
Learning and Inference in a Lattice Model of
Multicomponent Condensates
Cameron Chalk #

California Institute of Technology, USA

Salvador Buse #

California Institute of Technology, USA

Krishna Shrinivas #

Northwestern University, USA

Arvind Murugan #

The University of Chicago, USA

Erik Winfree #

California Institute of Technology, USA

Abstract
Life is chemical intelligence. What is the source of intelligent behavior in molecular systems? Here
we illustrate how, in contrast to the common belief that energy use in non-equilibrium reactions
is essential, the detailed balance equilibrium properties of multicomponent liquid interactions
are sufficient for sophisticated information processing. Our approach derives from the classical
Boltzmann machine model for probabilistic neural networks, inheriting key principles such as
representing probability distributions via quadratic energy functions, clamping input variables
to infer conditional probability distributions, accommodating omnidirectional computation, and
learning energy parameters via a wake phase / sleep phase algorithm that performs gradient descent
on the relative entropy with respect to the target distribution. While the cubic lattice model
of multicomponent liquids is standard, the behaviors exhibited by the trained molecules capture
both previously-observed phenomena such as core-shell condensate architectures as well as novel
phenomena such as an analog of Hopfield associative memories that perform recall by contact with
a patterned surface. Our final example demonstrates equilibrium classification of MNIST digits.
Experimental implementation using DNA nanostar liquids is conceptually straightforward.

2012 ACM Subject Classification Hardware → Biology-related information processing; Theory of
computation → Probabilistic computation; Applied computing → Systems biology

Keywords and phrases multicomponent liquid, Boltzmann machine, phase separation

Digital Object Identifier 10.4230/LIPIcs.DNA.30.5

Funding Cameron Chalk: National Science Foundation grants 2008589 and 2212546
Salvador Buse: Open Philanthropy Project graduate fellowship, National Science Foundation 2008589
and 2212546
Arvind Murugan: National Science Foundation grants 2239801 and 2317138
Erik Winfree: National Science Foundation grants 2008589 and 2212546

Acknowledgements The authors thank Paul Rothemund, Lulu Qian, Yancheng Du, Emre Alca,
Aman Bhargava, Andrej Košmrlj, Inhoo Lee, Mohini Misra, and others for valuable discussion.

1 Introduction

A central goal of the theory of computation is to characterize how computational capabilities
relate to mechanistic features of a given model – finite or unbounded memory, one compute
head or many, local or global connections – as embodied by models such as Turing machines,
finite state automata, Boolean circuits, cellular automata, and the like [36]. For biomolecular

© Cameron Chalk, Salvador Buse, Krishna Shrinivas, Arvind Murugan, and Erik Winfree;
licensed under Creative Commons License CC-BY 4.0

30th International Conference on DNA Computing and Molecular Programming (DNA 30).
Editors: Shinnosuke Seki and Jaimie Marie Stewart; Article No. 5; pp. 5:1–5:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ctchalk@caltech.edu
mailto:sbuse@caltech.edu
mailto:krishna@northwestern.edu
mailto:amurugan@uchicago.edu
mailto:winfree@caltech.edu
https://doi.org/10.4230/LIPIcs.DNA.30.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Learning and Inference in a Lattice Model of Multicomponent Condensates

computation, such questions can be phrased in terms of the types of molecules and molecular
mechanisms used to construct the computing apparatus – enzymes, DNA, self-assembly,
strand displacement, irreversible or reversible reactions, and the like. Ultimately, such an
understanding will help us to identify where and how information processing and decision
making is occurring in biological cells, as well as to guide the design of cell-scale molecular
robotic systems. Considerable progress has been made, for example, understanding how
programmable chemical reaction networks (CRNs) can compute in well-mixed solutions [7, 4]
and how programmable molecular tiles can compute by self-assembly [8, 28, 10]. As computing
architectures, these two cases can be considered to exemplify gas-phase interactions (dilute
molecules that interact with each other only intermittently) and solid-phase interactions
(molecules that, once they make contact with specific neighbors, remain in contact thereafter).
Although many models that have been studied don’t neatly fit into these two categories,
apparently missing are models that highlight liquid-phase interactions (wherein molecules
are in near-constant contact with an ever-changing set of neighbors).

The lack of liquid-phase models for biomolecular computation is not merely a conceptual
gap: macromolecules inside cells are tightly packed and in near-constant contact with their
ever-changing neighbors, and there is increasing evidence that liquid-liquid phase separation
and biomolecular condensates play important roles in biological function [22]. Possible
advantages of liquid-phase computation include density (compared to biochemical circuits
in dilute solutions), speed (avoiding time waiting for diffusion to bring molecules together),
geometry (allowing spatial arrangements to store information similar to solid-phase models),
and energy (if the system behavior is governed by equilibrium rather than by consumption
of fuels).

To examine such issues in a concrete and tractable model, here we introduce the Boltzmann
liquid model, which consists of a standard equilibrium lattice model for multicomponent liquids
coupled with a learning algorithm derived from classical Boltzmann machine neural network
theory that adjusts energy terms to match a target distribution. Our foundational reference
point is the classical Boltzmann machine model [1], a constant-temperature generalization
of the Hopfield model [15] capable of training hidden units so as to approximate arbitrary
probability distributions on binary strings. It has already been observed that detailed
balanced chemical reaction networks, in the stochastic limit for well-mixed solutions, can
emulate and even generalize Boltzmann machines, and that the learning rule for neural
network weights translates into a learning rule for chemical species energies [29, 30]. However,
these CRN constructions required O(N2) species, or worse, to emulate a Boltzmann machine
with N neurons, precluding demonstration of powerful computing examples. At the other end
of the spectrum, from gas-like to solid-like models, crystalline self-assembly was demonstrated
theoretically [27, 48] and experimentally [11] to be capable of Hopfield-like associative recall
and pattern recognition due to an analogous quadratic energy function. A hint at the extra
power available in liquid-phase systems is that with N species, there are already a full
O(N2) interaction energies – which potentially could be put in correspondence with the
O(N2) synaptic weights in a neural network. Another hint comes from Bruck’s proof of the
convergence of Hopfield networks [5], which envisions neurons being physically separated into
an “ON” group and an “OFF” group such that the system energy is evaluated at the interface
(a min cut), analogous to phase separation. Further parallels to neural networks come from
the observation that multicomponent liquids are capable of supporting multiple distinct
phases – combinations of different species that separate from each other in a manner somewhat
analogous to Hopfield’s associative memories [39, 40, 45]. Insights at the abstract level have
promise for immediate impact on experimental investigations with DNA nanotechnology,
due to the robust and programmable DNA nanostar motif [3, 19, 35], and may be helpful
advancing the vision of cell-scale molecular robotics and smart droplets [46, 44, 26].

C. Chalk, S. Buse, K. Shrinivas, A. Murugan, and E. Winfree 5:3

In Section 2, we detail our model and equilibrium sampling methods. Section 3 introduces
Hopfield networks and Boltzmann machines in order to introduce key concepts of learning
and information processing by equilibrium systems. Section 4 outlines our perspective on
learning and inference in the Boltzmann liquid model. Sections 5, 6, 7, and 8 showcase
varied applications of our learning rule, along with modes of inference relevant to molecular
environments. This initial variety of results suggests a rich information processing capability
inherent in the equilibrium distributions of biomolecular condensates, and solidifies our
proposed learning rule as a general method for exploring the range of possible phenomena
within this design space.

2 Model and equilibrium sampling methods

The Boltzmann liquid model considers a finite discrete set of positions, V , which in this
paper we will take to be the three-dimensional lattice V = [1, L]3. If positions p1 ∈ V and
p2 ∈ V are neighbors, meaning a molecule at p1 will be in contact with a molecule at p2,
we say p1 ∼ p2. For our cubic lattice, that means the positions are face-adjacent, i.e. each
cube has six von Neumann neighbors (except at the boundaries, since we do not use periodic
boundary conditions). A lattice configuration σ has one molecule from a set M of molecule
types assigned to each position: σ : V → M . The set M generally includes the solvent and
the solvent is treated as any other molecule type. Thus, the model assumes equal-sized
molecules.

