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Abstract
The abstract Tile Assembly Model (aTAM) provides an excellent foundation for the mathematical
study of DNA-tile-based self-assembling systems, especially those wherein logic is embedded within
the designs of the tiles so that they follow prescribed algorithms. While such algorithmic self-
assembling systems are theoretically powerful, being computationally universal and capable of
building complex shapes using information-theoretically optimal numbers of tiles, physical DNA-
based implementations of these systems still encounter formidable error rates and undesired nucleation
that hinder this theoretical potential. Slat-based self-assembly is a recent development wherein
DNA forms long slats that combine together in 2 layers, rather than square tiles in a plane. In this
approach, the length of the slats is key; while tiles typically only bind to 2 neighboring tiles at a
time, slats may bind to dozens of other slats. This increased coordination between slats means that
several mismatched slats must coincidentally meet in just the right way for errors to persist, unlike
tiles where only a few are required. Consequently, while still a novel technology, large slat-based
DNA constructions have been successfully implemented in the lab with resilience to many tile-based
construction problems. These improved error characteristics come at a cost however, as slat-based
systems are often more difficult to design and simulate than tile-based ones. Moreover, it has not
been clear whether slats, with their larger sizes and different geometries, have the same theoretical
capabilities as tiles. In this paper, we show that slats are capable of doing anything that tiles can,
at least at scale. We demonstrate that any aTAM system may be converted to and simulated by an
effectively equivalent system of slats. Furthermore, we show that these simulating slat systems can
be made more efficiently, using shorter slats and a smaller scale factor, if the simulated tile system
avoids certain uncommon growth patterns. Specifically, we consider 5 classes of aTAM systems with
increasing complexity, from zig-zag systems which grow in a rigid pattern to the full class of all
aTAM systems, and show how they may be converted to equivalent slat systems. We show that
the simplest class may be simulated by slats at only a 2c × 2c scale, where c is the freely chosen
coordination number of the slats, and further show that the full class of aTAM systems can be
simulated at only a 5c × 5c scale. These results prove that slats have the full theoretical power of
aTAM tiles while also providing constructions that are compact enough for potential DNA-based
implementations of slat systems that are both capable of powerful algorithmic self-assembly and
possessing of the strong error resilience of slats.
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1 Introduction

In self-assembly, simple, disorganized components combine to form structures more complex
than themselves, driven primarily by local interactions and environmental conditions. From
the crystallization of water molecules into the intricate 6-fold symmetry of snowflakes, to the
clustering of space dust and gasses into robust solar systems with mechanisms to mitigate
the deleterious effects of debris and radiation, self-assembly processes occur at all scales of
nature. Such processes are central to many fields of science and engineering, including the
relatively young field of DNA-nanotechnology. Here, synthetic strands of DNA are used,
not as a means to store genetic information, but rather as building blocks for nano-scale
structures, far too small to assemble using conventional human building techniques. Taking
advantage of the base-pairing dynamics of DNA, synthetic strands can be mixed in solution
under carefully tuned conditions so that they naturally combine to form incredibly precise
shapes [10,22,25,36,42], and even follow embedded algorithms [13,15,26,32,38,47,48]. On
an atomic scale, DNA is far too complex to completely and efficiently model so heuristics
and simplifications are often used when designing DNA-based self-assembling systems. Tile-
assembly models are one such simplification that have seen great success in facilitating the
design of such systems. In tile-assembly, it is assumed that DNA strands are designed so
that they tend to combine into small, generally rigid units called tiles resembling squares (or
sometimes other shapes). These units are augmented with extra lengths of single-stranded
DNA that dangle from their sides (often called “glues” or “handles”) to enable individual
units to selectively combine with one another. The utility of tile-assembly comes from
its simplicity and relationship with existing models in mathematics and computer science.
While individual DNA strands are difficult to model, when designed to behave like tiles
their self-assembly is relatively well understood and many important dynamics can be easily
captured by simple mathematical rules.

Theoretically, tile-assembly models have been extensively studied, and models such as
the abstract Tile-Assembly Model (aTAM) have been shown to be algorithmically universal
in that they are capable of simulating arbitrary Turing machines [23, 34, 41, 43]. Practically,
tile-assembly models have seen significant use as design tools for complicated DNA-based
nano-structures [13, 47]. There are however a few key difficulties that arise when attempting
to realize tile-based DNA constructions. One primary difficulty is nucleation. To ensure that
the self-assembly process occurs as expected, it is generally important that assembly begins
from a chosen starting seed structure; however it can be extremely difficult to guarantee that
growth does not begin spuriously by the improbable combination of a small number of tiles
away from the seed. Using conventional approaches to DNA-based tile-assembly, spurious
nucleation is a major hurdle to building large structures. Another difficulty comes from
so-called growth errors. While tiles may be designed so that the correct tile attachments are
thermodynamically preferred, it is unlikely that erroneous attachments can be prevented
altogether. Typically such errors are short lived due to the entropic penalties they incur, but
if enough occur in quick succession and in just the right way, it’s possible for the errors to
become locked-in. Techniques such as proofreading (in various forms) [3–5,35,39,40,44] have
been developed to mitigate these problems, but they still act as a major obstacle to larger
scale DNA-based tile-assembly.

One recent development, however, has seemingly overcome both of these problems through
the use of slat-shaped DNA units [7, 12,29,45] rather than square tile-shaped ones. Unlike
tiles which attach to at most 4 neighbors and combine in a plane, slats are long and designed
to attach in multiple layers so that a single slat may span across and attach to dozens
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of others. For a square tile where 2 of its sides attach to an existing assembly, erroneous
attachments often occur when just one of the sides correctly binds to the assembly. One of
two attachments is still relatively strong and an erroneous tile may remain attached for a
substantial amount of time. Even worse, it is only really necessary for 4 or so individual tiles
to coincidentally co-locate for spurious nucleation to occur. While unlikely, this is almost
guaranteed to happen frequently in a mass-action system on the scale of moles. Because each
slat needs to attach to 8 or even 16 others to achieve a stable bond, erroneous attachments
are generally much shorter lived and less likely to lock-in, and the likelihood of spurious
nucleation drops precipitously (effectively to zero [29]).

In the lab, slats are generally implemented either using DNA-origami or as individual
strands of DNA. In the DNA-origami motif, slats are often 6-helix bundles (a very common
origami construction) with single-stranded DNA “handles” extending from one side. While
both techniques are still novel, origami-based slats have been demonstrated to be incredibly
robust to spurious nucleation and computer simulations have indicated that slats naturally
exhibit error correcting behavior since individual erroneous attachments have little effect on
correct growth later in the assembly process [8]. Theoretical models of slat-assembly have
been introduced, naturally expanding on tile-assembly models, but little is currently known
about their dynamics. In this paper, we consider the abstract Slat Assembly Model (aSAM)
introduced in [8], and investigate its relationship to the aTAM. Specifically we consider the
extent to which aTAM tiles may be simulated by aSAM slats. In this context, simulation
refers to “intrinsic simulation” a notion borrowed from the study of cellular automata [30,31]
and which has been used extensively to compare tile-assembly models and develop a rich
complexity theory for them [1, 9, 16, 18, 20, 21, 27, 46]. Unlike typical simulations between
models of computation, where the dynamics of one model are captured symbolically by the
dynamics of another, intrinsic simulation is inherently geometric. For a system S, be it of
tiles or slats, to simulate another system S′ requires that S “looks like” S′ when zoomed-out
and furthermore that any order of attachments in S′ may be replicated by attachments in S.

