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Abstract
In this work, we revisit the severely limited throughput problem of cryptocurrencies and propose a
novel rebalancing approach for Payment Channel Networks (PCNs). PCNs are a popular solution for
increasing the blockchain throughput, however, their benefit depends on the overall users’ liquidity.
Rebalancing mechanisms are the state-of-the-art approach to maintaining high liquidity in PCNs.
However, existing opt-in rebalancing mechanisms exclude users that may assist in rebalancing for
small service fees, leading to suboptimal solutions and under-utilization of the PCNs’ bounded
liquidity.

We introduce the first rebalancing approach for PCNs that includes all users, following a “all
for one and one for all” design philosophy that yields optimal throughput. The proposed approach
introduces a double-auction rebalancing problem, which we term Musketeer, where users can
participate as buyers (paying fees to rebalance) or sellers (charging fees to route transactions). The
desired properties tailored to the unique characteristics of PCNs are formally defined, including the
novel game-theoretic property of cyclic budget balance that is a stronger variation of strong budget
balance.

Basic results derived from auction theory, including an impossibility and multiple mechanisms
that either achieve all desiderata under a relaxed model or sacrifice one of the properties, are
presented. We also propose a novel mechanism that leverages time delays as an additional cost
to users. This mechanism is provably truthful, cyclic budget balanced, individually rational and
economic efficient but only with respect to liquidity.
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1 Introduction

1.1 Motivation
Bitcoin and other cryptocurrencies are significantly transforming the financial landscape [35,
50]. However, a well-known issue of the celebrated Nakamoto consensus introduced with
Bitcoin, is that it inherently prohibits high transaction throughput which in turn hinders the
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widespread adoption of blockchain technologies [18]. For example, Bitcoin can process at
most 7 transactions per second [18], while Visa processes tens of thousands of transactions
per second. Furthermore, blockchains are evidently environments for-profit, therefore user-
incentive design is critical. Although several works have studied blockchain-related topics
under the lens of game theory, e.g., [13, 21, 16, 27, 14], there is still much to be explored,
particularly concerning scaling protocols. In this work, we model and investigate incentive-
compatible mechanisms that can enhance the limited transaction throughput of blockchains
like Bitcoin.

Specifically, we focus on one of the most prominent and well-studied scalability solutions
for blockchains, called payment channels [38]. With payment channels, users can transact
off-chain at far lower costs and faster speeds. The core idea is that any two users can lock
their coins in a “joint account” on-chain, namely the payment channel. Thereby, the channel
parties may perform arbitrarily many off-chain transactions with each other by signing
messages with the new distribution of coins in their joint account. To close the payment
channel, the parties can publish on-chain the last update on the distribution of their coins.
Naturally, each channel is limited by the coins locked by each party (liquidity), dictating the
maximum amount that can be sent between them. For example, in a channel with Alice and
Bob currently holding 3 and 5 coins respectively, Alice can send at most 3 coins to Bob, and
Bob can send at most 5 coins to Alice. In short, the coins can be moved on the channel from
Alice to Bob or vice versa, much like moving balls from one side of an abacus to the other.

Multiple payment channels operating on the same underlying blockchain, comprise a
payment channel network (PCN). PCNs allow users, who have at least one payment channel
open, to route transactions through the network to other users with whom they do not
share a direct payment channel. To successfully route a transaction, a path of channels with
sufficient liquidity for all senders must exist. For example, if Alice wants to send 3 coins to
Carol through Bob, Alice must have 3 coins available in her channel with Bob, and Bob
must have 3 coins available in his channel with Carol. The intermediaries (e.g., Bob) that
offer to use their channel liquidity to route another user’s transaction typically ask for a
routing service fee. If a channel in the selected path is depleted (i.e., has low liquidity) in the
desired direction, all the transfers in the path will be reverted and the transaction will fail.
The liquidity of individual payment channels is, therefore, a crucial factor in the effectiveness
of PCNs as a scaling solution. It determines the ability to route transactions and impacts
the overall efficacy of PCNs in enhancing the transaction throughput.

To maintain high liquidity in PCNs, parties have two options: either lock a significant
amount of coins initially or use an on-chain transaction to top up their channels. However,
both options have their drawbacks. Locking a substantial amount of coins incurs an op-
portunity cost as these coins cannot be used for other on-chain operations. On the other
hand, using on-chain transactions to top up channels hinders the scaling capabilities of the
underlying blockchain.

Rebalancing mechanisms are an attractive alternative solution to improve liquidity within
PCNs [26, 10, 1]. These mechanisms aim to identify cycles of depleted edges (channels) and
route transactions across them in a way that ensures each node in the network has an equal
amount of coins at the end of the process. By leveraging cycles within the PCN, parties with
depleted channels can rebalance their channels by utilizing two of their channels – one as a
source to send coins and another as a destination to receive coins.

However, the deployed local rebalancing algorithms [1] may be practically insufficient for
two main reasons. Firstly, they only involve parties interested in rebalancing, thereby exclud-
ing channels that may route transactions for low or no routing fees; after all, intermediaries
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are indifferent to whether the routed payment concerns a payment (path) or rebalancing
(cycle). Secondly, local searching algorithms may miss optimization opportunities leading to
poor outcomes.

To address the latter limitation, Revive [26] proposed globally coordinated channel
rebalancing, therefore, achieving optimal outcomes. Hide & Seek [10] recently improved on
Revive by enabling global rebalancing in a decentralized and privacy-preserving manner.
However, in both algorithms, the rebalancing subgraph only includes the parties that wish
to rebalance while the vast majority of channels of the PCN that may route transactions for
low or no fees are neglected. Thus, even with globally coordinated rebalancing, the limited
rebalancing subgraph still impacts the optimality of the overall solution, and subsequently the
PCN’s scaling capability, i.e., how many transactions can succeed off-chain given a bounded
overall liquidity.

1.2 Our Contribution
We propose a novel approach to rebalancing that involves all PCN users in order to maximize
the liquidity utilization and subsequently the transaction throughput. Our approach allows
all users to submit their liquidity and bid for every one of their channels. The liquidity in
this setting captures the number of coins they are willing to use for routing/rebalancing
while the bid encapsulates how much they are willing to pay per coin for rebalancing the
specific channel. So positive bids express the desire of buyers to rebalance, whereas negative
(and zero) bids the desire of sellers to sell their routing service. Now, modeling this problem
reveals a major challenge: how can we design an incentive-compatible rebalancing mechanism
for both buyers and sellers?

