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Abstract
We propose a theoretical framework for qualitative spatial representation and reasoning about curves
on a two-dimensional plane. We regard a curve as a sequence of segments, each of which has its own
direction and convexity, and give a symbolic expression to it. We propose a reasoning method on
this symbolic expression; when only a few segments of a curve are visible, we find missing segments
by connecting them to create a global smooth continuous curve. In addition, we discuss whether the
shape of the created curve can represent that of a real object; if the curve forms a spiral, such a
curve is sometimes not appropriate as a border of an object. We show a method that judges the
appropriateness of a curve, by considering the orientations of the segments.
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1 Introduction

Various information technology applications are improving the safety and convenience of
daily life; these include disaster prevention methods. A study of geological structures can
reveal the construction history of geological strata, allowing prediction of future changes
to a landscape. Such studies are important for preventing disasters, and provide essential
information for understanding the shape of the stratum. However, it is difficult to observe the
entire shape of an exposed stratum, and it is almost impossible to collect data at many points.
Therefore, we must determine a global stratum that explains the structure of all exposed data.
One challenging problem that is frequently encountered in the field of structural geology is
identifying a global fold structure that connected local data in the distant past [7].

Assume that three blocks of data, all of which consist of three layers (A, B and C), are
collected at different locations as shown in Figure 1 and that “drag fold” structure is observed
in layer B because layers A and C slip in the directions indicated by the arrows. If these
three pieces of local strata are continuous, how can we determine the global fold structure
that combined all of the data?

Figure 1 What is a global fold structure?
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4:2 Qualitative Formalization of a Curve on a Two-Dimensional Plane

Currently, such determinations are performed via numeral simulations that incorporate
additional information such as the fossil record and historical climate changes. However,
all models are constructed by humans based on their experimental knowledge, which yields
varying results because personal interpretations differ. In addition, there is usually insufficient
evidence. In this paper, we adopt qualitative spatial reasoning (QSR) as a novel approach to
address these concerns. As a result, we derive possible and realistic interpretations using
logical reasoning.

QSR is a method of representation and reasoning that focuses on a specific aspect of
objects [4, 10, 3, 15]. It is consistent with human recognition, and reduces the computational
burden and the amount of required memory because precise numerical values are not employed.
This approach is advantageous when treating ambiguity and understanding an abstract state
focusing specific aspects of objects such as the relative positional relationships between
objects, relative orientation of object movement, abstract shape of an object, and so on.
Although many QSR systems have been proposed, few focus on shape, because it is difficult
to grasp a shape qualitatively compared to other features. And there have been very few
studies on connecting qualitative objects that do not share points or regions. The main issue
addressed in this paper is how a curve on a two-dimensional plane can be formalized in a
qualitative manner.

In typical image processing, image data are handled by dividing the data into unit cells of
the same fixed size. This process aligns multiple consecutive, identical unit data, which leads
to redundancy when the goal is the construction of an abstract shape, not a precise shape.
A qualitative approach can eliminate this redundancy. Generally, when humans recognize a
curve at a glance, the entire shape is understood by dividing the curve into inflection points
and extremum points, according to the number of segments.

In this paper, we regard each local data block as a line segment and create a global curve
by connecting these line segments. We show formalization that handles both shape and
direction when associating all these segments with other segments.

More specifically, the goals of this paper is the formalization of the following two issues:
1. Reasoning about the connection between two line segments and the relative direction

between the initial point and terminal points of the derived smooth global curve.
2. Reasoning about the connection between two line segments located in the specific relative

direction and the suitable line segments to be inserted to create a smooth global curve.

We also discuss whether a created curve is realistic. If the created curve lies on a two-
dimensional plane, does its shape reasonably reflect the border of an actual entity? If the
curve is in the form of a logarithmic spiral, it may sometimes not adequately reflect the shape
of an object. We show a method that judges the appropriateness of a curve, by considering
the orientations of the segments.

The remainder of this paper is organized as follows. In Section 2, we describe the relevant
fundamental concepts. In Section 3, we give the rules for direct/indirect segment connections.
In Section 4, we describe the connections among segments in specific relative directions. In
Section 5, we discuss whether the derived curves are realistic. In Section 6, we apply our
method to predict the shape of a global fold stratum. In Section 7, we compare our works
with the related studies. Finally, in Section 8, we show the conclusions and describe our
future works.

2 Fundamental Concepts

Let CURVES be a set of directed curved segments with a unique direction and curvature on
a two-dimensional plane.
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Let Sv = {n, s}, Sh = {e, w}, Conv = {cx, cc} and Dir = Sv ∪ Sh. The symbols n, s, e

and w indicate the north, south, east and west directions, respectively, and cx and cc indicate
convex and concave, respectively. The direction exactly in the middle between north and
south (east and west) is regarded as either n or s (e or w, resp.) Straight lines are not
considered.

▶ Definition 1 (complementary element). We define a function i that assigns the comple-
mentary element in Dir and Conv.

For Dir ∪ Conv:
i(n) = s, i(s) = n

i(e) = w, i(w) = e

i(cx) = cc, i(cc) = cx

Thus, for each E ∈ Dir ∪ Conv, i(i(E)) = E.
For X ∈ CURVES , we represent the qualitative shape of X focusing on its intrinsic

direction and convexity, ignoring the precise size and the exact curvature.

▶ Definition 2 (qualitative representation). For a segment X ∈ CURVES , X = (V, H, C) is
said to be the qualitative representation of X where V ∈ Sv, H ∈ Sh and C ∈ Conv. V, H

and C show the vertical direction, horizontal direction and the convexity of X, and denoted
by dv(X), dh(X) and cv(X), respectively.