Our Results

In this paper, we show that all systems in the aTAM may be intrinsically simulated by aSAM
systems. Moreover, we show that if one is willing to forgo some less useful dynamics of the
aTAM, then this simulation may be done quite efficiently, both in the scale factor required
for the simulation and in the complexity of the necessary slats. Specifically, we consider 5
different classes of aTAM systems of increasing complexity. The first class, zig-zag systems,
are still fully capable of Turing universal computation, but are restricted to growing solely in
a back-and-forth pattern. The second class of systems, called standard systems, represents a
simplified set of aTAM dynamics common to most theoretical constructions. These standard
systems make simplifying assumptions such as requiring that no tiles mismatch with their
neighbors, requiring each tile to attach with no more strength than necessary, and requiring
that only 1 terminal assembly is possible. Despite this, all but the most convoluted theoretical
aTAM constructions may generally be defined as standard systems. In standard systems, it is
assumed that no tiles attach using “across-the-gap” cooperation, where a tile binds to 2 tiles
of an existing assembly that are not adjacent to one another. Such attachments are generally
more difficult to simulate and rarely, if ever, appear in physically implemented tile-based
systems. Still, the 3rd class of aTAM systems considered in this paper are standard systems
augmented with the ability to perform across-the-gap cooperation. In the 4th class we allow
tiles to mismatch with their neighbors so long as they attach with sufficient strength and the
system is directed (i.e. makes a unique assembly), and our 5th consists of all aTAM systems.

DNA 30
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Table 1 An overview of our results. For each class of aTAM systems, corresponding to each of
our theorems, we list: the simulation scale factor (the size of our macrotiles), the greatest number of
slats that appear in any macrotile, and the largest slat length used during the simulation. Defined
later, macrotiles represent blocks of slats which simulate individual tiles and c is the cooperativity.

aTAM class Result Macrotile
size

Greatest
num slats

Greatest
slat length

Zig-zag Thm.1 2c × 2c 4c 3c

Standard Thm.2 3c × 3c 8c 3c

Standard plus across-the-gap Thm.3 3c × 3c 8c 4c

Directed temperature-2 Thm.4 4c × 4c 10c 4c

Nondeterministic (full aTAM) Thm.5 5c × 5c 13c 5c

Table 1 details our results with respect to a parameter c of our aSAM systems called the
“cooperativity” or sometimes “coordination number” of the slats. This number may be freely
chosen, independent of our results, and its value effectively describes how many functionally
redundant attachment domains appear along the length of each slat. In practice, increasing
this number will result in a slat system more robust to spontaneous nucleation and growth
errors at the cost of requiring longer and more numerous slats. In our results, we show that
we can simulate arbitrary aTAM systems using slats of length no greater than 5c at a scale
factor of 5c, that is each aTAM tile is represented by a 5c×5c block of slats. We further show
that this may be optimized to slats of maximum length 3c with a 2c scale factor for zig-zag
systems. For classes in between the zig-zag systems and full aTAM, we show that the scale
factor and maximum slat length grow accordingly. We present these results in increasing
complexity (and note that software for converting classes of aTAM systems to slats, simulate
their self-assembly, and visualize the results can be found online [17]. It should be noted that
a difference between a scale factor of 2c and 5c is negligible in a purely theoretical context.
The real motivation for exploring and simulating different families of aTAM systems is to try
and find “practical” transformations from the logic of tile-based assembly into error-robust
slats which may be implementable. These constructions therefore are not only intended to
show that aTAM dynamics may be simulated by slat dynamics, but also serve to illustrate
the difficulties that arise when one tries to do so and how these difficulties may affect the slats
necessary for simulation. Furthermore, while slat-based self-assembly is still in its infancy,
we are optimistic that these constructions, while presented here purely theoretically, may
provide designs that help to physically realize them in the not too distant future.

Due to page constraints, many technical details of our results are omitted from this version
of the paper. A version including a full technical appendix may be found on Arxiv [11].

2 Preliminary Definitions and Models

In this section, we provide definitions and overviews of the models and concepts used
throughout the paper.

2.1 The abstract Tile Assembly Model

Our conversions begin from systems within the abstract Tile-Assembly Model [43] (aTAM).
These definitions are borrowed from [16] and we note that [37] and [24] are good introductions
to the model for unfamiliar readers.
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Let N be the set of non-negative integers, and for n ∈ N, let [n] = {0, 1, ..., n − 2, n − 1}.
Let Σ to be some alphabet with Σ∗ its finite strings. A glue g ∈ Σ∗ × N consists of a finite
string label and non-negative integer strength. There is a single glue of strength 0, referred
to as the null glue. A tile type is a tuple t ∈ (Σ∗ × N)4, thought of as a unit square with a
glue on each side. A tile set is a finite set of tile types. We always assume a finite set of
tile types, but allow an infinite number of copies of each tile type to occupy locations in the
Z2 lattice, each called a tile. Given a tile set T , a configuration is an arrangement (possibly
empty) of tiles in the lattice Z2, i.e. a partial function1 α : Z2 99K T . Two adjacent tiles in
a configuration interact, or are bound or attached, if the glues on their abutting sides are
equal (in both label and strength) and have positive strength. Each configuration α induces
a binding graph Bα whose vertices are those points occupied by tiles, with an edge of weight
s between two vertices if the corresponding tiles interact with strength s. An assembly is a
configuration whose domain (as a graph) is connected and non-empty. The shape Sα ⊆ Z2 of
assembly α is the domain of α. For some τ ∈ Z+, an assembly α is τ -stable if every cut of
Bα has weight at least τ , i.e. a τ -stable assembly cannot be split into two pieces without
separating bound tiles whose shared glues have cumulative strength τ .

A tile-assembly system (TAS) is a triple T = (T, σ, τ), where T is a tile set, σ is a
finite τ -stable assembly called the seed assembly, and τ ∈ Z+ is called the binding threshold
(a.k.a. temperature). Given a TAS T = (T, σ, τ) and two τ -stable assemblies α and β, we
say that α T -produces β in one step (written α →T

1 β) if α ⊑ β and |Sβ \ Sα| = 1. That
is, α →T

1 β if β differs from α by the addition of a single tile. The T -frontier is the set
∂T α =

⋃
α→T

1 β Sβ \ Sα of locations in which a tile could τ -stably attach to α. We use AT to
denote the set of all assemblies of tiles in tile set T . Given a TAS T = (T, σ, τ), a sequence
of k ∈ Z+ ∪ {∞} assemblies α0, α1, . . . over AT is called a T -assembly sequence if, for all
1 ≤ i < k, αi−1 →T

1 αi. The result of an assembly sequence is the unique limiting assembly
of the sequence. For finite assembly sequences, this is the final assembly; whereas for infinite
assembly sequences, this is the assembly consisting of all tiles from any assembly in the
sequence. We say that α T -produces β (denoted α →T β) if there is a T -assembly sequence
starting with α whose result is β. We say α is T -producible if σ →T α and write A[T ] to
denote the set of T -producible assemblies. We say α is T -terminal if α is τ -stable and there
exists no assembly that is T -producible from α. We denote the set of T -producible and
T -terminal assemblies by A□[T ]. If |A□[T ]| = 1, i.e., there is exactly one terminal assembly,
we say that T is directed.