To the best of our knowledge, we are the first to examine user incentives in the context
of rebalancing mechanisms for PCNs. Our goal is twofold: First, to formally model the
problem, capturing the unique characteristics present in PCNs; second, to discover satisfactory
solutions, exploring different trade-offs. To achieve our objectives, we extend Hide & Seek [10]
to accommodate both buyers and sellers of rebalancing liquidity. This approach leads to a
double-auction problem with several challenges stemming either from traditional auction
theory or from the individual needs of PCNs. In modeling our problem, we pinpoint channel
depletion as a distinct feature, setting it apart from other network mechanism designs like
routing games [22]. Channel depletion signifies that transactions can permanently lower
an edge’s capacity (here, liquidity) until counteracted by an opposite flow. Unlike railway
networks where trains need tracks only temporarily, flows in our model can compensate for
each other. Thus, existing results do not directly apply.

To determine the desiderata of our mechanism, we revisit conventional requirements from
auction theory: (1) economic efficiency, i.e., maximizing the social welfare which captures
that channels are prioritized for rebalancing based on their bids, (2) truthfulness, meaning
users submit their true value, and (3) individual rationality, i.e., non-negative utility for
rebalancing participants. However, our problem encounters an idiosyncrasy rooted in the
payment channel primitive itself, affecting the budget-balanceness of the mechanism, i.e.,
the mechanism does not incur a deficit (nor a surplus). Specifically, coins cannot be burned
in a payment channel because intuitively channel updates must always benefit one party; if
there exists a coin distribution where both parties in the channel can benefit from changing,
then there is no way to enforce it. For instance, we cannot enforce a distribution of 3 coins
to Alice and Bob each and 2 coins burned, because the parties will cooperatively update
their channel to hold 4 coins each. This implies that the mechanism cannot have either a
surplus or a deficit, rendering (weakly) budget-balanced mechanisms infeasible. What’s more,
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13:4 Incentive-Compatible Rebalancing for PCNs

rebalancing itself occurs via individual cycles in the PCN. As a result, our setting demands a
stronger notion of budget balance, which we term (4) cyclic budget balance, i.e., each cycle
must be strongly budget balanced independently.

Unfortunately, the above four desired properties cannot be simultaneously achieved by
any mechanism. We prove this by applying the classic Myerson-Satterthwaite impossibility
result for double auctions [33]. We further emphasize the significance of the cyclic budget
balance property in shaping potential solutions: The output of a rebalancing mechanism
consists of a set of rebalancing circulations, which are global solutions where user preferences
in one segment of the graph can impact the rebalancing cycles in distant segments of the
graph. While in VCG-type mechanisms users are compensated for the global effects of their
channels, the constraint of cyclic budget balance prevents this approach.

To provide satisfactory solutions, we apply standard techniques such as the renowned
VCG mechanism and first-price auctions to the problem at hand. In particular, we showcase
a mechanism that satisfies all the desired properties but is only applicable when all users
are aware of the potential maximum and minimum fees they might pay or earn for their
participation. Subsequently, we present a VCG-type mechanism that also satisfies all the
desiderata exclusively for buyers, under the assumption that sellers are not treated as strategic
agents. We then provide a mechanism that also considers sellers but, similarly to first-price
auctions, sacrifices truthfulness. Finally, we propose a novel mechanism that introduces
time delays as a natural characteristic of this problem, with the aim of incentivizing users to
actively and truthfully participate in the rebalancing process while optimizing the outcome.
The inclusion of time delays allows us to navigate around the impossibility and maintain our
objective of maximizing rebalanced liquidity, in exchange for losing economic efficiency in
terms of time delays and liquidity combined.

2 Preliminaries and Model

In this section, we first provide the necessary background on the rebalancing of payment
channel networks, which we subsequently use to introduce our setting and problem definition,
termed Musketeer. We further present an overview of Musketeer. For the rest of the
paper, we use the terms users and players interchangeably.

2.1 Rebalancing PCNs
Rebalancing mechanisms are currently the only approach that allows users to restore their
channel balances off-chain. In a nutshell, rebalancing mechanisms search the payment network
for depleted channels that users wish to top-up off-chain until they identify a cycle of channels
with enough liquidity. For instance, suppose Alice has one depleted channel with Bob, which
she wants to top-up for 3 coins, and another channel with Carol where she has plenty of
coins. Now, if Bob and Carol share a channel with at least 3 coins available for Carol, Alice
can send 3 coins to Carol in their channel, Carol 3 coins to Bob, and Bob 3 coins to Alice.
This way all users end up with the same total amount of coins. We stress that coins locked
in a channel cannot be transferred to any other channel, much like the balls in different rows
of an abacus.

Rebalancing mechanisms fall into two categories: local and global. Local rebalancing,
currently deployed on the Lightning Network [38], has each party searching individually
the network for other channels that want rebalancing; if a cycle is identified then the party
can rebalance its channel. This approach may not find the optimal solution for rebalancing
and it is very inefficient. Global rebalancing, introduced with Revive [26] and subsequently
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optimized with Hide & Seek [10], finds the globally optimal solution for the users that directly
and personally benefit from rebalancing their channels by leveraging coordination. Our
solution extends this approach to further include users who are indifferent to rebalancing
or may be willing to participate for a very small service routing fee. Considering routing
fees are orders of magnitude smaller than the typical fee paid to the blockchain to top-up
the channel balance, it is cost-effective for users to pay intermediaries to facilitate their
rebalancing, similarly to transaction routing in PCNs – instead of paths, they route in cycles.
We detail below the Hide & Seek mechanism that underpins our solutions.

Hide & Seek [10]

The protocol proceeds in two phases: the exploration phase which identifies rebalancing
cycles, and the execution phase which ensures their atomic execution in a secure and incentive-
compatible fashion. The exploration phase begins with the random selection of k delegates
among the users, e.g., using cryptographic sortition [23]. Then, the users submit their
rebalancing requests, i.e., how many coins they wish to rebalance, to the delegates using
secret sharing. Thereafter, the delegates use multi-party computation to calculate the optimal
rebalancing flow on the network. To preserve users’ privacy, each user receives only their
specific flow. The optimization problem is modeled as a linear program that maximizes
the rebalancing flow. The execution phase initiates by decomposing this flow into simple
sign-consistent cycles, meaning that each channel only shares cycles with flow in that same
direction. As a result, the channel owners are incentivized to execute all channels, and
not select a subset thereof. The execution of the cycles occurs atomically, i.e., either all
transactions succeed or all fail, using HTLC-based solutions [38, 47, 49]. Figure 1 illustrates
the Hide & Seek protocol flow.

Figure 1 The protocol flow of Hide & Seek.

2.2 Musketeer Overview

In Musketeer, each PCN channel may participate in the rebalancing process either as a
depleted or as an indifferent edge. Depleted edges are channels owned by players that wish
to rebalance their channels (i.e., act as buyers), while indifferent edges are owned by players
that sell their routing services (i.e., act as sellers). We model this problem as a double
auction: each player submits their (non-negative or non-positive) bid for each channel they
are part of, which indicates the maximum or minimum amount they are willing to pay or
receive per unit coin for rebalancing or routing through that channel, respectively.

