
Bribe & Fork:
Cheap PCN Bribing Attacks via Forking Threat
Zeta Avarikioti #

Department of Informatics, TU Wien, Austria

Paweł Kędzior #

University of Warsaw, Poland

Tomasz Lizurej #

NASK, Warsaw, Poland
University of Warsaw, Poland

Tomasz Michalak #

IDEAS NCBR, Warsaw, Poland
University of Warsaw, Poland

Abstract
In this work, we reexamine the vulnerability of Payment Channel Networks (PCNs) to bribing attacks,
where an adversary incentivizes blockchain miners to deliberately ignore a specific transaction to
undermine the punishment mechanism of PCNs. While previous studies have posited a prohibitive
cost for such attacks, we show that this cost can be dramatically reduced (to approximately $125),
thereby increasing the likelihood of these attacks. To this end, we introduce Bribe & Fork, a modified
bribing attack that leverages the threat of a so-called feather fork which we analyze with a novel
formal model for the mining game with forking. We empirically analyze historical data of some
real-world blockchain implementations to evaluate the scale of this cost reduction. Our findings shed
more light on the potential vulnerability of PCNs and highlight the need for robust solutions.

2012 ACM Subject Classification Security and privacy → Systems security

Keywords and phrases Blockchain, Payment Channels Networks, Timelock Bribing, Feather Forking

Digital Object Identifier 10.4230/LIPIcs.AFT.2024.11

Related Version Full Version: https://arxiv.org/abs/2402.01363

Funding This work was supported by the Austrian Science Fund (FWF) through the SFB SpyCode
project F8512-N, the project CoRaF (grant agreement ESP 68-N), and by the WWTF through the
project 10.47379/ICT22045.
This result is part of a project that received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 and Horizon Europe research and innovation programs
(grant PROCONTRA-885666). This work was also partly supported by the National Science Centre,
Poland, under research project No. 46339.

Acknowledgements We thank Paul Harrenstein for his help in defining the model presented in this
work.

1 Introduction

The financial world was transformed by blockchains such as Bitcoin [24] and Ethereum [32].
While blockchains offer a number of benefits, their scalability remains a significant challenge
when compared to traditional centralized payment systems [10]. One promising solution
to this issue is the so-called payment channel networks (PCNs) that move most of the
transaction workload off-chain [15].

© Zeta Avarikioti, Paweł Kędzior, Tomasz Lizurej, and Tomasz Michalak;
licensed under Creative Commons License CC-BY 4.0

6th Conference on Advances in Financial Technologies (AFT 2024).
Editors: Rainer Böhme and Lucianna Kiffer; Article No. 11; pp. 11:1–11:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zetavar@hotmail.com
mailto:p.kedzior@mimuw.edu.pl
mailto:tomasz.lizurej@nask.pl
mailto:tpm@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.AFT.2024.11
https://arxiv.org/abs/2402.01363
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Bribe & Fork

Several PCN proposals [1, 2, 3, 4, 5, 11, 12, 13, 14, 16, 25, 28] have been laid forward so
far, each design offering some unique combination of features. Nonetheless, the core idea
behind payment channels remains the same, that is to facilitate off-chain transactions among
parties connected, either directly or indirectly via a path, on a network operating on top of
the blockchain layer, the PCN.

To participate in a PCN, two parties can lock funds in a joint account on-chain, thereby
opening a payment channel. Subsequently, the parties can transact off-chain by simply
updating (and signing) the distribution of their funds. When either party wants to settle
the account, or in other words close the payment channel with its counterparty, they can
publish the last agreed distribution of the channel’s funds. However, each update constitutes
a valid closure of the channel from the perspective of the blockchain miners. As a result,
a malicious party may publish an outdated update to close the channel holding more than
it currently owns. To secure the funds against such attacks, payment channels enforce a
dispute period. During this period, the funds remain locked to allow the counterparty to
punish any malicious behavior, and if so, claim all the funds locked in the channel.

Hence, the security of PCNs, like the most widely deployed Bitcoin Lighting Network [25],
crucially relies on financial incentives. Specifically, during the dispute period, the punishment
mechanism should enforce that a malicious party is always penalized and an honest party
should never lose its funds. Unfortunately, this is not always the case, as argued by
Khabbazian et al. [23] and Avarikioti et al. [6]. For instance, Lighting channels are susceptible
to the so-called timelock bribing attacks. In such an attack, a malicious party posts an
old update transaction on-chain, attempting to close its channel with more funds than it
presently possesses. Concurrently, the party bribes the miners to ignore the punishment
transaction of the counterparty for the duration of the dispute period. This bribe is typically
offered to the miners in the form of high transaction fees.

Naturally, the success of this attack depends on the value of the bribe. Avarikioti et al. [6]
showed that a bribing attack will be successful if the bribe is no smaller than: f1 − f

λmin
,

where λmin is the fraction of the mining power controlled by the least significant miner
in the underlying proof-of-work blockchain, f1 is the sum of the fees of a block containing
the punishment transaction, and f is the sum of the fees of a block containing average
transactions. We observe, however, that as λmin can be arbitrarily small, the bribing
amounts required can significantly exceed the funds typically locked in PCNs, rendering
the bribing attack impractical. Moreover, even in blockchains with rather concentrated
mining power, like in Bitcoin [18], the cost of a bribing attack is very high. For example,
conservatively assuming that the smallest miner has 10−4 of the total mining power1, the
cost of the attack as analyzed in [6] would be at least 1 BTC, for f1 − f ≈ 10−4 BTC. As a
result, it would be irrational to perform a bribing attack of this sort, as the average closing
price for 1 BTC between, for instance, 2019 and 2022 was 23, 530.92 USD2, which is more
than 10-fold the current total value locked on average in a Lighting channel3. This naturally
leads to questioning whether there is potential to amplify such attacks to the extent they pose
a genuine threat to the security of PCNs.

1 Details can be found in the full version of the paper. We experimentally show, that the mining power of
the weakest miner in the system can be fairly assumed to be of magnitude 10−12

2 statmuse.com
3 https://1ml.com/statistics

statmuse.com
https://1ml.com/statistics

Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:3

Our Contribution
In this work, we show that bribing costs can be significantly reduced, thereby making timelock
bribing attacks a realistic threat. We do so by extending the bribing attack to leverage not
only the structure of transaction fees but also a threat to fork the blockchain, known as a
feather fork attack [19, 27]. In our context, a given miner executes a feather fork attack by
announcing a self-penalty transaction txp. Whenever the self-penalty transaction appears
on the blockchain, the miner is incentivized to fork the punishment transaction tx1 on the
blockchain, i.e., the miner will try to extend the blockchain based on the predecessor of
the block tx1 including some other block. Specifically, a feather-forking miner is bribed to
commit collateral, betting that their fork will win the race. As a consequence, their threat of
forking becomes considerably credible, incentivizing other miners to follow their fork. The
collateral is of a similar magnitude as the bribe in [6], however, the miners only lock it
temporarily. We call our attack Bribe & Fork. With the feather fork at hand, the bribing
cost may now be reduced from f1−f

λmin
to approximately:

2f + 2(f1 − f)
λs

,

where f is the average fee of a single transaction, and λs is the mining fraction of the most
significant miner. Recall that f1 and f denote the sum of fees of a block containing the
punishment transaction and only average transactions respectively. To demonstrate the cost
reduction of Bribe & Fork, we reexamine the previous example for Bitcoin, with f ≈ 10−4

BTC, f1 − f ≈ f , and λs ≈ 20%. Now, λs replaces in the denominator the previously
presented λmin << 10−4, thus yielding a bribe at least 1000 times smaller than the one
in [6].

To derive this result, we present a formal model of mining games with forking, extending
the conditionally timelocked games introduced in [6]. In the game with forks, miners may
now choose, in each round, (a) which transactions to mine, and (b) whether they want to
continue one of the existing chains or they intend to fork one of the chains. All miners know
the choices of the winner of each block, as a feather-forking miner locks collateral on-chain.

To empirically estimate the cost reduction of Bribe & Fork, we analyze the historical
data of real-world blockchain implementations. Among others, we analyze the average block
rewards and fees, as well as the hash power present in the system and available to a single
miner, primarily for Bitcoin in 2022. Given the officially available data, we observe that
the cost of our attack can be as cheap as $125 (for 1 BTC ≈ $25.000). In general, the
cost of our attack can be up to 1010 times cheaper than the bribe required in [6] according
to our findings. Hence, even considering a collateral of around $30, 000, Bribe & Fork is
substantially more cost-efficient, and, by extension, more probable to occur.

2 Background

In this section, we first describe the necessary context required to understand Bribe & Fork.

