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Abstract
This paper proposes a logic of east and west for intervals (LEWI ), which extends the logic of east
and west for points. For intervals in 1D Euclidean space, the logic LEWI formalises the qualitative
direction relations “east”, “west”, “definitely east”, “definitely west”, “partially east”, “partially
west”, etc. To cope with imprecision in geometry representations, the logic LEWI is parameterized
by a margin of error σ ∈ R>0 and a level of indeterminacy in directions τ ∈ N>1. For every τ , we
provide an axiomatisation of the logic LEWI , and prove that it is sound and complete with respect
to 1D Euclidean space.
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1 Introduction

This work is motivated by the problem of matching spatial objects represented in different
geospatial datasets, and checking the consistency of SameAs matching relations. For objects
a and b in different datasets, SameAs(a, b) holds if a and b refer to the same real world
object. With the development of semantic web and linked data, many instance matching
methods [6, 7, 11] have been developed to automatically generate SameAs matching relations.
The geospatial datasets and automatically generated SameAs matching relations may contain
errors. It is desirable to formalise the relations between spatial objects and use automated
reasoning to detect contradictions in SameAs matching relations.

A logic of east and west for points (LEW ) has been introduced to represent and reason
about the direction relations between spatial objects, which can be used to check SameAs
matching relations [5]. Intuitively, if in one dataset, a spatial object a is definitely to the east
of a spatial object b, then in another dataset, the spatial object corresponding to a cannot be
definitely to the west of the spatial object corresponding to b. In LEW , a spatial object is
interpreted as a single point in 1D Euclidean space R. In geospatial datasets, however, many
spatial objects are represented using polygons. Instead of abstracting a polygon as a single
point, it is more accurate to use the axis-aligned minimal bounding box of a polygon, which
can be projected to a closed interval in 1D Euclidean space, as shown in Figure 1. Therefore,
we extend LEW to a logic of East and West for Intervals (LEWI ) which represents and
reasons about the qualitative direction relations between closed intervals.

Allen’s calculus [1] has been widely used to represent relations between intervals in
both spatial and temporal domains. It defines 13 basic relations between intervals, such as
“before”, “after”, “overlaps”, etc. Similar to Allen’s calculus, LEWI also defines relations
between intervals based on their endpoints. However, in order to tolerate slight differences
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17:2 A Logic of East and West for Intervals

Figure 1 Projection of Polygons onto Closed Intervals.

in geometric representations in different geospatial datasets, following LEW , LEWI uses a
parameter σ ∈ R>0 to denote the margin of error and a parameter τ ∈ N>1 to denote the
level of indeterminacy in directions.

There are two approaches commonly used to formalise and reason about qualitative
spatial or temporal relations, which are referred to as the relation-algebraic approach and
the logic-axiomatic approach [5]. In the relation-algebraic approach, relation algebra is used
to represent relations and operations over the relations. There are several qualitative spatial
or temporal calculi using this approach, including the point calculus [12], Allen’s calculus [1],
the rectangle algebra [2], and the cardinal direction relations between regions [9, 10]. In the
logic-axiomatic approach, the syntax and semantics of a logic are used to denote the symbols
and meanings of relations, respectively. Following the LEW [5], the current work also uses
the logic-axiomatic approach and investigates the axiomatisations of LEWI .

This paper is structured as follows. Section 2 introduces the logic of east and west
for intervals (LEWI ). Section 3 presents an axiomatisations of LEWI for every τ ∈ N>1.
The soundness and completeness of the axiomatisations are proved in Section 4. Section 5
provides a conclusion.

2 A Logic of East and West for Intervals

We introduce a logic of east and west for closed intervals (LEWI ) in 1D Euclidean space.
LEWI is an extension of the logic of east and west for points (LEW ) [5]. LEWI includes
eight primitive direction relations: east (E), west (W ), definitely east (dE), definitely west
(dW ), partially east (pE), partially west (pW ), partially definitely east (pdE), and partially
definitely west (pdW ).

▶ Definition 1 (The Language of LEWI ). Let Ind be a set of individual names. The language
L(LEWI , Ind) (we omit Ind for brevity below) is defined as:

ϕ, ψ := E(a, b) | W (a, b) | dE(a, b) | dW (a, b) |
pE(a, b) | pW (a, b) | pdE(a, b) | pdW (a, b) | ¬ϕ | ϕ ∧ ψ

where a, b are in Ind, ϕ ∨ ψ =def ¬(¬ϕ ∧ ¬ψ), ϕ → ψ =def ¬ϕ ∨ ψ, ϕ ↔ ψ =def (ϕ →
ψ) ∧ (ψ → ϕ), and ⊥ =def ϕ ∧ ¬ϕ.