Additionally, for each channel, the users submit their liquidity, i.e., the number of coins
available to the rebalancing mechanism. These coins may be available because buyers want to
rebalance their channels or because sellers may want to earn fees for their service. With this
knowledge, we extract the rebalancing subgraph, which is a directed graph with capacities
capturing each channel’s liquidity.
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13:6 Incentive-Compatible Rebalancing for PCNs

The resulting combinatorial problem can be modeled as a max-flow problem, where
the goal is to maximize the total number of coins (flow) weighted by the buyer’s bids. In
other words, we calculate the flow that maximizes social welfare, respecting the channel
capacities. We then decompose the flow in simple independent cycles that may be executed
atomically [10]. Our main problem is pricing each cycle separately, awarding fees to sellers
paid by the buyers.

Musketeer’s participants are required to pre-lock the coins intended for rebalancing
prior to the mechanism revealing the individual cycles. This design decision is primarily
to prevent buyers from choosing whether to proceed with rebalancing after the output of
the mechanism is known, as this could potentially incentivize dishonest strategies. From a
different perspective, if buyers have the option to abort the mechanism in hindsight, the
effectiveness of the mechanism may be severely hindered as a cycle can only be executed
only if all players choose to participate and lock their coins. Figure 2 illustrates Musketeer
integrated into the Hide & Seek protocol flow.

Figure 2 The backbone of Musketeer, integrated into the Hide & Seek protocol flow.

2.3 Model and Notation

2.3.1 Payment Channel Network (PCN)

A payment channel network can be modeled as an undirected graph, with a vertex for every
user and an edge connecting users u, v whenever they jointly own a payment channel, as
depicted in Figure 3(a). At any point in time, the (bidirectional) capacities of the payment
channel and its current distribution of coins can be encoded as follows: the capacity of
edge e = (u, v) in the direction from u to v is the maximum amount of money that can be
transferred given the channel’s current coin distribution.

2.3.2 Rebalancing amounts as network flows

First, all users submit capacities for their channels in both directions. These requests from
both buyers and sellers are encoded as a directed capacitated graph G = (V, E). For a node
u, the outgoing edges express the channels that u wishes to send coins to its counterparty –
either because the counterparty wishes to rebalance their channel or because u wants to gain
routing fees as a seller. Symmetrically, the incoming edges express the channels that node
u wishes to receive coins – either because u wishes to rebalance its channel as a buyer or
because its counterparty wants to gain routing fees as a seller. We note that it is, therefore,
possible to have both directed edges (u, v) and (v, u) in E. The capacities of each edge c(e),
e ∈ E, represent the maximum amount of flow that the owners of the channel are willing to
dedicate to rebalancing. Consequently, the rebalancing problem is now transformed into a
network flow problem, e.g., maximizing the rebalancing liquidity is equivalent to maximizing
the flow in G, as illustrated in Figure 3(b).
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From the perspective of one user, rebalancing simply transfers their liquidity from one
channel to another, possibly depleted, channel. Rebalancing by itself must not result in
any monetary gain or loss for any user, a property also known as balance conservation [10].
This does not include the fees associated with rebalancing, which may very well lead to a
surplus or deficit for users. This requirement of balance conservation characterizes possible
rebalancing flows as circulations. A circulation is a flow f = (f(u, v))(u,v)∈E such that the
net flow through each vertex is zero:

∑
v∈V

f(u, v) =
∑

v∈V

f(v, u),∀u ∈ V.

Two circulations f1, f2 can be added to get yet another circulation: f1 + f2 = (f1(u, v) +
f2(u, v))(u,v)∈E . A cycle is a sequence of vertices v1, v2 . . . vk such that (vi, vi+1) ∈ E,∀1 ≤
i ≤ k − 1 and (vk, v1) ∈ E as well. We equivalently refer to this cycle as (e1, e2 . . . ek) where
ei = (vi, vi+1),∀1 ≤ i ≤ k − 1 and ek = (vk, v1). We call k the length of this cycle. A cycle
flow f of weight w on cycle C is a circulation where f(e) = w,∀e ∈ C and f(e) = 0 otherwise
(cf. Figure 3(c)).

Although all circulations represent possible rebalancings, rebalancing in practice is
executed through cycle flows. First, a so-called sign-consistent cycle decomposition of a
circulation is computed, and these cycles are individually executed [10]. A sign consistent
cycle decomposition of a circulation f is a set of cycles f1, f2 . . . fk such that f =

∑
i fi and

all the cycles share the same orientation (cf. Figure 3(d)). To be precise, if two cycles fi, fj

route non-zero flow through an edge (u, v), they do so in the same direction: fi(u, v) > 0 and
fj(v, u) > 0 cannot hold simultaneously. A standard result of network flow theory is that any
circulation may be expressed as a sum of at most |E| sign-consistent cycles [2]. We are only
interested in the space of feasible circulations f that satisfy every capacity constraint: f ≤ c.

Figure 3 We illustrate the rebalancing process of Musketeer: (a) Given a PCN with specific liquidity
per channel (indicated by the numbers of each node on each edge), (b) the players may submit capacities
and bids (the first number indicated the submitted capacity, the arrow indicated the direction they wish to
rebalance, while the second number indicates the fees they are willing to pay). Then, (c) the rebalancing
circulation is calculated (the number refer to the number of coins to be transfer and the direction is
indicated by the arrow), and (d) subsequently decomposed to sign-consistent cycles which are then priced
(the multiple arrows indicate that the flow is divided into multiple cycles; the first number is the number of
coins to be transferred and the second the fee to be paid). Depleted edges are shown in red and indifferent
edges in blue. All numbers are indicative.

2.3.3 User valuations

In a two-party channel, rebalancing is not symmetrically beneficial. We define the utilities
resulting from rebalancing flows below.

Associated with each user u ∈ V is a valuation function vu on the set of flows in G. We
first assume this valuation to be a linear function of f , so that by abuse of notation we may
treat vu as a function as well as a vector: vu(f) = vu · f . For an edge e, we denote by vu(e)
the e-th coordinate of the vector vu.

AFT 2024
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If channel e = (u, v) is depleted in the direction from u to v, rebalancing should occur
from v to u. This would benefit user u, thus u has a positive valuation for flow along e:
vu(e) > 0. Any incurred fees are also paid by u, making u the buyer in this case. However, if
a channel is not depleted, it is termed indifferent. Flow in either direction is allowed to aid in
rebalancing the network but has a non-positive valuation for the channel owners: vu(e) ≤ 0.
Flow from u to v requires the authorization of the u, thus fees earned through this flow are
paid to u, termed the seller.