2.2 Classes of aTAM systems
In [43], the aTAM was shown to be computationally universal when τ = 2, but this is not
the case when τ = 1 [28]. Furthermore, any aTAM system with τ = 1 can trivially be
transformed into a τ = 2 system by changing all of its strength-1 glues to be strength-2;
and in any aTAM system where τ = 2, any glue whose strength is greater than 2 may
trivially be replaced by a glue of strength = 2 without changing any behaviors of the system.
Additionally, any aTAM system with τ > 2 may be simulated by a system with τ = 2 [9].
Therefore, all results in this paper will only discuss aTAM systems with τ = 2 and it will
be assumed that, other than the null glue of strength 0, all glues in aTAM systems are
of strength 1 or 2. When a tile initially binds to an assembly in a τ = 2 system, it must
immediately bind with at least (1) a single strength-2 glue, or (2) two strength-1 glues (we

1 we use the dashed arrow 99K to indicate a partial function
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Figure 1 Examples of IO-marked tile type signatures: (Left) The light blue tile’s signature
is Input=(S,1),(E,1), Output=(N,1),(W,1). (Right) The yellow tile’s signature is Input=(S,2),
Output=(N,1),(E,1).

call this a cooperative attachment). This is because the sum of the bond strengths must be
≥ 2. If, when a tile initially binds to an assembly, it does so by immediately forming bonds
of strength > 2, we call this overbinding. When a tile t attaches into a location (x, y) by
cooperatively binding to tiles on opposite sides of each other (i.e in locations (x − 1, y) and
(x + 1, y), or (x, y − 1) and (x, y + 1)), we say that t has attached across-the-gap.

When two tiles in adjacent locations do not share matching non-null glues on their
abutting faces, we say that their glues are mismatched and note that this is only possible
when their other glues contribute a cumulative attachment strength of at least 2.

Let the symbols “∨”, “<”, “∧”, “>” be called the input markings for the directions
N, E, S, W , respectively and the output markings for the directions S, W, N, E, respectively.
(Visually, if the input markings were placed on the corresponding sides of a tile, they would be
“pointing into” the tile, and vice-versa for output markings) We say that a tile is IO-marked
if a subset of its glues whose sum is ≥ 2 have input markings as prefixes to their labels, and
all other non-null glues have output markings as prefixes to their labels. Since each direction
has a unique input marking, and the input marking of each direction is the same as the
output marking of the opposite direction, it is clear that for glues to match and form a bond,
an input-marked glue on any given tile side d can only bind with an output-marked glue
on the opposite side of another tile, and vice versa. Note that it is possible to convert any
aTAM system to an equivalent IO-marked aTAM system. Furthermore this conversion can
be done so that each IO-marked tile has a minimal set of input glues, that is all input glues
on a tile are necessary for the attachment2. This ensures that assemblies made of IO-marked
tiles always only have output glues exposed. See Section A.1 of the Technical Appendix for
examples conversions from unmarked to IO-marked tile types. Given an IO-marked tile type
t, we denote its signature as the string “Input=” followed by a pair for every input side d of t,
consisting of d and the integer strength of the glue on side d of t, plus the string “Output=”
followed by a pair for every output side d of t, consisting of d and the integer strength of
the glue on side d of t. See Figure 1 for examples. Additionally, with this notation, multiple
strengths may be assigned to each direction, in which case the notation refers to a set of
signatures, one for each combination of glue strengths assigned to each side.

Here we provide a quick overview of the different classes of aTAM systems considered in
this paper. Formal characterizations may be found in Section A.2 of the Technical Appendix.
It is assumed that all classes are IO-marked. In the first class, called zig-zag systems,
tiles never present an input glue to the south, instead growth occurs northward in rows
that alternate between eastward and westward growth as illustrated in Figure 2. Most tile
attachments are cooperative except on the edges of the assembly and when a new row is
started. Despite being the most restricted class of models considered in our results, this

2 If a tile could attach in multiple ways using different combinations of input glues it is split into multiple
IO-marked tiles representing the unmarked tile, each with a different subset of input glues
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Figure 2 An example zig-zag aTAM system that simulates a Turing machine. The seed tile is the
rightmost of the bottom row. The first row (green) grows right to left. After growing upward by one
tile, the second row grows left to right and extends one extra tile beyond the row below. Subsequent
rows continue to alternate direction and extend in length by 1. Each row represents a configuration
of the Turing machine with each tile representing a tape cell, the north glues representing the
contents of each cell, and the red tiles showing the location of the simulated tape head and current
state of the machine. If a row is growing in the direction in which the tape head needs to move
after the last transition, that occurs. If it is growing in the opposite direction, the tape head and
state remain the same for that row, and then the next row (which will be of alternating direction)
simulates the head movement and state change.

class of TASs is still capable of simulating the execution of arbitrary Turing machines. The
next class consists of what we call standard systems. These are directed systems where
all tiles attach with exactly enough glues to meet the temperature threshold (which is 2),
no tiles attach across-the-gap, and no mismatches occur. We call such systems “standard”
because, except for the most convoluted theoretical constructions, most systems defined in
aTAM literature tend to satisfy these conditions or can easily be altered to satisfy these
conditions. The third class considered consists of standard systems where across-the-gap
attachments are allowed. The fourth class additionally allows mismatches but must still
remain directed (i.e. only 1 final assembly is possible), in other words this class represents
all directed temperature-2 systems. And finally, the fifth class consists of all aTAM systems.

2.3 The abstract Slat Assembly Model

The abstract Slat Assembly Model (aSAM), originally introduced in [8], is a generalization of
the aTAM. Since most of its definitions are analogous to those of the aTAM, in this section
we provide an informal overview. (Formal definitions can be found in Appendix A.3 of the
Technical Appendix.) The primary difference between slats and tiles is that the former are
defined as n × 1 × 1 polyominoes of cubes in 3D space. Therefore, with slats we expand our
list of directions and sides to also include “Up” (+z direction) and “Down” (−z direction),
resulting in the set of face directions D = {N, E, S, W, U, D}. Similar to tiles, slats can have
glues (also referred to as handles) on each of their 4n + 2 faces. Each glue is identified by a
string label, and a non-negative integer strength. Each glue has a complementary glue which
shares its strength. In this paper we will often denote complementary glues using the same
labels but with one appended by an asterisk (e.g. “label” and “label*”). Furthermore, we
make a distinction between slats and slat types, the latter being just a description of the glues
and length of a slat with no defined position or orientation. The position and orientation of
slats is restricted to the 3D integer lattice and two slats which sit incident to one another are
said to be attached or bound with strength s if they share complementary glues of strength s

on their abutting faces. An assembly is simply a set of slats such that no two occupy the
same coordinates in Z3.

DNA 30
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A slat assembly system (SAS) S = (S, σ, τ) consists of a finite set of slat types S, an
assembly σ called the seed assembly that acts as the starting point for growth, and a positive
integer τ called the binding threshold (a.k.a. temperature). The binding threshold describes
the minimum cumulative glue strength needed for a slat to stably attach to a growing
assembly. Growth in the aSAM is described by a sequence of slat attachments. Any slat
which could sit on the perimeter of an assembly so that it would be attached to other slats
with a cumulative strength meeting the binding threshold is a candidate for attachment, and
attachments are assumed to happen non-deterministically. Any assembly that could result
from a sequence of slat attachments beginning from the seed assembly of a SAS S and using
only those slat types in the slat set of S is said to be producible in S. Any assembly that
permits no additional slat attachments is called terminal.