2.1 Timelocked Bribing Attack
Whenever miners decide to create a new block, they select some set of transactions from all
transactions posted on the mempool, which is a database of all publicly visible transactions.
Mining pools and individual miners usually choose the transactions with the highest fees first,
as they are part of their reward for a successfully mined block. Miners are aware that some

AFT 2024

11:4 Bribe & Fork

transactions may be dependent on each other. For instance, two transactions that spend
the same Unspent Transaction Output (or UTXO) in Bitcoin, cannot be both published
on-chain; the transaction that is validated first, i.e., is included on a block of the longest chain,
immediately deems invalid the other transaction. If from two interdependent transactions,
only one can be published directly, while the other is timelocked and thus can only be
published after some time elapses, we refer to this pair of transactions as a conditionally
timelocked output. This conditionally timelocked output is the target of timelock bribing
attacks: the owner of the coins of the transaction that is valid only after the timelock expires
attempts to bribe the miners to ignore the currently valid competing transaction. Thus,
for the miners that observe transactions on the mempool, sometimes it may be profitable
to censor one transaction in order to mine another one that provides a greater gain in the
future.

2.2 Timelock Bribing in the Bitcoin Lightning Network
Next, we describe the timelock bribing attack in the context of the most widely deployed
payment channel network, namely the Bitcoin Lightning Network (LN). In LN, a single
on-chain transaction called the funding transaction, opens a channel between parties P1, P2.
Next, parties exchange with each other signed messages off-chain which update the state
of their accounts. If the parties are honest and responsive, they may close the channel in
collaboration. To do so, the parties post a mutually signed transaction that spends the
output of the funding transaction and awards each party their fair share of funds. However,
if a dishonest party P2 attempts to publish on-chain an old state that she profits from
comparably to the latest agreed state, her funds will remain locked for the so-called dispute
period. During this period, the other (rational) party P1 will try to revoke the old state,
by sending a transaction tx1 to the mempool called the revocation transaction (or breach
remedy). Transaction tx1 awards all the channel funds to the cheated party P1. We denote
by f1 the miner’s fee to include a block with tx1.

In this case, the malicious party P2 can launch a timelocked bribing attack, attempting
to bribe the miners to ignore tx1 for the dispute period T such that P2 gains the additional
funds. Specifically, P2 may send in the mempool a block with fee f2 that includes transaction
tx2, with f2 > f1, that is only valid if no miner includes in their winning block containing
tx1 within time T . Consequently, if the revocation transaction tx1 is not published on-chain
within T , P2 can spend the funds of the old state and the next winning miner will be awarded
f2. The pair of transactions tx1 and tx2 is now a conditionally timelocked output.

Assuming that for an average block of transactions, the users get in total f fees, the
following holds [6]: if f2 − f > f1−f

λmin
then all rational miners will choose to wait for T rounds

and publish a block containing tx2.

2.3 Feather Fork Attack
A feather fork, as introduced in [20], is an attack on Bitcoin wherein a miner threatens to
fork the chain if selected transactions are included. This intimidation mechanism aims to
subtly alter the miners’ block acceptance policy: the threatened miners may exclude the
selected transactions in order to mitigate the risk of losing their mining reward [31]. As
feather forking relies on economic incentives, the attacker may increase their probability of
success by bribing other miners to follow their short-lived fork, e.g., committing to pay them
the block rewards they may lose by censoring the selected transactions.

Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:5

Unlike a “hard” fork, where miners exclusively mine their own chain version regardless of
its length compared to other versions, a feather fork entails mining on the longest chain that
excludes selected transactions and does not fall significantly behind its alternatives. Thus,
a feather fork is less disruptive and more likely to be adopted by the network, making it a
potentially powerful tool in the hands of a malicious actor. In this work, we employ this tool
to enhance the likelihood of a successful timelocked bribing attack.

3 Bribe & Fork Attack

We now introduce our novel attack, termed Bribe & Fork, that combines the timelock bribing
attack in LN with the feather fork attack. We assume the existence of a payment channel
between parties P1 and P2. Similarly to timelock bribing, we consider P2 to be malicious and
attempt to close the channel with P1 in an old state using the transaction tx2. Consequently,
P1 is expected to attempt to revoke the old state. To prevent the inclusion of the revocation
transaction, P2 bribes the miner Ns with the highest mining power λs to threaten others
with a fork if they add the unwanted transaction txs1 on-chain. This action is implemented
through a self-penalty mechanism where the bribed miner temporarily locks collateral which
can only be reclaimed in case a block txs2 containing tx2 appears on-chain (and thus any
block txs1 containing tx1 is not included on-chain). In essence, the bribed miner “bets” that
the revocation transaction will be censored, thus rendering the threat credible for the rest of
the miners.

To realize Bribe & Fork, there are two mechanisms that should be implementable on-chain:
a) the bribe transaction that should only be spendable if txs2 is included on-chain, and
b) the self-penalty mechanism that enables the bribed miner Ns to lock collateral P (with
transaction txp1) and then reclaim it only if txs2 is included on-chain (with transaction
txp2). We implement the bribing and self-penalty mechanisms in Bitcoin script, using the
conditioning enabled by the UTXO (Unspent Transaction Output) structure. We note that
in Ethereum, preparing a smart contract that has access to the state of the closing channel
suffices to implement the bribing and self-penalty mechanisms.

In detail, a single bribing transaction txb and two special transactions txp1 , txp2 are
introduced. Let us assume that the cheating party P2 is bribing the miners to launch the
attack conditioned on the inclusion of its transaction tx2. To do so, P2 creates a bribe
transaction txb with input the party’s money from tx2 and outputs three UTXOs, one
given to the miner that mines this transaction, one dummy output owned by player Ns

(i.e., the miner bribed to perform feather forking), and one that returns the rest of the
money to P2. Now, Ns creates a transaction txp1 , locking a deposit P , that is spendable
via a multisignature of m-out-of-n parties (e.g., m = n/2), one of which is Ns’s signature.
Then, txp2 is created with two inputs: the output of txp1 and the dummy output of txb.
Consequently, txp2 is spendable only if it is signed by at least m parties of the predefined set
n and tx2 is validated on-chain. Upon receiving txp2 signed by at least m − 1 parties, Ns

signs and posts it on-chain. Assuming that no subset of size m − 1 of the rest n − 1 parties
will collude with the miner to spend the deposit, the deposit can be claimed by the miner
only if transaction tx2 is included on-chain. The security of this scheme depends on the
selection of the n − 1 parties, which can be in principle conditioned on the honest majority
assumption of the blockchain via subsampling.4

4 One could also consider using an instantiation of a Trusted Execution Environment (TEE) that outputs
txp2 only when txs2 appears on the blockchain. Additionally, note that on Ethereum, preparing a
smart contract that has access to the state of the closing channel is sufficient to implement the penalty
mechanism.

AFT 2024

11:6 Bribe & Fork

Now, the malicious party P2 together with a selected miner Ns can launch the
Bribe & Fork attack as follows: They can create special transactions txb (as a compan-
ion transaction for tx2) and the self-penalty transactions txp1 , txp2 to publicly announce a
credible threat that the transaction tx1 will be forked once it appears on the blockchain. They
publish these special transactions in the mempool as transaction sets txs2 (that contains tx2
and txb) and txsp1 , txsp2 (that contain txp1 , txp2 , respectively).

We show later that this attack significantly reduces the cost of the required bribe from
f1−f
λmin

to approximately 2f+2(f1−f)
λs

. The required collateral that is eventually reclaimed by
the bribed miner is expected to be λs · B (where B is a constant in Bitcoin block reward
independent of the user fees), which is comparable to the original bribe needed in [6]. Figure 1
illustrates the comparison of Bribe & Fork with [6], while Figure 2 below depicts the details
of Bribe & Fork.

(a) (b) (c)

Figure 1 Comparison of the honest execution, the attack from [6] and our Bribe & Fork. (a)
Honest execution: once an old state appears on-chain (black rectangle), P1 gets an option to
revoke this state with a transaction tx1 (included in the block txs1 which is published in the first
round). (b) Attack in [6]: the bribing party publishes tx2 and txb included in a single block txs2,
with a large miner fee (reversely proportional to the fraction of the mining power λmin of the least
significant miner). The miners skip mining txs1 in the first round, and mine txs2 in the last round.
(c) Bribe & Fork: the bribing party publishes txs2 with a fee sufficient to bribe only the strongest
miner (with f2 − f reversely proportional to λs). The strongest miner publishes the self-penalty
transactions txp1 , txp2 that can be mined in transaction sets txsp1 , txsp2 . In the first round, the
miner Ns locks P ≈ λs · B to the deposit transaction txp1 , thus threatening other miners that they
will be forked once txs1 is mined before the deadline. After the deadline the transaction set txs2 is
published and the miner Ns may collect back the deposit using txsp2 .