For equilibrium properties, the essential property is the energy for a given configuration,
G(σ). Following Jacobs and Frenkel [17, 18], we use a standard lattice-gas generalization of
the Ising model [21] for multicomponent liquids:

G(σ) = 1
2
∑

p1∈V

∑
p2∈V

s.t. p1∼p2

Gσ(p1),σ(p2) +
∑
p∈V

Gσ(p) , (1)

where Gi,j = Gj,i is the energy for a molecule of species i ∈ M interacting with a neighboring
molecule of species j ∈ M , and where Gi is the internal energy (or chemical potential) of
species i. We consider Gi,j and Gi to be the parameters of the Boltzmann liquid model
that can be tuned arbitrarily to obtain a range of behaviors. The convention is that more
negative Gi,j and Gi are more favorable.

When working with this energy function, it will often be convenient to express it using a
notation that makes the dependence on the model parameters more salient. To do so, we will
need the Kronecker delta function, which returns one if its subscripts are equal, else zero:

δi,j =
{

1 i = j

0 i ̸= j .

A configuration σ induces a value ni,j for all i, j ∈ M , which is the number of neighbor
interactions between molecules i and j in the configuration. We define:

n̂i,j =
∑

p1∈V

∑
p2∈V

s.t. p1∼p2

δσ(p1),iδσ(p2),j .

As written, n̂i,j double counts the case i = j, which we correct as:

ni,j =
{

1
2 n̂i,j i = j

n̂i,j i ̸= j .

DNA 30

5:4 Learning and Inference in a Lattice Model of Multicomponent Condensates

Additionally, a configuration σ induces a count of each molecule type in the lattice,

ni =
∑
p∈V

δσ(p),i .

Finally, we can see that lattice configuration σ has the corresponding energy:

G(σ) =
∑

i≤j∈M

ni,jGi,j +
∑
i∈M

niGi (2)

wherein each independent energy parameter appears exactly once.
Assuming a dynamics that obeys detailed balance with respect to this energy, the

Boltzmann distribution provides an analytical formula for the probability of a given config-
uration at equilibrium in terms of its energy. Key to this statistical mechanical approach
is knowing the set of states Ω that are reachable from the initial state, i.e., the statistical
ensemble that will be explored by the dynamics. The two ensembles we consider in this
work are the canonical (a system which exchanges only heat with a reservoir, and keeps its
molecule counts fixed) and the grand canonical (a system which exchanges both heat and
molecules with a reservoir). In the grand canonical ensemble, the set of configurations is
all possible configurations, Ω = G = {σ | σ : V → M}. In the canonical ensemble, molecule
type counts are conserved, so that the set of configurations given a vector c⃗ of counts of
each molecule type is given by Ω = Cc⃗ = {σ : V → M | ∀i ∈ M, ni(σ) = c⃗(i)}, where
ni(σ) is the count of molecule i in σ. It is important to note, then, that the per-molecule
energy contribution niGi of Equation 2 is the same for all configurations in the canonical
ensemble, and thus we fix Gi to zero for canonical simulations. Given either of the ensemble
assumptions, the probability of a configuration at equilibrium is given by:

P (σ) = 1
Z

e−G(σ)/kT , where Z is the partition function, Z =
∑
σ∈Ω

e−G(σ)/kT

and kT is the reference energy at the chosen temperature.
Simulations take place from an initial configuration by accepting proposed moves according

to the Metropolis-Hastings criteria: a move and its corresponding reverse move must be
proposed with the same probability, and a move which changes energy by ∆G is accepted
with probability min(1, e−∆G/kT). A simulation using this criteria satisfies detailed balance,
and thus in the limit samples from the Boltzmann distribution. The type of moves proposed
in the simulations depends on whether the ensemble is canonical or grand canonical. We
emphasize that in this work, our aim is to sample the equilibrium distribution, not necessarily
the exact kinetics or dynamics. In the canonical dynamics, proposals are swaps between any
two positions in the lattice. We found empirically that such long-range swaps, while resulting
in different kinetics than more physical local swaps of neighboring or near-neighboring sites,
allow more efficient equilibrium sampling. In the grand canonical dynamics, proposals are
to swap a molecule in a position with another molecule type. Other choices could work as
well; beyond the canonical vs. grand-canonical distinction, we do not expect the choice of
proposals to impact our results, to the extent that our simulations achieve near-equilibrium
sampling. Additionally, we propose and accept/reject moves in parallel using GPU-accelerated
algorithms, described in detail in Section A.1.

C. Chalk, S. Buse, K. Shrinivas, A. Murugan, and E. Winfree 5:5

3 Hopfield networks and Boltzmann machines

In this section we describe Hopfield networks and Boltzmann machines, two simplified models
of neurons whose discovery and study inspire this work. In particular, two key insights in
the study of Boltzmann machines underlie our perspective on multicomponent condensation.
The first key is a learning rule which can learn parameters for all interactions even when a
target distribution is specified by only a subset of free neurons, i.e., it can learn “hidden unit”
behaviors within a fully-connected network that can perform omnidirectional computation
without a feed-forward input-to-output direction being architecturally-defined. Second, that
clamping, or fixing a subset of neurons to a target state, results in the remainder of the system
exploring a conditional probability distribution, i.e., performing inference from any subset
of variables to any other subset of variables as its main method of information processing.
These two key insights are described further in this section after some preliminaries.

Hopfield [15] showed that a model of N simplified, interconnected neuron-like elements
(a Hopfield network) could perform associative recall, where a full state could be recovered
from a partial or noisy state. Hopfield assigned the following energy to his system to describe
the stability of states:

E(s) = −1
2
∑
i,j

wi,jsisj −
∑

i

bisi, (3)

where s ∈ {−1, 1}N indicates which of the N neurons are “ON”, wi,j denotes a real-valued
weight between each neuron, and bi is a bias applied to each neuron. Here, wi,j > 0 encourages
neurons i and j to have the same state, while bi > 0 encourages neuron i to be “ON”.

To “learn” or “memorize” a set of states S, called memories, Hopfield proposed a
simple Hebbian fire-together, wire-together rule: wi,j = 1

|S|
∑

s∈S sisj . Thus, each weight
is strengthened when neurons are correlated in the memory, and weakened when they are
anticorrelated. Given a dynamics that walks downhill in the energy landscape, starting at a
state close to a memory (e.g., a memory with some noise applied, or a partial memory), the
dynamics recalls the full memory. This occurs because the Hebbian learning creates wells
in the energy landscape corresponding to the memories. With the above Hebbian learning
rule, attempts to store too many memories (more than a capacity [2] that is linear in N)
results in an energy landscape dominated by spurious wells and thus failure to correctly recall
memories. This capacity can be improved by “unlearning” with anti-Hebbian adjustments
when spurious memories are encountered [16, 38].

Towards allowing the system to explore more complex probability distributions, Hinton and
Sejnowski [14] proposed using the same architecture and energy function with a stochastic
dynamics to escape local minima. With states s ∈ {0, 1}N and energy function as in
Equation 3, neurons are selected at random and set to 1 with probability P (si = 1) = 1

1+e∆Ei/T

and set to 0 otherwise, where ∆Ei is the change in energy caused by changing neuron i to 1
if it was 0 given the current state of the rest of the neurons, and T is a parameter analogous
to temperature. From this dynamics, the steady-state probability for the Boltzmann machine
is given by the Boltzmann distribution:

P (s) = 1
Z

e−E(s)/T , where Z is the partition function, Z =
∑

s∈{0,1}N

e−E(s)/T .

Thus, the Boltzmann machine imitates the physical phenomenon of an equilibrium system
stochastically exploring its Boltzmann distribution.

Looking beyond associative recall, Ackley, Hinton, and Sejnowski [1] proposed a learning
rule for parameters of the Boltzmann machine to push the Boltzmann machine’s distribution
over states, P , towards a target distribution Q. A key insight of the authors was presenting

DNA 30

5:6 Learning and Inference in a Lattice Model of Multicomponent Condensates

the learning rule in terms of marginal distributions over a subset of neurons, called visible
neurons, and showing that the remaining neurons, called hidden neurons, would have their
parameters updated according to the learning rule to aid the visible units in representing
their target marginal distribution. In fact, any distribution over a set of visible neurons can
be learned successfully given enough hidden units [43, 47]. The classical Boltzmann machine
laid the groundwork for modern restricted Boltzmann machines (RBM) and deep Boltzmann
machines (DBM) [33] that impose restricted input/output information flows that enable
faster and more effective learning algorithms, but for our purposes the classical learning rule
is more relevant because it allows us to generalize to the unrestricted energy model of our
Boltzmann liquid.

