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—— Abstract

This paper presents the Spatial Nudging framework — a theory-based framework that maps out

nudging strategies in the mobility domain and refines its existing definitions. We link these strategies
by highlighting the role of perceived affordances across physical and digital interventions based on the
Nudge Theory and the Theory of Affordances. Furthermore, we propose to use graph representation
techniques as a supportive methodology to better align perceived and actual environments, thereby
enhancing the intervention strategies’ effectiveness. We illustrate the applicability of the Spatial
Nudging framework and the supportive methodology in the context of an E-bike City vision. This
paper lays the foundation for future research on theoretically integrating physical and digital
interventions to promote sustainable mobility.
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1 Introduction

Promoting sustainable mobility, particularly cycling, is crucial for combating climate
change [5] and enhancing overall well-being [10]. Various strategies exist, oscillating between
hard measures such as policies or infrastructure planning [3], and soft measures such as
Mobility as a Service (MaaS) offerings [48], or digital tools supporting societally desirable or
personalized travel goals [46]. Jensen et al. [28] refer to the combination of these strategies
as Mobilities design emphasizing its behavioral goal-oriented nature.

Creating safe and comfortable bike lanes through infrastructure changes is widely rec-
ognized as a highly effective intervention strategy [32], with behavioral change evidence
from multiple empirical studies [60, 20]. Despite this, persuasive technologies such as mobile
applications that use nudging strategies, i.e., subtle interventions that aimed at predictably
influencing travel habits, gained the attention of policymakers as well as location-based
service providers [50, 46]. In a recent review, such applications were found to reduce car use
by approximately 7%, illustrating that digital communication strategies and targeted infor-
mational campaigns influence travel behavior [51]. A nudge is a subtle change in how choices
are presented or organized within the choice environment [53]. The choice environment is the
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setting where decisions are made, including physical spaces, digital interfaces, or augmented
reality (AR) [31]. According to Thaler and Sunstein [56], these choice environments inherently
influence decision-making and are unavoidable.

However, goal-oriented design elements or persuasive applications in physical and digital
environments face challenges in shaping our travel choices. In the context of physical
interventions, research has identified a cognitive mismatch between the objective (observable)
properties of the physical environment shaped by planners and the subjective perceptions
of users [58]. Similarly, digital nudges promoting cycling must resonate with these user
perceptions to be effective [51]. In turn, accurately anticipating how users perceive physical
environments or react to digital nudges is challenging, posing a major obstacle to effective
interventions. Furthermore, the theoretical links between these choice environments remain
fragmented. For example, views differ on whether infrastructure design itself constitutes
a nudge [20] or merely provides context information for the nudge design [32]. Moreover,
while interventions informed by the psychological theories are hypothesized to show greater
efficacy [33], the multitude of existing theories complicates choosing when and how to apply
them in daily planning tasks [13].

To ground nudging more cohesively in the mobility domain as a multifaceted behavioral
change strategy, there is a need to develop a clear and unified definition of nudging strategies
across choice environments. Additionally, supporting methodologies are essential to better
anticipate how physical environments influence subjective perceptions and responses to
nudges, thereby increasing the effectiveness of these strategies. Our approach begins with
a thorough overview of various nudging strategies for sustainable mobility and leveraging
relevant theories, such as the Nudge Theory [56] and the Theory of Affordances [22] to identify
the role of the physical environment in these strategies. Secondly, we evaluate methodologies
that enable the analysis of the impact of people’s perceptions on travel behavior. Graph
representation stands out as a feasible solution for our needs, with its proven effectiveness
across urban informatics [57], urban planning [52], and cognitive studies [62].

This paper introduces the Spatial Nudging framework which maps out nudging strategies
in the mobility domain by highlighting the role of perceived affordances across physical and
digital interventions based on related behavioral theories. We propose a novel concept called
Spatial Nudging — an integrated nudging strategy that utilizes multiple choice environments,
nudging techniques and spatial information to design an intervention for behavior change,
thereby extending the scope of existing nudging strategies. Furthermore, we present initial
steps for a supportive methodology to align perceived and objective environments of cycling
routes, specifically in a route recommendation task. We illustrate the applicability of the
Spatial Nudging framework and the supportive methodology in the context of the E-bike
City project [3].

The paper is structured as follows: section 2 covers nudging and related behavioral
theories, cognitive mismatches, and current graph-based methods for analyzing travel behavior.
Section 3 elaborates on the Spatial Nudging framework, the initial conceptualization for
the supportive methodology, and an illustrative use case. Section 4 concludes with the key
contributions and directions for future research.

2 Background

In this section, we discuss the existing theoretical underpinnings used to conceptualize nudges
across physical and digital interventions for sustainable mobility behavior, particularly cycling.
Then, we delve into the difference between how physical environments are perceived versus
their objective characteristics and how these environments affect nudging efforts. Finally, we
explore graph-based methods’ potential to anticipate this mismatch better.
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2.1 Nudging and Related Behavioral Theories

Human decision-making related to mobility is not always rational and often relies on mental
shortcuts and habits that can be influenced through changes in choice environments [63].
Nudging refers to the practice of subtly steering individuals towards better options by
strategically organizing and delivering information in these choice environments [53, 16]. The
nudge concept is rooted in Nudge Theory, which asserts that (1) the choice environment
notably influences how people make choices, (2) choice architecture is unavoidable, and (3) it
is possible to nudge while preserving freedom of choice [56].

Different nudging conceptualizations have emerged, such as Hummel’s morphological
box [27], suggesting multiple perspectives on how nudges are defined across domains. In
Table 1, we present an overview of such attempts to structure and characterize nudges based on
where, how, and what nudges target. This overview reveals overlapping, complimentary, yet
contrasting descriptions of nudges, illustrating fragmented and often ambiguous distinctions
between different strategies, particularly regarding the role of the physical environment.
For instance, many consider physical interventions, such as strategic placement of items
and signifiers or bike infrastructure design, as forms of nudging [31, 20]. Meanwhile, in the
development of persuasive technologies, spatial characteristics are primarily interpreted as
the contextual background information for designing more effective digital nudges [32].

Travel behavior change strategies, including nudging, draw upon various behavioral
theories [30, 45, 67]. For example, the Mobility design paradigm [28] mentioned earlier is
based on the Theory of Affordances, initially introduced by Gibson [22] and later elaborated
by Norman [42] who emphasized the relation between perception and affordances. The Theory
of Affordances examines the psychological interactions between humans and designed objects.
Affordances represent perceived potential actions available to a user and are integral to an
object’s design. Sunstein [54] extensively references design examples described by Norman,
while Lehner et al. [31] frame nudging tools as valuable design principles, highlighting a close
link between nudges and design intent. In the mobility domain, the theory highlights how
individuals engage with the physical elements, including infrastructures, as well as digital
tools like smartphones with GPS services that are brought along on everyday journeys [28].
These examples illustrate how nudging can be framed as a strategic design effort to shape
perceived affordances within physical and digital choice environments, potentially offering a
foundation for a design-based perspective on existing nudging definitions.