For all results of this paper, we work within a restricted class of systems of the aSAM
satisfying the following conventions. Slat types intended to be horizontally aligned always
bind in the plane z = 1 and we only assign glues to their D faces, using only the “starred”
versions of glue labels (i.e. those with the “∗” symbol). Vertically aligned slat types always
attach in the plane z = 0, and we only assign glues to their U faces, using the “un-starred”
versions of glue labels. Additionally, we ensure that no two slats share more than one pair of
complementary glues. Furthermore, all glues on slats are assumed to be strength-1 and each
slat can only bind to any other single slat with a single glue. Therefore the temperature
parameter τ effectively becomes the cooperativity of a system (a.k.a. the coordination number,
as used in [29, 45]). That is, if τ = c, then each slat must cooperatively bind with c other
slats in order to attach to an assembly. We impose these restrictions on our designs so that
their behavior is similar to the slat systems successfully experimentally demonstrated in [45].
Furthermore, systems with these restrictions allow for more efficient computer simulation.3

2.4 Definition of simulation of an aTAM system by an aSAM system

Here we describe what is meant by an aSAM system intrinsically simulating an aTAM system.
From here on, the term “simulation” will refer to intrinsic simulation. This definition is
analogous to the typical definition of intrinsic simulation between aTAM systems which may
be found in [18]. Here we assume that T = (T, σ, τ) is a TAS being simulated by the SAS
S = (S, σ′, τ ′). For S to simulate T , it must be the case that S “looks like” T at scale. To
this end, we also require the definition of a macrotile representation function R and a scale
factor m. The function R maps m × m blocks, called macrotiles, of slat locations (which may
or may not contain slats) to individual tile types in T . To be precise, R is a partial function
since it might be the case that a macrotile does not immediately map to a tile type in T .
Once R does map a macrotile to a tile type however, it must continue to map the macrotile
to the same tile type regardless of any additional slats that attach within the macrotile.
This property reflects the fact that tiles in the aTAM may not change type or detach after
they have attached. When a slat attachment causes a macrotile to map under R to tile
type t for the first time, it is said that the macrotile resolves into t. Applying the macrotile
representation function R to each macrotile of an S-assembly yields a T -assembly. This
process defines the assembly representation function R∗ from S-assemblies to T -assemblies.
While it is allowed for macrotiles to contain slats even if it does not map to a tile type, we
only allow slats to attach in macrotiles adjacent (not-diagonally) to ones which have already

3 A Python-based graphical simulator for the aSAM− called SlatTAS can be downloaded from
self-assembly.net via a link on the page here [19].

self-assembly.net
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resolved. This prevents a “simulator” from growing slats to perform complex calculations in
region that will never map to a tile in the simulated system and ensures that slats only grow
in macrotile locations that could feasibly map to tiles. The macrotile blocks that admit slat
attachments but have not yet resolved are called fuzz regions since at a scale they resemble
small hairs growing along the side of a simulated assembly.

For S to simulate T , 3 conditions must be satisfied. First, S and T must have equivalent
productions meaning that R surjectively maps all S-assemblies to T -assemblies and all
terminal S-assemblies to terminal T -assemblies. Second T must follow S meaning that all
sequences of slat attachments in S map to corresponding slat attachments in T (T can
only do what S does). And finally, S must model T meaning that all sequences of tile
attachments in T have at least one corresponding sequence of slat attachments in S (S can
only do what T does). The formal definition of models also has a provision that ensures all
non-deterministic attachments in T are truly simulated by non-deterministic attachments in
S rather than being predetermined in advance.

3 Results

In this section we present our results showing that classes of aTAM systems, with increasingly
complex dynamics, can be simulated by aSAM systems. Each result is proven by construction
and associated software for designing, converting, simulating, and visualizing these systems
can be found online [17]. Note that the first four results are for classes of aTAM systems
defined to have τ = 2, but each construction trivially works for τ = 1 as well, simply by
treating all glues of the simulated aTAM systems as τ -strength. The final result is presented
for τ = 2, but explanation of a simple extension to handle arbitrary values of τ is presented
in the Technical Appendix (as are the details of most proofs) due to space constraints.

3.1 Zig-zag systems
Zig-zag systems are particularly interesting because, despite their incredibly limited range of
dynamics, they are computationally universal [6, 20,23,33,34]. Our first result shows that
any zig-zag aTAM system can be simulated by an aSAM system with macrotiles of size only
2c × 2c.

▶ Theorem 1. Let T = (T, σ, 2) be an arbitrary zig-zag aTAM system. For any c > 2 such
that c mod 2 = 0, there exists an aSAM system S = (S, σ′, c) and macrotile representation
function R such that S simulates T under R using cooperativity c and macrotiles of size
2c × 2c. Furthermore, the longest slat in S is of length 3c.

Proof. We prove Theorem 1 by construction, and thus, starting with arbitrary zig-zag aTAM
system T = (T, σ, 2) and given any c > 2 such that c mod 2 = 0 we show how to create
aSAM system S = (S, σ′, c) and macrotile representation function R such that S simulates
T under R. First, without loss of generality we assume that T grows its first row from its
seed tile from the right to the left (i.e. “RtoL”), and then its second row grows immediately
above that, from left to right (i.e. “LtoR”), and then all subsequent rows zig-zag from RtoL
then LtoR. (The construction could simply be rotated appropriately to handle any direction
of zig-zag growth.)

Each tile in T is simulated by a macrotile of size 2c × 2c in S. For c = 4, this means
that the 8 × 8 square whose southwest coordinate is (8i, 8j), for every i, j ∈ Z, will map
under R to either empty space or to a tile in T . An example is shown in Figures 3 and 4.
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(a) (b) (c) (d)

Figure 3 (a) An IO-marked tile type t from a zig-zag aTAM tile set, for a row that grows RtoL.
It has strength-1 inputs on the south and east, and strength-1 outputs on the north and west. (b)
A set of 4 slat groups for the macrotile simulating t at c = 4. The light blue group contains body
slats that are entirely within the square of the macrotile (depicted by the black square) which they
cause to resolve to t. The dark blue group contains two body slats and two output slats (i.e. the
two extending into the north macrotile to serve as the north output of strength-1). The red and
gold slat groups combined are the output slats that serve as the west output and extend into the
western neighboring macrotile location. (c) An example of the assembled 2c × 2c macrotile for t,
with cells marked to show the portions of t that they represent, following the conventions of (d). (d)
A cell enclosed in a green square represents the cell in which the initial body slats of a macrotile
bind, causing it to resolve to t. The cells enclosed in red, gold, light blue, and yellow squares denote
the cells in which the slats expose glues representing the output glues of the north, east, south, and
west sides of t, respectively.

Each slat in a macrotile is of a unique type.4 We use the term slat group to refer to each set
of c (or sometimes c/2) slats that are oriented in the same direction and grouped together
(both logically, and also in that each slat in a slat group can attach to a growing assembly at
exactly the same time as the others in that group). (For example, in Figure 3b there are
4 slat groups.) For convenience, we will characterize all of the slat types of a macrotile in
two categories: (1) body slats: slats that are completely contained within one of the 2c × 2c

macrotile regions and either (a) their binding causes that region to map to a tile in T under
R, or (b) they bind after that macrotile has resolved, and (2) output slats: slats that either
(a) cause a macrotile to map to a tile of T but also extend into a neighboring macrotile
location, or (b) bind in a macrotile location this is unresolved both before and immediately
after their binding. (In Figure 3c, the 4 light blue, and the shorter 2 of the dark blue slats
are body slats. The longer two dark blue, and all of the red and gold slats are output slats.
Furthermore, the longer dark blue slats are of length 3c, which is the greatest length of slats
in this construction.)

Let tn ∈ T , for 0 ≤ n < |T |, be the nth tile in tile set T . We will refer to the string “tn”
as the unique name of tn. We now discuss how the slats that form a macrotile simulating tn

are designed. Given the directions of growth, and the dynamics of a zig-zag aTAM system,
the following list contains all possible valid signatures for tn of any zig-zag system (with
the trivial exception that some tile type could have one or more fewer outputs, and the
binding of such a tile into an assembly would cause growth to terminate and the assembly
to become terminal, as such tiles are trivially handled by macrotiles without corresponding
output slats).

4 Using techniques of [8], it is possible to reuse slat types within macrotiles to reduce the slat complexity,
but for ease of explanation we present our constructions without that optimization.
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Figure 4 An example of a portion of an assembly composed of 2c × 2c macrotiles (some partial)
simulating a zig-zag aTAM system for c = 4. Four of the macrotile locations are outlined in black
squares. The macrotile simulating t from Figure 3 would attach into the top left such macrotile
location. Its (light blue) body slats would attach to the 2 west output slats from the macrotile to the
east (dark blue) and the 2 north output slats from the macrotile to the south (green). These light
blue slats can bind in any order, and as soon as one binds, the macrotile resolves to t. Due to the
fact that τ = 4, only once they have all 4 bound can the north output slats (dark blue) bind. Only
once all 4 of those have bound can the red output slats bind, then finally the 2 gold output slats.
Thus, the growth of a macrotile is well-ordered, and outputs are only presented after a macrotile
resolves, enforcing the restrictions of simulation.

