
CrudiTEE: A Stick-And-Carrot Approach to
Building Trustworthy Cryptocurrency Wallets with
TEEs
Lulu Zhou #

Yale University, New Haven, CT, USA

Zeyu Liu #

Yale University, New Haven, CT, USA

Fan Zhang #

Yale University, New Haven, CT, USA

Michael K. Reiter #

Duke University, New Haven, CT, USA

Abstract
Cryptocurrency introduces usability challenges by requiring users to manage signing keys. Popular
signing key management services (e.g., custodial wallets), however, either introduce a trusted party or
burden users with managing signing key shares, posing the same usability challenges. TEE (Trusted
Execution Environment) is a promising technology to avoid both, but practical implementations of
TEEs suffer from various side-channel attacks that have proven hard to eliminate.

This paper explores a new approach to side-channel mitigation through economic incentives for
TEE-based cryptocurrency wallet solutions. By taking the cost and profit of side-channel attacks
into consideration, we designed a Stick-and-Carrot-based cryptocurrency wallet, CrudiTEE1, that
leverages penalties (the stick) and rewards (the carrot) to disincentivize attackers from exfiltrating
signing keys in the first place. We model the attacker’s behavior using a Markov Decision Process
(MDP) to evaluate the effectiveness of the bounty and enable the service provider to adjust the
parameters of the bounty’s reward function accordingly.

2012 ACM Subject Classification Security and privacy → Authorization; Security and privacy →
Side-channel analysis and countermeasures

Keywords and phrases Cryptocurrency wallet, blockchain

Digital Object Identifier 10.4230/LIPIcs.AFT.2024.16

Related Version Full Version: https://arxiv.org/abs/2407.16473

Supplementary Material Software: https://github.com/luluzhou1/MDP_for_Bounty_Evaluation
archived at swh:1:dir:ff2054e363714e71e597d4d669d602df3f60f5dc

Funding This work was funded in part by NSF grant 2207214 and an Ethereum Academic Grant.

1 Introduction

As cryptocurrencies [8, 59] gain popularity, the daunting task of key management—the
process of keeping cryptographic keys secure from attacks and loss—has become an everyday
task for end users. With inexperienced users often struggling with lost or leaked keys, a
natural tendency is to outsource the task to specialized service providers. For example, 11%
of the entire cryptocurrency marketization is stored in custody by a single service provider
(Coinbase [61]). This is undesirable security-wise, as the secrecy of keys (thus the safety of
the funds) relies on the trustworthiness of a centralized party.

1 Crudite is a salad with carrots and (other) vegetable sticks.
© Lulu Zhou, Zeyu Liu, Fan Zhang, and Michael K. Reiter;
licensed under Creative Commons License CC-BY 4.0

6th Conference on Advances in Financial Technologies (AFT 2024).
Editors: Rainer Böhme and Lucianna Kiffer; Article No. 16; pp. 16:1–16:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lulu.zhou@yale.edu
https://orcid.org/0000-0001-9270-9524
mailto:zeyu.liu@yale.edu
https://orcid.org/0000-0001-7291-3106
mailto:f.zhang@yale.edu
https://orcid.org/0000-0002-8525-4514
mailto:michael.reiter@duke.edu
https://orcid.org/0000-0001-7007-8274
https://doi.org/10.4230/LIPIcs.AFT.2024.16
https://arxiv.org/abs/2407.16473
https://github.com/luluzhou1/MDP_for_Bounty_Evaluation
https://archive.softwareheritage.org/swh:1:dir:ff2054e363714e71e597d4d669d602df3f60f5dc;origin=https://github.com/luluzhou1/MDP_for_Bounty_Evaluation;visit=swh:1:snp:7ebb64196b4273274133727dcd843e24c755e965;anchor=swh:1:rev:98406af23e12b6a78bf93b40a90be0fe2bc514fd
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

To provide stronger security guarantees (and to reduce liability), a cryptocurrency wallet
service provider can generate users’ signing keys in Trusted Execution Environments (TEEs,
such as Intel SGX [3, 37], AMD SEV [2], Nvidia H100 [28]) and serve signing requests in
TEE without ever seeing the signing keys in plaintext. However, the naive adoption of
TEEs does not provide a meaningful secrecy guarantee to users, because the service provider
may be able to exfiltrate signing keys through side-channel attacks [43]. While side-channel
mitigation has been extensively studied in the literature (e.g., see [52] for a survey), side
channels are notoriously hard to eliminate, due to the complexity of modern processor design
(e.g., TEEs often share physical resources with untrusted processes, such as caches).

Our work is motivated by the observation that the operator of TEEs is the primary actor
capable of mounting side-channel attacks, since most attacks [57, 43, 34, 49, 35, 42] require
root access to the host. For wallet key management services, the TEE operator is the service
provider. This observation gives us additional leverage to prevent side-channel attacks, as the
service provider can be held responsible (using techniques to be presented later) if a wallet
key is leaked or accessed without user authorization. Using a proper penalty mechanism,
we can eliminate the service provider’s gains from a successful side-channel attack, thus
removing the incentive to attack in the first place.

With the TEE operator striving to avoid key leakage, the possibility of side-channel
attacks by non-local, unprivileged attackers is significantly reduced (e.g., the service provider
is motivated to employ heightened security measures). To further discourage such attacks,
our idea is to reward the attackers for partial success. For example, if a signing key is
distributed cross N TEEs using secret sharing, we give the attacker a substantial reward if
he successfully exfiltrated any share. With a proper reward function, this early reward can
serve as a strong incentive for the attacker to stop early, giving the system administrator
time to react to partial compromise before a full key is exfiltrated.

1.1 CrudiTEE: The Cryptocurrency Wallet with Stick and Carrot

Based on the above two principles, we propose CrudiTEE, a TEE-based cryptocurrency
wallet that can defend against TEE side channels by privileged and unprivileged attackers,
using penalties (stick) and rewards (carrot), respectively. Furthermore, CrudiTEE strives to
achieve user-friendliness (i.e., users do not need to store keys locally). CrudiTEE first requires
that the signing keys be generated inside TEE and never exported in plaintext. Assuming
correct implementation, this implies that signing key leakage is impossible except for through
side-channel attacks.

We classify potential actors capable of mounting side channel attacks into insider attackers
and outsider attackers. The insiders are privileged attackers, such as service providers, who
have full control over the TEE including physical access. Insiders have powerful attacking
capabilities required by most side-channel attacks (such as root privilege) like the ones needed
in [31, 20, 47]. In contrast, the outsiders are all the attackers who can exfiltrate the secrets in
the TEEs only through less-privileged means like remote time-based attacks [32, 12, 1]. We
refer readers to Section 2.2 for more examples. As introduced above, CrudiTEE consists of
the stick (penalties), to discourage insider attackers, and the carrot (rewards), to encourage
outsider attackers to stop early.

Note that to perform such punishment or distribute the bounty, we need an automated
but also trustworthy and publicly accessible mechanism. Smart contracts [59](autonomous
programs executed on blockchains) are the perfect tool for this purpose. Thus, below, when
discussing the stick and the carrot, we use the smart contract as an important building block.

L. Zhou, Z. Liu, F. Zhang, and M. K. Reiter 16:3

1.1.1 The stick

Due to the power of the service provider, preventing it from mounting side channels via a
technical way seems infeasible. Instead, CrudiTEE requires the service provider to put down
collateral, which will be confiscated if signing keys safeguarded by the TEEs are used for
unauthorized signatures or if legit service requests from users are denied.

To realize the stick of CrudiTEE, the key is to enable a user to generate publicly verifiable
proof if her TEE-generated keys are illegally accessed. First, as mentioned, raw keys stay in
the TEE and are never exported outside. Second, each key corresponds to a wallet owner and
can only be used by the owner through well-defined APIs (e.g., an API could allow the owner
to sign messages with the key using a carefully implemented signature algorithm). Third, to
access a key, a signed authorization from its owner must be present and checked by TEEs,
thus making the authorization process accountable (i.e., if the user disputes a signature, the
service provider can present proof that the signature was authorized by the user). Users can
verify TEE attestations to ensure the prerequisites are met before signing up for the service.

In order not to burden the user with signing key management while making the autho-
rization process accountable, we use the OAuth protocol (Section 3.3). The token signed by
the OAuth provider is used as proof of authorization.

The service provider sets up a smart contract to implement the insurance (denoted SCins)
with the following logic and makes an initial deposit. If a user discovers any unauthorized
signature, she can submit a request to SCins. The service provider must prove that the user
had authorized such key use within a specific period. Failing to provide such proof results in
the insurance smart contract automatically compensating the user.

1.1.2 The carrot

Without the help of any insiders, outside attacks become unlikely, but still not impossible.
To limit potential exposure to external attacks, we employ the threshold signing protocol
such as [29], where the signing key is stored as key shares across multiple independent TEEs
(e.g., hosted in different clouds) and refresh secret shares periodically. This way, even if an
outside attacker can exfiltrate a few shares, he needs all shares to exfiltrate the entire key.
However, the security of such proactive secret sharing method as a defense is “black or white” –
unless the attacker can break a sufficient number of TEEs and cause a catastrophic breach,
partial breaches cannot be detected and therefore cannot inform the service provider to take
proper action to prevent those catastrophic breaches. By exploiting economic incentives, we
can elicit such information from the attacker. Specifically, CrudiTEE enhances a proactive
secret-sharing scheme with an alerting mechanism so that when partial breaches happen
(e.g., TEEs deployed in one cloud are vulnerable, but not others), the attacker is encouraged
to alert the service provider in exchange for a bounty. This allows the service provider to
take proper action before full breaches happen.

Designing a bounty reward function that induces the desired behavior of the attackers
is the main technical challenge. Specifically, we aim to formulate a reward function that
motivates attackers to promptly alert the service provider without generating any illegal
signature or selling the acquired signing key shares, while minimizing the defender’s cost
(i.e., the service provider’s cost). We employ a 2-step methodology in the reward function
design: we start with the attacker with a fixed known cost first and then deal with the one
whose attacking process is non-deterministic and whose cost cannot be accurately estimated.