2.2 The Mismatch of the Objective and Perceived Environments

The effectiveness of strategies — goal-oriented design interventions or nudging — that encourage
cycling partly depends on people’s perceptions, as perceptions are known to influence travel
behavior [34]. The intervention strategies discussed below showcase two perspectives on
perception: one focuses on its influence in universal interventions that target everyone and is
typically associated with the physical choice environment, while the other emphasizes its
role in personalized interventions and is more common across digital choice environments.
Research on the effect of physical interventions for cycling reveals a cognitive mismatch
between planners’ objective evaluations and users’ subjective perceptions [58]. This mismatch
has been explored in aspects such as cycling speed [41], travel time [44], and infrastructure
design [37]. The mismatch originates from complex cognitive processes where an individual’s
sensory inputs (experienced trip utility) are translated into a cognitive representation of
the environment (recalled trip utility) [17]. Many factors, such as physical activity [38],
demographics [34], local culture [1], as well as attitudes [18], habits [49], and cognitive
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Table 1 Showcases existing nudging categorizations relevant to the mobility domain based on
where, how, and what nudges target to change travel behavior.

Category / Key Elements Description
What nudges target

1. Cognitive System Nudges target System 1, exploiting cognitive biases, or
- Cognitive System 1 System 2 that aims to encourage rational thinking. This
- Cognitive System 2 differentiation stems from the dual process theory [29].

2. Decision-making System Nudges can target the decision structure (how choices are
- Decision structure organized), decision information (details about the choice
- Decision information options), or decision assistance (supporting behavioral
- Decision assistance intentions). Interventions focusing on the decision struc-

ture typically have a stronger effect [40].

3. Stage of Behavioral Change Nudges target behavior at different stages of the behav-

- Pre-contemplation ioral change process [12]. Nudges in the pre-contemplation
- Contemplation stage aim to boost awareness. Nudges that target con-
- Preparation templation assist self-assessment. During the preparation
- Action and Maintenance stage, they reinforce self-commitment and further educate

about alternatives. Nudges targeting action and mainte-
nance reward positive behaviors and build social support.

4. Goals Nudges target different goals. For instance, green nudges
- Sustainability encourage sustainability in energy conservation, mobility
behavior, or food consumption [69].

5. Choice Environment Nudges can change the properties of the choice environ-
- Properties ment, placements within, or both [26].
- Placement

Where nudges target

6. Choice Environment Nudges target travel behavior in different choice environ-
ments, including digital or physical [31, 27].
- Physical environment Physical nudges guide decision-making in physical choice

environments. While minor alterations such as signage or
road markings are prime examples, larger-scale modifica-
tions have also been called nudges [8, 20].

- Digital environment Digital nudges guide decision-making in digital environ-
ments and have been associated with digital user interfaces
[69]. Examples include persuasive elements in mobile or
web-based applications [12].

How nudges target

7. Level of Obtrusiveness Nudges vary in their level of obtrusiveness. Nudges that
- Invite invite are highly open and voluntary, while seductive
- Seduce nudges lure with appealing offers. Nudges that challenge
- Challenge engage people’s competitive nature. However, creating

barriers is too intrusive to be considered a nudge [59].
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Table 1 Showcases existing nudging categorizations relevant to the mobility domain based on

where, how, and what nudges target to change travel behavior.

Category / Key elements

Description

8. Strategy
- Educative
- Social
- Environmental
- Incentive

- Gamification

9. Personalization

- Universal

- Personalized
- Delivery Personalization
- Choice Personalization

- Context Awareness

- Location-based
- Suggestive
- Disclosure

10. Tool or Technique

Nudging can be defined by the overall strategy [4]. Ed-
ucative nudges inform individuals about their decisions.
Social nudges leverage social comparison and incen-
tive nudges involve offering rewards. Environmental
nudges modify the needed effort for the behavior by
changing the choice order or visibility.

Nudges use game elements in non-gaming contexts and
leverage common game mechanics such as competition,
cooperation, quests, points, or badges. [11, 33].

Nudges vary from universal approaches targeting wide
audiences to personalized interventions designed for
individual preferences. While universal interventions
may neglect unique individual situations, personaliza-
tion can limit shared experiences important for policy
transparency and identity development [39].

Generic digital nudges or physical interventions that
target behavior universally across broad user groups
are prime examples of universal nudging [8].

Nudges utilize diverse data to personalize the choice
by customizing outcomes (choice personalization), or
the method of nudge (delivery personalization) [39].

Context-aware nudges use location-based services to
determine the individual context, e.g., demograph-
ics, built environment, weather, or public transport
schedules, to inform nudging strategies [32, 11]. This
approach addresses criticisms of digital nudging, which
often reuses generic nudges without considering local
contexts [33].

Nudging varies based on the beneficiaries, influenced
by the design of location-based services. Suggestive
nudges benefit only individuals to achieve their goals.
In contrast, Disclosure nudges, which push for sharing
location data to improve navigation, can limit free
decision-making by over-relying on GPS and exposing
personal data to service providers [25].

Various common nudging tools exist: feedback, self-
monitoring, prompting, reminders, tailoring, framing,
stmplification, priming, changes in physical environ-
ment, visibility or accessibility, social comparison, so-
cial norms, saliency, signifiers, defaults, goal-setting,
anchoring, rewards [31, 21, 33, 32, 50, 53]. Notably,
the conceptual links and hierarchies across these tech-
niques are ambiguous.
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biases [21] can affect how physical environments are perceived. Therefore, accounting for
these factors contributing to the aforementioned mismatch is vital for successful physical
interventions.

Perception also plays a role in designing and determining the success of digital interven-
tions such as persuasive mobile applications aimed to influence travel choices [64]. These
applications engage with perception in two ways: 1) their effectiveness heavily relies on the
perceived physical environment, and 2) they often target human heuristics to influence per-
ceived affordances and nudge individuals towards more desirable travel choices. Specifically,
for digital nudges to effectively promote active mobility, they need to align with positive
users’ perceptions of their physical environment such as weather, cycling infrastructure, or
presence of greenery [32, 51]. This highlights the importance of the physical environment in
digital strategies and the need to understand user perceptions, particularly among diverse
user groups, to design effective digital nudges [50].

2.3 The Role of Graphs in Travel Behavior Analysis

Various methodologies help to understand, analyze, and predict travel behavior and the
underlying reasons [46]. A significant trend in the existing literature is the use of mathe-
matical graph representations in cognitive studies related to spatial knowledge [62], urban
planning [52], and individual mobility analytics [65]. Despite the extensive research within
individual domains, studies that derive combined insights for the mentioned applications of
graph data structures are absent, presenting an opportunity to explore potential synergies.
However, these applications of graphs vary across scales, granularity, and levels of abstraction,
requiring comprehensive alignment.

Spatial knowledge and potential movement actions can be represented using graph-like
elements [66]. For instance, supported by multiple empirical studies, the Cognitive Graph
hypothesis proposes using a labeled graph with local metric information embedded in graph
nodes and edges to represent spatial knowledge, akin to cognitive maps [62, 6]. Recent studies
show that graph-based models incorporating spatial biases and heuristics can generate realistic
movement trajectories [19, 35]. In a related stream of work, the Space Syntax community
typically uses standard graph-based measures to reveal psychological responses to urban
form, also seen in studies for planning bike networks and analyzing cyclist behavior [52].
Urban planners have a long tradition of using this approach for its predictive ability and
easy translation to policies for promoting active mobility [68].

Urban analytics and trajectory data mining are key for studying travel behavior [61] and
testing assumptions about human mobility heuristics at scale [55, 9]. Topological (graph-like)
representations of movement data are argued to offer additional structural information about
human mobility [65]. For example, researchers use graph representation and standard graph
measures to recommend personalized routes [57]. Martin et al. [36] propose compact and
privacy-preserving location graphs to profile trajectory data across multiple datasets. In
a related study, Wiedemann et al. [65] leverage such location graphs with social network
science methods to reveal structural patterns in individual human mobility. Bongiorno et
al. [9] use a vector-based method, revealing heuristics such as detour percentage in pedestrian
route choices at scale.