The classical Boltzmann machine learning rule is as follows. Neurons are divided into
visible neurons v and hidden neurons h, so the state can be written by concatenation as
s = vh. Given a target distribution Qv over the visible neurons, we aim to find parameters
for all wi,j and bi (including parameters involving hidden neurons) such that the marginal
distribution over visible neurons, Pv, is equal to Qv. It is helpful to define the following
distribution, Q(vh) =

∑
v Qv(v)P (h|v). This describes the Boltzmann machine with hidden

units running freely and the visible units clamped to take on the target distribution Qv; the
marginal distribution of Q for visible variables is Qv. The learning rule is described as a
gradient descent which minimizes the relative entropy, also known as the Kullback-Leibler
divergence:

DKL(Qv || Pv) =
∑

v∈{0,1}|v|

Qv(v) log Qv(v)
Pv(v) .

The Kullback-Leibler divergence, while not a metric in the strict mathematical sense, is
always nonnegative and is zero when Pv = Qv. As derived in [1], the gradient is:

∂DKL(Qv || Pv)
∂wi,j

= ⟨sisj⟩P − ⟨sisj⟩Q ,

where ⟨sisj⟩ is the average correlation between neurons i and j in the respective distribution.
Remarkably, even though it is only the relative entropy of the marginal distributions that is
being minimized, the averages here are with respect to the full distributions over both visible
and hidden units. Thus, the averages are well-defined even when i and/or j are hidden, so
hidden units can be trained. Since we want to minimize the divergence, this suggests the
gradient descent:

δwi,j

δt
= ⟨sisj⟩Q − ⟨sisj⟩P .

An analogous rule for adjusting bi follows immediately.
The second key insight is the clamping of neurons, wherein visible neurons are clamped

to a target configuration or distribution. The result of clamping the visible neurons to a
configuration v∗ is that the Boltzmann machine then takes on the conditional probability
distribution P (h | v = v∗). So, upon clamping some neurons, the remaining neurons compute
the conditional probability (inference) by relaxing to equilibrium, highlighting a connection
between inference and energy minimization. Furthermore, the clamped neurons needn’t be
exactly the visible units that were used for training; clamping any subset of units (visible or
hidden) results in inference of the corresponding conditional distribution on the unclamped
units. This is what we mean by omnidirectional computation.

To illustrate inference and the learning rule, consider the MNIST database of handwritten
digits, a standard machine learning benchmark. In this database, there are 10 classes of
digits, zero through nine, and each digit image is represented by a 28 × 28 array of real

C. Chalk, S. Buse, K. Shrinivas, A. Murugan, and E. Winfree 5:7

values in [0, 1]. To be represented by a Boltzmann machine, the images are mapped to binary
arrays (e.g., by clipping values above or below 0.5 to 1 and 0, respectively). Each pixel is
then assigned a neuron. Commonly, ten neurons are assigned to the classes, in a “one-hot”
representation where the correct class for the digit is set to one, and the others set to zero.
Any number of additional neurons can be included as hidden neurons.

To train, the image and class neurons are clamped to samples from the MNIST training
set. Thus, the target distribution Qv over visible neurons is the uniform distribution of
MNIST training set samples mapped to visible neurons. Practical implementations of the
learning rule sample ⟨sisj⟩Q and ⟨sisj⟩P and use Euler integration with a learning rate ϵ to
approximate the gradient descent. Sampling ⟨sisj⟩Q can be achieved by Markov-chain Monte
Carlo (MCMC) sampling with the Boltzmann machine stochastic update rule, with the
visible units clamped to MNIST training samples. Then, sampling ⟨sisj⟩P is done by leaving
the visible neurons unclamped, or free, and using (typically) the same sampling method.
This classical Boltzmann machine learning algorithm can be interpreted as alternating “wake
phase” Hebbian learning and “sleep phase” anti-Hebbian unlearning: while the system
is awake and being clamped by the environment, it strengthens its weights based on the
correlations ⟨sisj⟩Q. Then, while asleep and “dreaming”, with its neurons unclamped, the
system weakens or unlearns correlations ⟨sisj⟩P .

Once trained, the Boltzmann machine can sample from Pv, which should be close to Qv.
For the MNIST example, digit recognition occurs by clamping just the image neurons, and
letting the class (and hidden) neurons run free. Then (if trained successfully, i.e., with enough
hidden neurons, accurate sampling, and small enough learning rate), the free class neurons
will tend towards the one-hot representation with the correct digit on and the others off.
An equally valid inference would follow from clamping just the class neurons, and sampling
the image neurons. If other partial information were available, e.g. that the digit is not
7 and only the upper part of the image is known, then clamping those respective neurons
would again lead to sampling the correct conditional probability distribution for the unknown
neurons. In other words, no neurons are specified explicitly as input or output, and the
machine can interact with the environment generically via clamping.

4 From Boltzmann machines to Boltzmann liquids

In this section we extend insights gleaned from Boltzmann machines to understand learning
and inference in our molecular lattice model, and identify and program the modes of
information processing available to liquid-phase molecular systems.

In general, we will consider distributions over observables (i.e., distributions described
in terms of macrostates). Letting Ω be the set of configurations of the ensemble (canonical
or grand canonical), an observable is any function a : Ω → A. For example, a could
map a configuration σ to the count of the third species, n3(σ), or to the identities of
species in positions (x1, y1, z1) and (x2, y2, z2). An observable a induces a set of macrostates
Ma(α) : {σ ∈ Ω | a(σ) = α}, e.g., the set of all configurations with the count of the third
species equal to α. The marginal probability of a given macrostate is the sum of probabilities
of corresponding microstates: Pa(α) =

∑
σ∈Ma(α) P (σ).

If the environment clamps the system to an observable outcome α ∈ A, the remainder of
the system takes on the conditional probability, computing inference in the same respect as
the Boltzmann machine:

Pα(σ) = P (σ | α) =
{

1
Zα

e−G(σ) σ ∈ Ma(α)
0 σ /∈ Ma(α)

where Zα =
∑

σ∈Ma(α) e−G(σ).

DNA 30

5:8 Learning and Inference in a Lattice Model of Multicomponent Condensates

Given a target distribution of observable outcomes Qa, the distribution of the lattice
clamped to Qa is given by Q(σ) =

∑
α∈A Qa(α)Pα(σ). What we prove is the following:

letting ⟨ni,j⟩D be the average value for ni,j in the distribution D,

∂DKL(Qa || Pa)
∂Gi,j

= ⟨ni,j⟩Q − ⟨ni,j⟩P ,

which suggests the gradient descent:

δGi,j

δt
= ⟨ni,j⟩P − ⟨ni,j⟩Q .

Note that our parameters Gi,j are more favorable when more negative, so the learning rule is
inverted compared to the Boltzmann machine’s rule (but still “strengthened when clamped,
weakened when free”). The same proof applies to Gi, suggesting δGi

δt = ⟨ni⟩P − ⟨ni⟩Q. The
derivation is in Appendix A.3.

In practice we approximate ⟨ni,j⟩ for distributions Q or P via Markov-chain Monte Carlo
(MCMC) and use Euler integration with a learning rate ϵ to approximate the gradient descent.
For example, when clamping voxel positions of the lattice to particular molecule types, in
a “wake” phase the visible positions are clamped according to Q while the free positions
equilibrate, and samples are accumulated for ⟨ni,j⟩Q and ⟨ni⟩Q, thus leading to Hebbian
strengthening of interaction energies; and in a “sleep” phase no positions are clamped and
all units equilibrate to accumulate samples ⟨ni,j⟩P and ⟨ni⟩P , thus leading to anti-Hebbian
weakening of interaction energies.

In the following sections, we provide examples of the learning rule, inference via clamping,
and generalization beyond the target distribution (a common phenomenon in machine
learning: for example, trained on MNIST, a Boltzmann machine can classify digits from a
holdout set it was not trained on). We commonly use the terminology visible/hidden and
clamped/free from Boltzmann machine literature, to refer to molecule types or positions that
are part of the observable (visible, clamped) or not part of the observable (hidden, free).

5 Learning and inference of a structural observable

Here we show our learning rule applied to a distribution specifying molecular structure. This
is motivated by recent observations that many biological condensates, such as the nucleoli [12]
and paraspeckles [13], exhibit organization into compositionally distinct internal layers. The
“avocado” example, inspired by the 3-layer architecture of the nucleolus [12] and prior work
on designing liquid-liquid phase separation [24, 23], highlights that the learning rule can
be used to find intermolecular energies which yield distributions with complex structural
properties, like multiple shells forming around a core (Figure 1).