For X, Y ∈ CURVES , let X = (V, H, C) and Y = (V ′, H ′, C ′) be qualitative representa-
tions of X and Y , respectively. We define the relation ∼ on CURVES as follows: X ∼ Y iff
V = V ′, H = H ′ and C = C ′. Then ∼ is an equivalence relation on CURVES . As a result,
CURVES is classified into eight equivalence classes which are jointly exhaustive and pairwise
disjoint. We denote the set of these eight classes as S, that is, S = CURVES/ ∼.

Figure 2 Classes of curved segments.

▶ Example 3. In Figure 2, the left three segments are regarded as equivalent, whereas they
are different from the right two segments. The qualitative representation of a segment in the
leftmost class is (n, e, cx).

3 Connection Rules

3.1 Direct connection
First, we consider the connections between two segments in S ignoring their relative direction.

For X ∈ S, its initial and terminal points are indicated by init(X) and term(X),
respectively. Note that init(X) and term(X) do not represent the location on a two-
dimensional plane, but indicate the parts of X itself. dir(X) = (dv(X), dh(X)) indicates the
relative direction of term(X) with respect to init(X). For X, Y ∈ S, dir(X) = dir(Y ) iff
dv(X) = dv(Y ) and dh(X) = dh(Y ); X = Y , denoted by ssp(X, Y )1 , iff dir(X) = dir(Y )
and cv(X) = cv(Y ).

1 ssp is an abbreviation of “same shape”.

COSIT 2024



4:4 Qualitative Formalization of a Curve on a Two-Dimensional Plane

In this paper, a finite continuous smooth (cusp-free) curve without a self-intersection is
called an scurve. We connect multiple segments to create an scurve.

▶ Definition 4 (directly connectable). For X, Y ∈ S, if an scurve is obtained by considering
that init(Y ) and term(X) are identical, then X and Y are said to be directly connectable,
and the outcome of the connection is represented as X · Y .

▶ Example 5. X = (n, e, cx) and Y = (s, e, cx) are directly connectable, whereas X =
(n, e, cx) and Y = (s, e, cc) are not since a cusp is created at their connection.

For X, Y ∈ S, if ssp(X, Y ) holds, X and Y are directly connectable and the result is
regarded as a single segment without a cusp, since the precise curvatures of X and Y are
ignored. Therefore, it is considered to be ssp(X · Y, X ′) where ssp(X, X ′). When X and
Y are directly connectable, and if ssp(X, Y ) does not hold, the pairs of segments create
inflection or extremum points via direct connections. For X, Y ∈ S, ifl(X, Y ) represents
that X · Y creates an inflection point (ifl), and xtr(X, Y, D) represents that X · Y creates
an extremum point (xtr) in the direction D, where D ∈ Dir (Figure 3). These relations are
defined as follows.

▶ Definition 6 (connecting point).
ifl(X, Y ) iff X = (V, H, C) and Y = (V, H, i(C)).
xtr(X, Y, V ) iff X = (V, H, C) and Y = (i(V ), H, C) .
xtr(X, Y, H) iff X = (V, H, C) and Y = (V, i(H), i(C)).

(a) ssp. (b) ifl. (c) xtr (vertical). (d) xtr (horizontal).

Figure 3 Directly connectable segments.

dir(X · Y ) is represented as a pair (V, H) where V ∈ Sv, H ∈ Sh. dir(X · Y ) indicates
the relative direction of term(Y ) with respect to init(X).

For X, Y ∈ S, the following properties hold for X · Y .
ssp(X, Y ) ⇒ dir(X · Y ) = dir(X) = dir(Y )
ifl(X, Y ) ⇒ dir(X · Y ) = dir(X) = dir(Y )
xtr(X, Y, V ) ∧ V ∈ Sv ⇒ dir(X · Y ) = (∗, dh(X))
xtr(X, Y, H) ∧ H ∈ Sh ⇒ dir(X · Y ) = (dv(X), ∗)

Note that the term “∗” indicates that the value is non-deterministic: for X, Y ∈ S, when
xtr(X, Y, V ), where V ∈ Sv holds, dv(X ·Y ) = n or s depending on how Y is drawn (Figure 4).
Thus, we can draw Y to satisfy dir(X · Y ) = dir(Y ). This reflects the characteristics of the
qualitative treatment.
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(a) dv(X · Y ) = n (b) dv(X · Y ) = s

Figure 4 Various drawings for X · Y .

3.2 Indirect connection
When X, Y ∈ S are not directly connectable, we insert elements in S between X and Y to
obtain an scurve from X to Y , and extremum points and inflection points are created in the
obtained scurve.

▶ Definition 7 (connectable). For X1, . . . , Xk ∈ S (k ≥ 2): if for each j such that 1 ≤ j ≤
k − 1, Xj and Xj+1 are directly connectable, then X1 and Xk are said to be connectable.
The outcome of the connection is an scurve and it is represented as X1 · . . . · Xk.

The connection operation “·” is associative, that is, ∀X, Y, Z ∈ S; (X · Y ) · Z = X · (Y · Z)

▶ Example 8. X = (n, e, cx) and Y = (s, e, cc) are not directly connectable (Figure 5(a)),
but if we insert Z = (s, e, cx) between X and Y , then we get an scurve X ·Z ·Y (Figure 5(b)).

(a) (b)

Figure 5 Indirect connection.

dir(X1 · . . . · Xn) is represented as a pair (V, H) where V ∈ Sv, H ∈ Sh. dir(X1 · . . . · Xn)
indicates the relative direction of term(Xn) with respect to init(X1).