3 Spatial Nudging Framework

This section introduces the Spatial Nudging framework to unify the fragmented understanding
of nudging strategies and their characteristics in the mobility domain across different choice
environments. We further outline a graph-based method to support (nudge) route choices, an
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essential travel choice task, by potentially aligning perceived and actual environments better
— an essential factor for the success of these strategies. Finally, we present an illustrative use
case for its applicability in the context of Zurich.

3.1 Rationale and Framework Development

Based on the literature overview in section 2, we provide a rationale for theoretically

integrating the fragmented nudging strategies and affordances of different choice environments.

Our approach considers the varying perspectives on the role of physical environments across
different interventions.

First, we scrutinize the common contrasting notion that nudging is used to bypass
the challenges associated with physical interventions, such as regulatory complexities and
high costs. Our literature review illustrates that nudging and physical interventions are
not mutually exclusive and multiple underlying techniques share similarities. For example,
visible bike lane markings, arguably a physical intervention, could be viewed as a nudging
technique that increases bike lane saliency, i.e., it modifies the properties of the choice
environment (see Table 1, Category 4.). Furthermore, the assumption that nudging is a
cost-effective and straightforward alternative for behavioral change overlooks the extensive
processes required to develop effective nudges, including designing, testing, aligning nudges
with existing preferences, and finally implementing it [16].

Second, we examine the reasons behind differing views on whether a physical intervention
qualifies as a nudge, and more broadly, the role of choice environments across interventions.
The literature review reveals that these differing views often map to specific disciplinary
domains. Arguably, the domain’s ability to target perceived affordances is bound to different
choice environments, expertise, timelines, and methods. For example, experts who create
digital tools to assist travel decisions typically view the physical environment as unchangeable,
while planners consider it malleable due to their expertise. Context-aware persuasive
technologies serve as a unique nudging case in this divide. They intertwine physical and

Spatial Context-aware Digital Physical
Nudging Nudging Nudging Nudging
Design intent Design intent
| Digital choice b __| Digital choice | | Digital choice
environment environment environment
< <
g Perceived & Perceived 5 &  Perceived
o affordances § 2 affordances 2 affordances
o = g = =
Q e Q
> o 9] el 9}
z 2 “ o |7
a iG]
Perceived & Perceived T Perceived
affordances affordances affordances
Physical choice Physical choice | | Physical choice
environment environment environment

Design intent

Figure 1 Tllustrates the interaction between choice environments, perceived affordances, and
users across discussed nudging interventions, demonstrating how each type of intervention reflects
Spatial Nudging to different extents.
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digital choice environments by leveraging information from the physical environment to
design more tailored digital nudges [32]. Although current examples do utilize contextual
information, they often do not consider the physical environment’s ability to influence
perceived affordances — a crucial aspect of its design according to the Theory of Affordances.
Despite this, context-aware nudging offers a useful starting point for integrating behavioral
change efforts across both choice environments.
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Figure 2 Illustrates how common nudging categories can describe three hypothetical examples of
nudging interventions discussed in this paper. Although these examples are hypothetical nudging
interventions, the mapping could be similarly applied to existing ones. Pink lines describe context-
aware nudging, e.g., a mobile app displaying trip CO2 emissions. Green lines refer to a physical
nudging, e.g., a strategic placement of a new bike lane. Blue lines refer to digital nudging, e.g., a
mobile app with gamification and reward strategy for traveling sustainably.

Therefore, we propose the Spatial Nudging framework, which explicitly outlines the links
between the physical and digital choice environments and different nudging interventions
to promote active mobility. Drawing on multiple examples from Table 1 that support the
idea of nudges functioning as design principles, we propose four distinct nudge strategies
by linking choice environments, perceived affordances, and design intent. Figure 1 and
the descriptions below outline these strategies: physical, digital, context-aware, and spatial
nudging. The figure also highlights findings from existing literature, suggesting that nudges
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in the digital choice environment must align with the perceived physical environment to be
effective. However, our review of related active mobility research found no evidence that
digital tools need to alter perceptions of the physical environment for physical interventions
to be effective. While we focus on nudging within physical or digital choice environments,
as they are predominantly used in current behavioral change strategies to promote cycling,
AR could serve as a potential choice environment that would allow for testing whether an
overlay of virtual information changes perceived physical cycling affordances. Similarly, this
study does not cover the influence of social networks, local culture, or regulatory systems as
potential choice environments.

Physical Nudging: refers to interventions in the physical choice environment. Examples
include the strategic placement of signs and increasing visibility of bike lanes or parking
markings with vibrant colors.

Digital Nudging: is embedded in a digital choice environment and communicated via
digital interfaces. Examples include motivational prompts or gamification techniques in
mobile applications that promote sustainable mobility.

Context-Aware Nudging: is embedded in the digital choice environment but utilizes
contextual data to match nudges with individual context and expectations better. Exam-
ples include mobile trip planners leveraging weather conditions, traffic updates, or air
quality indices.

Spatial Nudging: refers to strategies that simultaneously utilize several choice en-
vironments, with spatial information linking these environments. Examples include
dynamically allocating road space and enhancing communication about the current state
or prioritizing physical interventions according to the most popular routes suggested by
digital trip planners.

Additionally, we provide a comprehensive and refined nudge categorization, summarizing
the key nudge categories based on Table 1 and considering where, how, and what nudges
target. It can be argued that every nudge intervention presented in this study should
have a mapping in each key category. Notably, while some of the identified categories can
function independently, others show more interdependence. For instance, the physical choice
environment typically targets everyone universally, illustrating interdependence between
choice environments and degree of personalization. Similarly, individual nudging techniques
are more likely to be leveraged in specific strategies. For instance, gamification often uses
rewards, social comparison, or goal-setting techniques. Figure 2 provides a semi-hierarchical
overview of these categories and three hypothetical examples of the discussed nudging
intervention types mapped out across these categories.

3.2 Cognitive Graphs for Nudging Strategies as Supportive Methodology

As discussed in section 2, graph representation could be leveraged to anticipate better the
subjective perceptions of physical environments and the reactions to nudging strategies,
a necessity for successful interventions. Route choice is arguably one of the key tasks of
determining travel behavior, influenced by the perceived affordances of route characteristics.
Therefore, given its frequent targeting by physical and digital interventions, we focus our
proposed supportive methodology on the route choice task. For an initial conceptualization
towards a robust solution, we adopt a workflow by Dubey et al. [19] that proposes the
Dynamic Hierarchical Cognitive Graph (DHCG), originally designed to generate realistic
pedestrian trajectories while accounting for spatial memory biases and hierarchical nature of
spatial knowledge. The DHCG dynamically encodes decision points, such as landmarks or
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road intersections, as a hierarchical abstract graph, used to search for the shortest network
path to the destination (given an edge weight function) at each step of the route planning
task. We argue that this approach is also suited for modeling spatial knowledge along
constrained cycling routes. By modeling cycling routes dynamically, we can have a step-wise
representation of perceived affordances along that route and can create a mapping between
a particular decision point in the route and the associated perceived affordances. The
methodology could suggest salient routes in mobile route planners, and capturing perceived
affordances along the routes could be leveraged in many urban modeling and planning
applications.
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Figure 3 Illustrates the adapted workflow steps for creating cognitive routes. Components in
green are customized and tailored for our cycling routing application, and components in blue are
direct adoptions from [19].