The lower case letters (e.g., a, b, c, d), sometimes with subscripts or superscripts, are
always used to represent individual names in Ind. The language of LEWI is a subset of
the language of first-order logic [4]. The primitives E, W , dE, and dW also appear in the
language of LEW [5], while the other relations do not.

We interpret L(LEWI ) over models based on 1D Euclidean space, where each individual
name is interpreted as a closed interval, rather than a single point.
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▶ Definition 2 (1D Euclidean τ -model). A 1D Euclidean τ -model M is a structure (I, σ, τ),
where I is an interpretation function which maps each individual name a ∈ Ind to a closed
interval [a, a] ⊂ R with a ≤ a. The parameter σ ∈ R>0 is a margin of error, and τ ∈ N>1
refers to the level of indeterminacy in directions.
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Figure 2 Eight Primitive Relations in LEWI .

▶ Definition 3 (Truth definition). Let M be a 1D Euclidean τ -model (I, σ, τ). For any formula
ϕ in L(LEWI ), we write M |=LEWI ϕ to denote that ϕ is true in M . We define M |=LEWI ϕ

by structural induction as follows:
M |=LEWI W (a, b) iff ∀pa ∈ I(a) ∀pb ∈ I(b) (pa − pb < −σ) iff a − b < −σ;
M |=LEWI E(a, b) iff ∀pa ∈ I(a) ∀pb ∈ I(b) (pa − pb > σ) iff a − b > σ;
M |=LEWI dW (a, b) iff ∀pa ∈ I(a) ∀pb ∈ I(b) (pa − pb < −τσ) iff a − b < −τσ;
M |=LEWI dE(a, b) iff ∀pa ∈ I(a) ∀pb ∈ I(b) (pa − pb > τσ) iff a − b > τσ;
M |=LEWI pW (a, b) iff ∃pa ∈ I(a) ∀pb ∈ I(b) (pa − pb < −σ) iff a − b < −σ;
M |=LEWI pE(a, b) iff ∃pa ∈ I(a) ∀pb ∈ I(b) (pa − pb > σ) iff a − b > σ;
M |=LEWI pdW (a, b) iff ∃pa ∈ I(a) ∀pb ∈ I(b) (pa − pb < −τσ) iff a − b < −τσ;
M |=LEWI pdE(a, b) iff ∃pa ∈ I(a) ∀pb ∈ I(b) (pa − pb > τσ) iff a − b > τσ;
M |=LEWI ¬ϕ iff M ̸|=LEWI ϕ;
M |=LEWI ϕ ∧ ψ iff M |=LEWI ϕ and M |=LEWI ψ,
where a, b ∈ Ind, I(a) = [a, a], I(b) = [b, b], and ϕ and ψ are formulae in L(LEWI ).

The truth definitions of eight primitive relations are shown in Figure 2. For a formula ϕ,
if there exists a 1D Euclidean τ -model M such that ϕ is true in M (i.e., M |=LEWI ϕ), then
ϕ is said to be τ -satisfiable; if ϕ is true in every 1D Euclidean τ -model M (equivalently, if
the negation of ϕ is not τ -satisfiable), then ϕ is said to be τ -valid and written as |=LEWI ϕ.
For every τ ∈ N>1, LEWI is the set of all τ -valid formulas in L(LEWI ).

By Definition 3, as pW (a, b) is not equivalent to pE(b, a) and pdW (a, b) is not equivalent
to pdE(b, a), the following inverse relations are introduced as syntactic sugar. These inverse
relations are used in following sections for clearer expression of the axiomatisations.

