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Abstract
Isolines visually characterize scalar fields by connecting all points of the same value by a closed curve
at repeated intervals. They work only as a set which gives the viewer an indication of the shape
of the underlying field. Hence, when simplifying isolines it is important that the correspondence
– the harmony – between adjacent isolines is preserved whenever it is present. The majority of
state-of-the-art simplification methods treat isolines independently; at best they avoid collisions
between adjacent simplified isolines. A notable exception is the work by Van Goethem et al. (2021)
who were the first to introduce the concept of harmony between adjacent isolines explicitly as
an algorithmic design principle. They presented a proof-of-concept algorithm that harmoniously
simplifies a sequence of polylines. However, the sets of isolines of scalar fields, most notably terrain,
consist of closed curves which are nested in arbitrarily complex ways and not of an ordered sequence
of polylines. In this paper we significantly extend the work by Van Goethem et al. (2021) to capture
harmony in general sets of isolines. Our new simplification algorithm can handle sets of isolines
describing arbitrary scalar fields and is more efficient, allowing us to harmoniously simplify terrain
with hundreds of thousands of vertices. We experimentally compare our method to the results of
Van Goethem et al. (2021) on bundles of isolines and to general simplification methods on isolines
extracted from DEMs of Antartica. Our results indicate that our method efficiently preserves the
harmony in the simplified maps, which are thereby less noisy, cartographically more meaningful,
and easier to read.
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1 Introduction

The goal of simplification is to represent shapes using less complex geometry, while main-
taining important features. As a geometric form of data compression, it has numerous
applications including efficient data structures [7] and approximation algorithms [19]. We
focus on its cartographic applications: deriving less complex shapes in generalization [29] or
schematization [8]. Here simplification improves the quality of scale-appropriate maps and
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8:2 Scalable Harmonious Simplification of Isolines

eliminates unnecessary detail. A common approach to simplification is to first establish a
quality measure to quantify the geometric distortion between the original and its simplified
shape. This measure is subsequently optimized – often heuristically – to obtain the simplifi-
cation. Such methods frequently yield high-quality simplifications when shapes are treated
in isolation. However, they tend to consider other shapes in the neighborhood less as context
and more as obstacles that need to be handled appropriately to avoid intersections or other
topological distortions. Hence, where a composition of shapes may display common features,
individually simplified versions may become discordant and lose their common ground.

Van Goethem et al. [15] first studied the idea of harmony: harmonious simplification does
not happen in isolation but strives to maintain common features as far as they are present in
the input. This concept is particularly salient when simplifying sets of isolines: the isolines
together describe common features such as hills and valleys. Where they describe a single
smooth slope, this appearance should be maintained after simplification. Van Goethem et
al. not only introduce the concept of harmony in simplification, but they also present an
algorithm that computes harmonious simplifications. This algorithm is based on the rather
restrictive concept of locally-correct Fréchet matchings [6] and can therefore be applied only
to a sequence of polylines (for example, describing a single slope). To compute harmonious
simplifications of general sets of isolines that are derived from arbitrary terrains (or more
generally two-dimensional functions) we hence need another algorithmic approach.

Results and organization. We propose a new method for harmonious simplification that
overcomes the drawbacks of locally-correct Fréchet matchings and can hence handle sets of
isolines with hundreds of thousands of vertices derived from complex terrains. Our algorithm
finds harmonious pieces within sets of isolines using the medial axis; this allows us to treat
arbitrary complex nesting patterns of isolines and also improves efficiency. Furthermore, we
introduce new methods to simplify harmonious pieces of isolines; our methods are both less
restrictive and more efficient than the corresponding operations used by Van Goethem et al.

In the following, we first briefly review the concept of harmony as discussed by Van
Goethem et al.; please see their paper for a more extensive treatment. Next, we discuss related
work. Since our algorithm follows the general outline of the approach by Van Goethem et
al. (identify harmonious pieces of isolines and then iteratively simplify them) we dedicate
the separate Section 1.2 to a description of their paper. In Section 2 we then explain our
new algorithm in detail. We implemented our algorithm and compared it experimentally
to both Van Goethem et al. (by necessity only on ordered sets of isolines) and to general
simplification methods that can handle isolines derived from terrains of high complexity, such
as the terrain of Antartica. In Section 3 we describe our experimental setup and discuss our
results. These results show that our method preserves harmony at least as well and often
better than Van Goethem et al. on sets of ordered isolines. On sets of isolines that stem from
general terrains, our method maintains harmony whenever it is present in the input and
produces results that are cleaner and easier to read than those of non-harmonious methods.
Last but not least, our method computes harmonious simplifications for isolines with close
to a million of vertices in less than half an hour.

Harmony. Isolines are a method to visually and cartographically depict a scalar field via
repetition and change of (mostly closed) curves. Isolines work only as a set: from the
underlying scalar field, a family of curves is derived that shows, by the dialectic of repetition
and change in comparison to each other, how values of a third (or higher) dimension are
distributed in the underlying space. This dialectic of repetition and change should follow the
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aesthetic principle of harmony. The question then arises how this aesthetic principle might
be measured to be controlled or optimized by an algorithm. To operationalize harmony
into measurements, Van Goethem et al. [15] used the extant design rules for contour lines
(isolines on cartographic terrains) discussed in the seminal works by Eduard Imhof. They
then developed the algorithmic notion of harmony from a process suggested by Goldman [16]
and applied to cartography by Reimer [30].