The adapted workflow for generating realistic cycling routes consists of eight steps,
summarized below and in Figure 3. Notably, steps 1-4 and 8 are novel cycling-specific steps
that we introduced, while steps 5-7 are implemented according to the original workflow
proposed by Dubey et al. [19]. Next, we describe individual steps.
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First, we match existing cycling trajectories using Open Street Routing Machine (OSRM)
API [43] (1) with a simplified graph-based road network (2). We create a feasible subgraph
from the network for every trajectory by sampling unique network nodes and edges common
to all possible paths that are up to 15% longer than the shortest path between the origin-
destination (OD) pair of our cycling trajectory data as movement trajectories rarely follow
the shortest possible path (3). The exact value for detour ratio is based on the research by
Bongiorno et al. [9], and similar, albeit more heterogeneous, findings for cycling detours
[7, 14]. Next, each node in the subgraph is enriched with metric attributes commonly used
as cycling determinants to evaluate bike networks, such as traffic volume, slope, presence of
bike lanes, and so forth (4.1). While Grisiute et al. [24] describe bike network evaluation
metrics in detail, in this workflow, we only use a selection of metrics based on their frequency
in the related literature. We define a pairwise similarity matrix for all nodes, where lower
values map to higher similarity (4.2), and construct a cycling saliency value for every node.

Next, following the steps in the original workflow by Dubey et al., we cluster network
nodes based on the similarity matrix using an Agglomerative Hierarchical Clustering (AHC)
with the complete linkage method (defines the similarity of any two clusters based on the
similarity of their most dissimilar pair) (5). The resulting dendrogram is truncated at specific
heights to discern a three-tier hierarchy of clusters mirroring human spatial memory [35] as
abstract cluster nodes later used in the route planning task. Notably, the first level (L1) is
defined by the physical nodes in the subgraph. The subsequent levels, L2 and L3, are derived
from the square roots of the number of clusters at the previous level. According to the authors
of the original workflow, this approach aims to minimize the average size of the potential
abstract graph, reducing the cost of path planning. Further, we integrate two models for
spatial memory distortions (Category Adjustment (CA) and Sequence Order Effects (SE))
to adjust the locations of every cluster node (6). We then employ the Fine-To-Coarse (FTC)
wayfinding heuristic for path planning [66], which uses a detailed mental representation of
the immediate environment (L1 nodes) and gradually transitions to a coarser mental map
of the environment (L2 and L3 cluster nodes). This mental representation is constructed
dynamically as an abstract graph between the node at the current location and the destination
node at every step (7). The movement cost between nodes, used to determine the next step in
the abstract graph, is defined as a function equally balancing shortest-path distance and the
physical or abstract node saliency value (by default, each weighting equally). Lastly, using
different distance measures, we extend the original workflow with a pairwise comparison
between the generated cycling route, the original trajectory, and the shortest path (8).

Ultimately, this workflow overview aims not to discuss individual steps in great detail
but to provide an initial outline for one method to model perceived affordances dynamically.
It aims to support the Spatial Nudging framework regarding route choice, a common target
of physical and digital nudging interventions, which we illustrate next. To compare our
workflow adoptions for cycling with the original workflow, please refer to the paper by [19]
and Figure 3, where the parts in the green background represent our contributions, while
those in grey depict the steps directly adopted from the original workflow.

3.3 lllustrative Demonstrator — E-bike City

The E-bike City project [3] is a significant initiative to promote cycling and reshape Zurich’s
transportation landscape by reallocating appr. 30% of road space to bike lanes, consequently
reducing the number of car lanes. While the current strategy is infrastructure planning,
one must also consider the influence of digital tools accompanying travelers and related
nudging strategies on travel behavior. The stage of ongoing design is an ideal opportunity to
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Table 3 Shows selected common bike network evaluation metrics and associated qualitative
criteria for evaluating and designing bike networks. The metrics describing linear facilities (network
edges), such as lane count, have been aggregated on nodes based on incoming edges. Public space
significance and destination density are based on data from the City of Zurich and the Swiss Mobility
and Transport Microcensus (MTMC).

Feature Weight Metric Type Criteria Source

Node degree 0.1 Graph Coherence OSM

Public space significance 0.1 Contextual Attractiveness  City of Zurich
Destination density 0.2 Contextual Attractiveness MTMC

Slope 0.2 Morphological Comfort OSM
Incoming bike lanes 0.2 Infrastructural Comfort OSM/Planned
No. of car lanes 0.1 Infrastructural Safety OSM/Planned
Avg. speed limit 0.1 Modal Safety OSM

conceptualize and link prospects for different interventions from the outset. Utilizing the
outlined workflow to generate realistic cycling paths enables us to 1) suggest salient routes for
mobile route planners, and 2) compare how the newly proposed network dynamically affects
the saliency values, perceived affordances, and potential route choice for existing trajectories.

To test the workflow, we utilized existing cycling trajectory data collected in Zurich in
2017 (users=36, trips=145). Notably, from the original dataset we excluded trips under
500 meters (i.e., OD pair is within 500 meters), circular trips, and trajectories in areas
with low network density due to the limited choice alternatives such a network prescribes.
Table 4 provides an overview of the resulting dataset composition. Despite the dataset’s
significant underrepresentation of females, other characteristics remain relatively similar
across sub-groups. We sampled a representative trajectory for every remaining user in the
filtered trajectory dataset (n=27) since routine trips with the same trajectories are common
in this dataset.

For steps 1-4 of our workflow, we used a simplified existing road network graph for Zurich,
generated from the Open Street Map (OSM) network with the SNMan Python toolkit which
essentially simplifies the OSM network to represent intersections, and road segments as single
nodes and edges [2]. We enriched the graph nodes (intersections) with metrics (see Table 3),
mirroring criteria, and weighting ratios widely used to design and evaluate bike networks
[15, 24]. Using the same metrics, we determined a cycling saliency value. Next, we performed
steps 5-8 of the proposed workflow to generate corresponding cognitive routes and perform
pairwise comparisons for every trajectory. We use the cognitive route term to refer to the
generated trajectories based on DHCG and cycling saliency values.

Table 4 A descriptive overview of the initial cyclist trajectory dataset in Zurich. We consider
peak hours to be between 7-9 am and 4-6 pm.

Attribute Total Female Male

Trip (n=) 145 9 135

Cyclist (n=) 36 5 31

Duration (avg.), minute 7.19 (£5.10) 5.13 (£2.62) 7.32 (£5.20)
Length (avg.), meter 2766.52 (+£982.18)  2815.61 (£830.31)  2763.27 (£993.96)
Age (avg.), years 45.80 (£7.33) 44.88 (£10.61) 45.86 (£7.11)

Peak Hour trips (n=) 40 4 36
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The results summarized in Table 5 show that cognitive routes resemble the original
trajectories more closely than the shortest routes without further calibration for individual
variations. Notably, although optimizing the criteria weights for individual users to generate

the most accurate results across trajectories is necessary, it falls outside the scope of this study.

As a proof of concept, these results illustrate that our approach dynamically captures the
perceived affordances for cycling and could be transferred into mobile trip planners to suggest
more salient routes, acting as a digital nudge. Additionally, we compared the generated
cognitive routes of the same trajectory for the existing and planned network scenarios. Figure
4 shows the differences in the cognitive routes and the corresponding cycling saliency values
along each route. As a proof of concept, these results demonstrate that when applied at scale,
this workflow could inform about the changes in perceived affordances created by physical
interventions, i.e., a physical nudge. Both examples illustrate that this methodology can
better capture the perceived affordances of the physical environment, potentially supporting
physical and digital nudging strategies.

