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Abstract
The Lightning network (LN) offers a solution to Bitcoin’s scalability limitations by providing fast
and private off-chain payments. In addition to the LN’s long known application-level centralisation,
recent work has highlighted its centralisation at the network-level which makes it vulnerable to
attacks on privacy by malicious actors. In this work, we explore the LN’s susceptibility to censorship
by a network-level actor such as a malicious autonomous system. We show that a network-level actor
can identify and censor all payments routed via their network by just examining the packet headers.
Our results indicate that it is viable to accurately identify LN messages despite the fact that all
inter-peer communication is end-to-end encrypted. Additionally, we describe how a network-level
observer can determine a node’s role in a payment path based on timing, direction of flow and
message type, and demonstrate the approach’s feasibility using experiments in a live instance of
the network. Simulations of the attack on a snapshot of the Lightning mainnet suggest that the
impact of the attack varies from mild to potentially dramatic depending on the adversary and type
of payments that are censored. We analyse countermeasures the network can implement and come to
the conclusion that an adequate solution comprises constant message sizes as well as dummy traffic.
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1 Introduction

Bitcoin [25] and similar blockchain-based payment systems continue to enjoy significant
popularity. While Bitcoin is to date the most popular based on its market capitalisation, it
suffers from grave constraints with respect to scalability, which limit its ability to compete
with traditional (centralised) payment systems. Layer 2 solutions are gaining traction as
a feasible solution to the scalability challenges by enabling off-chain transactions. One
such solution is the Lightning network (LN) [30] – a peer-to-peer (P2P) payment channel
network (PCN) enabling fast, low-cost and private Bitcoin payments. It is a network of
off-chain bilateral channels in which funds can move in either direction between the two
channel partners. LN also implements multi-hop payments such that payments can be
routed over multiple intermediate channels in cases where the sender and beneficiary of a
payment do not have a direct channel. In order to offer a degree of payment privacy, all P2P
communication subsequent to connection establishment is encrypted using the Noise [29]
protocol framework. Furthermore, LN uses the Sphinx mix format [10] to implement onion
routing of payments across the network. This means that, among others, routing nodes only
know their predecessor and successor when forwarding a payment, but do not know if either
is the source or destination of the payment.
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A compelling selling point of decentralised P2P systems is their censorship-resistant nature
due to their fundamental design, i.e., there is no single point of failure or owner. Nonetheless,
blockchain-based cryptocurrencies such as Bitcoin have been subject to state-wide bans
enforced via legal frameworks and/or technical means such as aggressive protocol blocking.

While the broader topic of Internet censorship is by no means a new one, it remains highly
relevant due to some of the censorship currently imposed across the globe, e.g., in China [15],
India [46], Iran [4] or Turkmenistan [28]. Blockchain networks such as Bitcoin and Ethereum
have also been shown to be vulnerable to censorship despite their design [22,44]. State censors
employ different techniques such as high prices, notoriously low broadband speeds [17, 35] or
various network-level techniques [15, 46] to restrict access to services. Powerful tools such as
Geneva [8] and OONI [13] are able to detect or even evade censorship based on a censor’s
identified strategies. If a censor using network-level tactics intends on bypassing common
censorship-detection tools, the need for subtle, difficult to reproduce yet effective measures
arises. Additionally – and aside from ethical concerns – such restrictions are detrimental to
their national and international image and have the potential to spark unrest. Thus, a censor
may instead look to discretely implement such a ban such that it either goes unnoticed or
initial blame is put on other actors, e.g., application issues. Assuming that a certain level of
operation (within the censor’s area of jurisdiction) can be maintained, the censor may even
be able to plausibly deny the fact that they are indeed tampering with network traffic.

In this work, we explore the Lightning network’s susceptibility to censorship by a network-
level actor such as a malicious autonomous system (AS). For the previously detailed
reasons, we assume that the censor’s goal is not to disrupt the entire network but to control
participation in the LN within their domain. In doing so, the censor seeks to limit their impact
on the day-to-day operations of the greater LN and avoid collateral damage. The censor
strives to remain undetected as much as possible such that from an observer’s perspective, e.g.,
a user issuing payments or network explorer, it is difficult to recognise that a given node is
under attack but aims to maximise their impact on the censored nodes.

Our work expands on previous work by von Arx et al. [43] in which they showed that
application messages can be identified based on traffic analysis. We first confirm that a
network-level adversary is able to accurately classify LN traffic using the header data and
flow direction of transmitted packets by implementing a rule-based classification program for
live LN traffic. Our results indicate that it is possible to accurately identify LN messages in
real time despite the fact that all P2P communication in the network is end-to-end encrypted.
Based on this, we show how a network-level actor can censor all payments routed via their
network using a simple state machine to determine if a packet should be dropped. All other
LN operations, e.g., channel management, remain unaffected. Due to the atomic nature
of the payment process in the LN, dropping select messages eventually results in payment
failure without attempting alternative routing options. This result may not be adequate for
a censor who does not want to tamper with third-party activity that just so happens to be
traversing their network. Thus, we then show that it is possible for a network-level observer
to determine a node’s role in a payment path based on the timing and direction of flow as
well as the message type. We use the information to enhance the attack such that a censor
can selectively block payments, e.g., block intra-AS payments but permit inter-AS payments.

We implemented the attack as an efficient netfilter program and validated the attack’s
feasibility and performance in a private network as well as in the public testnet. Our
experiments show that for rates of up to 1 payment per second, we are able to correctly
determine a node’s role in a payment path. While this rate may sound underwhelming, it
exceeds the currently estimated payment rates in Lightning by five orders of magnitude.
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Furthermore, simulations of the attack on the mainnet’s channel graph show that the impact
on the broader network is almost non-existent in the case of selective censorship. Based on
reviewing current state-of-the-art traffic fingerprinting protection measures, we discuss and
verify possible mitigation strategies for the LN. We come to the conclusion that an adequate
solution entails implementing some form of cover traffic and constant-size messages in the
network similar to what is implemented in the Tor network.

To summarise, the following are our main contributions:
1. We show that network packets can accurately be mapped to the corresponding LN message

types using the payload length and sequence of messages in real time;
2. We exploit timing information and type of message to identify an on-path node’s role in

a payment path;
3. Based on the preceding contributions, we present a censorship attack on the LN that is

founded on selectively dropping network packets identified to be related to payments;
4. We implement the attack, deploy it in a private Lightning network and report on our

findings. We evaluate the attack using our implementation and simulations; and
5. We analytically discuss possible countermeasures the LN can implement and derive

recommendations for the network.