1.1 Related work
Our work falls squarely within the broad area of cartographic generalization. This field is
concerned with re-modelling cartographic objects for various purposes such as data reduction,
noise removal, and the optimization of visual communication such as the creation of scale-
appropriate maps [33]. More precisely, the simplification of contour lines is a form of terrain
generalization; Guilbert et al. [17] provide an introduction to the topic and a survey of
generalization methods. The process of generalization can be decomposed into subprocesses
called generalization operators [29, 33]. A selection of operators we deem important in the
context of contour line generalization are given below, see also Figure 1.

Selection. Selection of objects; in our case contour lines.
Simplification. Reduction of the data used to represent an object.
Smoothing. Removal of details and perturbations in objects.

The algorithm we present in this paper is a simplification operator. Methods for terrain
simplification can be categorized into two fundamentally different approaches: line simpli-
fication and surface simplification [18, 27]. Line simplification simplifies the contour lines
directly, whereas surface simplification first simplifies the underlying terrain model (usually a
triangulated irregular network (TIN)), and recomputes contour lines based on the simplified
terrain model. Both techniques have advantages and disadvantages. Surface simplification
does not handle isolines directly, which prevents the direct application of cartographic tech-
niques. Furthermore, additional data, such as drainage networks, need to be re-derived
from the simplified TIN as well, to match the simplified terrain. The major problem of line
simplification approaches is the fact that common features of the underlying surface are
generally not simplified together and existing harmony between the isolines is not preserved.
We present a line simplification technique that tackles this problem.

A common approach to line simplification is the iterative removal of points. An example of
such an algorithm is the well-known Ramer-Douglas-Peucker algorithm [10, 28] that is widely
used in GIS. When such algorithms are applied on each isoline in isolation, the topological
relation of curves may change; in particular, simplified isolines may intersect. Dyken et
al. [11] present a vertex-removal algorithm that uses a constrained Delaunay triangulation to

(a) Selection. (b) Simplification. (c) Smoothing.

Figure 1 Generalization operators. Isolines from Imhof [22] digitized by Van Goethem et al. [15].
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efficiently determine whether a removal would change the topology and does not execute any
topology-changing vertex removals. More recently, various algorithms have been introduced
that iteratively replace edges with a single point, so-called edge collapses [15, 25, 32]. This
approach is more flexible than the vertex removal approach as the simplification may use
vertices that are not part of the input. A criterion often used in combination with edge
collapses is area preservation [5, 8, 15, 25, 26, 31], which requires the areas of the geometry
to be preserved. Area-preserving simplification tends to be of high visual quality and also
comparatively efficient, since the search space for new vertex positions is restricted.

Van Goethem et al. [14, 15] were the first to explicitly simplify shapes simultaneously to
maintain common features and promote parallelism. Their first paper [14] describes a vertex-
removal simplification algorithm that optimizes parallelism according to some predefined
measure; their second paper [15] introduces an algorithm that applies area-preserving edge
collapses simultaneously to preserve harmony. We describe this algorithm in more detail
below. Though both papers present conceptually strong results, the algorithmic side is
limited to proof-of-concept methods that are not sufficiently general and efficient for practical
use. Our algorithm builds on their ideas but introduces novel approaches for all parts to be
able to handle sets of general isolines with hundreds of thousands of vertices.

1.2 Harmonious simplification of isolines
We now briefly summarize the algorithm by Van Goethem et al. [15]; we refer the reader to
the original work for further details. The algorithm has two stages; we use the same structure
in our adaption. Recall that the input is a sequence of ordered polylines.

Stage 1: slope skeleton. In the first stage, consecutive polylines are matched. The
matchings are required to be vertex-based and non-decreasing: each vertex in the one
polyline is matched to at least one vertex in the other and matched pairs of vertices respect
the order in which they occur along their respective polylines. This is achieved by using
locally correct Fréchet matchings with the geodesic distance (Figure 2a).

These matchings together define a slope skeleton (Figure 2b), which partitions the space
between the polylines into quadrilaterals and triangles. A slope ladder is a maximal set
of such triangles and quadrilaterals, which is created by combining those triangles and
quadrilaterals that share an edge of a polyline. Note that triangles can appear only at the
ends of a slope ladder. The polyline edges insides a slope ladder are its rungs.

Stage 2: iterative reduction. In the second stage, the complexity of the polylines is
gradually reduced by iteratively collapsing slope ladders. Such a collapse replaces each rung
of a ladder by a single vertex in an area-preserving manner. Hence, the new vertex must

(a) Locally correct
Fréchet matching.

(b) Slope skeleton (orange), highlighted
slope ladders (red), and rungs (black).

t

u
vs

(c) Area-equivalence line (red) and
span (thick dashed red) of rung tu.

