
Exploring Discrete Spatial Heterogeneity Across
Quantiles: A Combination Approach of Generalized
Lasso and Conditional Quantile Regression
Ryo Inoue #

Graduate School of Information Sciences, Tohoku University, Sendai, Japan

Kenya Aoki #

Graduate School of Information Sciences, Tohoku University, Sendai, Japan

Abstract
Spatial heterogeneity has been investigated extensively. However, in addition to spatial heterogeneity,
there are spatial phenomena where heterogeneity in the data generation process exists across
quantiles. This study proposes a new method that combines generalized lasso (GL) and conditional
quantile regression (CQR) to analyze discrete spatial heterogeneity across quantiles. GL enables
the identification of spatial boundaries where the spatial data generation process varies discretely,
and CQR estimates the parameters of the conditional quantile of the dependent variable. The
proposed method is expressed as a linear programming problem and is simple to use. To validate its
effectiveness, we applied this method to apartment rent data in Minato Ward, Tokyo. The results
revealed that the neighborhoods where rent levels deviated from the overall trend in the analyzed
area differed by quantiles.
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1 Introduction

Spatial heterogeneity refers to the variation in the process of generating spatial phenomena
across locations. Many researchers have analyzed this property using the abundant spatial
data available in recent years. There are two analytical approaches that focus on spatial
heterogeneity with different assumptions. The first approach assumes that the generative
process of spatial phenomena changes continuously within the domain of analysis domain.
Geographically Weighted Regression (GWR) [5] and Eigenvector Spatial Filtering-based
Spatially Varying Coefficient (ESF-SVC) model [6] are examples of the analytical approach.

The second approach assumes that the generative process of spatial phenomena changes
discretely at certain spatial boundaries. This study focuses on this assumption. Recent studies
on the detection of discrete spatial heterogeneity (e.g., [14, 3, 7, 11]) use the generalized lasso
(GL) [13], a sparse modeling technique. They preset regions that are the minimum spatial
units for detecting discrete spatial heterogeneity, build a regression model with region-specific
parameters, and set l1 regularization on the region-specific parameters and the differences of
neighboring region-specific parameters to search for the set of regions with the same degree
of heterogeneity.
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12:2 Exploring Discrete Spatial Heterogeneity Across Quantiles

Most previous studies have analyzed the spatial heterogeneity structure corresponding
to the mean of the conditional distribution of the dependent variable. However, there are
spatial phenomena where heterogeneity exists not only in space but also across quantiles.
Therefore, we are interested in capturing the spatial heterogeneity corresponding to the
different quantiles of the conditional distribution of the dependent variable.

Although limited in number, there are studies that analyze heterogeneity in space and
across quantiles. As an analysis for continuous spatial heterogeneity, Chen et al. [2] proposed
geographically weighted quantile regression. It combines GWR and conditional quantile
regression (CQR) [8], which evaluates the influence of the explanatory variables on the
dependent variable at each quantile. However, a method for analyzing discrete spatial
heterogeneity has not yet been discussed.

In this study, we propose a novel method that combines GL and CQR under the assumption
that spatial phenomena vary in a discrete manner. Our goal is to identify localized areas
that deviate from the overall trend of the analyzed area for each quantile.

2 Methodology

2.1 Generalized Lasso (GL) in Discrete Spatial Heterogeneity Analysis
GL is applied to analyze discrete spatial heterogeneity. A regression model is used that
includes common parameters that represent the relationship between explanatory and
dependent variables in the entire target area, as well as region-specific parameters that
indicate deviations from the aforementioned common relationship. Let yi be the dependent
variable at location i, xik be a kth explanatory variable at location i, and βk be a kth
parameter, where β0 is an intercept. K denotes the number of parameters, excluding an
intercept, R denotes the number of regions, γr is a region-specific parameter of region r, dir

denotes a dummy variable indicating whether location i is in region r, and εi denotes an
error term. The model is written as

yi =
K∑

k=0
βkxik +

R∑
r=1

γrdir + εi. (1)