Implementation Details of Bribe & Fork
Figure 2 contains a diagram depicting the details of our attack. At first, a Lightning Channel
is opened with a single funding transaction and allows parties P1, P2 to make an arbitrary
number of off-chain state transitions of their funds. Once one of the parties (P2 in our

Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:7

example) decides to publish an old state (commi in our example) at a chain of length T0,
the opportunity to manipulate the behaviour of miners’ is opened. Before the chain reaches
length T0 + 1, the transactions tx1 and tx2 are published. Transaction tx1 allows P1 to
revoke a dishonestly committed state. Transaction tx2 allows P2 to collect and manage
dishonest funds after T rounds. Along with tx1 and tx2, the bribing transaction txb and
self-penalty transactions txp1 , txp2 are published. On the chain of length T0, the miners may
decide to mine the transaction txp1 that would lock some amount of coins of one of the
miners (say Ns). If so, all miners are threatened that they will be forked once tx1 appears
on the blockchain until the chain reaches length T0 + T . On the chain of length T0 + T , the
transaction tx2 along with bribing transaction txb may be published and the selected miner
Ns may collect back the deposit with the transaction txp2 .

Comm i+1

Comm iFunding

Chain length T0 Chain length T0 + 1

Revocation

P1

P2

c01

c02

P1

ci2 P1

f f

f

f1

ci2

Self-penalty

f

Ns

+ Bribe txb

f2

Self-penalty

f

Comm i

N1

P2

txp2

ci1

Bribe

Spend tx2

Chain length T0 + T + 1

f2

P2

f

Ns

Chain lengths T0 + 2, . . . , T0 + T

Revocation

ci2 P1

f1

tx1 tx1

txp1

to state:

to state:

(ci+1
1 , ci+1

2)

(ci1, c
i
2)

sets state:

(c01, c
0
2)

Spend tx2

+ Bribe txb

txp1

ci2

(deposit)

txp2

(collect)

Self-penalty

txp2

(collect)

Figure 2 The Bribe & Fork attack. The green boxes indicate the transactions that should be
put on-chain to run a successful Bribe & Fork attack. The grey boxes indicate the transactions that
should be published on the mempool before the chain reaches a specific length. For instance, Spend
transaction tx2 has to be published on the mempool before the chain reaches length T0 + 1, even
though it can not be published on the blockchain until the chain reaches length T0 + T . The arrows
going into the boxes indicate the spending conditions of the transactions and the arrows going out
of the boxes indicate how the funds of the boxes can be spent.

4 Our Model

In this section, we gradually define our game that models the process of mining that takes
into account the forks. A summary of our notation can be found in the full version of this
paper.

4.1 Preliminaries
Let us begin by recalling the conditionally-timelocked output definition from [6].

▶ Definition 1 (Conditionally timelocked output [6]). A conditionally timelocked transaction
output txo(T0, T, cond1, cond2) is a transaction output of a transaction tx with spending
condition cond1 ∨ cond2. Condition cond1 is not encumbered with any timelock and condition
cond2 is encumbered with a timelock that expires T blocks after the block with height T0,
where tx was published.

AFT 2024

11:8 Bribe & Fork

The game with forks is defined for a fixed set of players (miners) N = {N1, . . . , Nn} with a
tuple of mining powers λ = (λ1, . . . , λn) and will last R rounds. Notice that we focus on
proof-of-work blockchains that employ the so-called Nakamoto consensus, such as Bitcoin [24].
We assume that in such environments miners (players) tend to form mining pools to (a) bypass
the task of verifying transactions – the pool’s manager dispatches a list of valid transactions
for inclusion – and more importantly, (b) to guarantee a more stable income as individual
mining carries substantial deviation. Empirical evidence supporting this assumption, drawn
from Bitcoin, is detailed in the full version of the paper.

For the rest of this work, each miner is assumed to either mine independently or stick to
a selected mining pool throughout the execution of the game, i.e., we treat the mining pools
as single players in the game. As already mentioned, we assume that the game lasts for a
fixed number of rounds. Alternatively, we could consider a scenario where the game lasts
until the main chain reaches a predefined length. The first assumption is more suitable for
the time periods when the block rate is constant. On the other hand, the second modeling
approach is better for longer periods where the mining difficulty of blockchains is adjusted to
achieve a given number of blocks within a given time unit.

4.1.1 Global State Object

We introduce a global state object S = {S1, . . . , S|S|} that describes a set of currently mined
chains on the blockchain. Each Si consists of a list (chain) of pairs Si = [(block1, W1),
. . . , (block|Si|, W|Si|)] describing successfully mined blocks. In each pair (blockj , Wj) ∈ Si,
blockj describes a set of transactions included in the block, and Wj ∈ N indicates a player
that successfully mined the block.

4.1.2 Allowed Actions

We define the classes of possible actions in our game:
All chains in a state can be continued. When the operation continue is successful, a new
pair (block, W) is appended to the continued chain in the global state object.
Chains of length at least 1 in the state can be forked. Whenever one of the players
successfully forks, the new (duplicate) chain is created in the global state object in the
following manner:

the source fork is duplicated; and
a new block replaces the latest block in the duplicate.

For instance, let S = { [(block1, W1), (block2, W2)] } be a current state with a single
chain S1. Then, after a successful fork of S1 with (B3, W3), one gets S = { [(block1, W1),
(block2, W2)], [(block1, W1), (block3, W3)] }.

Notice that on existing blockchains, miners can fork a chain or mine on top of an arbitrary
block in one of the existing chains. However, forking that starts at old blocks is less likely
to outrun the longest chain. For that reason, we exclude this possibility from the game
(following [20, 31, 26]). In other words, miners in our model can fork only the last transaction
on one of the chains, and then either the original chain or the fork becomes stable whenever it
reaches a length equal to the length of the original chain plus one. The forks can be modeled
differently, e.g., assuming a longer fork length or using a finite automaton definition. We
expect our results to hold in the alternative modeling as well, but with different parameters
of our solution would change.

Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:9

4.1.3 The Abandon Rule
Let us define the abandon rule abandon : S → S that is later used to abandon old chains no
longer useful in the game. As we allow forking only the newest block in a chain, our abandon
rule will make each chain that outruns the length of other chains the only chain in the game.
That is, for any Si ∈ S: ∃Sj∈S len(Sj) ≥ len(Si) + 1 the abandon rule removes Si from the
state S.

4.1.4 Types of Transaction Sets
Each block mined in the game (denoted as block) includes only one of the transaction sets
listed below:

An unlimited amount of unrelated transaction sets txsu that contain average transactions
txu unrelated to any special transactions listed below. These transaction sets can be
mined at any point in the game.
A transaction set txs1 that contains the transaction tx1 that spends money of txo under
cond1. As long as txo is not spent, this transaction set can be mined on a chain of any
length. The rest of the transactions in this transaction set are unrelated transactions txu.
A (bribing) transaction set txs2 that contains the transaction tx2 that spends money
of txo under cond2 and a bribing transaction txb. As long as txo is not spent, this
transaction set can be mined on a chain of length ≥ T . The rest of the transactions in
this transaction set are unrelated transactions txu.
A special transaction set txsp1 . In the first round of the game, one of the players (say
N1) might decide to create a transaction set txsp1 with a self-punishment transaction
txp1 (see the description of the penalty mechanism in the Section 3). The player chooses
the amount P , which he deposits to the transaction. The rest of the transactions in this
transaction set are unrelated transactions txu.
A special transaction set txsp2 with transaction txp2 . The transaction txp1 assures
that the player N1 that created the transaction txp1 may collect back the deposit P by
publishing the transaction txp2 , but only after the transaction set txs2 is published on
the blockchain (see the Section 3). The rest of the transactions in this transaction set are
unrelated transactions txu.

4.1.5 Rewards
We assume that a miner, after successfully mining a transaction set txsi on the main chain,
gets a reward reward(txsi) equal to B + fi + P , where B is a constant block reward and fi is
a sum of user fees input by users posting transactions in the transaction set txsi. Whenever
txsi contains a transaction that locks C coins from the miner’s account, we set P to be equal
to −C. Analogously, when a miner collects C as one of the transactions from txsi, we set the
parameter P to C. The reward for mining a block depends on the number of transactions
within the block and their fees. The fee for a more complex transaction is typically higher as
it occupies more space in a block. In this respect, we make the following assumptions that
correspond to the current Bitcoin values (more details can be found in the full version of the
paper):

Each unrelated transaction set txsu has on average m transactions, its reward

reward(txsu) = B + f = B + m · f,

where f is an average user transaction fee. We also assume that f < 10−4B.

AFT 2024

11:10 Bribe & Fork

For other transaction sets with an uncommon functionality, e.g., txsj , we assume it
contains in total m − cj unrelated (average) transactions, a special transaction txj that
takes space of cj average transactions, where cj < m. In total,

reward(txsj) = B + (m − cj)f + cjfj + P = B + fj + P,

where fj = (m − cj)f + cjfj . The interpretation of the parameter cj is that it describes
the number of transactions needed in a block to implement the uncommon functionality,
each of them with fee fj .