AFT 2024

16:4 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

Step 1. We provide the following toy example to illustrate the challenge in reward function
design under a deterministic setting. We start with a key (worth $3 in total) stored as three
secret shares, each of which is worth $1 (assuming a share can be sold on the market for
$1). To steal one share, the attacker’s cost is $0.8. Furthermore, assume that $0.01 is the
smallest unit of money for simplicity. Without a bounty, the attacker will keep attacking
until he gets 3 shares and sells them on the market for $3, making a profit of $0.6.

To protect against such an attacker, there are two naive but natural solutions. The first
solution is to simply have the reward function be a constant function of $3.01 (i.e., the
attacker obtains $3.01 for any amount of shares he steals). In this case, an attacker always
submits the share as soon as he obtains the first share, but then the defender costs more than
the key value itself. The second solution is setting the function to be $1.01 per share (i.e., a
function linear in the number of shares). However, in this case, an attacker would instead
try to obtain all three shares and claim a total reward of $3.03, which costs even more.

The optimal solution is to set the reward function to be a constant function of $1.41 (i.e.,
the attacker is awarded with $1.41 for submitting any amount of shares): the attacker will
stop attacking and turn in the key shares whenever he obtains 1 key share, making a profit
of $0.61. This reward function not only encourages the attacker to submit as soon as getting
one share but also minimizes the defender’s cost. Note that it is indeed the least the service
provider can pay, as if the reward is less than $1.41, the attacker will sell the key for a higher
profit instead (assuming w.l.o.g. that the attacker sells the secret when the profit from the
bounty is tied with selling the key).

Step 2. The reward function in the toy example, however, is based on a simplified assumption
of deterministic attack costs and requires the defender to accurately know the attacker’s cost.
Our design instead aims to address real-world situations where the attacker’s attack process
is non-deterministic, and the cost of attacking cannot be accurately known in advance.

To design the reward function in this setting, we first turn the desired properties of the
reward function into numerical metrics. Then we capture the non-deterministic attacking
process as an “optimal stopping” game and use Markov Decision Process (MDP) to analyze
the attacker’s optimal strategy. We propose a reward function for non-deterministic attackers
and optimize it using the metrics as an objective function, based on the defender’s budget
and estimation of the attacker’s cost and success rate. We further show that the reward
function not only has good performance for the attacker with an accurately estimated cost
but also for attackers with different costs. We provide the defender with the performance
of the optimized reward function for attackers with a wide range of costs and success rates.
The defender can use such a strategy to assess how the reward function she obtains performs
for a range of attackers. If she is not satisfied with the result, she could raise their budget
and generate another function.

To realize the bounty, the service provider creates a smart contract SCbounty that accepts
proofs of knowledge (PoK) of TEE-managed key shares and remits rewards accordingly. Valid
PoK submissions to SCbounty raise a flag, pausing operations until the keys are rotated and
the flag is reset. To ensure that the attacker did not use the breached key for unauthorized
signings, users are requested to check for unauthorized signatures during the shutdown period.
If any are found, the attacker’s reward is forfeited.

Contribution

We summarize our contributions as follows:

L. Zhou, Z. Liu, F. Zhang, and M. K. Reiter 16:5

1. We introduce a new approach to building a cryptocurrency wallet: CrudiTEE that leverages
economic incentives to defend against side-channel attacks from insiders and outsiders.

2. CrudiTEE involves a novel automatic insurance system (Section 5), allowing users to
receive compensation if their wallet signing key is used for signing transactions without
their authorization.

3. We develop a reward function for the bounty in CrudiTEE (Section 6) that encourages
attackers to submit key shares to the bounty immediately while minimizing the defender’s
cost. We use the Markov Decision Process (MDP) to model the non-deterministic nature
of side-channel attacks and optimize the reward function against numerical metrics. We
evaluate and show the optimized reward function is effective not only for attackers with
precisely estimated costs but also for attackers with variable costs. The service provider
may adjust her budget to cover a wider range of attackers the reward function can
effectively defend against based on the evaluation.

2 Related Work

2.1 Cyber Bounty
Setting up bug bounties is a popular way to defend against hackers [36]. However, a fair
exchange of bugs and money is difficult without trust. Breidenbach et al. [10] proposed that
smart contracts be deployed to guarantee that the attacker gets paid once a valid bug is
submitted. Their game-theoretic analysis showed that the attacker is incentivized to submit
the bug as soon as possible because of competition from other honest hackers. However, this
is not always the case for side-channel attacks: a malicious attacker may be the only one to
discover a zero-day2 side channel. That is why we take the submission time into consideration
in our reward function, i.e., to incentivize attackers to submit the leaked signing key (share)
immediately upon acquiring it.

2.2 Side Channels
Side-channel attacks against cryptographic systems usually take one of three forms. Time-
driven side-channel attacks expose key information by monitoring total execution times of
cryptographic operations with a fixed key, which can reflect interactions among the value
of the key, the structure of the cryptographic implementation, and system-level effects
such as cache evictions (e.g., [32, 12, 1, 58]). Trace-driven side-channel attacks observe a
time-series signal reflecting a device’s cryptographic operation throughout its execution, e.g.,
by monitoring the device’s power draw during the operation (e.g., [31]) or its electromagnetic
emanations (e.g., [20, 47]). Finally, in an access-driven side-channel attack, the attacker
executes a program on the same computer where the cryptographic operation is taking place,
using this vantage point to monitor the operation’s use of microarchitectural components on
the platform (e.g., [45, 27, 26]). Time-driven and trace-driven attacks are largely agnostic to
the encapsulation of the cryptographic operation within a TEE. In contrast, much effort has
been expended to adapt access-driven attacks to attack a cryptographic operation executed
within TEE from outside, with considerable success (e.g., [57, 43, 34]).

Using the terminology of Section 1, we consider outsiders to be less privileged and thus
limited to time-driven and some access-driven attacks, that can be performed remotely (i.e.,
without any physical access to the TEE). Any attacks available to an outsider, however, must

2 A zero-day is a vulnerability in software or hardware that is unknown to its vendor.

AFT 2024

16:6 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

incur costs to conduct over time, e.g., to achieve and maintain co-residency on the same
physical computer as the victim computation [56] (possibly despite defenses to make this
difficult, e.g., [41]) and to perform attack computations. In contrast, insiders are permitted
to conduct any time-driven, trace-driven, or access-driven attacks, and so are considerably
more powerful. In particular, we design CrudiTEE in anticipation of insiders capable of
extracting keys from TEEs easily. Outsiders, on the other hand, are assumed to require more
time and costs to mount their attacks.

2.3 TEE Side-channel Defense
A recent concurrent and independent work, Sting [7], proposes to use SC as a bug bounty,
which is set up to encourage anyone who has access to a leaked secret to submit proof. The
proof of leakage is acquired in this way: first, a prover-owned TEE generates a secret, without
disclosing it to the prover. Second, the secret is directly sent to the secret management
service provider (without exposing the secret to the prover). Finally, the prover acquires
the secret using a side-channel attack, sends it back to the prover-owned TEE, and gets
proof of leakage from the TEE. Sting focuses more on the proof generation rather than the
bounty design, however. This is different from our bounty as we encourage attackers (without
physical access to the machine) to stop recovering the secret and submit a bounty claim
without recovering the whole secret via economic incentives.

Numerous techniques other than bug bounty could be applied to side-channel defense,
including ORAM [16], code hardening [11], data location randomization [9]. However,
defenses introduce performance overheads and usually defend against only specific types of
attacks. Another problem is that a service provider might not have enough incentive to
apply these defensive technologies expeditiously. Therefore, motivating the service providers
to keep their TEEs safe from attack is crucial to the real-world use of TEEs.

2.4 Existing Wallet Solutions
Some companies provide the service like a centralized bank for cryptocurrency [15], holding
users’ funds in company-owned accounts. Such centralized service deviates from the decen-
tralized nature of cryptocurrency and increases risk to user funds. On the other hand, there
are products to enable users to store their signing keys in a protected area of an offline device,
named hardware wallet [51]. This approach raises costs and complicates transactions, and
users usually have to trust the software provided by the hardware manufacturer for signing
transactions. A keyless wallet was constructed using witness encryption [63]. To access the
money, the user only needs to provide a short one-time password of 6 alphanumeric characters
generated from an offline device. Since Witness Encryption is currently impractical, however,
the scheme is largely theoretical.

3 Background and Preliminaries

3.1 Trusted Execution Environments
TEEs (Trusted Execution Environments) are secure and isolated execution environments
that provide confidentiality and integrity guarantees and the ability for a party to remotely
verify the status of a TEE through remote attestation. Prominent examples of TEEs include
Intel SGX [3, 37], AMD SEV [2], and Nvidia H100 [28]. A major practical limitation of
TEEs is side channel attacks (Section 2.2) that could break the confidentiality guarantee.

L. Zhou, Z. Liu, F. Zhang, and M. K. Reiter 16:7

3.2 Smart Contracts
To create elaborate economic incentive structures, CrudiTEE uses smart contracts, autonomous
programs running on top of blockchains, to remit payments under specific events. We follow
the standard assumption that smart contracts are correct (i.e., the security assumptions
required by the blockchain protocol are met) and available (i.e., all parties in our protocols
can access the smart contract and request submitted to the smart contract is executed within
a time limit).

3.3 OAuth
CrudiTEE uses the OpenID Connect feature in OAuth (Open Authorization) 2.0 [25, 46]
to enable users to make signing requests without possessing a signing key. OpenID is
an authentication protocol that allows users to use an existing account from an OpenID
provider (denoted as “OAuth provider”), such as Google, to authenticate themselves on other
applications. Furthermore, during authentication, a user can embed a customized message in
the “nonce” field of the signed ID token [25] (looking ahead, this allows the user to put a
description of her request in this field).

3.4 Cryptographic Primitives
We provide a brief description of the threshold signing scheme.

Threshold signature allows N > 1 parties to share a secret signing key, such that each
party obtains a share of the signing key. Only when m parties owning a sharing, 1 ≤ m < N ,
together can sign a message. Knowledge of < m shares leaks no information about the secret
signing key. Furthermore, when the secret shares are updated to N new shares, even m1 < m

old shares and m2 < m new shares where m1 + m2 ≥ m together leak no information about
the secret. We use it to allow multiple TEEs to share the signing key, such that only if ≥ m

shares are leaked, the secret is leaked.

