
Cornucopia: Distributed Randomness at Scale
Miranda Christ #

Columbia University, New York, NY, USA

Kevin Choi #

New York University, NY, USA

Joseph Bonneau #

New York University, NY, USA
a16z crypto research, New York, NY, USA

Abstract
We propose Cornucopia, a protocol framework for distributed randomness beacons combining
accumulators and verifiable delay functions. Cornucopia generalizes the Unicorn protocol, using
an accumulator to enable efficient verification by each participant that their contribution has been
included. The output is unpredictable as long as at least one participant is honest, yielding a scalable
distributed randomness beacon with strong security properties. Proving this approach secure requires
developing a novel property of accumulators, insertion security, which we show is both necessary
and sufficient for Cornucopia-style protocols. We show that not all accumulators are insertion-secure,
then prove that common constructions (Merkle trees, RSA accumulators, and bilinear accumulators)
are either naturally insertion-secure or can be made so with trivial modifications.

2012 ACM Subject Classification Security and privacy → Cryptography

Keywords and phrases Randomness beacons, accumulators

Digital Object Identifier 10.4230/LIPIcs.AFT.2024.17

Related Version Full Version: https://eprint.iacr.org/2023/1554 [20]

Funding Any opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the United States Government,
DARPA, Andreessen Horowitz, or any other supporting organization.
Miranda Christ: Supported by NSF grants CCF-2107187 and CCF-2212233, by LexisNexis Risk
Solutions, and by the Algorand Centres of Excellence programme managed by Algorand Foundation.
Kevin Choi: Supported by DARPA Agreement HR00112020022 and NSF grant CNS-2239975.
Joseph Bonneau: Supported by DARPA Agreement HR00112020022, NSF grant CNS-2239975, and
a16z crypto research.

Acknowledgements The authors thank Noemi Glaeser for suggesting the name Cornucopia.

1 Introduction

The goal of distributed randomness beacons (DRBs) is to enable n participants to jointly
compute a random output (which we denote Ω) that cannot be predicted or biased by a
malicious subset of the participants. Among many important applications of DRBs are
cryptographically verifiable lotteries and leader election in consensus protocols.

A classic approach to constructing DRBs is commit-reveal [8]. First, all participants
publish a cryptographic commitment to a random contribution ri. Participants then reveal
their ri values and the result is Ω = Combine(r1, . . . , rn) for some suitable combination
function (such as exclusive-or or a cryptographic hash). Commit-reveal protocols are simple,
efficient, and secure as long as any one participant chooses a random ri and all participants
open their commitments. However, the output can be biased via a so-called last-revealer

© Miranda Christ, Kevin Choi, and Joseph Bonneau;
licensed under Creative Commons License CC-BY 4.0

6th Conference on Advances in Financial Technologies (AFT 2024).
Editors: Rainer Böhme and Lucianna Kiffer; Article No. 17; pp. 17:1–17:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mchrist@cs.columbia.edu
https://orcid.org/0009-0003-9914-6391
mailto:kevin.choi@nyu.edu
https://orcid.org/0009-0006-6890-7313
mailto:jcb@cs.nyu.edu
https://orcid.org/0000-0002-6349-0145
https://doi.org/10.4230/LIPIcs.AFT.2024.17
https://eprint.iacr.org/2023/1554
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Cornucopia: Distributed Randomness at Scale

attack, in which a participant observes all other ri values during the reveal phase and drops
out if the impending value of Ω is not to their liking. The protocol must either finish without
the missing ri, or restart completely. Either way, the attacker obtains 1 bit of bias on Ω.

Most approaches to avoiding last-revealer attacks enable a majority coalition to recover a
withholding participant’s contribution. However, this downgrades the security model from
requiring only honest participant to requiring an honest majority (to prevent a malicious coali-
tion from privately computing Ω early). Such protocols also typically require communication
and computation superlinear in n (though some amortize this over multiple rounds).

A fundamentally different approach constructs DRBs uses time-based cryptography,
specifically delay functions, to prevent manipulation. The simplest example is Unicorn [38],
a one-round protocol in which each participant directly publishes (within a fixed time
window) their contribution ri to a public bulletin board. The result is computed as Ω =
Delay(Combine(r1, . . . , rn)). By assumption, a participant cannot compute the Delay function
before the deadline to publish their ri and therefore cannot choose ri in such a way as to
manipulate the output Ω. This protocol retains the strong security model of commit-reveal,
but with no last-revealer attacks. It is remarkably simple and, using modern verifiable delay
functions [9], the result can be efficiently verified. The downside is that Θ(n) contributions
must be posted to the public bulletin board per protocol run.

Improving efficiency with accumulators. Unicorn is simple and robust, but requires pub-
lishing Θ(n) data (one contribution per participant) on the public bulletin board. To reduce
this cost to O(1), we can instead publish a succinct commitment to all users’ contributions
using a cryptographic accumulator (for example, a Merkle tree). We formalize this approach
as Cornucopia:

Each participant sends their contribution ri to a coordinator before a time deadline T0.
The coordinator accumulates all contributions into a succinct commitment R and publishes
it to the bulletin board. It sends each user a proof πi that their value ri is included in R.
After time t passes, the result Ω = Delay(R) is published as well as a proof πΩ.
Each user i checks both that their contribution ri was included in R and that Ω was
properly computed from R.

While this is a small change to Unicorn, it is powerful. Since security requires only one
honest participant there is no risk to allowing more participants. Honest participants need
only verify that they themselves participated in the protocol (assuming they trust that their
own device has not been compromised) and need not know about the full set of participants.
The only downside to additional participants is performance, and Cornucopia’s sub-linear
verification cost means the approach is feasible for open-participation randomness protocols
at planetary scale (i.e. millions or billions of participants). For example, every user buying a
lottery ticket or every player in a massively multi-player online (MMO) game might contribute
randomness and be convinced the process was fair.

A malicious coordinator and any number of other malicious participants in the protocol
cannot manipulate the DRB output. A malicious coordinator might exclude all honest users
from participating, but these users can easily see that they have been excluded and know not
to trust the DRB output. For this reason, the coordinator can be viewed as semi-trusted; it is
trusted for liveness but not for security. We could also consider the coordinator malicious-but-
cautious [49], in that undermining liveness would be publicly detectable but biasing the DRB
output would not be. In Section 7.1 we discuss extending Cornucopia to a multi-coordinator
model with stronger liveness guarantees.

M. Christ, K. Choi, and J. Bonneau 17:3

Performance-wise, the coordinator does face at least linear costs (Ω(n)) to compute the
accumulator and per-user proofs, but for certain accumulators [52, 55], the coordinator can
efficiently batch compute all users’ witnesses.

Related work. There is a large and growing literature on randomness beacons, dating to
the seminal proposal by Rabin [47] and foundational work on distributed coin tossing [21,
3, 4, 31, 23, 34, 33]. Several recent surveys cover modern DRBs [48, 19, 35]. Most of
this work is orthogonal, as protocols without delay functions either require an honest
majorities [54, 17, 14, 7, 30, 32, 51, 22, 6, 24, 2] or offer only economic security [1, 46, 57].

Unicorn [38] introduced delay-based DRBs. Several extensions to Unicorn work in a
similar model. Bicorn [18] extends Unicorn with a fast optimistic case, avoiding the delay
function if all participants are honest. RandRunner [50] also enables avoiding a delay
function per beacon output although it does not support flexible participation and allows a
withholding leader to affect the protocol.

HeadStart [37] is the most conceptually similar approach to Cornucopia, using Merkle
trees to scale Unicorn by combining many users’ contributions in a succinct commitment in
a multi-round, pipelined protocol. Cornucopia can be seen as a generalization of HeadStart,
offering flexibility to use any accumulator and formalizing precise security notions required
of accumulators for use in DRBs.

Our contributions.
We formalize combining a VDF with an accumulator as Cornucopia (Section 3).
We prove (in Section 4) that this approach is secure when instantiated with any VDF and
any accumulator satisfying a natural security notion that we develop, insertion security.
We prove (in Section 5) that the most common accumulator constructions either nat-
urally feature insertion security (Merkle trees) or achieve it with trivial modifications
(RSA accumulators, bilinear accumulators, and accumulators from vector commitments),
meaning Cornucopia is practical to build from standard cryptographic assumptions and
implementations. We also show that we can construct an insertion-secure accumulator
generically from any universal accumulator (Section 5.6).
We compare performance of different accumulators which can be used to instantiate
Cornucopia in Section 6. No accumulator is clearly best in all settings, as different options
offer different trade-offs of communication and computation cost.
Finally, we discuss several natural extensions, including the multi-coordinator model to
ensure liveness (Section 7.1) and a notarized model to provide verifiability to passive
observers (Section 7.2).

2 Preliminaries

We use λ to denote a security parameter, and poly(λ) and negl(λ) to denote polynomial and
negligible functions of λ, respectively. We let [k] denote the set {1, . . . , k}. We use $←− (or
$−→) to denote the output of a randomized algorithm, or sampling uniformly at random from
a range. We use α to denote an advice string passed from a precomputation algorithm to
a later online algorithm. We assume all adversaries are limited to running in probabilistic
polynomial time (PPT) in the security parameter λ; some adversaries are further limited to
running in σ(t) steps on at most p(t) parallel processors, as defined for VDF sequentiality [9].
Both VDFs [9] and accumulators [5] rely on public parameters pp which all functions require
implicitly, though we will typically omit this for brevity.