We assume these valuations are local, meaning that the utility of users is not impacted
by the flow along non-adjacent channels: vu(v, w) = 0 for distinct users u, v, w. We further
presume each user has a probabilistic knowledge of other users’ valuations. Finally, we
assume that the utility derived from rebalancing by a unit flow along any channel is bounded,
encapsulated by ∥vu∥∞ < 0.1. In other words, no user is willing to pay a fee rate greater
than 10%, nor can a user demand greater fees for its indifferent edges. A similar concept is
already implemented in the Bitcoin Lighting Network for multi-hop payments (approximately
equal to 0.03%). We stress our mechanisms function with any maximum fee rate lower than
100%, and the 10% bound is merely indicative.

2.3.4 User bids
Similarly to traditional auctions, user valuations are private and they may submit a different
bid. Indeed, we assume all players are rational utility-maximizing agents. We call the bids
valid when they satisfy the above assumptions on valuations.

In our problem, users submit bids bu for their channels reflecting their self-interests,
as shown in Figure 3(b). Buyers submit positive bids while sellers submit negative ones,
expressing the maximum/minimum amount of fees they are willing to pay/receive, respectively,
per unit flow along their channels during rebalancing. Both users in an indifferent channel
may participate as sellers. In depleted channels, however, one party can serve as a buyer
while the counterparty is precluded from being a seller to avoid necessitating payment from u

to v for routing flow. Although we distinguish between buyers and sellers for simplicity, note
that users may possess multiple depleted and indifferent channels simultaneously. It is more
precise to view each user as a strategic agent with specific utilities derived from their edges.

2.3.5 Social welfare and utility functions
Recall that individual user valuations vu are local by assumption and are nonzero only for
adjacent directed edges. Let v be the aggregate valuation function

∑
u∈V vu. Given a feasible

circulation f , the social welfare generated by f under v is defined as SW(v, f) := v · f . As
usual, user utilities are considered quasi-linear: if u is charged price p for participation in
a circulation f of valuation vu(f), then the player’s utility is uu(f , p) := vu(f) − pu. An
example of pricing a circulation can be seen in Figure 3(d).

For a vertex v, we use the subscript “−v” to denote the situation where v is removed
from consideration. G−v refers to the subgraph of G with v and all edges adjacent to v

removed. v−v, b−v denote valuation and bid vectors with coordinates for edges adjacent to v

removed. Finally, u−v, p−v denote utilities and prices of all players except v. These vectors
may also be considered as elements of the larger class when it is clear from the context.

2.3.6 Rebalancing Game
We define here the rebalancing problem termed Musketeer.
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▶ Definition 1 (Musketeer). Consider a game consisting of n players, one for each of
the vertices of a capacitated directed graph G(V, E) each with valuation (vector) vv, v ∈ V .
The coordinates correspond to the channels of player u. A Rebalancing Mechanism M :
(G, c, b) 7→ (fi, pi)1≤i≤k receives edge capacities c(e) and valid valuations bv as bids from each
player. M computes a feasible circulation f as a sign-consistent cycle decomposition f1, . . . fk.
For each cycle flow fi, it computes a price vector pi = (pi(v))(v∈V ) that each user must pay.
Each cycle fi yields a utility of uv(fi, pi) for player v as given by uv(fi, pi) = vv(fi)− pi(v),
and the total utility for player v is uv(f) =

∑
i uv(fi).

The following properties should hold:
1. Economic Efficiency: The cycle decomposition f maximizes the social welfare under

the given bids, f = arg max SW(b, f).
2. Cyclic Budget Balance: The prices per cycle must sum zero

∑
v pi(v) = 0.

3. Individual Rationality: Any cycle flow fi yields non-negative utility to every truthful
player, uu(fi) ≥ 0.

4. Truthfulness: Regardless of other players’ actions, the best response for utility-
maximizing players is to bid truthfully, bv = vv.

In the context of our problem, economic efficiency refers to the maximization of the total flow
weighted by users’ bids, resulting in the most beneficial effect of rebalancing. Additionally,
this property encompasses the prioritization of channels for rebalancing based on their
respective bids.

Individual rationality, on the other hand, demands that each user pays no more than their
bid for each channel. By adhering to rationality, users ensure that every rebalancing cycle
yields non-negative utility for all players. Therefore, executing all suggested cycles, rather
than selectively performing only those that are optimal to their self-interest, is necessary to
achieve the maximal beneficial effect of rebalancing.

Truthfulness is another crucial aspect of the mechanism, whereby each player should bid
their truthful valuation for each channel to ensure that no one can benefit from misreporting
their valuations.

Lastly, cyclic budget balance is a novel property tailored to our problem. It is a more
restrictive variation of the strong budget balance property and demands that there is no
deficit or surplus for each cycle produced by the mechanism. There are two reasons we
opt for the cyclic budget balance, both of which stem from PCN technicalities: Firstly,
the rebalancing circulation is preferably decomposed into cycles. As posited in Hide &
Seek, executing small cycles is faster, more robust and requires less communication among
nodes[10]. In contrast, executing the entire circulation simultaneously demands complex
protocols (such as that of [3]) with high network overhead, which are more likely to fail.
Secondly, payment channel constructions do not allow the burning of coins, or in other
words, a surplus for the mechanism. This is because the two users may cooperatively update
the channel state later in order to split the burned coins, effectively reversing the “burn”.
Therefore, each cycle must be priced in a way that all coins are distributed among the players
in the cycle. However, we showcase below that attaining cyclic budget balance is strictly
harder than strong budget balance.

Hardness of Cyclic Budget Balance

Let us demonstrate the increased complexity of attaining cyclic budget balance in comparison
to strong budget balance (in conjunction with individual rationality). The following example
(Figure 4) shows that the feasible region for strong budget balance exceeds that of cyclic
budget balance: Suppose player u submits a bid of 0.1 per unit flow for his depleted channel

AFT 2024



13:10 Incentive-Compatible Rebalancing for PCNs

u

1,0
.1

1,0.1

A

10
,0

10,0

11
,

0.
1

B

Figure 4 Depleted edges are depicted with red and indifferent edges with blue. The numbers on
each edge indicate the rebalancing capacities and bids, while the rebalancing directions are indicated
by the arrows.

e with a rebalancing capacity of 11. u participates in two cycles, A and B. A consists of
two indifferent edges bidding -0.1 each (total -0.2 per unit flow) with capacity 1, while B

is composed of two indifferent edges with 0 bids and capacity 10. Regardless of the chosen
budget balance property, cycle B can be selected. However, cycle A fails to satisfy cyclic
budget balance as any rational pricing would result in a deficit of -0.1 per unit flow. However,
strong budget-balanced solutions may include both cycles A and B, having u pay 0.2/11 < 0.1
fees per unit flow on average. Thus, cyclic budget balance restricts the solution space more
than strong budget balance.

3 Towards Truthful Rebalancing

In this section, we explore how to provide incentive-compatible rebalancing in various
settings using auction theory, yielding a flurry of results. In particular, we first prove that
satisfying all the desired properties of the Musketeer is impossible by applying the classic
Myerson-Satterthwaite impossibility result for double auctions (Section 3.1).

