentication Codes and Execute-Only Memory
	5.3 Class-Hierarchy-Driven Seed Randomization
	5.4 Validating MAC Tags
	5.5 Gadget-Directed Optimization

	6 Hobbit Implementation
	6.1 Extending Object Layouts
	6.2 Computing and Validating MAC Tags
	6.3 MAC Function Implementations
	6.4 Class-Hierarchy-Driven Seed Randomization
	6.5 Gadget-Directed Optimization
	6.6 Limitations

	7 Evaluation
	7.1 System Configuration
	7.2 Performance
	7.3 Memory
	7.4 Code Size
	7.5 Gadget-Directed Optimization
	7.6 Scalability
	7.7 Class-Hierarchy-Driven Seed Randomization

	8 Discussion
	8.1 Performance
	8.2 Security
	8.2.1 Balancing Performance and Security
	8.2.2 Uniformly Distributed Vtables

	9 Conclusions

	p008-Brockbernd
	1 Introduction
	2 Background on Kotlin Coroutines
	3 Bug Study Methodology
	4 Categorization of Bugs
	4.1 Calling runBlocking in a Coroutine
	4.2 Scope Passing
	4.3 Querying Asynchronous Objects
	4.4 Synchronizing with Cancellation
	4.5 Swallowing CancellationException

	5 Threats to Validity
	6 Key Takeaways and Discussion
	7 Related Work
	7.1 Studies of Real-world Concurrency Bugs
	7.2 Analysis of Kotlin Programs

	8 Conclusion

	p009-Carvalho
	1 Introduction
	2 Example
	3 Design
	3.1 Versioned programming elements in Python
	3.2 Class field lookup
	3.3 Method lookup
	3.4 Version lenses
	3.4.1 Field lenses
	3.4.2 Method lenses

	3.5 Rewriting procedure
	3.5.1 Collecting aliases
	3.5.2 Detecting side-effects
	3.5.3 Rewriting assignments to fields
	3.5.4 Rewriting field references
	3.5.5 Rewriting method definitions

	3.6 Program slicing

	4 Evaluation
	4.1 Evaluation design
	4.2 Evaluation results
	4.3 Evaluation answers

	5 Related work
	6 Limitations and future work
	7 Conclusions

	p010-Chakraborty
	1 Introduction
	2 Motivating Examples
	3 Dynamic Indirection Bound Estimation
	3.1 Language
	3.2 Dynamic Analysis
	3.3 Study Results

	4 Indirection-Bounded Call Graph Construction
	4.1 Analysis Formulation
	4.2 Simplified Wave Propagation
	4.3 Adding Bounds
	4.4 Bounded ACG

	5 Evaluation
	5.1 Benchmarks
	5.2 Experimental Configuration
	5.3 Results
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion

	p011-Derakhshan
	1 Introduction
	2 Motivating example and background
	3 Key ideas
	3.1 Regrading confidentiality
	3.2 The need for regrading policies
	3.2.1 Hasty analyzer – optimization may introduce a timing attack
	3.2.2 Reckless analyzer – be careful with synchronization

	3.3 Regrading policies in a nutshell

	4 Blueprint for Formal Development
	4.1 Vanilla intuitionistic session types – statics
	4.1.1 Process term typing
	4.1.2 Signature checking

	4.2 Vanilla intuitionistic session types – dynamics
	4.2.1 Asynchronous dynamics
	4.2.2 Configuration typing

	4.3 Roadmap for SINTEGRITY
	4.3.1 Regrading policy type system
	4.3.2 PSNI via a logical relation

	5 Regrading policy type system
	5.1 Process term typing
	5.2 Synchronization patterns
	5.3 Configuration typing and asynchronous dynamics
	5.4 Banking example

	6 Progress-sensitive noninterference
	6.1 Attacker model
	6.2 Noninterference via an integrity logical relation
	6.3 Adequacy

	7 Related work

	p012-Dimovski
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Program Families
	3.2 Bounded Program Analysis

	4 Lifted Repair Algorithm
	5 Evaluation
	6 Related Work
	7 Conclusion

	p013-Dort
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Background – The roDOT calculus
	2.1 Syntax and typing
	2.2 Semantics
	2.3 Properties

	3 Method Purity for roDOT
	3.1 Runtime SEF condition
	3.2 Static SEF condition
	3.3 SEF guarantee
	3.4 Using pure methods in roDOT