▶ Definition 9 (interpolation number, interpolation segment, shortest scurve, MIN). An scurve
X0 · X1 · . . . · Xk+1 (k ≥ 1) where X = X0, Y = Xk+1, is represented as X − Y , k is said
to be an interpolation number of X − Y , and X1, . . . , Xk are the interpolation segments of
X − Y . An scurve X − Y of which k is the minimum value is said to be a shortest scurve of
X − Y and k is the minimum interpolation number (MIN) of X − Y . When X and Y are
directly connectable, X · Y is an scurve for which the interpolation number is zero.

▶ Example 10. Assume that X = (n, e, cx) and Y = (n, w, cc). If we take X1 = (n, e, cc)
and X2 = (n, w, cx), respectively, then X · X1 · X2 · Y is an scurve X − Y , in which the
connections ifl, xtr and ifl appear in this order (Figure 6(a)). If we take X ′

1 = (s, e, cx)
and X ′

2 = (s, w, cc), respectively, then X · X ′
1 · X ′

2 · Y is also an scurve X − Y in which the
connections xtr , xtr and xtr appear in this order (Figure 6(b)). Both are shortest scurves. If
we take X3 = (s, e, cc), then X · X ′

1 · X3 · X1 · X2 · Y is also an scurve X − Y in which the
connections xtr , ifl, xtr , xtr and ifl appear in this order (Figure 6(c)).

COSIT 2024



4:6 Qualitative Formalization of a Curve on a Two-Dimensional Plane

(a) (b) (c)

Figure 6 Various scurves X − Y .

As the above example illustrates, we can consider infinite kinds of interpolation segments
of X − Y for just making an scurve ignoring relative direction of X and Y . The following
properties hold between these scurves. For example, the first item states that if two segments
are connectable by inserting one interpolation segment and the both connections create ifl,
then there exists another scurve that directly connects these two segments.

▶ Proposition 11.
1. ∀X∀Y ∀Z. ( ifl(X, Z) ∧ ifl(Z, Y ) ⇒ ssp(X, Y ) )
2. ∀X∀Y ∀Z∀D. ( xtr(X, Z, D) ∧ ssp(Z, Y ) ⇒ xtr(X, Y, D) )
3. ∀X∀Y ∀Z∀D. ( ssp(X, Z) ∧ xtr(Z, Y, D) ⇒ xtr(X, Y, D) )
4. ∀X∀Y ∀Z. ( ifl(X, Z) ∧ ssp(Z, Y ) ⇒ ifl(X, Y ) )
5. ∀X∀Y ∀Z. ( ssp(X, Z) ∧ ifl(Z, Y ) ⇒ ifl(X, Y ) )
6. ∀X∀Y ∀Z∀D1∀D2. ( xtr(X, Z1, D1) ∧ ifl(Z1, Z2) ∧ xtr(Z2, Y, D2) ⇒ ifl(X, Y ) )
7. ∀X∀Y ∀Z1∀Z2∀D1∀D2∀D3. ( xtr(X, Z1, D1) ∧ xtr(Z1, Z2, D2) ∧ xtr(Z2, Y, D3) ⇒

∃Z3∃Z4∃D4. ( ifl(X, Z3) ∧ xtr(Z3, Z4, D4) ∧ ifl(Z4, Y ) ) )
8. ∀X∀Y ∀Z1∀Z2∀D1∀D2. ( ifl(X, Z1) ∧ xtr(Z1, Z2, D1) ∧ xtr(Z2, Y, D2) ⇒

∃Z3∃Z4∃D3∃D4. ( xtr(X, Z3, D3) ∧ xtr(Z3, Z4, D4) ∧ ifl(Z4, Y ) ) )

Proof.
1. If ifl(X, Z) and ifl(Z, Y ), then dir(Z) = dir(Y ) = dir(X), and cv(X) = i(cv(Y )) =

i(i(cv(X)) = cv(X). Therefore, ssp(X, Y ).
2-5. trivial.
6. Let X = (V, H, C).

If D1 ∈ Sv, then Z1 = (i(V ), H, C) from xtr(X, Z1, D1). Additionally, Z2 =
(i(V ), H, i(C)) from ifl(Z1, Z2). On the other hand, D2 = i(D1) holds, since Z2 and Y are
directly connectable and xtr(Z2, Y, D2). Therefore, Y = (i(i(V )), H, i(C)) = (V, H, i(C)).
Therefore, ifl(X, Y ) (Figure 7(a)).
If D1 ∈ Sh, then Z1 = (V, i(H), i(C)) from xtr(X, Z1, D1). This case is proven, as is the
case when D1 ∈ Sv.

7. Let X = (V, H, C).
If D1 ∈ Sv, then D2 ∈ Sh, D3 ∈ Sv and D4 ∈ Sh. Z1 = (i(V ), H, C) from xtr(X, Z1, D1).
Then, Z2 = (i(V ), i(H), i(C)) from xtr(Z1, Z2, D2). Then, Y = (V, i(H), i(C)) from
xtr(Z2, Y, D3) (Figure 7(b)). On the other hand, Z3 = (V, H, i(C)) from ifl(X, Z3).
Then, Z4 = (V, i(H), C) from xtr(Z3, Z4, D4). Then, Y = (V, i(H), i(C)) from ifl(Z4, Y )
(Figure 7(c)).
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If D1 ∈ Sh, then D2 ∈ Sv, D3 ∈ Sh and D4 ∈ Sv. Z1 = (V, i(H), i(C)) from
xtr(X, Z1, D1). Then, Z2 = (i(V ), i(H), i(C)) from xtr(Z1, Z2, D2). Then, Y =
(i(V ), H, C) from xtr(Z2, Y, D3) (Figure 7(d)). On the other hand, Z3 = (V, H, i(C)) from
ifl(X, Z3). Then, Z4 = (i(V ), H, i(C)) from xtr(Z3, Z4, D4). Then, Y = (i(V ), H, C)
from ifl(Z4, Y ) (Figure 7(e)).