Figure 2 Figures from Van Goethem et al. [15] illustrating several definitions.
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lie on a specific line: the area-equivalence line (Figure 2c). The new positions are further
restricted to lie within a specific span of this line, determined by projecting the rung and the
edge before and after onto the area-equivalence line. Finally, the new vertices within these
spans are determined by the so-called harmony line that connects the midpoint of the first
rung to the midpoint of the last rung of the ladder. Typically the new vertex replacing a rung
is the intersection between the corresponding area-equivalence line and the harmony line, but
if this intersection lies outside of the span, it is the closer endpoint of the span instead. The
algorithm considers not only one but many parallel copies of the harmony line. The final
harmony line and corresponding new vertices are chosen such that the directed Hausdorff
distance from the new edges to the corresponding part of the original polyline is minimized.
The algorithm collapses only slope ladders that cause no topological changes. Among those,
it repeatedly selects the slope ladder whose collapse causes the least distortion, as measured
via the average symmetric difference (areal displacement) caused by each collapsed rung. The
overall running time is O(n2 log n), where n is the total number of vertices in the polylines.

In contrast, our algorithm runs in O(kmax ·n log n) expected time, with kmax denoting the
length of the longest slope ladder, under some standard input assumptions that we discuss in
detail in the next section. Note that this is a somewhat loose upper bound: the factor kmax
contributes only when there are many long slope ladders that cause topological changes that
one cannot collapse and the slope ladders that one does collapse are short.

2 Algorithm description

At the core of our algorithm lies the identification of slope ladders (bundles of edges spanning
across isolines) and their simultaneous collapse. Slope ladders arise from a matching between
the vertices of the isolines (Figure 3b). We employ a subset of the medial axis [3] (Figure 3a)
to both identify which parts of isolines to match and to construct a matching. In Section 2.1
we describe how our matching is constructed, and we proceed in Section 2.2 with a description
of how these matches are linked to form the slope ladders. After these preprocessing steps,
the algorithm simplifies isolines in an iterative manner by selecting and collapsing a slope
ladder in each iteration. Section 2.3 describes how a single collapse is performed and how

(a) Voronoi diagram, medial axis (solid) and
medial axis separator (blue).

(b) Matching (orange), highlighted slope ladders
(thick, filled) and their rungs (thick, black).

Figure 3 Medial axis and derived slope ladders.

COSIT 2024
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cell

site

edge

vertex

(a) Voronoi diagram. (b) Medial axis separator. (c) Matching.

Figure 4 Computing a matching.

the slope ladders and related data structures are updated after such a collapse. Finally, in
Section 2.4, we explain how the algorithm chooses which slope ladders to collapse, and give
an overview of the entire algorithm, including an analysis of the running time.

2.1 Preprocessing: matching isolines
Intuitively, one can think of our approach as follows. Imagine the isolines as physical barriers.
Then move a disk – spring-loaded, such that it is always of maximal size – through the
regions between the isolines (Figure 4b). Parts of distinct isolines touched by the disk are
matched to each other (Figure 4c). This idea is captured formally by the medial axis [3] of a
shape S, which is the set of centers of disks of maximum radius that touch S in at least two
points. As we are interested in matching distinct isolines, we use the subset of the medial
axis that consists of disks of maximum radius that touch at least two different isolines. We
refer to this subset as the medial axis separator, following Bereg [1]. See Figure 4b for an
illustration of the medial axis separator and a selection of disks of maximum radius.

To compute the medial axis separator, we first subdivide the plane into regions called
cells that have the property that all points in the interior of a cell are closest to a unique site:
a vertex or edge of an isoline. That is, we compute a Voronoi diagram [2] of the vertices
and edges of the isolines (Figure 4a). Cells of the Voronoi diagram are separated by Voronoi
edges which meet at Voronoi vertices. The two sites to which all points on a Voronoi edge
are equidistant are called the defining sites of the Voronoi edge. The medial axis separator
consists of all Voronoi edges whose defining sites belong to different isolines. Figure 3a
illustrates the Voronoi diagram, the medial axis, and the medial axis separator.

Each Voronoi edge of the separator gives rise to a matching between its defining sites.
Bereg [1] uses this fact to define a continuous monotone matching between two polylines.
That is, any point on the polylines, including points on edges, are matched and the matched
pairs of vertices respect the order in which they occur along the respective polylines. Our
purposes require a monotone matching between vertices, which we obtain as follows.

There are three cases: the defining sites of a Voronoi edge may be two vertices, two line
segments, or a vertex and a line segment (Figure 5). If the defining sites of a Voronoi edge
are two vertices then we simply match those two vertices. If one site is a line segment ab and

(a) Vertices.
(b) Vertex and line seg-
ment. (c) Line segments.