The remainder of this paper is structured as follows. We provide a pertinent introduction
to the LN and present our system model in Section 2. The core of this work is Section 3
in which we describe a censorship attack on the LN and evaluate it comprehensively in
Section 4. We discuss countermeasures for this attack vector in Section 5 and provide an
overview of related work in Section 6. We conclude this work and discuss avenues for future
work in Section 7.

2 Background and system model

We provide the reader with a pertinent introduction to the Lightning network in Section 2.1;
we refer the reader to [1, 30,31] for a comprehensive introduction beyond the scope of this
work. We briefly analyse the network topology in Section 2.2 and describe our threat model
in Section 2.3.

2.1 The Lightning network
The Lightning network (LN) is a peer-to-peer (P2P) network of bilateral off-chain payment
channels, i.e., a payment channel network (PCN). A payment channel signifies a financial
relationship between a pair of nodes in which a set number of funds (the channel’s capacity)
is committed via a transaction on the Bitcoin blockchain. Lightning payments alter the
distribution of the channel’s capacity (balances) between the two endpoints. Payments in the
LN can be routed via multiple hops for a fee that is independently set by each node. In order
to route payments securely over multiple hops, payments are secured by Hashed Timelock
Contracts (HTLCs), which guarantee that payments are made atomically, i.e., a payment
either succeeds at all hops or fails at all hops. An HTLC is basically a conditional payment
that can be claimed by producing a preimage that is revealed by the payment’s beneficiary.
During channel establishment, each node defines and announces how long they are willing to
wait for an HTLC to be resolved – the time lock. If the time lock expires before the HTLC
is resolved, the HTLC expires and is settled on-chain which requires a forceful closure of the
affected channel.

AFT 2024
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Figure 1 The sequence of messages exchanged for a payment between a sender (S) and recipient (R)
routed via an intermediate hop (I). The update_fulfill_htlc message is only sent in the case of a
successful payment and is replaced by an update_fail_htlc message otherwise.

Once a payment channel has been established, an arbitrary number of payments can be
made over the channel. Finding a suitable path for a payment is an essential part of LN and
is delegated to the sender of a payment. Based on the public channel graph, the sender tries
to find a path connecting them to the recipient of the payment. For the sake of illustration,
the following assumes a payment from node S to node R made via an intermediate node I.
S begins by encoding the calculated path in an onion packet using the Sphinx message
format [10], i.e., a packet with multiple layers of encryption that each identify the next hop on
the path. Forwarding nodes along the path hence only know their predecessor and successor
on the path, but do not know if either is the payment’s source or destination. S initiates
the payment by constructing an HTLC and sending it in an update_add_htlc message with
the onion packet to I. Upon receipt, I decrypts the topmost layer to receive its payload
and prepares to forward the update_add_htlc message to the next hop. However, I will
only forward it to the next hop after the new conditional payment is reflected in the S − I

channel’s state. The state update must also be irrevocably committed by both nodes using a
handshake of commitment_signed and revoke_and_ack messages as shown in Figure 1.

Once the state updates have been successfully completed, I forwards the remaining onion
packet to R in a new update_add_htlc message. I and R then negotiate the new state
in the same way S and I did (cf. Figure 1). As soon as I and R conclude the handshake
necessary for the channel update, R sends an update_fulfill_htlc message to I. The
message contains the preimage needed by each hop to settle the HTLC with its channel
partner. The update_fulfill_htlc is propagated to all hops along the path in reverse
order such that each hop can redeem the conditional payment. In the event of an error
along the way, e.g., due to insufficient balances or time lock, a node will immediately send
an update_fail_htlc to its predecessor instead, which will be propagated to all preceding
nodes as well.
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Figure 2 The sum of channels where both endpoints belong to different ASs and the sum of
channels where both belong to the same AS for the 35 ASs with the highest number of channels.
The top five ASs in the network w.r.t. to the number of channels are underlined and printed in bold.

2.2 Topology

It is well-known that the application level of the LN is highly centralised [21,34,41]. That is,
while the network is considerably large in terms of the number of nodes and channels, most
payments are routed via a small subset of available channels. This has been shown to be
detrimental to the network’s privacy goals and overall resilience [19,26]. Recent work [43]
revealed that the network layer is similarly centralised, with just a handful of ASs technically
being able to compromise payment privacy. For instance, 80% of all Lightning channels are
hosted at just five ASs.

As gaining a deeper understanding of the topological structure may prove to be useful
to discover potential censorship strategies, we examined the distribution of channels to ASs
based on a snapshot of the mainnet’s channel graph on 12 January 2024. The network
comprised 12, 781 nodes and 112, 958 channels after reducing it to its largest strongly
connected component. We pruned all nodes (and their channels) that had not announced at
least one public network address from the obtained channel graph, which leaves approximately
22% of the nodes in the channel graph. We then mapped each node’s announced address to
the corresponding AS using the GeoLite2 database.1 We examined the distribution of node
degrees across AS and find that all high-degree (> 500 channels) nodes belong to different
ASs. Further, we analysed the share of channels in which both endpoints belong to the same
AS and depict the results in Figure 2. The figure shows the total number of channels that
are shared by two different ASs and the total number of channels that belong to the AS
alone. Except for nodes connecting to the network over Tor and a handful of ASs, e.g., AS
34197 or AS 42275, most channels in Lightning are between a pair of ASs and not within the
same AS.

1 Available at https://www.maxmind.com (accessed on 12 January 2024).
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2.3 Adversary Model
We explore the feasibility of imposing censorship of the LN in this work. As previously
mentioned, we presume that the censor aims to impose (from their perspective) effective
censorship within their area of jurisdiction. In other words, the censor is not interested
in disrupting the greater LN, but only controlling Lightning’s operation in their sphere of
influence. Additionally, the censor wants to maintain plausible deniability and hence looks
to implement the ban such that a certain level of operation is upheld within their domain
despite the ongoing censorship. This is why applying less sophisticated methods such as port
and IP blocking are out of the question for the censor.