8. This is proven in a similar manner to the proof shown for case 7.

(a) (b) (c)

(d) (e)

Figure 7 Scurves created by indirect connection.
◀

If an scurve X − Y is obtained of which the interpolation number is more than two, then
there exists another scurve of which the interpolation number is less than three. Moreover,
there exist more than one scurve X − Y with the same interpolation number but consisting
of different interpolation segments. The following can be proven from Proposition 11 and
the associativity of the “·” operation.

▶ Proposition 12. For X, Y ∈ S, MIN of X − Y is less than three and it is determined by
the folllowing rules.

MIN of X − Y is zero iff ssp(X, Y ), ifl(X, Y ) or xtr(X, Y, D) holds.
MIN of X − Y is one iff either of the followings holds.

∃Z∃D. xtr(X, Z, D) and ifl(Z, Y ) (Figure 8(a))
∃Z∃D1∃D2. xtr(X, Z, D1) and xtr(Z, Y, D2) (Figure 8(b))
∃Z∃D. ifl(X, Z) and xtr(Z, Y, D) (Figure 8(c))

MIN of X − Y is two iff either of the followings holds.
∃Z1∃Z2∃D. ifl(X, Z1) and xtr(Z1, Z2, D) and ifl(Z2, Y ) (Figure 8(d))
∃Z1∃Z2∃D1∃D2. xtr(X, Z1, D1) and xtr(Z1, Z2, D2) and ifl(Z2, Y ) (Figure 8(e))

Proof. For each segment, there are two possible segments that are directly connectable
except for the one in ssp relation, which create an inflection point (ifl) and an extreme point
(xtr), respectively. Therefore, considering an scurve that consists of four segments, and that

COSIT 2024



4:8 Qualitative Formalization of a Curve on a Two-Dimensional Plane

(a) (b) (c)

(d) (e)

Figure 8 Connection patterns.

starts from an arbitrary shape X, there are 23 = 8 possible scurves (Figure 9). All the eight
elements in S can be found as a segment of either of these scurves. It means that each Y ∈ S
is connectable from X, and MIN of X − Y is less than three. Therefore, we investigate
scurves consisting of less than five segments.

When an scurve X − Y consists of three segments, it has two connection points. If both
of them are ifl, then there exists another scurve X − Y for which ssp(X, Y ) holds, from the
first item of Proposition 11. Therefore, MIN is zero in this case. If one of the connection
points is xtr , there does not exist other scurve of which the interpolation number is less than
one; therefore, MIN is one in these cases.

When an scurve X − Y consists of four segments, it has three connection points, each of
which is either ifl or xtr .

If ifl, ifl, ifl appear in this order, then there exists another scurve X −Y for which ifl(X, Y )
holds, from the first and fifth items of Proposition 11. MIN is zero in this case.
If ifl, ifl, xtr appear in this order, then there exists another scurve X − Y for which
xtr(X, Y, D) holds, from the first and third items. MIN is zero in this case.
If ifl, xtr , xtr appear in this order, then there exists another scurve X − Y in which
xtr , xtr , ifl appear in this order, from the eighth item.
If xtr , ifl, ifl appear in this order, then there exists another scurve X − Y for which
xtr(X, Y, D) holds, from the first and second items. MIN is zero in this case.
If xtr , ifl, xtr appear in this order, then there exists another scurve X − Y for which
ifl(X, Y ) holds, from the sixth item. MIN is zero in this case.
If xtr , xtr , xtr appear in this order, then there exists another scurve X − Y in which
ifl, xtr , ifl appear in this order, from the seventh item.

Thus, the scurves consisting of four segments that cannot be reduced to directly connectable
scurves are reduced to one of the scurves in which ifl, xtr , ifl or xtr , xtr , ifl appear in these
orders. For these two cases, there does not exist other scurve of which the interpolation
number is less than two; therefore, MIN is two in these cases.
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Figure 9 Eight kinds of scurves consisting of four segments.
◀

Therefore, the following proposition holds.

▶ Proposition 13. For any X, Y ∈ S, MIN of X − Y is either zero, one or two.

Proof. It is derived from Proposition 12 straightforwardly. ◀

4 Designated Relative Direction

We have investigated the shortest scurve that indirectly connects X, Y ∈ S, and discussed
the relative direction of X and Y in the obtained scurve. Here, we discuss the interpolated
segments and the interpolation number of X − Y , when the relative direction of X and Y is
given.

For X, Y ∈ S, we introduce the relation rdir(X, Y ) that is the relative direction of Y

with respect to X.
rdir(X, Y ) is represented as a pair (V, H), where V ∈ Sv, H ∈ Sh. rdir(X, Y ) indicates

the relative direction of init(Y ) with respect to term(X).
Let rdir(X1, Y1) = (V1, H1), rdir(X2, Y2) = (V2, H2) and dir(X) = (V, H). Then,

rdir(X1, Y1) = rdir(X2, Y2) iff V1 = V2 and H1 = H2; and rdir(X1, Y1) = dir(X) iff
V1 = V and H1 = H.

▶ Example 14. If ssp(X, Y ), then X and Y are directly connectable; however, if the
condition rdir(X, Y ) = (s, w) is added, X and Y cannot be directly connected in this
direction (Figure 10).

Figure 10 Connection of segments under the designated relative direction.