This simulation takes place in the canonical ensemble, with a fixed number of molecule
counts. The wake phase observable makes all species visible and clamps to an avocado
shape: Q is a point distribution over configurations, i.e., a single configuration of a perfectly
spherical avocado centered in the lattice. Thus, no simulation needs to occur to collect ⟨ni,j⟩Q.
To collect ⟨ni,j⟩P during the sleep phase, the avocado is shuffled (i.e., a uniform random
permutation of the lattice with counts equal to the ideal avocado is selected) as the starting
state for MCMC, and samples are collected after enough steps to approximately equilibrate
the system. See Figure 7 for an example plot of configuration energy per simulation step.

The avocado example provides an intuitive introduction to a central concern of our work:
that the learned distribution P is unlikely to match the target distribution Q, because the
Boltzmann liquid model is not capable of representing arbitrary distributions. For example,

C. Chalk, S. Buse, K. Shrinivas, A. Murugan, and E. Winfree 5:9

Wake phase: point distribution of ideal microstate
 (all voxels clamped)

Sleep phase: all voxels free
 (figure sampled after training)

10,000 samples

(a)

(b)

(c)

(d)

Figure 1 Learning an “avocado” structure with an outer, middle, and inner layer in a canonical
ensemble. (a) The target distribution Q is a point distribution for the target configuration shown
at the top (24 × 24 × 24 lattice). Dotted boundaries indicate the voxels within are not drawn, to
expose internal structures. (b) A sample selected from a canonical simulation after training. (c)
Interaction energies after 80 steps of learning. (d) Average distances from the center of mass of
Species 3 for each species were collected over 100 independent MCMC trials, each with 100 samples.

although the target distribution Q consists of a point distribution of a single perfectly-centered
avocado, any set of energies will give the same probability for states in which the avocado is
shifted to the left or right (without touching the walls), and will give similar energies for
slightly distorted avocados. So P will not be a point distribution. In machine learning, the
limited power of a model often implies that after learning, the machine must generalize from
the provided data and assign probabilities to states that were not visited during training.
Here, the generalization implied by the learned P includes many “avocado-like” states, for
example. Key is the fact that the learned interaction energies yield distributions with desired
statistics despite the impossible target, as shown in Figure 1c, which validates the statistical
integrity of the layered structure across many MCMC samples: the radial densities suggest
that the inner, middle, and outer layer structure is a general feature of the equilibrium.

The learned interaction energies shed light on physical features required to design avocado-
like structures beyond requiring strong self-interactions that drive condensation (Gi,i < 0).
The nested morphology we learn requires correct ordering of strengths of inter-species
interactions, and thus surface tensions between phases [24, 23].

Figure 2 shows examples of inference achieved by the same interaction energies trained
on the ideal point distribution. These examples explore how the model generalizes: clamping
a set c of voxels (which may be the visible or hidden positions from training, or another
subset) will induce the conditional probability P (σ | c), which may result in high (conditional)
probability for states that are very low probability in the unclamped (free) distribution
P . Figure 2a shows that the spatial distribution of the avocado can be localized via a
surface clamp. Figure 2b emulates that a patterned polymer is enough to centralize the
spatial distribution of the condensate, suggesting exploration into the role of polymers in
condensate formation. Figure 2c highlights the role of inference as conditional probabilities

DNA 30

5:10 Learning and Inference in a Lattice Model of Multicomponent Condensates

Nonsolvent heatmaps
10,000 samples

Simulation endpointsClamps

Figure 2 Various examples of inference via clamping, demonstrating generalization beyond the
training set. Each row corresponds to a canonical simulation with species counts equal to the ideal
avocado from Figure 1. Plots on the left show which positions were clamped, and to which molecules.
The middle column shows endpoint snapshots of the simulations. On the right are heatmaps of
nonsolvent species, collected over 100 independent MCMC trials with 100 samples from each trial.
In the bottom right heatmap, percentages of mass in each half of the heatmap are shown.

in decision making: the spatial distribution of the molecules favors the surface which matches
the nested avocado structure. The ability for the ensemble to differentiate between the
molecular arrangements on the clamps suggests the capability for differentiation of more
complex spatial heterogeneity, which we explore in Section 7.

6 Hopfield droplets: condensation of nonorthogonal, multicomponent
droplets conditioned on surface composition

In the cell, stress granules and P-bodies are condensates of differing composition which play
distinct roles in mRNA metabolism [20]. However, some molecules, such as proteins like
TIA-1, G3BP, and some small RNAs, are found in both condensates, highlighting the role of
separation into nonorthogonal mixtures with some distinct and some shared species. The
capacity of phase separation to support such mixtures, and the analogy with Hopfield’s
associative memories, suggest the term “Hopfield droplet” for this phenomenon [45]. Here we
explore the Boltzmann liquid learning rule’s ability to carve energy minima for condensation
of nonorthogonal compositions, in analogy to Hopfield networks that carve energy minima
for a given set of nonorthogonal binary vectors.

C. Chalk, S. Buse, K. Shrinivas, A. Murugan, and E. Winfree 5:11

We trained an example system with 16 species. Two “memories” were chosen, which
describe the composition of the condensates to be trained by the learning algorithm. The
memories are binary vectors which indicate whether species i is in the composition or not.
The memories were generated at random, with the caveat that we tested their performance
in an ideal Hopfield network, since we speculate that good performance in a Hebbian-
trained Hopfield network is a precondition for good performance in nonorthogonal condensate
formation. (Hopfield networks with Hebbian learning, especially with only 16 nodes, are
limited in their capacity to dig minima for nonorthogonal vectors; they can store reliable
minima for approximately 0.15N uniform random memories, where N is the number of
nodes [15, 2]. The connection between Hopfield network capacity and the number of
nonorthogonal compositions in condensate formation remains to be shown.)

The simulations were done in the grand canonical ensemble. In these simulations, we
kept the Gi parameters fixed (G0 for the solvent was set to 0, and all other molecules
had Gi = 8, effectively reducing the ambient concentration of the nonsolvent species).
While our proof shows that our gradient descent can also optimize the Gi parameters for
the target distribution, we found it empirically difficult compared to learning with fixed
Gi’s. In Appendix A.2, we show a similar result in the canonical ensemble, with different
considerations given the ensemble differences.

In the wake phase of training, values of ni,j were calculated for random samples of
well-mixed droplets pressed against the wall of the lattice, consisting of uniform composition
of species from one memory or the other, as shown in Figure 3a. In the sleep phase, a surface
was clamped to one of two memory compositions as shown in Figure 3b. After training, we
found that clamping a surface to a memory’s composition recruited that composition as a
droplet onto the surface, with statistical evidence shown in Figure 4b.

As shown in Figure 4, in analogy to partial recall in Hopfield networks, we showed that a
surface with a composition consisting of only a (randomly chosen) subset of a memory can
recall the full composition from that memory. In addition, Figure 4 also shows a “polymer”
clamped in space, with the composition of a subset of a memory. This polymer clamp
also condensed the full memory, showing that the trained parameters are not restricted to
forming surface droplets. An extension of the polymer was made with an “inert” molecule,
showing that condensation was localized, perhaps analogous to coactivator condensation in
super-enhancers for gene regulation [32]. (The “inert” molecule had energies Gi,j = 1 for
all interaction energies and Gi = 8.) Partial recall and the alternative clamping style are
further examples of a trained model generalizing beyond its training set, as in the various
avocado clamps in Figure 2.

Lastly, as shown in Figure 4b, the absence of any clamped voxels yields no condensation.
This was trained for implicitly via the training set, since the wall opposite the clamped droplet
is trained not to condense any molecules. Thus we show that the trained energies yield
condensation only if some voxels (a surface or otherwise) are clamped to provide energy to
allow condensation. That is, for grand canonical ensembles of multicomponent liquids, there
is an analog to dew point, such that slightly above the dew point, finite-sized condensation
occurs as a response to the matching species composition – a form of pattern recognition.

7 Learning structural pattern recognition

In this section we train a set of molecules to recognize structural surface patterns, in contrast
to the compositional surface patterns of the Hopfield droplets from Section 6. In addition,
this section illustrates the learning of parameters for “hidden” species, whose behavior are
not specified by the target distribution.