4 Discussion and Conclusions

In this study, we present the Spatial Nudging framework to theoretically unify the fragmented
understanding of nudging strategies in the mobility domain. Consequently, the framework
links nudging within interrelated domains such as transportation, urban planning, design,
and location-based services, laying the groundwork for holistically integrating individual
interventions for promoting cycling. Next, we present the key contributions of this study.
First, the Spatial Nudging framework summarizes existing but fragmented perspectives
to describe nudges in a structured way, as shown in Figure 2, and links existing nudging
strategies by introducing a novel concept — Spatial Nudging (refer to Figure 2). The key
Spatial Nudging framework characteristic is the role of spatial elements and information
within individual nudge strategies. Second, we clarified the role of the physical environment
in nudging by highlighting the interaction between perceived affordances, design intent,
and choice environments based on links between the Nudge Theory and the Theory of
Affordances (refer to Figure 1). Specifically, the framework reinforces the idea that physical
interventions designed with a behavioral goal in mind qualify as nudges, advocating for
nudging as a deliberate design principle to enhance intervention effectiveness [54]. Third,

we have introduced a methodology to support nudges in route choice tasks (see Section 3).

This methodology illustrates how graph representation can be used to align both physical
infrastructure and digital tools with users’ cognitive expectations. We also showcase a novel
application of the Cognitive Graph hypothesis in cycling, which is, to our knowledge, the
first such case. Finally, although we focus the framework on cycling, it is important to note
that it could be adjusted to support sustainable food or energy consumption interventions as
they share sustainability goals, require behavioral change, and can be targeted in physical
and digital choice environments [31].

Table 5 Shows pairwise distance measures for a sample of trajectories (n=27) in Zurich, comparing
the cognitive route (cr) with the trajectory (tr) and the shortest path (sp). The distance measures
used include Edit distance, Jaccard distance, and the Longest Common Subsequence (LCS).

Route Pair Edit distance (£) Jaccard distance (+) LCS distance (+)
tr-sp 0.659 (£0.141) 0.716 (+0.14) 0.642 (0.166)
tr-cr 0.512 (£0.217) 0.522 (40.231) 0.583 (+0.207)
cr-sp 0.584 (£0.226) 0.666 (£0.201) 0.693 (£0.180)
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Figure 4 Compares an example trajectory with the generated cognitive route and the shortest
path regarding the overall cycling saliency values along each route for the existing and planned bike
network scenarios.

We acknowledge several limitations. First, although we have demonstrated how the
proposed supportive methodology could advance nudging strategies, it is only the initial
conceptualization. We still need to refine and validate each step of the proposed workflow
for cycling. This includes comparing cognitive graph generation between different cyclist
typologies and between cyclists and pedestrians more generally. Similarly, testing the
methodology with a larger set of cycling data across cities of varying sizes and urban
morphologies would further validate our initial findings. It is essential to gain empirical
evidence from real-world use cases across a range of urban geographies, potentially derived
from long-term studies that combine physical and digital interventions, to validate the
Spatial Nudging framework. Second, the presented workflow only partially aligns perceived
and objective environments in our nudging strategies. This is because we did not consider
demographics, attitudes, cycling culture, or city-wide mobility patterns (e.g., peak and off-
peak hours) in the proposed workflow. Although we dynamically model perceived affordances
at each step of the route planning task, factors like time of day, trip purpose, and level of
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familiarity certainly influence the internal reasoning behind route choices, warranting further
research. Third, while our study focuses on perceived affordances within the primary choice
environments (physical and digital) that impact sustainable mobility choices, it also needs to
consider other types of affordances, such as motivational, functional, and social-institutional
affordances [47], as well as other potential choice environments for active mobility planning
like AR. These limitations highlight multiple directions for future research.

Future Work Directions

We see two main future research directions: workflow validation and theoretical framework
extension. To validate the cognitive route generation workflow, we will apply it in cities
with varying levels of cycling activity, different urban morphologies, and diverse bike network
qualities. This approach will enable us to assess the robustness of the workflow across a
range of contexts. Integrating physiological data and personalized saliency definitions based
on analyzing cyclist-related data can further confirm the metric selection and saliency values.
Other known cognitive biases, such as the longest first trip leg or minimal angular deviation,
could be integrated and tested with our proposed workflow.

The Spatial Nudging framework can be further extended. For instance, the nudging
categories summarized in Figure 2 could be expanded to include who the nudges target,
such as different types of cyclists. Additionally, while we have illustrated the framework
with a use case for the route choice task, further research is required for other critical travel
choices, such as mode choice. Furthermore, although many examples exist of AR support in
decision-making for tourism and air transport, its potential to nudge toward active mobility
has not been explored. Therefore, examining the use of AR (and immersive technologies more
generally) to alter the perceived affordances of the physical environment for cycling could
expand the range of nudging strategies and choice environments discussed in the framework.
Finally, implementing a comprehensive test case that merges physical interventions (such as
a new bike lane) with persuasive technologies (mobile trip planner recommendations) could
provide concrete validation for our framework.

Conclusions

We present the Spatial Nudging framework that provides a more integrated perspective on

nudging in the mobility domain and grounds it as a multifaceted behavioral change strategy.

We refine the definition of nudging strategies across physical and digital choice environments
by linking behavioral theories related to perception. Furthermore, this paper advocates
nudging as a deliberate design principle to enhance the effectiveness of physical or digital
interventions. Additionally, we introduce initial steps towards utilizing a graph representation
for aligning perceived and objective environments of cycling routes. Through a use case,
we demonstrate how the Spatial Nudging framework and the supportive methodology can
support nudging interventions to promote sustainable mobility cohesively.

—— References

1 Rachel Aldred and Katrina Jungnickel. Why culture matters for transport policy: the
case of cycling in the UK. Journal of Transport Geography, 34:78-87, January 2014. doi:
10.1016/j.jtrangeo.2013.11.004.

2 Lukas Ballo and Kay W. Axhausen. Modeling sustainable mobility futures using an automated
process of road space reallocation in urban street networks. a case study in zurich. In 103rd
Annual Meeting of the Transportation Research Board (TRB 2024); Conference Location:
Washington, DC, USA; Conference Date: January 7-11, 2024, 2024-01.

5:15

COSIT 2024


https://doi.org/10.1016/j.jtrangeo.2013.11.004
https://doi.org/10.1016/j.jtrangeo.2013.11.004

5:16

Spatial Nudging

10
11

12

13

14

15

16

17

18

19

Lukas Ballo, Lucas Meyer De Freitas, Adrian Meister, and Kay W. Axhausen. The E-Bike City
as a radical shift toward zero-emission transport: Sustainable? Equitable? Desirable? Journal
of Transport Geography, 111:103663, July 2023. doi:10.1016/j.jtrangeo.2023.103663.
Koen Bandsma, Ward Rauws, and Gert De Roo. Optimising Nudges in Public Space:
Identifying and Tackling Barriers to Design and Implementation. Planning Theory & Practice,
22(4):556-571, August 2021. doi:10.1080/14649357.2021.1962957.

David Banister. Cities, mobility and climate change. Journal of Transport Geography,
19(6):1538-1546, November 2011. doi:10.1016/j.jtrangeo.2011.03.009.