AFT 2024

17:4 Cornucopia: Distributed Randomness at Scale

Gsequential
A0,A1,t,VDF(λ)

pp $←− VDF.Setup(λ, t)
α

$←− A0(pp)
x

$←− U

ỹ
$←− A1(α, x)

y, π ← VDF.Eval(pp, x)

return ỹ = y

Figure 1 VDF sequentiality game.

2.1 Verifiable delay functions
▶ Definition 1 (Verifiable delay function [9]). A verifiable delay function (VDF) is a tuple of
algorithms (Setup, Eval, Verify) where:
VDF.Setup(λ, t) → pp takes as input λ and a time parameter t and outputs public para-

meters pp.
VDF.Eval(pp, x) → (y, π) takes as input x and produces an output y and optional proof π.

This function should run in t sequential steps.
VDF.Verify(pp, x, y, π) → {true, false} takes an input x, output y, and optional proof π,

and returns true if (y, π) is a genuine output of Eval.

VDFs must satisfy the following three properties:
Verifiability. The verification algorithm is efficient (at most polylogarithmic in t and λ) and

always accepts when given a genuine output from VDF.Eval.
Uniqueness. VDF evaluation must be a function, meaning that VDF.Eval is a deterministic

algorithm and it is computationally infeasible to find two pairs (x, y), (x, y′) with y ≠ y′

that VDF.Verify will accept.
Sequentiality. VDFs must impose a computational delay. Roughly speaking, computing a

VDF successfully with non-negligible probability over a uniformly distributed challenge x

should be impossible without executing t sequential steps. Formally (adapted from [9]):

▶ Definition 2 (VDF sequentiality [9]). A VDF is (p, σ)-sequential if for all randomized
algorithms A0 which run in total time O(poly(t, λ)), and A1 which run in parallel time σ(t)
on at most p(t) processors:

Pr
[
Gsequential
A0,A1,t,VDF(λ) = 1

]
≤ negl(λ)

where Gsequential
A0,A1,t,VDF(λ) is defined in Figure 1.

2.2 Accumulators
▶ Definition 3 (Accumulator [5, 13]). Given a data universe U , an accumulator is a tuple of
algorithms (Setup, Accumulate, GetMemWit, MemVer) where:
Acc.Setup(λ) → pp takes as input λ and outputs public parameters pp.
Acc.Accumulate(S) → A takes as input a set S ⊆ U to be accumulated. It outputs A, an

accumulator value for S.
Acc.GetMemWit(S, A, x) → w takes as input a set S ⊆ U , an accumulator value A for

S, and an element x ∈ S. It outputs a membership witness w for x.
Acc.MemVer(A, x, w) → {true, false} takes as input an accumulator value A, an element

x, and a membership proof (membership witness) w. It outputs true if x is included in
the accumulated set represented by A and false otherwise.

M. Christ, K. Choi, and J. Bonneau 17:5

Gacc
A,Acc(λ)

pp $←− Acc.Setup(λ)
S, x, w

$←− A(pp)
A← Acc.Accumulate(S)

return
Acc.MemVer(A, x, w) ∧ x /∈ S

Figure 2 Accumulator security game.

We describe here only the accumulator functionality necessary for our purposes. Accu-
mulators generally also support an incremental Update function to add additional elements
to the accumulated set and dynamic accumulators support a Delete function to remove
elements [13]. Cornucopia does not require either capability; we assume in each run of the
protocol the coordinator collects all randomness contributions (the set being accumulated),
accumulates them in one batch operation and never deletes.

An accumulator is correct if MemVer always accepts for elements included in honestly
accumulated sets. An accumulator is computationally correct if it is computationally infeasible
to find a set such that an honestly generated inclusion proof for an element in that set does
not verify. The key security property of an accumulator is that for an honestly generated
accumulator value for some set S, it is infeasible to find a membership proof for an element
not in S:

▶ Definition 4 (Accumulator security [13]). An accumulator Acc is secure if no PPT adversary
A can succeed with non-negligible probability in Gacc

A,Acc(λ) as defined in Figure 2.

A universal accumulator [39] also supports non-membership proofs; that is, it supports
two additional functions:
Acc.GetNonMemWit(S, A, x′) → w′ takes as input a set S ⊆ U , an accumulator value A

for S, and an element x′ /∈ S. It outputs a non-membership witness w′ for x′.
Acc.NonMemVer(A, x′, w′) → {true, false} takes as input an accumulator value A, an

element x′, and a non-membership proof (non-membership witness) w′. It outputs true if
x′ is not included in the accumulated set represented by A and false otherwise.

For Cornucopia itself, a universal accumulator is not required as there is no reason for
the coordinator to prove to that any value is not included. However, in Section 5.6 we show
a generic transformation from any universal accumulator to an insertion-secure accumulator.

A universal accumulator is correct if, in addition to MemVer accepting for all included
elements, NonMemVer accepts for all non-included elements. Security requires that no
adversary can find valid membership and non-membership proofs for the same element:

▶ Definition 5 (Universal accumulator security [39]). A universal accumulator Acc is secure
if for all PPT adversaries A:

Pr

 pp $←− Acc.Setup(λ)
A, x, w, w′

$←− A(pp)
Acc.MemVer(A, x, w) ∧ Acc.NonMemVer(A, x, w′)

 ≤ negl(λ)

2.3 Vector commitments
We present only the functionality of vector commitments necessary for our applications.

AFT 2024

17:6 Cornucopia: Distributed Randomness at Scale

▶ Definition 6 (Vector commitment [15]). Given a message space M, a vector commitment
is a tuple of algorithms including:
KeyGen(λ, s) → pp takes in the security parameter λ and the size s of the committed vector,

and outputs public parameters pp.
Com(m1, . . . , ms) → C, aux takes as input a vector of s messages in M, and outputs a

commitment C and some auxiliary information aux.
Open(m, i, aux) → πi takes as input a message m ∈ M, an index i, and some auxiliary

information aux. It outputs a proof πi that the ith component of the committed vector is
m.

Ver(C, m, i, πi) → {true, false} takes as input a commitment, a message m, an index i,
and a proof that the ith component of the committed vector is m. It outputs true if and
only if the proof verifies.

A vector commitment must satisfy correctness, which requires that honestly generated
proofs for correct components of honestly generated vector commitments verify, as well as
position binding, which requires that an adversary cannot produce a (possibly maliciously
formed) commitment and two proofs of distinct values for the same component.

▶ Definition 7 (Position binding [15]). A vector commitment satisfies position binding if for
all i ∈ [s] and for all PPT adversaries A:

Pr

 pp $←− Acc.Setup(λ)
C, m, m′, i, πi, π′i

$←− A(pp)
Ver(C, m, i, πi) ∧ Ver(C, m′, i, π′i) ∧m ̸= m′

 ≤ negl(λ)

3 Timed DRBs: Definitions and Constructions

We first define timed DRBs using a generalized syntax, building on the definitions of [18].1

▶ Definition 8 (Timed DRBs). A timed DRB protocol is a tuple of algorithms
(Setup, Prepare, Post, Finalize, Verify):
Setup(λ, t) $−→ pp: The setup algorithm can be run once and outputs public parameters pp

used for multiple protocol runs.
Prepare(pp) $−→ ri: The prepare algorithm is run by each participant to produce a randomness

contribution ri. This contribution is submitted during the contribution phase, which is
bounded in length by the time parameter t.

Post({ri}) → (R, {πi}): The post algorithm is run by a coordinator immediately after the
end of the contribution phase, producing a commitment R to all users’ contributions and
(optionally) a list of user-specific proofs πi. Typically, this value R will be posted to a
public bulletin board, whereas πi will be made privately available.

Finalize(pp, R) → (Ω, πΩ): The finalize algorithm is run after the post algorithm, evaluating
a delay function on R to produce a final DRB output Ω and (optionally) a proof πΩ. It is
a deterministic algorithm running in time (1 + ϵ)t for some small ϵ.

Verify(pp, R, Ω, πΩ, ri, πi) → {true, false}: Individual users should verify both the final
DRB output Ω as well as that their contribution ri was correctly included, possibly with
the help of an auxiliary user-specific proof πi.

1 Note that our syntax here is specific to one-round timed DRBs. Some timed DRBs such as Bicorn [18]
have an optional second communication round.

M. Christ, K. Choi, and J. Bonneau 17:7

Gindist
A,t,b,DRB(λ)

pp $←− Setup(λ, t)
r1

$←− Prepare(pp)
α0

$←− A0(pp)
α1, R, π1

$←− A1(α0, r1)
Ω0, π0 ← Finalize(pp, R)
Ω1

$←− U

b′ $←− A2(α1, Ωb)

return b = b′

∧ Verify(pp, R, Ω0, π0, r1, π1)

Gunpred
A,t,DRB(λ)

pp $←− Setup(λ, t)
r1

$←− Prepare(pp)
α0

$←− A0(pp)
Ω̃, πΩ̃, R, π1

$←− A1(α0, r1)

return Verify(pp, R, Ω̃, πΩ̃, r1, π1)

Figure 3 Security games for (p, σ)-indistinguishability (left) and (p, σ)-unpredictability (right).