DNA 30

5:12 Learning and Inference in a Lattice Model of Multicomponent Condensates

Nonsolvent heatmap

(a) Wake phase: all voxels clamped to well-mixed droplet

(b) Sleep phase: surface voxels clamped (memory 0 shown)

Surface clamp (memory 0) Sample (after training)

Figure 3 Hopfield droplets: training of droplet condensation of nonorthogonal compositions.
Which composition is formed is controlled by the composition of the surface clamp. (a) Two
“memories”, or subsets of the sixteen species, were selected to be learned by the molecular interactions.
Some species are unique to a memory, some are shared between both memories, and some are not
used by either memory. (b) On the left is an example surface clamp used in the sleep phase of
training for memory 0. In the middle, a grand canonical simulation endpoint using the trained
parameters is shown. On the right is a heatmap, collected from 1,000 MCMC samples, showing the
average shape of the droplet.

The task was set up as shown in Figure 5. The simulations were canonical. To ensure
that the pattern recognition was not due to surface composition, we chose two surfaces with
the same composition but different molecular arrangements. The surfaces consisted of two
species in one of two patterns: a “checkers” or “stripes” surface. Recognition was considered
successful if one chosen “recognition” species preferred the checkers surface, and another
chosen recognition species preferred the stripes surface. We did not expect this task to be
achievable with only four species (and solvent), so we included four extra “hidden” species
which would form an interface between the surfaces and the recognition species.

We found that training was difficult, but was aided by annealing. We suspect this
is because the training algorithm produced stronger weights than needed for other tasks,
suggesting that this system is more like crystalline self-assembly than liquid phase.

After training, we found that the recognition was achieved, and the hidden species aided
the task in an interpretable way: two species are dedicated to detecting the checkers pattern,
by having favorable interactions between each other, the surface, and the checkers recognition

C. Chalk, S. Buse, K. Shrinivas, A. Murugan, and E. Winfree 5:13

(b) Droplet compositions given clamped feature composition

C
la

m
pe

d
vo

xe
ls

 c
om

po
si

ti
on

A
ve

ra
ge

 c
ou

nt
s

(c
la

m
p

co
un

ts
 e

xc
lu

de
d)

(a) Trained parameters generalize to partial and non-circular clamps

Clamps Simulation endpoints Nonsolvent heatmaps

M
ea

n
z-

ax
is

 s
um

143.807

255.885

Figure 4 The trained Hopfield droplet system generalizes beyond the training set. (a) Plots in the
middle are simulation endpoints given the clamped voxels shown on the left. An extra region of the
polymer clamp consisted of an extra species (gray) which was “inert”. The values in the lower-right of
each nonsolvent heatmap are the sums of the heatmap, indicating that the polymer clamp condensed
a smaller condensate on average. (b) Clamped voxel composition (top row) condensed a droplet
with average counts shown in the bottom row, collected from 1,000 MCMC samples. Average counts
shown exclude the clamped voxel counts. The squares to the left of each plot show the surface type:
a circular surface, no clamp (which did not condense any droplet), and the polymer clamp.

species. The two other hidden species recognized the stripes pattern, by having strong
self-affinity (in contrast to strong inter-affinity in the checkers case). We propose that without
this extra layer in between the clamped surface and recognition species, this task could not
be achieved, suggesting the need for hidden species. This example illustrates the ability of

DNA 30

5:14 Learning and Inference in a Lattice Model of Multicomponent Condensates

(a) Wake phase

Free
Free

Free

(b) Sleep phase

Free

(c) Simulation endpoint
 (after training)

(d) Red species heatmap

Blue species heatmap

Figure 5 Training recognition of structural surface patterns in a canonical ensemble. Two surface
patterns (“checkers” and “stripes” patterns) were provided and the system was trained to localize
one “recognition” molecule type (red) to the checkers surface, and the other (blue) to the stripes
surface. (a) The wake phase consisted of clamping the voxels not labeled free in the plot. (Recall
that we allow long-range swaps, so the molecules can move freely between the free regions.) (b) In
the sleep phase, only the surfaces were clamped. (c) A configuration sampled from the end of a
(canonical) simulation shows that the species clamped during wake phase (gray, black, red, blue, and
solvent) but free in this simulation match the target distribution. (d) Heatmaps of 10,000 MCMC
samples (each from independent trials) indicating that the red and blue recognition molecules tended
to attach to their respective surfaces on average.

the learning rule to train parameters for species whose behavior is unspecified by the training
distribution, as well as the ability for our model to recognize structural patterns in contrast
to compositional ones.

8 Learning and inference of molecular counts

To illustrate the generality of our learning rule, we show an alternative to clamping voxels
in the lattice. The example we used to illustrate this was the observable of counts of each
species in the lattice. To explore the space of count vectors, we needed to simulate the grand
canonical ensemble, because in the canonical ensemble counts of species are fixed. In this
context, inference happens of the form: what is the distribution of counts of molecules a, b, c

conditioned on molecule counts x, y, z being fixed? In our MCMC equilibrium sampling, we
used a hybrid method in which a proposal was either the swapping of a molecule type in a
single position with another molecule type (grand canonical), or swapping of two molecules’
positions within the lattice (canonical). Given a set of “clamped” species, we rejected
Metropolis-Hastings proposals which attempted to change counts of those species. The
hybrid method was required to maintain state-space reachability since clamped species in
the lattice would never change their position without position-swap moves. The clamping
of a subset of species’ counts in the lattice is best likened to semipermeable membranes in
biology (sketched in Figure 6a), which regulate the transport of various substances across
compartments via permeability criteria like size or charge. Permeability can be changed based
on environmental factors, like ion channels changing their permeability based on voltage
changes, ligands, or mechanical forces.

C. Chalk, S. Buse, K. Shrinivas, A. Murugan, and E. Winfree 5:15

1

1
111

1
1

2

2

2

2

2
2

2

2 3

3 3

33

3
3

3 3
33

3
4

4

4

44
4

MNIST test set sample

MNIST training set sample

(b) Wake phase: MNIST digits and classes translated into clamped count vectors(a)

Classifier output
(max class species count)

Tr
u
e

cl
as

s

Confusion matrix
(100 test samples per class)

Digit species
(nonpermeant)

Class species
(nonpermeant)

Hidden species
(permeant)

(c) Inference: MNIST test set digits translated into clamped count vectors, class counts free

MCMC

A
ve

ra
g
e

Digit species
(nonpermeant)

Class species
(permeant)

Hidden species
(permeant)

Figure 6 Clamping molecular counts in a “semipermeable membrane”-like grand canonical
simulation yields energies which classify clamped count vectors derived from MNIST digits into
recruitment of appropriate class species. (a) A cartoon representation of a semipermeable membrane,
through which molecule type 3 is permeant and molecule type 2 is nonpermeant. (b) MNIST digits
from the training set (28 × 28 values in [0, 1] with associated class label) were mapped to species
counts in the lattice. The initial counts for the wake phase are shown to the right, along with which
molecules were allowed to perform grand canonical swaps in the simulation. (c) An example test
after training. Clamped to the digit counts given the test digit on the left, MCMC was used to
calculate the average equilibrium counts shown at the bottom. On the right, running 100 tests per
class and using the maximum of the average class counts as output, each row indicates what the
true class was and how many of the 100 tests output each label.

We mapped digits from the MNIST database of handwritten digits into vectors of counts
of species, with the aim of training the interactions between the species to recognize which
digit was presented. In total, there were 1,000 species. There were 784 digit species, since
MNIST digits are provided as 28 × 28 arrays of values 0 to 1. There were 10 class species,
one for each digit class zero through nine. To illustrate the use of hidden species, we added
206 hidden species, which were unclamped during all training and inference.

During the wake phase of training, a random MNIST sample was drawn and the digit
and class species were initialized and then clamped. The digit species were each initialized
with counts proportional to the value of their pixel in the sampled MNIST digit image, with
a total volume fraction of approximately 78.4%. The true (correct) class count was initialized
to 1% of the volume, and all incorrect class counts were initialized to 0. The hidden species
were initialized uniformly in the remaining 20.6%. The lattice was then shuffled (to a uniform
random permutation), and then MCMC sampling calculated ⟨ni,j⟩ with the digit and class
species clamped. During the sleep phase, a configuration was sampled uniformly at random
(without respect to the counts used in training), and MCMC sampling calculated ⟨ni,j⟩
with no species clamped. The learned parameters are not shown due to space constraints.
The Gi,j parameters ranged approximately from −3.5 to 2, while the Gi parameters ranged
approximately from −1.2 to 1.3.