Tristan Baumann and Hanspeter A. Mallot. Metric information in cognitive maps: Eu-
clidean embedding of non-Euclidean environments. PLOS Computational Biology, 19(12):1-14,
December 2023. Publisher: Public Library of Science. doi:10.1371/journal.pcbi.1011748.
Silvia Bernardi, Lissy La Paix-Puello, and Karst Geurs. Modelling route choice of Dutch
cyclists using smartphone data. Journal of Transport and Land Use, 11(1), October 2018.
doi:10.5198/jt1lu.2018.1143.

Anna Boldina, Paul H. P. Hanel, and Koen Steemers. Active urbanism and choice architecture:
encouraging the use of challenging city routes for health and fitness. Landscape Research,
48(3):276-296, April 2023. doi:10.1080/01426397.2022.2142204.

Christian Bongiorno, Yulun Zhou, Marta Kryven, David Theurel, Alessandro Rizzo, Paolo
Santi, Joshua Tenenbaum, and Carlo Ratti. Vector-based pedestrian navigation in cities. Nature
Computational Science, 1(10):678-685, October 2021. doi:10.1038/s43588-021-00130-y.
Ralph Buehler and John Pucher. Cycling for sustainable cities. MIT Press, 2021.

Francesca Cellina, Dominik Bucher, Francesca Mangili, José Veiga Simdo, Roman Rudel,
and Martin Raubal. A Large Scale, App-Based Behaviour Change Experiment Persuading
Sustainable Mobility Patterns: Methods, Results and Lessons Learnt. Sustainability, 11(9):2674,
May 2019. doi:10.3390/su11092674.

Francesca Cellina, Dominik Bucher, José Veiga Sim&o, Roman Rudel, and Martin Raubal.
Beyond Limitations of Current Behaviour Change Apps for Sustainable Mobility: Insights
from a User-Centered Design and Evaluation Process. Sustainability, 11(8):2281, April 2019.
doi:10.3390/su11082281.

Samuel Chng. Advancing Behavioural Theories in Sustainable Mobility: A Research Agenda.
Urban Science, 5(2):43, May 2021. doi:10.3390/urbansci5020043.

Jeronia Cubells, Carme Miralles-Guasch, and Oriol Marquet. E-scooter and bike-share route
choice and detours: Modelling the influence of built environment and sociodemographic
factors. Journal of Transport Geography, 111:103664, July 2023. doi:10.1016/j. jtrangeo.
2023.103664.

R. de Groot and vervoer en infrastructuur CROW kenniscentrum voor verkeer. Design Manual
for Bicycle Traffic. C.R.O.W. record. CROW, 2016. URL: https://books.google.ch/books?
id=FMZOtAEACAAJ.

Denise De Ridder, Joram Feitsma, Mariétte Van Den Hoven, Floor Kroese, Thomas Schillemans,
Marcel Verweij, Tina Venema, Anastasia Vugts, and Emely De Vet. Simple nudges that are not
so easy. Behavioural Public Policy, 8(1):154-172, January 2024. doi:10.1017/bpp.2020.36.
Jonas De Vos, Tim Schwanen, Veronique Van Acker, and Frank Witlox. Do satisfying walking
and cycling trips result in more future trips with active travel modes? An exploratory
study. International Journal of Sustainable Transportation, 13(3):180-196, March 2019.
doi:10.1080/15568318.2018.1456580.

Jennifer Dill, Cynthia Mohr, and Liang Ma. How Can Psychological Theory Help Cities
Increase Walking and Bicycling? Journal of the American Planning Association, 80(1):36-51,
January 2014. doi:10.1080/01944363.2014.934651.

Rohit K. Dubey, Samuel S. Sohn, Tyler Thrash, Christoph Hélscher, André Borrmann,
and Mubbasir Kapadia. Cognitive Path Planning With Spatial Memory Distortion. IEEE
Transactions on Visualization and Computer Graphics, 29(8):3535-3549, August 2023. doi:
10.1109/TVCG.2022.3163794.


https://doi.org/10.1016/j.jtrangeo.2023.103663
https://doi.org/10.1080/14649357.2021.1962957
https://doi.org/10.1016/j.jtrangeo.2011.03.009
https://doi.org/10.1371/journal.pcbi.1011748
https://doi.org/10.5198/jtlu.2018.1143
https://doi.org/10.1080/01426397.2022.2142204
https://doi.org/10.1038/s43588-021-00130-y
https://doi.org/10.3390/su11092674
https://doi.org/10.3390/su11082281
https://doi.org/10.3390/urbansci5020043
https://doi.org/10.1016/j.jtrangeo.2023.103664
https://doi.org/10.1016/j.jtrangeo.2023.103664
https://books.google.ch/books?id=FMZOtAEACAAJ
https://books.google.ch/books?id=FMZOtAEACAAJ
https://doi.org/10.1017/bpp.2020.36
https://doi.org/10.1080/15568318.2018.1456580
https://doi.org/10.1080/01944363.2014.934651
https://doi.org/10.1109/TVCG.2022.3163794
https://doi.org/10.1109/TVCG.2022.3163794

A. Grisiute and M. Raubal

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Aslak Fyhri, Katrine Karlsen, and Hanne B. Sundfgr. Paint It Red - A Multimethod Study of
the Nudging Effect of Coloured Cycle Lanes. Frontiers in Psychology, 12:662679, June 2021.
doi:10.3389/fpsyg.2021.662679.

Marta Garcia-Sierra, Jeroen C.J.M. Van Den Bergh, and Carme Miralles-Guasch. Behavioural
economics, travel behaviour and environmental-transport policy. Transportation Research Part

D: Transport and Environment, 41:288-305, December 2015. doi:10.1016/j.trd.2015.09.

023.

J. J. Gibson. The theory of affordances. In R. Shaw and J. Bransford, editors, Perceiving, acting,
and knowing: Toward an ecological psychology, pages 67-82. Lawrence Erlbaum Associates,
1977.

Ayda Grisiute. Cognitive Route Planning. Software, swhld: swh:1:dir:5720b0f26£85d456
6df66b9fe80d47e111a00a66 (visited on 2024-08-22). URL: https://github.com/mie-lab/
cognitive_route_planning.

Ayda Grisiute, Nina Wiedemann, Pieter Herthogs, and Martin Raubal. An ontology-based
approach for harmonizing metrics in bike network evaluations. under review, 2024.

William Hebblewhite and Alexander James Gillett. Every step you take, we’ll be watching you:
nudging and the ramifications of GPS technology. AI & SOCIETY, 36(3):863-875, September
2021. doi:10.1007/s00146-020-01098-5.

Gareth J Hollands, Tan Shemilt, Theresa M Marteau, Susan A Jebb, Michael P Kelly,
Ryota Nakamura, Marc Suhrcke, and David Ogilvie. Altering micro-environments to change
population health behaviour: towards an evidence base for choice architecture interventions.
BMC Public Health, 13(1):1218, December 2013. doi:10.1186/1471-2458-13-1218.

Dennis Hummel and Alexander Maedche. How effective is nudging? A quantitative review on
the effect sizes and limits of empirical nudging studies. Journal of Behavioral and Ezxperimental
Economics, 80:47-58, June 2019. doi:10.1016/j.socec.2019.03.005.

Ole B. Jensen, Ditte Bendix Lanng, and Simon Wind. Mobilities design — towards a research
agenda for applied mobilities research. Applied Mobilities, 1(1):26-42, January 2016. doi:
10.1080/23800127.2016.1147782.

Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, New York, 1st ed
edition, 2011.