1. Initial (seed) row tiles (Figure 5):
a. Seed tile: Input=∅, Output=(W,2),(N,1)
b. Row interior tiles: Input=(E,2), Output=(W,2),(N,1)
c. Leftmost tile: Input=(E,2), Output=(N,2)

2. LtoR row tiles (Figure 6):
a. Leftmost tile: Input=(S,2), Output=(E,1),(N,1)
b. Row interior tiles: Input=(W,1),(S,1), Output=(E,1),(N,1)
c. Right row pre-extension tile: Input=(W,1),(S,1), Output=(E,2),(N,1)
d. Right row extension tile: Input=(W,2), Output=(E,2),(N,1)
e. Rightmost tile: Input=(W,2), Output=(N,2)

3. RtoL row tiles (Figure 7):
a. Rightmost tile: Input=(S,2), Output=(W,1),(N,1)
b. Row interior tiles: Input=(E,1),(S,1), Output=(W,1),(N,1)
c. Left row pre-extension tile: Input=(E,1),(S,1), Output=(W,2),(N,1)
d. Left row extension tile: Input=(E,2), Output=(W,2),(N,1)
e. Leftmost tile: Input=(E,2), Output=(N,2)

Figures 5-7 show tiles with those signatures and their corresponding macrotile templates,
which are sets of slat groups that correspond to the particular set of input and output glue
directions and strengths that a simulated tile has. Note that extension and pre-extension
tiles are those which grow in the zig-zag pattern, but using a strength-2 glue rather than
cooperation from below. To build S, for each tn, we instantiate the macrotile template
associated with tn’s signature. Instantiating a macrotile consists of first making a unique
copy of each slat type in the macrotile template whose name has the prefix “tn” prepended
to the unique name of that slat type in the macrotile template. We will refer to the set of
slats for the macrotile template instantiated for tn as Sn. For every location where a vertical
slat of Sn is at the same (x, y) coordinates as a horizontal slat of Sn (but under it since it
will be at z = 0 and the horizontal slat at z = 1), an un-starred glue unique to that location
is placed there on the vertical slat, and the starred complement of that glue is placed on
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Figure 5 The tiles for the seed and initial row of a zig-zag aTAM system (that grows RtoL from
the seed tile), and their corresponding slat-based macrotile templates for c = 4. The rightmost
corresponds to the seed tile, the middle corresponds to the interior tiles of the initial row, and the
leftmost corresponds to the leftmost tile of the initial row. Cells are bounded by squares to show
their functionality, following the coloring convention from Figure 3d. Note that during simulation the
seed macrotile begins fully assembled and additional slats attach to simulate additional macrotiles.

Figure 6 Tile types of all possible valid signatures for tiles of a row that grows LtoR in a zig-zag
aTAM system, and their corresponding slat-based macrotile templates for c = 4. Cells are bounded
by squares to show their functionality, following the coloring convention from Figure 3d.

the horizontal slat. All such glues are also given the prefix “tn” to ensure that they will not
match glues of macrotiles instantiated for any other tiles. These glues are called interior
glues, since they bind slats of the same macrotile to each other.

The final step of building Sn for tn is to account for the glues of tn and to place glues
on the slats of Sn to cause their behavior to be simulated. To do this, within the c × c cell
representing a glue of tn (whose location is determined by the particular macrotile template
that matches tn’s signature), we label the glue in each location of each slat with the same
glue label as the corresponding glue on tn, followed by the cell coordinates of the location
(i.e. “(i, j)” for 0 ≤ i, j < c, with (0, 0) being the south-westernmost location), followed by a
star for glues on horizontal slats. This guarantees that each glue label in each cell is unique.
Output glues of strength-2 on tn are represented by c slats filling a c × c cell, allowing slats
of the opposite orientation to attach to the assembly by binding solely to them (analogous
to the strength-2 glue of tn being sufficient to allow a tile attachment). Output glues of
strength-1 are represented by just c/2 slats extending across a c × c cell. Because of this,
c/2 additional slats extending across that cell from the opposite direction, representing the
strength-1 output glue of an adjacent macrotile, are required before the necessary glues are in
place to allow body slats for the next macrotile to attach. In this way, cooperative behavior
is enforced. An example can be see in Figure 4.

The design of the conventions and macrotile templates guarantee that slats can bind only
in desired locations, and that they do so with total binding strength exactly c. For a vertical
slat to attach, it must initially bind with c distinct horizontal slats, and vice versa. (Recall
that only strength-1 glues are used, and also that all vertical slats have all glues on their U
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Figure 7 Tile types of all possible valid signatures for tiles of a row that grows RtoL in a zig-zag
aTAM system, and their corresponding slat-based macrotile templates for c = 4. Cells are bounded
by squares to show their functionality, following the coloring convention from Figure 3d.

sides, which are un-starred, and all horizontal slats have all glues on their D sides, which are
starred.) From Figure 3 it is clear to see how an individual macrotile (representing a tile in
a RtoL row) assembles in a well-ordered progression, causing it to first resolve and only then
attach slats that provide the outputs. It is also clear how any tile from T can be converted
to a set of slats that will simulate it in a similar way, simply noting the signature for any
such tile and the macrotile template for the matching signature, selected from those shown
in Figures 5-7.

By inspecting the macrotile templates associated with the valid zig-zag tile signatures,
it can be verified that the outputs of any macrotile are always positioned correctly for the
binding of body slats of a macrotile that needs to use those as inputs, while keeping that next
macrotile in the correct relative position. The careful design of the glues ensures that only
the slats designed to attach to any given location can do so. The macrotile representation
function R can simply contain a mapping of body slats to the tile types from which they
were derived and use that mapping for any macrotile location containing a body slat, while
mapping any macrotile location without a body slat to an empty location. The seed σ′

simply consists of the set of slats of the macrotile created for the seed tile of T , which has
exactly one c × c cell where there are c slats representing the strength-2 output glue of T ’s
seed and to which a slat can bind. Starting from this assembly it is also clear to see that, as
the macrotiles of S assemble, there will always be exactly one c × c cell in which slats can
bind. In T , the frontier is always of size 1, and any slats that can attach in S will either
be (1) body slats that cause the macrotile location mapping to that frontier location to
resolve under R into the next tile that could attach in T , or (2) body or output slats of
the macrotile that was most recently resolved in that frontier location. This provides an
inductive argument where the inductive hypothesis is that, given an assembly β producible
in S mapping under R to assembly α producible in T , the exposed glues on β allow exactly
one macrotile, mapping to the correct next tile of α under R, to assemble next. This is
true of the seed macrotile (the base case), and also given any assembly producible via the
macrotiles generated by the macrotile templates shown in Figures 5-7, so the induction holds
and S correctly simulates T under R. Therefore, S simulates T , an arbitrary zig-zag aTAM
system, under R using cooperativity c and macrotiles of size 2c × 2c with the longest slats
being of length 3c and Theorem 1 is proven. ◀
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(a) (b) (c)

Figure 8 (a) Strength-2 macrotile template for a standard aTAM system. Cells are bounded
by squares to show their functionality, and mark cell locations where output slat templates may
be added to the macrotile. One of the marked cells may be designated as an input, and have its
domains assigned such that they connect with those provided by the output slats of a neighboring
macrotile whose output is of the same glue type. Cells are signified using the same color conventions
as Figure 3d. (b) Macrotile experiencing south strength-2 input. On the east, output extends in
multiple directions in order to allow for cooperation with both north, and south inputs. (c) Macrotile
exhibiting south and west strength-1 inputs. Output slat templates are colored in accordance to
Figure 3d, and input domain locations are marked with a green box.