Figure 5 Types of edges of the medial axis separator (blue) and their defining sites (black).
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s ta b

v

Figure 6 Examples of Voronoi edge projections with the resulting matchings.

the other site is a vertex v, then we first project the Voronoi edge on ab. Call the endpoints
of the projection s and t (Figure 6, left). Determine for s and t whether they are closer to a

or to b. If they are both closest to a then match a to v. Similarly if they are both closest to
b then match b to v. If one is closest to a and one is closest to b, then match both a and
b to v. If the defining sites of a Voronoi edge are line segments e1 and e2 then the same
projection is performed, only now on both line segments. If each projected endpoint is closest
to a unique line segment endpoint then the endpoints of e1 are matched to the endpoints of
e2 respectively (Figure 6, middle right). Otherwise, the setting reduces to a case that has
already been described. Thus three situations can occur: the endpoints of two segments are
matched to each other; the endpoints of a segment match to a vertex; or one vertex matches
to one other vertex. The union of these vertex matchings induced by all edges of the medial
axis separator form our monotone matching between isolines.

We partition the vertex matchings of an isoline into two sets based on the side of the
isoline on which the target of a matching lies. That is, we partition the matchings into a set
to the left and to the right of the isoline (if the isoline is open) or into a set on the inside
and the outside of the isoline (if the isoline is closed). This can be done efficiently during the
creation of the matchings. By definition isolines are closed, but some may be cut off by the
map boundary. The endpoints of such open isolines are not matched and the incident edges
never collapsed. Therefore, these endpoints will always remain at their initial position.

2.2 Preprocessing: deriving slope ladders

We link the vertex matchings of isolines to form slope ladders. We define a slope ladder as a
sequence of harmonious edges spanning across distinct isolines, possibly with a vertex at the
start of the sequence and possibly with a vertex at the end of the sequence. We refer to the
edges in a slope ladder as rungs and the possible vertices at the end of the sequence as caps.

We say an edge ab of an isoline is harmonious with a vertex v of another isoline if a and
b both match to vertex v. Similarly, we view an edge ab of an isoline as harmonious with an
edge cd of another isoline if vertex a matches to c, but not to d, and vertex b matches to d,
but not to c. There are a couple additional edge cases that we handle in our implementation,
but we do not discuss them here as they require detailed explanation but are uninteresting.

We now construct slope ladders as follows. We iterate over all edges of
isolines. If an edge e is not yet part of a slope ladder then we create a new slope
ladder which initially contains only e as a rung. Note that by construction of
the matching, edge e is harmonious with at most one edge or vertex on each side
of its isoline. If there are such harmonious edges or vertices then we add them
to the slope ladder. If a harmonious edge e′ was found then recursively search
for more harmonious edges or vertices on the other side of the isoline that e′ belongs to.

COSIT 2024
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(a) The area A contributed by
stuv equals ∆+ − ∆−.

s

t

u
v

(b) Area-equivalence line (red).
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(c) Area contributed by spv.

Figure 7 Any point on the area-equivalence line creates a triangle that contributes the same area
as before. Figures adapted from Figure 5 by Van Goethem et al. [15].

2.3 Iterative reduction: a single collapse
We simplify isolines iteratively by collapsing slope ladders. A slope ladder is collapsed by
collapsing each of its rungs. That is, we replace each rung with a vertex. We consider only
area-preserving collapses. For closed isolines, this means that the area of the region it encloses
is preserved exactly. For open isolines, the preserved value is the signed area of the possibly
self-intersecting polygon that is obtained by connecting the two ends of the isoline.

Area-preserving edge collapse. For an edge collapse to be area-preserving, the new vertex
must lie on a line, called the area-equivalence line. For clarity we repeat the explanation by
Van Goethem et al. [15]. Consider an edge tu with preceding and succeeding vertices s and
v so that they are ordered s, t, u, v on the corresponding isoline. If an edge does not have
preceding or succeeding vertices then we never collapse it. The area contributed by the edge
tu and its adjacent edges is the signed area A of the polygon stuv (Figure 7a). To preserve
area, the new vertex p should be placed such that the signed area of triangle spv is equal to A.
Taking sv as a fixed base, we see that the height of the triangle spv should be h = 2A/|sv|.
Thus, the new vertex p is restricted to lie on a line parallel to sv at signed distance h to sv

(Figure 7b). This line is referred to as the area-equivalence line for edge tu. Collapsing edge
tu to any point p lying on this area-equivalence line preserves area (Figure 7c).

Ladder collapse. We collapse a ladder by performing area-preserving collapses of each of
its rungs. Hence we have to choose points on the area-equivalence lines of each rung. Any
type of area-preserving edge collapse can be used and applied independently on each rung.
In our experiments we compare the two edge collapse methods described below.

Projected midpoint. Project the midpoint of tu on the area-preservation line.
Minimize areal displacement. Choose the point on the area-preservation line ℓ that min-

imizes the areal displacement of the edge collapse. Excluding degenerate cases, this is
either the intersection between ℓ and the line through st, or the intersection between ℓ

and the line through uv. This edge collapse was studied by Kronenfeld et al. [25]; see
their paper for more details.

The simultaneous collapse of edges in a slope ladder already promotes harmony. However,
this effect can be strengthened by coordinating the edge collapses of the rungs. Below, we
describe the coordinated collapses we use in our experiments.