To circumvent the impossibility, we present a variety of mechanisms, all of which relax
the notion of economic efficiency by restricting the set of possible bids we consider when
maximizing social welfare. In particular, we first consider the limited setting where buyers
and sellers choose to participate in the mechanism knowing upfront the maximum and
minimum fees they would potentially pay or gain, respectively (Section 3.2). The presented
algorithm is fairly simple but restricts the choices for participants.

To expand our results to the broader context where players are allowed to submit bids,
we relax our model to a single auction, solely considering the buyer’s incentives. Specifically,
we assume players are willing to forward flow through their indifferent edges hoping to earn
some fees in the process, but without a guarantee on the fees. Under this assumption, we
present a VCG-type mechanism, satisfying incentive compatibility for buyers (Section 3.3).

Next, we present a double-auction mechanism that takes into account the bids of both
buyers and sellers, albeit sacrificing truthfulness, similarly to a first price auction (Section 3.4).

Finally, we leverage time delays to navigate around the impossibility result and design a
novel double auction that satisfies all the desiderata in exchange for some costs that users
incur in the form of time delays (Section 3.5).

In the following, we provide a high-level description of the various mechanisms, named
after the Four Musketeers, highlighting their different design choices and trade-offs. The
algorithm facilitating the cycle decomposition is abstracted from the exposition of these
mechanisms, and the protocol implementing the atomic execution of these cycles is likewise
not detailed. Indicative algorithms that realize these functions can be found in [10] as well
as in Section 3.6 for completeness.
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3.1 Impossibility Result
▶ Theorem 2. No mechanism can simultaneously satisfy all the desired properties of Mus-
keteer, namely economic efficiency, individual rationality, truthfulness, and cyclic budget
balance.

Proof. We formulate the double auction problem as a rebalancing game, thus showing that
if all properties are satisfied in Musketeer then that would be true also for the double
auction problem, hence the impossibility of Myerson-Satterthwaite does not hold.

Suppose A wishes to sell an item and B wishes to buy it, with individual valuations Va, Vb

respectively. Each player knows their own valuation with certainty but the valuation of the
other player only probabilistically. Without loss of generality, we normalize the valuations to
lie in [0, 1].

Now construct the following instance of Musketeer: the graph G = (V, E) consists of
V = {a, b, c}, E = {(a, c), (c, b), (b, a)} and with c(e) = 1,∀e ∈ E. For a flow f = (f1, f2, f3) -
that is, f1 units going from a to c, f2 from c to b, and f3 from b to a - set the valuations
va(f) = −Vaf1, vb(f) = Vbf2, vc(f) = 0. We suppose that the players submitted bids
ba, bb, bc respectively, and in particular that c was honest: bc = vc = 0.

The only non-zero feasible circulation is f := (1, 1, 1), so that the mechanism must decide
solely between f and 0. It must also choose a price vector p satisfying cyclic budget balance:
pa + pb + pc = 0.

We interpret choosing f as a trade occurring between A and B, and choosing 0 as no
trade. An efficient mechanism must output f if Vb > Va (the buyer values the commodity
more than the seller). This corresponds to Pareto Efficiency. Individual rationality of players
a, b directly corresponds to individual rationality of A and B. Next, individual rationality of
c (the “auctioneer”) demands that pc ≤ bc = 0, which corresponds to Weak Budget Balance.
Truthfulness in our setting matches that of Myerson-Satterthwaite: in both cases, we require
the truthful bid to be the best response.

In this manner, a solution to Musketeer can be used to simulate a single buyer single
seller trade as studied by Myerson and Satterthwaite [33]. As a result, all four desired
properties cannot be concurrently realized without additional assumptions. ◀

3.2 Athos: A Mechanism for Fixed Fees
In this section, we present a straightforward approach for incorporating fees into rebalancing.
To circumvent the aforementioned impossibility, the input to the mechanism is restricted.
Users do not submit bids. Instead, a predetermined fee rate of p̂ is made publicly known
(such as the most commonly chosen fee rate1). All flow through indifferent channels will be
paid at this fee rate. There is an additional parameter k that bounds the maximum fee rate
for buyers: flow through depleted edges will be charged at a fee rate ≤ kp̂.

Given these parameters, users can decide upfront if they want to participate in the
mechanism. Instead of bidding, they specify which of their channels are depleted. D ⊆ E

denotes the set of depleted edges, and the rest are considered indifferent edges, denoted
by I = E \D. The rebalancing flow is chosen to optimize:

∑
e∈D kf(e) −

∑
e∈I f(e). The

rebalancing is then decomposed into sign-consistent cycles, and a separate price vector is
computed for each cycles that achieves cyclic budget balance. This way we achieve all the
desiderata but under a restricted setting.

1 Bitcoin Lightning fees: https://www.reddit.com/r/lightningnetwork/comments/tmn1kc/bmonthly_
ln_fee_report/
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This structure leads to a simple mechanism (Athos), a natural evolution of Hide & Seek
including fees. We observe however that certain rebalancing cycles are not considered: given
the parameter k, any rebalancing cycle must contain at least one depleted edge for every k

indifferent edges.

Athos: Fixed fees
Input: Channel capacities c and the set of depleted edges D ⊆ E .

1. Let I = E \D be the set of indifferent edges.
2. Compute the optimal rebalancing f := arg maxG

∑
e∈D

p̂f(e)−
∑

e∈I p̂f(e).

3. For this flow, the total cost incurred is C = p̂
∑
e∈I

f(e).

4. Consider a sign-consistent cycle decomposition f1, f2 . . . fk of f , and define the cost
incurred per cycle as Ci = p̂

∑
e∈I

fi(e).

5. Ci is distributed to the depleted edges in fi. Notice that every cycle fi must contain at
least one depleted edge per k − 1 indifferent edges, otherwise remove fi from f∗ to get
a more optimal solution.

6. If the ith cycle fi contains ni depleted edges, then each depleted edge is charged at fee
rate Ci/ni during the execution of fi. All indifferent edges earn fees at rate p̂.

Output: Cycle flows with prices (fi, pi), each released only to involved players.

▶ Theorem 3. Athos: (G, c, D) 7→ (fi, pi)1≤i≤k, D ⊆ E expressing the set of depleted edges,
satisfies economic efficiency, individual rationality, and cyclic budget balance. It also provides
sellers with a fee of q̂ ≤ kp̂ per unit flow along their edges.

Proof. This mechanism assumes bids of kp̂, p̂ for depleted and indifferent edges resp., and
selects a circulation maximizing social welfare under these bids, thus achieving economic
efficiency.

Step 3 clearly indicates that sellers receive a fixed fee for each unit of flow. The parameters
p̂, k are publicly known in advance, hence a user can decide a priori whether it is beneficial
to participate in Athosbased on their private valuations. Individual rationality of player is
thus implicit in their participation in the mechanism, along with the fact that all indifferent
edges earn fees at rate p̂, and depleted edges are charged at rate ≤ kp̂.