Similar to multiple related works [27,43], we assume a powerful yet malicious network-
level adversary such as an AS or a party cooperating with an AS. While the attack can
be executed by any adversary with access to network-level traffic, e.g., an operator of a
Lightning node, the impact and significance of the attack is directly related to the adversary’s
scope of influence. The adversary’s foremost goal is to control activity in and access to the
LN within their area of influence. For instance, this may be to enforce a controversial ban
on cryptocurrencies.

The adversary expects that all inter-peer communication is end-to-end encrypted as per
the Lightning specifications [1]. The adversary is only interested in LN nodes using a clearnet
address because of the fixed-size cells transmitted by the Tor network. Furthermore, we
assume that all nodes are operating on the default port: Transmission Control Protocol (TCP)
port 9735 [1]. In case a node is using a non-default port, the adversary may use publicly-
available data to trivially identify the port in use. Similarly, the adversary can refer to
such data to learn which client implementation a node is running or infer the client [24].
Knowledge of the client implementation in use is, however, strictly not necessary.

We focus on an adversary that fully controls at least one AS network. The network-level
adversary can observe and inspect all communication sent over their network; it is however
encrypted by the application layer. As the adversary wants to minimise the risk of detection,
blocking all traffic on port 9735 would be self-defeating. Instead, and in order to maintain
a level of operation and plausible deniability, the adversary is capable of executing refined
filtering techniques such as selective packet dropping.

2.4 Ethical Considerations
We would like to emphasise that the primary goal of this work is to contribute to further
developing and improving the network for all Lightning users. Uncovering, presenting, and
fixing potential issues in the network is a core part of that process. We do not see this work
as an instruction manual for adversaries and strongly disapprove of any misappropriation
of our work. It is for this reason that we have decided to not make our proof-of-concept
implementation of the attack available to the public. We believe that this paper contains
enough information and details for the reader to reproduce with their own implementation.
We made the code available during the peer review process and will consider doing the same
to researchers upon request.

As far as the practical evaluation of the presented attack is concerned, we followed the
guidelines of the Menlo report [5] and general security research best practices. In particular,
with the exception of obtaining a network snapshot from our own node, we did not interact
with the public mainnet in any way. We deployed a modified version of our proof-of-concept
implementation to the testnet in order to validate the feasibility of the attack’s preliminary
phase. However, at no point did we actually mount the attack in the testnet. All adverse
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Table 1 Comparison of expected message sizes (in bytes) as specified in [1] and actual captured
message sizes. The sizes refer to messages containing exactly one HTLC. The node running LND
sent all messages in two packets – an 18B payload followed by the remainder.

Message size (bytes)

Message Specifications LND v0.17.2-beta CLN v23.11.2

update_add_htlc 1450 18 + 1468 1486
commitment_signed 162 18 + 116 134
revoke_and_ack 97 18 + 115 133
update_fulfill_htlc 72 18 + 90 108

experiments were conducted in our private network comprising only nodes we set up for the
precise purpose. In order to evaluate the potential impact of our work on the main network,
we followed a simulation-based approach using the obtained snapshot. The simulation mocks
payment routing in the network by reconstructing the topology locally.

3 Censorship Attack

In the following, we present a novel censorship attack on a set of nodes in the LN. The attack
leverages the fixed message sizes defined in the Lightning specifications [1] as well as its
overall protocol design. This allows an adversary to accurately classify encrypted application
traffic based on network-layer data without much effort in real time. Subsequently, we show
how a network-level attacker can censor payments and enhance the attack with knowledge
on a payment source and destination.

3.1 Message Classification
A recent work [43] presented an attack on privacy in the LN based on monitoring network-
layer traffic. The first step of the attack is to map TCP packets to application messages
based on the payload lengths in combination with the sequence of observed packets. The
censorship attack we demonstrate in Section 3.2 makes use of the same shortcoming. To that
end, we take a closer look at identifying LN messages based on network-level observations.
In what follows, we use HTLCs to exemplify the procedure. It, however, applies to other
message types analogously.

Figure 1 illustrates the type and sequence of messages exchanged between two channel
partners during the payment process. By generating and capturing LN packets in a private
network in order to validate the feasibility of matching network packets to application
messages, we established that none of the captured TCP payload lengths corresponds to
the sizes defined in the BOLTs. Table 1 shows the actual message sizes for the two most
popular clients [24, 47] – Lightning Network Daemon (LND) and Core Lightning (CLN). We
observed that nodes running on LND sent each application message in two TCP packets,
the first of which was always 18B. While the sizes of the messages sent by these clients differ
from what is expected, they remains constant and hence allow us to identify the application
messages based on the size, order of arrival and direction. The direction is not actually
strictly necessary but it provides additional insights on the packet origin that we make use
of to refine the adversary’s strategy. Additionally, the adversary should know which client
software is running due to the slight differences in payload size. Inferring the implementation,
however, can be done with reasonable effort by, e.g., analysing the transmitted payloads

AFT 2024
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Figure 3 A state machine implementing the censorship rules for incoming payments. State
transitions are defined by the (sum of the) TCP payload lengths and direction of flow (→ for egress
traffic, ← for ingress traffic). All omitted transitions reset the state machine to its initial state.

(cf. Table 1) or using the public channel graph [24,47]. For example, a packet with a 134B

TCP payload from A to B that is preceded by a 1486B payload in the same direction and
succeeded by 18B and 115B payloads in the reverse direction, is bound to have been a
commitment_signed message. Furthermore, A is likely running CLN whereas B is almost
certainly running LND.

3.2 Payment censorship in the LN
As per Section 2.3, the adversary wants the attack to go largely unnoticed and is indifferent
towards third parties. This is why simply blocking or interfering with all LN traffic is not a
viable strategy. However, given that an adversary is capable of identifying LN application
messages by monitoring the network traffic, they can selectively interfere with the traffic
passing their network.

In the following, we show how an adversary such as an AS can censor all payments
involving nodes in their network while maintaining a degree of plausible deniability by
preserving LN functionality in their network. Consequently, the adversary does not interfere
with any messages pertaining to node management and channel management, e.g., open
and close channel messages. By allowing nodes to operate Lightning channels, neither the
affected nodes nor other observers have credible reason to put blame on the AS when issues
with payments start to surface. For instance, a (suspicious) user inspecting the LN topology
using a network explorer will not recognise that a malicious AS is suppressing its nodes’
participation in the network.