3.5 Markov Decision Process
A Markov decision process (MDP) is a mathematical model that captures decision-making
under uncertain situations. A Markov state is a state St at time t > 0 satisfying Pr[St|St−1] =
Pr[St|St−1, . . . , S1] (i.e., the previous state captures the entire history states). The MDP
consists of a sequence of Markov states and an associated state transition matrix. This
matrix represents the probabilities of transitioning from one state to another based on the
player’s actions. The player’s optimal strategy in MDP can be computed using tools like [13].

4 Threat Model and Roadmap

4.1 Threat Model
The purpose of the techniques in CrudiTEE is to mitigate the side-channel attacks that break
the privacy of the TEEs but not the integrity. We assume TEE integrity (i.e. the data and
code in the TEE cannot be modified by any attacker) to hold and remote attestation to be
secure, following a common assumption (c.f., [53, 14]), as the attestation key is only used
through a limited interface, unlike application-generated secrets. The side-channel attacks
that are strong enough to compromise the attestation key [55] are out of scope for this work,
as such incidents have historically been rare.

AFT 2024

16:8 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

We assume that the integrity and liveness of smart contracts are enforced by the blockchain.
Furthermore, we assume the OAuth providers are trusted, but note that any user can choose
her own set of OAuth providers to trust (i.e., the user can choose a subset of a predefined
set of OAuth providers). Finally, we assume that both the service provider and the outsider
attacker are rational entities aiming to maximize their profits. We do not consider non-
financial incentives, and the agent who attacks the system as a mere malicious intruder is
out of our scope.

4.2 Wallet Design Overview
In our wallet service, each client registered with the wallet service provider has a wallet
whose signing key is stored in the service provider’s TEE. Our goal is to defend side-channels
against such signing keys.

We categorize side-channel attacks into two types: insider attacks, which require physical
access and/or root privileges, and outsider attacks which can be executed remotely without
such privileges (Section 2.2). In our wallet design, the service provider, who controls the
TEEs, is classified as an insider, whereas all other attackers, including users, are categorized
as outsiders. We defend the insiders using the insurance (the stick) and the outsiders using
the bounty (the carrot).

The side-channel mitigation in CrudiTEE thus consists of three main components:
1. The accountable signing key management service (Section 5.1) enables the users to register

for the service and authorize the service provider to sign a transaction when needed.
2. The insurance (Section 5.2) ensures the service provider provides the desired service, and

otherwise is punished.
3. The bounty (Section 6) aims to incentivize the outsider attacker to submit the key shares

acquired through the remote side channel to the bounty (smart contract) rather than
using them to make unauthorized signatures or selling them.

Both the insurance and the bounty are initiated using smart contracts (SCins and SCbounty).
In addition, to make sure that the service provider answers all the service requests (instead
of ignoring those requests), the smart contract SCavail is also deployed. During setup, the
service provider needs to build the TEE program and publish the attestation. Then, the
service provider deploys the aforementioned smart contracts on the blockchain.

To use the service, the user first chooses the OAuth provider(s) she trusts and creates a
new account with her OAuth token (signed by that OAuth provider(s)). The service provider
will execute the threshold key-generation protocol among the TEEs, register the OAuth
account and key mapping, and then provide the public key to the user. It is essential that
the signing key is generated within the TEEs and remains within the TEEs (i.e. cannot
be exported in plaintext format). This is because if the users learn the key, it becomes
ambiguous whether the responsibility for any unauthorized signature lies with the users or
the service provider. After the generation of the signing key, a smart contract wallet SCwallet
will be deployed for the user. SCbounty will also be updated so that the new key is also
protected by the bounty. The proof-of-publication3 scheme is employed to ensure that the
smart contract update is done properly.

The service provider replies to the user’s transaction signing requests with authentication
via OAuth providers (Figure 1). The signing is conducted using the threshold signature
scheme, with the signing key secret-shared among several TEEs. When the service provider

3 Proof of publication is a way for the TEE to verify that a state change is updated on the blockchain.

L. Zhou, Z. Liu, F. Zhang, and M. K. Reiter 16:9

is not responding to a signing request, the user can send the request through SCavail and
force the service provider to respond. If the user realizes that an unauthorized signature
exists, she can submit a claim to SCins and get compensated (Figure 2).

Finally, if an outsider attacker steals the signing key (shares) from a remote side channel,
he can submit it to SCbounty and get rewarded based on the submission time and number
of shares he submits (Figure 2). Any valid SCbounty or SCins submission will trigger a flag
to signify that some of the TEEs have been breached. CrudiTEE requires that all wallet
transactions cease until the service provider rotates all the signing keys and clears the flag. If
the full key is leaked, the TEE will generate a fresh key pair, update the OAuth account and
wallet key mapping, and transfer the money in the smart contract wallet to the new wallet
while the red flag is on. Transactions during the red flag period can only be triggered by a
message signed by the TEE attestation key. The reward for the attacker will be held for a
specified period, during which the user of the affected keys will be asked to check whether
there exists any unauthorized transactions and the reward will not be given to the attacker
if such transactions are found.

4.3 Reward Function Design Roadmap

The attacker’s reward is determined by a reward function designed to incentivize them to
claim the bounty immediately upon obtaining a single key share from the TEEs, while
minimizing the defender’s cost (Section 6.3). Since the reward function design is particularly
challenging among other components of the wallet, we discuss our roadmap here. We employ
a 2-step methodology here: First, we deal with attackers with known deterministic costs (a
simplified case). Then, we employ the ideas from this simplified case together with other more
advanced mechanisms to develop the reward function for the attacker with non-deterministic
and unknown costs.

In more detail, we begin with a case study assuming the attacker operates under a
deterministic cost function known by the defender. However, in the real world, the side-
channel attacking process is non-deterministic, and the cost of the attack is hard to estimate
accurately. Building on insights gained from the case study, we propose a reward function
for attackers with non-deterministic behavior. We model the non-deterministic attacking
process as the “optimal stopping” game [54, 50, 24] and employ Markov Decision Processes
to calculate the best strategies for the attackers. By translating the desired properties of
this reward function into quantitative metrics used as the objective function, we optimize
the parameters in the reward function (based on the defender’s budget and her estimation of
the capability of the attacker). Finally, we evaluate the effectiveness of our proposed reward
function when the attacker’s ability (parameterized by his cost and success rate) is different
from the estimations. Based on the evaluation of the attacker, the defender can further
raise her budget and recompute the function to get a more satisfying range of attackers the
function can defend against.

5 The Stick

In this section, we first provide more details about the wallet workflow (Section 5.1), which
outlines the responsibilities of the service provider. Then, we specify the “stick” part which
holds the service provider responsible (Section 5.2).

AFT 2024

16:10 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

TEEs holding signing
keys ① Authorize & obtain OAuth token

Tk=(alice@gmail.com, request, σgoogle)
② Tk

③ (PKAlice, σTEE)
Smart

Contract
(insurance)

④ Store information about SKAlice in the bounty,
create account with PKAlice in wallet and insurance.

Alice

OAuth Providers

Smart
Contract
(bounty)

Smart
Contract
(wallet)

(a) Registration process.

① Authorize & obtain OAuth token
Tk=(alice@gmail.com, tx, σgoogle)

② Tk

③ (tx)σAlice

④ (tx)σAlice
TEEs holding
signing keys

Alice

OAuth Providers

Smart
Contract
(wallet)

(b) Transaction signing process.

Figure 1 Registration and Transaction Signing Workflow.

5.1 Authorization and Signing Transactions
We start by elaborating on how we make the authorization of the transactions accountable
and describe how a user registers for an account and requests signed transactions.

Accountable authorization. As mentioned in the Section 1.1.1, an authorization process is
accountable if it leaves a signed evidence that can be used to prove the validity of the signing
key usage later. Meanwhile, it should not burden the user with additional key management.

Our solution leverages a feature in OAuth 2.0 called OpenID Connect (OIDC) [46, 25].
Specifically, OIDC-enabled OAuth providers issue signed identity tokens (called ID_token [25])
that include a user identifier (such as email addresses) and a nonce set by users. Many
mainstream OAuth providers enable the user application to specify the nonce in the ID token
(e.g., Google [25], Microsoft[39], etc.).

Every time the signing key is used, we require the user to provide an ID token signed by
the OAuth provider(s), which is uniquely linked to that specific signing request by including
the request hash in the nonce field. TEE verifies the token of the corresponding OAuth
provider(s)’ keys accordingly. The public key of the OAuth providers is hardcoded in TEE
and verified by the user through attestation. This method not only provides a log-in process
that most users are familiar with, but also delegates authorization to a third party (or a set
of third parties) that they trust, providing signed OAuth token(s) as proof of authorization.

Registration. As shown in Figure 1 (a), when registering for a new account, the user runs a
protocol to determine the future authentication process with the service provider. Specifically,
the user first chooses a set of OAuth provider(s) she trusts. Next, she puts the hash of the
account registration request (e.g. the hash of “CrudiTEE account registration”) in the “nonce”
field of the ID token, authenticates it with the OAuth provider, and asks the OAuth provider
to sign it. Then, the user sends the account registration request to the service provider along
with the token(s). TEE verifies the token(s) and generates a fresh key pair for signing. The
TEE creates a TEE-signed receipt with the newly generated verification key (to verify the
signed transactions for this user’s wallet) and the OAuth ID(s) associated with it. Lastly, a
smart contract wallet is created for the user.

Transaction signing request. As shown in Figure 1 (b), when the user wants to sign a
transaction, she generates a signing request. Then, she acquires a signed token from the
OAuth provider(s) with the hash of the transaction included in the token(s). Once receiving
the signing request and token(s), the service provider should input it into the TEEs. The

L. Zhou, Z. Liu, F. Zhang, and M. K. Reiter 16:11

TEE will check the validity of the request by verifying the token(s) and respond accordingly
(we discuss how to enforce the TEEs to respond in Section 5.2.1). If the request is valid,
the TEE will reply with the signature of the transaction, generated with the signing key
associated with the user’s OAuth ID(s). If not, the TEE will reply with a message saying
that the request is invalid, signed with its attestation key. We require TEEs to store the
(valid) tokens and requests in case of any future insurance claim (Section 5.2.2). The signed
transaction will be submitted by the user to the wallet smart contract SCwallet. The wallet
smart contract will check the signature and execute the transaction.