In the full version of the paper, based on empirical data, we show how block rewards
fluctuate in the real world. However, following [6], we assume that standard transactions
have a constant (average) reward and that all blocks have a constant number of transactions.
In the list above, we refer to each standard transaction as an average transaction.

4.1.6 Mining Power Distribution

We assume the following mining power allocation λ = (λ1, . . . , λn) among the players (see
discussion in the full version of this paper).

There exists a single “strong” player (say player s) with mining power λs ≥ 20%. All
other players have mining power smaller than λs.
There exists a “relatively” strong player (say player i) with mining power 1% < λi < 2%.
We assume that all players with mining power less than 1% have collective power at most
5%.
The smallest mining power is of any miner in the game is λmin > 10−100.

4.1.7 Players’ reluctance to believe a threat

In the mining process, players can threaten other players that they will fork their blocks, once
these blocks appear on the blockchain, as in the feather forking attacks. However, without
any additional assumptions, there exist multiple solutions for such a setting [17]. To derive
a single solution in our game, we make a conservative assumption that the players do not
conduct the forking action if it can result in financial losses to them. In other words, we
accept only threats from a player who strictly profits from forking a selected transaction, i.e.,
the forking action is a dominating one for the player in this particular state.

4.1.8 No Shallow Forks Conjecture

The Conjecture 1 below is a second assumption (together with the assumption that players
are reluctant to believe a threat) that allows us to achieve a unique solution in the game
with forks. In the conjecture, we assume that players have the option to fork a transaction
only when they see an explicit opportunity of mining any other transaction with a higher
miner’s fee5, initially blocked by the currently forked transaction. That is, we forbid shallow
forks in the model.

5 We denote that, alternatively to Conjecture 1, one could assume that the size of the mining fees in the
game is limited, as excluding transactions with outstandingly high fees can also discourage the players
from forking these transactions.

Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:11

▶ Conjecture 1 (No shallow forks). At any point in the game ΓF , the players will not start a
fork of a chain ending with a transaction set txsa, unless they see an explicit opportunity to
mine a fork containing at some point txsb, initially blocked by txsa (e.g., by the conditionally
timelocked output transaction mechanism, or the self-penalty mechanism). What is more, the
players must be aware that reward(txsb) > reward(txsa).

Note that given the feasible transaction sets in the Section 4.1.4 and the reward structure
defined in the Section 4.1.5, whenever reward(txs2) > reward(txs1) and reward(txs1) >

reward(txsp1), according to the Conjecture 1, the players in our game can attempt to fork
only txs1 to get txs2 or txsp1 to mine txs1. In other words, whenever txsu, txs2, or txsp2

appear on one of the chains, they will not be forked.

4.2 The Game
Finally, we describe a game that models the process of PoW blockchain mining taking into
account the option to conduct a forking of a block. The game proceeds in rounds; in each
round, the miners can choose whether they want to continue mining one of the chains or
they want to fork one of the chains.

▶ Definition 2 (Conditionally timelocked game with forks). A conditionally timelocked game
with forks ΓF (N, R) is a game with a finite set of players (miners) N = {N1, . . . , Nn},
where n = |N |, that lasts R rounds. We define a tuple of mining powers λ = (λ1, . . . , λn)
associated with the players, such that

∑
λi∈λ = 1. In the following, we will write ΓF , instead

of ΓF (N, R), when N, R are obvious from the context.
Given the global state object, the set of possible actions, the rewards structure and the

mining power distribution defined above, the game is played as follows:
1. The game starts with the state S = {[]} which is updated exactly R times. All players

are aware that this state is built upon a blockchain of height T0 which includes an unspent
conditionally timelocked transaction output txo(T0, T, cond1, cond2), where T < R.

2. At each round 1 ≤ r ≤ R, players Ni ∈ N choose which of the subchains Sk ∈ S they
build upon, whether they will continue or fork this chain and which of the feasible blocks
(built upon one of the transaction sets) they want to add in case they are declared as the
winner. Let Ω (S, r) denote the set of all feasible actions for the state (S, r) described
as triplets (S, decision, transaction_set), where S ∈ S, and decision ∈ {continue, fork}.
Based on λ = (λ1, . . . , λn), one player is declared as the winner in the round r, and the
state object is modified accordingly.

3. After each round, the abandon rule abandon is run on the current state.

When the final round R of the game is over, it finishes in some state S, and rewards
are given to the players. By S∗, let us denote the longest chain in the state S. Whenever
the state has multiple longest chains, S∗ denotes the oldest of the longest chains of S.
After the final round R, in the state S, the reward given to a player Ni is: rewardi(S) =∑

(block,W)∈S∗:W =i reward(block).

4.2.1 Strategies
Notice that given the set of players N , the actions continue and mine defined above, and the
set of transaction sets possible to mine, one can determine the set S of all states that may
happen in the game.

A strategy σi for a player Ni is given by a function mapping each pair (S, r) ∈ S × [R] to
a triplet feasible for this pair (S, decision, transaction_set).

AFT 2024

11:12 Bribe & Fork

Let σ denote a strategy profile of all players - a tuple of strategies of all players - i.e.,
σ = (σ1, . . . , σn). Given a fixed index i, with σ−1, we will denote a strategy profile of all
players, but the selected Ni.

The distribution of mining power among the players λ = (λ1, . . . , λn), the strategy profile
σ, current state S ∈ S and current round r ∈ [R] define a probability distribution function
pλ,σ,S,r,r′ : S → [0, 1] that assigns a probability that a certain state S ′ ∈ S is activated
after round r′ ∈ [R], where r′ > r. Given pλ,σ,S,r,r′ and the reward function, we can define
the utility (the expected reward) Ei(σ) of each player i, when strategy σ is played. We say
σ∗ = (σ∗

1 , . . . , σ∗
n) is a Nash Equilibrium if for all players Ni ∈ N it holds that

Ei(σ∗
i , σ∗

−i) ≥ Ei(σi, σ∗
−i),

for all alternative strategies σi for the player i.
We denote by ΓS,r

F the subgame of the game ΓF in a round r, at a state S. We denote
by Ei(σ, S, r) the utility of a player Ni in this subgame, which is the expected reward for
this player once the game is over.

5 Analysis of Bribe & Fork

In this section, we formally analyze Bribe & Fork where a bribe transaction tx2 is published,
large enough to bribe a chosen miner with the highest mining power, yet significantly smaller
than the value required to directly persuade all miners to skip mining the transaction txs1.
The selected miner is then asked to threaten others with a fork if they add the unwanted
transaction txs1 to the blockchain. To make these threats credible, we implemented the
self-penalty mechanism (see Section 3).

5.1 About the proofs
In the proofs, we aim to find a dominating strategy for a player Ni in a given state S and
a round r, i.e., a strategy that outweighs other strategies of a selected player in the given
state and round. As we will move from the very last round of the game till the first round
of the game, we will be able to conclude our reasoning with a single NE of the full game.
Whenever needed, we use the mathematical induction technique to show that some choice of
strategy is optimal for a sequence of rounds. Usually, the base case is the last round of the
game and the induction step proves that if a given strategy is dominating in a round k + 1,
then it is also a dominating strategy in a round k.

When we compare how the player Ni benefits from taking two distinct actions A, B in a
given state S and a round r, we often say that there exists a constant C common for these
strategies. To this end, we assume that action A refers to some strategy σa of the player
Ni, and action B refers to some strategy σb of the player Ni, such that σa differs only in
its definition from σb on the selected state S and the selected round r. The utility of the
player Ni is the same for both strategies whenever in the state S and r someone else than Ni

is selected as the winner of the round. With C, we denote the utility of player Ni multiplied
by the probability of this event when player Ni is not the winner of the round. This reasoning
gives us an easy-to-use method to compare utility between the strategies σa, σb. We can
thus compare the utilities of the player Ni in the state S and round r when the two distinct
strategies σa, σb are selected as:

Ei(σa, S, r) = λi(utility of the player Ni when action A was taken) + C,

Ei(σb, S, r) = λi(utility of the player Ni when action B was taken) + C.

Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:13

5.2 Transaction Order in a Single Chain
Although, due to the definition of the player’s utility function, the bribing transaction (txs2)
may encourage the players not to skip mining transactions with high rewards during the
dispute period (e.g. txs1), we first show that once timelock is over and txs1 was not mined,
the players will follow the default strategy to mine transactions with highest rewards first.

▶ Lemma 3. Let ΓF (S, T + 1) be a subgame in a state S = {S}, where the state S contains
a single chain S and the transaction set txsp1 was mined in the first round. In the next T − 1
rounds, miners mined unrelated transactions sets txsu. Furthermore, it holds that

reward(txs2) > reward(txs1) > reward(txsu) and reward(txsp2) > reward(txsu).