3.2 Standard systems
Next, we prove that by only slightly increasing the scale factor of the simulation, i.e. the size
of macrotiles, from 2c × 2c for zig-zag systems to 3c × 3c, that any standard aTAM system
can be simulated by an aSAM system. Since the majority of aTAM constructions in the
literature are standard systems (e.g. [23, 34, 37, 41]), this shows that a very modest scale
factor can be used to simulate a huge diversity of very complex aTAM systems.

▶ Theorem 2. Let T = (T, σ, 2) be an arbitrary standard aTAM system. For any c > 2 such
that c mod 2 = 0, there exists an aSAM system S = (S, σ′, c) such that S simulates T using
cooperativity c and scale factor 3c. Furthermore, the longest slat in S is of length 3c.

The simulation construction for standard aTAM systems is very similar to the construction
for zig-zag systems, except that a larger set of input and output direction combinations
need to be considered. To accommodate this change, the macrotiles during standard aTAM
simulations are 3c×3c instead of 2c×2c, but the argument is essentially unchanged. Strength-
2 glues are still simulated by leaving all c slats available for binding in a corresponding
macrotile cell while strength-1 glues are simulated by using half this many from each of two
outputs. However, the geometries of the macrotiles are a bit different. To handle the more
diverse sets of signatures, our construction makes use of macrotile templates of different
geometries for tiles with strength-2 input glues (see Figures 8a and 8b) versus those with
two strength-1 input glues (see Figure 8c), as well as output slat templates that differ for
strength-2 versus strength-1 output glues as well as for those that are on vertical sides
(north, south) versus horizontal sides (east, west) (see Figure 8b). Otherwise, all of the same
techniques from the proof of Theorem 1 apply. Figure 8 shows a few example macortiles.

3.3 Standard with across-the-gap simulation
Next, we prove that by only slightly increasing the maximum slat length of the simulation,
from 3c to 4c, any standard aTAM system with across-the-gap cooperation can be simulated by
an aSAM system supporting both types of cooperative binding (adjacent and across-the-gap).
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▶ Theorem 3. Let T = (T, σ, 2) be an arbitrary standard with across-the-gap aTAM system.
For any c > 2 such that c mod 2 = 0, there exists an aSAM system S = (S, σ′, c) such that
S simulates T using cooperativity c and macrotiles of size 3c × 3c. Furthermore, the longest
slat in S is of length 4c.

The construction for Theorem 3 is similar in form to the previous two, so here we just
describe a few important features, with the full construction being deferred to the Arxiv
version of this paper [11] due to space constraints. As with the proof of Theorem 2, there are
distinct macrotile templates for tiles with strength-2 inputs, but here there are also distinct
macrotile templates for tiles with two strength-1 input glues that are adjacent and those
that are across-the-gap. Again, there are output slat templates specific to strengths and
orientations. Specifically, across-the-gap cooperation is handled in the center cell of each
macrotile. Growth in each macrotile is otherwise very similar. All of the same techniques
from the proof of Theorem 1 apply.

3.4 Directed temperature-2 simulation
▶ Theorem 4. Let T = (T, σ, 2) be an arbitrary directed temperature-2 aTAM system. For
any c > 2 such that c mod 2 = 0, there exists an aSAM system S = (S, σ′, c) such that S
simulates T using cooperativity c and macrotiles of size 4c × 4c. Furthermore, the longest
slat in S is of length 4c.

This construction follows the same general format of the previous 3, though we defer it
to the Arxiv version of this paper [11] due to space constraints. Just as with the previous
simulations, strength-2 aTAM glues are simulated using c slats in neighboring macrotiles,
while strength-1 glues are simulated using half that many. The main difference between this
simulation and the previous ones comes from the fact that mismatches are allowed to occur
in the simulated aTAM system. In order to simulate this behavior, it must be guaranteed
that the presence of any additional output slats in a macrotile for any tile type t both do
not prevent the macrotile from resolving to t, and do not block any outputs from t apart
from those which are already occupied. To accommodate this, the scale factor is increased
to provide specific macrotile cells wherein body slats may attach for every combination of
potential input glues. To this end, output slats are also generally longer and reach into
multiple cells of the adjacent macrotiles in order to ensure that there are cells corresponding
to each combination of glues that may contribute to simulate a tile attachment.

3.5 Full aTAM simulation
In this section, we present a theorem stating that all temperature-2 aTAM systems can be
simulated by aSAM systems and give a brief overview of the proof’s construction. Due to
space constraints, we sketch our construction and just mention that arbitrary temperatures
can be handled. Further details can be found in the Arxiv version [11].

▶ Theorem 5. Let T = (T, σ, 2) be an arbitrary aTAM system. For any c > 2 such that
c mod 2 = 0, there exists an aSAM system S = (S, σ′, c) such that S simulates T using
cooperativity c with a scale factor of 5c and a maximum slat length of 5c.

In the construction of this proof, it is assumed that the aTAM system consists of IO-
marked tiles (otherwise the method discussed in Section A.1 of the Technical Appendix can
be used to make it so), simulation takes place using 5c × 5c macrotiles, and slats are always
defined in groups of c. The general layout of the macrotiles does not change significantly
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(a)

(b)

Figure 9 (a) Left: Input slats for all directions. Center: Decision slats in the decision rows of
a macrotile. Right: Output slats growing in all directions. (b) Left: a macrotile receiving inputs
from all 4 of its neighbors. Red slats encode an incoming glue from the north, yellow from the
east, green from the south, and blue from the west. Magenta slats attach non-deterministically to
the glues presented by these slats and each encode a possible tile from T to which this macrotile
may resolve. Cyan slats decide a winner among the magenta slats. The remaining illustrations are
example macrotiles which only receive input from 3 sides so the remaining side may act as an output.

with the type of tile being simulated, though some slats may or may not appear depending
on whether the simulated tile has glues on all sides. Slats in S may be divided logically
into 3 families, input, decision, and output slats, each of which is responsible for a different
function. The general form of these slats is illustrated in Figure 9a. When a neighboring
macrotile has resolved, it will eventually present glues along its sides indicating which output
glues are present on the simulated tile. Input slats attach to these glues and act to move the
information about simulated glues to the center of the macrotile forming c horizontal rows.
The left of Figure 9a illustrates input slats from the 4 cardinal directions using different
colors. Note that the glues holding input slats together are unique to their specific location
and the aTAM glue being represented. Consequently, input slats always attach as a group.
Once enough input slats have attached, the central horizontal rows encode all the information
about present input glues of the adjacent simulated tiles. In these horizontal rows, decision
slats may attach (illustrated as magenta in Figure 9a. Decision slats are defined per tile
type in the simulated system and the glues present on the decision slats ensure that each
may only attach when the corresponding input glues are present, as encoded by the input
slats. For instance, when simulating a tile attachment using a strength-2 north glue, the
corresponding decision slats will be able to bind solely to the north input slats encoding the
respective aTAM glue. On the other hand, when simulating a cooperative attachment, say
from the north and west, the corresponding decision slats will only have half the necessary
glues to attach to both the north and west input slats. In this way the decision slats for tile
type t ∈ T may only attach when the input slats encoding the input glues of t are present.
Note that in the case of overbinding or mismatches, there might be multiple decision slats
that may attach in the center rows, allowing for the simulation of an undirected attachment.
The specific tile type to which the macrotile resolves is the one encoded by the decision slat
that attaches in the northmost decision row. Vertical slats attaching to these decision tiles
propagate the information from this northmost decision row into the row of c slats below,
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which will be where the output slats attach. Once the macrotile has resolved and these
vertical slats attach, the corresponding output slats will grow to each side that represents an
output glue (and isn’t already occupied). Output slats going to all directions are illustrated
on the right of Figure 9a, but in actuality, only those corresponding to output glues on the
simulated tile will be present. Non-determinism is thus only present in two locations of a
macrotile during this simulation. First, multiple decision slats may be able to attach in the
decision rows, and second when simulating tiles with mismatched glues, it may be possible
for two adjacent macrotiles to present output slats to abutting sides. This is however not a
problem since for this to occur, both macrotiles must have already resolved and while it may
lead to input glues growing where output glues should have, this only happens in locations
dedicated to the corresponding direction and thus cannot affect other parts of the macrotile.
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A Technical Appendix

This Technical Appendix contains formal definitions from the main body due to space
constraints. Full proofs and construction details may be found in the Arxiv version of this
paper [11].