Line. As described in Section 1.2, Van Goethem et al. [15] use a harmony line to choose
points on the area-equivalence lines. We are adapting their approach as follows. If a slope
ladder consists of only one rung, then we apply the minimize areal displacement edge
collapse. Furthermore, instead of minimizing the directed Hausdorff distance from the
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Figure 8 Illustration of the spline collapse, the area-equivalence line of each rung is indicated in
purple. Left: the three spline iterations (red, green, blue); the blue spline is the final spline with
minimum areal displacement (chosen from 15 samples). Right: the 15 samples.

newly inserted edges to the represented section of the original isoline, we minimize the
areal displacement of the edge collapse instead. This makes the collapse more efficient
and in our experiments did not result in any measurable or perceivable loss of quality.

Spline. The line collapse generally works well for small slope ladders that tend to be fairly
straight. However, larger slope ladders may bend significantly and, therefore, a harmony
line does not capture their shape well. The spline collapse uses intersections of the
area-equivalence lines with a uniform B-spline as the new vertex positions. The initial
harmony spline has the midpoints of the rungs as control points. Then we smooth the
spline by iteratively creating new splines that have the would-be new vertex positions as
control points (Figure 8). We choose to do this twice, though the number of repetitions
can be set by the user as desired. Next, similar to the line method, offsets of the initial
harmony spline are created and the one that results in the minimum areal displacement
is chosen (Figure 8). Like our adapted line method, if a ladder consists of only one rung
then we apply the minimize areal displacement edge collapse.

Hybrid. When a slope ladder is reasonably, but not completely, straight, the spline collapse
puts vertices almost, but not quite, on a line. The hybrid method detects such cases and
uses a harmony line instead. Specifically, it uses the harmony line method if the line
through the midpoint of the first and last rung of the ladder intersects each rung of the
ladder; otherwise, it uses the spline method.

Maintaining data structures. After a collapse, the isolines change and all data structures
need to be updated appropriately. First, we update the Voronoi diagram. Next, any
matchings and slope ladders that were derived from a part of the Voronoi diagram that
changed are removed and recomputed.

2.4 Iterative reduction: overall algorithm
Selecting a collapse. Each iteration, we collapse the slope ladder whose collapse incurs the
smallest cost defined as the areal displacement (symmetric difference) between the current
isolines and those after collapse. The collapse of a slope ladder is not allowed if it changes
the topology either by introducing intersections between isolines or by “moving over” another
isoline such that it lies on a different side after collapse. We maintain the Voronoi diagram
throughout our algorithm to efficiently detect changes in topology caused by a ladder collapse.
Here it is helpful to view an edge collapse as removing three edges and two vertices of the
isolines, and creating a new vertex along with two new incident edges. For our running time
analysis we make the assumption that each new edge intersects a constant number of cells of
the Voronoi diagram in expectation. The details of the topology check are many, but not
difficult; we refer the reader to the implementation of our algorithm.

COSIT 2024
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To efficiently retrieve ladders of low cost we make use of a min-priority queue data
structure (a min-heap). When retrieving a ladder the above mentioned topology check is
performed. If a check is violated, we store the segment that caused the violation and assign
a cost of infinity to the ladder collapse. After a collapse the algorithm checks whether any of
the now removed segments was the cause of a topology violation; if so, then the corresponding
ladder is assigned its proper cost again, and is a candidate again for collapse.

Running time analysis. Let n denote the number of vertices in the input. The Voronoi
diagram can be created in expected O(n log n) time [4], and the matching and slope ladders
can be derived from it in O(n) time. Initializing the ladders with their collapses, and
computing their cost, takes O(n) time in total. Thus, preprocessing takes expected O(n log n)
time. Next, we analyze the iterations. First, the slope ladder of minimum cost is retrieved
and removed from the priority queue in O(log n) time. Determining whether its collapse
changes the topology of the isolines takes expected O(1) time for each rung of the ladder.
Any ladder contains at most kmax rungs, where kmax is the length of the longest ladder in
the input, which is bounded by the total number of isolines. Hence the topology check takes
expected time O(kmax). If the topology changes then the ladder is assigned cost ∞ and
moved to the back of the priority queue in O(log n) time. This process is repeated until
a ladder is found whose collapse does not change the topology. We assume that in every
iteration there are expected O(1) ladders that violate a topology check. This is a reasonable
assumption because these violations do not accumulate, but instead are checked only once
for every ladder. Thus, selecting a ladder to collapse takes expected O(kmax log n) time.
After a ladder collapse has been selected, it is executed. The Voronoi diagram is updated
in expected O(kmax log n) time as O(kmax) updates are performed on the Voronoi diagram,
each taking expected O(log n) time [9]. Other data is also updated in O(kmax) time. Thus
in total the expected running time is O(kmax · n log n).

3 Experimental setup and results

In this section we present the results of an implementation of our algorithm for various
datasets. We compare our simplifications to the output of the harmonious algorithm by Van
Goethem et al. [15] and two non-harmonious simplification methods: the vertex-removal
algorithm by Dyken et al. [11] and the area-preserving edge collapse algorithm by Kronenfeld
et al. [25]. Furthermore, we compare the effectiveness of the different slope ladder collapses
described in Section 2.3. Finally, we experimentally evaluate the running time of our
implementation on datasets of various sizes. Below we first describe our experimental setup
and our datasets, then we perform a quantitative analysis of our results, which is followed by
a qualitative analysis.