The fee computation in Step 4 is cyclic budget balanced by design: since we consider the
cycle decomposition of f∗ and charge fees per cycle, the fees charged to depleted edges are
identical to the fees levied by the indifferent edges. ◀

3.3 Porthos: A Truthful Single Auction
The impossibility of Section 3.1 indicates that achieving all the desiderata is not possible for
both buyers and sellers in the original setting. In particular, in our setting, the cyclic budget
balance property is critical since burning coins is not possible in payment channels. For
this reason, the most straightforward way to circumvent the aforementioned impossibility
is to either restrict our setting, as in Section 3.2 where the bids were fixed and known a
priori, or revert to a single auction by assuming that sellers will accept any reward that is
non-negative.
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We, thereby, present here a single auction mechanism where only non-negative bids are
permitted: positive bids for depleted channels, and zero for indifferent channels. Instead, all
the users of a PCN may participate in the rebalancing process hoping to receive some fees
from the mechanism.

We construct a VCG-type mechanism to determine the price vector of buyers based on
their impact on social welfare, achieving incentive compatibility for buyers. Charging these
prices would result in some surplus for the mechanism, which is instead redistributed to
owners of indifferent channels to achieve cyclic budget balance.

Porthos: A VCG-type single auction
Input: Channel capacities c and non-negative player bids bv ≥ 0.

1. Compute the optimal rebalancing f := arg maxG SW(b, f).

2. Compute an alternative rebalancing for every player v, f−v := arg maxG SW(b−v, f).

3. Charge v the price p(v) := SW(b−v, f−v)− SW(b−v, f).

4. Let f1, . . . fk be a sign-consistent cycle decomposition of f . Non-zero prices p(v) are
split into pi(v) for each fi proportional to v’s valuation of fi:

pi(v) := p(v)SW(bv, fi)
SW(bv, f) .

5. The total fees per cycle fi are qi =
∑

pi(v) for every buyer in fi.

6. If fi has m sellers u1, u2, . . . um, then pi(uj) := −
∑

qi

m
.

Output: Cycle flows with prices (fi, pi), each released only to involved players.

▶ Theorem 4. Porthos: (G, c, b) 7→ (fi, pi)1≤i≤k assuming b ≥ 0, satisfies economic
efficiency, individual rationality, and cyclic budget balance. Users’ bids for depleted edges are
truthful.

Proof. A feasible circulation f that maximizes social welfare under b achieves economic
efficiency. For a player v, let f−v be a feasible circulation on G maximizing social welfare
under bids b−v. We set p(v) := SW(b−v, f−v)− SW(b−v, f).

It is sufficient to show truthfulness under the pricing p′(v) := −SW(b−v, f), since p and
p′ are revenue equivalent: meaning that their difference p−p′ is a function of b−v and G−v,
and this function crucially does not depend on player v’s bid or valuation.

Under p′, player v is incentivized to bid truthfully regardless of every other player’s
action. Consider b = (vv, b−v), b′ = (v′

v, b−v) for any other valuation v′
v ̸= vv. When v

reports valuation honestly, the mechanism selects f maximizing social welfare under b, and
player v’s utility is given by vv(f)− p′(v) = vv(f) + SW(b−v, f) = SW(b, f). In the second
case, the mechanism selects a possibly different f ′ maximizing social welfare under b′ and
the utility for player v is: vv(f ′) + SW(b−v, f ′) = SW(b, f ′). Since SW(b, f ′) ≤ SW(b, f) by
definition of f , we have that bidding honestly always achieves the maximum possible utility
regardless of other players’ actions. In other words, both pricings p, p′ are Nash-equilibrium
incentive-compatible.

Finally, we show individual rationality, or that buyer utilities are non-negative under
price p. Buyer v’s utility is uv = SW(b, f)− SW(b−v, f−v) which must be non-negative as
SW(b−v, f−v) ≤ SW(b, f−v) ≤ SW(b, f) by definition of f . We note that the first inequality
only holds for non-negative bids bv.
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By the computation in Step 5, the fees charged to depleted edges are equally distributed
to all indifferent edges for each cycle. In other words, Porthos satisfies cyclic budget
balance. ◀

3.4 Aramis: A non-truthful Double Auction
As a stepping stone to Section 3.5, we present a straightforward double-auction mechanism
(Mechanism Aramis) that accepts both positive and negative bids, and satisfies all properties
but truthfulness. The rationale of Algorithm 3 resembles that of a first-price auction.

Aramis: A Double Auction
Input: Channel capacities c and player bids bv.

1. Compute the optimal rebalancing f := arg maxG SW(b, f).

2. Let f1, . . . fk be a sign-consistent cycle decomposition of f .

3. Suppose fi is a cycle flow of length ni. The price pi(v) for v’s participation in fi is:

pi(v) := bv(fi)−
SW(b, fi)

ni
(pi(v) = 0 when v is not part of fi).

Output: Cycle flows with prices (fi, pi), each released only to involved players.

▶ Theorem 5. Aramis: (G, c, b) 7→ (fi, pi)1≤i≤k satisfies economic efficiency, individual
rationality, and cyclic budget balance, but not truthfulness.

Proof. The feasible circulation f maximizes social welfare under b and thus achieves economic
efficiency. The social welfare of each cycle fi under b must be non-negative, else the circulation
f − fi would have greater social welfare than f , contradicting its optimality. Intuitively, the
social welfare per cycle is shared uniformly by all involved vertices.

For a truthful player v, their utility under a cycle fi of length ni is given by ui,v(fi) =

vi,v(fi)− pi,v(fi) = SW(b, fi)
ni

≥ 0. This proves individual rationality per cycle. From the
price calculation in Step 3, we can readily confirm that the sum of the prices along each
cycle is zero:

ni∑
j=1

pi,vj (fi) :=
ni∑

j=1
bvj (fi)− SW(b, fi) = 0. ◀

Remark. Players’ incentives mirror first-price auctions: They are incentivized to bid higher
to ensure their participation in the rebalancing circulation over other competing players. But
for a given rebalancing circulation, players are incentivized to bid lower to maximize utility.

3.5 d’Artagnan: A Truthful Double Auction with Time Delays
Mechanism Aramis is straightforward but lacks the crucial property of truthfulness. To miti-
gate this issue, we introduce time delays into the rebalancing cycles (mechanism d’Artagnan).
The basic concept is that cycles with lower social welfare will be released later in time. Con-
sequently, users who attempt to save on fees by underbidding will experience an undesirable
delay in rebalancing. This concept is akin to that of opportunity cost, where users face
potential losses from the inability to use their locked funds.
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d’Artagnan first computes an optimal rebalancing circulation and decomposes into
sign-consistent cycle flows with prices (fi, pi), similar to Aramis. Moreover, d’Artagnan
selects a time ti ∈ [0, 1] for every flow fi (e.g., t = 1 represents an 1 hour delay). We assume
delaying execution until time ti ≤ 1 gives player v a utility of uv = vv(f)− pv + d(1− t).
Users join the mechanism with the implicit assumption that rebalancing cycles are released
at time t = 1. Any earlier rebalancing improves the utility of a player at the rate d, a
configurable parameter of our mechanism that depicts the estimated opportunity costs of
players.

d’Artagnan: A Double Auction with delays
Input: Channel capacities c, player bids bv, and global delay factor d.