A.1 IO marking example

Figure 10 To make a set of IO-marked tile types whose collective behavior will be the same as
an un-marked tile type, one IO-marked tile type is created for every minimal set of glues whose
combined strength is ≥ τ (minimal in that, if any individual glue was removed from the set, the
combined strength would be < τ), with those marked as input glues and the others as output glues.
Two examples are shown. (Left) In the center, the un-marked tile type has a strength-1 glue on
each side. Surrounding it are the six IO-marked tile types created from it, one for each possible pair
of strength-1 glues marked as inputs. Note that this is the worst-case increase in tile complexity.
(Right) In the center, the un-marked tile type has two strength-2 glues and two strength-1 glues.
Surrounding it are the three IO-marked tile types created from it, one each with one of the strength-2
glues as the sole input, and the other with the pair of strength-1 glues as the inputs.

Here we give a simple demonstration of how a regular, unmarked aTAM tile set T can be
used to generate an equivalent an IO-marked aTAM tile set TIO. First we note that this
example demonstrates how an arbitrary, already existing tile set T can be used to generate an
equivalent TIO, resulting in a constant-sized increase in tile complexity. Namely, in the worst
case, each tile type of T requires the creation of 6 unique tile types in TIO. Depending on
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the number and strengths of the glues on a tile type in T , the number of tile types generated
for TIO could range from 1 to 6. However, an increase in tile complexity is not necessarily
required for the creation of an IO-marked tile set, since for systems such as zig-zag systems,
it is known in advance which glues of any given tile type may ever serve as its input glues
(and that set is fixed for every given tile type). The IO-marked tile set in that case doesn’t
require any more tile types than the unmarked set. See Figure 10 for two examples and
explanation.

A.2 Formal characterization of classes of aTAM systems
▶ Definition 6 (IO TAS). An aTAM TAS T = (T, σ, 2) is an IO TAS iff all tile types in T

are IO-marked and all non-null glues on the perimeter of σ have output markings.

▶ Observation 7. Given an IO TAS T , all non-null glues exposed on the perimeter of any
producible assembly of T have output markings.

Observation 7 follows immediately from the a simple inductive argument. As the base
case, the smallest producible assembly, the seed assembly, has only output-marked glues on
its perimeter. The induction hypothesis is that, starting with a producible assembly with
only output-marked glues on its perimeter, the addition of any tile to form a new producible
assembly also results in an assembly with only output-marked glues on its perimeter. The
induction hypothesis is proven by noting that all tiles are IO-marked and since input-marked
glues can only bind to output-marked glues and no tile has input-marked glues whose
strengths sum to > 2, any tile that τ -stably binds to an assembly must do so by binding
all of its input-marked glues, leaving only output-marked glues to potentially be unbound
and exposed on the perimeter. So called zig-zag aTAM systems were originally defined in [6]
and are widely used in the literature (e.g. [20, 23,33,34]) due to their very simple dynamics
and the fact that they are computationally universal (i.e. for every Turing machine there
exists a zig-zag aTAM system that simulates it). Here we provide a definition that utilizes
IO-marked systems, but note that regular aTAM systems can easily be converted to IO
systems with only a constant increase in the number of tile types (as done in [2] and depicted
in Section A.1), and that zig-zag system can be designed to be IO-marked without any
additional tile types being required. Intuitively, a zig-zag tile assembly system is a system
that grows to the left or right, grows upward by one tile, and then grows in the opposite
direction. (Note that our definition restricts zig-zag systems to add new rows only to the
north, but we can trivially rotate such systems so that growth is in any one of the cardinal
directions. Therefore, for ease of presentation and w.l.o.g. we simply consider northward
growing zig-zag systems, and our results still hold for the more general definition.) For an
example of a zig-zag system, see Figure 2.

▶ Definition 8 (Zig-zag TAS). An aTAM system T = (T, σ, 2) is a zig-zag system if the
following conditions hold:
1. T is an IO TAS.
2. |σ| = 1
3. T is directed.
4. The frontier of any producible assembly in T is never larger than 1, and thus T has a

single valid assembly sequence.
5. There is never an exposed glue on the south of any tile of any producible assembly.
6. Rows grow in alternating directions, i.e. if the a row grows from right to left, then the

next row grows left to right and vice versa.
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▶ Definition 9 (Standard TAS). Let T = (T, σ, 2) be a TAS in the aTAM. We say that T is
standard if and only if:
1. T is an IO TAS.
2. T is directed.
3. For every t ∈ T , the sides that have input markings are either exactly (1) a single glue of

strength-2, or (2) two diagonally adjacent strength-1 glues (i.e. not on opposite sides).
4. There are no mismatches in the terminal assembly (i.e. all adjacent pairs of tile sides in

α ∈ A□[T ] have the same glue label and strength on both sides)

▶ Definition 10 (Standard TAS with across-the-gap). Let T = (T, σ, 2) be a TAS in the aTAM.
We say that T is standard with across-the-gap if and only if
1. T is an IO TAS.
2. T is directed.
3. For every t ∈ T , the sides that have input markings are either exactly (1) a single glue of

strength-2, or (2) two strength-1 glues (i.e. on any combination of two sides).
4. There are no mismatches in the terminal assembly (i.e. all adjacent pairs of tile sides in

α ∈ A□[T ] have the same glue label and strength on both sides.

A.3 Formal definitions for the abstract Slat Assembly Model
The abstract Slat Assembly Model (aSAM) is essentially a restricted version of the Polyomino
Tile Assembly Model (polyTAM) [14]. The polyTAM itself is a generalization of the aTAM [43]
in which, rather than square tiles, the basic components are polyominoes (which are shapes
composed of unit squares attached along their edges). (Note that we take much of our
notation, slightly adapted, from aTAM definitions such as those in [24].) The polyTAM
was defined for two-dimensional polyominoes, but the aSAM utilizes three-dimensional
polyominoes whose shapes are restricted to be linear arrangements of unit cubes. The basic
components of the aSAM are called slats and each is a 1 × 1 × n polyomino composed of
n unit cubes, for some n ∈ N. Each unit cube of a slat has 4 or 5 exposed faces: 5 if it is
on one of the two ends of the slat (in the dimension of length n), and 4 otherwise (i.e. it is
an interior cube). On each exposed face of a unit cube may be a glue, and each glue is an
ordered pair (l, s) where l is a string and serves as the glue’s label and s ∈ Z+ is its strength.
An exposed face may also have no glue (which may also be referred to as the null glue). The
character “∗” is considered a special character in glue labels and any label may have at most
a single “∗” character, which must appear as its rightmost. Given a glue g = (l, s), if the
label l does not end with the character “∗”, then we say the label l′ = l∗ (i.e. the string
l concatenated with “∗”) represents the complement of l. If l does end with “∗”, then its
complement is represented by the string l truncated by one character to remove the “∗”.
Thus a pair of labels are complementary to each other if they consist of the same string up
to exactly one of them terminating in “∗”, e.g. “foo” and “foo∗” are complementary labels.
Any two glues that have complementary labels must have the same strength value. If two
slats are placed so that faces containing complementary glues are adjacent to each other,
those glues bind with strength equal to the common strength value of those two glues.