Experimental setup. Our implementation is written in C++ and makes use of the segment
Voronoi Diagram in CGAL [23, 24]. The implementation is part of the CartoCrow frame-
work that can be accessed at https://github.com/tue-alga/cartocrow. We use a target
number of vertices as a stopping criteria for all simplification methods. Our method and
that of Van Goethem et al. collapse a ladder each iteration; therefore, the number of vertices
might decrease by more than one in each iteration. These algorithms are stopped once the
number of vertices is at or below the target number of vertices. Unless noted otherwise, all
our figures are generated using the hybrid collapse that uses fifteen samples for generating
line and spline offsets, and two smoothing iterations for the spline.

https://github.com/tue-alga/cartocrow
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We generate figures for the method of Dyken et al. [11] using its implementation in
CGAL [12]. Dyken et al. [11] describe three error measures. We use their hybrid distance
measure that applies a penalty when the simplification step would cause isolines to come
closer than a distance R (a parameter). We indicate this parameter with two blue lines:
parameter R is the distance between the two lines. Simplifications with the method described
by Kronenfeld et al. [25] are generated with our implementation by creating no matching or
slope ladders and using the minimize areal displacement edge collapse.

Data. The authors of Van Goethem et al. [15] shared their original figures and data with
us so we could perform a direct comparison (see Figures 12, 13, and 14). These include
digitized versions of examples by Imhof [22], a digitized set of contour lines for the whole
of Antarctica at 500m contour intervals (Figure 13), and isolines generated with QGIS
from Version 1 REMA DEMs (various resolutions and equidistances) [21]. Furthermore,
we generated new isolines from DEMs from The Reference Elevation Model of Antarctica
(REMA). These DEMs are provided by the Byrd Polar and Climate Research Center and
the Polar Geospatial Center under NSF-OPP awards 1043681, 1542736, 1543501, 1559691,
1810976, and 2129685. In particular, Figures 16, 17 and 18 were generated from REMA
Mosaic Version 2.0 from Thurston island off the coasts of Ellsworth Land and Mary Byrd
Land in 10m resolution [20]. We name the four largest datasets we discuss: MSY (7995
vertices, Figure 14), LWI (139,658 vertices, Figure 17), SWI (131,072 vertices), and MTR
(369,977 vertices). The data is available at doi:10.17605/OSF.IO/A67JP.

3.1 Quantitative evaluation
To quantitatively compare the results of our algorithm to both harmonious and non-
harmonious simplification algorithms we use two types of quality measures: one for measuring
the similarity of the simplified map to the original input and two for measuring harmony.

Measuring similarity. We measure similarity by computing for each input isoline the
symmetric difference with the simplified version and summing the values. We use the Boolean
operations of the CGAL library [13] to implement this. In order to compute the symmetric
difference for open isolines, we first close both isolines in a consistent manner. We normalize
the symmetric difference by dividing it by the area of the bounding box of the input isolines.

Measuring harmony. We use two measures for harmony. The first measure is vertex
alignment, which we adapt from the harmony measure used by Van Goethem et al. [15]. To
measure the alignment of two vertices u and v on distinct isolines, we determine the angular
bisectors n(u) and n(v) of their respective incident edges. The alignment between the two
vertices is then the sum of the appropriate angle α(u) between n(u) and uv and the angle
α(v) between n(v) and vu (Figure 9). Our measure differs slightly from that used by Van
Goethem et al. since they choose α(v) and α(u) to be the smallest angle between the line
uv and n(u) which means the worst alignment is 180° as illustrated at the right of Figure 9.
Intuitively, however, the worst alignment approaches 360° when the normals n(u) and n(v)
point in the opposite direction. This measure is shown in Figure 10 in the form of the average
vertex alignment in radians of all vertices matched by the matching explained in Section 2.1.

Our second measure for harmony is the number of slope ladders within a set of isolines
as created by our preprocessing step (see Section 2.1 and 2.2). Since we can create a set of
slope ladders for any set of isolines, also those produced by a simplification algorithm that

COSIT 2024
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Figure 9 Figure from Van Goethem et al. [15] illustrating the vertex alignment measure. Left:
the alignment of u and v is α(u) + α(v). Middle: optimal alignment. Right: bad alignment of 180°.

does not use slope ladders, we can use this measure across all outputs. When computing this
measure for a set of isolines, we normalize it by dividing the number of slope ladders by the
total number of vertices in the set of isolines.

Quantitative comparison. Figure 10 shows a comparison of different ladder collapse methods
used within our algorithm and other simplification methods on four reasonably large datasets.
An open symbol (and 1 after name) indicates a simplification method that does not use slope
ladders. A filled symbol (and 2 after name) indicates a simplification method that does use
slope ladders. We compare three different collapses: hybrid (Hybrid), the projected midpoint
(Midpoint) and the minimize areal displacement (SymDiff). Note that the SymDiff collapse
without slope ladders (SymDiff1) is the same method as the one described by Kronenfeld
et al. [25]. In addition to these area-preserving edge collapse methods, we also measure the
vertex-removal algorithm by Dyken et al. [11] (Dyken). In each subplot, at the far right is the
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Figure 10 Isoline simplifications; lower values are better and the horizontal axis is logarithmic.
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input. The similarity is zero here. Then, the isolines are progressively simplified; harmony
and similarity is measured when the number of vertices first drops below a power of two.
When there is no longer a simplification step that preserves the topology of the isolines, the
simplification stops. The measures at those times can be seen on the left of each subplot.