During inference, class counts were initialized uniformly, digit counts initialized in the
same way as wake training (except using digits sampled from the MNIST test set), and
hidden counts initialized uniformly. Then, MCMC simulations were run with only the digit

DNA 30

5:16 Learning and Inference in a Lattice Model of Multicomponent Condensates

species clamped. Figures 6b and 6c show example initial counts, and an example of average
counts at equilibrium approximated via MCMC. In this simulation, we did not include an
explicit solvent species. Inference occurred as the lattice swapped out incorrect class species
and recruited correct class species. After training, using the maximum average class count
as the output, the set of learned energies enabled 75.4% classification accuracy as shown
by the confusion matrix in Figure 6c. (We do not expect we have reached the limit of the
accuracy of this method, i.e., longer training or other optimizations such as improved learning
algorithms [37] may improve the result.) Thus, we have shown an ability for inference to
occur in the compositional rearrangement of a collection of molecules conditioned on certain
counts in the collection being fixed.

9 Discussion

Our work illustrates how principles of neural computation, and specifically the Boltzmann
machine architecture, shed new light on the capabilities of multicomponent liquids. The
Boltzmann liquid model, which augments a standard lattice model with notions of clamping
as well as a wake/sleep Hebbian/anti-Hebbian learning rule, provides an interpretation of
molecular behavior as representing a high-dimensional probability distribution that can be
queried by clamping and tuned by learning. We illustrated this with examples of structures
(an avocado), associative memory (Hopfield droplets), geometric pattern recognition (checkers
and stripes), and informational pattern recognition (MNIST).

From a machine learning perspective, it is not yet clear how powerful the Boltzmann
liquid model is. Unlike classical Boltzmann machines, we do not (yet) have a universal
approximation theorem that says with enough hidden units, any probability distribution
can be approximated arbitrarily well. Any such theorem would have to account for the fact
that the energy model does not distinguish certain symmetries, for example. Understanding
contexts (e.g. canonical vs grand-canonical, representations for encoding information) in
which Boltzmann liquids perform well is an important question for future work.

For example, there may be more natural ways for Boltzmann liquids to solve the MNIST
digit recognition problem. We conjecture that it (and similar inferential problems) can be
formulated as a selective surface condensation problem, as in our avocado (Section 5) and
Hopfield memory (Section 6) examples. In this formulation, successful inference would be
free-floating digit species proportional to an MNIST digit zero condensing onto a surface
consisting of “class zero”, and not onto other class’ surfaces. A more challenging alternative
would be to have just two “input” species, black and white, and ask the liquid to distinguish
the geometric pattern (the digit image) in a surface clamp, as in our checkers-and-stripes
(Section 7) example. The larger question is “what kinds of inference and conditional behaviors
are natural for multicomponent liquids?”

Some of the behaviors we demonstrated with Boltzmann liquids have previously been
shown in other models for multicomponent liquids. Mao et al [24, 23] used continuous
Flory-Huggins and Cahn-Hilliard models to design interaction matrices that give rise to
core-shell structures (similar to our avocado) and other geometries; our work provides a
distinct learning approach toward the same end. Teixeira et al [45] explore associative recall
similar to our Hopfield droplets; critically, their model generalizes Flory-Huggins energies
to include a cubic self-repulsion term that they argue is necessary for stabilizing multiple
memories. That our discrete model demonstrates multiple memories and associative recall
without the cubic terms suggests that our results reflect finite-size effects and may not scale
to large droplets where the continuous models are more appropriate. We are not aware
of prior work that demonstrates geometrical pattern recognition or informational pattern
recognition similar to our checkers-and-stripes and MNIST examples.

C. Chalk, S. Buse, K. Shrinivas, A. Murugan, and E. Winfree 5:17

Considering our results in the context of biological cells, we imagine that parameters
Gi,j and Gi provide a continuous space for cells to tune condensate formation and possibly
information processing. Intermolecular interactions (Gi,j) are modulated at multiple time-
scales, during and across the cell-cycle through post-translational modifications [31, 42] and
over evolutionary time-scales through changing sequence features, and thus their interactions.
Molecular counts, and thus Gi, can also be tuned through regulation of gene expression. For
example, RNA lengths and sequence determine their electrostatic properties, suggesting a
role for non-coding RNAs as tunable knobs for condensate formation in the cell. Beyond
isolated droplets, condensation as inference triggered from surface-based clamps (Figure 2)
provide a mechanism for spatially regulating condensate assembly and function. Multiple
cellular surfaces may exploit similar mechanisms, by assembling gene regulatory condensates
only at specific genomic loci [41, 25] and localizing condensates to membranes [42].

Phase-separated biomolecular condensates often involve more complex molecules for which
the idealized isotropic cubes of the Boltzmann liquid model are a poor match, which raises
the question of how the model can be generalized. Accommodating anisotropic molecules,
molecular shapes that span multiple lattice sites, orientation and conformation changes,
and local non-nearest-neighbor interactions should be possible with almost trivial changes
to the energy model, the move set, and the wake/sleep learning algorithm – but at the
cost, most likely, of increased MCMC equilibration time. As this generalization would
encompass important features of other models of molecular self-organization, including
sticker-and-spacer polymer phase separation [6], DNA tile self-assembly [10, 11], and lattice
protein folding [34], we expect that considerably increased capability for representing complex
probability distributions would result, with concomitant enhanced potential for sophisticated
structural and informational behaviors.

References
1 David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for

Boltzmann machines. Cognitive Science, 9(1):147–169, 1985.
2 Daniel J Amit, Hanoch Gutfreund, and Haim Sompolinsky. Storing infinite numbers of patterns

in a spin-glass model of neural networks. Physical Review Letters, 55(14):1530, 1985.
3 Silvia Biffi, Roberto Cerbino, Francesca Bomboi, Elvezia Maria Paraboschi, Rosanna Asselta,

Francesco Sciortino, and Tommaso Bellini. Phase behavior and critical activated dynam-
ics of limited-valence DNA nanostars. Proceedings of the National Academy of Sciences,
110(39):15633–15637, 2013.

4 Robert Brijder. Computing with chemical reaction networks: a tutorial. Natural Computing,
18:119–137, 2019.

5 Jehoshua Bruck. On the convergence properties of the Hopfield model. Proceedings of the
IEEE, 78(10):1579–1585, 1990.

6 Jeong-Mo Choi, Alex S Holehouse, and Rohit V Pappu. Physical principles underlying the
complex biology of intracellular phase transitions. Annual Review of Biophysics, 49(1):107–133,
2020.

7 Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of
chemical reaction networks. In Algorithmic Bioprocesses, pages 543–584. Springer, 2009.

8 David Doty. Theory of algorithmic self-assembly. Communications of the ACM, 55(12):78–88,
2012.

9 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

10 Constantine G Evans and Erik Winfree. Physical principles for DNA tile self-assembly.
Chemical Society Reviews, 46(12):3808–3829, 2017.

DNA 30

5:18 Learning and Inference in a Lattice Model of Multicomponent Condensates

11 Constantine Glen Evans, Jackson O’Brien, Erik Winfree, and Arvind Murugan. Pattern
recognition in the nucleation kinetics of non-equilibrium self-assembly. Nature, 625(7995):500–
507, 2024.

12 Marina Feric, Nilesh Vaidya, Tyler S Harmon, Diana M Mitrea, Lian Zhu, Tiffany M Richardson,
Richard W Kriwacki, Rohit V Pappu, and Clifford P Brangwynne. Coexisting liquid phases
underlie nucleolar subcompartments. Cell, 165(7):1686–1697, 2016.

13 Archa H Fox, Shinichi Nakagawa, Tetsuro Hirose, and Charles S Bond. Paraspeckles: where
long noncoding RNA meets phase separation. Trends in Biochemical Sciences, 43(2):124–135,
2018.

14 Geoffrey E Hinton and Terrence J Sejnowski. Analyzing cooperative computation. In Pro-
ceedings of the Fifth Annual Conference of the Cognitive Science Society, pages 2554–2558,
1983.

15 John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

16 John J Hopfield, David I Feinstein, and Richard G Palmer. Unlearning has a stabilizing effect
in collective memories. Nature, 304(5922):158–159, 1983.

17 William M Jacobs and Daan Frenkel. Predicting phase behavior in multicomponent mixtures.
The Journal of Chemical Physics, 139(2), 2013.

18 William M Jacobs and Daan Frenkel. Phase transitions in biological systems with many
components. Biophysical Journal, 112(4):683–691, 2017.