Then the dominating strategy for all players in the subgame ΓF (S, T +1) is to mine transaction
sets in the following order: txs2, txsp2 , and for the rest of rounds txsu.

Proof. As txsp1 was mined in the first round, then in any round after the round T + 1 there
are available to mine the following transaction sets:

mutually exclusive txs1 and txs2 with expired timelock,
one txsp2 that can be mined only after txs2 appears on blockchain,
and an unlimited amount of unrelated transaction sets txsu.

Since only txs1 and txs2 are mutually exclusive and reward(txs1) < reward(txs2), then by
Conjecture 1, whenever txs2, txsp2 or txsu appear on the blockchain, they will not be forked.
Thus only txs1 may be forked in the subgame.

Once both txs2, txsp2 are on the chain, miners can not mine any special transaction sets,
and all of the miners will mine txsu till the end of the game.

Next we show that for any round r ∈ {T + 2, . . . , R}, in a state S ′ created by extending
the chain in S with txsu and one txs2 at any point in this chain, the dominating strategy
for all players is to mine txsp2 first if it was not mined until this point. We will prove it by
induction. The statement trivially holds in the last round R, because txsp2 > txsu. Now,
assuming that it holds in round R − k, we prove that it also holds in round R − k − 1. Any
player Ni will be chosen with probability λi as the winner of the round. The utility of the
player Ni following a strategy σp2 that first mines txsp2 in the state S ′ is:

Ei(σp2 , S ′, R − k − 1) = λi(reward(S ′) + fp2 + B + λik(f + B)) + C,

for some constant C that describes the expected reward of Ni in case he/she is not chosen as
the winner of this round.

The utility of the player Ni following a strategy σu that first mines txsu in the state S ′ is:

Ei(σu, S′, R − k − 1) =
{

λi(reward(S′) + fu + B) + C when k = 0
λi(reward(S′) + fu + B + λi(fp2 + B) + λi(k − 1)(f + B)) + C when k ≥ 1

From the above it follows that

Ei(σp2 , S ′, R − k − 1) > Ei(σu, S ′, R − k − 1).

Next we show that for any r ∈ {R, . . . , T + 1}, in a state S ′′ created by extending the
chain in S with txsu, the dominating strategy for all players is to mine txs2 first if it was
not mined until this point. Observe that in the state S ′′ the miners can only mine txsu, txs1
or txs2. The statement trivially holds in the last round. Now, assuming that it holds in

AFT 2024

11:14 Bribe & Fork

round R − k, we prove that it also holds in round R − k + 1. Any player Ni will be chosen
with probability λi as the winner of the round, and with probability 1 − λi someone else will
be selected as the winner of the round. Then for some constant C, the utility of the player
Ni in a strategy σ2 that first mines txs2 is

Ei(σ2, S′, R−k+1) =

λi(rewardi(S′′) + f2 + B) + C when k = 0
λi(rewardi(S′′) + f2 + B + λi(fp2 + B)) + C when k = 1
λi(rewardi(S′′) + f2 + B + λi(fp2 + B) + (k − 2)λi(f + B)) + C when k ≥ 2

Whereas the utility of the player Ni in a strategy σ1 that first mines txs1 is

Ei(σ1, S′′, R−K+1) ≤



λi(rewardi(S′′) + f1 + B) + C when k = 0
max{λi(rewardi(S′′) + f1 + B + λi(f + B)) + C, when k = 1
λi(rewardi(S′′) + f2 + B) + C}

max{λi(rewardi(S′′) + f1 + B + 2λi(f + B)) + C, when k = 2
λi(rewardi(S′′) + f2 + B + λi(fp2 + B)) + C}

max{λi(rewardi(S′′) + f1 + B + kλi(f + B)) + C, when k ≥ 3
λi(rewardi(S′′) + f2 + B + λi(fp2 + B)) + (k − 3)λi(f + B))C}

It is again easy to see that Ei(σ2, S ′′, R − k + 1) > Ei(σ1, S ′′, R − K + 1). ◀

The details of the proof of the above Lemma imply the following result.

▶ Lemma 4. Let ΓF (S, T + 1) be a subgame in a state S = {S}, where the state contains a
single chain S where in T rounds miners mined unrelated transaction sets txsu. Furthermore,
for all miners

reward(txs2) > reward(txs1) > reward(txsu).

Then the dominating strategy for all players in the subgame ΓF (S, T + 1) will result in the
following transactions order: txs2, and for the rest of rounds txsu.

5.3 Decisions of an Individual Miner are Consistent
In this section, we show that without a high-cost reward f2, once someone is successful with
mining txs1, the miner will continue mining this chain, as it might be too costly for the miner
to lose the block reward that he already mined. As txs1, txs2 is the only pair of conflicting
transactions in the game whenever txsp1 was not created, it follows from Conjecture 1 that
the forks may occur only when one miner successfully mines txs1, and the other player wants
to profit from mining txs2. Thus, in the following, we study the behavior of the players
whenever one of the players decides to mine txs1.

▶ Theorem 1. Assuming subgame ΓF (S, r) in a state S with a single chain of length r ≤ T ,
formed until round r where player Nj mined txs1 in the last round, and txsp1 is not on the
chain, then the player Nj will continue to mine this chain unless f2 − f ≥ f1 + B, even when
other miners decide to fork the chain with txs1 and continue mining the new subchain created
during the fork.

Proof. At every point of the game, each player Ni can choose a strategy for the remaining
M rounds to collect at least Mλi(f + B) if he simply always chooses to mine txsu from this
point.
Thus, whenever txs1 was just mined by Nj and R − r rounds are left till the end of the game,
then for some C:

Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:15

Nj chooses a strategy σ1 where he continues the current chain of the state S, thus:

Ej(σ1, S, r + 1) ≥ λj(rewardj(S) + f + B + (R − r − 1)λj(f + B)) + C.

when the Nj “forks” himself, then at least one of the blocks txs1 or txsu will be canceled
out in the final chain, therefore for any strategy σ2 that involves forking txs1:

Ej(σ2, S, r + 1) ≤ λj(rewardj(S) − (f1 + B) + f2 + B + (R − r − 1)λj(f + B)) + C.

In conclusion Ej(σ1, S, r + 1) > Ej(σ2, S, r + 1), unless f2 − f ≥ f1 + B.
Now, since Nj that already mined txs1 will not fork himself in the first round, it is easy

to see that the same follows in the next round. ◀

5.4 Only a High-Cost Reward May Encourage Miners to Fork
The next result shows that it is not possible to credibly threaten with forks without high fees.
In particular, we show that for any miner with mining power λj that considers mining the
block txs1, any forking threat in the game where txsp1 was not created, will not be credible
unless f2 − f ≥ λj(f + B), as the miner that mined the transaction will continue to mine his
transaction.

▶ Theorem 2. Let ΓF (S, r + 1) be a subgame in a state S that contains only a single chain
of length r consisting of r − 1 unrelated transaction sets txsu and one (just mined) txs1
(mutually exclusive with txs2 with reward(txs2) > reward(txs1) > reward(txsu)) mined by
some miner Nj. The txsp1 was not created and r ≤ T . Other miners will not fork txs1,
unless f2 − f ≥ λj(f + B), where λj is the mining power of the miner Nj.

Proof. For brevity, the proof of this statement was moved to the full version of this paper. ◀

5.5 Without a High-Cost Reward, All Players Mine txs1

As we already observed, once txs1 is mined, it will not be forked unless the bribing fee is
sufficient. We will show that for a sufficiently large number of rounds T , all of the players
will mine transaction set txs1 in the first round. A similar result was introduced in [23], but
we prove that this result still holds in the game with forks.

▶ Theorem 3. Let ΓF (S, 1) be a subgame where none of the miners decides to create txsp1

before the first round, and the bribing fee is not too high, i.e. f2 − f < 10−2(f + B). What
is more f1 > f , and if we define Y =

∑|N |
j=i:λj>0.01,f2−f<

f1−f
λj

λj, then T, Y are big enough,

such that (1 − 1.01(1 − Y)T) > 0. Every miner with λj > 0.01 will decide to mine f1 in the
first round.

Proof. In the game where none of the miners decides to create the transaction set txsp1 ,
miners may choose to mine txsu and txs1 in all rounds, or txs2 only after round T . Now,
since the game contains only one pair of mutually exclusive transactions txs1, txs2 with
reward(txs2) > reward(txs1), then by Conjecture 1 players can start to fork only when txs1
appears on the blockchain. What is more, since f2 − f < 10−2(f + B), by Theorem 2,
whenever some player with λj > 10−2 successfully mines txs1 in a chain of length ≤ T , none
of the players will decide to fork his block.