We now interpret the plot. Observe that in terms of harmony, any method that uses slope
ladders outperforms any method that does not use slope ladders. Furthermore, introducing
slope ladders for the Midpoint and SymDiff edge collapses significantly improves their score
in terms of harmony. Most striking is the effect of slope ladders on the Midpoint collapse.
Midpoint1 performs worst on vertex alignment, but Midpoint2 is tied for the best score
on vertex alignment. The good performance of Midpoint2 on harmony is likely a result of
the regular sampling of the DEMs which creates ladders with rungs of roughly the same
length. Projecting the midpoint of the rungs on the area-preservation line yields aligned
vertices, which also generally leads to fewer slope ladders. The SymDiff collapse scores best
on similarity, which is expected as similarity is measured in terms of symmetric difference
which is exactly what it minimizes. When this collapse is used in combination with slope
ladders, the harmony improves, but the similarity measure deteriorates slightly. This is
expected, as slope ladders restrict which edge collapses are performed. The Hybrid collapse
performs best overall, as it is tied with Midpoint2 for first place in terms of harmony and
outperforms Midpoint2 on similarity.

Experimental running time. We ran our experiments on a laptop with an 11th Gen Intel(R)
Core(TM) i7-11800H 2.30GHz CPU and 32 GB, 3200 MHz, RAM. The results are averaged
over ten runs. A dataset of close to a million vertices is included in the running time
experiments, which is not present in Figure 10, due to artifacts (missing data) that prevent
measurement of similarity. Figure 11 shows the results. The left plot shows the time in
milliseconds spent per simplified vertex, as a function of the input size. This includes the
time spent for preprocessing. The right plot shows the total running time needed to simplify
the various datasets until no simplification step exists that preserves topology. Observe that
isolines consisting of up to a million vertices can readily be simplified in less than half an
hour. Furthermore, the running time increases slowly as the number of vertices in the input
increases, and matches the running time one expects based on the theoretical analysis.
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Figure 11 Left: time spent per simplified vertex as a function of the input size. Right: total
running time as a function of the input size. Results are averaged over ten runs.
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N

Figure 12 Left: input isolines consisting of 2071 vertices. Middle: Van Goethem et al., 246
vertices. Right: our method with hybrid collapse, 245 vertices.

3.2 Qualitative discussion

In this section we visually compare the results of the simplification approaches which we
evaluated quantitatively in the previous section. The contour lines in the datasets we use for
our comparison are already at an appropriate level of detail for the corresponding contour
interval. As a result, the simplifications we show may appear coarse and are not necessarily
scale-appropriate. However, they do support visual comparison well, since the contour lines
are generally quite challenging to simplify in a topologically sound manner and hence readily
reveal the differences between simplification algorithms. We include one figure (Figure 15)
that is more scale-appropriate and ask the reader to use a digital zoom to inspect details.

Figure 12 highlights several key differences between our approach and Van Goethem et al.,
which we feel are improvements. A basic principle of generalization is to keep and possibly
even reinforce recognizable shapes while reducing extraneous detail at the same time. Our
hybrid approach does exactly that. Consider the south-eastern (top-right) slopes: where Van
Goethem et al. straightens out the slope into a straight northwest-southeast direction, our
method keeps the S-form of the input. Furthermore, our approach keeps the little sub-form
marked by the discrepancy between the lowest and second lowest isoline. The narrow lobe is
emphasized and harmonised to longer, parallel segments than the more winding input. The
next spur ends in a double-pronged form, that is kept in our approach, but lost in the middle
figure. We conclude that on this dataset our approach improves both the harmony between
the isolines and keeps more characteristic shapes, while using the same number of vertices.

The results in Figure 13 look quite similar on first sight. A detailed look reveals some
artifacts of Van Goethem et al.: over-simplification of the shallow western peninsula and
extraneous vertices, for example, at the lowest isoline, breaking harmony without adding any
characteristic shape. Also the inlet on the upper right shows a discontinuity in the isolines.
However, in some other places, such as the upper bundle of isolines, our hybrid approach

Figure 13 Left: input isolines consisting of 584 vertices. Middle: Van Goethem et al., 150 vertices.
Right: our method with hybrid collapse, 146 vertices.
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N

(a) Input isolines. (b) Dyken et al. [11].

(c) Kronenfeld et al. [25] (SymDiff1). (d) Our harmonious algorithm with hybrid collapse.

Figure 14 Dataset MSY. The input isolines have 7995 vertices. Figures (b) and (c) have
210 = 1024 vertices and (d) has 1023 vertices.

does not align vertices perfectly on a line, while Van Goethem et al. does. This difference
can be attributed to the difference in matchings used by the algorithms. Empirically we
have observed that the medial axis matching creates shorter slope ladders. This leads to less
simultaneous simplification, which is beneficial in some cases and disadvantageous in others.
The upper bundle of vertices in Figure 13 is such a case as they could be aligned better if
the slope ladders were longer.