A timed DRB has the following security properties (shown in Figure 3):

▶ Definition 9 ((p, σ)-unpredictability). The (p, σ)-unpredictability game tasks an adversary
with predicting the final output Ω exactly, allowing it control of all but a single honest
participant (which publishes first). This adversary’s computation is broken into two phases.
In the precomputation phase, before the adversary sees the honest contribution r1, it may
run an algorithm A0 that runs in time poly(λ, t). This algorithm outputs some advice string.
After seeing r1, the adversary is limited to running for σ(t) steps on at most p(t) parallel
processors, exactly like the adversary for VDF sequentiality (Definition 2). The adversary’s
advantage is: Advunpred

A,t,DRB(λ) = Pr
[
Gunpred
A,t,DRB(λ) = 1

]
.

The (p, σ)-unpredictability property only guarantees the DRB output cannot be predicted
exactly. We can define a stronger (p, σ)-indistinguishability property in which the adversary
must distinguish a DRB output from random, again allowing the adversary control of
all-but-one participants:

▶ Definition 10 ((p, σ)-indistinguishability). The (p, σ)-indistinguishability game is exactly
like the (p, σ)-unpredictability game, except with an extra input bit b. The challenger provides
the adversary the genuine output of Finalize if b = 0 and a random output if b = 1. The
adversary must, after running for at most σ(t) steps on at most p(t) parallel processors,
output a guess b′ for which output it received. We define the adversary’s advantage as:

Advindist
A,t,DRB(λ) =

∣∣Pr
[
Gindist
A,t,1,DRB(λ) = 1

]
− Pr

[
Gindist
A,t,0,DRB(λ) = 1

]∣∣
As observed by Boneh et al. [9], we can convert any timed DRB which satisfies (p, σ)-

unpredictability into one with (p, σ)-indistinguishability by applying a random oracle to the
output. Our main result (Theorem 14) shows Cornucopia is unpredictable, indistinguishability
thus immediately follows in the random oracle model (Corollary 15).

3.1 Unicorn
As a warm-up, we succinctly describe Unicorn [38] as a timed DRB in our framework in
Figure 4.2 Intuitively, Unicorn is secure because every user can check that their value is
included in the posted set {ri}. A VDF is evaluated on a hash of this set. A single honest

2 Note that the the original Unicorn proposal used the delay function Sloth, which computes modular
square roots modulo a prime. We describe Unicorn here using a modern VDF instead [9].

AFT 2024

17:8 Cornucopia: Distributed Randomness at Scale

Setup(λ, t) $−→ pp
pp← VDF.Setup(λ, t)

Prepare() $−→ ri

ri
$←− U

Post({ri})→ (R,∅)
R← {ri}

Finalize(R)→ (Ω, πΩ)
Ω, πΩ ← VDF.Eval(H(R))

Verify(pp, R, Ω, πΩ, ri, πi)→ {true, false}
return ri ∈ R ∧ VDF.Verify(H(R), Ω, πΩ)

Setup(λ, t) $−→ pp
pp← (VDF.Setup(λ, t), Acc.Setup(λ))

Prepare() $−→ ri

ri
$←− U

Post({ri})→ (R, {πi})
R← Acc.Accumulate({ri})
πi ← Acc.GetMemWit({rj}, R, ri)

Finalize(R)→ (Ω, πΩ)
Ω, πΩ ← VDF.Eval(H(R))

Verify(pp, R, Ω, πΩ, ri, πi)→ {true, false}
return VDF.Verify(H(R), Ω, πΩ)
∧ Acc.MemVer(R, ri, πi)

Figure 4 The Unicorn timed DRB protocol [38] (left) and the Cornucopia protocol (right).

user is enough to ensure this hashed value cannot have been precomputed by the adversary.
Unicorn’s security is directly implied by our security proof for Cornucopia in Theorem 14,
as Unicorn is a special case using the trivial “concatenation accumulator”.3 The primary
downside of Unicorn is the fact that |R| = Θ(n). The goal of Cornucopia is to achieve the
same security as Unicorn while storing only Θ(1) data on the public bulletin board.

3.2 Cornucopia
Cornucopia, shown in Figure 4, improves on Unicorn by having the coordinator accumulate all
user contributions into a succinct commitment R using a cryptographic accumulator scheme
(see Section 2). Because |R| does not grow with the number of participants, Cornucopia
easily scales to many users with constant publishing costs. Our indistinguishability and
unpredictability definitions ensure that the protocol is secure as long as a single honest user
contributes, so any honest user can be convinced the final result is random as long as they
are convinced that their contribution was included.

Note that our Cornucopia presentation and security definitions focus on security against
manipulation and not on liveness; the coordinator can trivially block individual participants
or even prevent the protocol from running at all. In Section 7.1 we revisit this and introduce
the multi-coordinator model to ensure liveness even if all-but-one coordinators act maliciously.

4 Cornucopia Security

The security of Cornucopia relies on the adversary’s inability to predict the output of the
VDF. This also requires that the adversary cannot produce an accumulator value satisfying
an honest participant before seeing that participant’s randomness contribution. If it were
able to do so, it could precompute the output of the VDF applied to this accumulator value
and predict the output of the randomness beacon. However, the participant would still
receive a valid proof that their contribution was included and believe that the randomness
beacon was unpredictable. A trivial attack would be to accumulate the entire data universe,
ensuring any user contribution could be proven “included.” To formalize this requirement, we
define a novel security property for accumulators, called insertion security. We then prove
that Cornucopia is secure when instantiated with any insertion-secure accumulator.

3 Lenstra and Wesolowski prove security of Unicorn in a slightly different model [38].

M. Christ, K. Choi, and J. Bonneau 17:9

Ginsert
A,Acc (λ)

pp $←− Acc.Setup(λ)
A← A(pp)
x

$←− U
w ← A(pp, A, x)

return Acc.MemVer(A, x, w)

Figure 5 Insertion security game.

4.1 Insertion Security
Intuitively, an accumulator is insertion-secure if it is infeasible for any efficient adversary
to accumulate a non-negligible fraction of the data universe. We formalize this property
using an insertion security game, shown in Figure 5. To win the insertion security game, the
adversary must produce an accumulator value A such that it can supply a membership proof
for a randomly chosen element with non-negligible probability. Note that the adversary is
not limited to producing A via the normal Accumulate function; it can compute A using any
procedure at all. Using this game, insertion security is defined as follows:

▶ Definition 11 (Insertion Security). An accumulator is insertion-secure if for any PPT
algorithm A, the probability of A winning the insertion security game (Figure 5) is negligible:

Pr
[
Ginsert
A,Acc(λ) = 1

]
≤ negl(λ)

Although insertion security is (to our knowledge) a novel property of accumulators, it
turns out that many constructions are naturally insertion-secure, as we will show in Section 5.

Necessity of insertion security. We will show that insecurity security is sufficient for
Cornucopia in Theorem 14. We can also show insertion security is necessary. To see why,
suppose that the underlying accumulator is not insertion-secure. The adversary is therefore
able to produce some A such that with noticeable probability, it can efficiently compute a
membership proof for a random element with respect to A. The adversarial coordinator
precomputes Ω = VDF.Eval(H(A)) and predicts that this will be the beacon output. The
coordinator then accepts randomness contributions from the participants, and in the Post
protocol outputs A regardless of the values of these contributions. Now, consider some honest
participant. With noticeable probability, the adversary is able to produce a membership
proof with respect to A for their randomness contribution. Therefore, this honest participant
accepts. However, this breaks security, as the adversary correctly predicted the output Ω.
Combined with our proof of Theorem 14, this shows that our definition is tight – insertion
security is both necessary and sufficient.

Incomparability with standard accumulator security. We can show that insertion security is
incomparable to standard accumulator security (Definition 4). Given any secure accumulator
scheme Acc, one can construct an accumulator Acc’ which is not insertion-secure, but
otherwise satisfies the standard security definitions of an accumulator. One approach is
to add a special symbol ϵ which is defined as the accumulation of the entire data universe
U . Acc’.MemVer(A, x, w) is defined to be 1 if A = ϵ (regardless of the value of x or w),
and otherwise is equal to Acc.MemVer(A, x, w). The scheme Acc’ can be used exactly as
Acc in normal operation, with the extra property that ϵ is a “shortcut” to computing an
accumulation of the entire data universe. We show later in Section 5 that some common
schemes such as RSA and bilinear accumulators naturally feature this shortcut.

AFT 2024

17:10 Cornucopia: Distributed Randomness at Scale

On the other hand, insertion security does not imply standard accumulator security.
Recall that an accumulator is secure if an adversary cannot produce an honestly computed
commitment A to a set S, an element x /∈ S, and a valid membership proof for x with respect
to A. Now, consider modifying an insertion-secure accumulator so that for a special element
x∗, any witness is accepted; that is, MemVer(A, x∗, w) outputs true for all A and w. This
resulting accumulator is still insertion-secure, as x∗ is chosen as the challenge element with
only negligible probability; however, it does not satisfy standard accumulator security as it
is possible to provide a valid proof for x∗ even if it was not in the genuinely accumulated set.