The purpose of the βs is to express the overall trend between the dependent and explanatory
variables for the entire region under analysis. In contrast, the γs are intended to express the
deviation from the overall trend for each region. Then, l1 regularization is introduced on the
region-specific parameters and the differences of neighboring region-specific parameters. The
estimation of the model is written as the following minimization problem,

min
β,γ

1
2

N∑
i=1

(
yi −

K∑
k=0

βkxik −
R∑

r=1
γrdir

)2

+ λ1

R∑
r=1

|γr| + λ2
∑

(m,n)∈A

|γm − γn|

 , (2)

where λ1 and λ2 denote positive tuning hyperparameters and A denotes the set of combina-
tions of adjacent regions.

The first regularization term is designed to identify region-specific parameters, γs, that
should be non-zero, only when there are spatial heterogeneity and the relationship between
dependent and explanatory variables cannot be adequately described by the common pa-
rameters, βs. Furthermore, the second regularization term is designed to identify whether
neighboring regions exhibit similar degrees of spatial heterogeneity. Thus, the method enables
the detection of sets of regions exhibiting discrete spatial heterogeneity.
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2.2 Conditional Quantile Regression (CQR)
While ordinary regression analysis estimates parameters for the conditional mean of the
dependent variable over the explanatory variables, CQR estimates parameters for the
conditional quantiles of the dependent variables. Here, the conditional quantile function
Qyi|xi

(τ) satisfying P [yi < Qyi|xi
(τ)] = τ is defined, where τ ∈ [0, 1] is a quantile and xi is

a K × 1 vector of the explanatory variables at location i. CQR describes QY |X(τ) through a
linear combination of the explanatory variables as

Qyi|xi
(τ) =

K∑
k=0

βτ
k xik, (3)

where βτ
k is a kth parameter at the τth quantile. The estimation of βτ

k is formulated by the
following minimization problem using the loss function ρτ (),

min
βτ

N∑
i=1

ρτ

(
yi −

K∑
k=0

βτ
k xik

)
, ρτ (u) =

{
τu if u ≥ 0,

(τ − 1)u if u < 0.
(4)

Equation (4) can be reformulated as a linear programming problem. Let y denotes an N × 1
vector of the dependent variable, X denotes an N × K matrix of the explanatory variables,
and 1N and 0N denote vectors of N ones and zeros, respectively. Then,

minβ+,β− τ1′
N u + (1 − τ)1′

N v,

s.t. y − X(β+ − β−) = u − v

β+, β− ≥ 0K , u, v ≥ 0N

(5)

where β+ and −β− are K × 1 parameter vectors with positive and negative elements,
respectively, and u and −v are N × 1 error vectors with positive and negative elements,
respectively.

3 Discrete Spatial Heterogeneity across Quantiles

This study proposes a method that combines GL and CQR to analyze discrete spatial
heterogeneity for each quantile. This approach is similar to the model proposed by [12],
which combines fused adaptive lasso [1] and CQR. The previous model establishes a quantile
regression model with location-specific parameters and penalizes the difference between
the location-specific parameters at a certain location and the average of the parameters at
neighboring locations. The model allows for the detection of locations exhibiting quantiles that
diverge from the smoothed quantiles of neighboring locations, rendering it an effective tool
for hotspot analysis. However, the conventional method fails to account for the discrepancies
between adjacent regional parameters, rendering it incapable of identifying boundaries where
the generation process of spatial phenomena undergoes a change.