Heeseo Rain Kwon and Elisabete A. Silva. Matching Behavioral Theories and Rules with
Research Methods in Spatial Planning-Related Fields. Journal of Planning Literature, 38(2):
245-262, May 2023. doi:10.1177/08854122231157708.

Matthias Lehner, Oksana Mont, and Eva Heiskanen. Nudging — A promising tool for sustainable

consumption behaviour? Journal of Cleaner Production, 134:166—177, 2016. doi:10.1016/j.

jclepro.2015.11.086.

Martin Loidl, Dana Kaziyeva, Robin Wendel, Claudia Luger-Bazinger, Matthias Seeber, and
Charalampos Stamatopoulos. Unlocking the Potential of Digital, Situation-Aware Nudging
for Promoting Sustainable Mobility. Sustainability, 15(14):11149, July 2023. doi:10.3390/
sul51411149.

Claudia Luger-Bazinger, Guntram Geser, and Veronika Hornung-Pridhauser. Digital be-
havioural interventions for sustainable mobility: A review of behaviour change techniques in
mobile apps. In Sampson Alain, editor, The Behavioral Economics Guide 2023, pages 68-75.
Behavioral Science Solutions Ltd, 2023.

Liang Ma and Jason Cao. How perceptions mediate the effects of the built environment on travel
behavior? Transportation, 46(1):175-197, February 2019. doi:10.1007/s11116-017-9800-4.
E.J. Manley, S.W. Orr, and T. Cheng. A heuristic model of bounded route choice in urban
areas. Transportation Research Part C: Emerging Technologies, 56:195-209, July 2015. doi:
10.1016/j.trc.2015.03.020.

Henry Martin, Nina Wiedemann, Daniel J. Reck, and Martin Raubal. Graph-based mobility
profiling. Computers, Environment and Urban Systems, 100:101910, March 2023. doi:
10.1016/j . compenvurbsys.2022.101910.

5:17

COSIT 2024


https://doi.org/10.3389/fpsyg.2021.662679
https://doi.org/10.1016/j.trd.2015.09.023
https://doi.org/10.1016/j.trd.2015.09.023
https://archive.softwareheritage.org/swh:1:dir:5720b0f26f85d4566df66b9fe80d47e111a00a66;origin=https://github.com/mie-lab/cognitive_route_planning;visit=swh:1:snp:1f82588f293700f4ec0fd169040a7d4498f9b234;anchor=swh:1:rev:f961ea201a28f5d0cad375fb8f52ac0949b7fba5
https://archive.softwareheritage.org/swh:1:dir:5720b0f26f85d4566df66b9fe80d47e111a00a66;origin=https://github.com/mie-lab/cognitive_route_planning;visit=swh:1:snp:1f82588f293700f4ec0fd169040a7d4498f9b234;anchor=swh:1:rev:f961ea201a28f5d0cad375fb8f52ac0949b7fba5
https://github.com/mie-lab/cognitive_route_planning
https://github.com/mie-lab/cognitive_route_planning
https://doi.org/10.1007/s00146-020-01098-5
https://doi.org/10.1186/1471-2458-13-1218
https://doi.org/10.1016/j.socec.2019.03.005
https://doi.org/10.1080/23800127.2016.1147782
https://doi.org/10.1080/23800127.2016.1147782
https://doi.org/10.1177/08854122231157708
https://doi.org/10.1016/j.jclepro.2015.11.086
https://doi.org/10.1016/j.jclepro.2015.11.086
https://doi.org/10.3390/su151411149
https://doi.org/10.3390/su151411149
https://doi.org/10.1007/s11116-017-9800-4
https://doi.org/10.1016/j.trc.2015.03.020
https://doi.org/10.1016/j.trc.2015.03.020
https://doi.org/10.1016/j.compenvurbsys.2022.101910
https://doi.org/10.1016/j.compenvurbsys.2022.101910

5:18

Spatial Nudging

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Lynn Meuleners, Michelle Fraser, and Paul Roberts. Improving cycling safety through
infrastructure design: A bicycle simulator study. Transportation Research Interdisciplinary
Perspectives, 18:100768, March 2023. doi:10.1016/j.trip.2023.100768.

Lucas Meyer de Freitas and Kay W. Axhausen. Cycling potentials in Switzerland: An
assessment of its determinants using health survey data and first results. In 22th Swiss
Transport Research Conference, May 2022. doi:10.3929/ETHZ-B-000548622.

Stuart Mills. Personalized nudging. Behavioural Public Policy, 6(1):150-159, January 2022.
doi:10.1017/bpp.2020.7.

Robert Minscher, Max Vetter, and Thomas Scheuerle. A Review and Taxonomy of Choice
Architecture Techniques: Choice Architecture Techniques. Journal of Behavioral Decision
Making, 29(5):511-524, December 2016. doi:10.1002/bdm.1897.

Mohsen Nazemi, Michael A. B. van Eggermond, and Alexander Erath. Using virtual reality
to study bicycle level of service for urban street segments. In 99th Annual Meeting of the
Transportation Research Board, Washington, DC, USA, January 12-16, 2020. Transportation
Research Board, 2020. doi:10.3929/ETHZ-B-000356535.

Donald A. Norman. The design of everyday things. Basic Books, New York, New York, revised
and expanded edition edition, 2013.

Open source routing machine (osrm). OSRM Project. Accessed: 2024-04-25. URL: http:
//project-osrm.org/.

Pavithra Parthasarathi, David Levinson, and Hartwig Hochmair. Network Structure and
Travel Time Perception. PLoS ONE, 8(10):e77718, October 2013. doi:10.1371/journal.
pone.0077718.

Mashrur Rahman and Gian-Claudia Sciara. Travel attitudes, the built environment and travel
behavior relationships: Causal insights from social psychology theories. Transport Policy,
123:44-54, July 2022. doi:10.1016/j.tranpol.2022.04.012.

Martin Raubal, Dominik Bucher, and Henry Martin. Geosmartness for Personalized and
Sustainable Future Urban Mobility. In Wenzhong Shi, Michael F. Goodchild, Michael Batty,
Mei-Po Kwan, and Anshu Zhang, editors, Urban Informatics, pages 59-83. Springer Singapore,
Singapore, 2021. Series Title: The Urban Book Series. doi:10.1007/978-981-15-8983-6_6.
Martin Raubal and Reinhard Moratz. A Functional Model for Affordance-Based Agents. In
Erich Rome, Joachim Hertzberg, and Georg Dorffner, editors, Towards Affordance-Based
Robot Control, volume 4760, pages 91-105. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008. Series Title: Lecture Notes in Computer Science. doi:10.1007/978-3-540-77915-5_7.
Daniel J. Reck, David A. Hensher, and Chinh Q. Ho. MaaS bundle design. Transportation
Research Part A: Policy and Practice, 141:485-501, November 2020. doi:10.1016/j.tra.
2020.09.021.

Tim Schwanen, David Banister, and Jillian Anable. Rethinking habits and their role in
behaviour change: the case of low-carbon mobility. Journal of Transport Geography, 24:522—
532, September 2012. doi:10.1016/j.jtrangeo.2012.06.003.

Ivana Semanjski, Angel Lopez Aguirre, Johan De Mol, and Sidharta Gautama. Policy 2.0
Platform for Mobile Sensing and Incentivized Targeted Shifts in Mobility Behavior. Sensors,
16(7):1035, July 2016. doi:10.3390/s16071035.

Alin Semenescu, Alin Gavreliuc, and Paul Sarbescu. 30 Years of soft interventions to reduce
car use — A systematic review and meta-analysis. Transportation Research Part D: Transport
and Environment, 85:102397, August 2020. doi:10.1016/j.trd.2020.102397.