4.2 Security of Cornucopia
Before proving our main result (Theorem 14), we first prove two useful lemmas. The first
is that if Cornucopia is constructed using an insertion-secure accumulator, an adversary
cannot guess a satisfactory R before seeing the contribution r1 of the sole honest participant.
Insertion security implies that it is difficult to precompute an accumulator value for which
one can provide a membership proof of a random element. The second lemma states that if
the adversary does not query R to the random oracle in its precomputation phase, it cannot
output Ω̃ = VDF.Eval(H(R)). This is because after the precomputation phase, the adversary
is (p, σ)-sequential and therefore cannot evaluate the VDF; thus, to prove this lemma we
invoke VDF sequentiality. Together, these lemmas make it straightforward to prove that
Cornucopia (CC for short) is secure given any insertion-secure accumulator and secure VDF.

▶ Lemma 12. Let E1 be the event that Gunpred
A,t,CC (λ) = 1 and A0 queried R to the random

oracle. If CC is instantiated with an insertion-secure accumulator, then Pr [E1] ≤ negl(λ).

Proof. Suppose for the sake of contradiction that for some constant c > 0,

Pr
[
Gunpred
A,t,CC (λ) = 1 ∧ A0 queried R to the random oracle

]
≥ 1

λc

We define an adversary B that breaks insertion security of the accumulator scheme by
simulating the challenger in Gunpred

A,t,CC and using A = (A0,A1). B first receives Acc.pp in
Ginsert
B,Acc (λ). It samples VDF.pp ← VDF.Setup(λ, t) and passes pp = (Acc.pp, VDF.pp) to A0.
B simulates the challenger in Gunpred

A,t,CC (λ) and records the queries q1, . . . , qk that A0 makes to
the random oracle. B also receives α0 as the output of A0. B then chooses some query qi

uniformly at random from the queries made by A0 and outputs A = qi as its accumulator
value in Ginsert

B,Acc (λ). B then receives x from the challenger in Ginsert
B,Acc (λ), and it continues

simulating the Gunpred
A,t,CC (λ) challenger by passing α0 and r1 = x to A1. B receives (Ω̃, R, w1)

as the output of A1.
Since A succeeds with at least probability 1

λc ,

Pr[MemVer(R, x, w1) = true ∧ A0 queried R to the random oracle] ≥ 1
λc

Let q(λ) be some polynomial upper bounding the number of queries that A0 makes to the
random oracle; this polynomial must exist since A0 runs in polynomial time. Since B’s
random choice of qi is independent of A, Pr[MemVer(R, x, w1) = true ∧ A = R] ≥ 1

λc · 1
q(λ)

which is non-negligible. Thus, with non-negligible probability, Ginsert
B,Acc (λ) = 1. ◀

▶ Lemma 13. Let E2 be the event that Gunpred
A,t,CC (λ) = 1 and A0 did not query R to the random

oracle. If CC is instantiated with an insertion-secure accumulator and a (p, σ)-sequential
VDF, then Pr [E2] ≤ negl(λ).

M. Christ, K. Choi, and J. Bonneau 17:11

Proof. Suppose for the sake of contradiction that for some constant c > 0,

Pr
[
Gunpred
A,t,CC (λ) = 1 ∧ A0 did not query R to the random oracle

]
≥ 1

λc

We define an adversary B = (B0,B1) that breaks (p, σ)-sequentiality of the VDF by simulating
the challenger and random oracle in Gunpred

A,t,CC and using A = (A0,A1). When A evaluates the
hash function it must query B. B responds in a way that is indistinguishable (to A) from a
random function.
B0 first receives (λ, VDF.pp, t) from the VDF challenger in Gsequential

B0,B1,t,VDF(λ). B0 samples
Acc.pp ← Acc.Setup(λ) and passes pp = (VDF.pp, Acc.pp) to A0. B0 answers A0’s random
oracle queries using uniformly random values. It records these queries and their responses in
a list Q. If any query is repeated, B0 answers consistently with its previous response in Q.
A0 outputs an advice string α0, which B0 outputs as part of its advice string α = (α0, Q).

Now, the VDF challenger samples a random input x which is passed to B1 along with
VDF.pp and α. B1 passes α0 and a randomly-generated value r1

$←− Prepare(pp) to A1. B1
then simulates the random oracle for A1, with one key modification: B1 chooses an index
i ≤ p(t) · t uniformly at random4 and answers A1’s ith random oracle query qi with x

(provided that qi has not been previously queried, otherwise it responds with the appropriate
value from Q). It answers any future repeated queries qi similarly. For all other queries, B1
answers randomly the first time and then consistent with its stored responses in Q. When
A1 outputs (Ω̃, R, w1), B1 outputs Ω̃.

B properly simulates the random oracle. Since x is a uniformly random value and all
other queries receive random responses, B1 does not change the output distribution of the
random oracle and hence does not affect A1’s behavior.

If A succeeds, B succeeds with non-negligible probability. We now argue that if A wins
Gunpred
A,t,CC , B wins Gsequential

B0,B1,t,VDF(λ) with non-negligible probability. First, recall that if A wins,
DRB.Verify holds. By uniqueness of the VDF, the probability that A1 outputs a proof πΩ
such that VDF.Verify(VDF.pp, H(R), Ω̃, πΩ) = 1 yet Ω̃ ̸= VDF.Eval(H(R)) is negligible. Thus,
since DRB.Verify holds, A1 must have output Ω̃ = VDF.Eval(H(R)).

We now show that the fact that A1 outputs VDF.Eval(H(R)) implies that B breaks
(p, σ)-sequentiality of the VDF. Because the index i of the query to be replaced was chosen
uniformly and independently of A1, qi was chosen to be the first instance that R was queried
by A1 with probability at least 1

p(t)·t . Since A0 did not query R, we can indeed make this
replacement. Therefore, with non-negligible probability B1 simulates the random oracle to
answer R with x, and Ω̃ = VDF.Eval(x) as desired.

Thus, for (Ω̃, R, w1) output by A1, it holds that

Pr
[
Ω̃ = VDF.Eval(H(R)) ∧ A0 did not query R to the RO

]
≥ 1

λc

In the above, we assumed that A1 queried R to the random oracle. If A1 did not query R to
the random oracle, it has anyways succeeded in computing the VDF output on H(R) which
is a random value and identically distributed to x. ◀

Given these lemmas, we can now succinctly prove our main result:

4 We use p(t) · t as a generous upper bound on the number of random oracle queries made by A1, if every
processor queries the oracle in every time step.

AFT 2024

17:12 Cornucopia: Distributed Randomness at Scale

▶ Theorem 14 (Unpredictability of Cornucopia). Cornucopia is (p, σ)-unpredictable when
instantiated with an insertion-secure accumulator, a (p, σ)-sequential VDF, and a hash
function modeled as a random oracle.

Proof. Let E1 be the event that Gunpred
A,t,CC (λ) = 1 and A0 queried R to the random oracle. Let

E2 be the event that Gunpred
A,t,CC (λ) = 1 and A0 did not query R to the random oracle.

Observe that Pr[Gunpred
A,t,CC (λ) = 1] = Pr[E1] + Pr[E2]. By Lemma 12, Pr[E1] ≤ negl(λ). By

Lemma 13, Pr[E2] ≤ negl(λ). Therefore, Pr[Gunpred
A,t,CC (λ) = 1] ≤ negl(λ). ◀

▶ Corollary 15. Cornucopia is (p, σ)-indistinguishable when a random oracle is applied to
its output.

5 Insertion-secure accumulators

We now turn to the question of instantiating accumulators satisfying insertion security
(Definition 11).

5.1 Accumulators without insertion security
Recall from Section 4.1 that one can construct accumulators that have a shortcut ϵ that
accumulates the entire data universe. RSA accumulators naturally feature such a shortcut:
ϵ = 1. A valid membership witness for any x is w = 1, since wx = 1x = 1. Although
we will prove RSA accumulators can easily be made insertion-secure by disallowing an
accumulator value of 1, technically they are not insertion-secure as commonly specified.
Bilinear accumulators have the same shortcut, which we remove with the same modification.

A second example, potentially of practical interest, is a range accumulator. A range
accumulator can be defined from any accumulator scheme and for any data universe with a
known total ordering (for example, any fixed subset of the integers such as {0, 1}k). With a
range accumulator, the value H(x, y) can be accumulated, which is interpreted as adding
a range [x, y] (the value H(x, x) can be accumulated to add a single element x). Given
any value z, proving membership can be achieved by providing a witness w′ = (w, x, y)
where w = Acc.GetMemWit(S, A, H(x, y)) for x ≤ z ≤ y. This concept is quite natural and
efficient, though it is also trivially not insertion-secure: an adversary can win Ginsert

A,Acc(λ) with
probability 1 by accumulating the value H(xmin, xmax) for the smallest and largest data
elements in U , effectively accumulating the entire data universe in constant time.5

5.2 Merkle trees
▶ Lemma 16. A Merkle tree of bounded depth k = poly(n) is insertion-secure in the random
oracle model.

Proof. We work in the random oracle model, supposing that the Merkle tree uses a random
oracle O : {0, 1}2n → {0, 1}n. Let A be the accumulator output by an adversary A in
Ginsert
A,Acc(λ). We show that for a uniform x ∈ {0, 1}n, the adversary can provide a verifying

witness w = (w1, . . . , wk) for x with only negligible probability. For a verifying witness,
it must hold that O(wk|| . . .O(w2||O(w1||x))) = A. We’ll show that with overwhelming
probability (over choice of x), no query to O involved in the witness verification was made
by the adversary in step 2 of Ginsert

A,Acc(λ).