Figure 14 compares the outputs of Dyken et al. (b) with Kronenfeld et al. (c) and our
harmonious algorithm (d) to the same input (shown in a) and simplified to about the same
number of vertices. Quite clearly, the individual simplifications of individual isolines are valid
in all three solutions. But only (d) successfully produces families of isolines. Consider the
south-eastern slope, showing equally spaced input lines, which are moved away and towards
each other in (b) and (c). Especially observe the glacial fan in the north-western portion
where it is easy to speak of an evolving family of curves for our approach (d) but not at all
in (b) or (c). Also inspect the northern summit: the rough pentagonal shape of the summit
can be ascertained in (a) and (d), but we see only rough irregularities in (b) and (c).

Figure 15 shows more scale-appropriate simplifications compared to the other figures.
Here it is more difficult to see differences between algorithms; however, the results of our
harmonious algorithm are still convincing. Compare the green highlight across the figures:
in (d) the isolines are simplified to be parallel, but in (b) and (c) isolines bend at different
places, adding noise without capturing input features. In the blue highlight we see that (d)
aligns the isolines, but allows a deviation of the lowest isoline to capture a plateau in the
input. The simplification in (c) captures both bottom plateaus, improving similarity with the
input but reducing harmony, which matches the quantitative results of the previous section.
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(a) Input isolines. (b) Dyken et al. [11]. (c) Kronenfeld et al. [25]. (d) Harmonious.

Figure 15 Selected isolines of dataset SWI. The input isolines have 20931 vertices and the
simplifications have 200 vertices.

(a) Input isolines. (b) Dyken et al. [11]. (c) Kronenfeld et al. [25]. (d) Harmonious.

Figure 16 Extracts of Figure 17 and 18 (red rectangle).

Figure 16 shows a close-up of Thurston Island, namely Hughes and Tinglof peninsulas
with the flat area being the Henry inlet. As with the whole island it is ice-covered. The
DEM-derived isolines of the input show that there are no sharp edges or rocks cropping out,
so jarring discontinuities are not in the input and should not be in the generalized result. On
first inspection it is quite obvious that Figure 16 (d) is the most ordered derivation from the
input. Figures 16 (b) and (c) show zigging and zagging countour lines that do neither zig
nor zag in unison. In detail, this leads to several deformations of the actual terrain: in (c),
the northern slope of Hughes peninsula (the northernmost in the extract) shows a serrated
curve edge, terraced and not aligned with each other, actually creating a little plateau that
does not exist. A similar plateau-effect is created in (b) by an added vertex for each of the
three lowest isolines on that slope, whereas the harmonised lines of (d) do not produce such
artifacts. Also note how Dyken et al.’s approach works slightly more shape-preserving on
some individual lines: the characteristic shape of the middle isoline of the Henry inlet is
over-exaggerated in (c) and blunted in (d).

Finally, Figure 17 shows the input isolines for the area of Thurston island, including
Peacock Sound and Sherman Island. The input is derived from a 10m resolution DEM for
an area about 340km from east to west and 150km north to south (≈51000 km2 is about the
size of Costa Rica or Bosnia and Herzegovina). It is a test for how well the algorithm can
work with realistic, detailed input data on a regional scale. In Figure 18, the detailed results
of our two comparison methods and our own algorithm are provided. When zooming in and
comparing details beyond the ones already highlighted in the excerpt, many areas are of
about equal quality for all three solutions, such as the central ridge of the Walker Mountains.
If we may direct the reader to the northern slope of Sherman island, the visual advantages of
our method become apparent: the gentle undulations, which are kept in our approach, throw
off Dyken et al., resulting in terrace-like structures and let Kronenfeld et al. show pointy
rocky outcrops, illusions all of them. A further example of note is the south bank of the
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Figure 17 Dataset LWI. Input isolines of 139658 vertices.

Morgan Inlet at the eastern part of Thurston island: the steep slope is well handled by the
our method, whereas both of the other candidates create readability problems even when
zoomed in very closely.

4 Conclusion

In this paper we described a method for the simplification of isolines that takes their mutual
relations into account and preserves their harmony. Our method is based upon the algorithm
by Van Goethem et al. [15], but improves upon it in several important ways, thereby lifting it
from an interesting proof-of-concept to a method fit for practical use on very large datasets.
Our new simplification algorithm outperforms existing state-of-the-art methods on our
measures of harmony, while compromising little on similarity. We can deliver topologically
correct results on datasets with thousands of points within seconds and on a million of points
in under half an hour. Furthermore, our method can handle sets of isolines with arbitrarily
complex nesting structures.
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Figure 18 Simplifications of LWI (Figure 17). Top and middle have 214 = 16384 vertices and
are computed by Dyken et al. [11] and Kronenfeld et al. [25] respectively. The bottom shows our
harmonious simplification consisting of 16377 vertices using the hybrid collapse.
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