However, the adversary pays close attention to all TCP traffic on port 9735 that is assumed
to be payment-related using the method described in Section 3.1. The adversary must
then interrupt the payment process in order to provoke application failures. The adversary
prompts such failures by dropping select packets following the state machine in Figure 3 for
each pair of source and destination. State 0 is the initial state in which the adversary waits for
an update_add_htlc message which means that a payment is underway. The state machine’s
transitions are defined by the payload lengths of the series of messages exchanged between
two nodes when a payment is being made. We choose to have the adversary drop the first
revoke_and_ack message that is sent from the source to the recipient (cf. Figure 1). This is
identified by arriving at the accepting state, state 5, after a series of messages. Although
the adversary could drop the other payment messages, we opted for the revoke_and_ack
message due its terminal position in the series of exchanged messages. We thus expect that
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the adversary will make “correct” decisions. Note that Figure 3 depicts the rules applied by
an adversary for incoming payments only. Outgoing payments can be censored analogously
by reversing the direction of flow in the transition rules.

As discussed in Section 2.1, the revoke_and_ack message is sent in response to a state
update; it revokes the previous state and acknowledges the new one. The payment process
can therefore not proceed until either the recipient receives the revoke_and_ack message
or the payment’s timelock expires. At this point, a node will no longer attempt to route
a payment via an alternative path until the payment conclusively fails. Lightning clients
thus initiate retransmissions of the unacknowledged revoke_and_ack message for as long as
the payment is valid. This is why the adversary needs state 6 in Figure 3, i.e., to block all
subsequent revoke_and_ack messages from getting to the recipient. Note that the effect is
similar when the first commitment_signed from the sender to recipient is not acknowledged.

3.3 Selective censorship
So far, the adversary is able to monitor network traffic and block all payments routed via
their network by dropping all revoke_and_ack messages. This is not yet quite satisfactory
because the adversary’s goal is to remain largely unnoticed and minimise the collateral
damage. The current strategy, however, defeats this objective. We thus refine the adversary’s
packet dropping criteria by showing how to determine a node’s role in a payment based on
network-level observations. The adversary can then selectively drop packets depending on
the censored node’s position in the path. Besides contributing to the adversary remaining
undetected, the ability to selectively drop LN messages using knowledge of a node’s position
allows them to block payments based on origin and/or destination. For example, a malicious
AS could let all payments pass that neither originate from nor are destined for their network,
or allow all incoming payments but block outgoing payments.

An on-path node in the LN can occupy one of three roles for a given payment: sender,
intermediary or recipient. When forwarding a payment in the network, intermediate nodes
are not aware of other nodes’ or even their own positions in the path. While determining a
node’s role has been subject of previous work [19], we are, to the best of our knowledge, the
first to do so based on live network traffic. The adversary is hence able to use the node’s role
for their decision on whether or not to block a packet. Based on the combination of packet
direction, message type and position in the sequence of transmitted messages, it is possible
to determine a node’s role as follows:
1. sender : a node is the initiator of a payment if it sends an outgoing update_add_htlc mes-

sage “out of the blue”. In other words, if a sufficient amount of time t has passed since the
last incoming revoke_and_ack message, we conclude that the current update_add_htlc
message belongs to a separate payment. Due to the symmetric exchange of messages during
payment routing (cf. Figure 1), an intermediate hop will always receive a revoke_and_ack
message before offering an HTLC to the next hop in the path. If there is no such
revoke_and_ack message, the purpose of the update_add_htlc message must be to
initiate a new payment.

2. intermediary: if that less than t time has passed since receipt of a revoke_and_ack mes-
sage when an update_add_htlc message is sent, i.e., an incoming revoke_and_ack was
observed within time t before the outgoing update_add_htlc, the node is an intermediary.

3. recipient: when a node sends an update_fulfill_htlc message, it is the final destination
of the payment if the previous (incoming) message was a revoke_and_ack message. We
can conclude this because an intermediate hop will always send a new update_add_htlc
message after receiving a revoke_and_ack so as to offer an HTLC to the next hop (cf.

AFT 2024
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iptables -I INPUT -p tcp --dport 9735 -j NFQUEUE --queue-num 1
iptables -I OUTPUT -p tcp --dport 9735 -j NFQUEUE --queue-num 1

Figure 4 The iptables rule set to direct all ingress and egress TCP traffic destined for port 9735
to queue 1.

Figure 1). Note that we can only know with certainty that a node is the destination
during the settlement of the HTLC. This means that all HTLC offers need to be delivered
in order to determine if a node is the recipient.

The update_fulfill_htlc message only applies to successful payments but similar logic
can be applied for failed payments when an update_fail_htlc message is sent. Using the
aforementioned rules, the adversary can augment their attack and apply selective censorship.

3.4 Implementation
There are generally several feasible options to implement the attack. However, bearing
the following properties in mind, we chose to implement the attack using the netfilter2

framework.
1. performance: as the adversary only wants to interfere with relevant traffic, an efficient

implementation is crucial. The filter thus needs to be capable of making in-flight decisions
in a very efficient manner;

2. scalability: due to the LN’s network-level centralisation, it is safe to assume that such a
malicious AS observes up to thousands of channels concurrently. Furthermore, increasing
the complexity of the state machine, e.g., to accommodate other message types, should
not come at the cost of performance; and

3. generalisability: an implementation that does not rely on the specifics of an adversary’s
infrastructure.

While a hardware-level firewall, i.e., on the network interface card (NIC), may be attractive
from a performance and scalability standpoint, the functionality generally depends on the
specific NIC. In contrast, the netfilter project has been readily available in the Linux
kernel since version 2.4 and provides, among others, the iptables module.

We implemented Figure 3 as a user space program using the nfq-rs3 library in Rust. In
order for the program to receive packets, we must first define an iptables rule set that is
responsible for directing all TCP packets on port 9735 to a netfilter queue. The relevant
rule set is shown in Figure 4. Note that we implemented the state machine in Figure 3
without regard for the source address as correlating independent TCP streams is out of the
scope of this work. In other words, our program does not maintain state for different source
addresses, and assumes that multiple unrelated payments are not received concurrently. If a
packet is determined to be an incoming revoke_and_ack message, the program returns an
NF_DROP verdict, i.e., the packet is discarded. All other packets are allowed to traverse the
network stack by issuing the NF_ACCEPT verdict.