Threshold signing. CrudiTEE use a threshold signature scheme (e.g., [22]) for signing.
Specifically, the key-management service provider secret-shares each key into N secret shares
using a (m, N)-threshold-signature scheme (where m ≤ N), stores them in independent
TEEs, and rotates them every T units of time. This approach not only serves to complicate
the execution of side-channel attacks but also establishes the foundation for the bounty
scheme described in Section 6.

5.2 The stick: hold service provider responsible
Based on the accountable signing process described in the previous subsection, the “stick”
aims to establish mechanisms to punish the service provider when it misbehaves. The goal is
that any rational service provider would not choose to misbehave (e.g., steal the secret and
produce an unauthorized signature).

5.2.1 Ensure Availability of TEE
We start by discussing how to ensure that service providers process requests using TEE (with
the expected inputs), guaranteeing TEE’s availability 4. The service provider sets up SCavail
and makes the initial deposit. If the service provider refuses to process a signing request
directly submitted to the service provider, the user submits the request to SCavail. The service
provider monitors the SC, processes any request from the SC, and forwards the request to the
TEE. The TEE then generates a reply, which is either the requested signature or indicates
that the request is invalid. The reply, along with the user’s request, must be signed by the
TEE’s attestation key. After receiving the reply, SCavail checks whether the reply is signed
by the TEE’s attestation key and the request is included in the signed message.5 If it is,
SCavail records the reply. If the service provider does not submit a valid reply within a time
limit, its deposit gets burnt (destroyed). 6

5.2.2 Insurance for unauthorized transactions
In this part, we develop a mechanism that enables users to report unauthorized transactions.
As shown in Figure 2 (a), the user submits the signature to request a message, signed by
the TEE’s attestation key, stating that the signature is authorized by the user. When the

4 The idea of using incentives to make a service available is not new, though. A similar method is used in
blockchain Layer2 to prevent transaction censorship [5].

5 Attestation key is hardcoded to the smart contract.
6 Note that one may consider a DoS-attack: initiating many small transactions using SCavail. To avoid

this, the service provider can set a corresponding transaction fee to use SCavail paid by the user. If the
user, however, needs to use such a service, the user may consider the service provider as malicious, thus
withdrawing all the money and stop using the service. Thus, a rational service provider would avoid
letting the user make transactions via SCavail.

AFT 2024

16:12 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

Alice

OAuth Providers

① Authorize & obtain OAuth token
Tk=(alice@gmail.com, (request, σAlice),
“invalid”, compensation address, σgoogle)

④ Send (“Alice authorized”, request, σTEE) on time (or ⑤ happens)

② (Tk, request) ③ Start a
timer for
TEE tox
respond.

⑤ $$$

TEEs holding
signing keys

Smart
Contract

(insurance)

(a) Insurance Claim through SCins.

Attacker

TEEs holding
signing keys

② claim
bounty

① steal
secret shares

⑤ $$$

④ Send (“exists unauthorized request for these key shares”, σTEE)
on time (or ⑤ happens)

③ start a
timer for
TEE to
respond.

Smart
Contract
(bounty)

(b) Bounty claim through the SCbounty.

Figure 2 Insurance and bounty workflow.

service provider is unable to provide such a message, the user is automatically compensated.
Since the user initiates the insurance claim, they are responsible for monitoring transactions
and submitting complaints for unauthorized transactions, similar to most systems based on
staking and slashing [33].

We instantiate the insurance using a smart contract (SCins). This smart contract specifies
the necessary ground truth requirements, such as the attestation key of the TEEs, and the
conditions under which users are eligible for compensation. A predefined quantity of deposits
is deposited in it, serving as potential compensation for the user.

An insurance claim is initiated by the submission of an unauthorized transaction to
SCins together with the proof of ownership of the key. The proof of ownership is a message
stating the ownership of the key signed by the TEE, which could be requested using the
user’s OAuth token. SCins checks whether the claim for the transaction has not yet been
made before. If yes, the claim will be rejected. The service provider monitors SCins and
sends the request to the TEE once it is published on the blockchain. The TEE looks for
the authentication token(s) associated with this request (recall that the valid requests are
stored). If no valid token(s) in question are found, the TEE will sign a message stating
that the signature was unauthorized with its attestation key. Otherwise, a message stating
that the signature was authorized will be signed. The service provider submits the reply
to SCins. SCins checks whether the message signed by the TEE attestation key states that
the signature was authorized. If not, SCins compensates the user (for some predetermined
value that depends on the application) and records this claim (e.g., on the chain) for future
reference. If the service provider fails to submit the requisite proof within the specified
timeframe, the user automatically gets compensated from the smart contract.

Security analysis. We briefly analyze how the initial goal was achieved with the design of
the “stick”. For any attack, the service provider can earn at most the total value of all the
accounts. Therefore, as long as the collateral required to be put down is larger than this
total amount7, a service provider has no incentive to misbehave, as each misbehavior costs
more than what it gains.

7 We believe that a 100% deposit is reasonable because the cost to the service provider is the potential
interest they could have earned on the deposit, not the deposit itself.

L. Zhou, Z. Liu, F. Zhang, and M. K. Reiter 16:13

6 The Carrot

In this section, we describe how we design the bounty (the carrot in CrudiTEE) to defend
against the outsider attacker. The goal is to encourage the outsider attacker to report the
wallet signing key breach to the service provider without abusing the signing key.

Throughout this section, we refer to the service provider as the defender, using these two
terms interchangeably.

6.1 Desired properties of the Bounty
Distributing signing key shares across multiple TEEs with a threshold signature key generation
procedure can lower the chance of signing key breaches caused by outsiders as used in [29].
However, it is not fully resolved. In this section, we further mitigate the risk of unauthorized
signatures resulting from side-channel attacks by external attackers with a bounty. The
bounty enables the service provider to take appropriate actions before any catastrophic
security breaches occur.

The two technical difficulties in the design of the bounty are: (1) how can the attacker
and the service provider perform an atomic exchange of the key share and the reward; and
(2) how to give the attacker just enough incentive to claim the bounty, while saving the
defender’s cost. In detail, a good bounty should achieve the following goals:
1. An attacker gets the reward from the service provider if and only if he submits valid

proof that convinces the service provider that he has obtained the key share.
2. The construction itself does not leak any knowledge about the key share other than what

has already been obtained by the attacker.
3. An attacker prefers submitting the key share(s) to bounty over selling them in the market.
4. An attacker submits the key share as soon as he gets the first key share, instead of

continuing the attack.
5. The defender’s cost is minimized.

We suggest using smart contract bounty (Section 6.2) to satisfy the goal 1-2. Goals 3-5
are achieved by carefully designing a reward function for submitting key shares for a bounty
claim.

6.2 The Smart Contract Bounty
To realize the atomic exchange of the key share and the reward, we initiate the bounty using
a smart contract SCbounty.

As a defense against the outsider attacker, the signing keys are rotated every T units
of time. Following each key shares rotation, each TEE computes the hash of all the shares
they hold and outputs the hash values to the service provider. The service provider then
publishes them in the SCbounty. The problem arises when the service provider publishes the
hash values that do not match the ones generated by the TEEs, making the bounty unable
to be claimed. To ensure that the hashes of the key shares are successfully published on the
blockchain, we use the proof of publication scheme [14]. In other words, after each rotation
or restart, the TEE will verify that the hash of the key shares they are using is the same as
the latest version published on the blockchain (via proof of publication). Only then will it
use the current key shares to sign the user’s requests.

To claim the bounty, the attacker submits the share(s) he finds as proof of knowledge.
To prevent front-running, proofs are submitted following a commit-and-reveal scheme [62].
We model this hash function as a random oracle so that it does not leak any information
about the key shares themselves.

AFT 2024

16:14 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

Upon receiving the key share, the smart contract SCbounty checks whether the hash of
the share is included in the smart contract. If it is, SCbounty puts the reward on hold for
a designated period and immediately invalidates all the current secret shares (such that
the attacker cannot sell the shares or produce unauthorized signatures after submitting to
the bounty). At the same time, the service provider asks the user of the affected accounts
to submit insurance in case there exists an unauthorized signature. The attacker gets the
reward if there is no insurance claim for the signing key whose shares they are submitting.
The amount of the reward is determined by the reward function specified in Section 6.3.

6.3 Reward Function Design
In this subsection, we apply a two-step methodology to the design of the reward function.
First, we present a case study focused on the reward function for a deterministic attacker
(Section 6.3.2). Then, we broaden the scope to more general scenarios involving non-
deterministic attacks (Section 6.3.4 to Section 6.3.7), using observations and insights gained
from the simpler case.

6.3.1 Notation and Definition
In this section, we address two types of attackers: the deterministic attacker and the non-
deterministic attacker. The deterministic attacker has a fixed deterministic cost function
C(k), which is analyzed in Section 6.3.2. The non-deterministic attacker has a fixed cost ca

of attacking one TEE at one step with a certain probability ps of obtaining one share of the
key from the TEE at that step. We deal with them in Section 6.3.4 to Section 6.3.7.

In the smart contract bounty, the reward given to the attacker is determined by a reward
function R(k, t), where k is the number of shares that the proof is trying to prove against
(i.e., the number of shares obtained by the attacker), and t is the submission time (which is
the blockchain timestamp of the inclusion of the bounty-claiming transaction). Essentially,
at time t, the attacker provides evidence of having acquired k shares. Since the signing key
is rotated every T units of time and the signing key is secret-shared into N shares, we have
t ∈ [0, T] and k ∈ [0, N].

Recall that we use a (m, N) signature scheme. The service provider has N secrets shares,
with ≥ m of them together having value v for some m ≤ N , and k < m of them have value
v · k/m. 8 Since m shares are enough to recover the key, the value of m or more shares is the
wallet value (i.e. V (m) = V (m + 1) = · · · = V (N) = v).