	4 Recognizing SEF methods by type in modified roDOT
	4.1 Static SEF condition in roDOT
	4.1.1 Read-only types in roDOT
	4.1.2 The SEF condition
	4.1.3 Subtyping of method types

	4.2 The updated roDOT calculus
	4.2.1 Updating the safety proof
	4.2.2 Invertible Typing

	4.3 Layered Typing

	5 The SEF Guarantee
	5.1 The run-time SEF condition
	5.1.1 Method call limits

	5.2 The SEF guarantee
	5.3 Overview of the proof
	5.4 Proof of the SEF Guarantee

	6 Transformations
	6.1 Transformation framework
	6.1.1 Transformations of roDOT programs in general
	6.1.2 Safe transformations

	6.2 The call-swapping transformation

	7 Related work
	7.1 Mechanizations of DOT calculi
	7.2 Purity in other languages
	7.3 Capability and Effect Systems

	8 Conclusion

	p014-Ertl
	1 Introduction
	1.1 Why Gforth? Is this paper relevant for other languages?

	2 Interpreter performance techniques
	2.1 Virtual machines
	2.2 Switch dispatch
	2.3 Threaded code
	2.4 Selective inlining and dynamic superinstructions
	2.5 Multi-representation stack caching

	3 Understanding performance
	3.1 ... on modern CPUs ...
	3.2 ... in fast interpreters

	4 Instruction-pointer update optimization
	4.1 Loops
	4.2 Combining instruction-pointer updates
	4.3 Immediate operands
	4.4 Branches

	5 Evaluation setup
	5.1 Systems
	5.2 Benchmarks
	5.3 Hardware
	5.4 Measurements

	6 Results and discussion
	6.1 Executed instructions
	6.2 Speedups from IP-update optimization variants
	6.3 Comparison with other systems
	6.4 Speedups on different microarchitectures

	7 Applicability to other languages
	8 Source code
	9 Related work
	10 Conclusion

	p015-Estep
	1 Introduction
	2 Background
	2.1 The vector-Jacobian product
	2.2 The Jacobian-vector product
	2.3 The Hessian

	3 Using Rose
	3.1 Opaque functions
	3.2 Custom derivatives

	4 Design
	4.1 Rose intermediate representation
	4.2 Forward-mode autodiff
	4.3 Transposition
	4.4 Metaprogramming

	5 Evaluation
	5.1 Benchmark and applications
	5.2 Size
	5.3 Performance
	5.4 Qualitative observations
	5.4.1 Writing scalar programs as composable functions
	5.4.2 Metaprogramming and function dynamism

	6 Related work
	7 Conclusion and future work

	p016-Flanagan
	1 Introduction
	2 Limitations of Rely-Guarantee Logic
	2.1 Disentangling RG Specifications: First Attempt
	2.2 Disentangling RG Specifications: Second Attempt
	2.3 Broken Invariants and Bidirectional Entanglement

	3 Review of Lipton's Theory of Reduction
	4 Overview of Mover Logic
	5 Additional Examples
	5.1 Spin Lock
	5.2 Lock-Free Queue
	5.3 Lock-Free Stack

	6 Mover Logic Language
	7 Mover Logic Effects and Specifications
	7.1 Effects
	7.2 Mover Specifications
	7.3 Motivating Example, Revisited
	7.4 Additional Mover Specification Examples

	8 Mover Logic
	8.1 Mover Logic
	8.2 Atomic Functions
	8.3 Non-Atomic Functions
	8.4 Verifying States
	8.5 Correctness

	9 Related Work
	10 Summary

	p017-Haller
	1 Introduction
	2 Background and Related Work
	3 Formalisation
	3.1 Syntax
	3.2 Fair and Deterministic Matching Semantics for Join Patterns
	3.3 Stateful, Tree-Based Matching Semantics for Join Patterns

	4 Implementation: the JoinActors Library
	4.1 Overview
	4.2 Implementing Stateful Tree-based Matching
	4.3 Prototype Actor Framework

	5 Evaluation
	5.1 Methodology
	5.2 Synthetic Benchmarks
	5.2.1 Pattern Size and Workload without Guards
	5.2.2 Pattern Size and Workload with Guards

	5.3 Smart House Benchmark
	5.4 Producers-Consumers Bounded Buffer
	5.5 Analysis of Mailbox Size vs. Match Tree Size
	5.6 Comparison with a RETE-based Fair Matching Implementation