1. Compute the optimal rebalancing f := arg maxG SW(b, f).

2. Let f1, . . . fk be a sign-consistent cycle decomposition of f .

3. Suppose fi is a cycle flow of length ni. The price pi(v) for v’s participation in fi is:

pi(v) := bv(fi)−
SW(b, fi)

ni
. pi(v) is set to zero when v is not part of the cycle flow.

4. Let ni be the length of the cycle flow fi. Define the delay of fi as

ti = 1−
(

1− 1
ni

)
SW(b, fi)

d
.

Output: The ith pair (fi, pi) is released to involved players at time ti.

▶ Theorem 6. d’Artagnan: (G, c, b, d) 7→ (fi, pi)1≤i≤k where d is an additional delay
parameter, satisfies economic efficiency, truthfulness, cyclic budget balance, and individual
rationality.

Proof. Cyclic budget balance and economic efficiency follow as in Mechanism Porthos
since Steps 1− 3 are identical in both Porthos and d’Artagnan. To analyze individual
rationality and truthfulness, let us compute the utility of a player v. Due to the sign
consistency of cycles, v’s utility can be expressed as the sum of utilities induced by each of
the k cycles: uv =

∑
i uv(fi).

The utility of v per cycle fi is:

uv(fi) = vv(fi)−
(

bv(fi)−
SW(b, fi)

ni

)
+ d− dti

= vv − bv + SW(bv, fi)
ni

+
(

1− 1
ni

)
SW(b, fi) = (vv, b−v) · fi

simplifying to SW ((vv, b−v), fi). Since v’s utility is independent of their bid, d’Artagnan
is truthful.

In fact, this utility matches the social welfare if bids were honest: ui(fi) = SW(b, fi). The
social welfare of fi cannot be negative. If SW(b, fi) < 0, then f is not an optimal solution:
as f1, . . . fk is a sign consistent cycle decomposition, removal of fi from the circulation f leads
to a feasible solution that is strictly better. This proves individual rationality. ◀

Remark. To guarantee both truthfulness and individual rationality, the users lock their
coins to the mechanism a priori for the maximum time delay. Otherwise, buyers may benefit
from participating in the mechanism even when the maximum time delay supersedes their
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true valuations: buyers might only participate in the execution phase (i.e., the sale) if they
are quoted a favorable price. This is undesirable behavior as it affects all other users in the
cycle. Hence, we enforce the execution of cycles according to the mechanism [38]. However,
this hinders economic efficiency, as there may be buyers with ex-ante utility (i.e., utility of
player before the output of the mechanism is known) less than their ex-post utility (i.e.,
utility of player after the output of the mechanism is known). As a result, there may be
buyers who would have participated in the mechanism but chose not to, therefore leading to
suboptimal outcomes.

3.6 Additional Algorithms
In the following, we present for completeness indicative protocols that can implement the
cycle decomposition and the atomic execution of these cycles.

Sign-Consistent Cycle Decomposition

We first outline the algorithm for the cycle decomposition, as introduced in [10]. Algorithm 1
leverages depth-first search to identify cycles and then applies cycle flows to them.

Algorithm 1 Depth-first Search Cycle Decomposition.

input : Circulation f on directed graph G = (V, E)
output : A set of cycle flows S that sum to f
initialize i = 1
initialize R←− {e ∈ E : f(e) ̸= 0} set of active edges
while R ̸= ∅ do

pick an edge e1 ∈ R

run depth first search to find a cycle Ci = (e1, e2, . . . ek) in R

wi ←− min f(e), e ∈ Ci

initialize fi ←− 0
for e ∈ Ci do

fi(e) = wi

f(e)←− f(e)− fi(e)
if f(e) = 0 then

delete e from R

i←− i + 1
return S = {f1, f2 . . . fi}

Atomic Execution of Rebalancing Cycles

Next, we present an algorithm that ensures the secure atomic execution of the rebalanc-
ing cycles, taking place after the output of each respective rebalancing mechanism, e.g.
d’Artagnan.

Provided a set of (sign-consistent) rebalancing cycles, Algorithm 2 randomly selects one
user for each cycle responsible for initiating the execution. This user selects a random number
rc and sends its cryptographic digest hc = H(rc) to the other users in its cycle. The initiator
and the next user have their timelock set to the cycle’s length, while the transaction value is
the cycle’s weight wc. Each user in the sequence reduces the timelock by 1, identifies the
next user in the cycle for HTLC creation based on vertex order, and sets up an HTLC with
the updated timelock.
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Algorithm 2 HTLC creation for cycles.

input : S set of directed cycles
for c ∈ S do

select starting user uc at random from users in c

timelock tc ←− len(c)
uc chooses random secret rc and creates hash hc = H(rc)
for ec = (u, v) ∈ c starting from uc do

u creates HTLC(u, v, wc, hc, tc)
decrement tc by 1

Algorithm 2 follows [10] and is only indicative. It can be replaced by any other protocol
that achieves atomic execution of multi-hop payments in PCNs, e.g., [49, 47, 46]. For
example, MAPPCN [46] can be leveraged to preserve user anonymity, while MAD-HTLC [47]
or He-HLTC [49] can be employed to ensure security even when the blockchain miners can
be bribed to enable fraud (so-called timelock bribing attacks [34]).

4 Limitations, Extension, and Future Work

Our work leaves open several interesting research avenues which we outline below.

4.1 Minimum Fees for Sellers in Aramis
The primary limitation of Porthos is that buyer prices rely on the graph structure, resulting
in seller’s fees being contingent on the number of possible rebalancing cycles in the graph,
e.g., if the graph has only one feasible cycle, sellers earn no fees.

A key question is whether it is feasible to guarantee a minimum fee per unit flow through
indifferent edges in the mechanism. For a seller, rebalancing is comparable to a typical
transaction in the PCN, wherein the seller forwards coins through their channels and earns
service fees. Thus, a seller’s earnings generally rely on their highly connected position in the
network and the amount of capital they have invested. The fee per unit flow (i.e, transfer
of one coin) is determined by the intermediary, i.e., the node that sends the coin to the
counterparty in their channel. As mentioned earlier, most intermediaries select the same fee
per unit flow for forwarding transactions. We thus inquire whether it is feasible to design a
novel VCG-style mechanism based on Mechanism Porthos, where the graph is modified
to guarantee a sufficiently large surplus. Note that the fee earned by sellers is essentially a
redistribution of the surplus, and a surplus that is large enough guarantees a minimum fee
for every seller.