▶ Definition 4 (Inverse Relation). The inverse relations are defined as follows:
partially west inverse: pWi(a, b) =def pW (b, a)
partially definitely west inverse: pdWi(a, b) =def pdW (b, a)
partially east inverse: pEi(a, b) =def pE(b, a)
partially definitely east inverse: pdEi(a, b) =def pdE(b, a)

COSIT 2024



17:4 A Logic of East and West for Intervals

3 Axiomatisations

We present, for every τ ∈ N>1, a calculus LEWI τ , which will be shown (in Section 4) to be
sound and complete for LEWI . Here a and b, sometimes with subscripts, are meta variables
which may be instantiated by any individual name in Ind. An instance of an axiom is
a formula in L(LEWI ) obtained by instantiating every meta variable in the axiom by an
individual name in Ind. For example, by Axiom 3, for every pair of individual names a, b
in Ind, the formula W (a, b) ↔ E(b, a) is an instance of Axiom 3 and it is τ -valid. AS 11
is an axiom schema, where n is the number of conjuncts in the antecedent of the axiom,
and number(α) is the number of occurrences of α in {R1, . . . , Rn}. It is worth noting that
number(α) is a meta-language notation, not in L(LEWI ).

PL A finite sound and complete axiomatisation of classical propositional logic
Axiom 1 ¬pW (a, a)
Axiom 2 ¬pE(a, a)
Axiom 3 W (a, b) ↔ E(b, a)
Axiom 4 dW (a, b) ↔ dE(b, a)
Axiom 5 W (a, b) → pW (a, b)
Axiom 6 E(a, b) → pE(a, b)
Axiom 7 dW (a, b) → pdW (a, b)
Axiom 8 dE(a, b) → pdE(a, b)
Axiom 9 pdW (a, b) → pW (a, b)
Axiom 10 pdE(a, b) → pE(a, b)
AS 11 For all n ∈ N>1, if for every i in {1, . . . , n}, Ri is in

{W, dW ,¬E,¬dE , pW , pdW ,¬pE ,
¬pdE , pEi, pdEi,¬pWi,¬pdWi}, and for every Ri in {¬pE,¬pdE , pEi, pdEi,¬E,¬dE},
Ri+1 is in {¬pE ,¬pdE , pEi, pdEi,W, dW } with Rn+1 =def R1, and number(W ) +
number(pW ) + number(pEi) + τ ∗ (number(dW ) + number(pdW ) + number(pdEi)) ≥
number(¬E) + number(¬pE) + number(¬pWi) + τ ∗ (number(¬dE) + number(¬pdE) +
number(¬pdWi)), then R1(a0, a1) ∧ · · · ∧Rn(an−1, a0) → ⊥ is an axiom.

MP Modus ponens: ϕ, ϕ → ψ ⊢ ψ

The notion of τ -derivability Γ ⊢LEWIτ ϕ in the LEWI τ calculus is standard. A formula
ϕ in L(LEWI ) is called τ -derivable if ⊢LEWIτ ϕ. Γ is said to be τ -inconsistent if for some
formula ϕ, both ϕ and ¬ϕ are τ -derivable (otherwise, it is said to be τ -consistent).

In AS 11, for every i in {1, . . . , n}, by Definition 3, the truth condition of W (ai−1, ai)
or dW (ai−1, ai) is an inequality between ai−1 and ai, the truth condition of ¬E(ai−1, ai)
or ¬dE(ai−1, ai) is an inequality between ai−1 and ai, the truth condition of pW (ai−1, ai),
pdW (ai−1, ai), ¬pWi(ai−1, ai), or ¬pdWi(ai−1, ai) is an inequality between ai−1 and ai,
the truth condition of pEi(ai−1, ai), pdEi(ai−1, ai), ¬pE(ai−1, ai), ¬pdE(ai−1, ai) is an
inequality between ai−1 and ai, where an = a0. In addition, for every i in 1, . . . , n, by
Definition 2, an inequality exists between ai and ai (i.e., ai − ai ≤ 0). For every Ri ∈
{¬pE,¬pdE , pEi, pdEi,¬E,¬dE}, the truth condition of Ri(ai−1, ai) is an inequality with ai

as its second variable, hence, AS 11 requires that Ri+1 is in {¬pE ,¬pdE , pEi, pdEi,W, dW }
so that the truth condition of Ri+1(ai, ai+1) is an inequality with ai as its first variable.

For every τ ∈ N>1, according to AS 11, if each of the relations pW , dW , ¬pdE , and ¬pWi

presents exactly once, then pW (a0, a1) ∧ ¬pdE(a1, a2) ∧ dW (a2, a3) ∧ ¬pWi(a3, a0) → ⊥ is
an axiom, as shown in Figure 3.
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Notably, pW (a0, a1) ∧ ¬pdE(a1, a2) ∧ dW (a2, a3) ∧ ¬pE(a3, a0) → ⊥ is not an axiom in
AS 11, since the relation after ¬pE is pW that is not in {¬pE ,¬pdE , pEi, pdEi,W, dW }, as
shown in Figure 4.

a0 a1

a2a3

pW

¬pdE

dW

¬pWi ⊥

Figure 3 an example axiom in AS 11.

a0 a1

a2a3

pW

¬pdE

dW

¬pE ⊥

Figure 4 a counterexample of AS 11.