A notable alternative to the netfilter project is eXpress Data Path (XDP) [2,16] – a
framework that enables packet processing within extended Berkeley Packet Filter (eBPF)
programs. XDP has been available in the Linux kernel as of Linux 4.8 and requires neither
specialised hardware nor kernel bypass. It is an integrated fast path in the kernel stack

2 https://www.netfilter.org
3 https://github.com/nbdd0121/nfq-rs

https://www.netfilter.org
https://github.com/nbdd0121/nfq-rs


C. Ndolo and F. Tschorsch 12:11

A

AS 2

B

AS 4

S
AS 1

D

AS 3

Figure 5 The private network environment used to validate the attack’s practicability. We assume
that each node belongs to a different AS and A’s AS is malicious. The solid path represents the
preferred path between S and D w.r.t. the path selection parameters whereas the dashed path
represents an alternative path.

and works together with the TCP/IP stack. Packet processing happens before meta-data
structures are allocated by the kernel leading to high processing speeds [33]. As the majority of
LN traffic is not dropped by the adversary, we do not expect to gain a significant improvement
in performance from XDP. Nonetheless, and for the sake of comparison, we also implemented
the attack as an eBPF program that makes use of XDP to process the incoming packets
following Figure 3. However, as XDP inspects just ingress traffic, this implementation only
features the “base” attack described in Section 3.2.

4 Analysis

We evaluated the attack using the proof-of-concept implementation on deployed Lightning
nodes. We first describe our evaluation setup then analyse the attack in various scenarios as
well as its impact on the greater network based on conducted simulations.

4.1 Evaluation Setup
Due to the potentially destructive nature of the attack on the public network, we did not
perform any measurements on the mainnet. All experiments were conducted either in the
testnet or in a private network depending on the potential for harm and interference with
other nodes. Both setups are described in the following.

4.1.1 Regtest
We set up a private Bitcoin network in regression test (regtest) mode which allowed us to
deploy the complete attack code without interacting or interfering with other nodes in the
public networks. Furthermore, regtest mode allows users to create a private blockchain
and mine blocks instantaneously as the mining difficulty is set to zero. We configured
four different Lightning nodes in the network as shown in Figure 5 running on different
machines within the same network. S, A, B were all running LND v0.17.2-beta while D

was running CLN v23.11.2. We assume that all four nodes are in different ASs and that
AS 2 is adversarial. The attack code is therefore attached to A’s network interface.

4.1.2 Testnet
In order to validate the attack in a realistic environment, we set up a node, A, running
LND v0.17.2-beta in the public testnet. We strategically opened six balanced channels with
moderate capacities between 300k sat and 500k sat to six nodes nodes, I1, I2, I3, I4, I5, I6,
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Figure 6 Our two nodes, the sender S and the adversary A, in the testnet with public channels
to other nodes Ii in the network. Three dots symbolise the intermediate nodes’ channels with other
unrelated nodes. The attack is deployed on A’s machine.

in the network and configured zero-fee routing policies. The channels were positioned to
connect previously unconnected differently-sized hubs to each other in the hope of receiving
routing requests.4

We deployed a modified version of the netfilter program on A’s machine and attached
it to A’s only network interface. The program was modified such that instead of dropping
a packet when the relevant state is reached, an entry is written to a log file notifying us
that the packet would have been dropped. We also modified A’s LND source code to log
whenever a revoke_and_ack message is received – no other changes were made to the client
software. We reiterate that no harm was caused to other nodes or the network in general.

We also set up a second Lightning node, S, with a channel to one of the nodes A was
connected to as illustrated in Figure 6. We abstain from a direct channel between our two
nodes in order to route payments over the Internet. We then generated random payments
worth 1100 sat from S to the nodes I1, ..., I6 using the sim-ln tool.5 We chose this amount
as its the lowest amount satisfying the minimum payment amount all involved nodes were
willing to forward. Due to the topology, all of the payments coming from S could only be
routed via A. This resulted in a total of 71 payments in the span of 24 hours that were all
delivered successfully.

4.2 Feasibility
In the following, we look at the message classification efficacy of the approach described in
Section 3.1. Hereafter, we discuss the practicability of the attack described in Section 3.2.

4.2.1 Accuracy
In order to evaluate how well message identification works when packets are sent via the
Internet, we used our testnet setup and deployed the code in the public Lightning testnet.

We compared the ground-truth LN message and our program’s output using the generated
logs, and calculated commonly used classification metrics for the revoke_and_ack message
type: precision and recall. We recorded a precision of 1.0 and recall of 1.0. This means

4 At the time of writing, approximately 2 months since joining the testnet, we are yet to receive any
routing requests.

5 https://github.com/bitcoin-dev-project/sim-ln

https://github.com/bitcoin-dev-project/sim-ln
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that the program returns neither false positives nor false negatives. These results are not
unexpected and emphasise the exact problem brought by the highly deterministic nature of
communication in the LN. We discuss the accuracy for higher payment rates in Section 4.3.

4.2.2 Practicability
Given the confidence that we can correctly identify encrypted LN messages, we sought to
verify that the adversary can actually censor nodes in its network. We thus performed all of
the following tests in our private regtest network.

In the first experiment, S tried to send 10k sat to D. As a result of the fees and timelock
advertised by A and B, the most attractive path for payments from S to D was via A. After
receiving the HTLC offer from S, A offered an HTLC to D by sending an update_add_htlc
message immediately. The attack code thus correctly identified that the payment is not
destined for A and does not drop any packets.

In the second experiment, S attempted to send 10k sat to A via their shared channel.
We run the “base” attack on A’s interface as we know it is the recipient and can only
otherwise determine the recipient as the HTLC is being settled (cf. Section 3.3). We evaluate
identifying a node’s role in a payment path in an ensuing analysis. Once the program got to
state 5 of Figure 3, the revoke_and_ack message was dropped. S retransmitted the packet
as it is not acknowledged by A before closing the TCP connection. This left the channel in a
temporarily inactive state and the payment in a pending state. After an exponential backoff
period, S reestablished the connection and sent the revoke_and_ack message again. Note
that S can still open a P2P connection as the code only drops revoke_and_ack messages.
All subsequent revoke_and_ack received on A’s interface were dropped which triggers the
connection close, reestablishment and retransmission loop. We advanced the blockchain
manually by mining blocks until the time lock elapsed. At that point, the payment attempt
failed permanently, and S forcefully closed the channel as well as the TCP connection. We
reversed the direction of payment and observed similar behaviour on the CLN node with a
few minor differences mainly with respect to retransmissions.