COSIT 2024
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In a case such as Example 14, we must insert elements between X and Y to satisfy the
designated direction rdir(X, Y ).

▶ Definition 15 (interpolation number on rdir, shortest scurve on rdir, RMIN). For an scurve
X0 · X1 · . . . · Xk+1 (k ≥ 1), where X = X0, Y = Xk+1, that satisfies a given rdir(X, Y ),
k is said to be an interpolation number on rdir of X − Y . An scurve X − Y that satisfies
rdir(X, Y ) of which k is the minimum is said to be a shortest scurve of X − Y on rdir, and
k is said to be the minimum interpolation number on rdir (RMIN) of X − Y .

Here, we discuss RMIN of X − Y when rdir(X, Y ) is given, by the following procedure.
First, for X, Y ∈ S, we insert segments X ′ and Y ′ that satisfy dir(X ′) = dir(Y ′) =
rdir(X ′, Y ′) = rdir(X, Y ) between X and Y , and consider the connection by dividing the
segments into three parts, X − X ′, X ′ − Y ′ and Y ′ − Y ; and then combine them.

In the following, we discuss the RMINs of these three parts, respectively.
[1] X ′ − Y ′

There exist two distinct shapes X ′ of which the convexities differ, and there exist two
distinct shapes Y ′ of which the convexities differ. For each combination of these shapes,
RMIN of X ′ − Y ′ is zero.
[2] X − X ′

▶ Proposition 16. Let k be RMIN of X − X ′. Then 0 ≤ k ≤ 1 holds.

Proof. We will show that the proposition holds by dividing the case depending on the shape
of X. We can take X ′ that satisfies either cv(X ′) = cx or cc. Figure 11 illustrates the case
in which dir(X ′) = (s, e). In the first two cases, the direction of term(X ′) with respect to
term(X) is always dir(X ′), while in the other six cases, we can draw X ′ so that the direction
of term(X ′) with respect to term(X) is dir(X ′). Let X ′ = (V, H, C).
1. X = (V, H, cx).

Take X ′ such that cv(X ′) = cx. X and X ′ are directly connectable; k = 0 (Figure 11(a)).
2. X = (V, H, cc).

Take X ′ such that cv(X ′) = cc. X and X ′ are directly connectable; k = 0 (Figure 11(b)).
3. X = (i(V ), H, cx).

Take X ′ such that cv(X ′) = cx. As xtr(X, X ′, i(V )) holds, X and X ′ are directly
connectable; k = 0 (Figure 11(c)).

4. X = (i(V ), H, cc).
Take X ′ such that cv(X ′) = cx. If we take Z = (i(V ), H, C), then ifl(X, Z) and
xtr(Z, X ′, i(V )) hold; k = 1 (Figure 11(d)).

5. X = (i(V ), i(H), cx).
Take X ′ such that cv(X ′) = cc. If we take Z = (V, i(H), cx), then xtr(X, Z, i(V )) and
xtr(Z, X ′, i(H)) hold; k = 1 (Figure 11(e)).

6. X = (i(V ), i(H), cc).
Take X ′ such that cv(X ′) = cx. If we take Z = (V, i(H), cx), then xtr(X, Z, i(H)) and
xtr(Z, X ′, i(V )) hold; k = 1 (Figure 11(f)).

7. X = (V, i(H), cx).
Take X ′ such that cv(X ′) = cc. As xtr(X, X ′, i(H)) holds, X and X ′ are directly
connectable; k = 0 (Figure 11(g)).

8. X = (V, i(H), cc).
Take X ′ such that cv(X ′) = cc. If we take Z = (V, i(H), cx), then ifl(X, Z) and
xtr(Z, X ′, i(H)) hold; k = 1 (Figure 11(h)).

Therefore, the proposition holds. ◀
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11 Connection X − X ′ for rdir(X, Y ) = (s, e).

[3] Y ′ − Y

Similarly, we can draw Y ′ so that the direction of init(Y ) with respect to init(Y ′) is
dir(Y ′), and RMIN of Y ′ − Y is less than two.

Finally, we combine the results of [1]-[3].
The number of segments that make up X − Y ranges from four to six by adding X ′, Y ′, X

and Y , from the above discussion. Let X1 · . . . · Xn be a shortest scurve X − Y on rdir

that is created by the above procedure, where X = X1 and Y = Xn. When ssp(Xi−1, Xi)
(∀i; 1 < i ≤ n), Xi−1 and Xi can be merged into one; and it may occur in the connection
with X ′, Y ′, X and Y .

Finally, the number of segments that make up X − Y ranges from one to six.

▶ Theorem 17. For X, Y ∈ S, when rdir(X, Y ) is given, the number of segments that
configure a shortest scurve of X − Y ranges from one to six.

5 Intersection of a Curve

We have shown that an scurve can be obtained that satisfies the designated relative direction
by connecting any pair of line segments. However, is this scurve a natural curve that might
represent the border of an entity in the real world? If the scurve is in the form of a logarithmic
spiral, then the scurve is not an appropriate border for an actual object.

Assume that for X, Y ∈ S, rdir(X, Y ) is given. There exist an infinite number of drawings
of X and Y on a two-dimensional plane when the qualitative approach is taken. Here, we
discuss the existence of a drawing such that the obtained curve does not form a spiral on a
two-dimensional plane.
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5.1 Admissibility of an scurve
In the following, “draw X” means an assignment of one X ∈ CURVES to X ∈ S.

▶ Definition 18 (drawing).
1. Let X ∈ CURVES be a curved segment on a two-dimensional plane of which X ∈ S is

its qualitative representation. (Note that there are infinitely many X’s.) Then X is said
to be a drawing of X. init(X) and term(X) represent the locations of the initial point
and the terminal point of X on a two-dimensional plane, respectively.