We prove that in the above game miners with collective mining power at least Y will
decide to mine txs1 in rounds {T, T − 1, . . . , 1} if not mined up to this point. Let’s take
any miner with λi > 10−2 that makes a decision in round T − k, for k ∈ {0, . . . , T − 1}.

AFT 2024

11:16 Bribe & Fork

As already mentioned, once he successfully mines the block txs1, it will not be forked. In
round T , whenever the block txs1 was not mined, then the miners had only mined txsu so
far ending up in a state ST . Then for some constant C, the utility of the player Ni in all
strategies σ1 that choose to mine txs1 in ST , and all strategies that choose to mine txsu

in ST :

Ei(σ1, ST , T) ≥ λi(rewardi(ST) + f1 + B + λi(R − T − 1)(f + B)) + C,

Ei(σ2, ST , T) ≥ λi(rewardi(ST) + f + B + λi(f2 + B) + (R − T − 2)λi(f + B)) + C.

Now, Ei(σ2, ST , T) < Ei(σ1, ST , T) only if (∗)f2 − f ≥ f1−f
λi

. This implies that miners with
collective mining power at least Y will prefer to mine txs1 in this round.

In round T − k, where k > 0, whenever the block txs1 was not mined, then the miners
had only mined txsu so far, ending up in a state ST −k. Then for some constant C, the utility
of the player i in all strategies σ1 that choose to mine txs1 in ST , and all strategies that
choose to mine txsu in ST :

Ei(σ1, ST −k, T − k) = λi(rewardi(ST −k) + f1 + B + λi(k − 1)(f + B)+
λi(R − T + k − 1)(f + B)) + C,

Ei(σ2, ST −k, T − k) ≤ λi(rewardi(ST −k) + f + B + λi(k − 1)(f + B) + λi(f2 + B)+
(R − T + k − 2)λi(f + B)) + C.

Similiary, the above equation implies that at least Y miners will prefer to mine txs1 in this
round.

Now, after the first round there are T rounds till the moment of mining txs2, player’s
Ni benefit from mining txs1 (with λi > 0.01) and not waiting for txs2 is at least benefit =
λi(f1 + B) − λi(1 − Y)T (f2 + B), and since f2 − f < 10−2(f + B), then benefit ≥ λi(f1 +
B − (1 − Y)T)(1.01f + 1.01B). Now, assuming that f1 > f we have benefit ≥ λi(f(1 −
1.01(1 − Y)T)) + B(1 − 1.01(1 − Y)T). This implies that whenever (1 − 1.01(1 − Y)T) > 0,
then all miners with λi > 0.01 will mine txs1 in the first round. ◀

A similar results holds in any state where sufficiently large number of T − r + 1 rounds
are left till the round T , txsp1 was not created in the game (or txsu was mined in the first
round), and txs1 was not mined yet. We leave it as a lemma without a proof.

▶ Lemma 5. Given a game with forks ΓF (S, r) with r < T , where none of the miners decides
to create txsp1 before the first round (or txsu is mined in the first round), and the bribing
fee is not too high, i.e. f2 − f < 10−2(f + B) and given Y =

∑|N |
j=i:λj>0.01,f2−f<

f1−f
λj

λj;

T −r +1, Y are big enough, such that (1−1.01(1−Y)T −r+1) > 0, every miner with λj > 0.01
will decide to mine f1 in this round.

5.6 Discouraging Miners to Mine txs1

In the previous sections, we have shown that it is rather expensive to force the players not to
mine txs1 in the first round, even when the players can fork this transaction. In this section,
we leverage the self-penalty mechanism introduced in Section 3. The proof is inductive, and
its base case starts in round T . For each round, we first show that the miner Ns with the
highest mining power λs will not mine txs1, as we assume that f2 − f > f1−f

λs
. Next, given a

Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:17

sufficiently large penalty P > λs(f + B), we show that the selected player Ns will fork the
transaction txs1, once it appears on the blockchain, even though it poses a risk of losing the
block reward. Finally, we show that in this round all players other than the player Ns are
afraid to mine txs1, when the self-penalty transaction is on the chain.

▶ Theorem 4. Let ΓF (S, 2) be a subgame where txsp1 defined by a player Ns with mining
power λs was mined in the first round with P > λs(f + B). What is more f2 − f > f1−f

λs
,

and f+B
f1+B > 1 − λ2

s. None of the miners will decide to mine txs1 in rounds 2, . . . , T .

Proof. For brevity, the proof of the theorem was moved to the full version of this paper. ◀

5.7 Encouraging the Strongest Miner to Use the Penalty Mechanism
Finally, we observe the benefit that comes from using the penalty mechanism. First for the
miner with the strongest mining power λs, we observe that using the self-penalty mechanism
and threatening others to mine the transaction txs1, once it appears on the blockchain is
beneficial for him whenever f2 − f > 2f+2(f1−f)

λs
+ f . Next, for any miner with a smaller

mining power, we show that merely the fact that he is threatened to mine txs1 can force
them to skip mining this transaction.

▶ Theorem 5. In the game with forks ΓF that starts with an empty state S, whenever
f2−f > 2f+2(f1−f)

λs
+f , f+B

f1+B > 1−λ2
s, f1 > f , fp2 > f , λmin > 0.05T/2, f2−f < 10−2(f+B)

and given Y =
∑|N |

j=i:λj>0.01,f2−f<
f1−f

λj

λj, it holds that (1 − 1.01(1 − (1 − Y)T/2) > 0, the

dominating strategy for all players in the game ΓF is is to mine txsp1 with P > λs(f + B)
created in the first round by the strongest player Ns with the mining power λs, then mine
txsu until round T , then txs2, txsp2 , and txsu until the end.

Proof. By Theorems 3 and 4, utility of the player Ns that chooses to create txsp1 , txsp2

and mine txsp1 in the first round6 (strategy σp) is at least:

Es(σp, S, 1) ≥ −λp1cp1fp1 + λs((m − cp1)f + B) + (λp1 + λs)F ′
2 + (1 − λs − λp1)F ′

1,

where F ′
1 = (λs(T − 1)(f + B) + λs(R − T)(f + B)),

F ′
2 = (λs((T − 1)(f + B)) + λs(f2 + B) − λp2cp2fp2 + λs((m − cp2)f + B)+

λi(R − T − 2)(f + B)).

Recall that we assume that all players with mining power less than 1% have collective power
at most 5%. As the players with mining power more than 0.01 will prefer to mine txs1 in
the first place when txsp1 is not created, the utility of the player Ns that does not decide to
create txsp1 (strategy σ1) is at most (by Lemma 5 and the Theorem 4):

Es(σ1, S, 1) ≤ ((1 − 0.05T/2)F1 + 0.05T/2F2),

where F1 = F ′
1 + λs(f1 + B), F2 = F ′

2 + λs(f + B). Further, if λp1cp1fp1 + λs(f + B) −
λscp1f + F ′

1 + (λp1 + λs)(F ′
2 − F ′

1) > F1 + 0.05T/2(F2 − F1), then Es(σp, S, 1) > Es(σ1, S, 1).
This condition holds whenever:

(λp1 + λs)[λsf2 − λsf1] > 0.05T/2[λsf2 − λsf1] + λp1cp1fp1 + λscp1f+
(λp1 + λs)(λp2cp2fp2 + λscp2f) + λs(f1 − f).

6 In the analysis we omit the strategy where the player Ns creates txsp1 , txsp2 and does not decide to
mine txsp1

AFT 2024

11:18 Bribe & Fork

What concludes that the following bribe is enough to encourage the strong miner to wait for
txs2:

f2 − f >
cp1fp1 + cp1f + cp2fp2 + f1 − f

λs − 0.05T/2 + cp2f.

Now, if the txsp1 , txsp2 are created then every player Ni other than the player Ns may
mine txsp1 , once it is published (strategy σp∗

1
). When txsp1 is successfully mined in the

first round, then all miners will be encouraged to wait until txs2 may be mined after the
T ’th round. 1 − λp1 − λi miners may decide to mine txsu (or txs1) in the first round. In
this case, when the txsu is mined, all other players will be able to mine at least f + B

for the rest of the rounds Ei(σp∗
1
, S, 1) ≥ λi(fp1 + B) + (λp1 + λi)F2 + (1 − λp1 − λi)F ,

where F2 = (T − 1)λi(f + B) + λi(f2 + B) + λi(fp2 + B) + (R − T − 2)λi(f + B) and
F = (R − 1)λi(f + B).