In summary, we confirmed that it is possible to execute the attack and block payments
based on network-level observations. Furthermore, we verified that the adversary is able to
selectively censor payments and thus leave third-party payments intact.

4.3 Performance
Subsequent to the feasibility analysis, we studied the implementations’ performance in regard
to the induced delays, throughput and accuracy at different payment rates. The sole fact
that the attack can be executed is not sufficient if such is not possible efficiently.

4.3.1 Latency
In the first of the three performance-related measurements, we examined the delay added
to each TCP packet received on or directed to port 9735 by both the netfilter and XDP
implementations. Figure 7 shows the time required to process TCP packets in microseconds
by both implementations, i.e., the duration from the program first accessing a packet to a
decision being made on the packet. The data was collected during the 24-hour time frame in
which the measurements in Section 4.2.1 were performed and is depicted as a violin plot.

The results indicate that both implementations are quite efficient and issue a verdict on
packets within the same median time of ≈ 11µs per packet. The mean processing time is 13µs
per packet and 14µs per packet for the netfilter and XDP programs respectively. That
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Figure 7 The packet processing times in microseconds for the netfilter and XDP programs
based on packets received in the testnet over a period of 24h. The difference in the observed number
of packets is due to the fact that XDP only receives ingress traffic.

equates to a mean throughput of ≈ 76, 923pps and ≈ 71, 4428pps respectively regardless of
packet size. It may be surprising that the XDP program does not outperform the netfilter
implementation despite XDP’s superiority to iptables in respect to speed [7,8]. However, these
measurements were performed on the user-space code attached to either of the subsystems
and do not reflect the underlying technologies’ throughput capabilities. In summary, we
conclude that the delays induced by the additional filtering layer are negligible and do not
hamper the feasibility of the attack. Such delays in the range of tens of microseconds are
likely to go unnoticed by LN users or even routing nodes.

4.3.2 Throughput
We studied the maximum rate at which packets may be received by the netfilter program
before they start being dropped due to congestion in the queue. The maximum queue length
defaults to 1024 packets; all packets will be dropped as long as the target queue is full.

As per the previous measurements, the netfilter program achieves a mean throughput
of ≈ 76, 923pps. Hence, in order to have 1024 queued packets, the program must receive
packets at a rate roughly 1000 times higher than 76, 923, i.e., 76, 923 · 103pps. Based on the
traffic we observed in the testnet, we strongly believe that it is highly unlikely for a single
Lightning node to generate and/or receive packets at speeds remotely close to that.

The largest AS (with respect to the number of nodes) in the mainnet is AS 14618
(Amazon.com) with 298 nodes as of 12 January 2024. Let us assume that, hypothetically,
AS 14618 wants to execute the attack using a single instance of the program, i.e., all LN
packets to/from the 298 nodes are processed sequentially by the same instance of the program.
Further, we assume that the number of packets at each node is even.6 This means that each
node must pass approximately 3 · 105pps to the program in order to achieve a combined rate
of 76, 923 · 103pps. Similarly, we do not consider such rates to be feasible in the LN. While
we have made simplifying assumptions, these results indicate that the censorship attack can
be executed in a large-scale manner using netfilter.

6 This is a reasonable assumption to make as the amount of traffic at central nodes and less central nodes
probably balance each other out.
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Figure 8 The success rate of identifying the monitored node’s role in a payment, i.e., whether
the node is the recipient or an intermediate routing hop.

4.3.3 Position identification

The concluding performance-related measurements studied the outcome of identifying a
node’s position in a payment path for different transaction rates. While there are no studies
on the network’s throughput, the channel-wise transaction rate is estimated to be rather
low, e.g., 0.000019 payments per second based on reports by a central routing node [43]. To
that end, we sent payments at different rates that we believe to be realistically achievable in
the LN. The payments were issued in the private network due to the high volume.

For each of the different transaction rates under study, S issued 50 payments to A and
50 payments to D. We recorded A’s true position in each payment’s path as well as the
netfilter program’s verdict on the its position. We omit the classification of the different
messages as it remains possible even at higher transaction rates without significant effort.

The proportion of routing positions correctly identified using the methodology described
in Section 3.3 is depicted in Figure 8 for a varying number of payments per second between
nodes S and A. At a rate of up to 1 payment per second the program correctly identified A’s
position in a payment path in all cases. However, as the rate increases beyond 1 payment
per second, the accuracy gradually declines and ultimately falls to zero at 8 payments per
second. This is because of the shorter intervals between messages which make it harder to
distinguish whether messages are related or not. It is worth noting that correctly uncovering
a node’s position when it is the recipient is slightly more robust to higher payment rates. A
transaction rate of 1 payment per second is indeed very low, however, we remark that it is
still significantly higher than current estimates of LN’s throughput.

These results show that, as long as the network’s throughput does not increase drastically,
the attack can be executed accurately.

4.4 Global impact

Naturally, we did not perform any measurements on the public network. Instead, and similar
to multiple previous works [6,26,43], we simulated the attack using a snapshot of the channel
graph obtained from a fully-synced LND node on 12 January 2024. We extended the LN
simulator from [26] with some networking logic in order to map nodes to their corresponding
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Figure 9 The median success rate when each of the top five ASs forbid either all inter-AS
payments or all intra-AS payments.

AS7, as well as the ability to simulate node failures. The code is publicly available on
GitHub.8 As actual payment volumes in LN are unknown, we simulated various payment
volumes following the categorisation in [12] ranging from 100 sat to 10m sat. We simulated a
set of 1, 000 payments between random sender-receiver pairs for each of the selected amounts.
In order to measure the impact of censorship by a malicious AS on the LN, we simulated
sending the payments in two different adversarial scenarios: when an AS allows either only
local payments, i.e., intra-AS payments, or only payments involving at least one other AS, i.e.,
inter-AS payments. As shown in Section 4.2.1, a network-level adversary is able to determine
a node’s role in payment path, and we can thus simulate selective censorship. The ASs were
ranked based on the number of channels and the top five were selected. We repeated each
simulation scenario ten times with different seeds for the random number generator, i.e., for
each set of 1, 000 sender-receiver pairs and for each AS, the channel graph was reinitialised
before simulating payment delivery for each of the selected amounts.