2. Let X1 · . . . · Xn be an scurve X1 − Xn, and Xi (1 ≤ i ≤ n) be a drawing of Xi. For all
i such that 1 ≤ i ≤ n − 1, if term(Xi) and init(Xi+1) are located in the same position,
then X1 · . . . · Xn is said to be a drawing of the scurve X1 − Xn.

First, we introduce the concepts of open and closed drawings of an scurve.

▶ Definition 19 (closed, open). For X, Y ∈ S, let C be a drawing of an scurve X − Y on
a two-dimensional plane, where X and Y be drawings of X and Y , respectively. And C ′

be an infinite-length curve that is obtained by extending C in both directions in a manner
such that the curvatures of X at init(X) and Y at term(Y ) are preserved. If C ′ has a
self-intersection point, then the drawing is said to be closed; otherwise, it is open.

▶ Definition 20 (admissible). If there is an open drawing for an scurve, then the scurve is
said to be admissible.

▶ Example 21. Figure 12(a) and (b) shows two kinds of drawings of an scurve X · Z · Y

that are open and closed, respectively, when X = (n, e, cx), Z = (s, e, cx), Y = (s, w, cc) and
rdir(X, Y ) = (s, e). Therefore, X · Z · Y is admissible.

(a) open. (b) closed.

Figure 12 Two drawings of X · Z · Y .

For X ∈ S, we define clockwise (“+”) and anticlockwise (“−”) orientations.

▶ Definition 22 (orientation). For X ∈ S, orn(X) = + iff X = (n, e, cx), (s, e, cx), (s, w, cc)
or (n, w, cc); and orn(X) = − iff X = (s, w, cx), (s, e, cc), (n, e, cc) or (n, w, cx). For
an scurve X1 · . . . · Xn, the orientation orn(X1 · . . . · Xn) is represented as the sequence
orn(X1) . . . orn(Xn).

▶ Example 23. In Example 21, orn(X · Z · Y ) = + + +.

Before discussing the relationship between the admissibility of an scurve and its orientation,
we describe the basic properties of a sequence of orientations.
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For the orientation of an scurve p, let d be the difference between the numbers of “+”
and “−” that appear in orn(p). If d ≥ 4, the scurve is not admissible, since the size of the
rotation angle is greater than or equal to 2π.

▶ Definition 24 (uni-directional). Let p be an scurve X1 · . . . · Xn, where n ≥ 3. If for all i

(1 ≤ i ≤ n), dv(Xi) is the same or dh(Xi) is the same, then we say that p is uni-directional.

When orn(p) includes the sequence + − +, then the open/closed property is preserved if
we replace this sequence by +; and the same holds for − + −.

▶ Proposition 25. Let p be an scurve X1 · . . . · Xn, where n ≥ 3.
1. Let orn(p) = C1 . . . Cn where Ci−1 = Ci+1 = + and Ci = − hold, or Ci−1 = Ci+1 =

− and Ci = + holds, for some i (2 ≤ i ≤ n − 1). Assume that p′ is an scurve
X1 · . . . · Xi−2 · X ′ · Xi+2 · . . . · Xn, such that ssp(X ′, Xi−1) holds. Then, p′ is admissible
iff p is admissible.

2. If p is uni-directional, then the scurve is admissible.

Proof.
1. Assume that p is admissible. As ifl(Xi−1, Xi) and ifl(Xi, Xi+1) hold, dir(Xi−1 ·Xi ·Xi+1)

= dir(Xi−1). We can take X ′ by regarding init(X ′) = init(Xi−1) and term(X ′) =
term(Xi+1) (Figure 13(a)). The hatched region in this figure may be made as thinly as
required, depending on the drawings of Xi−1, Xi and Xi+1. Therefore, p′ can be drawn
without an intersection point. Conversely, assume that p′ is admissible. Take a drawing
of p′ in which the curvature of X ′ is sufficiently small. Then we can draw Xi−1, Xi and
Xi+1 so that their curvatures are sufficiently small. Therefore, p can be drawn without
an intersection point. Therefore, p′ is admissible iff p is admissible.

2. Let X1 and Xn be drawings of X1 and Xn, respectively. If we extend the scurve on
a two-dimensional plane at the points init(X1) and term(Xn), respectively, then the
scurve is extended in the vertically or horizontally opposite direction. Therefore, the
extended parts do not intersect with each other or with X1 · . . . · Xn (Figure 13(b)).
Therefore, p is admissible.

(a) (b)

Figure 13 Properties of scurve orientations.
◀

5.2 Judgment of admissibility
For any X, Y ∈ S and rdir(X, Y ), the number of segments included in a shortest scurve of
X − Y ranges from one to six from Theorem 17. Therefore, we investigate scurves consisting
of one to six segments. We investigate the minimum possible patterns, considering the
clockwise–anticlockwise symmetry and the left–right symmetry.
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Let p be an scurve X1 · . . . · Xn (1 ≤ n ≤ 6), and d be the difference between the numbers
of “+” and “−” that appear in orn(p).

5.2.1 Less than three segments
When n = 1 or n = 2, p is trivially admissible.

5.2.2 Three segments
When orn(X1 · X2 · X3) = + + +, there exists the open drawing shown in Figure 12(a).
Therefore, the scurve is admissible.

When orn(X1 · X2 · X3) = + + −, the scurve is uni-directional. Therefore, the scurve is
admissible, from Proposition 25.

When orn(X1 · X2 · X3) = + − +, then the admissibility of this scurve is reduced to that
of the scurve consisting of only one segment X ′

1 such that orn(X ′
1) = +, from Proposition 25.