4 Soundness and Completeness

In this section, we prove that the LEWI τ calculus is sound and complete, i.e., every derivable
formula is valid and every valid formula is derivable:

▶ Theorem 5. For every τ ∈ N>1, the LEWI τ calculus is sound and complete for 1D
Euclidean τ -models.

Soundness. For all τ ∈ N>1, to prove the soundness of the LEWI τ calculus, we show
that every τ -derivable formula ϕ in L(LEWI ) is τ -valid. This can be carried out by a
straightforward induction on the length of the derivation of ϕ. By Definition 3, every axiom
is τ -valid; and modus ponens preserves validity.

Completeness. For the rest of this section, we focus on the proof of completeness. As is
common in mathematical logic (see also [5, Section 4.2]) we prove the following equivalent
statement: for every τ ∈ N>1, if a finite set of L(LEWI ) formulae Σ is τ -consistent, then
there is a 1D Euclidean τ -model satisfying it. For the proof, we use some basic concepts from
graph theory and linear inequalities.

We represent a graph G by the pair (V,E), in which V and E denote the sets of vertices
and edges, respectively. We consider basic linear inequalities, i.e., those that take the form
x− y ≤ c or x− y < c, where x and y are variables, and c is a real number constant. For
a set S of basic linear inequalities, we construct a graph G = (V,E), in which V is the set
of variables appearing in S, and for each basic inequality (x− y) ∼ c in S, we add to E an
edge from x to y and label it with the inequality (x− y) ∼ c, where ∼ is < or ≤. A path
P = v1, . . . , vn through G is said to be a loop (or cycle) if v1 = vn. A loop is called simple if
its intermediate vertices are all distinct.

▶ Definition 6 (infeasible loop). Assume that P = v1, . . . , vn is a simple loop, in which for
all 1 ≤ i < n, (vi − vi+1) ∼ ci, (vn − v1) ∼ cn, where ∼ is < or ≤, and c1, . . . , cn are real
numbers. If every ∼ is ≤, then P is said to be infeasible iff (

∑
1≤i≤n ci) < 0; otherwise, P is

called infeasible iff (
∑

1≤i≤n ci) ≤ 0.

▶ Theorem 7 ([5, 8]). Let G be the graph constructed for a set S of linear inequalities of the
form (x− y) ∼ c, where x, y are real variables, ∼ is ≤ or <, and c is a real number. Then,
S is satisfiable iff G has no infeasible simple loop.

COSIT 2024



17:6 A Logic of East and West for Intervals

▶ Definition 8 (τ -σ-translation). The “τ -σ-translation” function tr(τ, σ) is defined as follows:
tr(τ, σ)(W (a, b)) = (a− b < −σ);
tr(τ, σ)(E(a, b)) = (b− a < −σ);
tr(τ, σ)(dW (a, b)) = (a− b < −τσ);
tr(τ, σ)(dE(a, b)) = (b− a < −τσ);
tr(τ, σ)(pW (a, b)) = (a− b < −σ);
tr(τ, σ)(pE(a, b)) = (b− a < −σ);
tr(τ, σ)(pdW (a, b)) = (a− b < −τσ);
tr(τ, σ)(pdE(a, b)) = (b− a < −τσ);
tr(τ, σ)(¬ϕ) = ¬(tr(τ, σ)(ϕ)), where ¬(z1 − z2 < c) = (z2 − z1 ≤ −c).

Now, we present the proof of completeness of LEWI τ for every τ ∈ N>1.

Proof (Theorem 5). Take an arbitrary τ ∈ N>1. Suppose a finite set of L(LEWI ) formulae
Σ is τ -consistent. Let names(Σ) be the set of individual names that appear in Σ. We rewrite
the set Σ as a formula ϕ that is the conjunction of all the formulae in Σ. We rewrite ϕ
in disjunctive normal form ϕ1 ∨ · · · ∨ ϕm, where m > 0 and every literal is of one of the
forms: W (a, b), E(a, b), dW (a, b), dE(a, b), pW (a, b), pE(a, b), pdW (a, b), pdE(a, b), and
their negations. To show that there is a 1D Euclidean τ -model satisfying Σ, it is sufficient to
show that there exists a disjunct ϕi which is τ -satisfiable.