The median success rate, i.e., the ratio of successful payments and the total number
of payments, for all conducted simulations is shown in Figure 9. Besides observing what
is already known in regard to the inverse relation between the success rate and payment
amount [6, 26], the results clearly suggest that most payments in the LN are made between
different ASs. Bearing the low proportion of intra-AS channels in mind (cf. Figure 2), it
is not surprising that a significant amount of payments are affected by inter-AS censorship.
The impact of the attack varies depending on the choice of malicious AS, e.g., AS 16509
causes a decrease of up to 45% while AS 24940 results in a drop of “only” up to 18% in
the success rate. In contrast, when an AS only blocks payments within their network, the
difference in the success rates is minimal suggesting that the impact on the greater network
is negligible.

These results indicate that an adversary can block payments within their area of ju-
risdiction without causing significant harm to the wider network. On the other hand, the
effects of a malicious adversary blocking payments being routed via their network would

7 We used the GeoLite2 data from MaxMind, available at https://www.maxmind.com.
8 https://github.com/tud-dud/lightning-censorship-simulator

https://www.maxmind.com
https://github.com/tud-dud/lightning-censorship-simulator
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Figure 10 The ten most frequent Lightning payload lengths transmitted to/from an LND node
in the testnet over 24 hours. The 18B packets LND nodes send are not included. The vertical lines
illustrate the resulting number of packets if the payloads are padded and chunked to 150B.

be very adverse for the network. The results of the other studied metrics such as fees and
path lengths generally show little to no variation to the baseline simulation regardless of the
applied dropping strategy. The charts have thus been omitted due to space constraints.

5 Countermeasures

In what follows, we discuss different measures the LN can implement in order to impede
and/or mitigate network-level monitoring attacks. The authors of [43] propose a shift from a
default port in LN to a pairwise-negotiated port in order to thwart port-based traffic filtering.
Deviating from port 9735 is a stopgap which does not provide a suitable mitigation, but
adds a layer of complexity to the attack that must be overcome. We argue that this alone
is not adequate as, assuming the adversary is able to determine the new port, the attack
can still be executed without any change. The new port can, for instance, be discovered
using public crawl data, or by simply operating an LN node as each node stores the current
topology locally. They also propose to “avoid adversarial ASs” by using third-party network
services, e.g., Tor and VPNs, and implementing AS-aware routing. We argue that a VPN
does not offer sufficient protection as it simply transfers the risk from one AS to another.

Briefly recapped, the core of the attack presented in this work exploits two side channels –
payload size and timing information – to allow a network-level adversary to identify the
different LN messages despite encryption. Arx et al. suggest hiding the lengths of the
application data but do not provide specifics on a plausible padding strategy [43]. The
reasoning behind employing a length-hiding scheme is that the network-level classification
attacks rely on the TCP payload lengths to identify messages. It is, however, not clear which
strategy is best suited for the LN.

5.1 Weighing the options
We recorded the lengths of all the TCP packets on port 9735 during the 24-hour time
period in which the measurements in Section 4 were performed and depict the observations
in Figure 10. As evident in Figure 10, the payload sizes of LN messages differ wildly.
Consequently, finding a common length is not trivial. Simply padding all payloads to the
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maximal length would result in a significant waste of bandwidth. Instead, we could chunk the
data following a block-length padding strategy [14,23], i.e., padding to the closest multiple
of x bytes. As a result, a network-level adversary would only observe constant-length LN
payloads. Nevertheless, as LN messages have a specified length, the adversary can still make
use of the other side channel – the timing information – to classify the encrypted TCP
payloads. All the attacker needs to do is map the messages sizes in Table 1 to multiples of x.
Observing the direction of flow, number of packets and sequence still gives clear indications
of the underlying messages in transit. For the sake of argumentation, let us assume that
x is somewhat arbitrarily set to 150B, i.e., all LN messages are sent in 150B chunks. As
visualised in Figure 10, all but the first message exchanged during the HTLC commitment
phase would be identical on the network layer (cf. Table 1). Identifying the application
messages is then no longer possible by simply inspecting the observed packet sizes. However,
as we know both the type and order of messages involved in the process, we know how many
packets correspond to each of the messages. An adversary must therefore additionally keep a
count of packets which adds a minimal layer of complexity to the attack. The perhaps most
obvious telltale sign is the update_add_htlc message (1450B) that would be sent in ten
packets followed by two packets for the commitment_signed (162B) in the same direction.
Regardless of this weakness, other message types not discussed in this work would also need
to be taken into consideration in order to define a meaningful chunk size.

If we turn our attention to the timing information, we realise that it is even more
delicate. For instance, we cannot simply reorder messages while conforming to the protocol
specifications. Techniques such as adaptive padding [36] which inject dummy packets
into the packet flow thus become relevant. This destroys timing fingerprints without any
additional latency. However, adaptive padding on its own is not an adequate countermeasure
for the LN as the other side channel – message size – remains unaddressed. For similar
reasons, transmitting packets at a constant rate [11] is not sufficient on its own either.
Currently, Tor implements a variation of adaptive padding as a defence against website
fingerprinting (WF) attacks derived from the Website Traffic Fingerprinting Protection with
Adaptive Defence (WTF-PAD) [18] mechanism. In summary, WTF-PAD sends dummy data
such that an attacker cannot tell real data apart from fake data based on expected packet
inter-arrival times. Furthermore, since all traffic in Tor is padded to 514B cells, WTF-PAD
impedes the effectiveness of WF attacks in Tor by obfuscating timing patterns.