6.3.2 Case study for deterministic attacker
We first provide a case study with respect to a simpler attacker: he has a deterministic cost
function C(k), which is non-decreasing in k, the number of acquired shares.

Naive solution. We start with a naive solution as briefly discussed in Section 1: the linear
reward function. In other words, R(k, t) = V (k) + η1 for some η1 > 0. This is a natural
solution: it gives a bit more than how much the share(s) are worth. However, as mentioned,
this naive solution can only achieve the goal (3), but not (4) or (5) proposed in Section 6.1.
As analyzed, the attacker would continue to attack for more shares and only submit when he
has all the key shares.

8 Note that in some cases, it may also make sense that having k < m of them has no value. For generality,
we consider them to have some partial value.

L. Zhou, Z. Liu, F. Zhang, and M. K. Reiter 16:15

0 1 2 3
number of shares (k)

0

1

2

3

re
w

ar
d

profit from
 claiming bounty

profit from
 selling shares

reward by selling shares
cost of attacker
reward function

Figure 3 Example of reward function in simplified case.

A starting point. Therefore, we propose first a simple solution that can achieve the goals
3-5 under such a deterministic attack (as the starting point for our real reward function):

R(k) = max
0<k≤N

(V (k)− C(k)) + C(1) + η0 + (1− t/T)δ0,

where η0 and δ0 are small constant numbers serving as bonus. This reward function
straightforwardly satisfies our goals. For goal (3): Submitting to the bounty provides the
attacker with at least η0 more than selling the shares when the attacker submits with only
one share. Consequently, there is no incentive for the attacker to sell the share. For goal
(4): Since the adversary achieves maximum profit from the bounty by obtaining just one
share max0≤k≤N (V (k) − C(k)) + η0 + (1 − t/T)δ0, and given that the bonus δ0 decreases
over time, the attacker is incentivized to submit the share to the bounty upon acquiring the
first share (and since the adversary needs one share to submit, C(1) is used to compensate
this cost). For goal (5): the defender’s cost is minimized since the defender cannot spend
less. If she reduces her expenditure by η0, the adversary’s gain from the reward might equal
the profit from selling the key at point i, where the profit (V (k)− C(k)) is maximized. This
could lead the attacker to opt for selling the key. As a side property, the attacker also saves
cost, as its total cost is always non-decreasing.

A concrete example is depicted in Figure 3. Here, the cost of attack is C(k) = 1
4 k2, and the

value of key shares is V (k) = k. The maximum profit for the attacker is max0≤k≤N (V (k)−
C(k)) = V (2)− C(2) = 1. We set η0 = δ0 = 0.1. Therefore, the optimal reward function in
this scenario is R(k) = C(1) + (V (2)− C(2)) + η0 = 1.25 + η0. By structuring the reward
function in this way, we not only incentivize the attacker to submit the key share as soon as
they get one share but also reduce the defense cost.

Let’s compare the reward function we proposed with two baselines: a zero function
R0(k) = 0 and a linear reward function Rl(k) = k + η0. With R0, the attacker accumulates
2 shares and sells them in the market, which violates goals 3 and 4. With Rl, the defender
pays 2 + η0 to prevent the attacker from selling 2 shares, which violates the goal 3 and costs
more than our reward function.

The main observation from the case study is that giving the attacker more reward at first
share is not only a good way to persuade the attacker not to further exploit the key, but also
saves the defender’s cost.

Of course, here, the context is greatly simplified: the attacker’s cost is a known deter-
ministic function of the number of key shares gained. If the attacker’s cost is a probabilistic
function, the reward function does not always achieve the goals. Also, even for a deterministic

AFT 2024

16:16 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

attacker with a slightly different cost function, the reward function may not work anymore
(e.g., if the attacker costs 10% less per share). Thus, we propose a more complete reward
function in Section 6.3.4.

6.3.3 Metrics for Reward Function
While for the deterministic attacker, the simple reward function satisfies all the goals, it
becomes more complicated for a non-deterministic attacker, and also when we want to protect
against a wider range of attackers. There is a trade-off between goals 3-5 in Section 6.1. For
example, it would cost more if we wanted to encourage the attacker to turn in the key shares
to the bounty earlier. To address this, we turn the goals into numerical metrics and balance
them using a weighted average.

We developed three metrics to evaluate how well the reward function meets each of the
three specified goals. The first metric is the probability of key shares being sold, denoted as
pe (goal (3)). The second metric is the average holding time, th, representing the average
time between the attacker finding the first share and the termination of the game (goal
(4)). The third metric, the cost to the defender, is denoted as cd (goal (5)). The cost of
the defender is the max between the value the attacker gets by selling the k shares (i.e.,
V (k)) and the amount of the bounty claimed (recall that an attacker can only do one of the
two instead of both). To combine these metrics into a score, denoted as f , we introduce
parameters α1 and α2 to compute a weighted average.

f = α1 · pe + α2 ·
th

T
+ (1− α1 − α2) · cd

v (1)

In Equation (1), the holding time is normalized by the time period T and the defender’s
cost is normalized by the value of the key v.

6.3.4 Propose reward function for non-deterministic attacker
We now propose a reward function designed to achieve the objectives outlined in Section 6.1
for a non-deterministic attacker. The optimization and evaluation of this proposed reward
function will be detailed in the subsequent parts of this subsection.

To achieve goal (3) in Section 6.1, we need to give more reward to the attacker than the
value of the shares. For an attacker with k shares of secret, he can gain V (k) units of money.
Thus, to encourage the attacker to submit to the bounty, we give out more than the amount
they should have received by selling the key shares. A non-deterministic attacker, however,
may get lucky in some cases and get more than one share at a low cost. So our proposed
function should have the property R(k, t) > V (k) for all k ∈ [1, N].

Formally, we give a reward of V (N)ϵ ·V (k)1−ϵ + η (recall that dV/dk ≥ 0 for all k ∈ [N]),
for some ϵ ∈ [0, 1], η > 0. As long as ϵ ≥ 0, η > 0, we have V (N)ϵ ·V (k)1−ϵ + η > V (k) for all
k > 0. Note that when ϵ increases, we give more reward when k = 1, which could potentially
reduce the defender’s cost (achieving the goal (5)) according to the case study above.

Finally, we need to encourage the adversaries to submit earlier to achieve the goal (4)
in Section 6.1. Similarly, we set the “extra bonus” decreasing over time. Formally, let
g(k) := V (N)ϵ · V (k)1−ϵ − V (k) denote the extra reward we paid to the attacker. We reduce
this gain by time, adding a term −g(k) · t/T . The reward function we suggest is:

R(k, t) := V (N)ϵ · V (k)1−ϵ + η − g(k) · t/T (2)

To model the real-world constraint of the defender’s budget, we also introduce an additional
parameter, αcap, into the reward function. This parameter represents the maximum amount of

L. Zhou, Z. Liu, F. Zhang, and M. K. Reiter 16:17

money that the bounty can afford, expressed as a percentage of the secret’s value. Specifically,
we add a bound αcap · V (N) to our reward function R(k, t) (Equation (2)), and the resulting
new reward function is:

R̃(k, t) =
{

R(k, t) if R(k, t) < αcap · V (N)
αcap · V (N) if R(k, t) ≥ αcap · V (N)

(3)

where t is the submission time and k is the number of submitted shares (t ∈ [0, T], k ∈ [0, N]).

6.3.5 Modelling the non-deterministic attacker
To evaluate our function, we first need to model how an attacker behaves. To do this, we
first describe the behavior of the attacker that can be modeled as the optimal stopping game.
Then, we further find the optimal attacker strategy using a Markov decision process (MDP).

Moreover, with this evaluation result, the defender can quantitatively understand what
range of attackers can be effectively prevented using this reward function. She can then
change the parameters (e.g., the attacker’s ability to begin with and the budget) to modify
the function accordingly.

Attacker behavior. We give a detailed description of the attacker’s decision process as
follows. As in the preceding sections, we exclusively consider a single signing key that is
shared among N TEEs. The time period during which the secret remains valid is divided
into T discrete time steps. Each time step is further divided into two sub-steps, during which
the attacker makes distinct choices: In the first sub-step, the attacker selects the number of
TEEs to target during that step. In the second sub-step, the attacker decides whether to
terminate the game (sell the shares or claim the bounty) or proceed to the next step. If an
attacker decides to target a TEE in a given step, they have a success probability of ps to
acquire a key share from it, while incurring a fixed cost of ca.

Optimal stopping game. We model an adversary as a player of an “optimal stopping”
game [54, 50, 24]. Essentially, the optimal stopping game states the following: there is a
sequence of random variables X1, X2, . . . whose distribution is assumed to be known; and
there is a sequence of gain functions (Yi)i≥1 which take the first i random variables as inputs
(i.e., Yi(x1, . . . , xi) is a function over x1 ← X1, . . . , xi ← Xi). Then, the player observes
the sequence of random variables one at a time, and for each step i, the player can either
stop observing and claim the gain Yi(x1, . . . , xi) or continue. The goal of the player is to
optimize the expected gain. Note that this setting is essentially the same as our setting,
where the random variables are the shares gotten by the adversary (e.g. if an attacker can
obtain a share with probability p at step i, Xi is a Bernoulli random variable returning 1
with probability p and 0 with probability 1 − p). Then, yi is the profit the attacker can
gain from all the shares he has obtained up to step i, which is the maximum between the
value of the bounty and the value of selling these shares, less his cost up to step i. Although
some specific forms of optimal stopping games have closed-form solutions (e.g., the secretary
problem [19]), for more complex scenarios like ours, a typical approach to find the player’s
optimal strategy is to model the game with Markov Decision Process (MDP) [54, 50].

MDP. We model the attacking process as an MDP, structuring it into discrete steps. At
each step, the attacker decides the number of TEEs to target. The attacker also needs
to determine the optimal time to end the attack and obtain their reward: after each step,

AFT 2024

16:18 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

he must choose to either cease the attack and get the reward or continue attacking in the
subsequent step.