On other hand the players may first decide to mine either txsu or txs1 in the first round
(strategy σ1∗). In the worst case scenario the block with txs1 is not forked. What is more,
whenever 1 − λp1 miners decide to mine txsu in the first round, then all miners with mining
power more than 0.01 will make an attempt to mine txs1. In conclusion, by Lemma 5 and
the Theorem 4:

Ei(σ1∗, S, 1) ≤ λi(f1 + B) + λp1F2 + (1 − λp1 − λ1)((1 − 0.05T/2)F + 0.05T/2F2),

where F and F2 are defined as previously. Ei(σp1∗, S, 1) > Ei(σ1∗, S, 1) holds whenever:

λi(fp1 + B) + λi(F2 − F) > λi(f1 + B) + (1 − λp1)0.05T/2(F2 − F)

Which holds for any fp1 ≥ f1 and λi > 0.05T/2.
Now, by setting cp1 = 1, cp2 = 1, fp1 = f1−f , fp2 = f , we get a condition f2−f > 2f+2(f1−f)

λs−0.05T/2 +

f , what for λs ≈ 20% and sufficiently large T/2 concludes f2 − f ≳ 2f+2(f1−f)
λs

+ f . ◀

6 Example Evaluation

Using the real-world data analysis of Bitcoin fees and hashpower distribution in major PoW
blockchains (see discussion in the full version of this paper), we visualize the improvement
our bound f2 − f > 2f+2(f1−f)

λs
+ f brings compared to the previous result from [6], namely

f2 − f ≥ f1−f
λmin

. Additionally, the Theorem 5 requires that f2 − f < 10−2(f + B) and there
exists a player Nj with mining power λj > 0.01 for which f2 − f < f1−f

λj
.

For example, let us assume that f1 − f ≈ f , and set T > 110. Now, since λmin can be
fairly estimated to be λmin < 10−12, we can see that the attack without forking threats
could cost in practice around 1012f . On the other hand, the new bound requires only
f2 −f > 2f+2(f1−f)

λs
+f , for λs ≈ 0.2, this costs around f2 −f > 21f . The only condition left

is that for some miner with λj > 0.01, the following condition must hold f2 − f < f1−f
λj

, but
the data shows that miners that control approximately 1.5% − 2% of the total mining power
usually exist, thus for a miner with mining power 1% < λj < 2% it holds that f2 − f < 50 · f .
In summary, if we take any f2 that is larger than f by 21 up to 50 times, then the default
strategy for all miners is to wait for the bribing transaction.

Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:19

7 Related Work and Countermeasures

In the landscape of constructing financially stable systems on blockchain [21, 7], our work
falls into the class of incentive manipulation attacks which have been widely applied to
undermine blockchain’s security assumptions [22]. To the best of our knowledge, we are the
first to combine feather forking attacks [8] with timelock bribing attacks on payment channel
networks and to achieve a bribing cost that is approximately only constant times larger than
the cost of an average transaction fee.

Incentive manipulation attacks on timelocked puzzles were introduced with the so-called
timelock bribing attack [23]. Later, Avarikioti et al. [6] applied timelock bribing attacks
in payment channel networks, such as the Lightning Network and Duplex Micropayment
Channels, and proposed countermeasures. Our work extends [6], modifying the timelock
bribing attack for payment channels to facilitate a miner bribing strategy that incorporates
feather forking. As a result, our work reduces the cost of bribing attacks significantly in
comparison to [6], i.e., the cost is now inversely proportional to the mining power of the
largest miner instead of the smallest miner which results in at least 1000 times smaller bribes.
Our model is similar to the one in [17] that introduced forks, but we were able to craft
reasonable assumptions for the PoW blockchains which secured a unique NE solution. In
particular, we restrict the strategy of the miner by forbidding him to conduct shallow forks
and allowing him to fork only in a case when the player strictly profits from conducting the
fork action (compare Sections 4.1.7, 4.1.8).

The bribing strategies for the payment channels are similar in their nature to the bribing
strategies for the HTLC mechanism. Perhaps the closest to our work is [31], where the
authors introduced a way to bribe HTLCs, leveraging the power of smart contracts and
feather forking. The cost of the attack in [31] is, however, proportional to the sum of the
fees (≳

∑T
i=1 f · λmax) of all blocks before the deadline T . In contrast, we achieve a cost

proportional to the cost of fees of a single block (≳ f1−f
λS

).
Furthermore, MAD-HTLC [29] underlined the vulnerability of HTLCs to bribing attacks,

achieving the same attack cost as [6], specifically ≈ f1−f
λmin

. MAD-HTLC presupposes that
the minimum fraction of mining power controlled by a single user, λmin, is at least 0.01,
to achieve low bribing costs. This is, however, an impractical assumption, as the analysis
of the actual data (see discussion in the full version of this paper) shows that λmin can be
reasonably estimated to be less than 10−12, making the bribing attack exceedingly expensive.
The reduction of the bribing costs Bribe & Fork achieves in comparison to MAD-HTLC is
similar to that of [6] analyzed above.

MAD-HTLC additionally proposed a countermeasure for bribing attacks where miners
are allowed to claim the locked coins in the HLTC in case a party misbehaves, similar to [6].
Later, He-HTLC [30] pointed out that MAD-HTLC is susceptible to counter-bribing attacks.
In particular, one party may (proactively) collude with the miners to cooperatively steal
the coins of the counterparty in the MAD-HTLC construction. He-HTLC also proposed
a modification on MAD-HTLC to mitigate the counter-bribing attack: now the coins are
partially burned in case of fraud instead of being fully awarded to the miners. Recently,
Rapidash [9] revisited the counter-bribing attack and proposed yet another improvement on
He-HTLC. These works are orthogonal to ours as the proposed attacks apply only to the
specific MAD-HTLC construction and not to Lighting Channels that are the focus of this
work. Furthermore, our focus is not on designing countermeasures against timelocked bribing
attacks. Instead, we demonstrate how employing feather forking can make timelocked bribing
attacks very cheap for the attacker, therefore highlighting the need for robust mitigating
strategies.

AFT 2024

11:20 Bribe & Fork

Nonetheless, it is crucial to acknowledge that the previously mentioned countermeasures
can be used to defend against Bribe & Fork– inheriting their respective vulnerabilities. For
example, one can employ the mitigation technique for timelocked bribing on the Lighting
Network proposed by Avarikioti et al. [6]. In our model, this countermeasure ensures that
announcing txs2 also involves revealing a secret that anyone can use to claim the money
before time T . This implies that if txs2 is announced in the mining pool before time T , all
the money to be collected only after time T can be immediately claimed by another party.
We assert, without proof, that the same countermeasure mechanism remains effective even in
a model that considers forks. Intuitively, the “strong” miner in our analysis does not benefit
from waiting for the bribing transaction if it is not announced, thus preventing the creation
of the self-penalty transaction. Conversely, if the transaction is announced and the secret is
revealed, any (winning) miner could claim the reward.

8 Conclusions and Future Work

In conclusion, our work reexamines the vulnerability of PCNs to bribing attacks and introduces
a modified attack leveraging the threat of forking. We introduce a formal model of a mining
game with forking extending the conditionally timelocked games introduced by Avarikioti
et al. [6]. In particular, in our extended model, miners not only choose which transactions
to mine in each round but also decide whether to continue existing chains or initiate forks.
In this model, we demonstrate that the cost of the bribing attack can be significantly
reduced compared to the previous analysis. In more detail, it can be reduced from f1−f

λmin

to approximately 2f+2(f1−f)
λs

, where f represents the cost of an average fee for a single
transaction and λs denotes the reduction factor compared to significantly smaller λmin

calculated in previous work [6]. To validate our findings, we empirically analyze the historical
data of real-world blockchain implementations. This analysis confirms that staging a bribing
attack on a PCN is significantly less costly (approximately 125$) than considered previously.

The results of our study have implications for the design and implementation of PCNs, as
well as for the broader applications of timelocked contracts, e.g., atomic swaps. Our findings
underscore the need for proactive measures to mitigate the risk of bribing attacks.

Possible avenues for future research include exploring whether our penalty mechanism
implementation can be implemented without the honest majority assumption or whether our
results still hold in the presence of more general abandon rules. Another interesting question
is whether our results extend in a Proof-of-Stake setting.

References

1 Lukas Aumayr, Ozgur Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostakova, Matteo
Maffei, Pedro Moreno-Sanchez, and Sabrina Riahi. Generalized bitcoin-compatible channels.
Cryptology ePrint Archive, 2020:476, 2020. URL: https://eprint.iacr.org/2020/476.

2 Lukas Aumayr, Ozgur Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostakova, Matteo
Maffei, Pedro Moreno-Sanchez, and Sabrina Riahi. Bitcoin-compatible virtual channels. In
IEEE Symposium on Security and Privacy, 2021. URL: https://eprint.iacr.org/2020/554.
pdf.

3 Lukas Aumayr, Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, Pedro Moreno-Sanchez,
and Matteo Maffei. Sleepy channels: Bi-directional payment channels without watchtowers.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, pages 179–192, 2022.

https://eprint.iacr.org/2020/476
https://eprint.iacr.org/2020/554.pdf
https://eprint.iacr.org/2020/554.pdf

Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:21

4 Zeta Avarikioti, Eleftherios Kokoris Kogias, Roger Wattenhofer, and Dionysis Zindros. Brick:
Asynchronous incentive-compatible payment channels. In International Conference on Finan-
cial Cryptography and Data Security, 2021. URL: https://fc21.ifca.ai/preproceedings/
50.pdf.