	6 Conclusion

	p018-He
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.1.1 Inclusion-based Formulation
	2.1.2 -based CFL-Reachability Formulation

	2.2 Motivation
	2.2.1 Example
	2.2.2 Inclusion-based Formulation
	2.2.3 -based Formulation
	2.2.4 : Challenges and Our Solution

	3 : Design and Insights
	3.1 Pointer Assignment Graph
	3.2 : A New CFL-Reachability Formulation for
	3.2.1 The Language
	3.2.2 The Language

	3.3 Time Complexities

	4 : An Application of
	4.1 Selective Context-Sensitivity
	4.1.1 CFL-Reachability-Guided Selections
	4.1.2 Regularization
	4.1.3 P3Ctx

	4.2 Evaluation
	4.2.1 Experimental Setup
	4.2.2 Results

	5 Related Work
	6 Conclusion

	p019-Hou
	1 Introduction
	2 Overview
	2.1 ATMP: Theory Overview
	2.2 MultiCrusty^T: Toolchain Overview

	3 Affine Timed Multiparty Session Calculus
	4 Affine Timed Multiparty Session Type System
	4.1 Timed Multiparty Session Types
	4.2 Typing Environments
	4.3 Relating Timed Global Types and Typing Environments
	4.4 Affine Timed Multiparty Session Typing System
	4.5 Typed Process Properties

	5 Design and Implementation of MultiCrusty^T
	5.1 Time Bounds in MultiCrusty^T
	5.2 Remote Data Implementation

	6 Evaluation: Expressiveness, Case Studies and Benchmarks
	6.1 Performance: MultiCrusty^T vs. MultiCrusty
	6.2 Expressivity and Feasibility with Case Studies

	7 Related Work and Conclusion

	p020-Huemer
	1 Introduction
	2 The Environment of Our Study
	2.1 GraalVM
	2.2 GraalVM Compiler
	2.3 GraalVM Compiler Debug Interface

	3 ICON: Iterative Compilation-Time Optimization Through Outlier-Driven Narrowing
	3.1 Extraction Scopes
	3.2 Implementation in GraalVM

	4 GraalVM Compilation-Time Evaluation
	4.1 Languages
	4.2 Benchmarks and Setup
	4.3 Data Extraction
	4.4 Evaluation
	4.5 Outlier Analysis
	4.5.1 Mid Tier in the GraalVM LLVM Runtime
	4.5.2 Back End in JavaScript
	4.5.3 Low Tier in Python
	4.5.4 Partial Evaluation

	5 Optimization
	5.1 Frame State Assignment – Optimizing Deletion Strategies
	5.2 Graph Decoding – Constant-Fold Caches

	6 Related Work
	6.1 ICON-like Approaches in Other Compilers
	6.2 Synergy with Regression Testing

	7 Conclusion
	A Frame-State Algorithm

	p021-Khan
	1 Introduction
	1.1 Performance Problem in Type Migration
	1.2 A Machine Learning Based Solution
	1.3 Workflow and Contributions of This Work

	2 Background
	3 Feature Engineering
	3.1 First Attempt: Global Model with Deep Learning
	3.2 Second Attempt: Individual Models with Bit Strings

	4 Third and Successful Attempt: Gauging Cast Overheads
	4.1 Overheads for Individual Casts
	4.2 An Algorithm for Gauging Individual Casts' Overheads
	4.3 Representing Overheads for a Program
	4.4 Assessing Feature Effectiveness

	5 Performance Evaluation
	5.1 Benchmarks
	5.2 Supporting Scenario 1
	5.3 Supporting Scenario 3
	5.4 Training and Prediction Times
	5.5 Different Machine Learning Methods
	5.6 Evaluation of Transient Semantics
	5.7 Threats to Validity

	6 Related Work
	7 Conclusion

	p022-Kinsbruner
	1 Introduction
	1.1 Our approach: views and view immutability

	2 Overview
	2.1 Reasoning about view-immutability
	2.2 Validation steps

	3 Definitions
	4 Analysis
	5 Implementation
	6 Evaluation
	6.1 Benchmarks
	6.2 RQ1: Design violations
	6.3 RQ2 – Case Study 1: Kotlin lists
	6.4 RQ2 – Case Study 2: Red-Green trees
	6.5 RQ3: Impact of incorrect annotations
	6.6 Discussion
	6.7 Threats to validity