We specify the state transition function and the reward function of the MDP as follows.
The state of the MDP is defined by the tuple of the number k of shares gained by the
attacker, the time slot t, and the sub-step in each time slot d ∈ {0, 1}. At state (t, k, 0), the
attacker needs to choose the number of TEEs (denoted as n) to attack in this time slot. The
state transitions to (t, k + ∆k, 1), where ∆k is the number of key shares gained in this time
slot. The number of newly gained key shares depends on the success rate ps and the number
of TEEs the attacker chooses to attack in that particular step. Specifically, the probability
that the attacker gets i new shares in this time slot is Pr(∆k = i) =

(
n′

i

)
pn′

s (1 − ps)n′−k,
where n′ = max(n, m − k). At state (t, k, 1), the attacker faces a decision: either end the
game by selling the key shares or submitting them to the bounty, or wait until the next time
slot. If the attacker chooses to wait until the next time slot, the state will transition to state
(t + 1, k, 1). If the attacker chooses to sell the key shares or submit them to the bounty, the
next state will be the termination state. When the time slot reaches the maximum time T

at state (t, T, 1), the next state will be the termination state.
At each step of the process, the attacker incurs a negative reward of −ca · n, representing

the cost of the attacking n TEEs. The attacker gains a positive reward R(k, t) if he submits
the key shares to the bounty. Alternatively, if he decides to sell the key shares, he gets V (k).
A summary of the transition and reward function of the decision problem is in Table 1.

Table 1 Description of the state transition and reward matrix.

State × Action State Probability Reward
(k, t, 0)×attack n TEEs (k + i, t, 1) P r(∆k = i) −n · ca

(k, t, 1)× wait (t < T) (k, t + 1, 0) 1 0
(k, t, 1)× wait (t = T) termination 1 0
(k, t, 1)× turn in termination 1 R(k, t)
(k, t, 1)× selling key termination 1 V (k)

Utilizing the MDP solver [38], we are able to compute the attacker’s optimal strategy for
a specific reward function. By examining this optimal strategy, we can obtain the metrics
defined in Section 6.3.3 (f score). The f score then serves as the objective for optimizing
the parameters within the reward function.

6.3.6 Optimize the Reward Function Parameter
In this part, we describe the methodology for deciding the optimal ϵ within the reward
function in Equation (2), with αcap as described in Equation (3).

Recall that our reward function R̃ is determined by αcap (bounty cap) and ϵ (determining
the starting point of the reward). We assume αcap is some constant predefined by the
defender, according to her budget.

We now explain our approach for identifying the optimal value of ϵ with regard to the
performance metric f . As the defender aims to minimize the cost of the defender, the
probability that the attacker will sell the key on the market, and the holding time, the
objective is to minimize the score f . When defending against an attacker, the service provider
must first decide the parameters used in f (α1 and α2) and estimate the ability of the
attacker by specifying ps and ca. Using the estimated parameters , an optimal ϵ could be
numerically computed. Specifically, we discretize [0, 1] into a sequence of evenly spaced

L. Zhou, Z. Liu, F. Zhang, and M. K. Reiter 16:19

numbers, calculate a score for each ϵ, and select the one corresponding to the lowest score. 9

Upon determining the optimal ϵ with estimated parameters, we examine how attackers of
various abilities respond to the computed ϵ in the next part. Specifically, these attackers might
have different ps, ca compared to the initial estimates used for ϵ optimization, representing a
range of adversaries stronger or weaker than the initial expectation.

6.3.7 Evaluation Results
We compare the score f of different reward functions, including our reward function, the
linear reward function (see below), and no bounty (reward function equals 0).

The linear reward function is a solution that satisfies the goal 3 without considering the
cost. Recall that we introduced this naive solution in Section 1 and Section 6.3.2: in the
linear reward function, the bounty claimer gets the exact value of share(s) plus a small bonus
η1 to encourage turning in key share(s). We additionally set a time bonus δ1 that decays
with time and encourages early turn-in for the purpose of this case study (to break ties for
attacker decisions in MDP), formally given as follows: Rl(k, t) = V (k) + (1− t/T)δ1 + η1. In
our experiment, δ1 = 0.1 and η1 = 0.01. For our proposed reward function, η = 0.01 as well.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
probability of success at one step ps

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

co
st

 p
er

 s
te

p
c a

0.00 0.33 0.80 0.91 0.95 0.96 0.96 0.97 0.97 0.97

0.00 0.29 0.51 0.91 0.95 0.96 0.96 0.97 0.97 0.97

0.00 0.28 0.36 0.44 0.95 0.96 0.96 0.97 0.97 0.97

0.00 0.27 0.31 0.34 0.38 0.69 0.96 0.97 0.97 0.97

0.00 0.18 0.30 0.30 0.33 0.34 0.35 0.97 0.97 0.97

0.00 0.00 0.29 0.29 0.30 0.32 0.33 0.32 0.33 0.97

0.00 0.00 0.27 0.29 0.30 0.31 0.32 0.32 0.33 0.33

0.00 0.00 0.25 0.29 0.30 0.31 0.31 0.32 0.33 0.33

0.00 0.00 0.19 0.28 0.30 0.31 0.31 0.32 0.33 0.33

0.00 0.00 0.18 0.27 0.29 0.31 0.31 0.32 0.33 0.33

Our reward function

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
probability of success at one step ps

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

co
st

 p
er

 s
te

p
c a

0.00 0.53 0.80 0.91 0.95 0.96 0.96 0.97 0.97 0.97

0.00 0.53 0.80 0.91 0.95 0.96 0.96 0.97 0.97 0.97

0.00 0.12 0.80 0.91 0.95 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.80 0.91 0.95 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.15 0.91 0.95 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.00 0.91 0.95 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.00 0.18 0.95 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.00 0.00 0.95 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.00 0.00 0.14 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.00 0.00 0.00 0.96 0.96 0.97 0.97 0.97

linear

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
probability of success at one step ps

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

co
st

 p
er

 s
te

p
c a

0.00 0.75 0.90 0.94 0.96 0.96 0.96 0.97 0.97 0.97

0.00 0.75 0.90 0.94 0.96 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.90 0.94 0.96 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.90 0.94 0.96 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.00 0.94 0.96 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.00 0.94 0.96 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.00 0.00 0.96 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.00 0.00 0.96 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.00 0.00 0.78 0.96 0.96 0.97 0.97 0.97

0.00 0.00 0.00 0.00 0.00 0.96 0.96 0.97 0.97 0.97

no bounty

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Figure 4 f score for different reward functions. αcap = 0.8. α1 = α2 = 1/3, ca = 0.4, ps = 0.4,
N = 3, v = 6. Optimal ϵ = 0.95.

In the evaluation, we set the estimation as ca = 0.4 and ps = 0.4. We set the total number
of key shares as N = 3 and the value of the key as v = 6 , which means the value per share
is 2. In expectation, the cost incurred by the attacker to obtain one share is 1 (cost per step
/ probability of success), resulting in a positive expected profit of 1 for each share acquired.
We set α1 = α2 = 1/3 which means each metric has equal importance. The parameters can
be replaced with real-world values when the wallet is implemented in practice. The optimal
ϵ we get is 0.95 given the parameters above. Then, we use the optimal parameter to derive
the score for attackers with variant cost ca and success rate ps.

We show how this function behaves when facing different attackers in Figure 4, where
each cell within the heatmap shows the f score corresponding to a specific configuration of
the attacker’s capabilities, denoted by the parameters ca and ps. When the cost is low and
the success rate is high (located in the upper right region of the heatmap), the attacker is
considered strong. Conversely, when the cost is high and the success rate is low (positioned
in the lower left area of the heatmap), the attacker is perceived as weak.

As we can see in the heatmap, when αcap = 80%, the performance of the reward function
we proposed (state of the art) is better than the baseline (no bounty and linear reward

9 The precision is affected by how many intervals [0, 1] is discretized into.

AFT 2024

16:20 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

function) in most cases. For most attackers, regardless of the ability, our reward function
generates a smaller score. The figure demonstrates that our reward function has great
performance not just for attackers whose abilities are equal to our estimations (ca = 0.4 and
ps = 0.4), but it also works well for stronger attackers. As shown in the figure, essentially
for any ps, as long as ca ≥ 0.4, the f score is at most 0.3. Similar flexibility on ca can
also be seen in the graph. These results indicate that even without precise attacker ability
estimations, our reward function outperforms the alternative reward functions and shows
decent effectiveness in preventing outsider attacks.

As mentioned, the defender can then use the heatmap to determine the effectiveness
of the reward function given the current attacker’s ability estimation and the budget. She
may increase her budget to find a reward function that effectively defends against a broader
spectrum if needed.

7 Case Study

We briefly discuss how to choose the parameters for the bounty in CrudiTEE using a simple
case study. Recall that we need to set time T , the expected return given the number of shares
V (k), and the cost function C(k). The calculation below assumes using a (10,20)-threshold
signature scheme (i.e., 10 shares are enough to recover the secret) and T = 30.

To set the rest of the parameters, we first examine the state-of-the-art side-channel attacks
against ECDSA. ECDSA [30] is the most commonly used signature scheme for blockchains
like Bitcoin [8], and thus we use it as an example. To our knowledge, all the side-channel
attacks without root privilege in recent years against the most popular ECDSA library
(OpenSSL [44]) show that they require at least 212 traces to recover a secret [60, 21, 4]. Then,
we let the service provider cap the number of signatures a user can make. According to [18], a
regular user makes 68 bank transactions per month, which means ∼ 2.3 transactions per day.
To be lenient, assume the victim makes 230 transactions per day (which is 100x the average
number of transactions per day). Since recovering a key share requires at least 212 signatures,
which takes ∼ 17.8 days. For V (k), recall that we have a rate limit v for each wallet (i.e.,
the amount of money in each wallet). According to [23], each transaction’s average value
is 36 dollars for a debit card. We thus set v = 36000, again 100x larger than the average
transaction value. Each key share has equal value, and m = 10 shares are enough to recover
a key, we set V (k) = min(⌈v · k/m⌉ , v).