5 Zeta Avarikioti, Orestis S. T. Litos, and Roger Wattenhofer. Cerberus channels: Incentivizing
watchtowers for bitcoin. In International Conference on Financial Cryptography and Data
Security, pages 346–366. Springer, 2020. URL: https://link.springer.com/chapter/10.
1007/978-3-030-60276-7_18.

6 Zeta Avarikioti and Orfeas Stefanos Thyfronitis Litos. Suborn channels: Incentives against
timelock bribes. In Financial Cryptography and Data Security - 26th International Conference,
FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers, volume 13411 of Lecture Notes in
Computer Science, pages 488–511. Springer, 2022. doi:10.1007/978-3-031-18283-9_24.

7 Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, volume 8617 of Lecture Notes
in Computer Science, pages 421–439. Springer, 2014. doi:10.1007/978-3-662-44381-1_24.

8 Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and
Edward W. Felten. Sok: Research perspectives and challenges for bitcoin and cryptocurrencies.
In 2015 IEEE Symposium on Security and Privacy, pages 104–121, 2015. doi:10.1109/SP.
2015.14.

9 Hao Chung, Elisaweta Masserova, Elaine Shi, and Sri AravindaKrishnan Thyagarajan. Rapi-
dash: Foundations of side-contract-resilient fair exchange. Cryptology ePrint Archive, Paper
2022/1063, 2022. URL: https://eprint.iacr.org/2022/1063.

10 Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, An-
drew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and Roger Wattenhofer.
On scaling decentralized blockchains. In International Conference on Financial Cryptography
and Data Security, pages 106–125. Springer, 2016.

11 Christian Decker, Rusty Russell, and Olaoluwa Osuntokun. eltoo: A simple layer2 protocol
for bitcoin. https://blockstream.com/eltoo.pdf, 2019.

12 Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Stabilization, Safety, and Security of Distributed Systems,
pages 3–18. Springer, 2015.

13 Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun: Virtual
payment hubs over cryptocurrencies. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 344–361. IEEE, 2019.

14 Stefan Dziembowski, Sebastian Faust, and Kristína Hostáková. General state channel networks.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 949–966. ACM, 2018.

15 Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur Gervais.
Sok: Layer-two blockchain protocols. In Joseph Bonneau and Nadia Heninger, editors, Financial
Cryptography and Data Security - 24th International Conference, FC 2020, Kota Kinabalu,
Malaysia, February 10-14, 2020 Revised Selected Papers, volume 12059 of Lecture Notes in
Computer Science, pages 201–226. Springer, 2020. doi:10.1007/978-3-030-51280-4_12.

16 Michael Jourenko, Nicolas Larangeira, and Koji Tanaka. Lightweight virtual payment channels.
In Cryptology and Network Security, pages 365–384. Springer International Publishing, 2020.

17 Dimitris Karakostas, Aggelos Kiayias, and Thomas Zacharias. Blockchain bribing attacks and
the efficacy of counterincentives, 2024. arXiv:2402.06352.

18 Sishan Long, Soumya Basu, and Emin Gün Sirer. Measuring miner decentralization in
proof-of-work blockchains. arXiv preprint arXiv:2203.16058, 2022.

19 Antonio Magnani, Luca Calderoni, and Paolo Palmieri. Feather forking as a positive force:
incentivising green energy production in a blockchain-based smart grid. In Proceedings of the
1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems, pages 99–104,
2018.

AFT 2024

https://fc21.ifca.ai/preproceedings/50.pdf
https://fc21.ifca.ai/preproceedings/50.pdf
https://link.springer.com/chapter/10.1007/978-3-030-60276-7_18
https://link.springer.com/chapter/10.1007/978-3-030-60276-7_18
https://doi.org/10.1007/978-3-031-18283-9_24
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1109/SP.2015.14
https://eprint.iacr.org/2022/1063
https://blockstream.com/eltoo.pdf
https://doi.org/10.1007/978-3-030-51280-4_12
https://arxiv.org/abs/2402.06352

11:22 Bribe & Fork

20 Andrew Miller. Feather-forks: enforcing a blacklist with sub-50% hash power. URL: https:
//bitcointalk.org/index.php?topic=312668.0.

21 Andrew Miller and Iddo Bentov. Zero-collateral lotteries in bitcoin and ethereum, 2017.
arXiv:1612.05390.

22 Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-Mundt, Ittay Eyal, and Ari Juels. Bdos:
Blockchain denial of service, 2020. arXiv:1912.07497.

23 Tejaswi Nadahalli, Majid Khabbazian, and Roger Wattenhofer. Timelocked bribing. In
Financial Cryptography and Data Security - 25th International Conference, FC, volume
12674 of Lecture Notes in Computer Science, pages 53–72. Springer, 2021. doi:10.1007/
978-3-662-64322-8_3.

24 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: http:
//bitcoin.org/bitcoin.pdf.

25 Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments. https://lightning.network/lightning-network-paper.pdf, January 2016.

26 Yahya Shahsavari, Kaiwen Zhang, and Chamseddine Talhi. A theoretical model for fork
analysis in the bitcoin network. In IEEE International Conference on Blockchain, Blockchain
2019, Atlanta, GA, USA, July 14-17, 2019, July 2019. doi:10.1109/Blockchain.2019.00038.

27 Santhi Shalini and H Santhi. A survey on various attacks in bitcoin and cryptocurrency.
In 2019 International Conference on Communication and Signal Processing (ICCSP), pages
0220–0224. IEEE, 2019.

28 Joseph Spilman. Anti dos for tx replacement. https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2013-April/002433.html, 2013. Accessed: 2020-11-22.

29 Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay Eyal. MAD-HTLC: because HTLC
is crazy-cheap to attack. In 42nd IEEE Symposium on Security and Privacy, SP, pages
1230–1248. IEEE, 2021. doi:10.1109/SP40001.2021.00080.

30 Sarisht Wadhwa, Jannis Stoeter, Fan Zhang, and Kartik Nayak. He-htlc: Revisiting in-
centives in HTLC. In 30th Annual Network and Distributed System Security Symposium,
NDSS. The Internet Society, 2023. URL: https://www.ndss-symposium.org/ndss-paper/
he-htlc-revisiting-incentives-in-htlc/.

31 Fredrik Winzer, Benjamin Herd, and Sebastian Faust. Temporary censorship attacks in the
presence of rational miners. In 2019 IEEE European Symposium on Security and Privacy
Workshops, EuroS&P Workshops, pages 357–366. IEEE, 2019. doi:10.1109/EuroSPW.2019.
00046.

32 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
Project Yellow Paper, 2014.

https://bitcointalk.org/index.php?topic=312668.0
https://bitcointalk.org/index.php?topic=312668.0
https://arxiv.org/abs/1612.05390
https://arxiv.org/abs/1912.07497
https://doi.org/10.1007/978-3-662-64322-8_3
https://doi.org/10.1007/978-3-662-64322-8_3
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/Blockchain.2019.00038
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://doi.org/10.1109/SP40001.2021.00080
https://www.ndss-symposium.org/ndss-paper/he-htlc-revisiting-incentives-in-htlc/
https://www.ndss-symposium.org/ndss-paper/he-htlc-revisiting-incentives-in-htlc/
https://doi.org/10.1109/EuroSPW.2019.00046
https://doi.org/10.1109/EuroSPW.2019.00046

	1 Introduction
	2 Background
	2.1 Timelocked Bribing Attack
	2.2 Timelock Bribing in the Bitcoin Lightning Network
	2.3 Feather Fork Attack

	3 Bribe & Fork Attack
	4 Our Model
	4.1 Preliminaries
	4.1.1 Global State Object
	4.1.2 Allowed Actions
	4.1.3 The Abandon Rule
	4.1.4 Types of Transaction Sets
	4.1.5 Rewards
	4.1.6 Mining Power Distribution
	4.1.7 Players' reluctance to believe a threat
	4.1.8 No Shallow Forks Conjecture

	4.2 The Game
	4.2.1 Strategies

	5 Analysis of Bribe & Fork
	5.1 About the proofs
	5.2 Transaction Order in a Single Chain
	5.3 Decisions of an Individual Miner are Consistent
	5.4 Only a High-Cost Reward May Encourage Miners to Fork
	5.5 Without a High-Cost Reward, All Players Mine txs_1
	5.6 Discouraging Miners to Mine txs_1
	5.7 Encouraging the Strongest Miner to Use the Penalty Mechanism

	6 Example Evaluation
	7 Related Work and Countermeasures
	8 Conclusions and Future Work