	7 Related work
	8 Conclusion

	p023-Li
	1 Introduction
	2 Implementing Type Inference in Language Development
	3 InferType
	3.1 Programming Interface
	3.1.1 Describing types and type constraints
	3.1.2 Encoding subtype-related typing rules for constraint solving
	3.1.3 Solving type constraints based on the encoded subtype-related typing rules
	3.1.4 Declaring User-Defined Types

	3.2 Translation to Z3
	3.2.1 Translating types and type constraints
	3.2.2 Translating subtype-related typing rules

	3.3 Optimizing Constraint Solving for Deeply Nested Types
	3.3.1 Pre-Computing Shapes
	3.3.2 Reducing Search Space
	3.3.3 Discussion

	4 Experiment
	4.1 Comparing Subpet with Typpete
	4.2 Validating the Effectiveness of InferType's Optimization
	4.3 Assessing the Precision of the Approximate Shape Computation

	5 Related Work
	6 Conclusion

	p024-Li
	1 Introduction
	2 Background
	3 Qafny Design Principles: Locus, Type, and State
	3.1 Loci, Types, and States
	3.2 Simultaneity for Tracking Qubit Positions and Entanglement Scopes
	3.3 Rewrites based on Locus Type and State Equivalence Relations
	3.4 The Qafny Proof System Glance Via Quantum Conditional Proofs

	4 Qafny Formalism
	4.1 Qafny Syntax
	4.2 Qafny Semantics
	4.3 Qafny Locus Type System
	4.4 The Qafny Proof System
	4.5 Qafny Metatheory

	5 Qafny Compilation and Implementation Evaluation
	5.1 Translation from Qafny to Separation Logic
	5.2 Implementation and Comparison to Existing Quantum Verifications

	6 Case Studies
	6.1 Controlled GHZ: Composing Quantum Algorithms from Others
	6.2 Case Study: Understanding Quantum Walk

	7 Related Work
	8 Conclusion and Future Work

	p025-Loow
	1 Introduction
	2 Overview: Compositional Symbolic Execution
	2.1 Core Engine
	2.2 Compositional Engine
	2.3 Bi-abductive Engine

	3 Programming Language
	4 Compositional Symbolic Execution: Core Engine
	4.1 Symbolic States
	4.2 Core Engine

	5 Compositional Symbolic Execution: Full Engine
	5.1 Assertions and Extended Symbolic States
	5.2 Axiomatic Interface for Consume and Produce
	5.3 Full CSE Engine

	6 Consume and Produce Implementations
	6.1 Implementations
	6.2 Correctness of Implementations

	7 Bi-abduction
	8 Analysis Applications
	8.1 EX Whole-program Symbolic Testing
	8.2 OX Verification
	8.3 UX Specification Synthesis and True Bug-finding

	9 Evaluation
	9.1 Companion Haskell Implementation
	9.2 Gillian OX and UX Compositional Analysis Platform

	10 Related Work
	11 Conclusions

	p026-Loow
	1 Introduction
	2 Overview
	2.1 Background: Symbolic Execution Based on Consume and Produce
	2.2 Running Example: Folding a List Predicate
	2.3 MPs for Predicate Folding and Function Calls
	2.4 MP-based Automation for Frame Inference

	3 Preliminaries: Assertion Language
	4 Formalisation of Core MPs
	4.1 Formal Definition of MPs
	4.2 Computing MPs
	4.3 MPs for Function Specifications and Predicates

	5 Extensions
	6 Scalability and Performance
	7 Related Work

	p027-Maj
	1 Introduction
	2 Related work
	2.1 Community standards
	2.2 Mining repositories
	2.3 Tools for miners

	3 State of practice
	3.1 MSR 2020: What is software
	3.2 MSR 2020: Method chaining
	3.3 MSR 2019: Style analyzer
	3.4 MSR 2020: Code smells
	3.5 Summary and discussion

	4 Mapping the GitHub landscape
	4.1 Attributes
	4.2 Stars v. All
	4.3 Stars v. Developed
	4.4 How to select projects?
	4.5 Validity of our dataset

	5 Reproducible large-scale analysis experiment design
	5.1 Population hypothesis
	5.2 Frame oracle
	5.3 Sampling strategy
	5.4 Validity
	5.5 Reproducibility artifacts