Therefore, the scurve is admissible.

5.2.3 Four segments
1. When orn(p) = + + ++, since d ≥ 4, the scurve is not admissible (Figure 14(a)).
2. When orn(p) = + + +−, the connections xtr , xtr , and ifl appear in this order in p. There

exists an open drawing for the scurve p′ = X1 · X2 · X3, where orn(p′) = + + +. It follows
that we can draw X3 so that term(X3) can be located in a direction ensuring that a
drawing of p′ does not have a self-intersection point. Moreover, as the segments X3 and
X4 create an inflection point, we can draw X4 such that a drawing of p does not have
a self-intersection point. Therefore, there exists an open drawing for p (Figure 14(b)).
Therefore, p is admissible.

3. When orn(p) = + + −−, the connections xtr , ifl and xtr appear in this order in p. The
scurve is uni-directional (Figure 14(c)). Therefore, p is admissible

(a) + + ++ (b) + + +− (c) + + −−

Figure 14 Orientations of scurves with four segments.

5.2.4 Five segments
1. When orn(p) = + + + + +, since d ≥ 4, it is not admissible.
2. When orn(p) = + + + + −, the connections xtr , xtr , xtr and ifl appear in this order

in p. Let dir(X1) = (V, H, C), dir(X2) = (V2, H2) and dir(X2 · X3) = (V3, H3). Then
V2 = V3 = i(V ) or H2 = H3 = i(H) holds. When V2 = V3 = i(V ), X5 = (V, i(H), C)
holds; and when H2 = H3 = i(H), X5 = (i(V ), H, C) holds. In both cases, any drawing
of p has a self-intersection, namely, closed (Figure 15(a)).
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3. When orn(p) = + + + − −, the connections xtr , xtr , ifl and xtr appear in this order in p.
X2·X3·X4·X5 is uni-directional. Let dir(X5) = (V, H) and dir(X1·X2·X3·X4) = (V4, H4).
Then we can draw X1 so that V = i(V4) or H = i(H4) holds. In both cases, the infinite
curve obtained by extending a drawing of p has no self-intersection (Figure 15(b)).
Therefore, p is admissible.

4. When orn(p) = + + − − +, the connections xtr , ifl, xtr and ifl appear in this order in p.
p is uni-directional (Figure 15(c)). Therefore, p is admissible.

(a) + + + + − (b) + + + − − (c) + + − − +

Figure 15 Orientations of scurves with five segments.

5. Otherwise, since + − + is always included in orn(p), the admissibility is reduced to that
of the scurve of which the length is three, from Proposition 25. Therefore, all the scurves
are admissible.

5.2.5 Six segments
1. When d ≥ 4, the scurve is not admissible.
2. When orn(p) = + + + + −−, the connections xtr , xtr , xtr , ifl and xtr appear in this order

in p. There exists an open drawing for the scurve p′ = X2 · X3 · X4 · X5 · X6, where
orn(p′) = + + + − −. It follows that we can draw X2 so that init(X2) can be located
in a direction ensuring that a drawing of p′ does not have a self-intersection point. Let
dir(X1) = (V, H) and dir(p′) = (V2, H2). Then we can draw X1 such that V = i(V2) or
H = i(H2) holds. In both cases, the infinite curve obtained by extending a drawing of p

has no self-intersection point (Figure 16(a)). Therefore, p is admissible.
3. When orn(p) = + + − − ++, the connections xtr , ifl, xtr , ifl and xtr appear in this order

in p. As p is uni-directional, p is admissible (Figure 16(b)).
4. When orn(p) = + + + − −+, the connections xtr , xtr , ifl, xtr and ifl appear in this order

in p. There exists an open drawing for the scurve p′ = X1 · X2 · X3 · X4 · X5, where
orn(p′) = + + + − −. Since the segments X5 and X6 create an inflection point, we can
draw X6 such that a drawing of p does not have a self-intersection point (Figure 16(c)).
Therefore, p is admissible.

5. When orn(p) = − + + + +−, the connections ifl, xtr , xtr , xtr and ifl appear in this order
in p. Let p′ = X2 · X3 · X4 · X5. Also let dir(X2) = (V, H) and dir(p′) = (V ′, H ′). We
can draw p′ so that either V = i(V ′) or H = i(H ′) holds depending on whether the
extremum point of X2 · X3 is vertical or horizontal. And we can connect X1 and X6
with small convexities to the both ends of this drawing of p′, respectively. Then we get a
drawing of p that is open, in both cases (Figure 16(d)). Therefore, p is admissible.

6. When orn(p) = + + + − −−, the connections xtr , xtr , ifl, xtr and xtr appear in this order
in p. There exists an open drawing for the scurve p′ = X1 · X2 · X3 · X4 · X5, where
orn(p′) = + + + − −. It follows that we can draw X5 so that term(X5) can be located
in a direction ensuring that a drawing of p′ does not have a self-intersection point. Let
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dir(X2) = (V, H) and dir(X3 · X4 · X5 · X6) = (V6, H6). Then, we can draw X6 such
that V6 = V or H6 = H holds. In both cases, the infinite curve obtained by extending
a drawing of p has no self-intersection point (Figure 16(e)). Therefore, the scurve is
admissible.

7. When orn(p) = + + − − −+, the connections xtr , ifl, xtr , xtr and ifl appear in this order
in p. There exists an open drawing for the scurve p′ = X1 · X2 · X3 · X4 · X5, where
orn(p′) = + + − − −. As the segments X5 and X6 create an inflection point, we can
draw X6 such that a drawing of p does not have a self-intersection point (Figure 16(f)).
Therefore, p is admissible.