Here, let K be the number of attributes including the intercept and R be the number of
regions for the discrete spatial heterogeneity detection. βτ

k is a parameter at the τth quantile
of the attribute k, γτ

r is a parameter at the τth quantile of region r, and ετ
i is the error term

at the τth quantile at location i. The linear model at τth quantile is expressed by

yi =
K∑

k=0
βτ

k xik +
R∑

r=1
γτ

r dir + ετ
i . (6)
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Then, the GL-based l1 regularization and the CQR-based loss function are used to estimate
the parameters,

min
βτ ,γτ

 N∑
i=1

ρτ

(
yi −

K∑
k=0

βτ
k xik −

R∑
r=1

γτ
r dir

)
+ λ1

R∑
r=1

|γτ
r | + λ2

∑
(m,n)∈A

|γτ
m − γτ

n|

 . (7)

Equation (7) can also be formulated as the following linear programming problem,

minβ+,β−,γ+,γ− τ1′
N u + (1 − τ)1′

N v,

s.t. y − X(β+ − β−) − D(γ+ − γ−) = u − v

1′
R(γ+ + γ−) ≤ s

A(γ+ − γ−) = θ+ − θ−

1′
E(θ+ + θ−) ≤ t

β+, β− ≥ 0K , γ+, γ− ≥ 0R, θ+, θ− ≥ 0E , u, v ≥ 0N

(8)

where A is a E × R matrix representing adjacency of region-specific parameters, θ+, θ− are
vectors of positive and negative differences between adjacent parameters, respectively.

The tuning hyperparameters, λ1 and λ2 in Equation (7) and s and t in Equation (8), must
be determined manually. To choose the setting of hyperparameters, the model is evaluated
by the Bayesian Information Criterion (BIC) for CQR [9],

BIC(τ) = log
(

N∑
i=1

ρτ

(
yi −

K∑
k=0

βτ
k xik −

R∑
r=1

γτ
r dir

))
+ m

log N

2N
, (9)

where m is a number of non-zero parameters.
The hyperparameters s and t in Equation (8) must be optimized using an empirical

search procedure such as grid search. It has been pointed out that the lasso estimates have a
bias towards zero, which makes the interpretation based on the estimates inappropriate [4].
To overcome this property, the proposed method is first applied by varying the tuning
hyperparameters within a certain range to select the candidate models. Then, CQR without
l1 regularization is applied to each of the selected models and the best model that minimizes
the BIC at each quantile is selected.

4 Application: Analysis of Apartment Rent in Minato Ward, Tokyo

4.1 Data and Model
The proposed method is applied to apartment rent data to check its effectiveness. The
apartment rent of 10,930 properties in Minato Ward, Tokyo in 2017, collected by At Home
Co., Ltd. [10] is used. Table 1 summarizes the dependent and explanatory variables. All
explanatory variables are log transformed and standardized with mean 0 and variance 1 in
the rent model. Since the building age and the number of floors have values of zero, one is
added to each before the logarithmic transformation.

Figure 1 shows 112 neighborhoods (cho and chome in Japanese) that are pre-specified as
the spatial units for detecting discrete spatial heterogeneity. The reference neighborhood is
selected by the smallest mean absolute value of the residuals from the CQR estimation of
the model without neighborhood-specific parameters under the 50th percentile condition.

To identify differences in the effects of the explanatory variables by quantile, we analyze
at five quantiles (τ = [0.1, 0.3, 0.5, 0.7, 0.9]).
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Table 1 Summary of variables.

Variables Minimum Maximum Mean Standard
deviation

Rent per square meter (JPY/m2) 1686.77 39582.32 4317.75 1086.02
Walking time to the nearest station (min) 0 25 6.08 3.35
Building age (year) 0 35 14.48 7.16
Floor number 1 55 7.91 7.62
Area of property (m2) 11.9 366.73 47.33 33.60

We set the linear model (Equation (6)) and estimate the parameters by solving the linear
programming problem in Equation (8). The estimated neighborhood-specific parameters γ̂τ

r

represent discrete spatial heterogeneity in the rent.
In order to estimate the model, it was necessary to determine the grid search space for

the optimal hyperparameters. Therefore, we first set 1, 10, and 100, and then narrowed the
interval between these values. Finally, we varied the hyperparameters by 1 for each quantile
in the range of 30 to 50, and identified the combination of hyperparameters that resulted in
the lowest BIC.

Figure 1 112 neighborhoods in Minato Ward, Tokyo and reference neighborhood (shown in
green).