	6 Reproductions
	6.1 Reproduction: What is software
	6.1.1 Results

	6.2 Reproduction: Method chaining
	6.2.1 Results

	6.3 Reproduction: Style analyzer
	6.3.1 Results

	6.4 Reproduction: Code smells
	6.4.1 Results

	7 Collaborative Reproduction
	8 Conclusions

	p028-Melancon
	1 Introduction
	2 The Static BBV Algorithm
	2.1 SBBV by Example
	2.2 The Algorithm

	3 Improved Specializations
	3.1 Variable Aliasing
	3.2 Specialization of Arithmetic Operations
	3.3 Vector Support

	4 Experiments
	4.1 Benchmark Programs
	4.2 Counting Dynamic Checks
	4.3 Merge Selection
	4.4 Results
	4.4.1 Dynamic Checks
	4.4.2 Program Size
	4.4.3 Execution Time
	4.4.4 Compilation Time

	4.5 Putting the Results in Context

	5 Related Work
	6 Conclusion

	p029-Migeed
	1 Introduction
	2 Three Migration Problems
	3 The Gradual Tensor Calculus
	4 The Migration Problem as a constraint satisfiability problem
	5 Extending our approach to do Branch Elimination
	6 Implementation
	7 Experimental Results
	8 Related work
	9 Conclusion

	p030-Patel
	1 Introduction
	2 The Skiplist Template Algorithm
	3 Proof Intuition
	3.1 The Edgeset Framework
	3.2 Hindsight Reasoning
	3.3 Proof Outline for Core Operations
	3.4 Proof Outline for Eager Traversal

	4 Hindsight Reasoning in Iris
	4.1 Linearizability in Hindsight
	4.2 Invariant for Hindsight Reasoning

	5 Verifying the Skiplist Template
	5.1 Snapshot and the Skiplist Template Invariant
	5.2 Proof of delete

	6 Proof Mechanization and Evaluation
	7 Related Work
	8 Conclusions and Future Work

	p031-Plyukhin
	1 Introduction
	2 Overview
	2.1 Intraprocedural Integrity
	2.2 Procedural Choreographies
	2.2.1 Interprocedural Integrity

	3 Choreography Model
	3.1 Syntax
	3.2 Semantics
	3.2.1 Transition rules
	3.2.2 Discussion

	3.3 Properties

	4 Process Model and Endpoint Projection
	4.1 Syntax
	4.2 Semantics
	4.3 Endpoint Projection

	5 A Non-Blocking Communication API for Choral
	5.1 Concurrent Messages
	5.1.1 Endpoint projection

	5.2 Procedure calls
	5.3 Evaluation

	6 Related Work
	7 Conclusion

	p032-Qiu
	1 Introduction
	2 Overview
	3 The TENSIR Intermediate Representation
	3.1 Language Definition

	4 Transpiling Code Using Tenspiler
	4.1 Synthesis
	4.2 Verification
	4.3 Code Generation

	5 Synthesis Optimizations
	5.1 Restricting Operators
	5.2 Restricting Program States
	5.3 Leveraging Expression Trees
	5.4 Constraining Variables
	5.5 Overall Synthesis Algorithm

	6 Experiments
	6.1 Evaluation Setup
	6.1.1 Datasets for Evaluation
	6.1.2 Target Software Frameworks and Hardware Accelerators

	6.2 Synthesis Timings
	6.2.1 Analysis

	6.3 Performance Timings
	6.4 Ablation Study
	6.5 Comparison with LLMs
	6.6 Extension to Higher-Dimensional Tensors

	7 Related Work
	8 Conclusions

	p033-Richter
	1 Introduction
	2 Problem Statement
	3 AiNF, Polara, and Simplified Optimizations
	3.1 The Duality of Functions and Arrays
	3.2 Lifting Branching into the Context
	3.3 Polara and AiNF by Example
	3.4 Simplifying Optimizations with AiNF

	4 Mechanization
	4.1 Polara and Partial Evaluation
	4.2 AiNF and Common Subexpression Elimination
	4.3 Mechanization in Lean
	4.4 Proofs

	5 Related Work
	5.1 Intermediate Languages
	5.2 Array Programming

	6 Conclusion

	p034-Robinson
	1 Introduction
	2 Pipit for time-triggered networks
	2.1 Deferring and proving properties
	2.2 Restrictions on the triggers array
	2.3 Instantiating lemmas and defining contracts