19 Byoung-jin Jeon, Dan T Nguyen, and Omar A Saleh. Sequence-controlled adhesion and
microemulsification in a two-phase system of DNA liquid droplets. The Journal of Physical
Chemistry B, 124(40):8888–8895, 2020.

20 Nancy Kedersha and Paul Anderson. Mammalian stress granules and processing bodies.
Methods in Enzymology, 431:61–81, 2007.

21 Tsung-Dao Lee and Chen-Ning Yang. Statistical theory of equations of state and phase
transitions. II. Lattice gas and Ising model. Physical Review, 87(3):410, 1952.

22 Andrew S Lyon, William B Peeples, and Michael K Rosen. A framework for understanding the
functions of biomolecular condensates across scales. Nature Reviews Molecular Cell Biology,
22(3):215–235, 2021.

23 Sheng Mao, Milena S Chakraverti-Wuerthwein, Hunter Gaudio, and Andrej Košmrlj. Designing
the morphology of separated phases in multicomponent liquid mixtures. Physical Review
Letters, 125(21):218003, 2020.

24 Sheng Mao, Derek Kuldinow, Mikko P Haataja, and Andrej Košmrlj. Phase behavior and
morphology of multicomponent liquid mixtures. Soft Matter, 15(6):1297–1311, 2019.

25 Jose A Morin, Sina Wittmann, Sandeep Choubey, Adam Klosin, Stefan Golfier, Anthony A
Hyman, Frank Jülicher, and Stephan W Grill. Sequence-dependent surface condensation of a
pioneer transcription factor on DNA. Nature Physics, 18(3):271–276, 2022.

26 Satoshi Murata. Molecular Robotics: An Introduction. Springer Nature, 2022.
27 Arvind Murugan, Zorana Zeravcic, Michael P Brenner, and Stanislas Leibler. Multifarious

assembly mixtures: Systems allowing retrieval of diverse stored structures. Proceedings of the
National Academy of Sciences, 112(1):54–59, 2015.

28 Matthew J Patitz. An introduction to tile-based self-assembly and a survey of recent results.
Natural Computing, 13:195–224, 2014.

29 William Poole, Andrés Ortiz-Munoz, Abhishek Behera, Nick S Jones, Thomas E Ouldridge,
Erik Winfree, and Manoj Gopalkrishnan. Chemical Boltzmann machines. In DNA Computing
and Molecular Programming (DNA23), pages 210–231. Springer, 2017.

30 William Poole, Thomas Ouldridge, Manoj Gopalkrishnan, and Erik Winfree. Detailed
balanced chemical reaction networks as generalized Boltzmann machines. arXiv preprint
arXiv:2205.06313, 2022.

31 Arpan Kumar Rai, Jia-Xuan Chen, Matthias Selbach, and Lucas Pelkmans. Kinase-controlled
phase transition of membraneless organelles in mitosis. Nature, 559(7713):211–216, 2018.

C. Chalk, S. Buse, K. Shrinivas, A. Murugan, and E. Winfree 5:19

32 Benjamin R Sabari, Alessandra Dall’Agnese, Ann Boija, Isaac A Klein, Eliot L Coffey, Krishna
Shrinivas, Brian J Abraham, Nancy M Hannett, Alicia V Zamudio, John C Manteiga, et al.
Coactivator condensation at super-enhancers links phase separation and gene control. Science,
361(6400):eaar3958, 2018.

33 Ruslan Salakhutdinov and Geoffrey Hinton. Deep Boltzmann machines. In Artificial Intelligence
and Statistics, pages 448–455. PMLR, 2009.

34 Andrej Šali, Eugene Shakhnovich, and Martin Karplus. Kinetics of protein folding: A lattice
model study of the requirements for folding to the native state. Journal of Molecular Biology,
235(5):1614–1636, 1994.

35 Yusuke Sato, Tetsuro Sakamoto, and Masahiro Takinoue. Sequence-based engineering of
dynamic functions of micrometer-sized DNA droplets. Science Advances, 6(23):eaba3471, 2020.

36 John E Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley
Reading, 1998.

37 Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between
energy-based models and backpropagation. Frontiers in Computational Neuroscience, 11:24,
2017.

38 Ludovica Serricchio, Dario Bocchi, Claudio Chilin, Raffaele Marino, Matteo Negri, Chiara
Cammarota, and Federico Ricci-Tersenghi. Daydreaming Hopfield networks and their surprising
effectiveness on correlated data. arXiv preprint arXiv:2405.08777, 2024.

39 Krishna Shrinivas and Michael P Brenner. Phase separation in fluids with many interacting
components. Proceedings of the National Academy of Sciences, 118(45):e2108551118, 2021.

40 Krishna Shrinivas and Michael P Brenner. Multiphase coexistence capacity in complex fluids.
bioRxiv, pages 2022–10, 2022.

41 Krishna Shrinivas, Benjamin R Sabari, Eliot L Coffey, Isaac A Klein, Ann Boija, Alicia V
Zamudio, Jurian Schuijers, Nancy M Hannett, Phillip A Sharp, Richard A Young, et al. Enhan-
cer features that drive formation of transcriptional condensates. Molecular Cell, 75(3):549–561,
2019.

42 Wilton T Snead and Amy S Gladfelter. The control centers of biomolecular phase separation:
how membrane surfaces, PTMs, and active processes regulate condensation. Molecular Cell,
76(2):295–305, 2019.

43 Héctor J Sussmann. Learning algorithms for Boltzmann machines. In Proceedings of the 27th
IEEE Conference on Decision and Control, pages 786–791. IEEE, 1988.

44 Masahiro Takinoue. DNA droplets for intelligent and dynamical artificial cells: from the
viewpoint of computation and non-equilibrium systems. Interface Focus, 13(5):20230021, 2023.

45 Rodrigo Braz Teixeira, Giorgio Carugno, Izaak Neri, and Pablo Sartori. Liquid Hopfield model:
retrieval and localization in heterogeneous liquid mixtures. arXiv preprint arXiv:2310.18853,
2023.

46 Hirotake Udono, Jing Gong, Yusuke Sato, and Masahiro Takinoue. DNA droplets: intelligent,
dynamic fluid. Advanced Biology, 7(3):2200180, 2023.

47 Laurent Younes. Synchronous Boltzmann machines can be universal approximators. Applied
Mathematics Letters, 9(3):109–113, 1996.

48 Weishun Zhong, David J Schwab, and Arvind Murugan. Associative pattern recognition
through macro-molecular self-assembly. Journal of Statistical Physics, 167:806–826, 2017.

A Appendix A

A.1 Methods
Simulations utilized GPU accelerated parallel algorithms for the canonical swap and grand
canonical replacement update proposals discussed in Section 2. In each simulation step,
GPU threads were assigned lattice positions spaced modulo four and were synchronized each
step so as to avoid race conditions involving calculation of the energy in the von Neumann
neighborhood.

DNA 30

5:20 Learning and Inference in a Lattice Model of Multicomponent Condensates

The training in Sections 5, 7, 8, and A.2 utilized AdaGrad, or the adapative gradient
algorithm [9]. AdaGrad adapts the learning rates of all parameters independently by scaling
them inversely proportional to the square root of the sum of all their historical squared
gradients, thus reducing the learning rate for frequently updated parameters. We found
AdaGrad reduced the number of training steps required by allowing larger learning rates.

For all MCMC trials, the first half of the simulation steps were not sampled, typically
called a burn-in period, followed by taking 100 samples at equally spaced steps. Energies
were also sampled and checked to have stabilized, i.e., converged to a minima after a burn-in
period. Figure 7 shows an example avocado simulation along with its energy plotted against
simulation step.

Lattices were always cubic with the following lengths. Sections 5 and A.2: 24, Section 6: 12,
Section 7: 8, Section 8: 32.

Each MCMC trial consisted of the following number of parallel steps. Sections 5
and A.2: 4(244), Section 6: 40(124), Section 7: 10(84), Section 8: 20, 000. Each paral-
lel step proposed L3/43 swaps, where L was the lattice length.

The learning rates for Euler integration were as follows. Sections 5 and A.2: 5, 000/243,
Section 6: 1/123, Section 7: 50/83, Section 8: 0.025.

The total number of Euler integration steps were as follows. Section 5: 80, Section A.2: 500,
Section 6: 3, 590, Section 7: 1, 741, Section 8: 2, 203, with each step consisting of 10 MCMC
trials, each sampling a digit from a different class of the MNIST training set.

In Section 7, annealing was performed only during the burn-in period with kThigh = 10

using kT (i) = kThigh ·
(

1
kThigh

) i
burn-in steps for step i.