5 The adversary can in fact win with non-negligible probability by accumulating any range whose size is a
constant fraction of |U |.

M. Christ, K. Choi, and J. Bonneau 17:13

This can be shown by induction. Let a1, . . . , aℓ be the adversary’s queries to the random
oracle in step 2. Let b1, . . . , bk be the queries to the random oracle in the Merkle membership
proof verification; that is, bi = wi||O(wi−1|| . . .). Let p(λ) be a polynomial upper bound on
the total number of queries made by the adversary to the random oracle throughout the
game. Observe first that Pr[b1 = aj for some j] = ℓ

2λ since b1 = w1||x and x is chosen at
random. Assume that the probability that bi is equal to any aj is at most iℓ·p(λ)

2λ . If this
event does not occur, then O(bi+1) = O(wi+1||O(bi)) is a freshly random value, and the
probability that bi+1 = aj for any j is at most ℓ·p(λ)

2λ (since A can try up to p(λ) values for
wi+1).

Pr [bi+1 = aj for some j] ≤ ℓ · p(λ)
2λ

Pr [bi ̸= aj for all j]

+ Pr [bi = aj for some j]

≤ ℓ · p(λ)
2λ

+ iℓ · p(λ)
2λ

= (i + 1)ℓ · p(λ)
2λ

since Pr[bi = aj for some j] ≤ iℓ·p(λ)
2λ by assumption. Therefore, the probability that any of

the (polynomially bounded) k queries involved in witness verification was queried in step 2
is at most kℓ·p(λ)

2λ ≤ negl(λ).
In order for witness verification to pass, the last query must match the root;

that is, O(wk|| . . .O(w2||O(w1||x))) = A. Since the above argument shows that
(wk|| . . .O(w2||O(w1||x))) was never queried in step 2, at the end of which A outputs A, for
each choice of wk, O(wk|| . . .O(w2||O(w1||x))) is a uniformly random value independent of
A and equals A with only negligible probability. ◀

5.3 RSA accumulators
In a standard RSA accumulator [13, 40], Setup(λ) generates a random group of unknown
order and a generator g for this group using some group generation algorithm GenGroup.
The data universe is Πλ, the set of all λ-bit primes. The accumulator value for a set S is
A = g

∏
x∈S

x, and the witness w for an element x for the value A is w = g

∏
x′∈S\{x}

x′

= A1/x.
Add(At, x) outputs At+1 = Ax

t . Thus, the accumulator value for a set S can be obtained
by starting with the value A0 = 1 and adding each xi ∈ S to Ai=1 to obtain Ai, repeating
until we reach A|S|. UpdWit(At, x, w′t) outputs w′t+1 = (w′t)x. MemVer(A, x, w) outputs 1 if
and only if wx = A. A non-membership witness for x with respect to A = g

∏
s∈S

s is {a, B}
where a and b are Bézout coefficients for (x,

∏
s∈S s), and B = gb. NonMemVer(A, {a, B}, x)

outputs 1 if and only if AaBx = g.
To make RSA accumulators insertion-secure, we add a second condition to

MemVer(A, x, w): It now outputs 1 if and only if wx = A and A ̸= 1. Note that our
requirement that A ≠ 1 is necessary to reduce insertion security to the Adaptive Root
Assumption.

▶ Assumption 17 (Adaptive Root Assumption [10]).

Pr


G $←− GenGroup(λ)

(v, st) ← A0(G)
ul = v ̸= 1 : l

$←− Πλ = Primes(λ)
u ← A1(v, l, st)

 ≤ negl(λ)

AFT 2024

17:14 Cornucopia: Distributed Randomness at Scale

▶ Lemma 18. Suppose a standard RSA accumulator is modified so that the algorithm
MemVer(A, x, w) outputs 1 if and only if wx = A and A ̸= 1. The modified RSA accumulator
is insertion-secure if the Adaptive Root Assumption holds for the group generation algorithm
GenGroup.

Proof. Suppose that there exists a PPT adversary A that wins Ginsert
A,Acc(λ) with probability

at least 1
poly(λ) when the data universe is Πλ, the set of all λ-bit primes. We construct a

pair of adversaries B0,B1 that uses A to break the Adaptive Root Assumption. B0 draws
G $←− GenGroup(λ). B0 passes G to A and obtains an accumulator value A. B0 outputs v = A

and st as its current state. B1 draws a random l
$←− Πλ and passes x = l to A. A outputs an

alleged witness wx which B1 outputs directly as u in the Adaptive Root Game.
Recall that if A wins Ginsert

A,Acc(λ), it means that MemVer(A, x, wx) = true. For RSA
accumulators, MemVer(A, x, wx) = true if and only if (wx)x = A and A ̸= 1. This implies
that ul = v where v ̸= 1, and (B0,B1) win the Adaptive Root Game. Since A wins with
probability at least 1

poly(λ) , (B0,B1) win with probability at least 1
poly(λ) , violating the Adaptive

Root Assumption. ◀

▶ Corollary 19. The modified RSA accumulator is insertion-secure in the Algebraic Group
Model (AGM), since the Adaptive Root Assumption holds in the AGM [25].

5.4 Bilinear accumulators
We show that bilinear accumulators [42, 53] with a small modification are insertion-secure in
the AGM, under the Bilinear q-Strong Diffie-Hellman Assumption. The standard bilinear
accumulator was defined by Nguyen [42], and we follow [44] in its presentation. Let G,G be
cyclic multiplicative groups of prime order p, and let e : G×G→ G be a bilinear pairing. Let
s

$←− Z∗p, and let g be a generator of G. Let srs = [g, gs, . . . , gsq] be the structured reference
string, where q is an (polynomial in λ) upper bound on the number of accumulated elements.
The public parameters are (p,G,G, e, g, srs). Note that s must be kept secret even to the
coordinator, and therefore a trusted setup is required.

This accumulator has data universe U = Z∗p \ {−s}. To accumulate a set X ⊂ U ,

where |X| ≤ q, one computes A = g

∏
xi∈X

(xi+s). The witness for an element x ∈ X is
W = g

∏
xi∈(X\{x})

(xi+s). To verify a witness, one checks that e(W, gs+x) = e(A, g). To make
this accumulator insertion-secure, we also check that A ̸= 1.

In the Algebraic Group Model (AGM) [28], the adversary is constrained to perform only
algebraic operations within the given group. That is, the adversary is given some group
elements as input, and for any element that it outputs, it must provide a description of the
operations used to obtain that element. In our setting, the algebraic adversary is given as
input [1, g, gs, . . . , gsq]. For any group element h that the adversary outputs, it must provide
a scalar vector v ∈ Z∗p such that h =

∏q
i=0 gvi·si . We refer the reader to [28, 29] for a more

formal definition. Observe that the vi’s can be interpreted as the coefficients of a polynomial
of degree q evaluated at s. We use this interpretation in the following proof.

▶ Assumption 20 (q-Discrete Logarithm Assumption (q-DLOG) [28]). The q-DLOG assumption
holds in a group G if for every p.p.t. adversary A,

Pr
s←Z∗

p

[
A

(
g, gs, . . . , gsq

)
→ s

]
≤ negl(λ).

▶ Lemma 21. The bilinear accumulator of [42] is insertion-secure in the AGM, under the
q-DLOG Assumption.

M. Christ, K. Choi, and J. Bonneau 17:15

Proof. Let A be an algebraic adversary that takes srs as input and outputs A such that
with non-negligible probability, A can produce a verifying witness W for a randomly chosen
x ∈ Z∗p. Since A is algebraic, it must output vectors which we interpret as polynomials
α(S), w(S) of degree at most q such that A = gα(s) and W = gw(s). Since the witness
verifies, e(W, g)(s+x) = e(gα(s), g); that is, e(g, g)w(s)(s+x) = e(g, g)α(s). Furthermore, α(S)
is a nonzero polynomial since verification requires that A ̸= 1.

Observe that since x is chosen randomly from an exponentially large set, and α is a
nonzero polynomial of polynomially bounded degree, (S +x) divides α(S) with only negligible
probability by the Schwartz-Zippel lemma. Therefore, w(S)(S + x) − α(S) is a nonzero
polynomial that has s as a root. The adversary can factor w(S)(S + x)−α(S) in polynomial
time to find s. ◀

5.5 From vector commitments
Vector commitments (VCs) [15] can be used to construct an insertion-secure accumulator for
sets of bounded size ≤ k for any k polynomial in λ. Let the message space M underlying
our VC have size exponential in λ, and assume there is some total ordering over M. To
accumulate a set S ⊆ M, we order this set to obtain a vector and commit to this vector.
The witness for an element x ∈ S is an index i ≤ k and a VC opening proof for that index.
To verify this witness, one verifies the opening proof. This scheme is detailed below:

Setup(λ): Output pp← VC.Setup(λ).
Accumulate(S): Interpret S as an ordered list s1, . . . , s|S|, and let v = [s1, . . . , s|S|, 0, . . . , 0]

be a vector of length k. Compute C, aux ← VC.Commit(v).
GetMemWit(S, A, x): Compute C, aux from S as above. Let i be such that x = si.