Ali Soltani, Andrew Allan, Masoud Javadpoor, and Jaswanth Lella. Space Syntax in Analysing
Bicycle Commuting Routes in Inner Metropolitan Adelaide. Sustainability, 14(6):3485, March
2022. doi:10.3390/su14063485.

Juliet Steffen, Hannah Hook, and Frank Witlox. Improving interest in public, active, and
shared travel modes through nudging interventions. Transportation Research Part F: Traffic
Psychology and Behaviour, 103:353-367, May 2024. doi:10.1016/j.trf.2024.04.020.


https://doi.org/10.1016/j.trip.2023.100768
https://doi.org/10.3929/ETHZ-B-000548622
https://doi.org/10.1017/bpp.2020.7
https://doi.org/10.1002/bdm.1897
https://doi.org/10.3929/ETHZ-B-000356535
http://project-osrm.org/
http://project-osrm.org/
https://doi.org/10.1371/journal.pone.0077718
https://doi.org/10.1371/journal.pone.0077718
https://doi.org/10.1016/j.tranpol.2022.04.012
https://doi.org/10.1007/978-981-15-8983-6_6
https://doi.org/10.1007/978-3-540-77915-5_7
https://doi.org/10.1016/j.tra.2020.09.021
https://doi.org/10.1016/j.tra.2020.09.021
https://doi.org/10.1016/j.jtrangeo.2012.06.003
https://doi.org/10.3390/s16071035
https://doi.org/10.1016/j.trd.2020.102397
https://doi.org/10.3390/su14063485
https://doi.org/10.1016/j.trf.2024.04.020

A. Grisiute and M. Raubal

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Cass R. Sunstein. On Freedom. Princeton University Press, February 2019. doi:10.1515/
9780691192024.

Fateme Teimouri, Kai-Florian Richter, and Hartwig H. Hochmair. Analysis of route choice
based on path characteristics using Geolife GPS trajectories. Journal of Location Based
Services, pages 1-27, June 2023. doi:10.1080/17489725.2023.2229285.

Richard H. Thaler and Cass R. Sunstein. Nudge: Improving decisions about health, wealth, and
happiness. Nudge: Improving decisions about health, wealth, and happiness. Yale University
Press, New Haven, CT, US, 2008. Pages: x, 293.

Francesco Maria Turno and Irina Yatskiv Jackiva. Graph-Based Approach for Personalized
Travel Recommendations. Transport and Telecommunication Journal, 24(4):423-433, November
2023. doi:10.2478/ttj-2023-0033.

Veronique Van Acker, Ben Derudder, and Frank Witlox. Why people use their cars while
the built environment imposes cycling. Journal of Transport and Land Use, 6(1):53-62, April
2013. doi:10.5198/jtlu.v6i1.288.

Loes Van Renswouw, Carine Lallemand, Pieter Van Wesemael, and Steven Vos. Creating
active urban environments: insights from expert interviews. Cities & Health, 7(3):463-479,
May 2023. doi:10.1080/23748834.2022.2132585.

Miroslav Vasilev, Ray Pritchard, and Thomas Jonsson. Trialing a Road Lane to Bicycle
Path Redesign—Changes in Travel Behavior with a Focus on Users’ Route and Mode Choice.
Sustainability, 10(12):4768, December 2018. doi:10.3390/su10124768.

Zhenzhen Wang, Sylvia Y. He, and Yee Leung. Applying mobile phone data to travel
behaviour research: A literature review. Travel Behaviour and Society, 11:141-155, April 2018.
doi:10.1016/j.tbs.2017.02.005.

William H. Warren, Daniel B. Rothman, Benjamin H. Schnapp, and Jonathan D. Ericson.
Wormbholes in virtual space: From cognitive maps to cognitive graphs. Cognition, 166:152-163,
September 2017. doi:10.1016/j.cognition.2017.05.020.

Markus Weinmann, Christoph Schneider, and Jan Vom Brocke. Digital Nudging. Busi-
ness & Information Systems Engineering, 58(6):433-436, December 2016. doi:10.1007/
512599-016-0453-1.

Paul Weiser, Simon Scheider, Dominik Bucher, Peter Kiefer, and Martin Raubal. To-
wards sustainable mobility behavior: research challenges for location-aware information
and communication technology. Geolnformatica, 20(2):213-239, April 2016. doi:10.1007/
s10707-015-0242-x.

N. Wiedemann, H. Martin, and M. Raubal. Unlocking social network analysis meth-
ods for studying human mobility. AGILE: GIScience Series, 3:19, 2022. doi:10.5194/
agile-giss—-3-19-2022.

Jan M. Wiener and Hanspeter A. Mallot. 'Fine-to-Coarse’ Route Planning and Navigation in
Regionalized Environments. Spatial Cognition & Computation, 3(4):331-358, December 2003.
d0i:10.1207/s15427633scc0304_5.

Devon Paige Willis, Kevin Manaugh, and Ahmed El-Geneidy. Cycling Under Influence:
Summarizing the Influence of Perceptions, Attitudes, Habits, and Social Environments on
Cycling for Transportation. International Journal of Sustainable Transportation, 9(8):565-579,
2015. doi:10.1080/15568318.2013.827285.

Claudia Yamu, Akkelies Van Nes, and Chiara Garau. Bill Hillier’s Legacy: Space Syntax—A
Synopsis of Basic Concepts, Measures, and Empirical Application. Sustainability, 13(6):3394,
March 2021. doi:10.3390/su13063394.

Sina Zimmermann, Thomas Schulz, Andreas Hein, Heiko Gewald, and Helmut Krcmar.
Motivating change in commuters’ mobility behaviour: Digital nudging for public transportation

use. Journal of Decision Systems, pages 1-27, April 2023. doi:10.1080/12460125.2023.

2198056.

5:19

COSIT 2024


https://doi.org/10.1515/9780691192024
https://doi.org/10.1515/9780691192024
https://doi.org/10.1080/17489725.2023.2229285
https://doi.org/10.2478/ttj-2023-0033
https://doi.org/10.5198/jtlu.v6i1.288
https://doi.org/10.1080/23748834.2022.2132585
https://doi.org/10.3390/su10124768
https://doi.org/10.1016/j.tbs.2017.02.005
https://doi.org/10.1016/j.cognition.2017.05.020
https://doi.org/10.1007/s12599-016-0453-1
https://doi.org/10.1007/s12599-016-0453-1
https://doi.org/10.1007/s10707-015-0242-x
https://doi.org/10.1007/s10707-015-0242-x
https://doi.org/10.5194/agile-giss-3-19-2022
https://doi.org/10.5194/agile-giss-3-19-2022
https://doi.org/10.1207/s15427633scc0304_5
https://doi.org/10.1080/15568318.2013.827285
https://doi.org/10.3390/su13063394
https://doi.org/10.1080/12460125.2023.2198056
https://doi.org/10.1080/12460125.2023.2198056

	1 Introduction
	2 Background
	2.1 Nudging and Related Behavioral Theories
	2.2 The Mismatch of the Objective and Perceived Environments
	2.3 The Role of Graphs in Travel Behavior Analysis

	3 Spatial Nudging Framework
	3.1 Rationale and Framework Development
	3.2 Cognitive Graphs for Nudging Strategies as Supportive Methodology
	3.3 Illustrative Demonstrator – E-bike City

	4 Discussion and Conclusions