	3 Pipit core language
	3.1 Dynamic semantics
	3.2 Checked semantics
	3.2.1 Blessing expressions and contracts

	3.3 Causality and metatheory

	4 Abstract transition systems
	4.1 Translation
	4.2 Proof obligations and induction
	4.3 Translation correctness proofs

	5 Extraction
	6 Evaluation
	6.1 Runtime
	6.2 Verification

	7 Related work
	8 Conclusion

	p035-Roy
	1 Introduction
	1.1 Background

	2 Notations and Definitions
	2.1 Control Flow graph
	2.1.1 Annotated Control Flow Graph

	2.2 Boolean Properties Associated with the Expressions

	3 Basic Concept
	3.1 The New Approach

	4 The Proposed Algorithm for PRE
	4.1 Data Flow Analysis Phase
	4.1.1 Available Expression analysis
	4.1.2 Anticipated Expression analysis

	4.2 Computation Phase
	4.2.1 Worklist
	4.2.2 Safe Partially Available Path Computation
	4.2.3 Safe Redundancy Path Computation

	4.3 The Main Algorithm
	4.4 Example

	5 Proof of Correctness and Optimality
	5.1 Correctness of Safe Partially Available Path computation
	5.2 Correctness of Safe Redundancy Path computation
	5.3 Optimality of Transformation

	6 Experimental Results
	6.1 Efficiency
	6.2 Precision

	7 Conclusion

	p036-Schiebel
	1 Introduction
	2 Background on IDE
	2.1 IDE Algorithm Overview

	3 The State of the Art
	4 Optimizations
	4.1 Data Structures for the Exploded Supergraph
	4.1.1 Jump Functions Table Analysis
	4.1.2 Optimized Jump Functions Table
	4.1.3 Discussion

	4.2 Garbage Collection of Jump Functions
	4.2.1 Single-Threaded Garbage Collection
	4.2.2 Generalizing Garbage Collection for IDE

	5 Implementation
	6 Empirical Study
	6.1 Research Questions
	6.2 Experiment Setup
	6.2.1 Analysis Problems
	6.2.2 Target Programs
	6.2.3 Measurement Setup

	6.3 Results
	6.3.1 Baseline
	6.3.2 RQ1: Jump-Functions Table Structure
	6.3.3 RQ2: Jump-Functions Garbage Collection

	6.4 Threads to Validity
	6.5 Discussion

	7 Related Work
	8 Conclusion

	p037-Schott
	1 Introduction
	2 Background
	2.1 Code Similarity Analysis
	2.2 Java compilers
	2.3 Jimple

	3 Java Bytecode Normalization
	3.1 Investigation of Compilation Differences
	3.2 Overview of jNorm
	3.3 Jimple Parsing and Optimization
	3.4 Compilation Difference Transformation
	3.5 Standardization

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Does the JDK vendor influence the bytecode generation?
	4.3 RQ2: How does jNorm perform on changing JDK versions?
	4.4 RQ3: How does jNorm perform on changing Java target levels?
	4.5 RQ4: To which degree can bytecode normalization support similarity analysis tools?
	4.6 RQ5: How prevalent are the individual compilation difference transformations of jNorm?

	5 Related Work
	6 Threats to Validity
	7 Conclusion

	p038-Singhal
	1 Introduction
	2 Dense Representation
	2.1 Overview
	2.2 Running Example

	3 Design
	3.1 MARMOSET's Language
	3.2 Control-Flow Analysis
	3.3 Data Flow Analysis
	3.4 Field Attributes For Code Motion
	3.5 Field Access Pattern Analysis
	3.6 Finding a Layout
	3.6.1 ILP Constraints
	3.6.2 Cost Model
	3.6.3 Assigning Costs to Edges
	3.6.4 Greedy layout ordering

	3.7 Finding a global layout
	3.8 Finding a layout for functions with conflicting access patterns

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Micro Benchmarks
	5.3 Binary Tree Benchmarks
	5.4 Blog Software Case Study
	5.4.1 Globally optimizing multiple functions
	5.4.2 Comparison of MARMOSET against MLTON

	5.5 Cache behavior
	5.6 Tradeoffs between MARMOSET's solver and greedy optimization
	5.7 Discussion: Scale of Evaluation

	6 Future Work
	7 Related Work
	7.1 Cache-conscious data
	7.2 Data layout description and binary formats
	7.3 Memory layouts