Lastly, we discuss the cost function. The cost function is the most tricky one, since it
should capture all the possible costs of an attacker, including operational costs, the risk of
being caught, the side channel being mitigated, and so on. Thus, we propose a conservative
function (i.e., the minimum cost an attacker can have). Note that for an outsider, the
minimum requirement is essentially getting to obtain the traces remotely. The most common
way is residing on the same virtual machine as the victim program, as discussed in [48]. Thus,
we estimate the cost using the cost of renting the same cloud machine as the service provider.
Suppose that it costs ccloud dollars per unit of time (e.g., c5.metal from AWS, a commonly
used server instance, costs ∼$97.9 per day [6]). Thus, we have C(k) = ccloud · k · 17.8.

These numbers give us that to recover a key with a value of 36000 dollars, the cost of the
attacker is at least ∼ 17426 dollars (based on 17.8 days per share, a total of 10 shares, and
97.9 dollars per day for VM). We can come up with a reward function accordingly given all
these numbers, along with their budget limit. More accurate numbers can be obtained for a
specific service provider by analyzing their own transaction data.

L. Zhou, Z. Liu, F. Zhang, and M. K. Reiter 16:21

8 Discussion

In this section, we discuss CrudiTEE’s performance, limitations and extension application.

Performance Analysis. Reasonable signing performance is required to make the scheme
practical. A potential bottleneck of performance may be caused by the secret sharing between
different TEEs. In this part, we analyze its concrete performance to show that the multi-TEE
ECDSA signing will not be a bottleneck.

For the threshold ECDSA scheme proposed by Gennaro and Goldfeder [22],10 the bench-
mark for the signature generation time among m participants is 29 + 24m milliseconds. As
benchmarked in [40], the highest overhead of TEE is 19.31× in all the tasks tested. Therefore,
a conservative signature generation time is around 560 + 463m milliseconds. The protocol
requires five rounds of communication and we estimate the communication delay for each
round as 100 milliseconds [17]. Consequently, the total time for generating a threshold
signature is about 1060 + 463m milliseconds, which is generally acceptable for cryptocurrency
wallets. Additionally, to accommodate high transaction volumes, we can employ multiple
sets of TEEs in parallel.

Limitations of insurance. Our techniques provide a technical basis for penalizing the
service provider when an attack succeeds against it, providing an incentive for it to properly
safeguard its TEEs from outside attackers and a transparent and measurable guarantee to
end users. These are significant improvements over the current status quo. Ensuring that
the company deposits assets sufficient to satisfy claims against it is a matter for insurance
regulators; today, insurance regulators in most jurisdictions require companies to maintain
statutory reserves, i.e., an amount of cash and readily marketable securities that it can use
to pay its foreseeable claims. As with other insurance in real life (e.g., property insurance),
users in our system may not be compensated if these reserves (i.e., the company’s deposits)
are depleted by other claims. Our technical solutions presented here cannot entirely eliminate
the need for legal recourse in such situations. Nevertheless, our design provides a stronger
foundation for reducing trust in a service provider and for reducing the risk to clients.

Limitations on the type of assets. Note that in most blockchains today, each wallet is tied
to a specific private key. Thus, key updates after leakage can cause the assets in the wallet
to be non-retrievable. In our paper, we require the asset to be tied to a smart-contract-based
wallet, allowing the key updates to work as expected. How to extend our idea to support a
wallet without such support remains open.

9 Conclusion

In this paper, we introduced CrudiTEE, a solution designed to mitigate side channels in TEE-
based cryptocurrency wallets by leveraging economic incentives. Our wallet authentication
system utilizes OAuth to ensure both accountability and user-friendliness. Additionally, we
designed a combination of stick (insurance) and carrot (bounty) to safeguard against both
insider and outsider attacks. Finally, we evaluated our approach and showed its effectiveness.

10 This scheme considers malicious participants, so there are unnecessary steps in the protocol if we assume
all the participants are honest, which is true in our case.

AFT 2024

16:22 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

References
1 O. Aciiçmez, W. Schindler, and Ç. K. Koç. Cache based remote timing attack on the AES.

In Topics in Cryptology – CT-RSA 2007, The Cryptographers’ Track at the RSA Conference
2007, pages 271–286, February 2007.

2 AMD secure encrypted virtualization (SEV). URL: https://www.amd.com/en/developer/
sev.html.

3 Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technology
for CPU based attestation and sealing. In 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, 2013.

4 Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi, and Yuval
Yarom. Ladderleak: Breaking ecdsa with less than one bit of nonce leakage. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS
’20, pages 225–242, New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3372297.3417268.

5 The sequencer and censorship resistance. URL: https://docs.arbitrum.io/sequencer/
#unhappyuncommon-case-sequencer-isnt-doing-its-job.

6 AWS price calculator. https://calculator.aws/, 2023.
7 Kushal Babel, Nerla Jean-Louis, Mahimna Kelkar, Yunqi Li, Carolina Ortega Perez, Aditya

Asgoankar, Sylvain Bellemare, Ari Juels, and Andrew Miller. The Sting framework (SF), 2023.
URL: https://initc3org.medium.com/the-sting-framework-sf-ef00702c88c7.

8 Bitcoin core 25.0. https://github.com/bitcoin/bitcoin, 2023.
9 Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari Kosti-

ainen, and Ahmad-Reza Sadeghi. Dr. SGX: Automated and adjustable side-channel protection
for SGX using data location randomization. In 35th Annual Computer Security Applications
Conference, pages 788–800, 2019.

10 Lorenz Breidenbach, Phil Daian, Florian Tramèr, and Ari Juels. Enter the hydra: Towards
principled bug bounties and exploit-resistant smart contracts. In 27th USENIX Security
Symposium, pages 1335–1352, 2018.

11 Ernie Brickell, Gary Graunke, and Jean-Pierre Seifert. Mitigating cache/timing attacks in
AES and RSA software implementations. In RSA Conference, 2006.

12 D. Brumley and D. Boneh. Remote timing attacks are practical. Computer Networks,
48(5):701–716, 2005.

13 Iadine Chadès, Guillaume Chapron, Marie-Josée Cros, Frédérick Garcia, and Régis Sabbadin.
Mdptoolbox: a multi-platform toolbox to solve stochastic dynamic programming problems.
Ecography, 37(9):916–920, 2014.

14 Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah Johnson, Ari
Juels, Andrew Miller, and Dawn Song. Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contracts. In 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 185–200. IEEE, 2019.

15 Coinbase. https://www.coinbase.com/.
16 Manuel Costa, Lawrence Esswood, Olga Ohrimenko, Felix Schuster, and Sameer Wagh. The

pyramid scheme: Oblivious RAM for trusted processors. arXiv preprint arXiv:1712.07882,
2017.

17 Luca De Vito, Sergio Rapuano, and Laura Tomaciello. One-way delay measurement: State of
the art. IEEE Transactions on Instrumentation and Measurement, 57(12):2742–2750, 2008.

18 Federal Reserve Bank of Atlanta. Survey of consumer payment choice 2020, 2020.
URL: https://www.atlantafed.org/-/media/documents/banking/consumer-payments/
survey-of-consumer-payment-choice/2020/2020-survey-of-consumer-payment-choice.
pdf.

19 Thomas S. Ferguson. Who Solved the Secretary Problem? Statistical Science, 4(3):282–289,
1989. doi:10.1214/ss/1177012493.

https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://doi.org/10.1145/3372297.3417268
https://doi.org/10.1145/3372297.3417268
https://docs.arbitrum.io/sequencer/#unhappyuncommon-case-sequencer-isnt-doing-its-job
https://docs.arbitrum.io/sequencer/#unhappyuncommon-case-sequencer-isnt-doing-its-job
https://calculator.aws/
https://initc3org.medium.com/the-sting-framework-sf-ef00702c88c7
https://github.com/bitcoin/bitcoin
https://www.coinbase.com/
https://www.atlantafed.org/-/media/documents/banking/consumer-payments/survey-of-consumer-payment-choice/2020/2020-survey-of-consumer-payment-choice.pdf
https://www.atlantafed.org/-/media/documents/banking/consumer-payments/survey-of-consumer-payment-choice/2020/2020-survey-of-consumer-payment-choice.pdf
https://www.atlantafed.org/-/media/documents/banking/consumer-payments/survey-of-consumer-payment-choice/2020/2020-survey-of-consumer-payment-choice.pdf
https://doi.org/10.1214/ss/1177012493

L. Zhou, Z. Liu, F. Zhang, and M. K. Reiter 16:23

20 K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results. In
Cryptographic Hardware and Embedded Systems – CHES 2001, volume 2162 of Lecture Notes
in Computer Science, pages 251–261, May 2001.

21 Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom. Ecdsa
key extraction from mobile devices via nonintrusive physical side channels. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS
’16, pages 1626–1638, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2976749.2978353.

22 Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless
setup. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 1179–1194, 2018.

23 Geoffrey Gerdes, Claire Greene, Xuemei (May) Liu, Emily Massaro, Ambika Nair, Zach
Proom, Nancy Donahue, Lisa Gillispie, Mary Kepler, Doug King, Susan Krupkowski, Ellen
Levy, Dave Lott, Mark Manuszak, David Mills, Laura Reiter, Stephanie Scuiletti, Susan
Stawick, Catherine Thaliath, Jessica Washington, and Julius Weyman. The 2019 fed-
eral reserve payments study. URL: https://www.federalreserve.gov/paymentsystems/
2019-December-The-Federal-Reserve-Payments-Study.htm.

24 Alexander V. Gnedin and Ulrich Krengel. A stochastic game of optimal stopping and order se-
lection. Annals of Applied Probability, 5:310–321, 1995. URL: https://api.semanticscholar.
org/CorpusID:122457776.

25 Google LLC. Using OAuth2.0 with OpenID Connect in Google. URL: https://developers.
google.com/identity/openid-connect/openid-connect.

26 Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+flush: A
fast and stealthy cache attack. In DIMVA 2016: Detection of Intrusions and Malware, and
Vulnerability Assessment, volume 9721 of Lecture Notes in Computer Science, pages 279–299,
2016.

27 D. Gullasch, E. Bangerter, and S. Krenn. Cache games – bringing access-based cache attacks
on AES to practice. In 32nd IEEE Symposium on Security & Privacy, pages 490–505, 2011.