A.2 Hopfield droplets in the canonical ensemble
In this section, we describe a framework for studying associative recall and other Hopfield
network phenomena in a canonical ensemble of surface-conditioned droplet formation.

Two key points determine our choice of counts for each species in the canonical ensemble.
First, for nonorthogonal memories, it is important to show that compositions can form
even in the presence of all species, since some species in the composition will have favorable
energies with species outside the composition. Secondly, due to the overlap in compositions,
we expected the species outside the memory to have enough affinity to attach to the surface
droplet, thus forming one large droplet of both compositions. To address these issues,
we included compositions called anti-memories, which are the complements of the desired
memories. Thus the targeted separation is into memory 0 and anti-memory 0, or memory 1
and anti-memory 1.

Initial

0 1.33e+066.64e+05

G
(σ

)

of MCMC proposals

Simulation endpoint

Figure 7 A canonical simulation of the avocado system described in Section 5. On the left, the
initial state, which is a random permutation of the ideal avocado. In the middle, the endpoint of the
simulation is shown. On the right, a plot of the energy of the lattice configuration during simulation.

C. Chalk, S. Buse, K. Shrinivas, A. Murugan, and E. Winfree 5:21

Training distribution: spherical well-mixed droplets

Figure 8 Learning of multicomponent, nonorthogonal condensation in a canonical ensemble. The
rectangles with colored squares indicate which species are in which memory and anti-memory. The
top shows two samples from the training distribution. In the middle and bottom row, the left plots
show the surface clamps. In the middle, simulation endpoints are shown. The plots on the right are
filtered such that the desired memory species are colored red, and the desired anti-memory species
are colored blue. Statistical evidence from MCMC sampling is shown in Figures 10.

As shown in Figure 8, training on droplets consisting of ideal spheres of a set of
memory/anti-memory pairs, surrounded by solvent, yields interaction energies where one
memory/anti-memory pair can be selectively recruited based on surface clamping. The
training procedure reinforces strengths between species which are shared in any of the
four compositions, while weakening strengths if species are too correlated in an unclamped
simulation. After training, clamping one surface to molecules in a memory’s composition
and the other surface to molecules in the corresponding anti-memory’s composition, the
equilibrium distribution (as sampled by MCMC) is conditioned by the clamps to consist of
the memory composition and the anti-memory composition cleanly separated, as shown in
the heatmaps in Figure 10.

DNA 30

5:22 Learning and Inference in a Lattice Model of Multicomponent Condensates

(a) Partial recall

(b) Unclamped

Figure 9 Examples of partial recall, and the inability to separate in the absence of a clamped
surface. (a) The left shows surface clamps, consisting of the partial memory compositions shown on
above the plot. The middle plot shows a simulation endpoint snapshot. In the right plot, blue and
red indicate membership in Memory 0 and Anti-Memory 0, respectively. (b) A simulation endpoint
snapshot without surface clamps. The middle and right plots show a coloring according to memory
membership.

In Figure 9a, we show that clamping the surfaces to only a subset of a memory and
anti-memory can still be sufficient to condition the probability distribution towards clean
separation of the two compositions, analogous to partial recall in Hopfield networks. (Figure 10
provides statistical evidence from MCMC sampling.) Partial clamping suggests that even if
nonorthogonal condensates consist of many components, surfaces (or other forms of clamping)
consisting of few species can still drive selective separation.

In the absence of clamps, the learned energies do not yield cleanly separated droplets of
any composition, and instead form a single condensate as shown in Figure 9b. The inability
for the learning rule to find a solution suggests that additional measures may be required to
ensure clean droplet separation, for example via the use of surfactants to create membranes,
as is common in droplets in biology and chemistry. While one option would be to introduce
surfactants in clamped positions surrounding the droplet in the training distribution, we
speculate that the inclusion of unclamped “hidden” molecules during training could allow the
learning rule to uncover surfactants as a solution to the separation problem without being
designed to learn surfactants explicitly.

C. Chalk, S. Buse, K. Shrinivas, A. Murugan, and E. Winfree 5:23

Figure 10 Heatmaps of Figure 8 and Figure 9a. Averages were collected over 100 independent
MCMC trials collecting 100 samples each. The heatmaps sum only the presence of species in the
memory listed in their title, e.g., the top left heatmap is the average sum through the z-axis of only
species from Memory 0. The vector of species listed at the top shows the surface clamps used in the
simulation.

A.3 Proof of learning rule

In this derivation, we let kT = 1. The derivation below holds when replacing Gij with Gi,
suggesting the same weight updates for per-molecule energies Gi in the grand canonical
ensemble. By the definition of the Kullback-Leibler divergence, and the fact that Qa (the
provided target distribution) is independent of the model parameters Gij , we have:

∂DKL(Qa || Pa)
∂Gij

= ∂

∂Gij

∑
α

Qa(α) ln Qa(α)
Pa(α) (4)

= −
∑

α

Qa(α) ∂

∂Gij
ln Pa(α). (5)

Recall that Pa(α) =
∑

σ∈Ma(α) P (σ), and P (σ) = e−G(σ)

Z , then we have:

∂

∂Gij
ln Pa(α) = 1

Pa(α)
∂Pa(α)
∂Gij

(6)

= 1
Pa(α)

∑
σ∈Ma(α)

∂P (σ)
∂Gij

(7)

= 1
Pa(α)

∑
σ∈Ma(α)

∂

∂Gij

e−G(σ)

Z
(8)

= 1
Pa(α)

∑
σ∈Ma(α)

Z ∂e−G(σ)

∂Gij
− e−G(σ) ∂Z

∂Gij

Z2 . (9)

DNA 30

5:24 Learning and Inference in a Lattice Model of Multicomponent Condensates

Handling the partial derivatives in the numerator independently yields:

∂e−G(σ)

∂Gij
= ∂e−G(σ)

∂(−G(σ))
∂(−G(σ))

∂Gij
(10)

= e−G(σ) ∂(−G(σ))
∂Gij

(11)

= −e−G(σ)nσ
ij . (12)

∂Z

∂Gij
=
∑

σ

∂e−G(σ)

∂Gij
(13)

= −
∑

σ

e−G(σ)nσ
ij . (14)

∂

∂Gij
ln Pa(α) = 1

Pa(α)
∑

σ∈Ma(α)

Z ∂e−G(σ)

∂Gij
− e−G(σ) ∂Z

∂Gij

Z2 (15)

= 1
Pa(α)

∑
σ∈Ma(α)

−Ze−G(σ)nσ
ij + e−G(σ)∑

σ′ e−G(σ′)nσ′

ij

Z2 (16)

= −
∑

σ∈Ma(α)

1
Pa(α)

e−G(σ)nσ
ij

Z
+

∑
σ∈Ma(α)

1
Pa(α)

e−G(σ)⟨nij⟩P

Z
(17)

= −
∑

σ∈Ma(α)

P (σ)
Pa(α)nσ

ij +
∑

σ∈Ma(α)

P (σ)
Pa(α) ⟨nij⟩P (18)

= −
∑

σ∈Ma(α)

P (σ)
Pa(α)nσ

ij + ⟨nij⟩P . (19)

Recalling that Q(σ) =
∑

α Qa(α)Pa(σ) and Pa(σ) = P (σ | α) = P (σ)/Pa(α),

∂DKL(Qa || Pa)
∂Gij

= −
∑

α

Qa(α) ∂

∂Gij
ln Pa(α) (20)

= −
∑

α

Qa(α)

−
∑

σ∈Ma(α)

P (σ)
Pa(α)nσ

ij + ⟨nij⟩P

 (21)

=
∑

α

∑
σ∈Ma(α)

P (σ)
Pa(α)Qa(α)nσ

ij −

(∑
α

Qa(α)
)

⟨nij⟩P (22)

= ⟨nij⟩Q − ⟨nij⟩P . (23)

	1 Introduction
	2 Model and equilibrium sampling methods
	3 Hopfield networks and Boltzmann machines
	4 From Boltzmann machines to Boltzmann liquids
	5 Learning and inference of a structural observable
	6 Hopfield droplets: condensation of nonorthogonal, multicomponent droplets conditioned on surface composition
	7 Learning structural pattern recognition
	8 Learning and inference of molecular counts
	9 Discussion
	A Appendix A
	A.1 Methods
	A.2 Hopfield droplets in the canonical ensemble
	A.3 Proof of learning rule