	8 Conclusions

	p039-Sun
	1 Introduction
	2 Overview
	2.1 RFJ by Example
	2.2 Algorithmic Verification
	2.3 Meta-theoretical Arguments
	2.3.1 Soundness Theorems
	2.3.2 Challenges

	3 Declarative Calculus: RFJ
	3.1 Syntax and Lookup Functions
	3.2 Operational Semantics
	3.3 Logical Interpretation
	3.4 Typing

	4 Meta-theoretical Results
	4.1 Basic Properties
	4.2 Logical Lemmas
	4.3 Typing Lemmas
	4.3.1 Structural Lemmas for Typing
	4.3.2 Progress & Preservation
	4.3.3 Closing Substitution

	4.4 Type Soundness
	4.5 Logical Soundness

	5 Logical Encoding: LFJ
	5.1 Language
	5.2 Intended Model
	5.3 Theory

	6 Mechanization and Implementation
	6.1 Coq Mechanization
	6.2 Python Implementation

	7 Discussion
	8 Related Work
	9 Conclusion and Future Work

	p040-VandenHeuvel
	1 Introduction
	2 Key Ideas
	2.1 Cyclic Process Networks Afford Flexible Information Flow Control
	2.2 Threats to Noninterference due to Deadlocks
	2.3 IFC Type System in a Nutshell
	2.4 Logical Relation for DSNI in a Nutshell
	2.5 Technical Challenges

	3 Linear Session Types for Information Flow Control
	3.1 Process Language: Syntax, Semantics, and Types
	3.2 Information Flow Control
	3.3 Type Preservation

	4 Logical Relation
	4.1 Preliminary Definitions
	4.2 The Relation

	5 Deadlock-Sensitive Noninterference (DSNI)
	5.1 Observable Equivalence
	5.2 The Fundamental Theorem

	6 Related Work
	7 Conclusions

	p041-Vassor
	1 Introduction
	2 Refined Traces and their Validity
	2.1 Preliminaries: Predicates Language and Semantics
	2.2 Traces
	2.3 Properties of Refined Traces

	3 Refined Communicating Automata
	4 Refined Multiparty Session Types (RMPST)
	4.1 Syntax of RMPST
	4.2 From Refined MPST to Refined Communicating System

	5 Decentralised Refined Multiparty Session Types
	6 Static Elision of Redundant Refinements
	6.1 Static Elision of Refinements in RCS
	6.2 Application to RMPST Protocols

	7 Implementation
	7.1 Refinement Implementation
	7.2 Runtime and Localisation Benchmarks

	8 Related Work and Conclusion

	p042-Veresov
	1 Introduction
	2 Background
	2.1 Failures in Distributed Systems
	2.2 Stateful Dataflow and Apache Flink
	2.3 Asynchronous Barrier Snapshotting
	2.4 Basic Notation

	3 Stateful Dataflow
	3.1 A Taste of Programming in Stateful Dataflow
	3.2 Failure Recovery via Asynchronous Barrier Snapshotting

	4 Implementation Model
	4.1 Streaming Model
	4.2 Stateful Dataflow Model
	4.2.1 Derivation Rules

	4.3 Assumptions

	5 Failure Transparency
	5.1 Rationale
	5.2 Executions
	5.3 Observational Explainability
	5.4 Defining Failure Transparency

	6 Failure Transparency of Stateful Dataflow
	6.1 Traces and Causality
	6.2 Proving Failure Transparency
	6.3 Liveness

	7 Related Work
	8 Conclusions and Future Work

	p043-Wesley
	1 Introduction
	2 Overview
	2.1 Methodology
	2.2 Class Invariant Inference as Synthesis
	2.3 Verification of Array-Manipulating Programs as Synthesis
	2.4 Parameterized Verification as Synthesis
	2.5 Discussion

	3 Background
	3.1 First Order Logic and Constrained Horn Clauses
	3.2 Procedural Programming Language
	3.3 Logical Program Verification

	4 IPS-MP: Problem Definition
	5 Decidability of IPS-MP
	5.1 The Case of Boolean Programs
	5.2 The General Case

	6 From Verification to Synthesis
	6.1 Class Invariant Inference
	6.2 Reducing PCMC to IPS-MP

	7 Implementation and Evaluation
	8 Related Work
	9 Conclusion

	p044-Wiersdorf
	1 Type Tailoring Helps Programmers
	2 Tailoring in Action
	2.1 Refining Data in Typed Racket
	2.2 Elaborating Types in Typed Racket
	2.3 Relaxing Types in Rhombus
	2.4 Static Arrays in Julia
	2.5 Verified Web Routes in Elixir