Compute πi ← VC.Open(x, i, aux) and output (i, πi).
MemVer(A, x, (i, πi)): Output VC.Ver(A, x, i, πi).

Position binding of vector commitments says that it is infeasible for a PPT adversary
to produce any (possibly maliciously-generated) A, distinct values x, x′, an index i, and
accepting proofs πi, π′i that the vector committed to by A has x and x′ respectively as its ith

component. We prove insertion security by showing that an adversary that breaks insertion
security of this accumulator can be used to break position binding of the underlying VC
scheme.

▶ Theorem 22. When constructed with a vector commitment over an exponentially large
data universe, this accumulator scheme is insertion-secure.

Proof. Suppose that Pr
[
Ginsert
A,Acc(λ) = 1

]
is non-negligible. Let Ei denote the event that A

outputs a proof for index i. Then there must be some accumulator A and index i such that

Pr
pp←Setup(λ)

A←A(pp)

[
Pr

[
Ginsert
A,Acc(λ) = 1 ∧ Ei

∣∣ pp, A
]
≥ 1

λc1

]
≥ 1

λc2

for some constants c1, c2 > 0.
Consider drawing pp← Setup(λ) and running A(pp) to obtain A. As stated above, with

non-negligible probability, there exists some i such that with non-negligible probability given
this choice of pp, A the adversary produces a verifying proof for index i. Consider running A
twice from this point, for two independently drawn x1, x2 ← U . With probability at least

1
λ2c1 , A produces verifying opening proofs π1, π2 that the ith index of the committed vector
equals x1 and x2 respectively. Since U is exponentially large, x1 ̸= x2 with overwhelming

AFT 2024

17:16 Cornucopia: Distributed Randomness at Scale

probability. Therefore, we have found a vector commitment A and proofs π1, π2 that the
same component takes on two distinct values, contradicting position binding of the vector
commitment. ◀

5.6 From generic universal accumulators
Finally, we show how to construct an insertion-secure accumulator Acc′ from any universal
accumulator Acc. The core idea is to map each element x to two pseudorandom sets (S+

x , S−x),
each a subset of the data universe U . Proving membership of x for Acc′ requires showing
inclusion of all elements of S+

x in Acc and exclusion of all elements of S−x in Acc. Intuitively,
breaking insertion security by accumulating the entire data universe in Acc does not work
because it will make the required non-membership proofs impossible. The best attacker
strategy is to accumulate a random subset of half the elements of U , but this will mean that
each item in S+

x is wrongly excluded with probability 1
2 and each item in S−x is wrongly

included with probability 1
2 . By setting ensuring the sizes of S+

x , S−x , we can amplify security
to ensure such an adversary has only a negligible probability of correctly showing inclusion
of a random element.

In more detail, let Acc be a universal accumulator scheme for data universe U . Here, we
let the data universe for Acc′ be U ′ = {0, 1}λ. Let H : [λ]× U ′ → U be a hash function that
we will model as a random oracle. For any x ∈ U ′, let S+

x :=
{

y : H(i, x) = y for i ∈ [λ
2]

}
,

and let S−x :=
{

y : H(i, x) = y for i ∈
{

(λ
2 + 1), . . . , λ

}}
(assume for convenience that λ is

even). We specify the functions of Acc′ as follows:

Setup: uses the same setup function as Acc.
Accumulate(S′): Let S =

⋃
x∈S′ S+

x . Outputs A = Acc.Accumulate(S).
GetMemWit(S′, A, x): Outputs a vector of witnesses w of length λ where:

For i ≤ λ
2 , wi = Acc.GetMemWit(S, A, H(i, x)) is a membership proof for H(i, x)

For i > λ
2 , wi = Acc.GetNonMemWit(S, A, H(i, x)) is a non-membership proof for

H(i, x)
MemVer(A, x, w): Outputs true if and only if the following holds for all i ∈ [λ]:

For i ≤ λ
2 , Acc.MemVer(A, H(i, x), wi) = true.

For i > λ
2 , Acc.NonMemVer(A, H(i, x), wi) = true.

▶ Lemma 23. If Acc is a secure universal accumulator and H is modeled as a random oracle,
Acc′ is insertion-secure.

Proof. Suppose for the sake of contradiction that Acc′ is not insertion-secure, and let A be
an adversary that wins the insertion game with probability at least 1

λc for some constant
c > 0, conditioned on the event that it does not query x before it outputs A. (Since A
is polynomially-bounded, this event fails to occur with only negligible probability). Thus,
treating H as a random oracle, H(x) is a λ-length tuple of truly random independent values
yi ∈ U , where y1, . . . , y λ

2
should be included, and y λ

2 +1, . . . , yλ should be excluded.
Equivalently, we can think of drawing y = y1, . . . , yλ (uniform and i.i.d. from U) and

subsequently drawing a uniformly random vector b of Hamming weight λ
2 , where yi should

be included if and only if bi = 1.
By an averaging argument, we must have that for a non-negligible fraction of y ∈ X,

A succeeds with non-negligible probability over subsequent choice of b ∈ {0, 1}λ. Let
E [A, y, b, w] denote the event that Acc.MemVer(A, yi, wi) = true for all i such that bi = 1,

M. Christ, K. Choi, and J. Bonneau 17:17

and Acc.NonMemVer(A, yi, wi) = true for all i such that bi = 0. The success of A in Ginsert
A,Acc′(λ)

implies that E [A, y, b, w] occurs for its choice of A and w, and the random choice of y, b.
Thus,

Pr
pp

$←−Setup(λ)
y

[
A outputs A such that

Prb [w← A∧ E [A, y, b, w]] ≥ 1
λc

]
≥ 1

λc

We now construct an adversary B that breaks universal security of Acc by producing an
accumulator value, an element, and both membership and non-membership proofs for that
element. Let B first generate setup parameters and run A on these parameters to obtain
an accumulator value A. Let B choose y as above and b1, b2 uniformly random vectors of
Hamming weight λ

2 . B runs A on inputs (y, b1) and (y, b2) to obtain w1 and w2 respectively.
With probability at least 1

λc , B chose pp and y such that Prb [w← A∧ E [A, y, b, w]] ≥ 1
λc .

In this event, the probability that both w1 and w2 verify is at least 1
λ2c . As b1 = b2

with only negligible probability (since
(

n
n/2

)
≥ 2n/2), with overwhelming probability there

is some i such that (b1)i ≠ (b2)i. However, we have (without loss of generality) both that
Acc.MemVer(A, yi, (w1)i) = true and Acc.NonMemVer(A, yi, (w2)i) = true. This happens
with probability at least 1

λc · 1
λ2c ·

(
1− 1

2λ

)
, which is non-negligible. This contradicts universal

security of Acc. ◀

Correctness. Accumulators typically require correctness, which says that given an honestly-
generated accumulator value for a set, honestly-generated membership proofs for elements in
that set should verify under MemVer; similarly, honestly-generated non-membership proofs
for elements not in that set should verify under NonMemVer. We note that Acc′ has only
computational correctness, since there may be some x1, x2 for which the same y is included
in S+

x1
and S−x2

. This is problematic, since the membership proofs for x1, x2 would require a
membership proof and a non-membership proof for y (with respect to Acc), which should be
difficult by security of Acc, and hence x1 and x2 cannot both be included in the accumulator.
In Cornucopia, if one user chose x1 and another user chose x2, the coordinator could not
satisfy both users.

Fortunately, collision resistance of H ensures that actually finding such x1, x2 is computa-
tionally hard: finding x1, x2 such that y ∈ S+

x1
and y ∈ S−x2

would involve finding i1 ̸= i2 such
that y = H(i1, x1) = H(i2, x2), which yields a collision of H. Computational correctness
is sufficient for use in Cornucopia (and most other applications), as polynomially-bounded
users would not be able to find x1 and x2 resulting in the above issue.

6 Efficiency comparison of accumulator constructions

Cornucopia can be constructed from any insertion-secure accumulator. In Table 1 we compare
efficiency trade-offs between Merkle trees, RSA accumulators, bilinear accumulators, and a
construction from a vector commitment called Hyperproofs. All of these schemes require only
O(1) space on the public bulletin board, regardless of the number of participants, though
the concrete size varies. No accumulator construction offers obviously superior performance,
each offers different trade-offs which might be attractive for different practical applications.
For very large deployments (e.g. millions or billions of users) the performance bottleneck is
likely inclusion proof generation by the coordinator.

AFT 2024

17:18 Cornucopia: Distributed Randomness at Scale

Table 1 Comparison of accumulator options for Cornucopia, at a security level of λ = 128 bits.
Witness generation time is the time required to compute all n witnesses.
†RSA accumulators can be instantiated using class groups [41], which do not require trusted setup.
We report numbers here for the classic RSA group Z∗

N .