(a) + + + + −− (b) + + − − ++ (c) + + + − −+

(d) − + + + +− (e) + + + − −− (f) + + − − −+

Figure 16 Orientations of scurves with six segments.

8. Otherwise, + − + is always included and more than one − is always included in orn(p).
The admissibility of the scurve is reduced to that of an scurve of length four, which
includes at least one −, from Proposition 25. Therefore, all scurves are admissible.

5.3 Summary

The reasoning on admissibility of scurves is similar if we exchange + and −, or reverse the
order of the sequence. Thus, the patterns shown in the above subsections cover all possible
scurve orientations.

In summary, we have the following property.

▶ Theorem 26. For the scurve p that connects a given X, Y satisfying rdir(X, Y ), the
following property holds.

Let d be the difference between the numbers of “+” and “−” that appear in orn(p).
1. When d ≥ 4, then p is not admissible.
2. When orn(p) is either ++++−, −++++, −−−−+ or +−−−−, p is not admissible.
3. Otherwise, p is admissible.
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6 Application

We apply our method to predict the shape of the global fold stratum mentioned in Section 1.
Assume that three pieces of data, all of which feature three layers, are collected at different

locations (Figure 17(a)). If these three pieces of local strata are continuous, then how can
we determine the global fold structure that combines all of these data?

This problem is formalized as follows. For X, Y, Z ∈ S where X = (s, e, cc), Y =
(n, e, cc), Z = (s, w, cc), rdir(X, Y ) = (n, e) and rdir(Y, Z) = (n, e) are given, find an scurve
that connects them (Figure 17(b)). Here, the relative directions are determined by the
observed drag fold.

Following the reasoning described in Section 4, we obtain the connection X · X1 · X2 ·
Y · Y1 · Y2 · Y3 · Z (Figure 17(c)). This connection is reduced to the scurve of five segments
(s, e, cc) · (n, e, cc) · (n, e, cx) · (s, e, cx) · (s, w, cc) by merging consecutive segments in the same
shape. The orientation of this scurve is − − + + +, and we find that the scurve is admissible.

As a result, we predict that a global stratum might exist that combines the three pieces
of local data, and the abstract shape of the stratum is shown in Figure 17(d).

(a) (b)

(c) (d)

Figure 17 Application of the method to stratum prediction.

7 Related Works

Geological structures are usually investigated employing simulations and logical formalization
or reasoning is almost never used. Exceptionally, Shiono et al. [14] proposed a logical model of
a geological structure based on stratigraphy and configuration from a geological perspective.
Although they provided a mathematical basis for the construction of a geological map,
this was not a qualitative approach, and they did not focus on representations of shape or
directions. Taniuchi et al. [17] presented a qualitative treatment and reasoning for fold strata.
They proposed a qualitative representation of a local stratum consisting of multiple layers,
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and showed how to derive global data from these local data using connection rules. However,
they did not treat the relative direction, or intersections of curves on a two-dimensional
plane.

Although a great deal of QSR research has been conducted, few studies have focused on
shapes, particularly on curves. Leyton [9] proposed a grammar that represented changes in
the shape of a closed curve, starting from a simple smooth curve. They explained the changes
in shape that result from a force acting inside or outside the curve. It was shown that a
smooth closed curve of any shape could be represented using language based on the proposed
grammar. Tosue et al. [18] extended this grammar to handle phenomena such as the creation
of a tangent point and division of the curve. Galton et al. [6] proposed another grammar that
was applicable not only to a smooth curve, but also to a straight line or a curve with cusps.
They showed that objects of various shapes could be symbolically represented by connecting
a finite number of primitive segments. Cabedo et al. [2] proposed a representation for the
border of an object that included further information such as relative lengths and relative
angles. The shape of a region is usually represented by tracing the border of an object, and
the juxtaposition of objects has been formalized [1, 13, 5]. However, none of these works
treated entities at distant locations.

Kulik et al. [8] applied QSR to landscape silhouettes. They proposed a descriptive
language that represented the shape of an open line that was the border of a landscape from
the horizontal perspective. Additionally, rules were provided that yielded abstractions of the
lines by combining refined line segments. However, neither entities at distant locations nor
curved lines were treated.

Several systems have been proposed that focused on direction in QSR. Skiadopoulos
et al. [16] presented a cardinal direction calculus using the binary relationships of regional
directions. Moratz et al. [11, 12] proposed a calculus termed OPRA, which used the ternary
relationships of the directions of entities. In OPRA, a primitive object is a vector with an
intrinsic direction. Thus, both the initial and terminal points of entities are considered. In
this sense, our formalization and OPRA are somewhat similar. However, a primitive object
in OPRA does not have shape as an attribute.

8 Conclusion

We have formalized a qualitative treatment of curves and their relative directions, and
proposed a system that handles spatial data on a symbolic representation. As a result,
we can find missing segments that connect segments separated by distinct distances while
respecting the constraints imposed by their relative locations. We have also shown the
judgment whether the obtained global curve is realistic or not.

Curves are common in many natural objects, ranging from the micro level (such as cells)
to the macro level (such as terrains). We frequently encounter situations in which we need
to predict the abstract entire shape of a curve that is only partly disclosed or that includes
unclear parts. The method proposed in this study may contribute to the analysis of medical
images that are ambiguous or that lack some regions. The condition of the scurve is also
required in wiring problems of circuits.

In future, we will implement this reasoning system and apply to issues including the
prediction of fold strata. It will be also interesting to consider a qualitative calculus based
on the relative directional relations of the line segments of a curve, and to investigate the
emerging logical properties.
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