	3 Dimensions of Tailoring Systems
	3.1 Metadata
	3.2 Binding
	3.3 Order
	3.4 Hygiene
	3.5 Definitions in Context
	3.6 Types in Context
	3.7 Essential Non-Dimensions
	3.8 Example Tailoring Implementation

	4 Design Space Reflections
	4.1 Level 1: Local Tailorings
	4.2 Level 2: Cooperating Tailorings
	4.3 Level 3: Binding-Aware Tailorings

	5 How to Reason About Tailorings
	5.1 Express New Behavior: Variable-Arity Map
	5.2 Refine Behavior and Predict Errors: Vector Bounds
	5.3 Propagation and Substitution

	6 Related Work
	7 Future Work
	8 Discussion

	p045-Young
	1 Introduction
	2 Overview
	2.1 Background
	2.2 The Pika Language
	2.3 Pika by Example
	2.3.1 Synthesising the in-place map function
	2.3.2 Guards
	2.3.3 if-then-else
	2.3.4 Using multiple layouts
	2.3.5 Synthesising fold

	3 Formal Semantics of Pika
	3.1 Overview of the Two Interpretations
	3.2 Abstract Machine Semantics
	3.2.1 Notation and Setup
	3.2.2 Abstract Machine Rules

	3.3 Translating Pika Specifications into SSL
	3.3.1 Translating Expressions
	3.3.2 Translating Function Definitions

	3.4 Typing Rules
	3.5 From Pika to SLL Specifications: Soundness of the Translation

	4 Extensions of SuSLik
	4.1 Function Predicates
	4.2 SSL Rules for func Structure
	4.3 Temporary Location for the Sequential Application
	4.4 Avoiding Excessive Heap Manipulation with Read-Only Locations

	5 Evaluation
	6 Discussion
	7 Related Work
	8 Future Work and Conclusion

	p046-Zhou
	1 Introduction
	2 Background
	2.1 Information Flow Analysis
	2.2 Timing Channels in Cryptosystems
	2.3 Constant-Time Disciplines and Cache-Specific Analysis

	3 CtChecker Design
	3.1 General Workflow
	3.1.1 Capturing Information Flows
	3.1.2 Constraints and Their Least Solution
	3.1.3 Checking the Constant-Time Discipline

	3.2 Challenges and Solutions
	3.2.1 Field-Sensitivity
	3.2.2 Declassification
	3.2.3 Flow-Sensitivity
	3.2.4 Unknown Functions

	3.3 Precision of CtChecker

	4 Evaluation
	4.1 Implementation
	4.2 Benchmarks
	4.3 Evaluation Setup
	4.4 Impacts of Analysis Features
	4.5 Comparison with ct-verif
	4.5.1 Results

	4.6 Comparison with CacheS
	4.7 Comparison with SC-Eliminator's Taint Analysis
	4.7.1 False Negatives in SC-Eliminator's Taint Analysis

	4.8 Analysis Precision
	4.9 Scalability
	4.9.1 Running Time of Other Tools

	5 Related Work
	5.1 Detecting Timing Side Channels
	5.2 Detecting Cache Side Channels
	5.3 Mitigating Side Channels

	6 Conclusion and Future Work

	p047-Zwaan
	1 Introduction
	2 Access Modifiers in Real-World Languages
	2.1 Why Accessibility?
	2.2 Accessibility in Practice
	2.3 Classification

	3 Using Scope Graphs to Model Name Binding in Programs
	3.1 Scope Graphs as A Model for Name Binding

	4 AML: The Base Language
	5 Defining Module Visibility
	6 Defining Subclass Visibility
	6.1 Private Access
	6.2 Protected Access

	7 Combining Subclass and Module Visibility
	8 Defining Extends-Clause Accessibility Restriction
	9 Analysis
	9.1 Soundness of Access Policies
	9.2 Equivalence of Access Policies
	9.3 Order of Access Policies

	10 Evaluation
	10.1 Comparison with Reference Compilers: Implementation
	10.2 Comparison with Reference Compilers: Test Cases
	10.3 Code Completion
	10.4 Threats to Validity

	11 Related Work
	11.1 Access Modifier Semantics and Implementations
	11.2 Scope Graphs

	12 Conclusion