4.2 Incentives
The binary classification of truthfulness is an oversimplification. Future research could aim
to quantify and lower bound the potential benefits of misrepresenting bids, such as the gains
achieved by underbidding a certain amount instead of truthfully reporting one’s valuation.

4.3 Variable Delay Costs
In our primary mechanism d’Artagnan, we assume a uniform time delay factor for all
players. However, this assumption may not be realistic since different players may experience
time delays differently, leading to distinct levels of utility loss. Our model can incorporate
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this variation by allowing for different delay factors (d) for each player. The delay factor
can also be construed as the opportunity cost of unused capital in depleted edges, i.e., the
potential gain from fees had the player rebalanced his channel. We conjecture that this
opportunity cost is quantifiable if buyers furnish their proposed fees for routing since these
fees are typically determined by evaluating this loss. Therefore, we can expand our model
and require all players, including both buyers and sellers, to submit their anticipated fees.
Nevertheless, incorporating this alteration into our model is not a straightforward task.
Buyers could potentially manipulate their combined bid by taking into account both the
maximum time delay and fees they are willing to incur, consequently violating incentive
compatibility.

4.4 Repeated Games
A pertinent inquiry stemming from the repeated utilization of rebalancing in PCNs is whether
the expected behavior of players would be altered if they were aware that the rebalancing
mechanism would occur frequently. Specifically, we ask how would the mechanism design be
impacted if we shift our game to a repeated setting. We hypothesize that if the rebalancing
game occurs with sufficient frequency, underbidding may be beneficial as the opportunity to
rebalance would be reduced but not entirely eliminated. Conversely, if the rebalancing game
is infrequent, players may miss their chance to rebalance. We thus anticipate that integrating
frequency-dependent utility losses may significantly alter the results of the rebalancing game.

4.5 Group Strategy-Proof Mechanisms
Both Porthos and d’Artagnan are strategy-proof but not group strategy-proof. While a
single user’s misreported bids cannot improve their utility, in certain cases, two users can
manipulate their bids to jointly increase their utilities. Consider for instance the parties
u, v of a depleted channel in Porthos. If the channel is depleted from u to v, then an
honest u would truthfully report a positive bid from v to u, thus prohibiting v from gaining
routing fees for the u, v channel. However, both u and v may gain by u misreporting a zero
bid for the channel. This misrepresentation converts the channel’s status from depleted to
indifferent, enabling the potential for v to gain routing fees while precluding the possibility
that u pays any fees. Given this example, an intriguing open problem is designing group
strategy-proof mechanisms specifically tailored to counter collusion between a channel’s joint
owners.

5 Additional Related Work

5.1 Blockchain Scalability & Payment Channel Networks
Improving the blockchain transaction throughput has garnered interest since the inception of
Bitcoin [35]. Proposed solutions include increasing the block size, sharding the blockchain,
or moving the workload off-chain leveraging so-called layer-2 protocols such as sidechains,
channels, and rollups (see [25, 24] for recent surveys). Among these solutions, payment
channel networks, such as the Bitcoin Lightning Network [38], have attracted substantial
attention because they enable instant, low-cost off-chain transactions.

A large body of research has emerged focusing on various aspects of PCNs, such as
efficient and privacy-preserving routing, e.g. [43, 39, 37, 31, 4, 45], and algorithmic analysis
of the PCN topology [6, 5]. In the intersection of PCNs and game theory, there are several
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works, mainly focusing on network topology leveraging network creation games [19, 7, 5],
and incentive-compatible outsourcing of channels’ dispute resolution [32, 9, 8, 30]. All these
works are orthogonal and complementary to ours as they ignore channel depletion.

Perhaps the most relevant work to ours is Merchant [48], employing fee functions as a
mechanism to avert channel depletion by guiding routing paths. By allowing intermediaries
to impose varying fees for distinct routes, users are incentivized to prefer specific routes over
others, ultimately mitigating channel depletion. This method presents a complementary
approach to our work, in which we propose an opt-in rebalancing protocol to address channel
depletion.

The problem of channel rebalancing has been studied in several recent works [26, 10, 1],
which we build upon and extend. Our work is the first to consider user incentives in the
context of rebalancing mechanisms for PCNs.

5.2 Game-theoretic Analysis of Blockchains

Numerous studies have investigated incentives in the context of the consensus layer of
blockchains. For instance, Pass and Shi introduced an innovative incentive-compatible
consensus protocol called FruitChains [36]. Additionally, several works focused on a rational
analysis of Bitcoin’s consensus: exploring when rational miners follow the protocol [13, 27],
devising attacks that showcase Bitcoin is not incentive-compatible, e.g., [21, 29, 41, 44],
investigating the impact of block rewards and mining pools, e.g., [16, 15, 20, 42]. On the
other hand, Babaioff et al. [12] explored the network layer of blockchains and proposed
an incentive-compatible scheme for information propagation within Bitcoin’s peer-to-peer
network. However, these works address different issues from ours, as they focus on the
consensus and network layers of blockchains, while our research investigates incentives on
layer-2 networks that build upon the other layers.

5.3 Mechanism Design on Networks

The rebalancing problem fits into the well-established research area of mechanism design
on networks, with an impact on computer science, economics, and operations research.
The most relevant examples to our problem include Stackelberg routing, selfish routing
in capacitated networks, and optimal oblivious routing, e.g., [17, 11, 40, 28]. Our work
differs from the existing literature in several ways. First, we focus on a novel problem
domain – rebalancing mechanisms for PCNs – which has not been previously studied from
a game-theoretic perspective. Second, we deal with a unique set of constraints due to the
nature of payment channels and PCNs, such as channel depletion and cyclic budget balance.
These constraints lead to novel challenges in the design of incentive-compatible mechanisms,
addressed in this work.

6 Conclusion

In this paper, we revisited the challenge of rebalancing in payment channel networks (PCNs)
from a mechanism design perspective, introducing a novel approach that takes into account
users’ incentives. By incorporating both buyers and sellers of channel liquidity in our proposed
rebalancing mechanism, we introduced the double-auction rebalancing problem Musketeer,
which aims to optimize the throughput in PCNs.
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Our work demonstrates that the unique characteristics of PCNs, particularly the cyclic
budget balance property, pose significant challenges in designing a mechanism that simul-
taneously satisfies all the desiderata. Our results, grounded in auction theory, revealed an
impossibility result, leading us to develop a variety of mechanisms that balance the various
desiderata. Notably, we introduced a novel mechanism that employs time delays to overcome
the impossibility result, successfully meeting all desired properties, albeit at the expense of
economic efficiency in terms of time delays and liquidity combined.
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