4.2 Results and Discussion
4.2.1 Estimated Parameters for Apartment Attributes
Figure 2 indicates the estimated parameters β̂τ

k s. The quantile τ and the estimated value are
shown on the horizontal and vertical scales, respectively. The estimates at the five different
quantiles ranging from 0.1 to 0.9 are shown as black solid lines with filled black dots, and
the two dashed gray lines show their 95 percent confidence intervals. The red line in each

COSIT 2024



12:6 Exploring Discrete Spatial Heterogeneity Across Quantiles

figure shows the ordinary least squares (OLS) estimate of the conditional mean effect, and
the two dashed red lines represent its 95 percent confidence intervals.

Figure 2 shows that the valuation of housing attributes on rent per square meter varies
by quantile. In particular, the proposed method estimates a different parameter for the area
of the properties compared to OLS. The estimated parameter is negative for low quantiles,
but almost zero for high quantiles (Figure 2e). This suggests that the rent per square meter
decreases as the area increases for properties with lower rents, but not for those with higher
rents. However, the valuation of walking time to the nearest station does not change across
different rent ranges (Figure 2b).

(a) Intercept. (b) Walking time. (c) Age of building.

(d) Floor number. (e) Area of property.

Figure 2 Estimated parameters for apartment attributes.

4.2.2 Estimated Neighborhood-specific Parameters

Figure 3 shows the spatial distribution of estimated neighborhood-specific parameters γ̂τ
r .

Neighborhoods painted in red and blue depict higher and lower rent levels than the refer-
ence neighborhood, respectively. Shaded adjacent neighborhoods represent neighborhoods
estimated to have the same value.

Figure 3 shows that rents are higher in the northwestern neighborhoods and lower in
the southeastern neighborhoods. It seems natural that the northwestern neighborhoods,
Aoyama, are known for its upscale residential area close to the central business districts,
such as Akasaka and Roppongi. On the other hand, the southeastern neighborhoods, such
as Konan and Kaigan, are less popular due to their proximity to the warehouse districts
near the port.

We focus on the eastern neighborhoods where different quantiles yielded different es-
timation results. The parameters of Kaigan 1-chome and Hamamatsucho 2-chome are
estimated negatively at the lower quantile, but positively at the higher quantile. Although
these neighborhoods are in close proximity to the warehouse districts, they also hold many
high-rise condominiums with high rents due to their convenient access to transportation and
good views of the harbor. The properties of in these neighborhoods exhibit different rent
trends compared to those in the surrounding neighborhoods.
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(a) 10th percentile. (b) 30th percentile.

(c) 50th percentile. (d) 70th percentile.

(e) 90th percentile.

Figure 3 Spatial distribution of estimates of neighborhood-specific parameters.

5 Conclusion

We proposed an analysis method for discrete spatial heterogeneity across quantiles by
combining GL and CQR. The introduction of GL-based l1 regularization to the loss function
of CQR enabled us to estimate region-specific parameters where some are zero and some
adjacent parameters share a common value for each quantile. The proposed method was
applied to analyze rent in Minato Ward, Tokyo, and the results confirmed its ability to detect
discrete spatial heterogeneity for each quantile.

However, there is an issue that requires attention. It is important to note that CQR
does not differentiate between high-end or low-end properties in the entire target area. This
implies that the proposed method analyzes the impact of explanatory variables on overvalued
or undervalued dependent variables (i.e., dependent variables are higher or lower than they
should be) at each location using CQR. In the rent analysis example, we examine the higher
quantile estimates to assess common factors contributing to price formation and regional
influences on properties that are more expensive in high-end and low-end residential areas.

COSIT 2024



12:8 Exploring Discrete Spatial Heterogeneity Across Quantiles

However, it is reasonable to assume that the attributes and quality of properties may vary
between high-end and low-end residential areas, even within the same quantile. Additionally,
the evaluation of attributes may vary depending on the location. Therefore, it is necessary
to consider a method that can extract differences in attribute evaluation for different areas,
even within the same price level.
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