A slat type is defined by its length n and the set of glues on its constituent cubes. For
convenience, each slat type is assigned a canonical placement and orientation in Z3, with the
default being that it has one cube at (0, 0, 0) and it extends along the x-axis to (n − 1, 0, 0),
and the cubes have designated N, E, S, W, U, D (i.e. north, east, south, west, up, down) sides
which face in the +y, +x, −y, −x, +z, −z directions, respectively (in the canonical placement).
Additionally for convenience, the cubes are numbered from 0 to n − 1 starting from the
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cube at (0, 0, 0) and proceeding in order along the x-axis (of the slat type in its canonical
placement), and for a slat type t the ith cube is denoted by t[i]. A slat is an instance of
a slat type, and may be in any rotation or orientation in the Z3 lattice. A slat is defined
by (1) its type t, (2) its translation, which is identified by the coordinates of its t[0], (3) its
direction, taken from the set {−x, +x, −y, +y, −z, +z} where the letter denotes which axis
the length-n dimension is parallel to and + or − denotes whether the coordinates of block
t[n − 1] are more positive or more negative in that dimension than t[0], respectively, and (4)
its “up” direction which is the side of the cubes pointing in the +z direction in the slat’s
current orientation (unless the slat is oriented along the z axis, in which the “up” direction
is the side of the cubes pointing in the +x direction). See Figure 11 for an example of a slat
type in canonical placement and a rotated version.

(a) An example slat type t of length 8 in its canon-
ical placement.

(b) Slat t rotated so that t[0] is still at (0, 0, 0) but
its direction is +y and its up direction is −y (i.e.
the “south” label appears on the top faces, in the
+z direction).

Figure 11 Depiction of slats in the aSAM.

An assembly over a set of slat types, S, consists of placements of slats of types from S in
Z3 such that no blocks of any two slats share the same space. Given an assembly α, if two
slats t1 and t2 are placed in α such that for some block of t1, say t1[i], and some block of t2,
say t2[j], a face of t1[i] is adjacent to a face of t2[j] (irrespective of the directions of ti and
tj) and the glues of those faces are complementary, then they form a bond with the common
strength value of those glues. If there is no cut in Z3 separating the slats of an assembly into
two separate components without cutting bonds whose strengths sum to at least some value
τ , then we say the assembly is τ -stable. Given an assembly α, a value τ ∈ Z+, and a set of
slat types S, any set F of i surfaces on blocks of the slats composing α, where 0 < i ≤ τ ,
such that a slat of some type t ∈ S can be positioned in Z3 (1) without any of its blocks
overlapping any blocks of slats in α and (2) its glues form bonds of strength summing to
≥ τ with the glues on the surfaces of F , we call F a Sτ -frontier location of α. Essentially, a
Sτ -frontier location of assembly α is a location to which a slat of some type in the set S can
validly attach with at least strength τ . When S and τ are clear from context we will simply
refer to such locations as frontier locations.

A slat assembly system, or SAS, is an ordered triple (S, σ, τ) where S is a set of slat types,
σ is an assembly of slats from S referred to as the seed assembly, and τ is the minimum
binding threshold which is often referred to as the temperature in the aTAM and we call the
cooperativity in the aSAM. (Note that in [29] they used the term coordination for the same
concept.) Given a SAS S = (S, σ, τ), it is assumed that there are an infinite number of slats
of each type from S available for attachment, and assembly begins from the seed assembly
σ. Assembly proceeds in discrete steps, with each step consisting of the nondeterministic
selection of a frontier location F for the current assembly α, then the nondeterministic
selection of a slat type t ∈ S that can bind in F (in case there are more than one), and then
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the attachment of a slat of type t to α, translated and rotated appropriately to bind to α

using the glues of F . Note that the aSAM does not require that there be a path through
which the slat of type t must be able to move in Z3 from arbitrarily far from α into that
location without encountering overlaps along the way (i.e. it can be considered to just
“appear” in the correct location) Given an assembly α in S, if β can result from α in a single
such step, we say that α produces β in one step and denote it as α →S

1 β.
We use AS to denote the set of all assemblies of slats over slat type set S. Given a

SAS S = (S, σ, τ), a sequence of k ∈ Z+ ∪ {∞} assemblies α0, α1, . . . , αk over AS is called a
S-assembly sequence if α0 = σ and, for all 1 ≤ i < k, αi−1 →S

1 αi. The result of an assembly
sequence is the unique limiting assembly of the sequence. For finite assembly sequences, this
is the final assembly; whereas for infinite assembly sequences, this is the assembly consisting
of all slats from any assembly in the sequence. We say that α S-produces β (denoted α →S β)
if there is a S-assembly sequence starting with α whose result is β. We say α is S-producible if
σ →S α and write A[S] to denote the set of S-producible assemblies. We say α is S-terminal
if α is τ -stable and there exists no assembly which is S-producible from α. We denote the set
of S-producible and S-terminal assemblies by A□[S]. When S is clear from context, we may
omit S from this notation. If there is only a single terminal assembly of S, i.e. |A□[S]| = 1,
then we say that S is directed. Otherwise, it is undirected. Note that a SAS S may have
multiple (even infinitely many) distinct valid assembly sequences but yet S may be directed.

A.4 Notes on Directedness
For the constructions described in proofs of Theorems 1, 2, and 3, it may be noted that the
constructions may be adjusted as to allow for non-directed behavior; However, this same
statement cannot be made for the construction described in Theorem 4. The adjustment
of Theorems 1 - 3 to allow for the simulation of non-directed behavior rely on the addition
of the decision slat group in S, as described in the proof of Theorem 5. In doing so, the
resolution of a macrotile must occur within a single slat attachment, whose attachment
into the system would prevent any future decision slats from resolving the macrotile. This
requires that all potential macrotile attachment locations must occur within adjacent cells
such that for n adjacent cells wherein a macrotile may resolve, a slat of length nc must be
able to extend across each cell, resolving to the desired macrotile while blocking any other
macrotiles from being resolved in the same space. An example of this behavior is shown in
Figure 12. Because all adjacent pairs of tile sides in α ∈ A□[T ] have the same glue label
and strength on both sides (i.e. there are no mismatches in the terminal assembly) within
the classes of simulation for Theorems 1 - 3, there only exists a minimal subset of input
glues at any location within the T -frontier. Therefore the resolution of a macrotile may only
occur from all available input glues at a single macrotile location, meaning that any slat
which encodes the information of a macrotile must only cover those cells which are occupied
by slats which provide said input. However, this use of the decision slats is not so readily
applicable to the construction described in Theorem 4. This is because a single location
in the T -frontier may be faced by > τ input glues, constituting a ’mismatch’. In such a
situation, if non-directed behavior is to be allowed, then there may be multiple cell locations
within a macrotile in which different macrotiles may attempt, and independently succeed in
resolving which may not be reached by a single slat of length nc. Such a situation would
invalidate the simulation.
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(a) (b)

Figure 12 (a) A Standard macrotile, whose characteristics are described by the proof of theorem
2, placing the northernmost input slat, colored green, which encodes the information of the macrotile.
Only one slat needs to be placed in order to prevent any opposing input slats from entering the
macrotile, and thus no issue occurs. (b) A Directed Temperature-2 macrotile, whose characteristics
are described by the proof of theorem 4, placing the northmost / westmost input slats required to
encode the information of the macrotile. Because multiple slats must be placed in order to fill all
potential input slat locations (i.e. account for E+W, E+S, S+W tile input signatures), an issue will
occur where multiple tiles may successfully resolve in the same macrotile location.
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