Trusted |commitment| Witness size |Public params| Witness gen. time
Scheme setup? (bytes) (asymp.) (bytes) (asymp.) (asymp.)

Merkle tree no 32 O(log n) 32 · ⌈log n⌉ O(1) O(n log n)
RSA Accumulator yes† 384 O(1) 384 O(1) O(n2)

Bilinear Accumulator yes 48 O(1) 48 O(n) O(n log n)
Hyperproofs [52] yes 48 O(log n) 48 · ⌈log n⌉ O(n) O(n log n)

Merkle trees. Merkle trees are optimal in terms of the commitment size (32 bytes), require
no trusted setup or public parameters and are naturally post-quantum secure. They are also
the most efficient for the coordinator to compute witnesses, both in asymptotic and concrete
terms. The only downside of Merkle trees is logarithmic witness sizes. Overall, we expect
this to be the simplest and best approach for many applications, unless clients are extremely
bandwidth-limited or the number of users is very large.

RSA accumulators. By contrast, RSA accumulators offer constant witness sizes, potentially
offering the capability to scale to more users without imposing extra bandwidth requirements
on clients. However, we note that the large size of RSA groups considered to offer 128-bit
security (3072 bit moduli) means that Merkle proofs are shorter in practice with fewer than
≈ 212 users participating. RSA proofs also require computing modular exponentiation on
large integers. This is relatively poorly supported by today’s smart contract platforms like
EVM, but we observe that these only ever need to be verified off-chain by users. Still, proof
verification is expected to be roughly an order of magnitude slower than Merkle proofs which
only require hashing (though both are very efficient in concrete terms).

Furthermore, the size of the public commitment is over 10 times larger than for Merkle
trees. This cost can be significant if the public bulletin board is an L1 blockchain such as
Ethereum, where every 32-byte word stored on-chain costs over US$2 at today’s gas prices.
RSA accumulators also impose the highest costs on the coordinator (O(n2)) to compute
witnesses, which may limit scalability.

RSA accumulators also require a trusted setup. This can be done for traditional RSA
groups Z∗N as a multiparty ceremony [16]. Deployments may also use class groups of imaginary
quadratic order [12, 41], which avoid the need for trusted setup but have higher concrete
overhead and lack well-understood security parameters.

Finally, we note that there may be interesting optimizations when combining RSA
accumulators with RSA-based VDFs [45, 56], such as offering a combined proof of inclusion
and VDF evaluation.

Bilinear accumulators. Bilinear accumulators can offer the combination of small (48 byte)
commitments and constant-sized membership proofs (48 bytes) along with the same asymp-
totic efficiency as Merkle trees for computing membership proofs (O(n log n)). Bilinear
accumulators offer higher concrete overhead than for Merkle trees. In particular, they require
pairing operations which are relatively expensive compared to hashing (though still cheap in
concrete terms). However, only a single pairing operation by verifiers is required.

The downside is that bilinear accumulators require a trusted setup of an O(n)-sized
structured reference string. This powers-of-tau string is common to many protocols and
there are many approaches to generating it in a distributed manner [36, 43]. For example,

M. Christ, K. Choi, and J. Bonneau 17:19

the Filecoin setup generated 227 powers of tau which can be used in a bilinear accumulator
with up to 227 ≈ 130 million participants [26]. Ethereum generated a smaller string with 212

powers of tau in a community setup [27]. While the coordinator must store this entire string,
participants need only access O(1) terms to verify that their contributions were included.

Hyperproofs. Finally, Hyperproofs [52] is a vector commitment scheme with the feature
that witnesses can be generated in batch very efficiently – generating all n witnesses takes
O(n log n) time. Concretely, computing all n witnesses takes 0.7 hours for n = 222 and
2.7 hours for n = 224 as implemented in [52]. Verifying witnesses takes on the order of
milliseconds. This efficiency is immediately inherited by the accumulator constructed using
our approach in Subsection 5.5. The drawback of Hyperproofs is that it requires linear-sized
public parameters that must be generated using a trusted setup. Merkle trees and bilinear
accumulators also allow all witnesses to be batch computed in O(n log n) time.

7 Concluding Discussion

Cornucopia is a simple but powerful framework for VDF-based DRBs, using accumulators to
construct open-participation randomness beacon protocols at massive scale. Our work shows
that this paradigm is secure, and it can be instantiated with efficient accumulators which are
already in common practical use (see Section 6). We discuss important practical extensions
to the Cornucopia framework, leaving a complete analysis to future work.

7.1 The multi-coordinator model
Basic Cornucopia is entirely dependent on the (single) coordinator to achieve liveness; a
malicious coordinator could prevent targeted individuals from contributing to the protocol
(censorship), or even withhold the commitment R and prevent the protocol from finishing at
all. This does not undermine our DRB security definitions (Section 3) since the coordinator
cannot do so conditionally based on the impending outcome, but they can arbitrarily bias
the outcome if they successfully block all honest participants.

A natural way to ensure liveness is to allow k > 1 coordinators, each of which
posts an accumulator value Ri. The final beacon output is then computed as Ω =
VDF.Eval(H(R1|| . . . ||Rk)). In the limit, every user might be their own coordinator (k = n),
in which case the protocol is exactly the original Unicorn proposal [38]. Any number of
malicious coordinators cannot undermine security of the protocol as long as least one honest
contributor submits a value to one honest coordinator.

If any coordinator is honest, the protocol will finish, hence we can achieve liveness if
any of k coordinators is honest. Users can submit contributions to multiple coordinators
and trust the final output Ω as long as at least one coordinator includes their contribution.
Combined, we can achieve 1-out-of-k liveness and 1-out-of-n security (for n contributors and
k coordinators) for k ≤ n.

While security and liveness are maximal with k = n, we note that in blockchain de-
ployments the on-chain cost is O(k), hence choosing k ≪ n is likely required for efficiency
considerations. Furthermore, the consequences of a security failure are more severe than
a liveness failure, and a liveness failure will be visible on-chain whereas manipulating a
randomness beacon is typically impossible to detect.

In a blockchain setting, there is no need to fix the set of coordinators; any party can
act as a coordinator as long as they are willing to pay the cost (e.g. gas) of posting their
accumulation Ri to the bulletin board. Coordinators can even use different accumulators

AFT 2024

17:20 Cornucopia: Distributed Randomness at Scale

with different efficiency trade-offs. For example, a user participating across many epochs
may prioritize shorter witnesses and prefer a coordinator using a bilinear accumulator with
constant-sized witnesses but a trusted setup. Another user who participates only once may
opt for a coordinator using a Merkle tree, requiring an O(log n)-sized witness but avoiding
the need for a trusted setup.

7.2 Public verifiability with notaries

As proposed, Cornucopia only offers meaningful security guarantees to participants who
have contributed randomness to the protocol. Passive observers will have no idea if the
coordinator actually included any honest participants’ values in the published commitment.
We can provide a notion of verifiability to purely passive observers by introducing a subset
of notarized participants with some public reputation for honesty.

Notaries may be organizations such as nonprofits or government bodies who commit
to participating in the protocol regularly. Each notary, after verifying its inclusion proof
from the coordinator, signs the accumulator value. These signatures might be published
by the coordinator or posted to the public bulletin board. To save space, they can be
compressed using using a succinct multi-signature scheme such as BLS [11], resulting in only
O(1) additional overhead.

Observers can now verify the set of notarized participants who have contributed to the
beacon output. As long as one of an observer’s trusted notaries is honest and has signed
the accumulator value, the final output Ω can be trusted. In practice, using BLS multi-
signatures, this would be about as efficient to verify as a threshold-signature-based protocol
like drand [24], while offering much stronger security (any honest notarized participant vs. a
majority of honest nodes in drand).

7.3 Incentivizing participation

Analyzing incentives in public randomness generation is an important open problem for
DRBs in general. For Cornucopia specifically, we must incentivize coordinator(s) to provide
a highly reliable service and expend non-trivial effort computing inclusion proofs. This is
somewhat similar to incentivizing nodes to participate in an honest-majority DRB such as
drand. In general, randomness beacons are a public good in that they are non-rivalrous
(their value is not decreased as more users rely on them) and non-excludable (it is difficult to
prevent anybody from utilizing them for their own purposes). Standard economic theory
predicts that public goods are susceptible to free-riding: users may not want to contribute
to funding a coordinator if they can rely on the efforts of others to do so and still utilize
the randomness beacon. We hope that the relatively low costs of running a coordinator
means it might attract corporate sponsorship for publicity, be run by a foundation, or receive
government support.

Second, in Cornucopia we must incentivize users to regularly contribute randomness and
to ensure their local machine is uncompromised and generating randomness correctly. The
potentially large scale of Cornucopia instances might paradoxically decrease user motivation:
if the protocol is secure as long as at least one other user is honest, why expend the effort to
contribute at all? This is a version of the bystander effect, whereby opening participation to
more parties which can contribute security means all of them may figure somebody else will
do it. Hopefully, the open nature of Cornucopia may provide a new type of incentive, as by
participating users themselves gain trust that the result is secure.