28 H100 tensor core GPU | NVIDIA. URL: https://www.nvidia.com/en-us/data-center/
h100/.

29 Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret sharing
or: How to cope with perpetual leakage. In Advances in Cryptology – CRYPTO ’95, volume
963 of Lecture Notes in Computer Science, pages 339–352, 1995.

30 Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signature
algorithm (ecdsa). In International Journal of Information Security. Association for Computing
Machinery, July 2001. doi:10.1007/s102070100002.

31 P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in Cryptology –
CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 388–397, August
1999.

32 P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Advances in Cryptology – CRYPTO ’96, volume 1109 of Lecture Notes in Computer
Science, pages 104–113, 1996.

33 Jiasun Li. On the security of optimistic blockchain mechanisms. Available at SSRN 4499357,
2023.

34 Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. CIPHERLEAKS:
Breaking constant-time cryptography on AMD SEV via the ciphertext side channel. In 30th
USENIX Security Symposium, August 2021.

35 Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Claudio
Canella, and Daniel Gruss. Platypus: Software-based power side-channel attacks on x86. In
2021 IEEE Symposium on Security and Privacy (SP), pages 355–371, 2021. doi:10.1109/
SP40001.2021.00063.

AFT 2024

https://doi.org/10.1145/2976749.2978353
https://www.federalreserve.gov/paymentsystems/2019-December-The-Federal-Reserve-Payments-Study.htm
https://www.federalreserve.gov/paymentsystems/2019-December-The-Federal-Reserve-Payments-Study.htm
https://api.semanticscholar.org/CorpusID:122457776
https://api.semanticscholar.org/CorpusID:122457776
https://developers.google.com/identity/openid-connect/openid-connect
https://developers.google.com/identity/openid-connect/openid-connect
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://doi.org/10.1007/s102070100002
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1109/SP40001.2021.00063

16:24 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

36 Suresh S Malladi and Hemang C Subramanian. Bug bounty programs for cybersecurity:
Practices, issues, and recommendations. IEEE Software, 37(1):31–39, 2019.

37 Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R. Savagaonkar. Innovative instructions and software model for isolated
execution. In 2nd International Workshop on Hardware and Architectural Support for Security
and Privacy, HASP ’13, page 1, New York, NY, USA, June 2013. Association for Computing
Machinery. doi:10.1145/2487726.2488368.

38 Markov decision process (mdp) toolbox. URL: https://pymdptoolbox.readthedocs.io/en/
latest/api/mdptoolbox.html.

39 ID tokens in the Microsoft identity platform. URL: https://learn.microsoft.com/en-us/
azure/active-directory/develop/id-tokens.

40 Saeid Mofrad, Fengwei Zhang, Shiyong Lu, and Weidong Shi. A comparison study of intel sgx
and amd memory encryption technology. In Proceedings of the 7th International Workshop on
Hardware and Architectural Support for Security and Privacy, pages 1–8, 2018.

41 S.-J. Moon, V. Sekar, and M. K. Reiter. Nomad: Mitigating arbitrary cloud side channels via
provider-assisted migration. In 22nd ACM Conference on Computer and Communications
Security, pages 1595–1606, October 2015.

42 M. Morbitzer, S. Proskurin, M. Radev, M. Dorfhuber, and E. Salas. Severity: Code injection
attacks against encrypted virtual machines. In 2021 IEEE Security and Privacy Workshops
(SPW), pages 444–455, Los Alamitos, CA, USA, May 2021. IEEE Computer Society. doi:
10.1109/SPW53761.2021.00063.

43 Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. A survey of published
attacks on Intel SGX. arXiv preprint arXiv:2006.13598, 2020.

44 OpenSSL. https://www.openssl.org/, 2023.
45 D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: The case of

AES. In Topics in Cryptology – CT-RSA 2006, volume 3860 of Lecture Notes in Computer
Science, pages 1–20, 2006.

46 Aaron Parecki. OAuth 2.0 basic information. URL: https://developers.google.com/
identity/openid-connect/openid-connect.

47 J.-J. Quisquater and D. Samyde. Electromagnetic analysis (EMA): Measures and counter-
measures for smart cards. In Smart Card Programming and Security, International Conference
on Research in Smart Cards, E-smart 2001, volume 2140 of Lecture Notes in Computer Science,
pages 200–210, September 2001.

48 Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of my
cloud: Exploring information leakage in third-party compute clouds. In Proceedings of the 16th
ACM Conference on Computer and Communications Security, CCS ’09, pages 199–212, New
York, NY, USA, 2009. Association for Computing Machinery. doi:10.1145/1653662.1653687.

49 Carlton Shepherd, Konstantinos Markantonakis, Nico van Heijningen, Driss Aboulkassimi,
Clément Gaine, Thibaut Heckmann, and David Naccache. Physical fault injection and
side-channel attacks on mobile devices: A comprehensive analysis. Computers & Security,
111:102471, 2021. doi:10.1016/j.cose.2021.102471.

50 Albert N. Shiryaev. Optimal Stopping Rules, pages 1032–1034. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-04898-2_433.

51 Saurabh Suratkar, Mahesh Shirole, and Sunil Bhirud. Cryptocurrency wallet: A review. In 2020
4th international conference on computer, communication and signal processing (ICCCSP),
pages 1–7. IEEE, 2020.

52 J. Szefer. Survey of microarchitectural side and covert channels, attacks, and defenses. Journal
of Hardware and Systems Security, 3:219–234, September 2019.

53 Florian Tramèr, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine Shi.
Sealed-Glass Proofs: Using Transparent Enclaves to Prove and Sell Knowledge. In 2017
IEEE European Symposium on Security and Privacy (EuroS&P), pages 19–34, April 2017.
doi:10.1109/EuroSP.2017.28.

https://doi.org/10.1145/2487726.2488368
https://pymdptoolbox.readthedocs.io/en/latest/api/mdptoolbox.html
https://pymdptoolbox.readthedocs.io/en/latest/api/mdptoolbox.html
https://learn.microsoft.com/en-us/azure/active-directory/develop/id-tokens
https://learn.microsoft.com/en-us/azure/active-directory/develop/id-tokens
https://doi.org/10.1109/SPW53761.2021.00063
https://doi.org/10.1109/SPW53761.2021.00063
https://www.openssl.org/
https://developers.google.com/identity/openid-connect/openid-connect
https://developers.google.com/identity/openid-connect/openid-connect
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1016/j.cose.2021.102471
https://doi.org/10.1007/978-3-642-04898-2_433
https://doi.org/10.1109/EuroSP.2017.28

L. Zhou, Z. Liu, F. Zhang, and M. K. Reiter 16:25

54 J.N. Tsitsiklis and B. van Roy. Optimal stopping of markov processes: Hilbert space theory,
approximation algorithms, and an application to pricing high-dimensional financial derivatives.
IEEE Transactions on Automatic Control, 44(10):1840–1851, 1999. doi:10.1109/9.793723.

55 Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. SGAxe: How SGX
fails in practice. https://sgaxeattack.com/, 2020.

56 Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael Swift. A
placement vulnerability study in multi-tenant public clouds. In 24th USENIX Security
Symposium, August 2015.

57 Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bind-
schaedler, Haixu Tang, and Carl A. Gunter. Leaky cauldron on the dark land: Understanding
memory side-channel hazards in SGX. In 24th ACM Conference on Computer and Communi-
cations Security, October 2017.

58 M. Weiß, B. Heinz, and F. Stumpf. A cache timing attack on AES in virtualization environments.
In 16th International Conference on Financial Cryptography and Data Security, February
2012.

59 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

60 Yuval Yarom and Naomi Benger. Recovering openssl ecdsa nonces using the flush+reload
cache side-channel attack. Cryptology ePrint Archive, Paper 2014/140, 2014. URL: https:
//eprint.iacr.org/2014/140.

61 Martin Young. Coinbase custodies 11% of entire crypto capitalization. URL: https://
cointelegraph.com/news/coinbase-custodies-11-of-entire-crypto-capitalization.

62 Zainan Victor Zhou and Matt Stam. Rc-5732: Commit interface: A simple but general commit
interface to support commit-reveal scheme. https://eips.ethereum.org/EIPS/eip-5732,
September 2022.

63 Dionysis Zindros. Hours of Horus: Keyless cryptocurrency wallets. Cryptology ePrint Archive,
2021.

AFT 2024

https://doi.org/10.1109/9.793723
https://sgaxeattack.com/
https://eprint.iacr.org/2014/140
https://eprint.iacr.org/2014/140
https://cointelegraph.com/news/coinbase-custodies-11-of-entire-crypto-capitalization
https://cointelegraph.com/news/coinbase-custodies-11-of-entire-crypto-capitalization
https://eips.ethereum.org/EIPS/eip-5732

	1 Introduction
	1.1 CrudiTEE: The Cryptocurrency Wallet with Stick and Carrot
	1.1.1 The stick
	1.1.2 The carrot

	2 Related Work
	2.1 Cyber Bounty
	2.2 Side Channels
	2.3 TEE Side-channel Defense
	2.4 Existing Wallet Solutions

	3 Background and Preliminaries
	3.1 Trusted Execution Environments
	3.2 Smart Contracts
	3.3 OAuth
	3.4 Cryptographic Primitives
	3.5 Markov Decision Process

	4 Threat Model and Roadmap
	4.1 Threat Model
	4.2 Wallet Design Overview
	4.3 Reward Function Design Roadmap

	5 The Stick
	5.1 Authorization and Signing Transactions
	5.2 The stick: hold service provider responsible
	5.2.1 Ensure Availability of TEE
	5.2.2 Insurance for unauthorized transactions

	6 The Carrot
	6.1 Desired properties of the Bounty
	6.2 The Smart Contract Bounty
	6.3 Reward Function Design
	6.3.1 Notation and Definition
	6.3.2 Case study for deterministic attacker
	6.3.3 Metrics for Reward Function
	6.3.4 Propose reward function for non-deterministic attacker
	6.3.5 Modelling the non-deterministic attacker
	6.3.6 Optimize the Reward Function Parameter
	6.3.7 Evaluation Results

	7 Case Study
	8 Discussion
	9 Conclusion