We prove this by contradiction. Suppose that every disjunct ϕi is not τ -satisfiable. Take
an arbitrary disjunct ϕi. We obtain a set of inequalities Si by translating every literal in
a disjunct ϕi according to Definition 8 and adding a − a ≤ 0 for every individual name a
in names(Σ). The inequalities in Si are of the form (xa − xb) ∼ c, where xa and xb are
real variables, ∼ is ≤ or <, and c is a real number. By Theorem 7, the formula ϕi is not
τ -satisfiable iff the graph Gi of Si has an infeasible simple loop P . By Definitions 6, the sum
of the constants around P is no greater than zero. There are two cases, as discussed below.

Case 1. The loop P contains vertices from at least two distinct individual names. Let us
assume that P is over a sequence of vertices v0, v1, . . . , vm−1, and the linear inequalities in P
are of the form (v0 − v1) ∼ c1, (v1 − v2) ∼ c2, . . . , (vm−1 − v0) ∼ cm, where m is the length
of the loop satisfying m > 1 and ∼ is ≤ or <.

By Definition 8, each linear inequality in P is of one of the following forms: a− b < −σ
(from the form W (a, b) or E(b, a)), a − b < −τσ (from the form dW (a, b) or dE(b, a)),
a − b ≤ σ (from the form ¬E(a, b) or ¬W (b, a)), a − b ≤ τσ (from the form ¬dE(a, b) or
¬dW (b, a)), a− b < −σ (from the form pW (a, b)), a− b < −τσ (from the form pdW (a, b)),
a − b ≤ σ (from the form ¬pW (b, a)), a − b ≤ τσ (from the form ¬pdW (b, a)), a − b ≤ σ

(from the form ¬pE(a, b)), a − b ≤ τσ (from the form ¬pdE(a, b)), a − b < −σ (from the
form pE(b, a)), a− b < −τσ (from the form pdE(b, a)) and a− a ≤ 0.

We translate the linear inequalities in P back to formulae as follows. We translate every
linear inequality of the form a− b < −σ to W (a, b); every a− b < −τσ to dW (a, b); every
a− b ≤ σ to ¬E(a, b); every a− b ≤ τσ to ¬dE(a, b); every a− b < −σ to pW (a, b); every
a− b < −τσ to pdW (a, b); every a− b ≤ σ to ¬pWi(a, b); every a− b ≤ τσ to ¬pdWi(a, b);
every a− b ≤ σ to ¬pE(a, b); every a− b ≤ τσ to ¬pdE(a, b); every a− b < −σ to pEi(a, b);
and every a− b < −τσ to pdEi(a, b). Only the form a− a ≤ 0 does not get translated.

In this way, from P we obtain a sequence of formulae of the form R1(a0, a1), . . . ,
Rn(an−1, a0), where n is the number of distinct individual names involved in P . For every
integer i such that 1 ≤ i ≤ n, Ri is one of W, dW ,¬E,¬dE , pW , pdW ,¬pE ,¬pdE , pEi, pdEi,
¬pWi, ¬pdWi, and if Ri is in {¬pE,¬pdE , pEi, pdEi,¬E,¬dE}, it must be translated from
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the form (u−v) ∼ c1 or (u−v) ∼ c1. Thus, Ri+1 must be translated from the form (v−w) ∼ c2
or (v − w) ∼ c2, where Rn+1 =def R1, ∼ is ≤ or <, and c1, c2 are in {−σ, σ, −τσ, τσ}.
Therefore, Ri+1 is in {¬pE ,¬pdE , pEi, pdEi,W, dW }. Since the sum of the constants around
P is non-positive, we have number(W ) + number(pW ) + number(pEi) + τ ∗ (number(dW ) +
number(pdW ) + number(pdEi)) ≥ number(¬E) + number(¬pE) + number(¬pWi) + τ ∗
(number(¬dE) + number(¬pdE) + number(¬pdWi)). By AS 11, we have R1(a0, a1) ∧ · · · ∧
Rn(an−1, a0) → ⊥.