5.2 Towards a solution

We examined whether the variant of padding that is implemented in Tor would provide
sufficient protection in the LN against the attack at hand. We did so by configuring two
LND nodes to connect to each other over Tor and opening a channel between them. The
purpose of doing so is to utilise Tor’s implementation of WTF-PAD and not for Tor’s privacy
properties. We issued payments in both directions, closed the channel and finally the TCP
connection. Not only did all packets have the same packet length (as is expected when using
Tor), but the flow of transmitted packets included packets that did not originate from the
application. Consequently, we were not able to detect which packets belonged to which
Lightning message by manually inspecting the capture. The rule-based state machine is
therefore no longer capable of distinguishing application messages based on the network
traces alone. In fact, we conjecture that this approach offers a high degree of protection for
the LN against more sophisticated fingerprinting techniques by network-level adversaries as
basically all size and timing features are destroyed.
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Although we have established that the mechanisms implemented in Tor offer sufficient
protection, the question of how much this protection costs remains unanswered. In order to
get an approximation of the cost of using Tor, we captured all packets while executing the
above operations in a thirty-minute time frame. In addition to the aforementioned deliberate
activity, the time frame also includes periods in which only control messages were sent by
the nodes, e.g., when the blockchain advances or health checks. Specifically, we concurrently
captured the packets sent locally between the LND node and the Tor SOCKS5 proxy, as well
as the packets sent between the Tor process and Tor network. The former provides data on
the packets that actually come from the application while the latter provides data on what a
network-level attacker would observe. The captures show a total of 14, 824 bytes transmitted
in 379 TCP packets to/from LND and 929, 596 bytes in 3191 TCP packets to/from the
Tor network. This equates to an increase of ≈ 6170% in bandwidth when using Tor. The
captures also show a peak rate of 0.116 Mbit/s when using Tor, which clearly should not
cause any problems for LN nodes while maintaining their current hardware configurations.
However, we note that these are overestimations of the actual overhead to expect in the LN
as they include traffic in Tor that is not actually relevant to mitigating network-level message
identification in the LN, e.g., circuit management. We therefore do not consider the universal
usage of Tor in the LN to be the solution; the overhead of a standalone implementation of
WTF-PAD in the LN is expected to be much lower. Besides, Tor nodes are susceptible to
other potential threats [20,27,39] and using Tor implies higher latency in order to provide
features that may not be required by all nodes in the LN.

An effective mitigation strategy for the LN must omit both the timing and size infor-
mation. Obfuscating either properties is further complicated by the fact that crucial LN
operations, e.g., channel opening or HTLC commitment, must follow an order defined in the
protocol. This means that message flows between two Lightning nodes often follow deter-
ministic patterns. In view of the preceding discussion, we recommend that the LN adopts
a form of adaptive padding similar to Tor as a defence against network-layer monitoring
attacks. That is, not only must we conceal all packet sizes on the network layer, we must also
obfuscate the timing patterns in the P2P communication. Our assessments of the attack’s
feasibility over Tor demonstrate that fixed-length packets in conjunction with cover traffic
effectively hamper the attack. While this solution will necessarily introduce a degree of
overhead, the LN may be facing a technical version of pick your poison.

6 Related Work

6.1 Censorship

Internet censorship has been the subject of multiple works, e.g., [4, 45,46], due to some of
the extensive censorship currently imposed in various parts of the world. It is thus a highly
relevant topic. P2P networks are generally considered to be more resistant to censorship
than classic server-client networks as a result of their fundamental architectural differences.
Nonetheless, there have been reports on the feasibility of imposing censorship in blockchain-
based P2P networks such as Bitcoin [22] and Ethereum [44] by, for instance, exploiting
application-level protocol designs. A prominent example of a state-imposed censorship in the
realm of digital payment networks is the complete trading and mining ban in China. In a
recent work by Sridhar et al., the authors present a censorship attack in the InterPlanetary
File System (IPFS) [38] – a popular P2P content delivery network.
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6.2 Network-level Attacks in the Lightning network
To the best of our knowledge, the LN’s network layer has not received significant attention
so far. In one of the few works, Casas et al. [9] analysed the P2P network and found that a
significant number of nodes connects to the LN through Tor. An analysis conducted in [47]
established a degree of geographic clustering among the nodes. The authors of [43] study
attacks on the LN’s network layer and show that it is possible to decipher encrypted LN
messages via traffic analysis. Besides pursuing a different goal, our work not only confirms
their findings but also refines the information an adversary can gain from traffic analysis.
This additional information is what enables an adversary to impose selective censorship
based on the payment’s source and/or destination. Furthermore, our presented attack is
based on real-time traffic monitoring and execution in contrast to [43]. There has also been
research on AS-level side channel attacks on privacy and routing in the broad spectrum of
cryptocurrency networks [3, 32,37,42] and anonymisation networks such as Tor [27,39].

6.3 Lightning network Topology and Simulations
Numerous works have studied the structural properties of the Lightning channel graph and
demonstrated that it is highly centralised [6, 34, 41] at the application level, e.g., a small
number of nodes function as essential routing nodes due to their high centrality in the graph.
As a result, it is susceptible to a variety of attacks on privacy and security [19,31,40]. The
analysis of the channel graph’s network level in [43] revealed that it is equally centralised
and vulnerable to attacks on payment privacy. Our topological analysis of the channel graph
complements existing ones and provides new insights on its network-level structure, e.g.,
most channels in the network are between distinct pairs of ASs.

A broad range of research on LN takes a simulation-based approach, e.g., [6, 19,31], to
analyse their studies’ significance for the public mainnet. Simulations are often necessary in
order to not interact with third-party nodes in the public network. Due to the availability
of multiple open-source LN simulators, we did not develop a new simulator but instead
extended an existing one [26] with the relevant functionality for this work.

7 Conclusion and Future Work

We studied potential censorship attacks in the Lightning network founded on monitoring
network-level traffic. Furthermore, we demonstrated that it is feasible to determine a node’s
position in a payment path based on the observed traffic. In doing so, our work highlights the
threat powerful adversaries such as autonomous systems pose to the Lightning network which
is further heightened by the network-level centralisation. Based on our analysis of potential
countermeasures, we conclude that an effective mitigation strategy in the LN inevitably
implies some bandwidth overhead.

The attack presented in this work exploits two side channels at the network layer –
payload size and timing patterns. We think that studying effective and efficient mitigation
strategies is an interesting and relevant research question. Complementary to mitigation
strategies, developing mechanisms to detect censorship is a similarly relevant question for
future work. Additionally, and like in multiple other previous works, estimates used in this
work with respect to the network’s throughput relied on the occasional reports provided by
node operators. Acknowledging that measuring throughput in a public P2P network is not
straightforward, we believe that future research on Lightning would benefit from well-founded
assessments of the network’s throughput.
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