M. Christ, K. Choi, and J. Bonneau 17:21

References
1 Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure

Multiparty Computations on Bitcoin. In IEEE Security & Privacy, 2014.
2 Renas Bacho, Christoph Lenzen, Julian Loss, Simon Ochsenreither, and Dimitrios Papa-

christoudis. GRandLine: First Adaptively Secure DKG and Randomness Beacon with (Almost)
Quadratic Communication Complexity. Cryptology ePrint Archive, Paper 2023/1887, 2023.

3 Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and minima
of banzhaf values. In FOCS, 1985.

4 Michael Ben-Or and Nathan Linial. Collective coin flipping. Advances in Computing Research,
1989.

5 Josh Benaloh and Michael De Mare. One-way accumulators: A decentralized alternative to
digital signatures. In Eurocrypt, 1993.

6 Adithya Bhat, Aniket Kate, Kartik Nayak, and Nibesh Shrestha. OptRand: Optimistically
responsive distributed random beacons. Cryptology ePrint Archive, Paper 2022/193, 2022.

7 Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. RandPiper – Reconfiguration-
Friendly Random Beacons with Quadratic Communication. Cryptology ePrint Archive, Paper
2020/1590, 2020.

8 Manuel Blum. Coin flipping by telephone a protocol for solving impossible problems. ACM
SIGACT News, 1983.

9 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable Delay Functions. In
CRYPTO, 2018.

10 Dan Boneh, Benedikt Bünz, and Ben Fisch. A Survey of Two Verifiable Delay Functions.
Cryptology ePrint Archive, Paper 2018/712, 2018.

11 Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In Asiacrypt, 2018.

12 Johannes Buchmann and Safuat Hamdy. A survey on IQ cryptography. In Public-Key
Cryptography and Computational Number Theory, 2011.

13 Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In CRYPTO, 2002.

14 Ignacio Cascudo and Bernardo David. Albatross: publicly attestable batched randomness
based on secret sharing. In Asiacrypt, 2020.

15 Dario Catalano and Dario Fiore. Vector commitments and their applications. In PKC, 2013.
16 Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere,

Abhi Shelat, Muthu Venkitasubramaniam, and Ruihan Wang. Diogenes: Lightweight Scalable
RSA Modulus Generation with a Dishonest Majority. In IEEE Security & Privacy, 2021.

17 Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. Homomorphic encryption random
beacon. Cryptology ePrint Archive, Paper 2019/1320, 2019.

18 Kevin Choi, Arasu Arun, Nirvan Tyagi, and Joseph Bonneau. Bicorn: An optimistically
efficient distributed randomness beacon. In Financial Crypto, 2023.

19 Kevin Choi, Aathira Manoj, and Joseph Bonneau. Sok: Distributed randomness beacons. In
IEEE Security & Privacy, 2023.

20 Miranda Christ, Kevin Choi, and Joseph Bonneau. Cornucopia: Distributed randomness
beacons at scale. Cryptology ePrint Archive, 2023.

21 Richard Cleve. Limits on the security of coin flips when half the processors are faulty. In
TOC, 1986.

22 Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. Spurt: Scalable distributed
randomness beacon with transparent setup. In IEEE Security & Privacy, 2022.

23 Yevgeniy Dodis. Impossibility of black-box reduction from non-adaptively to adaptively secure
coin-flipping. In ECCC, 2000.

24 Drand. https://drand.love/.
25 Dankrad Feist. RSA Assumptions. rsa.cash/rsa-assumptions/, 2022.

AFT 2024

https://drand.love/
rsa.cash/rsa-assumptions/

17:22 Cornucopia: Distributed Randomness at Scale

26 FileCoin. Trusted setup complete!, 2020. URL: https://filecoin.io/blog/posts/
trusted-setup-complete/.

27 Ethereum Foundation. Proto-danksharding, 2023. URL: https://www.eip4844.com/.
28 Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.

In CRYPTO, 2018.
29 Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over

Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryptology ePrint
Archive, Paper 2019/953, 2019.

30 David Galindo, Jia Liu, Mihai Ordean, and Jin-Mann Wong. Fully distributed verifiable
random functions and their application to decentralised random beacons. In Euro S&P, 2021.

31 Shafi Goldwasser, Yael Tauman Kalai, and Sunoo Park. Adaptively secure coin-flipping,
revisited. In ICALP, 2015.

32 Zhaozhong Guo, Liucheng Shi, and Maozhi Xu. SecRand: A Secure Distributed Randomness
Generation Protocol With High Practicality and Scalability. IEEE Access, 2020.

33 Iftach Haitner and Yonatan Karidi-Heller. A tight lower bound on adaptively secure full-
information coin flip. In FOCS, 2020.

34 Yael Tauman Kalai, Ilan Komargodski, and Ran Raz. A lower bound for adaptively-secure
collective coin flipping protocols. Combinatorica, 41(1), 2021.

35 Alireza Kavousi, Zhipeng Wang, and Philipp Jovanovic. SoK: Public Randomness. Cryptology
ePrint Archive, Paper 2023/1121, 2023.

36 Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Mining for Privacy: How to
Bootstrap a Snarky Blockchain. In Financial Crypto, 2021.

37 Hsun Lee, Yuming Hsu, Jing-Jie Wang, Hao Cheng Yang, Yu-Heng Chen, Yih-Chun Hu, and
Hsu-Chun Hsiao. HeadStart: Efficiently Verifiable and Low-Latency Participatory Randomness
Generation at Scale. In NDSS, 2022.

38 Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and trx. Cryptology
ePrint Archive, Paper 2015/366, 2015.

39 Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient nonmembership
proofs. In ACNS, 2007.

40 Helger Lipmaa. Secure accumulators from Euclidean rings without trusted setup. In ACNS,
2012.

41 Lipa Long. Binary quadratic forms. https://github.com/Chia-Network/vdf-competition/
blob/master/classgroups.pdf, 2018.

42 Lan Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA, 2005.
43 Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh. Powers-of-tau to the

people: Decentralizing setup ceremonies. In ACNS, 2024.
44 Charalampos Papamanthou. Cryptography for efficiency: new directions in authenticated data

structures. PhD thesis, Brown University, 2011.
45 Krzysztof Pietrzak. Simple Verifiable Delay Functions. In ITCS, 2018.
46 Youcai Qian. Randao: Verifiable random number generation. randao.org/whitepaper/

Randao_v0.85_en.pdf, 2017.
47 Michael O. Rabin. Transaction protection by beacons. Journal of Computer and System

Sciences, 1983.
48 Mayank Raikwar and Danilo Gligoroski. SoK: Decentralized randomness beacon protocols. In

Australasian Conference on Information Security and Privacy, 2022.
49 Mark Ryan. Enhanced Certificate Transparency and End-to-End Encrypted Mail. In NDSS,

2014.
50 Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and Edgar Weippl.

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness. In
NDSS, 2023.

51 Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. Hydrand: Efficient
continuous distributed randomness. In IEEE Security & Privacy, 2020.

https://filecoin.io/blog/posts/trusted-setup-complete/
https://filecoin.io/blog/posts/trusted-setup-complete/
https://www.eip4844.com/
https://github. com/Chia-Network/vdf-competition/blob/master/classgroups. pdf
https://github. com/Chia-Network/vdf-competition/blob/master/classgroups. pdf
randao.org/whitepaper/Randao_v0.85_en.pdf
randao.org/whitepaper/Randao_v0.85_en.pdf

M. Christ, K. Choi, and J. Bonneau 17:23

52 Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papamanthou, Alin Tomescu, and
Yupeng Zhang. Hyperproofs: Aggregating and maintaining proofs in vector commitments. In
USENIX Security, 2022.

53 Shravan Srinivasan, Ioanna Karantaidou, Foteini Baldimtsi, and Charalampos Papamanthou.
Batching, aggregation, and zero-knowledge proofs in bilinear accumulators. In ACM CCS,
2022.

54 Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser, Ismail
Khoffi, Michael J Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In
IEEE Security & Privacy, 2017.

55 Weijie Wang, Annie Ulichney, and Charalampos Papamanthou. {BalanceProofs}: Maintainable
Vector Commitments with Fast Aggregation. In USENIX Security, 2023.

56 Benjamin Wesolowski. Efficient Verifiable Delay Functions. In Eurocrypt, 2019.
57 David Yakira, Avi Asayag, Ido Grayevsky, and Idit Keidar. Economically viable randomness.

CoRR, 2020.

AFT 2024

	1 Introduction
	2 Preliminaries
	2.1 Verifiable delay functions
	2.2 Accumulators
	2.3 Vector commitments

	3 Timed DRBs: Definitions and Constructions
	3.1 Unicorn
	3.2 Cornucopia

	4 Cornucopia Security
	4.1 Insertion Security
	4.2 Security of Cornucopia

	5 Insertion-secure accumulators
	5.1 Accumulators without insertion security
	5.2 Merkle trees
	5.3 RSA accumulators
	5.4 Bilinear accumulators
	5.5 From vector commitments
	5.6 From generic universal accumulators

	6 Efficiency comparison of accumulator constructions
	7 Concluding Discussion
	7.1 The multi-coordinator model
	7.2 Public verifiability with notaries
	7.3 Incentivizing participation