By Definition 8 and Definition 4, for every occurrence of W (a, b) in R1(a0, a1) ∧ · · · ∧
Rn(an−1, a0), the formula W (a, b) or E(b, a) is a conjunct in ϕi; for every occurrence of
dW (a, b), the formula dW (a, b) or dE(b, a) is a conjunct in ϕi; for every occurrence of
¬E(a, b), the formula ¬E(a, b) or ¬W (b, a) is a conjunct in ϕi; for every occurrence of
¬dE(a, b), the formula ¬dE(a, b) or ¬dW (b, a) is a conjunct in ϕi; for every occurrence
of pW (a, b), the formula pW (a, b) is a conjunct in ϕi; for every occurrence of pdW (a, b),
the formula pdW (a, b) is a conjunct in ϕi; for every occurrence of ¬pE(a, b), the formula
¬pE(a, b) is a conjunct in ϕi; for every occurrence of ¬pdE(a, b), the formula ¬pdE(a, b) is a
conjunct in ϕi; for every occurrence of pEi(a, b), the formula pE(b, a) is a conjunct in ϕi; for
every occurrence of pdEi(a, b), the formula pdE(b, a) is a conjunct in ϕi; for every occurrence
of ¬pWi(a, b), the formula ¬pW (b, a) is a conjunct in ϕi; for every occurrence of ¬pdWi(a, b),
the formula ¬pdW (b, a) is a conjunct in ϕi. By Axiom 3, we have W (a, b) ↔ E(b, a). By
Axiom 4, we have dW (a, b) ↔ dE(b, a). Therefore, ⊥ is τ -derivable from ϕi.

Case 2. The vertices in P are only from one individual name. Then there are at most two
vertices in P . If there is only one vertex in P , as P is a simple infeasible loop, by Definition 8,
the only one linear inequality in P is of one of the following forms: a − a < −σ which is
translated from pW (a, a), a − a < −τσ which is translated from pdW (a, a), a − a < −σ
which is translated from pE(a, a), and a− a < −τσ which is translated from pdE(a, a). By
Axiom 1, Axioms 1 and 9, Axiom 2, Axioms 2 and 10, respectively, ⊥ is τ -derivable.

If there are two vertices in the loop P , as P is simple, there are two linear inequalities of
the form (a− a) ∼ c1 and (a− a) ∼ c2 in P , where ∼ is ≤ or <. By Definition 8, the linear
inequality of the first form should be of one of the two possible forms: a− a < −σ which
is translated from W (a, a) or E(a, a), or a − a < −τσ which is translated from dW (a, a)
or dE(a, a). By Axioms 5 and 1, Axioms 6 and 2, Axioms 7, 9 and 1, Axioms 8, 10 and 2,
respectively, ⊥ is τ -derivable.

Therefore, in each case, ⊥ is τ -derivable from ϕi for arbitrary i, hence from ϕ. A
contradiction. ◀

By Theorem 5, in L(LEWI ), for every τ ∈ N>1, a formula is τ -satisfiable iff it is τ -
consistent. Therefore, a satisfiability checking procedure can check the consistency of a
finite set of L(LEWI ) formulae. Given a finite set of L(LEWI ) formulae Σ, we rewrite Σ in
disjunctive normal form ϕ1 ∨· · ·∨ϕm, where m ≥ 1 and every literal is of one of the following
forms: E(a, b), W (a, b), dE(a, b), dW (a, b), pE(a, b), pW (a, b), pdE(a, b), pdW (a, b), and
their negations. As such, Σ is τ -satisfiable iff there exists a disjunct ϕi, where 1 ≤ i ≤ m,
such that ϕi is τ -satisfiable. From each ϕi, where 1 ≤ i ≤ m, we obtain a set of linear
inequalities Si by translating every literal in ϕi using the τ -σ-translation function tr(τ, σ) of
Definition 8. By Definition 3, ϕi is τ -satisfiable iff Si is satisfiable, i.e., iff Si has a solution in
real numbers. Hence, Σ is τ -satisfiable iff Si is satisfiable, for some 1 ≤ i ≤ m. Some solvers
(e.g., Z3 satisfiability modulo theories solver [3]) can be used to check the satisfiability of
each Si.
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5 Conclusion

In this paper, we have extended the logic of east and west for points (LEW ) to a logic of
east and west for closed intervals (LEWI ) in 1D Euclidean space. The logic LEWI contains
a parameter σ ∈ R>0 that represents the margin of error and a parameter τ ∈ N>1 that
denotes the level of indeterminacy. For every τ ∈ N>1, the LEWI τ calculus is shown to be
sound and complete. As future work, we will develop a reasoner based on LEWI and apply
it to reason with real-world geospatial datasets.
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